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Abstract: Output from analysis of a high-throughput ‘omics’ experiment very often is a ranked list. One
commonly encountered example is a ranked list of differentially expressed genes from a gene expression
experiment, with a length of many hundreds of genes. There are numerous situations where interest is in the
comparison of outputs following, say, two (or more) different experiments, or of different approaches to the
analysis that produce different ranked lists. Rather than considering exact agreement between the rankings,
following others, we consider two ranked lists to be in agreement if the rankings differ by some fixed distance.
Generally only a relatively small subset of the k top-ranked items will be in agreement. So the aim is to find
the point k at which the probability of agreement in rankings changes from being greater than 0.5 to being
less than 0.5. We use penalized splines and a Bayesian logit model, to give a nonparametric smooth to the
sequence of agreements, as well as pointwise credible intervals for the probability of agreement. Our approach
produces a point estimate and a credible interval for k. R code is provided. The method is applied to rankings
of genes from breast cancer microarray experiments.

1 Introduction
Ranked lists and comparisons between ranked lists have been of interest for a considerable time [see e.g.
Mallows (1957)], while sequences representing agreement data have also received attention (Stevens, 1939;
Mood, 1940). In the ‘omics’ literature, ranked lists have become particularly important, given that classical
probability theory is not easily applicable. Those not wishing to arbitrarily partition data by using particular
cutoffs for p-values or false discovery rates (Eden et al., 2007) rank their data. Having determined the top two
hundred or so genes, a common practice is then to import them into network software (for example, the open
source software Cytoscape (Shannon et al., 2003) for further analysis. The question arises: Are the top genes
meaningfully ranked?

Methods of comparing ranked lists have led to the development of many packages for considering paired
ranked lists (Lottaz et al., 2006; Eden et al., 2009; Plaisier et al., 2010; Antosh et al., 2013; Pihur et al., 2014;
Schimek et al., 2015b). Hall and Schimek (2012) (referred to in the following as H-S) provide an excellent review
of the statistical literature on ordered lists.

H-S propose that lists of rankings degenerate at some point into noise, and find that point (k) for paired
lists of rankings. We take an alternative approach and provide (i) credible intervals for the point (k) where
sequences of rankings degenerate into noise, and (ii) a visualization of the probability of agreement.

The H-S algorithm is implemented in the R package, TopKLists (Schimek et al., 2015b). We use two key
ideas from H-S:
1. Agreements between rankings degenerate at some point into noise;
2. Rank agreement should be more loosely defined than exact agreement in rank.

Thus, we follow H-S in defining agreement between ranks as being based on a distance between ranks, δ,
and look for the point k at which the probability of agreement in rankings changes from being greater than
0.5 to being less than 0.5. We approach the problem via penalized splines and generalized linear models in
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Table 1: Breast cancer data from TopKLists (Schimek et al., 2015a).

Ranking label PubMed ID GEO ID References

TransBIG 17545524 GSE7390 Desmedt et al. (2007)
MDCC 20676074 GSE20194 MAQC Consortium (2006)
Pusztai 20829329 GSE20271 Tabchy et al. (2010)

an MCMC framework, since this gives a mechanism for finding a non-parametric smooth to the sequence of
agreements, while giving pointwise credible intervals for the probability of agreement at any point.

2 Methods

2.1 Data

To illustrate the method, we use the rankings of genes from three breast cancer microarray experiments
supplied as a dataset in the R package, TopKLists (Schimek et al., 2015b), and used in the corresponding
vignette (Schimek et al., 2015a). Rankings are those given in the dataset, and are not those of the original
sources. Table 1 shows the data sources.

2.2 Agreement in rankings

Two ranked lists are considered to be in agreement if the rankings differ by some fixed distance. Thus, in two
ranked lists of say 10,000 objects, a difference in rank, of say, up to and less than 100, may be considered
agreement in rank. For example, an item ranked 2003rd in one list might be considered to agree in ranking
with an item in another list where it ranks 2103. In a list of 200 objects, a reasonable difference in rank might
be smaller, e.g. a difference of five, where an item ranked fifth in one list would be considered to agree with
the ranking in the second list where it ranks tenth. This difference in ranking agreement appears in the H-S
algorithm (and in TopKLists) as the distance parameter, δ.

