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Complete elimination of nonlinear light-matter interactions with broadband ultrafast laser pulses
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The absorption of a single photon that excites a quantum system from a low to a high energy level is an
elementary process of light-matter interaction, and a route towards realizing pure single-photon absorption has
both fundamental and practical implications in quantum technology. Due to nonlinear optical effects, however,
the probability of pure single-photon absorption is usually very low, which is particularly pertinent in the case of
strong ultrafast laser pulses with broad bandwidth. Here we demonstrate theoretically a counterintuitive coherent
single-photon absorption scheme by eliminating nonlinear interactions of ultrafast laser pulses with quantum
systems. That is, a completely linear response of the system with respect to the spectral energy density of the
incident light at the transition frequency can be obtained for all transition probabilities between 0 and 100%
in multilevel quantum systems. To that end, a multiobjective optimization algorithm is developed to find an
optimal spectral phase of an ultrafast laser pulse, which is capable of eliminating all possible nonlinear optical
responses while maximizing the probability of single-photon absorption between quantum states. This work not
only deepens our understanding of light-matter interactions, but also offers a way to study photophysical and
photochemical processes in the “absence” of nonlinear optical effects.
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Exploring the interaction of light with matter (i.e., atoms
and molecules) at the ultimate limit of single photons is a
topic of much current interest in many disciplines of science.
This includes topics such as generating single photon sources
[1–3], storing single photons in quantum memory devices
[4,5], and controlling the interactions between single photons
and matter [6–8]. When a beam of light interacts with matter
with quantized energy levels, optical absorption and emission
are fundamental processes corresponding to a transition from
one energy level to another. The rate of absorption has a
component proportional to the energy density of the beam.
The transition rate also contains terms of higher order, i.e.,
nonlinear terms in the energy density. The linear term in the
absorption rate corresponds to the excitation in which a single
photon is absorbed, whereas the nonlinear terms correspond to
the excitation in which two or more photons are absorbed [9].

The probability of pure single-photon absorption under
normal circumstances is very low. One of the major difficulties
in realizing single-photon absorption with unit probability is
to overcome decoherence (e.g., population relaxation) due
to the intrinsic fragility of quantum states, which is also a
common challenge for quantum technology. Ultrafast laser
pulses provide an alternative approach to manipulate many
quantum processes on extremely short time scales (atto-
to picoseconds) before decoherence plays a role [10–13].
When such a laser pulse that contains a huge number of
photons within the broad bandwidth excites matter, another
major difficulty due to nonlinear optical effects may emerge.
Based on a mature spectral-phase-shaping technique [14],
considerable theoretical and experimental effort has been
directed toward the study of single-photon phase control in
the weak-field regime [15–20]. Related theoretical work has
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shown that a nearly linear response of the system as a function
of laser energy density is possible, somewhat beyond the
strictly weak-field limit, provided appropriate laser spectral-
phase modulation is introduced [21]. Furthermore, seminal
work by Silberberg et al. [10,22,23] has demonstrated how this
approach can be used in the modulation of multi (two)-photon
transitions in atoms, and a direct signature has been observed
in which a two-photon nonlinear optical process in molecules
can be significantly affected by chirping the spectral phase of
the laser pulse at very low light intensities [24]. Inspired by
these previous studies, a fundamentally important but largely
unexplored question is whether pure spectral-phase shaping
of an ultrafast laser pulse can lead to complete elimination of
nonlinear optical effects.

In this article, we demonstrate that a completely linear
absorption probability, as a function of the energy density
at the transition frequency, can be obtained for all transition
probabilities between the minimum 0 and the maximum
100% in a prototypical multilevel quantum system. To that
end, we develop a monotonically convergent multiobjective
optimization algorithm, which combined with a perturbation
theory analysis is utilized to find the optimal spectral phase
of a laser pulse for minimizing nonlinear optical effects while
maximizing the probability of single-photon transition. The
robustness of the maximal single-photon absorption against
the influence of spectral field noise is also examined.

