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Extreme heat is a recognised danger to 
human health,1,2 and warm days and 
nights will occur more frequently across 

Australia due to climate change.3 A range of 
indices quantify the impact of heat stress on 
the human body, but there is little consensus 
among epidemiologists on the most 
appropriate heat stress indices to use when 
modelling public health responses. This is a 
problem for researchers, who cannot easily 
compare work on the effects of heat stress in 
detail, and public health organisations, which 
cannot predict future changes in public 
health responses without guidelines on how 
to specify heat-health relationships.

Hyperthermia – elevated core body 
temperature – is caused when the heat 
produced by a person’s m etabolism or 
received from external sources can no 
longer be dispersed.4 The effects of heat 
stress on populations are regularly modelled 
by epidemiologists: heat extremes are 
typically linked with increased incidences in 
respiratory and renal conditions,5 as well as 
cardiovascular conditions.6–8

Although early papers investigated only 
temperature as a predictor of health 
responses,6,9,10 more recent efforts use a 
variety of indices of heat stress. But there is 
little consensus around which heat stress 
indices best fit observed public health 
data; indices used by epidemiologists are 
rarely justified with respect to the selected 
conditions or location. Work comparing 
indices is still nascent.11,12
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This lack of consensus in model specification 
presents a barrier to understanding the 
present and future health risks of climate 
change. Projections on the health impacts of 
temperature are already occurring in multiple 
Australian cities, including Brisbane, Sydney 
and Melbourne,13 but Tong et al.14 recognised 
that predictions of health outcomes in 
Brisbane were sensitive to the choice of 
heatwave index. Given this, it is important 
that the most useful indices are established.

This study builds an epidemiological model 
framework based around a focused set of 
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Objective: To find appropriate regression model specifications for counts of the daily hospital 
admissions of a Sydney cohort and determine which human heat stress indices best improve 
the models’ fit.

Methods: We built parent models of eight daily counts of admission records using weather 
station observations, census population estimates and public holiday data. We added heat 
stress indices; models with lower Akaike Information Criterion scores were judged a better fit.

Results: Five of the eight parent models demonstrated adequate fit. Daily maximum Simplified 
Wet Bulb Globe Temperature (sWBGT) consistently improved fit more than most other indices; 
temperature and heatwave indices also modelled some health outcomes well. Humidity and 
heat-humidity indices better fit counts of patients who died following admission.

Conclusions: Maximum sWBGT is an ideal measure of heat stress for these types of Sydney 
hospital admissions. Simple temperature indices are a good fallback where a narrower range of 
conditions is investigated.

Implications for public health: This study confirms the importance of selecting appropriate 
heat stress indices for modelling. Epidemiologists projecting Sydney hospital admissions 
should use maximum sWBGT as a common measure of heat stress. Health organisations 
interested in short-range forecasting may prefer simple temperature indices.
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medical conditions. As a preliminary study, 
we evaluate whether model fits can be 
improved using a range of heat stress indices 
for Sydney, Australia. Sydney is chosen as it 
has a population of more than four million 
people15 and a warm summer/cold winter 
climate classification16 – though continued 
greenhouse gas emissions are expected to 
cause more hot summer days and may change 
the average relative humidity in Australia’s East 
Coast region.17 This analytical framework could 
be expanded to other Australian populations 
that are vulnerable to heat stress.
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Types of heat stress indices
The indices compared in this study are of two 
types: heat-humidity indices and heatwave 
indices.