Consider two ranked lists, L1 and L2. Suppose L1 consists of the objects A, B, C, D, E, F, G in that order,
while L2 consists of D, B, C, E, A, G, F in that order. Then, taking the ordering of the sequence of agreements
from L1, and using the exact agreement (δ = 0) of the ranks, the sequence of agreements is 0, 1, 1, 0, 0, 0, 0
where one represents agreement, and zero, disagreement. If the rankings are considered to be in agreement
when they deviate by a deviation of δ = 1 in rank, the sequence of agreements becomes 0, 1, 1, 0, 1, 1, 1. The
process of forming a sequence of agreements is asymmetric, with the sequence of agreements being taken
from the first list.

More generally, let us suppose if an item is ranked j on the first list, then Ij = 1, if on the second list the
item is not more than δ ranks distant from j, otherwise Ij = 0. Thus, I1, I2, . . . , IN, represents the sequence of
agreements between the rankings from List 1 (L1) and List 2 (L2), with the order of the Ij being based on L1. Let
pj be the probability of agreement between rankings at the jth sequence point. The H-S algorithm finds the
value of k, the point just before the sequence degenerates into noise (defined as the point where pj becomes
less than 0.5). H-S also assume that the decrease of pj for increasing j is not necessarily monotone.

2.3 Penalized spline fit

We use a generalized additive model (Hastie and Tibshirani, 1990) and fit the data as a logistic curve via
generalized linear modelling (McCullagh and Nelder, 1989; Dobson and Barnett, 2008). These techniques
are well explored, with many R-packages supporting them, e.g. “nlme” (Pinheiro et al., 2016). In the context
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of such modelling, Wand and Ormerod (2008) demonstrated the usefulness of O’Sullivan penalized splines
(O’Sullivan, 1986) for semiparametric regression, advocating their use since they are (a) similar to the widely
used P-splines, (b) a direct generalization of smoothing splines, (c) have natural boundary properties, and (d)
are computationally robust. Three further papers, (Crainiceanu et al., 2005; Wand, 2009; Marley and Wand,
2010) give code for fitting such models in a Bayesian context using the R package BRugs (Thomas et al., 2006).

We follow Wand and Ormerod (2008), and use a Gibbs sampler to fit the splines. The sequence, j = 1,
2, . . .,N, is the predictor variable and is standardized to give a mean of zero and a standard deviation of
one. Centering allows better mixing of the MCMC chains, because it reduces collinearity of the intercept with
the other coefficients in the model, and standardizing to a standard deviation of one means that priors for
coefficients do not have to be tailored to particular datasets (Lunn et al., 2013). This gives the vector x of
length N.

We use a Bayesian logit model. Let y be the vector of agreements of length N, X be a matrix, consisting
of the concatenation of a vector of ones, and the vector x, the vector of the sequence 1 :N, which has been
standardized, giving X = [1N × 1, xN × 1], an N × 2 matrix. Then the model is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y ∼ Bernoulli(p),
logit(p) = µ̃,
µ̃ = Xβ̃ + Zu,
β̃ ∼ N(0, σ2b),
u ∼ N(0, σ2u),
σu ∼ Half-Cauchy(A)
σ2b = 10,000

where Z is the N × (κ + 2) matrix of the O’Sullivan penalized spline bases for κ internal knots. The first three
terms of the model describe a standard generalized linear model (McCullagh and Nelder, 1989). The Gibbs
sampler estimates the coefficients β, andu, togetherwith a common variance for the penalty spline coefficients,
σ2u, which sets the penalty. The spline penalty, λ, is 1/σu. The final terms in the model are unconditional,
uninformative, priors for σ2u and σ2b. Parameters, including λ (and credible intervals) are found from their
posterior distributions. (Note, in the Gibbs sampler, samples for each term are drawn conditional on all other
terms in the model and the data.)

The smooth function, pj = 1/(1 + exp(−µj)) where µ̃ = Xβ̃ + Zu forms the basis for finding k and its
credible intervals. Technical details for the calculation of k and the effective degrees of freedom (edf ) of the
spline smooth are found in Appendix A.

We provide an R code vignette (RankAgreeVignetteV10.pdf ) together with a script (VignetteScript4.R) in
online supplementary materials.