The basic aim of this work is sketched in Fig. 1. We
consider the simplest multilevel quantum-mechanical system
(atom or molecule), consisting of two lower states |g〉 and |s〉
and an excited state |f 〉 with eigenenergies Eg < Es < Ef .
The transitions between the lower states |g〉, |s〉 and the
excited states |f 〉 are dipole allowed, but the transition
between the states |g〉 and |s〉 is dipole forbidden. An ultrafast
laser pulse is used to excite such a quantum system, whose
lifetimes in the states |s〉 and |f 〉 are assumed to be much
longer than the duration of the laser pulse. Such a multilevel
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FIG. 1. The interaction of a laser field with a three-level (�-type)
quantum system consisting of two lower levels |g〉 and |s〉 and an
upper level |f 〉. A broadband ultrafast laser pulse is shaped to obtain
a linear response of the population in the state |f 〉 with respect to the
energy density while eliminating all possible transitions to state |s〉.

model has been used for modeling a variety of optical
schemes, including electromagnetically induced transparency
(EIT) and photon storage [25–27] and stimulated Raman
adiabatic passage (STIRAP) [28–30], where nonlinear multi
(two)-photon transitions to the state |s〉 are taken advantage of
in cancellation of population in the state |f 〉. In contrast with
these schemes, the present work aims to protect the absorption
from |g〉 to |f 〉 via destructive quantum interferences with
multiphoton transition pathways.

The total Hamiltonian operator Ĥ (t) of the quantum
system in interaction with a light field E(t) can be de-
scribed by Ĥ (t) = Ĥ0 − μ̂E(t), where Ĥ0 is the field-free
Hamiltonian operator and μ̂ the dipole operator. The wave
function |�(t)〉 of the quantum system, initially in the
ground state |g〉, can be iteratively expanded to arbitrary
order as |�(t)〉 = ∑∞

k=0 |ψ (k)(t)〉 with |ψ (0)(t)〉 = |g〉 and
|ψ (k+1)(t)〉 = −i

∫ t

−∞ dt ′E(t ′)μ̂I (t ′)|ψ (k)(t ′)〉, where μ̂I (t) =
exp(iĤ0t)μ̂ exp(−iĤ0t) is the dipole operator in the inter-
action picture. The electric field of the laser pulse can be
expressed as

E(t) = 1

2π
Re

[∫ ∞

0
E(ω) exp(−iωt)dω

]
, (1)

with the complex-valued spectral field E(ω) =
A(ω) exp[iφ(ω)] in terms of the real-valued spectral
amplitude A(ω) � 0 and the real-valued spectral phase
φ(ω). The energy of such a pulse can be expressed as
Ep ∝ ∫ ∞

−∞ E2(t)dt ∝ ∫ ∞
0 A2(ω)dω, which is independent

of the spectral phase φ(ω). To first order, the transition
probability from the ground state |g〉 to the final state |f 〉,
corresponding to single-photon absorption, is given by

P
(1)
f = |〈f |ψ (1)(∞)〉|2 = μ2

fgA
2(ωfg), (2)

where μfg = 〈f |μ|g〉 is the transition dipole moment and
ωfg = Ef − Eg is the transition frequency between the states
|g〉 and |f 〉. Thus, the probability of absorption depends
linearly on the square of the spectral amplitude A2(ω) at
the resonant transition frequency ωfg , i.e., the spectral energy
density, but is independent of the spectral phase. Furthermore,
beyond first order in the interaction, odd-order perturbation
terms will contribute to the transition probability to the state
|f 〉 and even-order terms will transfer population to the states

|s〉 and |g〉, and a dependence on the spectral phase φ(ω)
is observed. The present work will show a coherent control
scheme to realize an interesting limit of linear absorption
from |g〉 to |f 〉 by modulating the spectral phase of a
single ultrashort pulse, where the effects of all higher-order
perturbation terms are eliminated.

