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Abstract. Recent developments of community abundance models (CAMs) enable us to analyze
communities subject to imperfect detection. However, existing CAMs assume spatial closure, that is, that
individuals are always present in the sampling plots, which is often violated in field surveys. Violation of
this assumption, such as in the presence of spatial temporary emigration, can lead to the underestimates of
detection probability and overestimates of population densities and diversity metrics. Here, we propose a
model that simultaneously accommodates both temporary emigration and imperfect detection by integrat-
ing CAMs and a form of hierarchical distance sampling for open populations. Expected values of species
richness are obtained via the summation of occupancy (or incidence) probabilities, based on species-level
densities, across all species of the community. Simulations were used to examine the effects of spatial
temporary emigration on the estimation of biological communities. We also applied the proposed model to
empirical data and constructed area-based rarefaction curves accounting for temporary emigration. Simu-
lation experiments showed that temporary emigration can decrease the local species richness (a diversity)
based on densities and increase the species turnover (b diversity). Raw species counts can overestimate or
underestimate a diversity in the presence of temporary emigration, but the specific biases depend on the
values of detection and emigration probabilities. Our newly proposed model yielded unbiased estimates of
a, b, and c diversity in the presence of temporary emigration. The application to empirical data suggested
that accounting for temporary emigration lowered area-based rarefaction curves because availability
probabilities of individual species were estimated to be <1. Temporary emigration prevails in field surveys
and has broad significance for understanding the ecology and function of biological communities and
separation of imperfect detection and temporary emigration resolves long-standing issues in the use of
count data. We therefore suggest that the consideration of temporary emigration would contribute to
understanding the nature and role of biological communities.
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INTRODUCTION

Species richness is defined as the number of
species in a specified area, and it is the simplest
and most basic measure of species diversity
(Whittaker 1975). Species richness varies in space

and time (Rosenzweig 1995), and its drivers are
of primary interest in ecology (Huston 1994). As
humans have transformed >75% of Earth’s
ice-free land surface (Ellis and Ramankutty 2008)
and appropriated >23% of its terrestrial net
primary productivity (Haberl et al. 2007), global
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species diversity is now greatly threatened (Bar-
nosky et al. 2011). Anthropogenic drivers of spe-
cies richness or human-induced changes in
species richness are therefore of prime interest in
modern ecology (Newbold et al. 2016).

In this context, species richness has often been
compared among sampling plots (MacArthur
and MacArthur 1961, Huston 2014). One diffi-
culty in doing so is the non-linear relationship
between species richness and area (Connor and
McCoy 1979), and it is therefore challenging to
compare species richness among studies having
sampling plots of different sizes and also even
among sampling plots within the same study
(Wiens 1989, Gotelli and Colwell 2001). For exam-
ple, when comparing species richness among dif-
ferent land uses, how to control for differences in
plot size is a major issue (cf. Newbold et al. 2015).

Recently, we have proposed a community mod-
eling framework based on individual species-level
abundance models (Yamaura et al. 2011, 2012).
This community abundance modeling framework
assumes that local abundance follows a Poisson
distribution with expected abundance (k), and the
probability that at least one individual of a species
occurs is related directly to k (Royle and Dorazio
2008): Pr[N ≥ 1] = 1 � exp(�k). Under this
model, we can link this expected abundance k to
the log-transformed size (area) of sampling plot
j (Aj) using the log link (Connor et al. 1997):
log(kj) = b0 + 1 9 log(Aj). Here, b0 is the logarith-
mically transformed expected abundance when
plot size is 1 (kj = exp[b0], i.e., population den-
sity). By fixing the coefficient of a logarithmically
transformed size at 1, we assume that population
densities are constant irrespective of the area.
However, we can relax this assumption using a
free parameter b1 not constrained to be equal to 1
(i.e., b1 9 log[Aj]). We can also include other envi-
ronmental covariates and associated coefficients
into this linear predictor of log(kj) (e.g., b2 9 x2).
By expanding these equations into R species, we
can therefore link expected species richness and
area (Yamaura et al. 2016a, b) according to:

E Species richnessj
h i

¼
XR

i¼1

1� exp �kij
� �� �

(1)

where kij = exp(b0i + 1 9 log[Aj]) is the expected
abundance of species i in sampling plot j having
size Aj. In the presence of imperfect detection of

individuals and species, the relevant parameters
dictating kij are estimated from repeated counts
or capture–recapture data of detected species
(Yamaura et al. 2016a, b). We again note that it is
assumed that population densities of species con-
stituting communities are constant irrespective
of the area (by notation of 1 9 log[Aj]) for sim-
plicity (James and Wamer 1982, but see Yamaura
et al. 2016a). This formulation allows us to
construct area-based rarefaction curves (i.e.,
changes in species richness with area) given the
scale-free parameters, kijj½Aj ¼ 1� ¼ exp b0ið Þ: the
population densities of individual species.
This development suggests the importance of