3 Results: comparisons for TopKLists breast cancer data
Table 2 shows estimates for k and its 95%credible intervals using the penalized splinemethod for the agreement
of the comparison between the rankings for TransBig vs MDCC with the full sequence length (N = 917), and
also the estimates for k using the TopKLists method. For each agreement distance, δ, the values from using
the penalized spline method are effectively constant despite the varying degrees of freedom (df ) (13–117). This
indicates that estimates of k are not sensitive to the fitted number of degrees of freedom. Figure 1 shows the fit
when δ = 6, df = 21. Figures 2 and 3 show fits when δ = 100, for N = 917 and 100 respectively.

The penalty, λ, is a global parameter, and thus, might be thought to have an undue influence on behaviour
of the curve at the beginning of the sequence, where interest centres. Hence, we looked at the effect of fitting
the penalized splines over shorter agreement sequences (where agreement has previously been calculated
across the entire sequence of paired rankings). Table 3 shows the effect of fitting different sequence lengths
to the same sequence agreement of TransBig vs MDCC. (Some of these fits push the limits of the penalized
spline: fitting splines with 19 degrees of freedom to 50 points allows fewer than three data points between
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Table 2: Summary of fits to the breast cancer data: TransBig vs. MDCC.

δ Method df ν k 95% CI

6 Penalized spline 13 0 (0, 18)
17 0 (0, 18)
21 0 (0, 18)
27 0 (0, 18)
51 0 (0, 18)

TopKLists 10 10

10 Penalized spline 13 0 (0, 23)
17 0 (0, 22)
21 0 (0, 22)
27 0 (0, 22)
51 0 (0, 22)

TopKLists 10 10

40 Penalized spline 13 37 (4, 55)
17 37 (4, 56)
21 37 (4, 56)
27 37 (4, 56)
51 37 (3, 56)

TopKLists 20 17
40 23

100 Penalized spline 13 97 (73, 123)
17 97 (73, 124)
21 97 (73, 124)
27 96 (72, 124)
51 96 (72, 123)

117 97 (72, 123)
TopKLists 20 34

30 73
40 78
70 67

100 73

Fits are for the full sequence length, N = 917. See text for explanations of notation.

knots.) For these data, the credible intervals generally vary by relatively small amounts for the chosen δ.
However, point estimates for k increase markedly as N decreases (for 6 ≤ δ ≤ 20) but not for 30 ≤ δ ≤ 100.
The lower bounds of the credible intervals change for 40 ≤ δ ≤ 100. The upper limit when N = 100 and
δ = 100 should be ignored since the upper bound is constrained by the length of the fitted sequence, and is
therefore meaningless. (When sequences are truncated, estimates for k and its credible intervals are generally
not affected by the truncation since they are estimated as the quantiles of the posterior distribution.) For
this sequence, we note that for δ = 100 TopKLists using ν = 20 gives k as 34, but with ν = 40 gives k as 78
(Table 2), where ν is the window as used by H-S for finding estimates for pj.

Tables 4 and 5 show the effects of fitting different sequence lengths (and different numbers of degrees of
freedom) to the remaining pairs of sequences in the breast data of TopKLists (MDCC vs. Pusztai, and TransBig
vs. Pusztai, respectively). Table 4 (MDCC vs. Pusztai) shows point estimates which (1) increase with decreasing
fitted sequence length (N) for δ = 6, 10, 20; (2) do not increase for δ = 30; and (3) decrease when δ = 40 and
100. Upper bounds of the 95% CIs may increase (δ = 20) or decrease (δ = 100) with decreasing N, but are
generally consistent. Similarly, lower bounds may increase (δ = 6, 10, 20) or decrease (δ = 40, 100). Figure 4
(δ = 100, N = 150, df = 19) shows additional bumps compared with Figure 5 (δ = 100, N = 917, df = 15),
which has a considerably smoother curve, illustrating the underlying reasons for the observed differences.
Table 5 shows similar patterns of differences: point estimates increase for decreasing fitted sequence length
(N), but credible intervals change very little for δ = 6, and 10; for δ = 40, lower bounds and point estimates
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k = 0 (0,18)

edf = 6 (3.8,8.3)

sigmaU = 5.99 (2.06,16.13)