Solutions to analytically unaccessible maximiza-
tion/minimization problems under consideration can be
established in the framework of quantum optimal control
theory (QOCT) [31–36]. Due to the technical complexity
involved in acquiring either monotonic convergence or
general applicability of the algorithms, however, the present
problem is a challenge to the previously developed QOCT
methods. We develop here a gradient-based multiobjective
optimization algorithm that not only is capable of optimizing
the spectral phase of the laser pulse in the frequency domain,
but also ensures monotonic convergence to each control
objective simultaneously. To formulate this method in an
elegant mathematical form, a dummy variable x � 0 is
employed to parametrize the spectral phase φ(ω) with
φ(x,ω). As x increases, the change of the final population
P� = |〈�|�(∞)〉|2 in an arbitrary quantum state |�〉 of the
system can be written using the chain rule as

dP�

dx
=

∫ ∞

0

δP�

δφ(x,ω)

∂φ(x,ω)

∂x
dω. (3)

The spectral phase is updated from φ(x,ω) to φ(x + dx,ω)
with

∂φ(x,ω)

∂x
=

∫ ∞

0
S(ω′ − ω)

M∑
�,�′=1

k�(x)[�−1]��′
δP�′

δφ(x,ω′)
dω′,

(4)

where the convolution function S(ω′ − ω) is a filter for smooth-
ing the updated spectral phase, and � is a symmetric matrix
composed of the elements ���′ = ∫ ∞

0 δP�/δφ(x,ω)
∫ ∞

0 S(ω′ −
ω)δP�′/δφ(x,ω′)dω′dω. By inserting Eq. (4) into Eq. (3) (see
details in Appendix), we can verify that P� can be mono-
tonically increased (decreased) simultaneously with k� > 0
(k� < 0). Note that the optimization algorithm indicated in
Eq. (4) is independent of the dimension of Hamiltonian,
ensuring its applicability to complex multilevel quantum
systems. To perform this algorithm, the quantum system is
driven with an initial guess of the spectral phase φ(x0,ω) = 0
associated with the temporal field E(x0,t), and the generated
wave function �(t) is used to calculate the gradients of P�

with respect to the spectral phase φ(x0,ω) for getting the first
gradient ∂φ(x0,ω)/∂x (see details in Appendix). Equation (4)
is solved (e.g., by using the Euler method) to obtain a
new spectral phase φ(x1 = x0 + dx,ω) and the corresponding
time-dependent laser field E(x1,t) is calculated according to
Eq. (1). The spectral phase is iteratively updated from φ(x1,ω)
to φ(x2 = x1 + dx,ω), . . . ,φ(xn,ω) until P� converges to the
desired control objectives.

To eliminate the nonlinear light-matter interaction terms,
we employ this optimization algorithm to optimize Pf to be
as close to the linear absorption probability P

(1)
f as possible

while minimizing Ps in the state |s〉. The unshaped laser
field E(x0,t) is taken to be an experimentally accessible
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FIG. 2. The final populations in the three states with (a) constant
spectral phase and (b) optimal spectral phases with respect to A2(ω0),
proportional to the pulse energy. The straight line shows the linear
scaling of the transition probability Pf to the upper level, which is
valid at low transition probabilities with a constant laser phase and
for all transition probabilities with an optimized phase.

Gaussian transform-limited pulse with the center frequency
of ω0 = 12 500 cm−1 (800 nm) and the FWHM of 30 fs. The
eigenenergies of the three-level quantum system are chosen
as Eg = 0, Es = 0.02ω0, Ef = ω0, and the transition dipole
moments between the two lower states and the excited state
are set to μgf = μsf = 1.0 a.u. for convenience. A normalized
Gaussian spectral filter S(ω′ − ω) = exp[−4ln2(ω′ − ω)2/σ 2]
with a bandwidth of σ = 80 cm−1 is used in Eq. (4). Figure 2(a)
shows the final populations in the three states as a function
of A2(ω0) with constant φ(ω) = 0 spectral phase. The linear
optical transition to the state |f 〉, observed in the weak-field
limit regime, is significantly affected as the energy density
increases, resulting in population transfer to the state |s〉.