accounting for variation in density among species
comprising the community. Using the number of
detected individuals (count data), our proposed
community abundance models (CAMs) yield
density estimates of individual species and species
richness accounting for imperfect detection
(Yamaura et al. 2011, 2012, 2016b), which is one of
the major sources biasing density estimates (K�ery
and Royle 2016). However, there is another major
source of bias for mobile organisms: temporary
emigration, which is due, in part, to movement of
individuals off of the survey plot being sampled.
Nichols et al. (2009) decomposed the detection
process in a broad sense into three parts (Fig. 1).
Given that home range of individuals only par-
tially overlaps the sampling plots, individuals can
be unavailable for sampling because they are out
of the plot when the survey is conducted (Fig. 2).
Following Nichols et al. (2009), we refer to the
probability of individuals residing in the plots as
the presence probability, pp, and 1 � pp is the
probability of temporary emigration (Table 1).
This temporary emigration process due to move-
ment of individuals is called spatial temporary
emigration (K�ery and Royle 2016), and we say that
individuals are spatially available when they are
present in the sampling plot. Second, given that an
individual is spatially available to be sampled (i.e.,
the individual is on the sampling plot), individuals
can again be unavailable for the detection since
they may not produce detection signals (cues). For
example, birds may be sitting on the nest, and be
silent; marine mammals may be below the water
surface. This process which is unrelated to individ-
uals moving about their home range is a random
temporary emigration (K�ery and Royle 2016) and
the associated probability can be denoted by
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1 � pa (Nichols et al. 2009) where pa is the proba-
bility of availability related to signaling (Table 1).
We call the combined process of spatial and
random temporary emigrations as an availability
process in a broad sense (Fig. 1), and the
corresponding probability is / (= pp 9 pa). We
also call its complement (1 � /) as temporary
emigration in a broad sense. Finally, an individual
that is both present on the plot and available for
detection through signals can be detected by the
surveyor with probability pd (Nichols et al. 2009).
The problem of temporary emigration can propa-
gate to inference about not only density but also
occupancy (e.g., Tyre et al. 2003); in distance sam-
pling, random temporary emigration is known to
violate the assumption that all birds on the census
line (i.e., zero distance) are perfectly detected
(denoted by g[0] = 1), and can cause substantial
bias in density estimates (Buckland et al. 2004).

Here, we propose an approach to overcome
this problem in a community context by integrat-
ing count-based CAMs and open hierarchical
distance sampling (HDS) that allows for tempo-
rary emigration (K�ery and Royle 2016). Although
our proposed model does not specify population
dynamics, the open-population version of HDS
allows the population size to change during the
course of multiple surveys (K�ery and Royle
2016). Our model separately estimates detection
probability (pd) and availability probability in a
broad sense (denoted by / = pp 9 pa) and pro-
duces density estimates of individual species
unbiased by temporary emigration. This is possi-
ble because detection probability pd can be esti-
mated by a single visit with distance sampling
given the assumption of perfect detection at the
zero distance. Multiple visits to individual sites
allow for inference about availability probability.

Individual

Absent
(out of plot)

pp

1 – pp

Available
(sing)

pa

Unavailable
(do not sing)

1 – pa

Detected

Not detected

pd

1 – pd

Spatial 
temporary emigration

Random 
temporary emigration

Detection process
(in a narrow sense)

Detection process (in an intermediate sense): pa× pd

Detection process (in a broad sense): pp× pa× pd

Present
(within plot)

Cannot be 
detected

Cannot be 
detected

Presence prob. Availability prob. Detection prob.

Availability process (in a broad sense): pp× pa

Fig. 1. Decomposition of processes associated with detecting individuals during field surveys. An individual
whose home range or territory overlaps with the sampling plot is detected by the surveyor via three steps
(Nichols et al. 2009). Individual can be available for detection with probability pd given that it is in the plot and
produces signals (song in an acoustic survey). These two processes required for the individual detection (spatial
and random temporary emigration: K�ery and Royle 2016) are denoted by the probabilities of pp and pa, and we
call their product “availability” in a broad sense (pp 9 pa = /). Which parameters of the detection probabilities
(pd or pa 9 pd or pp 9 pa 9 pd) are associated with the field survey depends on the survey methods employed.
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We used simulation to show how temporary emi-
gration affects the estimation of biological com-
munities, including a, b, and c diversity, and that
our model can yield unbiased estimates. We then
applied our model to empirical data and con-
structed area-based rarefaction curves accounting
for temporary emigration. In the next section, we
begin with the overview of the temporary emigra-
tion process and next develop the model.