Figure 1: Observed agreement (1s and 0s) and probability of agreement for the TransBig and MDCC rankings, from the breast
cancer data from TopKLists (N = 917, δ = 6, 21 df.) The dashed curve shows the posterior median for the probability of
agreement. The (short) solid line shows the 95% credible interval for k. See the text and Apppendix A for technical details.
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k = 96 (72,124)

edf = 7 (4.7,10.2)

sigmaU = 3.01 (1.31, 8.21)

Figure 2: Same as Figure 1 with δ = 100, 117 df. The dashed curve shows the posterior median for the probability of
agreement.

increase with decreasing N; while for δ = 100, point estimates decrease and credible intervals become tighter
with decreasing N. The patterns observed are dictated by the agreement sequence, with the extra lumps and
bumps found in the shorter sequences (as seen in Figures 3 and 4) changing the way in which the probability
curve crosses the probability value of 0.5. However, it is always the case that credible intervals for pj are wider
at the ends of the fitted sequence. We recommend taking N at least as large as 2k. In our view, the credible
intervals for the shorter sequences (that are consistent with each other) are generally the better estimates. In
simulation studies (not shown), we found
1. no evidence of bias in point estimates of k;
2. for large k (≈ 100), the 95% credible intervals contained k in 98% (sd = 0.2%) of simulations;
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k = 83 (30,100)

edf = 5 (2.1, 7.9)

sigmaU = 3.91 (0.19,16.31)

Figure 3: Same as Figure 1 with N = 100, δ = 100, 21 df.

3. for small k (≈ 10), the 95% credible intervals contained k in 92% (sd = 1.7%) of simulations.

Thus, for large k, the 95% credible intervals would seem to have greater than 95% coverage, and for small k, a
little less than 95% coverage.

Tables 2–5 show the 95% credible interval may be sensitive to the number (N) of agreement points fitted.
When using our program, we would suggest fitting the full agreement sequence using 20 or so degrees of
freedom, and then refitting using a shorter sequence, taking N to be greater than the number of objects which
may be wanted for further processing, while allowing roughly the same number of p̂j above, as below 0.5, and
choosing the degrees of freedom to allow at least five points between knots.

In general, the TopKlists estimates for k lie within the credible intervals given by our method. However,
when δ is large (100) TopKLists estimates can vary considerably. Thus, in Table 2, estimates for k take values
from 34 to 78. Firstly it probably makes sense to match δ in some way with ν, and secondly, the more consistent
results are those to be believed.

Standard diagnostics for MCMC runs are produced by the program and show satisfactory behaviour.
Tables 2–5 show that estimates for k and its credible intervals show very little sensitivity to the choice

of the number of degrees of freedom. Estimates for k show some sensitivity to the choice of sequence length
fitted (Table 3), but in general these differences are relatively minor.

Comparing estimates for k for each pairing of ranked data in Tables 2–5 we see clearly that the rankings
for MDCC and Pusztai are more closely aligned than the other two pairings. This conclusion can be drawn
more comfortably when credible intervals are given, less comfortably when only point estimates are available.

(Note that estimates for k and its credible intervals can differ by 1 for different MCMC runs, leading to
occasional discrepancies between tables and figures.)

4 Discussion
H-S use several parameters in implementing their algorithm: δ, the distance allowed for ranks to be considered
to be in agreement; ν, the window for finding estimates for pj; and C(> .25), which controls the ‘moderate
deviations’ of the probability, pj (Rubin and Sethuraman, 1965). H-S use a locally defined value of p̂j (based
on the window, ν) to determine the value k at which pj changes from being above 0.5 to below 0.5. When using
the TopKLists algorithm one must choose values for each of these. Generally, having set δ, k tends not to be
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Table 3: Using different sequence lengths (N) for the breast cancer data: TransBig vs. MDCC.