As seen from Eq. (2), choosing the square of the (peak)
spectral amplitude at the critical value of A2(ω0) = 1.0
corresponding to P

(1)
f = 1.0 could, in the absence of nonlinear

interactions, completely excite the quantum system from the
ground state |g〉 to the final state |f 〉. We first fix the spectral
amplitude at A(ω0) = 1.0 (corresponding to the peak intensity
of I0 = 8.054 4×1010 W/cm2 for the transform-limited pulse)
and then use the optimization algorithm to maximize Pf (kf >

0) while minimizing Ps (ks < 0). Our results show that by
iteratively optimizing the spectral phase, Pf can be maximized
to unity with high precision (see Fig. 6 in the Appendix,
where Pf > 0.999 99 and Ps < 1.0×10−8). Furthermore, by
using this optimized spectral phase as the initial input, we
further examine the final population responses of the three
states with respect to the laser pulses with A2(ω0) < 1.0 (see
Fig. 7 in Appendix). The nonlinear optical transitions to the
intermediate state |s〉 can be greatly reduced to Ps < 5×10−3,
and the final population Pf is always greater than P

(1)
f for all of

A2(ω0) < 1.0. This result provides an accessible approach to
decrease Pf (kf < 0) as close to P

(1)
f as possible while further

decreasing Ps (ks < 0) by using the present optimization
algorithm. Figure 2(b) shows the final optimized populations in
the three states as a function of A2(ω0). A linear response of Pf

with respect to A2(ω0) is restored while efficiently suppressing
nonlinear optical transitions to the state |s〉. As a result, a linear
superposition α|g〉 + β|f 〉 is obtained, where the coefficients
α and β are complex numbers satisfying |α|2 + |β|2 = 1.
In the field of quantum computing, this superposition state
corresponds to a qubit.
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FIG. 3. The optimized spectral phases used in Fig. 2(b). (a)
The optimized spectral phase as a function of A2(ω0). (b) The
optimized spectral phases of the laser pulse with A2(ω0) = 0.1 (solid
line), 0.5 (dashed line), and 1.0 (dashed line). The Gaussian curve
shows [except for the overall scaling A2(ω0)] the normalized power
spectrum, i.e., the fixed spectral distribution of the laser pulses.

The optimized spectral phases at different values of
A2(ω0) � 1.0 are plotted in Fig. 3. It is observed that the
optimized spectral phases are mainly modulated around the
two fundamental frequencies ω0 and ω0 − ωsg = 0.98ω0, lead-
ing to a substantial reduction of multiphoton (e.g., resonance
Raman) transitions to the state |s〉. To gain insight into the
effect of the optimized spectral phase on the dynamics of the
final state, Fig. 4 shows a comparison of P

(1)
f (t) and Pf (t)

with constant and optimized spectral phases at three different
values of A2(ω0). For a constant spectral phase, the pulse
smoothly transfers the population to the final state |f 〉, where
the differences between the first-order perturbation simulations
and the exact solution to the Schrödinger equation imply
that higher-order perturbations and therefore nonlinear optical
effects play a role. The optimized spectral phases prolong the
pulse durations from the femtosecond to the picosecond regime
and almost restore the behavior of P

(1)
f (t) under the first-order

description, especially at lower intensities [see Fig. 4(a′)],
where the high-order perturbation terms are rather weak. It
is noteworthy that first-order perturbation theory correctly
predicts all post-pulse transition probabilities between 0 and
1. The slight differences of the transient dynamics between the
first-order perturbation simulations and the exact calculations
[see Figs. 4(b′) and 4(c′)] can be attributed to the fact that the
nonlinear optical transitions take place during the laser-system
interactions, but their contributions to the final absorption
probability to the state |f 〉 are completely eliminated. Note
that the transient dynamics induced by the spectral-phase
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FIG. 4. A comparison of P
(1)
f (t) (dashed line, obtained by first-

order perturbation calculation) and Pf (t) (the exact time-dependent
Schrödinger equation solution) with constant (left panels) and
optimized (right panels) spectral-phase pulses at (a, a′) A2(ω0) = 0.1,
(b, b′) A2(ω0) = 0.5, and (c, c′) A2(ω0) = 1.0.

optimization exhibit strong oscillations in the excited-state
population which differ from the case of constant spectral
phase. Oscillatory dynamics of the excited-state population in
the perturbative regime of the interaction have been observed
experimentally by linearly chirping the spectral phase of a
laser pulse [37].