METHODS

Temporary emigration as a component of the
detection process

Among spatial and random temporary emigra-
tion processes, we are primarily interested in the
spatial temporary emigration because this process
is prevalent in studies on mobile organisms. For
example, observed individuals whose territories

partially overlap with the sampling plots are fre-
quently excluded from the analysis (e.g., Loman
and von Schantz 1991), and James and Wamer
(1982) excluded 23% (11/48) of the observed spe-
cies in order to construct rarefaction curves since
only fractions of their territories were included in
the studied plots. Hanski and Haila (1988)
showed that male individuals of chaffinch Frin-
gilla coelebs can spend a long time out of their
singing territories for foraging. Haila (1988) also
discussed the problems of density calculation in
small habitat fragments when birds can forage in
the surrounding areas. Stratford and Robinson
(2005) suggested that tropical birds have substan-
tially larger territories and home ranges compared
to temperate birds and thus should be more sus-
ceptible to biases induced by spatial temporary
emigration.
Ideally, the three processes involved with

imperfect detection should be explicitly addressed
when estimating population densities and com-
munity structure. However, our ability to resolve
all three components of the detection process
depends on the protocols being employed (see
also Discussion). If we assume pa = 1, and when
we use distance sampling on repeated sampling
bouts, we can resolve spatial temporary emigra-
tion (pp) from probability of detection (pd). Our
study is on this line of model development in a
community context. However, in that case, it is
not possible to explicitly estimate all three compo-
nents. Rather, we can only estimate directly pd
and the product pp 9 pa (= / in our model).
In the presence of spatial temporary emigra-

tion of mobile individuals, density can be
defined as the instantaneous number of individ-
uals residing in the area of interest (i.e., based on
their snapshot location) divided by the respective
area (Buckland et al. 2001, Royle and Dorazio
2008). If we do not separate pp from pd, then nom-
inal detection probability from repeated counts
includes pp, and the number of individuals that

100 m

400 m

Fig. 2. Schematic illustration of partial availability
of bird individuals during the survey. A rectangular
sampling plot is assumed, and its size follows the field
survey used by the model application. Territory size
differs among the species; species like coal tit Periparus
aster can have small territories (1 ha), some of which
may be well incorporated by the plot (shown by the
light-gray circles). But other species like woodpeckers
can have larger territories only partially overlapping
with the plot (dark gray), and they can be unavailable
(out of the plot) when the survey is conducted.

Table 1. Three quantities associated with detecting individuals.

Quantity Symbol Description Complement (1 � p)

Presence probability pp Probability that individual resides in the plot Spatial temporary emigration
Availability probability pa Probability that individual produces detection

signal given pp
Random temporary emigration

Detection probability pd Probability that individual is detected by
surveyor given presence and available

Imperfect detection (in a narrow sense)
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can be present in the plots (“super-population
size”) is estimated (Nichols et al. 2009). This
leads to the overestimation of the population
densities since the denominator calculating
densities is not the size of sampling plots but the
larger effective sampling area (Chandler et al.
2011). Hutto et al. (1986) therefore suggested that
actual density cannot be calculated reliably due
to the unknown effective sampling area in the
fixed-radius point counts.

The concept of spatial temporary emigration is
manifested as a closure assumption in models of
abundance and occupancy estimation in which
population size or occupancy status is assumed
to be constant over the survey period (Royle
2004, MacKenzie et al. 2006). Spatial temporary
emigration violates this assumption. To safely
ignore the problem of temporary emigration for
density estimation, sampling plots must be
sufficiently large relative to the home range size
of individuals (Royle and Dorazio 2008).
However, in the context of sampling communi-
ties, home range size differs among species, and
large plots suited for species with large home
range sizes cannot usually be attained due to
logistics.

The model: open-population CAM
We integrate CAM and open HDS to simulta-

neously deal with both imperfect detection and
temporary emigration. We note that sampling
methods other than distance sampling can be
used such as removal sampling (Amundson et al.
2014), capture–recapture protocols (Yamaura
et al. 2016a), and multiple counts in a single visit
(Chandler et al. 2011); in any case, multiple visits
to individual sampling plots are required to deal
with temporary emigration. We develop our
model using distance sampling because this
method is a well-known method and commonly
practiced in field studies. We can apply distance
sampling when we measure and record the dis-
tance from the transect line or point to the indi-
viduals; nevertheless, distance sampling has been
rarely used in CAMs (Sollmann et al. 2016). The
model is composed of three hierarchical levels,
and the first one is the process describing the
super-population size of species i for site j (Mij),
and we assume that Mij follows a Poisson process
(or negative binomial distribution; Sollmann
et al. 2016):

Mij �PoissonðkijÞ (2)

where kij is an expected value and will be repre-
sented by a log-linear predictor as a function of
relevant covariates. Conceptually, this quantity
Mij is the population size of species i that are ever
exposed to sampling at site j, that is, which have
at least some part of their home range within the
sampled plot. We can include random effects in
the predictor to consider variation not explained
by the Poisson distribution (Yamaura et al. 2012).
The next level deals with the emigration pro-

cess, and we assume that the number of individu-
als exposed to sampling (present in the sampling
plots and signaling presence) during visit k (Nijk)
follows a binomial process withMij as the number
of trials and success rate (availability probability
in the broad sense) /i (= pp 9 pa):