δ Method N df ν k 95% CI

6 Penalized spline 917 15 0 (0, 18)
21 0 (0, 19)
27 0 (0, 19)

200 11 11 (0, 21)
21 11 (0, 20)

150 31 12 (0, 21)
100 11 12 (0, 20)

21 12 (0, 21)
50 11 12 (0, 20)

19 12 (0, 20)

10 Penalized spline 917 27 0 (0, 22)
400 21 10 (0, 25)
200 21 11 (0, 24)
150 31 12 (0, 24)
100 21 13 (0, 23)
50 13 13 (0, 23)

20 Penalized spline 917 43 7 (0, 29)
400 21 15 (0, 31)
200 21 16 (0, 31)
150 31 17 (0, 31)
100 21 18 (0, 31)
50 13 17 (0, 31)

30 Penalized spline 917 43 17 (0, 39)
400 21 22 (0, 41)
200 21 21 (0, 42)
150 31 23 (0, 43)
100 21 22 (0, 43)
50 13 19 (0, 41)

40 Penalized spline 917 27 37 (4, 56)
917 43 37 (3, 56)
400 21 39 (14, 59)
200 21 38 (15, 62)
150 31 36 (15, 63)
100 21 34 (14, 66)

100 Penalized spline 917 27 96 (72, 124)
917 117 97 (72, 123)
400 21 91 (67, 121)
200 21 91 (65, 121)
150 23 88 (37, 120)
100 21 83 (31, 100)

very sensitive to the choice of C or ν. However, major disadvantages are the lack of an interval for k, and the
lack of visualisation of the probability of agreement.

In choosing the number of degrees of freedom for the spline smooth, the number needs to be sufficiently
large to fit the data (Ruppert, 2002). Marley and Wand (2010) suggest that 27 or so degrees of freedom may be
sufficient.

Certainly we see very little difference in the fits and the estimation of k and its credible intervals, whether
we choose 19 or 117 degrees of freedom. Estimates of k and its credible intervals are remarkably stable. However,
in searching for k we are interested in the behaviour of the curve close to its start, rather than across the full
agreement sequence, and using equally spaced knots with 51 degrees of freedom for a sequence of length 917
meant that each knot interval used approximately 18 data points, which may have forced too much smoothing.
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Table 4: Using different sequence lengths (N): breast cancer data: MDCC vs. Pusztai.

δ Method N df ν k 95% CI

6 Penalized spline 917 17 11 (0, 23)
21 11 (0, 23)
27 11 (0, 23)

150 19 18 (10, 25)
TopKLists 10 14

10 Penalized spline 917 19 10 (0, 24)
27 10 (0, 24)
27 10 (0, 25)

150 19 19 (10, 27)
TopKLists 30 15

20 Penalized spline 917 21 10 (0, 24)
27 10 (0, 25)
51 22 (0, 37)

150 19 26 (17, 37)
TopKLists 20 20

30 Penalized spline 917 21 38 (19, 52)
51 38 (19, 52)

150 19 35 (24, 51)
TopKLists 20 24

40 28

40 Penalized spline 917 17 52 (35, 67)
27 52 (35, 67)

150 19 43 (27, 71)
TopKLists 30 30

40 32

100 Penalized spline 917 15 120 (91, 155)
21 123 (94, 159)
50 124 (94, 159)

300 51 109 (77, 161)
200 19 96 (90, 162)
150 19 92 (41, 144)

TopKLists 30 87
70 92

Searching for the point where the probabilities of agreement change from p ≥ 0.5 to p < 0.5 is a local
problem. Hence global summaries of the fit are not really appropriate, since (in the case of the splines) they
may well be measuring how well we fit the bulk of the data when, in fact, the interest is in the fit for perhaps
the first 200 observed agreements. The local fit issue means that we could well change the spacing of our knots
from being equally distributed across the observations, or vary H-S’s window, ν, across the sequence. However,
we prefer an approach which does not require precise tailoring of parameters to the data. Hence, our choice of
knots at equal quantiles of the sequence, and the decision to look at the sensitivity of the conclusions to the
choice of degrees of freedom for the spline smooth. One issue might be thought to be that the point, k, at which
pj changes from being above 0.5 to being below 0.5 may well occur in the section of the curve between the
first (boundary) knot and the first internal knot. However, generally, any reasonable value of k, even between
the lower boundary and the first knot, is sufficiently far away from the first point in the sequence, that the
boundary behaviour of the spline is not an issue. When k is estimated as zero, the curve fits are convincing
and not a function of boundary behaviour.

We note that dependent on the data and the purpose of the analysis, one may wish to find the point where
the probabilities change from being above to being below a value that is different from 0.5. Our approach can
be extended in a straightforward way to such a situation, but this is beyond the scope of this article.
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Table 5: Using different sequence lengths (N): breast cancer data: TransBig vs. Pusztai.

