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Abstract

Background: In metagenomics, the separation of nucleotide sequences belonging to an individual or closely
matched populations is termed binning. Binning helps the evaluation of underlying microbial population structure as
well as the recovery of individual genomes from a sample of uncultivable microbial organisms. Both supervised and
unsupervised learning methods have been employed in binning; however, characterizing a metagenomic sample
containing multiple strains remains a significant challenge.

In this study, we designed and implemented a new workflow, Coverage and composition based binning of
Metagenomes (CoMet), for binning contigs in a single metagenomic sample. CoMet utilizes coverage values and the
compositional features of metagenomic contigs. The binning strategy in CoMet includes the initial grouping of
contigs in guanine-cytosine (GC) content-coverage space and refinement of bins in tetranucleotide frequencies space
in a purely unsupervised manner. With CoMet, the clustering algorithm DBSCAN is employed for binning contigs. The
performances of CoMet were compared against four existing approaches for binning a single metagenomic sample,
including MaxBin, Metawatt, MyCC (default) and MyCC (coverage) using multiple datasets including a sample
comprised of multiple strains.

Results: Binning methods based on both compositional features and coverages of contigs had higher performances
than the method which is based only on compositional features of contigs. CoMet yielded higher or comparable
precision in comparison to the existing binning methods on benchmark datasets of varying complexities. MyCC
(coverage) had the highest ranking score in F1-score. However, the performances of CoMet were higher than MyCC
(coverage) on the dataset containing multiple strains. Furthermore, CoMet recovered contigs of more species and was
18 - 39% higher in precision than the compared existing methods in discriminating species from the sample of
multiple strains. CoMet resulted in higher precision than MyCC (default) and MyCC (coverage) on a real metagenome.
Conclusions: The approach proposed with CoMet for binning contigs, improves the precision of binning while
characterizing more species in a single metagenomic sample and in a sample containing multiple strains. The
F1-scores obtained from different binning strategies vary with different datasets; however, CoMet yields the highest
F1-score with a sample comprised of multiple strains.
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Background

Metagenomics has enabled the culture-independent study
of the dynamics of microbes in different environments
including the human gut [1, 2], soil [3] and seawater sur-
face [4]. Through the analysis of data generated from
direct sampling and high-throughput shotgun sequencing
of genetic material of microbiota, metagenomics can pro-
vide important applications in evaluating the ecology of
uncultivable organisms in different habitats [5-7].

Sequence assembly and sequence binning are two key
steps involved in a metagenomics experiment. Sequence
assembly is performed to generate contigs (i.e. overlap-
ping sequences) from short reads generated in the experi-
ment by identifying the overlapping nucleotide sequences
belonging to a particular organism. Sequence binning is
the separation of nucleotide sequences belonging to an
individual genome or closely related genomes into groups.
Binning is mostly adopted as a subsequent step after
sequence assembly; however, the possibility of binning
before assembling the reads has been suggested to reduce
assembly complexity [8].

There are two key metagenomic approaches for tax-
onomic profiling of a given microbial community: (1)
the use of taxonomic barcodes or phylogenetic marker
genes, and (2) shotgun sequencing-based approach [9].
The scope of this study is binning datasets obtained using
shotgun sequencing. Binning metagenomic sequences is
challenging because of the complexities of microbial pop-
ulations such as variation in abundances and lack of
information on genomic sequences of organisms. In addi-
tion, the complexities in datasets such as the high volume
of data and sequencing/assembly errors make binning a
challenging task. Consequently, various binning strategies
have been proposed to discriminate nucleotide sequences
belonging to species in a metagenomic sample, and have
been extensively reviewed (see [10-12]).

Existing binning methods can generally be grouped
into taxonomy dependent methods and taxonomy inde-
pendent methods. Taxonomy dependent methods bin
sequences based on reads similarity to known sequences
in databases or using supervised learning models (based
on reference sequences) (see, for example [13-16]). Tax-
onomy dependent binning methods are useful in real-
izing the profile of known organisms in a sample, but
are less effective in evaluating microbial populations
with unknown species [10]. In contrast, taxonomy inde-
pendent binning strategies are based on mutual dis-
similarities observed in sequences and do not require
known sequence data.