We now examine the robustness of this scheme against the
influence of the control field noise, which has been identified
as one of the key requirements in practical applications
of quantum technology [38,39]. Due to various external or
internal perturbations of laser sources, the temporal laser
fields in the laboratory can be subject to stochastic noise in
either the time or frequency domain. As an example, Fig. 5
shows the final excited-state population variations versus the
laser field fluctuations, where the fixed spectral amplitude
A(ω) at A2(ω0) = 1.0 and the optimized spectral phase φ(ω)
are perturbed simultaneously with white Gaussian noise of
50 ≈ 100 dB in signal-to-noise ratio (SNR). A high efficiency
of the population transfer to the final state |f 〉 can still be
achieved with an admissible error lower than 10−4 when
the SNR is over 70 dB, which is possible using the current
state-of-the-art laser techniques [40].

In summary, we have presented an optical phase mod-
ulation scheme for coherent light that can be utilized to
completely eliminate nonlinear optical effects, leading to a
linear absorption response from a low to a high energy level
in a multilevel quantum system. The fundamental limit of
single-photon absorption and therefore a linear superposition
of two quantum states was achieved by transferring the
optimal spectral phase of a broad-bandwidth ultrafast laser
pulse onto the quantum wave function of the system. To
that end, a versatile spectral-phase optimization algorithm
was developed that can be used to monotonically approach
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FIG. 5. The robustness of the perfect population transfer to the
final state |f 〉 (at A2(ω0) = 1.0) against the influence of spectral field
noise. In this simulation, a white Gaussian noise of 50 ≈ 100 dB in
signal-to-noise ratio (SNR) is added to the fixed spectral amplitude
and the optimized spectral phase, and then the noised spectral field is
transformed to obtain the temporal field of the laser pulse for driving
the evolution of the quantum system.

multiple control objectives simultaneously. This single-photon
absorption limit was found to be robust with tolerable influence
of spectral field noise. These results suggest also an alternative
approach to prepare a qubit in a multilevel quantum system.
Since this multiobjective optimization algorithm is general for
maximizing the probability of a single-photon transition while
minimizing nonlinear optical transitions to multiple unwanted
levels, the key idea introduced here could be extended to
study more complex atoms and molecules as well as other
quantum systems. This work can open a number of potential
applications, including the manipulation of quantum wave
functions and the extraction of a single photon from ultrafast
laser pulses.
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No. FL110100020. C.C.S. acknowledges the financial support
by the Vice Chancellor’s Postdoctoral Research Fellowship of
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APPENDIX

The total Hamiltonian operator Ĥ (t) of the quantum system
in interaction with a light field E(t) can be described by Ĥ (t) =
Ĥ0 − μ̂E(t), where Ĥ0 is the field-free Hamiltonian operator
and μ̂ the dipole operator. The time-dependent evolution
of the quantum system is described by the wave function
�(t) = Û (t, − ∞)|g〉, where Û (t, − ∞) is the corresponding
unitary evolution operator governed by the time-dependent
Schrödinger equation,

i
∂Û (t,−∞)

∂t
= Ĥ (t)Û (t,−∞), Û (−∞,−∞) ≡ I, (A1)
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where t → −∞ denotes a time long before the pulse is turned
on, whereas t → ∞ corresponds to a time long after the pulse
is turned off.