Humidity inhibits heat stress adaptation: in 
humid conditions, sweat is more likely to drip 
off the body without cooling it than to be 
evaporated.18 Heat-humidity indices quantify 
this effect by combining temperature, 
humidity and other weather observations. 
Two heat-humidity indices—Simplified 
Wet Bulb Globe Temperature (sWBGT)19 
and Apparent Temperature (AT)20—are 
popular in Australia with both the public and 
researchers.11,21–23

Heatwave indices, in contrast, are rolling 
functions of temperature alone. Duration 
of heat stress exposure partly determines 
the severity of heat stroke,4 but repeated 
exposures on longer timescales trigger 
physiological adaptations.24 Heatwave indices 
capture these effects. They range from simple 
temperature averages, such as the 3-Day 
Average Temperature (3DAT) and 3-Day 
Maximum Temperature (3DMT),12 to more 
complex indices like Excess Heat Factor (EHF), 
which models both short-term heat stress 
accumulation and longer-term adaptation.25

Several non-weather factors may also be 
included in models. Health responses for 
heat-related conditions have weekly and 
seasonal patterns26–28 and occur at lags 
of 0–3 days after exposure;2 cold-related 
conditions typically occur at longer lags.29 
These features result in J- or U-shaped 
relationships between temperature and 
health outcomes.30,31 Epidemiologists have 
previously modelled health outcomes with 
spline functions of temperature. Splines are 
smoothing functions that allow a response 
to be separately smoothed along pieces of 
a predictor’s domain. In this context, splines 
allow hot, mild, and cold conditions to have 
different effects.10 However, because of the 
different lags between hot and cold effects, 
more recent studies have used distributed lag 
non-linear (DLNM) models.32,33 These define 
a cross-basis predictor, which allows effects to 
be simultaneously described across a range of 
temperatures and a range of lags.34

Methods
We built a set of regression models, each 
featuring a different heat stress index as a 
predictor (and parent models that featured 
no index), with the aim of evaluating which 
index was the most appropriate for predicting 

daily hospital admission counts among a 
Sydney cohort.

This was a two-stage analysis:

•	 The development of the parent models 
based on non-weather factors.

•	 The introduction and comparison of heat 
stress indices to the parent models and 
each other.

Data
We combined selected hospital admission 
records for a cohort of Sydney residents with 
sub-daily weather observations, Census 
population data and historical public holiday 
data.

The cohort comprised residents of the 
Sydney Statistical Division (SD), as defined 
by the Australian Standard Geographical 
Classification 2006,35 and we requested 
their admission records from the New 
South Wales (NSW) Admitted Patient Data 
Collection (APDC). We used admissions to 
public and private NSW hospitals for selected 
cardiovascular, respiratory and renal conditions 
between 1 August 2001 and 31 May 2013.

The three groups of selected conditions, 
identified by their codes in the 9th and 10th 
editions of the International Classification of 
Diseases (ICD),36 included:

•	 cardiovascular conditions, including 
ischaemic heart diseases (ICD-9: 410–414; 
ICD-10: I20–I25)8,37,38 and heart failure (ICD-
9: 428; ICD-10: I50),8,38

•	 respiratory conditions, including 
pneumonia,37 lower respiratory infections 
(ICD-9: 480–486; ICD-10: J12–J18, J20–
J22)38 and chronic lower respiratory 
conditions (ICD-9: 491, 492, 494, 496; ICD-
10: J40–J44), and38

•	 renal conditions, including renal failure 
(ICD-9: 584–585; ICD-10: N17–N19).39

The conditions selected were chosen, with 
assistance, for their previously established 
epidemiological links to extreme heat (Peter 
Tait, personal communication). Variables 
analysed from the admission records included 
date of admission, primary diagnosis and 
mode of separation.

Census population estimates for the 2001 
and 2006 Sydney SDs were available and had 
stable boundaries, but no single comparable 
boundary was available in the 2011 Australian 
Statistical Geography Standard (ASGS). We 
therefore selected Statistical Local Areas 
(SLAs) from the 2011 ASGC40 that were within 
the boundary of the 2006 Sydney SD41 and 

summed the populations of the selected 
SLAs in lieu of a singular estimate. Therefore, 
the populations of 200142 and 200643 Sydney 
Statistical Divisions, as well as the sum of the 
populations of the selected 2011 Statistical 
Local Areas,44 were used as the basis for 
population estimates.

We obtained weather station data for Sydney 
Airport from HadISD45. HadISD was chosen 
as it contains quality-controlled Bureau of 
Meteorology sub-daily weather observations. 
This allows us to accurately calculate high 
quality daily aggregates of heat-humidity 
indices from sub-daily temperature, humidity 
and wind speed data. 