Taxonomy independent methods have been shown
to be useful in analyzing metagenomic samples that
may contain many unknown organisms [17]. Conse-
quently, taxonomy independent strategies which utilize
statistical methods for feature extraction, techniques for

Page 162 of 259

data visualization and unsupervised learning methods
for clustering sequences have been widely adopted for
binning [12].

Existing taxonomy independent binning methods may
be categorized into two distinct groups based on the fea-
tures used in them: sequence composition based methods
and relative abundance based methods. Sequence compo-
sition based approaches utilize the features extracted from
nucleotide sequences (or the assembled contigs) of the
organisms. Two such compositional features are guanine—
cytosine (GC) content and tetranucleotide frequencies.
The GC content of a genomic sequence is known to
be distinct for various species. For example, it has been
shown that GC content is the cause of differences in
characteristics such as temperature optimum and toler-
ance range, and hence is correlated with phylogenetic
relationships observed among bacterial populations [18].
Similarly, higher order base composition statistics of the
sequences, termed nucleotide frequencies, are considered
as species-specific signatures, while tetranucleotide fre-
quencies are used to discriminate species [17, 19-22].
A novel measure of the relative magnitude of biases in
base composition, the Oligonucleotide Frequency Derived
Error Gradient (OFDEG), has also been proposed and
shown to be effective in separating individual genome
sequences. Alternatively, the relative abundance of species
(or its genomic fragments) has been used as a discrim-
inating feature for binning and is encapsulated by the
g-mer frequency of the reads [23, 24] or sequence cov-
erage information [25]. Hybrid binning strategies have
been proposed, utilizing both sequence coverage and
sequence composition related features [26-28] and/or
are based on dis-similarities observed among species,
as well as features extracted based on known sequence
data [22].

The identification of representative genomic signatures
and the use of appropriate clustering methods are impor-
tant in improving the performances of binning methods.
Machine learning methods that are employed in binning
have been extensively reviewed [29]. Clustering methods
employed in binning methods include agglomerative hier-
archical clustering, k-means clustering, k-medoids clus-
tering and model based clustering [29, 30]. However,
parameter initialization and specification of the number
of bins (k) represent challenges for some existing binning
methods [24, 26]. Some clustering methods are prone to
outliers, and therefore robust outlier filtering strategies
are adopted to improve precision in binning [17]; how-
ever, application of robust outlier filtering reduces the
total number of contigs being binned [17].

Contig coverage based binning of multiple samples has
been suggested before [3]. Furthermore, the use of abun-
dance and genomic composition related features of organ-
isms calculated from multiple metagenomic samples for
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binning contigs has been recently proposed [29], but the
precision of binning methods based on multiple sam-
ple data is shown to decrease as the number of sam-
ples decreases [27]. A recent approach, namely MyCC
[22] has been shown to improve the precision in bin-
ning. The use of genomic signatures and marker genes
for binning is employed in MyCC workflow and it has
been shown to yield higher precision than other bin-
ning strategies using compositional and coverage features
extracted from multiple metagenomic samples such as
CONCOCT and MetaBAT [20-22]. As a binning strat-
egy, MyCC has been shown to be effective for a single
metagenomic sample as well; however, binning a sam-
ple of multiple strains is shown to be challenging with
MyCC [22].

The objective of the present study was to develop a
workflow, ‘Coverage and composition based binning of
Metagenomes’ (CoMet), to evaluate the use of both con-
tig coverage and compositional features extracted from
contigs for binning a single metagenomic sample. CoMet
employs unsupervised learning methods so that mini-
mal user inputs are required to cluster contigs. With
CoMet, we explored the use of the clustering algorithm,
Density-based spatial clustering of applications with noise
(DBSCAN) [31] in binning. The advantages of DBSCAN
over other clustering methods are that the DBSCAN algo-
rithm handles the outliers effectively, it does not assume
a fixed cluster shape and it infers the number of distinct
groups from the data automatically.