Nijk �BinomialðMij;/iÞ: (3)

Although we assume that every individual of
the same species has constant /i, this probability
can vary among individuals depending on the
location of home ranges relative to the sampling
plots (Fig. 2). However, in the context of a single-
species hierarchical model with the removal sam-
pling, Chandler et al. (2011) showed that density
estimates can be unbiased when /i varies among
individuals but is modeled as constant. Bias is
expected to decrease with the number of sam-
pling sites and visits, which is relevant with the
concept pooling robustness (Burnham et al. 1980).
The third level of the hierarchical model is the

detection process, describing the number of indi-
viduals detected at visit k in distance classes (up
to D), yijk = (yijk1, yijk2, . . ., yijkD):

yijk �MultinomialðNijk; pijÞ (4)

where pij (cell probabilities of the multinomial dis-
tribution) describes the distribution of observed
detections among distance classes (discrete dis-
tance classes are commonly used; Buckland et al.
2001). These detection and availability parameters
can depend on covariates (K�ery and Royle 2016,
Sollmann et al. 2016). We note that availability
and detection probabilities are separately esti-
mated given this data structure and model
formulation. Variations in number of available
individuals exposed to the detection (Nijk) among
the visits provide information on the availability
probability /i (Eq. 3), and variations in number
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of detected individuals among the distance
classes (yijk) given the total number of detected
individuals at the individual visits (expected to
be kij � /i �

PD
d¼1 pij) provide the information

necessary to estimate detection probability
(parameters describing pij [Eq. 4]). In other
words, multiple visits to the sampling sites are
required to estimate availability probability,
while detection probability can be estimated via
a single visit using distance sampling. Neverthe-
less, multiple visits are expected to increase the
accuracy of parameter estimates of distance sam-
pling models. We also note that detection proba-
bility of individual species is described by the
scale parameters (ri) of the detection model
which dictates the rate of decay of detection
probability as a function of distance (Buckland
et al. 2001, K�ery and Royle 2016). We assume
that detection probability is equal to 1 at the zero
distance for individuals that are available for
detection during any particular visit (see Discus-
sion for the relaxation of this assumption).

For each parameter (e.g., intercepts in the linear
predictor of kij), species-level parameters (suitably
transformed) are governed by a single normal dis-
tribution with community-level hyper-parameters
(mean and SD), and the existence of undetected
species throughout the survey is considered by
use of the method of data augmentation (Yamaura
et al. 2016b).

Simulation experiments
We conducted simulation experiments to exam-

ine the effects of imperfect detection and tempo-
rary emigration on community analysis with 30
sampling sites. There was a single covariate (xj)
that can affect abundance of individual species,
which ranged from �1 to 1, and their specific val-
ues were equally spaced among the sites (i.e.,
�1.00, �0.93, . . ., 0.93, 1.00). The regional species
richness (the number of species comprising the
regional meta-community, R) was fixed at 40
across the 30 sampling sites, and these species had
1.0 mean abundance (super-population size) and
1.0 standard deviation (exp[lb0] = rb0 = 1), and
mean slope values 1.0 for xj in the linear predictor
of kij (lb1 = rb1 = 1). This situation indicates that
species richness increases with xj. We then
addressed five cases with different mean values of
detection probability represented by the scale
parameter (�r) of the half-normal detection model

(Buckland et al. 2001, K�ery and Royle 2016) and
availability probability (�/: Table 2). These five
cases comprised the combinations of high and low
detection and availability probabilities, and an
intermediate case. Species-specific parameters of
detection and availability probabilities (ri and /i)
are log- and logit-transformed normal random
variables. We then conducted virtual surveys with
three visits to each site since three visits have been
shown to produce good performance of the single-
species and community N-mixture (closed popula-
tion) models (Yamaura 2013, Yamaura et al.
2016b). We collected distance sampling data with
rectangular plots up to 50 m maximum distance
and 10 m width distance classes (five distance
classes). Although we used rectangular plots as in
our empirical data, we can adopt the circular plots
(point transects) using the corresponding distribu-
tional function of distances (Buckland et al. 2001,
K�ery and Royle 2016). The variations of scale
parameters represent the situation in which detec-
tion probability quickly declines (�r = 10) and
hardly declines (�r = 100) from zero to the maxi-
mum 50 m distance. These two scale parameters
represent 0.25 (�r = 10) and 0.96 (�r = 100) plot-
level detection probabilities (Table 2).
We applied the open-population CAM to the

distance sampling data to infer the responses of
community-level densities and species richness
to the covariate. We augmented the observed
data sets with m (= 80 � S) potential species
with zero count histories, where S was the num-
ber of detected species. We defined expected
densities (densij) of the plots as kij 9 /i 9 wi

Table 2. Five simulation scenarios with different detec-
tion and availability probability.