Despite the quality-control measures in 
HadISD, Sydney Airport observations vary 
in precision across the hours of the day, 
and data availability during summers 
after the year 2000 shifts by one hour—
possibly a result of changes to daylight 
savings reporting. These problems could 
potentially bias calculations of heat-stress 
index aggregations. To overcome them, we 
extracted a three-hourly series beginning 
at 0200 UTC for most periods or 0100 UTC, 
shifted one hour forward, for summers 
from the year 2000 onward. The resulting 
observation series is the largest possible set 
of observations with uniform precision and 
coverage across the day.

We calculated three-hourly heat-humidity 
indices from temperature, humidity and wind 
speed and then aggregated all series into the 
daily heat stress index predictors used in the 
analysis.

Finally, we sourced NSW historical public 
holiday information from the Banks and Bank 
Holidays Act 1912 (NSW)46 and the Public 
Holidays Act 2010 (NSW).47

In order to focus on climatic influences, we 
did not include additional environmental 
hazards that may also be relevant to disease 
groups, such as air quality.

Parent model development
We constructed eight admission count time 
series from the admissions dataset, and these 
counts served as the response variables for 
the models. The counts were:

C1. Cardiovascular admissions

C2. Respiratory admissions

C3. Renal admissions

C4. All selected admissions (C1 + C2 + C3)

C5. Cardiovascular admissions where the 
mode of separation was death
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Figure 1: Time series of all Sydney hospital admissions for all selected diagnoses. Work days are in black; non-work 
days are in grey. This series shows the seasonal cycle of admissions, which is highest in winter (June–August) and 
lowest in summer (December–February), as well as the difference in admissions on work days.

C6. Respiratory admissions where the mode 
of separation was death

C7. Renal admissions where the mode of 
separation was death

C8 All selected admissions where the mode of 
separation was death (C5 + C6 + C7).

We built a parent regression model for each 
of the eight responses using a Generalised 
Linear Model (GLM) framework. We used a χ2 
deviance goodness-of-fit test as a benchmark 
for the parent models’ goodness-of-fit: the 
models’ deviance from a saturated model—
that is, a model with enough parameters 
for every observation – is compared to a  
distribution with degrees of freedom equal to 
the difference between the saturated model’s 
parameter count and that of the tested 
model. A significant difference between the 
parent model and the saturated model (using 
a significance threshold of 0.05) means that 
the parent model fails this benchmark.

Counts, such as hospital admission counts, 
are typically modelled as Poisson-distributed 
variables. However, the Poisson distribution 
is described by a single parameter, , that 
influences both mean and variance. We 
found evidence that the variance was higher 
than the mean (known as overdispersion) 
when fitting Poisson-distributed GLMs, and 
deviance goodness-of-fit tests found that the 
resulting models were significantly different 
from a saturated model (that is, one with 
enough parameters for all observations). In 
order to improve the fit of the parent model 

against a saturated model, we eliminated 
overdispersion by switching to a Negative 
Binomially-distributed model family.

We selected three predictors for the parent 
models. The first, a daily population estimate, 
was linearly interpolated from Census figures 
as described in the previous section. We also 
modelled weekly and seasonal patterns in the 
admissions. These series are strongly seasonal, 
with the lowest admissions in summer and 
the highest in winter, and admissions fall by 
about half on weekends and public holidays 
(Figure 1). We accounted for the seasonal 
pattern by adding an eight-term Fourier 
series of time of year.10,48 We also added a 
binary indicator predictor of non-work days 
(weekends and public holidays).

Introduction and evaluation of heat 
stress indices
With common parameters established, we 
built a set of regression models nested inside 
each parent model, each featuring a single 
heat stress index. The resulting models used 
the formula:

count ~ offset(log(population)) + nowork + 
fseries+index

where:

•	  count is one of the five remaining daily 
admission counts (C1–C4, C8)

•	 population is a daily population estimate 
of the cohort

•	 nowork is a binary indicator of non-work 

days (Saturdays, Sundays and public 
holidays)

•	 fseries is an eight-term Fourier series of 
time of year used to adjust for seasonal 
variation in admissions

•	 index is a cross-basis of one of the human 
heat stress indices. This term is not present 
in the parent models described in the 
previous section.