Furthermore, the coverage values of assemblies are
directly correlated to the relative abundances of the organ-
isms in the sample, and hence can be used to discriminate
closely related organisms. Compositional features may be
similar in closely related species [30] and the use of only
compositional features has been shown to result in lower
accuracy in samples with contigs from organisms with
similar tetranucleotide frequencies [28].

However, most of the existing methods for binning a
single metagenomic sample do not consider contig cover-
age as a primary feature. In contrast, contig coverage has
been used as a secondary feature combined with tetranu-
cleotide frequencies in existing methods [20, 22, 32].
Two existing methods that consider both contig coverage
and GC content are differential coverage based binning
[33] and VizBin [34]. However, differential coverage based
binning require data from multiple samples and VizBin
require manual selection of bins. CoMet was used to
explore the use of contig coverage as a primary feature
coupled with GC content for automated binning of a sin-
gle metagenomic sample and a sample of multiple strains.
Furthermore, a set of widely used binning methods and
CoMet were evaluated on a set of simulated metagenomes
and a real metagenome, considering multiple binning per-
formance measures.
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Methods

CoMet binning workflow

CoMet uses contig coverage coupled with contig com-
position to separate metagenomic contigs into groups
of related populations, which may be used to infer the
underlying population structure of a microbial sample
(Fig. 1). The compositional features of similar genotypes
(i.e. strains) may be similar; however, their relative abun-
dances in the sample may differ. Intuitively, the differences
in relative abundances of species captured by contig cov-
erage can be used to generate initial groupings. The use
of contig coverage has been demonstrated to be effective
in improving binning performance [22, 33, 34]. The pro-
posed CoMet workflow consists of three primary steps:
(1) compositional feature extraction (2) the primary bin-
ning of contigs using DBSCAN algorithm in GC-coverage
space, and (3) further refinement of bins considering
tetranucleotide frequencies of contigs. These steps are
explained in detail in subsequent sections.

Compositional features extraction

The compositional features used in CoMet are GC content
and tetranucleotide frequencies of the contigs. The inputs
to CoMet are nucleotide sequences of the assembled
sequences in FASTA format and their coverage values.
The compositional features, GC content and tetranu-
clotide frequencies of the contigs are calculated from
sequence data. The input contigs are filtered based on
their length (set as 1000 bp in this study) in order to
capture a strong representation of the compositional fea-
tures [17, 32]. The GC content of a contig is calculated as
the ratio of guanine + cytosine bases in the contig. The
tetranucleotide frequency profile of a contig contains the
frequencies of tetramers in a contig. They are computed
by scanning the sequence of the contig using one bp slid-
ing window and counting the occurrences of tetramers.
The tetranucleotide profile of a contig is computed as
the aggregate tetramer frequencies of the contig and its
reverse complement, normalised by its total tetramer fre-
quencies.

The coverage profile of the sample ought to be provided.
The coverage of a contig is the average number of reads
per base from the sample in the contig. The coverage pro-
file is calculated by mapping the assemblies back to reads
and maybe extracted from the output of a read alignment
tool such as Bowtie 2 [22, 27, 35].

Initial clustering using DBSCAN algorithm

With CoMet, initial bins are generated by grouping con-
tigs by considering GC content and coverage. The cov-
erage values are log transformed and the contigs are
clustered in GC-log(coverage) space using DBSCAN algo-
rithm. The rationale for this approach is that the coverage
values of assemblies are directly correlated to the relative
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Fig. 1 A schematic diagram showing workflow in CoMet. The figure illustrates the key steps involved in proposed binning workflow