Case �r �pd �/

1 100 0.96 0.9
2 100 0.96 0.1
3 10 0.25 0.9
4 10 0.25 0.1
5 40 0.79 0.5

Notes: Values of 100 and 10 for indicate high and low
detection probability, respectively. Plot-level detection proba-
bilities �pd corresponding to �r are also shown. Values of 0.9
and 0.1 for �/ indicate high and low availability probability,
respectively. The last case represents the intermediate sce-
nario. Species variations of r and /were produced by normal
distributions via log and logit transformations, respectively.
We used values of 0.5 for the SD of r and 1.0 for SD of / at
log and logit scales, respectively.
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where kij is an expected value of super-popula-
tion size, and wi, the data augmentation variable,
is a random variable that follows a Bernoulli dis-
tribution and indicates whether species i is
included in the community (Yamaura et al.
2016b). For the detected species, this variable
takes the value of 1 (with posterior probability
1.0) but can have the value of 0 for undetected
species. We estimated site-specific community
densities by summing densij across the species.
Although we did not divide these quantities by
the corresponding plot size, we treated these as
densities since they were abundances for a con-
stant unit size. Density-based expected local spe-
cies richness (a diversity) was estimated by
summing the occupancy probability (wij) derived
from the local densities across the species:

wij ¼ 1� expð�densijÞ. (5)

We obtained the overall occupancy probability
across 30 sites for individual species (wi.) as the
complement of the products of probability that a
site is not occupied:

wi ¼ 1�
Y30
j¼1

1� wij

� �
. (6)

The summation of wi. across the species is the
expected overall species richness across the sam-
pling plots (c diversity), and we partitioned c
diversity into b and a diversity by subtracting
the mean expected a diversity from c diversity
(additive partitioning; Crist et al. 2003).

To show the effects of making use of repeated
distance sampling data and therefore considering
temporary emigration, we reduced the distance
sampling data to simple counts and applied the
conventional N-mixture CAM that does not con-
sider temporary emigration (Yamaura et al. 2012,
2016b). The N-mixture CAM thus serves as an
explicit model for the super-population size of
individuals ever available for sampling during
the repeated surveys (Nichols et al. 2009, Chan-
dler et al. 2011). This conventional CAM is based
on simple repeated count data and is suggested
to be a promising approach to dealing with com-
munity-level abundance (Iknayan et al. 2014). In
the application of N-mixture CAM to the tempo-
rary emigration data, the number of detected
individuals for species i on site j at visit k (yijk)

is yijk ~ Binomial(pcap,i,Nij) where pcap,i is the
probability of an individual being encountered,
averaged over all distance classes. However, as
described above, because the N-mixture model
does not consider the emigration process (Eq. 3)
and regards Nij as a realization of the underlying
Poisson process (Nij ~ Poisson[kij]), the nominal
detection probability (pcap,i) is pcap,i 9 /i. Estimates
of Nij are therefore super-population sizes. It is
again noted that the objective of the comparison is
to provide an alternative analysis (N-mixture
model), which is sensible when only total counts
are obtained (i.e., absent distance data), for our
proposed open-population community model.
Another modeling option is to fit a basic distance
sampling model based on the aggregate counts in
each distance class, summed across the visits
ðyij: ¼

P
k yijkÞ. This quantity follows the multino-

mial distribution: yij. ~ Multinomial(K 9 Nij, pij).
Although we did not fit this model to our data, as
in the N-mixture model, the nominal detection
probability would include the emigration probabil-
ity (/i) and also produce estimates of the super-
population size.
We obtained the same estimates described

above from this closed-population CAM except
that densities were calculated as kij 9 wi (avail-
ability probability [/i] was not considered). We
compared the inferred responses of community
densities and species richness to the covariate
and a, b, and c diversity from open- and closed-
population CAMs (using posterior distributions)
with those of na€ıve counts and known true (ex-
pected) values on closure and non-closure (open)
assumptions. These true values were obtained by
the known true values of kij used to generate
detection data with and without /i for values on
open and closure assumptions, respectively.
We fitted the models using Markov chain

Monte Carlo (MCMC), using conventional unin-
formative priors, 10,000 burn-in, and 100,000 iter-
ations, and with three chains. We truncated
community- and species-level r in the range
of 2.7–403 to enhance the convergence. Model
fitting was conducted using JAGS ver. 3.2.0
(Plummer 2012) with jagsUI ver. 1.3.7 (Kellner
2015) and R ver. 3.2.3 (R Core Team 2015). We also
used vegan ver. 2.3-0 (Oksanen et al. 2015) for the
additive partitioning of count data. We assessed
the chain convergence with the Gelman-Rubin
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statistic of all parameters (<1.1), and conducted an
additional 100,000 iterations until convergence
was attained using the function autojags in jag-
sUI. We replicated the simulations 100 times for
each of five cases with different detection proba-
bility and availability probabilities. We obtained
median values of the posterior distributions, and
their mean values were used to represent the data
across the 100 replicates.