We divided the heat stress index predictors 
(Table 1) into four broad types for the 
purposes of interpretation:

•	 daily aggregates of temperature (°C) and 
humidity (hPa);

•	 heat-humidity indices, which are linear 
combinations of temperature and humidity 
that are calculated at points across the day 
before being aggregated; and

•	 heatwave indices, which are rolling 
aggregations of temperature over periods 
greater than a day.

There were three aggregations of each of the 
temperature, humidity and heat-humidity 
indices: daily maximum, minimum and mean, 
adding up to 18 basic heat stress predictors. 
We used the dlnm package32 to build a 
cross-basis of each index, with a maximum 
lag of 10 days. Thus, 18 different models were 
compared to each health response’s parent 
model.

To establish the added value of the heat stress 
indices, we compared the heat stress models 
to their corresponding parent models using 
log-likelihood ratio tests. We also compared 
the heat stress models with each other and 
their parent models to see which indices 
provided the best fit for a given response. We 
used maximum log-likelihood as an absolute 
measure of fit and Akaike Information 
Criterion (AIC), a penalised measure of model 
deviance, as a measure of fit that is corrected 
for the number of predictors:50

AIC=2K-2l

where K is the number of parameters in the 
model and l=log (L) is the model’s maximium 
log-likelihood. A greater log-likelihood or a 
smaller AIC indicates better fit.

Results

The parent models of counts C1 through C4 
and C8 showed adequate goodness-of-fit 
according to the deviance test. Counts C5 
through C7, however, showed inadequate fit. 
The poor fit in these three models is likely due 
to the lower counts in these series leading 
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to bad model specifications, and the rest of 
the analysis proceeded with the five good 
models.

The heat stress models of counts C1–C4 
and C8, like their respective parent models, 
showed adequate goodness-of-fit using the 
deviance test. The heat stress models all also 
showed a statistically significant difference 
to their parent model, with p-values below 
0.0002. All the heat stress models had 
correspondingly lower AICs than their 
respective parent models, confirming the 
statistically significant difference between 
them.

Heat stress indices are ranked in a similar 
order across counts C1–C4 (Figure 2, Figure 
S1 a–c). Maximum sWBGT (HH) performs 
consistently well across all three diagnosis 
groups and the combined count, while 3DMT 
(HW), daily minimum temperature (T) and 
daily mean temperature (T) each perform 
well in two of the three diagnosis groups. The 
rankings of all admissions (Figure 2) is most 
like those of respiratory admissions (Figure 
2b), owing to their overrepresentation in the 
admission set.

The best aggregation type depended on the 
type of heat stress index: for temperature (T) 
indices, daily means and minima produced 
the lowest AIC values, while for indices that 
included humidity (H and HH), daily maxima 
produced the lowest values in most cases.

Many of these results are inverted for count 
C8, those patients who died following 
their admission (Figure 2d). Humidity (H) 

indices, which modelled the other counts 
consistently poorly, performed consistently 
well here, outranked only by minimum and 
mean sWBGT. Daily means and minima 
outranked daily maxima for all index types. 
The heatwave indices all modelled this count 
comparatively poorly.

The Excess Heat Factor (EHF) heatwave index 
improved predictions relative to all the parent 
models, but not as much as most other 
indices. Because the number of model terms 
did not vary between indices, ranking by 
log-likelihood produced the same results as 
ranking by AIC.

The effects of heat stress indices varied by 
health outcome. There were few robust 
effects on cardiovascular admissions in cold 
or cold/dry conditions, and in hot or hot/
wet conditions, cardiovascular admissions 
either showed no effect or decreased (Figure 
S1). All indices that used temperature 
showed increasing respiratory and renal 
admissions (counts C2 and C3 respectively) 
in increasingly cold or cold/dry conditions 
(Figure S2–S3). However, robust increases 
in admissions only appeared for renal 
admissions in hot or hot/wet conditions 
(Figure S3). The combined counts, C4 and C8, 
also showed either monotonic decreases with 
increasing heat stress indices, or insignificant 
effects (Figure S4–S5). 