Output bins

abundances of the organisms in the sample and hence
can be used to discriminate closely related organisms. In
contrast, compositional features may be similar in closely
related species [30]. Contig coverage is coupled with GC
content values to have more distinct cluster separations.
The use of the DBSCAN algorithm for binning metage-
nomic contigs is suggested with CoMet. To the best of
our knowledge, DBSCAN algorithm has not previously
been applied for binning metagenomic sequences. The
DBSCAN algorithm discriminates clusters from noise by
identifying densely populated regions with the rationale
that the density of points in the same group (i.e. a clus-
ter) must be higher than the points falling outside the
group (i.e noise). The primary steps in the DBSCAN
algorithm are described in brief next. (See [31] for com-
plete explanation). In DBSCAN, two parameters, epsilon
and minimumpoints are used to distinguish points in
a cluster. For a point to be included in a cluster, its
neighborhood within a given radius, epsilon should con-
tain at least minimumnumberofpoints [31]. The parameter
epsilon refers to the radius of the neighborhood around
a point (i.e. € — neighborhood of the point). The algo-
rithm begins by selecting an arbitrary data point c. If
there are more than minimumpoints including the point

itself, within its € — neighborhood, then ¢ is marked as
a corepoint and forms a cluster C with the points in its
€ — neighborhood. New points are added to the cluster
recursively exploring the € — neighborhoods of points in C
excluding c. The process is repeated with a new arbitrarily
chosen point when no more points could be added to the
cluster C. A point belonging to the € — neighborhood of a
corepoint, x but with points less than minimumpoints in
€ — neighborhood is termed a borderpoint. A borderpoint
get assigned to the cluster that discovers it first. The points
that do not get assigned as a corepoint or a borderpoint
are identified as outliers or noise. The implementation of
the DBSCAN algorithm, dbscan from the R package fpc
[36] was used in our work using Eucledian as the distance
metric.

Three properties of DBSCAN algorithm are benefi-
cial in alleviating limitations associated with clustering
methods used in existing binning approaches such as hier-
archical clustering, k-means clustering and finite mixture
modeling: (i) the number of clusters does not need to be
specified explicitly, (ii) no assumptions about the cluster
shape are made, and (iii) outliers can be detected effec-
tively. At the initial coarse clustering step, prior knowl-
edge on similar species may not be given. Therefore, the
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DBSCAN algorithm was selected over mentioned other
clustering methods.

Further refinement of bins given tetranucleotide frequencies
of contigs

It is assumed that the initial coarse clustering is repre-
sentative of the underlying population structure, however,
the initial coarse groups obtained after the initial clus-
tering step may still contain contigs of multiple species.
Therefore, the subsequent refinement of bins in the
tetranucleotide space is applied to discriminate contigs of
different species that may have been incorrectly grouped
into the same group at the initial step. Each cluster that is
generated after initial step may be considered as a metage-
nomic sample of smaller size. The refinement of bins consists
of two primary steps. First, the tetranucleotide frequency
profiles of the contigs in each cluster are mapped to
adequate representations in reduced dimensionality by
applying Principal Component Analysis (PCA). Second,
contigs in each bin are further clustered using infinite
Gaussian mixture modelling with Gibbs sampling [37].
Dimensionality reduction is beneficial when working with
high dimensional data to simplify the clustering process
while preserving the original feature representation. Since
the assumption of normality of the tetranucleotide fre-
quencies distribution has been verified previously [17] the
Gaussian mixture modelling was employed.

Many recent binning methods using unsupervised
learning methods perform finite Gaussian mixture mod-
eling [17, 27, 38, 39]. A limitation of these finite mix-
ture models-based binning methods is the selection of
the number of clusters providing best performance [38].
In CoMet, this need is alleviated by using an infinite
Gaussian mixture modeling method namely Dirichlet
Process Gaussian Mixture Models (DPGMM) for cluster-
ing. DPGMM falls under the class of probabilistic mixture
models and can be considered as an extension of finite
Gaussian mixture models, removing the need for specifi-
cation of the number of distinct groups in the dataset.

A finite Gaussian mixture model with k components is
given by

P(yll‘Ll:~~
k
=2, N (7))

with the means and inverse variances given by u; and
oj respectively. w; refers to the mixing weights and
Z}l‘;l wj = 1.