To formulate this optimization method, a dummy variable
x � 0 is employed to parametrize the spectral phase φ(ω)
with φ(x,ω). The gradient of the final population P� =
|〈�|Û (∞,−∞)|g〉|2 in state |�〉 (� = g,s and f ) with respect
to this dummy variable can be written using the chain rule as

g�(x) ≡ dP�

dx
=

∫ ∞

0

δP�

δφ(x,ω)

∂φ(x,ω)

∂x
dω, (A2)

where g�(x) > 0 corresponds to an increase in the final
population in state |�〉, whereas g�(x) < 0 corresponds to
decreasing the final population in |�〉. To optimize multiple
objectives in a monotonic convergence fashion, the spectral
phase can be updated from φ(x,ω) to φ(x + dx,ω) with

∂φ(x,ω)

∂x
=

∫ ∞

0
S(ω′ − ω)

M∑
�,�′=1

k�(x)[�−1]��′
δP�′

δφ(x,ω′)
dω′,

(A3)

where the convolution function S(ω′ − ω) is the filter for
smoothing the updated spectral phase, and � is a sym-
metric matrix composed of the elements ���′ = ∫ ∞

0 δP�/

δφ(x,ω)
∫ ∞

0 S(ω′ − ω)δP�′/δφ(x,ω′)dω′dω. By inserting
Eq. (A3) into Eq. (A2), we can verify that

g�(x) =
∫ ∞

0
c�(x,ω)

∫ ∞

0
S(ω′ − ω)

×
M∑

�′′,�′=1

k�′′(x)[�−1]�′′�′c�′(x,ω′)dω′dω

=
M∑

�′′,�′=1

k�′′(x)[�−1]�′′�′��′�

=
M∑

�′′=1

k�′′(x)δ�′′� (A4)

is always greater than (k� > 0) or less than (k� < 0) zero, im-
plying that all monotonic convergence conditions in Eq. (A2)
are satisfied simultaneously. To perform this method, the
gradients of P� with respect to the spectral phase φ(x,ω) in
Eq. (A2) are computed by

δP�

δφ(x,ω)
=

∫ ∞

−∞

δP�

δE(x,t)

∂E(x,t)

∂φ(x,ω)
dt. (A5)

where ∂E(x,t)/∂φ(x,ω) = −A(ω) sin[φ(x,ω) − ωt]/(2π ).
The gradients of P� with respect to the temporal laser field
E(x,t) are calculated by

δP�

δE(x,t)
=−2Im{〈g|Û †(∞,−∞)|�〉〈�|Û (∞,−∞)

× Û †(t,−∞)μ̂Û (t,−∞)|g〉}. (A6)

The spectral phase is updated according to the Eu-
ler method with φ(x + dx,ω) = φ(x,ω) + dx[∂φ(x,ω)/∂x]
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FIG. 6. The control objective as a function of iterations for
realizing the fundamental limit of linear optical absorption at
A2(ω0) = 1. The multiobjective optimization algorithm is used to
maximize the final population on the state |f 〉 while minimizing the
final population on the state |s〉 in a monotonic convergence fashion.

using Eq. (A3). This phase is used to calculate the
time-dependent laser field E(x + dx,t), which will increase
(k�(x) > 0) or decrease (k�(x) < 0) the final population P� as
compared with that by the laser field E(x,t). Note that this
multiobjective optimization algorithm in principle can also be
employed in the laboratory, where the gradients δP�/δφ(x,ω)
in the frequency domain can be measured with stochastic
sampling methods. Supplemental results are shown in Figs. 6
and 7.
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FIG. 7. The final populations in the three states as a function
of the energy density A2(ω) at the transition frequency ω0 with
the optimized spectral phase obtained at A2(ω0) = 1. The nonlinear
optical transitions to the intermediate state |s〉 are greatly reduced to
Ps < 5×10−3, and the final population Pf is always greater than P

(1)
f

for all of A2(ω0) < 1.0. This result provides an accessible approach
to decrease Pf as close to P

(1)
f as possible while further decreasing

Ps by using the presented multiobjective optimization algorithm.
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