Discussion and conclusions

Daily maximum sWBGT consistently modelled 
admission counts of Sydney residents well, 

though it was not the single best index in 
all diagnosis groups. All other factors being 
equal, this would make it a good candidate 
for use in short-term forecasting by hospitals 
and long-term projection by epidemiologists.

However, index fit is not the only factor when 
considering the use of these indices: the 
availability and uncertainty of prerequisite 
observations or climate model output also 
play a large role in our knowledge of future 
public health changes. Simple temperature 
statistics modelled different counts well, and 
they are an attractive choice for observational 
purposes: heat-humidity indices require two 
variables to be near-simultaneously recorded, 
and they and heatwave indices require 
additional calculation. The 3DMT heatwave 
index, which modelled cardiovascular and 
renal admission counts well, also relies solely 
on temperature data.

Heat-humidity indices generally display 
similar uncertainty to temperature indices 
when projecting into the future despite the 
additional input, because global temperature 
and humidity are not independent.51 
Projection of heat-health impacts has 
mostly focussed on daily maximum 
temperature10,52,53 or mean temperature,33,54,55 
while heat-humidity and heatwave indices 
have occasionally been used.23,56 This analysis 
suggests that maximum sWBGT may be 
a good point of comparison for future 
projection work. Simple temperature statistics 
may be a better fit in some cases, especially 
since mean temperature is already in wide 
use, but this depends on the health response 
projected.

These results may not be the case in 
other locations, and a sensitivity study 
of projections to the selected heat stress 
index is required to determine whether 
the differences in model fit presented here 
translate into differences in projections, 
particularly if heat stress indices diverge as 
the Earth’s climate changes.

Although heat-humidity indices best 
modelled those patients who died following 
their admission (C8), humidity admissions 
with no measure of temperature also 
performed well. This stark difference 
from the other counts demonstrates the 
importance of heat stress index selection 
when making statements about present or 
future changes in heat stress, as noted by 
Tong, Wang and Barnett.14 Humidity appears 
to improve model fit to this count more than 
temperature.

Table 1: Indices tested. Heat-humidity (HH) indices are a function of temperature (T), vapour pressure (e) and wind 
speed (u). Heatwave (HW) indices are functions of daily average temperature (Tan) or daily maximum temperature 
(Txn) for day n, which is the average of that day’s maximum temperature and the next day’s minimum temperature. 
Excess Heat Factor is also a function of T95, the 95th percentile of daily average temperature; here, because of the 
limitations of data coverage, we calculated this threshold across the analysis period rather than using Nairn & 
Fawcett’s 1971–2000 reference period. Although this change shifts EHF values, it has a negligible effect on the fit of 
the models. Temperature (T) and humidity (H) indices are simple daily aggregations of observations.

Index Type Source Formula

Temperature T — Observed

Dewpoint temperature H — Observed

Vapour pressure H Murray 196749 e=6.1078*exp (17.2693882*T)

Simplified Wet Bulb Globe Temperature (sWBGT) HH BOM 201019 (0.567*T)+(0.393*e)+3.94

Apparent Temperature (AT) HH BOM 201019 T+(0.33*e)-(0.7*u)-4.0

3-Day Average Temperature (3DAT) HW Scalley et al. 201512 mean(Ta0,Ta1,Ta2 )

3-Day Maximum Temperature (3DMT) HW Scalley et al. 201512 min(Tx0,Tx1,Tx2 )

Excess Heat Factor (EHF) HW Nairn & Fawcett 
201325

EHIsig=mean(Ta0,Ta1,Ta2 ) – T95

EHaccl=  mean(Ta0,Ta1,Ta2) – mean(T(a-1),…,Ta-30 )

EHF=EHIsig*max(1,EHIaccl )