δ Method N df ν k 95% CI

6 Penalized spline 917 15 8 (0, 18)
27 8 (0, 18)

200 31 14 (4, 21)
150 19 14 (2, 21)

TopKLists 10 10

10 Penalized spline 917 15 7 (0, 18)
27 7 (0, 18)
51 7 (0, 18)

200 31 14 (0, 22)
150 19 14 (2, 22)

TopKlists 30 11

40 Penalized spline 917 15 25 (0, 41)
21 25 (0, 41)
51 29 (5, 43)

200 31 31 (19, 43)
150 19 32 (19, 44)

TopKLists 30 24

100 Penalized spline 917 15 51 (0, 80)
30 51 (0, 81)

300 31 47 (29, 72)
200 25 45 (28, 68)
150 19 43 (25, 68)

TopKLists 30 28
70 35
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sigmaU = 6.47 (0.46,18.87)

Figure 4:MDCC vs. Pusztai rankings: Otherwise same as Figure 2 with N = 150, δ = 100, 19 df.

Wand and Ormerod (2008) illustrate the differences between smoothing splines, penalized splines and
O’Sullivan splines for a number of examples, and show (for their examples) that the behaviour of the O’Sullivan
splines is very close to that of smoothing splines at the boundaries. However, for ranked list comparisons, there
are always several predictor points between the boundary knot and the first internal knot, so the boundary
behaviours illustrated in Wand and Ormerod (2008) are less relevant. In any case, this uncertainty at the
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sigmaU = 3.21 (1.26, 7.88)

Figure 5: Same as Figure 4 with N = 917, δ = 100, 15 df.

boundaries is effectively captured by the posterior distributions for pj near the boundaries. This issue can
only arise if the k is very small, in which case, it is largely irrelevant. We assessed sensitivity of the smoother
by varying the number of degrees of freedom in the splines, verifying that the estimated degrees of freedom
was lower than the fitted degrees of freedom, and looking for sensitivity in the estimates for k and its credible
intervals.

Estimates for k and its credibility interval are sensitive to the fitted sequence length. See e.g. Table 3,
when δ = 40, where the lower bound (the 2.5% quantile of the posterior distribution) is 3 or 4 for the full
sequence length but 14 or 15 for the shorter sequence lengths. We experimented by increasing the number of
knots fitted to the full sequence so that there were the same number of observations between knots, as for a
shorter sequence, expecting that the same fitted behaviour would then be observed. However, it is clear that
σ2u (and hence, the constant penalty, λ, estimated over the full sequence), dominates the fit, and lumps and
bumps found in a shorter sequence are not found in the longer sequences no matter how many knots we fit
(Figures 2 and 3, Table 3, δ = 100.)

While it is generally the case that sequences of rankings of RNA-seq data, and of microarray data are
of the order of tens of thousands, typically interest centers on the first 100–200 highest ranked genes. In
such circumstances, it seems sensible to look for agreement of rankings within the first 1000–2000 genes. On
occasion it may be the case, that a researcher is searching for the least differentially expressed genes. See, for
example, Risso et al. (2014), where such genes are sought for normalization within an analysis. This can easily
be done by reversing the rankings, and choosing the number of rankings which are of interest.

Thewebpage for TopKLists (Schimek et al., 2014) and the TopKLists vignette (Schimek et al., 2015a) suggest
that the distance for agreement, δ, should be chosen using the ‘deltaplot’: “one should choose a value for
δ, where the rate of the deltaplot’s decrease begins to slow noticeably (i.e. where the discordance is starting
to degrade)”, and should there be several such points, the choice should be the smallest such value. (The
deltaplot graphs the number of failures in agreement versus the distance, δ.) This makes sense, in that any of
the earlier choices for δ should make little difference given a sharp decline. An upper limit to the choice of δ
occurs when all the rankings are concordant (which occurs for random ranking agreement sequences when δ
is chosen to be approximately N/2). This advice seems to be based on the fact that, typically, when the delta
plot flattens out, TopKLists gives consistent values for k. However, given the many processes to which ‘omics’
data are subjected prior to finding a ranking, e.g. count normalisation, our view is that this choice should be
left to the analyst, and be based on an understanding of the processes used to find the rankings.
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A single estimate is returned by TopKLists and it can differ considerably for a given δ, depending on
the window size, ν. Further, a key problem is that, for a given δ and ν, no insight into the variability of k is
readily available. A strength of TopKLists is that it can deal with several lists of rankings, and that not all
lists of rankings include the items contained by others. Our purpose was somewhat different: we sought to
address the problem, as proposed by Hall and Schimek (2012), of determining when a set of paired rankings
degenerates into noise, and to show that the problem had an existing solution in the context of nonparametric
curve fitting, and to use that solution to find credible intervals for k, and to visualize the agreements more
meaningfully.