Model application to the empirical data
We applied the open-population CAM to dis-

tance sampling data from a survey of birds
which we previously used to develop and fit the
N-mixture (closed population) CAM (Yamaura
et al. 2012). The study area (15 9 15 km) was in
the northern part of Kitakami highland, Iwate
prefecture, northern Japan (39°500 N, 141°190 E).
This area (200–1000 m asl) was covered by for-
ests, which were dominated by deciduous natu-
ral forests and larch Larix leptolepis plantations.
Original data were collected to examine the
abundance and species richness of breeding bird
communities in four open (pasture, meadow,
young planted forest, and abandoned clear-cut)
and two forested habitats (mature planted forest
and natural old-growth). We established five
sampling plots each of which was 4 ha in size
(100 9 400 m; Fig. 1) for each habitat type (total
of 30 plots). Sampling plots were spaced at least
600 m apart except for meadow plots. Line tran-
sect surveys were conducted by one person (Y.Y.)
during 19 May–28 June 2009, and each plot was
visited in the morning (sunrise to 10:00 a.m.) five
times on different days. We recorded the number
of individuals of each species in the plots and
their distances from the transect line.

We fitted the open-population CAM to the data
and derived the abundance in each habitat of size
h (ha) accounting for temporary emigration as fol-
lows: abundijh = (kij 9 /i 9 wi/4) 9 areah where
kij is an expected super-population size of species
i for habitat j in the original plot size (4 ha), and
the quantity in parentheses indicates the expected
density (per ha) accounting for temporary emigra-
tion (/i). We substituted this term instead of kij in
Eq. 1, and obtained expected species richness for
each of six habitats at 53 different plot sizes from
0.01 to 10 ha. Species richness of songbirds was
expected to change across this range of plot size
(Yamaura et al. 2016a). We then constructed the

area-based rarefaction curves for six habitat
types based on these estimates. Following the
framework of additive partitioning, we also
obtained mean values of species richness across
six habitats as a diversity at respective plot sizes.
Expected species richness across six habitats
(c diversity) was estimated using Eqs. 5, 6, in
which we first estimated the probability that each
species occupied at least one of the six habitats at
respective sizes and then summed these probabili-
ties across the species. We similarly constructed
rarefaction curves from the closed-population
CAM ignoring temporary emigration. The data
were composed of 47 observed species, and we
augmented with 30 potential species. We fitted
the model with the same settings as in the simula-
tions (e.g., numbers of burn-in and iterations, soft-
ware), and convergence was determined for the
relevant community-level parameters.

RESULTS

Analysis of simulated data
Under the high detectability and availability sce-

nario (�r = 100, �/ = 0.9), which can be considered
as an ideal situation (nearly perfect detection and
high availability), there were few differences
among the true, estimated, and observed values of
community-level densities and species richness
against covariate (x), and additive partitioning
(Fig. 3a–c). Nevertheless, even with this high avail-
ability, relaxation of the closure assumption slightly
decreased expected community densities and local
species richness. Low availability (�/ = 0.1) greatly
decreased true community densities and local spe-
cies richness compared with estimates obtained
under the closure assumption, but did not greatly
decrease overall species richness (c diversity); b
diversity was therefore increased (Fig. 3d–f). The
open-population CAM correctly recovered true
values of community densities and species rich-
ness. The closed-population CAM estimated the
appropriate super-population sizes (Fig. 3). There-
fore, the presence of temporary emigration, when
ignored, led to the overestimation and underesti-
mation of a and b diversity, respectively. The most
information-poor scenario (�r = 10, �/ = 0.1) was
challenging for the closed-population CAM, yield-
ing very diffuse posterior distributions and hence
wide CIs (Fig. 3j–l). Bias of raw counts of individu-
als (index of densities) and local species richness
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Fig. 3. True and estimated community-level densities and species richness for five cases subject to different
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depended on the situation; high detectability and
low availability (�r = 100; �/ = 0.1) made raw
counts higher than true values of community
densities and species richness under the open
community data-generating model (Fig. 3d–f).
Low detectability and high availability (�r = 10;
�/ = 0.9) instead made raw counts lower than
true values of community densities and species
richness (Fig. 3g–i). In the most information-poor
scenario with low detectability and availability
(�r = 10, �/ = 0.1), and the intermediate scenario
(�r = 40, �/ = 0.5), the biases of raw counts of
local species richness were smaller than those of
the above scenarios (Fig. 3j–o).