T+237.3
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20.35 20.4 20.45 20.5

Parent model (no index)
Min vapour pressure

Mean dewpoint temp
Min dewpoint temp

Mean vapour pressure
Max dewpoint temp

Max vapour pressure
Min sWBGT

EHF
Max temp

Min AT
Min temp

Max AT
3DAT

Mean AT
Mean sWBGT

Mean temp
3DMT

Max sWBGT

Akaike Information Criterion (AIC, thousands)

(c) C3: renal admissions

P H HH HW T

30.5 30.55 30.6 30.65 30.7 30.75 30.8

Parent model (no index)
Min vapour pressure
Min dewpoint temp

Mean vapour pressure
Mean dewpoint temp
Max vapour pressure
Max dewpoint temp

EHF
Min sWBGT

3DMT
Min AT

3DAT
Max temp

Mean sWBGT
Max AT

Mean AT
Max sWBGT

Min temp
Mean temp

Akaike Information Criterion (AIC, thousands)

(b) C2: respiratory admissions

P H HH HW T

33.5 33.55 33.6 33.65

Parent model (no index)
EHF

Mean dewpoint temp
Max dewpoint temp

Max vapour pressure
Mean vapour pressure

Min dewpoint temp
Min vapour pressure

Max temp
Mean temp

Min AT
Mean AT

Mean sWBGT
Max AT

3DAT
Min sWBGT
Max sWBGT

Min temp
3DMT

Akaike Information Criterion (AIC, thousands)

(a) C1: cardiovascular admissions

P H HH HW T

19.65 19.7 19.75 19.8

Parent model (no index)
EHF

Max temp
Max AT

3DAT
3DMT

Mean temp
Mean AT

Min AT
Max sWBGT

Min temp
Max vapour pressure
Max dewpoint temp
Min dewpoint temp

Min vapour pressure
Mean vapour pressure
Mean dewpoint temp

Mean sWBGT
Min sWBGT

Akaike Information Criterion (AIC, thousands)

(d) C8: all admissions where the mode of 
separation was death (C5 + C6 + C7)

P H HH HW T

35.3 35.35 35.4 35.45 35.5 35.55 35.6

Parent model (no index)
Min dewpoint temp

Min vapour pressure
Mean dewpoint temp

Mean vapour pressure
EHF

Max dewpoint temp
Max vapour pressure

Min AT
3DAT
3DMT

Min sWBGT
Max temp
Mean AT

Max AT
Mean sWBGT

Max sWBGT
Mean temp

Min temp

Akaike Information Criterion (AIC, thousands)

(d) C4: all selected admissions (C1 + C2 + C3)

P H HH HW T

Figure 2: Akaike Information Criterion (AIC) scores for models of counts C1–C4 and C8. A lower AIC indicates a better fit to the data. Models are shaded by the type of human heat 
stress predictor used: humidity (H), heat-humidity (HH), heatwave (HW) and temperature (T). Each count also has one parent model (P) featuring no heat stress index.

Hospital Research	  Comparison of human heat stress indices on Sydney hospital admissions



386	 Australian and New Zealand Journal of Public Health	 2017 vol. 41 no. 4
© 2017 The Authors

The difference in indices between C8 and 
other counts could be due to an unaccounted 
confounder relationship, including smoke 
from bushfires,57 smoking,58 lead exposure59 
and other forms of air pollution.60 Some of 
these hazards may interact with temperature 
and particularly humidity, and a confounder 
relationship may explain the less robust hot 
or hot/wet effects we found for some counts. 
Further study of the interactions between 
temperature, humidity and particulate 
hazards is warranted. However, thunderstorm 
asthma,61 is likely less relevant: we excluded 
asthma from this study despite mixed 
evidence of its association with temperature 
because it is also linked to several non-
weather-related environmental hazards, 
including indoor mould and pests.62 

Differences between the counts for different 
disease groups may also occur because 
humidity inhibits the physiological response 
to extreme heat. In humid-hot conditions, 
humans sweat more to compensate for a 
loss of evaporative efficiency.63 In extreme 
conditions, sweat may drip off the body 
without evaporating, lowering evaporative 
efficiency even further.63 This means that 
dehydration, and the associated health 
consequences, may be more likely.