5 Conclusions
To determine where a paired list of rankings degenerates into noise, a method based on the use of penalized
splines and a Bayesian logit model has been developed. This approach produces a nonparametric smooth
of the sequence of agreements between the two ranked lists and pairwise credible intervals for the probability
of agreement, where agreement is defined as the two rankings differing by some fixed distance. Further, this
method (a) gives a point estimate as well as a credible interval for the point at which agreement degenerates
into noise and (b) enables the relationship between two rankings over any desired range to be evaluated.
The initial approach to finding where a paired list of rankings degenerates into noise was developed by Hall
and Schimek (2012) and gives a point estimate but no interval estimate making evaluation and comparison
difficult. We have found that generally this point estimate lies within the credible interval given by our
method.
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Appendix A: Technical details

A.1 Finding k, and its 95% credible intervals

The smoothing function, pj = 1/(1 + exp(−µj)) where µj = Xβ + Zu and j = 1, . . .,N, forms the basis for
finding k and its credible interval. Let the sample of pj at iteration t (of T samples) in the MCMC process be pjt .
We monitor pjt , thus giving T posterior MCMC samples of pjt from which we estimate pj and its 95% credible
intervals. The posterior credible interval for k is found by post processing the posterior distributions pjt , to find
kt at each (post burn-in) iteration, t. Thus, to find k, for each iteration, we perform the following calculation:
1. If p1t ≤ 0.5, then kt = 0; else
2. find the first jt, for which pjt − 0.5 < 0, then kt = j − 1; else
3. if there is no jt, for which pjt − 0.5 < 0, then kt = N.

That is, kt is the last value of j before pjt becomes less than 0.5. See the post processing R-code below.
A fundamental output of the method is a figure showing the pointwise estimates of pj (the median of pj)

and their 95% credible intervals. We graph the pointwise 95% credible intervals as a shaded area, and join
the medians with a dashed line. A horizontal solid line shows the 95% credible interval for k, which does
not necessarily correspond to the shaded interval at probability = 0.5, but is calculated from the posterior
distribution of k.
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A.2 Calculation of effective degrees of freedom and the spline penalty

When fitting splines, one needs to know whether sufficient knots have been fitted. Does the model adequately
fit the data? The sensitivity of the model to the choice of the number of degrees of freedom can be checked by
fitting models with various degrees of freedom. Marley and Wand (2010), in a different context, suggest that
25 degrees of freedom should be adequate. Here with sequences of length often greater than 1000, more knots
may well be needed. (Ruppert, 2002; Wang et al., 2011) suggest that 40 knots may be adequate, however large
N may be.)

We find the estimated degrees of freedom (edf ) for the spline model fit as follows. Adapting Marley and
Wand (2010); Wand (2014), the design matrix for penalized spline fit isW = [X Z], κ is the number of internal
knots, and N is the length of the sequence. Let

D = diag(02, 1κ+2),
Σp = diag(pj(1 − pj)), j = 1, 2, . . . N,

and pj = 1/(1 + exp(−µj)).

Then the effective degrees of freedom, edf, derived from Ruppert et al. (2003), Marley andWand (2010) is given
by:

edf = trace[(WTΣpW + λ2D)−1(WTΣpW)], where

λ2 = 1/σ2u , and
λ is the spline penalty.

The edf, σ2u, λ and all other parameters in the model, are found from their posterior distributions. They
are not chosen a-priori, nor are they arbitrary. They approximate maximum likelihood solutions for the given
model, when N is large in comparison with the number of fitted parameters.

When the fitted degrees of freedom well exceeds the estimated degrees of freedom, it is clear that the
smoothing has not been constrained by the choice of the number of fitted degrees of freedom.