Analysis of empirical data
Estimates of community- and species-level scale

parameters (r) of the distance sampling CAM

reached the upper limits (>300). This means that
detection probabilities were estimated to be nearly
1 within the plots for all species, indicating that all
the variations in counts among the visits were
caused by temporary emigration. This was a result
of the detection frequency not declining with dis-
tance, and the assumption of perfect detection at
the zero distance. The estimate of community-
level mean availability was 0.13 and species-level
estimates ranged from 0.02 (blue-and-white fly-
catcher Cyanoptila cyanomelana) to 0.86 (common
skylark Alauda arvensis); these values were almost
the same as detection probability estimates
obtained from the closed-population CAM.
Estimates of super-population size varied

across six habitats, and this variation did not have
clear associations with availability estimates
(Fig. 4a), that is, every species had small super-

(Fig. 3. Continued)
detection and availability probabilities. Left column: True and estimated values of community densities are
shown in relation to the single covariate, xj. Central column: species richness and xj. True values under closure
and open assumptions are shown by solid lines using the expected values, while estimates are shown by the
median (dotted or broken lines) and 95% CIs (dark-gray and light-gray colors for closed and open populations,
respectively). Raw count indicates the number of detected individuals (maximum numbers over the three visits
were summed across the species) and species during the three replicated visits at each site. Mean values are used
to represent the data across the 100 replicates. Right column: partitioning of c diversity (overall species richness)
across 30 sampling sites into a (mean species richness) and b diversity (differences between c and a diversity).
tClos and tOpn indicate the true values of expected (true) species richness based on the closed- and open-popula-
tion assumptions. eClos and eOpn indicate estimates of closed- and open-population community abundance
models, respectively. Vertical bars indicate SDs of through the 100 replications.
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Fig. 4. Estimates of super-population size and density for individual species in relation to availability probabil-
ity. Individual vertical lines indicate ranges (maximum and minimum values) of (a) super-population size and
(b) density estimates across six habitat types for individual species, and they were shown against individual spe-
cies’ availability estimates. Estimates of super-population size were obtained by dividing the density estimates
(posterior medians) by availability estimates.
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population sizes in certain habitat types (~0) and
high values in other habitats. However, since low
availabilities made maximum density estimates
decrease, species with higher availabilities had
higher values of maximum estimated density and
more variation in density estimates (Fig. 4b).
Area-based rarefaction curves produced from the
open-population CAM were lower than those of
the closed-population CAM (Fig. 5a, b). Habitat-
specific super-population sizes at community
levels (mean values across species) were also
almost the same in both CAMs, and relative rela-
tionships of rarefaction curves among six habitats
remained unchanged (Fig. 5a, b). Estimated regio-
nal species richness was also the same in the two
CAMs (~50). Because overall species richness

quickly reached the estimated regional species
richness in the closed-population CAM, the differ-
ence between overall and mean species richness
(b diversity) showed a unimodal shape (Fig. 5c).
However, in the open-population CAM, three
diversity metrics (a, b, and c) monotonically
increased with area over the considered range of
the area (Fig. 5d).

DISCUSSION

Effects of temporary emigration on density and
diversity metrics
Temporary emigration and imperfect detection

are long-standing issues in the analysis of count
data (Hutto et al. 1986, Hutto 2016, 2017, Marques
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et al. 2017). We demonstrated that temporary emi-
gration as well as imperfect detection can seri-
ously compromise the analysis of biological
communities when we are primarily interested in
density and density-based expected diversity met-
rics (Eqs. 5–6). When the closure assumption is
violated, the N-mixture (closed population) model
infers the number of individuals whose home
ranges overlap with the sampling plots (i.e., the
super-population size). When this quantity may
be linked to the size of sampling plots, that is, it
may be treated as the density, and the resultant
density and diversity metrics can be greatly
biased. Issues of the biased estimates would be
important when detection probability can vary
among sampling plots, which results in the con-
founding of the variations of diversity metrics
with those of detection probabilities (Ruiz-
Guti�errez et al. 2010, Mc New and Handel 2015).
Availability can also be expected to depend on
covariates; territory size is likely to be small in
resource-rich habitats (Marshall and Cooper 2004,
Hach�e et al. 2012). Variations in availability
among sites would be considered by treating the
availability probability /i as the function of covari-
ates as in the detection probability of N-mixture
model (K�ery 2008, Yamaura 2013). Biases involved
with temporary emigration are likely to be large
when sampling plots are small compared to home
range of organisms.

We applied the open-population CAM to
empirical repeated distance sampling data, and
almost perfect detection in the plots was implied
by the parameter estimates. We consider that this
result is reasonable since it is known that detec-
tion probability is high (>90%) up to 50 m
(Schieck 1997, Alldredge et al. 2007), which was
the maximum distance of our distance sampling
data. Therefore, our model application yielded
density estimates on the basis of nearly perfect
detection and imperfect availability. Imperfect
availability led to a reduction in estimated den-
sity, and lowered the rarefaction curves based on
density. We suggest that existing models only
dealing with imperfect detection (Yamaura et al.
2011, 2012, 2016b) would confound detection
probability and availability probability, and there-
fore, abundance estimates cannot be treated as
density estimates in many cases (particularly
when home range is larger than plot size) unless
temporary emigration is explicitly modeled.