Although 3DMT performs well in some cases, 
these results suggest that heatwave indices 
are generally less effective than simpler 
indices. This could be because they act as 
distributed lag functions of temperature, 
and techniques such as DLNM modelling 
allow distributed lag relationships to be 
represented in a more comprehensive way. 
They may be better suited to operational 
‘heat alert’ systems, such as those undertaken 
by the Bureau of Meteorology,64 where more 
complex modelling is not undertaken.

All the heat stress indices compared here 
provide additional value when added to an 
otherwise correctly specified model. This 
suggests that projection work modelling 
future heat stress is useful, as hospital 
admission loads in Sydney can be expected to 
change in the long-term if temperature and 
humidity do.

This work could be important in other 
locations, particularly those with common 
socioeconomic and climatic features. The 
recent projection work of Gasparrini et al. 
across 384 locations33 demonstrates that the 
epidemiology community can compare heat 
stress indices in a large range of locations. 
Further multi-city studies of effects may be 
able to establish the way these factors modify 

heat stress effects, or this analysis may be 
repeated across cities to determine whether 
the most useful indices change with location. 
Additional analyses should also consider 
the way other modelled environmental 
hazard exposures modify the improvements 
in fit from heat stress indices—though this 
introduces many dimensions for analysis.

Another model specification, a larger group 
of conditions or a more populous location 
may be required to correctly model those 
who died following admission in individual 
diagnosis groups.

Implications for public health

Heat stress indices are commonly used by 
researchers, health organisations and the 
public to understand the impacts of extreme 
heat on human health, but with a variety in 
active use, there has been little agreement 
on the relative merits of each one. This lack 
of consensus inhibits meta-analysis of the 
projection work beginning to occur in the 
epidemiological community, which in turn 
clouds public health policy decisions around 
climate change adaptation.

This analysis evaluated the ability of a variety 
of heat stress indices to predict a Sydney 
residential cohort’s hospital admissions 
for a group of heat-related cardiovascular, 
respiratory and renal conditions. We found 
that daily maximum sWBGT, a heat-humidity 
index, consistently models hospital admission 
counts for a variety of conditions well. Simple 
temperature statistics are also useful in some 
situations where health organisations do not 
have access to humidity data or projections.

We suggest that continuing work projecting 
the future health impact of climate change 
in Sydney use daily maximum sWBGT as a 
primary measure of heat stress, especially 
when several types of disease are considered 
in aggregate. Further work is required to see 
whether this should also be done in other 
population centres. 
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Additional supporting information may be 
found in the online version of this article:

Supplementary Figure 1: Overall effect sizes 
(across the entire lag period) of heat stress 
predictors on C1, the count of admissions for 
cardiovascular conditions (shaded region is 
the 95% confidence interval). Effect sizes are 
expressed as rate ratios. 

Supplementary Figure 2: Overall effect sizes 
(across the entire lag period) of heat stress 
predictors on C2, the count of admissions 
for respiratory conditions (shaded region is 
the 95% confidence interval). Effect sizes are 
expressed as rate ratios.

Supplementary Figure 3: Overall effect sizes 
(across the entire lag period) of heat stress 
predictors on C3, the count of admissions for 
renal conditions (shaded region is the 95% 
confidence interval). Effect sizes are expressed 
as rate ratios.

Supplementary Figure 4: Overall effect sizes 
(across the entire lag period) of heat stress 
predictors on C4 (C1 + C2 + C3), the count of 
admissions for all selected conditions (shaded 
region is the 95% confidence interval). Effect 
sizes are expressed as rate ratios.

Supplementary Figure 5: Overall effect sizes 
(across the entire lag period) of heat stress 
predictors on C8 (C5 + C6 + C7), the count of 
those admissions for all selected conditions 
who died following admission (shaded region 
is the 95% confidence interval). Effect sizes 
are expressed as rate ratios.
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