BUGS code for penalized spline logit model

model{
for (j in 1:N){

mu[j] <- b + b1*x[j] + inprod(a[],zz[j,])
logit(p[j]) <- mu[j]
y[j] ~ dbern(p[j])

}

for (m in 1:numKnots){
a[m] ~ dnorm(0,tauU)

}
b ~ dnorm(0, .0001); b_1 ~ dnorm(0, .0001)
numerU ~ dnorm(0,1) ; denomU ~ dnorm(0,0.0016)
tauU <- pow(numerU/denomU,2)

}

The code is valid in WinBUGS, OpenBUGS or JAGS.
The model uses a Half-Cauchy prior for the variance of the coefficients for the penalized spline terms.

Marley and Wand (2010) recommend these and in our experience, they work well, allowing the model to
initialize and adapt with no problems, while being uninformative. Code to generate the O’Sullivan splines
over the number of knots for the predictor x is available fromWand and Ormerod (2008). When there are κ
internal knots the fitted number of degrees of freedom (df ) is κ + 4.
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The last two lines of code show the technique for producing a Half-Cauchy(A) prior for σ2u, where
A = sqrt(1/.0016) = 25.
The code is valid for OpenBUGS, WinBUGS, and JAGS.

A.3 R code for calculating k and its 95% credible interval

Let P = pjt be the matrix of posterior distributions for the pj. The dimensions of this matrix are the number of
iterations, T, and N, the length of the agreement data. Then the code for post processing P to find k is given by
the function kCI(P):

kCI <- function(P){
T <- dim(P)[1]; N <- dim(P)[2]
k <-1:T
for (t in 1:T){

if (P[t,1]<=0.5) {k[t] <- 0 }
else {for (j in 2:N){

if ((P[t,j]-.5)<0) {k[t] <- j-1; break}
else k[t] <-N}

}}
kCI <- as.numeric(quantile(k, probs=c(0.5, .025, .975)))
return(kCI)

}
kCI(P)

Thus, we search through the iterations to find the first j for which Ptj is less then 0.5. The tth sample of k, kt,
is given by the value j − 1. At this point we exit the inner loop and return to the outer loop to find the next
sample of k.

Note that if Pt1 is less than or equal to 0.5 in iteration, t, then kt is taken to be 0. If PtN is greater than 0.5 at
iteration t, when j = N, then kt is taken to be N.

A.4 Further implementation details

For any given comparison, the agreement sequence is calculated using the TopKLists (Schimek et al., 2015b)
function prepare.idata, which takes the two ranked lists and the desired distance, δ, to give the agreement
sequence. The TopKLists function is used to ensure that agreement sequences are identical thereby allowing
comparisonwith the estimated k from TopKLists. The spline bases are calculated via R code (ZOSull.R) supplied
in Marley and Wand (2010). A function, wrapper(), outputs k and its credible intervals, together with pj and its
summary statistics, and various graphs to a nominated subdirectory. Input parameters are the set of ranked
data (in the form used by TopKLists), the two columns to be compared, and the distance (δ) desired for defining
agreement of ranks.

The models were fit using R2jags (Su and Yajima, 2015) which uses JAGS (Plummer, 2011). Models were
also fit using BRugs (Thomas et al., 2006). However, the R2jags framework was found to be both considerably
faster, and more flexible in that it allowed easy random initializations of several chains.

In JAGS, burn-in was 10,000, and the number of posterior MCMC iterations for estimation was 15,000.
Autocorrelation graphs, mixing graphs and distribution plots for various parameters were plotted and found
to be satisfactory. The models showed good mixing and autocorrelation properties.
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Appendix B: Supplementary files
1. R code Vignette: RankAgreeVignetteV10.pdf: A vignette outlining the code needed to run the wrapper

function and necessary ancillary code.
2. VignetteScriptV4.R: R code for the vignette.
3. functions_kpV10.R: The code for thewrapper function andother necessary functions. The code for ZOSull.R

which generates the O’Sullivan spline bases is found at http://www.jstatsoft.org/article/view/v037i05
(Marley and Wand, 2010).

4. MCMCSupportingFunctions.R: Supporting functions which take the MCMC objects from jags and graph
the estimated probability function, together with some diagnostic graphs and csv files summarising the
probability functions.
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