The emigration formulated by the open-popu-
lation CAM includes not only spatial movement
of individuals (spatial temporary emigration), but
also other stochastic processes that lead to indi-
viduals being unavailable for detection (K�ery and
Royle 2016). This random temporary emigration
(Fig. 1) may somewhat contribute to the underes-
timation of densities. Specifically, we formulated
the density as the product of super-population
size and availability probability (k 9 /); follow-
ing the notation of Fig. 1, our model dealt with
the nominal detection probability as pd rather than
pa 9 pd using distance sampling (given the perfect
detection at the zero distance). Availability proba-
bility (/) and associated density therefore are
equivalent to pp 9 pa and k 9 pp 9 pa, respec-
tively. The use of other sampling methods includ-
ing removal sampling or multiple counts in a
single visit (Chandler et al. 2011) would incorpo-
rate this unavailability (pa) into nominal detection
probability (= pa 9 pd), and yield more unbiased
density estimates (= k 9 pp). We also note that
Amundson et al. (2014) combined removal sam-
pling and distance sampling to deal with pa and
pd simultaneously.
For example, in point counts using distance

sampling, we may conduct distance sampling
multiple times in the single visits and record the
time and distance of the detection simultane-
ously. In this case, the series of the equations dic-
tating the individual counts (Eqs. 2–4) would be
changed as follows:

Mij �PoissonðkijÞ (7)

Nijk �BinomialðMij;/iÞ: (8)

Lijkl �BinomialðNijk; hiÞ (9)

yijkl �MultinomialðLijkl;pijÞ (10)

where Lijkl is the number of individuals spatially
available and producing signals at sub-time l
during visit k, and hi is the associated probability
of random temporary availability. Separation of
these two temporary emigration processes in the
transect survey may be achieved by recording
other ancillary information of the detection pro-
cess such as the time when individuals are
detected (Borchers and Cox 2017).
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When are we primarily interested in density
rather than abundance (super-population size)
in a community context?

When should we deal with spatial temporary
emigration separately from imperfect detection
by investing additional sampling effort? Individ-
uals exclusively residing in the sampling plots
are expected to play greater roles in biological
communities and ecosystems than individuals
infrequently visiting the sampling plots. Our pro-
posed modeling framework would be an option
to properly account for these differences, and
species richness is treated as a function of densi-
ties of species comprising the community and
area. Ordinary species richness (number of
detected species in the plot) does not account for
temporary emigration but rather implicitly enu-
merates the number of species whose individuals
overlap their home range with sampling plots.
Although species richness is suggested to be
related to ecological functions performed by
communities (e.g., Philpott et al. 2009), the
derivative of the species richness (and occupancy
probability)–area curves decreases as area
increases, and differences in species richness
among the habitats can be obscured depending
on the area (plot size; Appendix S1). In such case,
we suggest that ecosystem functions performed
by organisms would be more directly linked to
population densities or other related diversity
metrics accounting for spatial availability.

In this study, we suggested that three parame-
ters are related to species richness. First is the
regional species richness: the number of species
in regional communities which can occur in the
habitats being sampled. We note that the regio-
nal species richness is different than c diversity,
which can be substantially smaller than regional
species richness when the total size of the sam-
pling plots is small (Iknayan et al. 2014, Yamaura
et al. 2016b). Second is the mean population den-
sities across species, and the third is the variation
in density among the species. These quantities
are community-level parameters estimated in
hierarchical community models and can be scale-
free parameters. For example, we can assume
that these parameters do not change greatly
when the regional biota is shared by the sam-
pling plots, and underlying environments dictat-
ing habitat quality of constituent species are
similar. In other words, if we have the estimates

of population densities for individual species, we
can estimate and compare species richness across
areas using area-based rarefaction curves.
In the CAMs, species variation in population

densities (represented by the standard deviation
[SD] of b0i in Eq. 1) affects rarefaction curves dif-
ferently depending on the area (or plot size). For
small areas, larger SDs increase species richness
while, in large areas, larger SDs decrease species
richness (Appendix S1). Rarefaction curves com-
puted for different habitat types can therefore
cross at a certain plot size when different habitats
have different levels of variability in population
density among species (SD of b0i; Appendix S1).
Rarefaction curves can also cross when regional
species richness (or species pool of a meta-commu-
nity; Iknayan et al. 2014) differs (Appendix S1).
This suggests the significance of comparing spe-
cies richness across areas even when different
habitats are surveyed with the same plot sizes.
We developed our modeling framework

focused on community-level densities and species
richness (a, b, and c diversity); however, as imper-
fect detection can impact the analysis of other
diversity metrics such as the Shannon index
(Yamaura et al. 2016b), variety of diversity metrics
would also be affected by this prevalent ecological
process of temporary emigration. Since temporary
emigration prevails in field surveys and has broad
significance for the ecology and function of popu-
lations and communities, we suggest the impor-
tance of accommodating not only imperfect
detection but also temporary emigration in the
analysis of biological communities.
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