An infinite Gaussian mixture model considers a priori
k — oo. A DPGMM is mainly defined by a set of a
priori hyper parameters common to all the components
and a concentration parameter related to the Dirichlet
process (Refer [37] for the complete derivation). Gibbs
sampling is a technique commonly used in Monte Carlo
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simulations to generate samples from complicated mul-
tivariate distributions. When generating samples using
Gibbs sampling method, the value of a variable is updated
based on its conditional distribution given all rest of the
variables. Having defined a set of conditional posterior
distributions, Gibbs sampling can be used to infer the
parameters of a DPGMM using a Markov Chain Monte
Carlo (MCMC) approach [37]. Alternatively, a deter-
ministic approach with a variational inference algorithm
for Dirichlet Mixture modeling has been suggested [40].
The Selection between variational inference method and
Gibbs sampling based MCMC approach is a trade-off
between the time and the accuracy. The former is suit-
able for a fast approximation of the solution while the
latter is theoretically guaranteed for accuracy. The imple-
mentation of CoMet and evaluations were carried out in
R and relevant files are available at https://github.com/
damayanthiHerath/comet.

Comparison with existing binning methods

The use of coverage and compositional features of con-
tigs coupled with unsupervised learning methods for
binning a single metagenomic sample is proposed in
CoMet. CoMet was evaluated for binning performance
along with four methods for binning a single metage-
nomic sample. They are (1) purely contigs composition
based binning method, Metawatt [19], (2) both com-
position and coverage based binning method, MaxBin
[32], (3)a recent binning method based on contig com-
position and marker genes, MyCC (default) [22], (4)
its supplemented version based on contig composi-
tion, maker genes and contig coverage, MyCC (cover-
age) [22]. Both MaxBin and MyCC (coverage) perform
clustering of contigs in the combined feature space
of contig coverage and compositional features. MaxBin
adopts an Expectation Maximization (EM) approach
for grouping similar sequences. The clustering algo-
rithm used in MyCC is Affinity Propagation. The imple-
mentation of Metawatt was downloaded from https://
sourceforge.net/projects/metawatt/. The evaluations of
MaxBin were carried out with docker image of MaxBin
Version 2.0 accessed from https://downloads.jbei.org/
data/microbial_communities/MaxBin/MaxBin.html. The
docker image of MyCC downloaded from https://
sourceforge.net/projects/sb2nhri/files/MyCC/ and was
used for evaluation of MyCC (default) and MyCC (cover-
age).

Evaluation on simulated datasets

The binning performances of CoMet and Metawatt,

MaxBin, MyCC (default) and MyCC (coverage) were eval-

uated using four simulated benchmark datasets.
Simulated Illumina sequences of a metagenomic sam-

ple comprising 10 genomes have been previously used
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to benchmark assembly tools [41], and contigs generated
by assembling these reads have been used to evaluate
binning methods [22]. The reads have been assembled
using Ray Meta assembler and coverage profile calcu-
lated using Bowtie 2. In this study, mentioned assem-
blies and the contig coverage values were downloaded
from the web resource, https://sourceforge.net/projects/
sb2nhri/files/MyCC/Data and were used to evaluate dif-
ferent binning strategies. This dataset is referred as
sim10_1.

Two simulated metagenomic datasets of 10 genomes
with different relative abundances have been used in
evaluation of MaxBin [32]. Generation of 5 million
and 20 million Illumina reads from the sample has
been simulated using Metasim reads simulator and
assemblies have been generated using Velvet assembler
[32]. The two sets of assemblies of different over-
all coverages, 20x and 80x and their coverage pro-
files were downloaded from https://downloads.jbei.org/
data/microbial_communities/MaxBin/MaxBin.html and
were used in this study to evaluate different bin-
ning strategies. The datasets with overall coverages 20x
and 80x are referred as siml0_20x and sim10_80x,
respectively.

Binning a metagenomic sample comprised of several
closely related species, strains is identified to be a chal-
lenging task for existing binning methods [22, 42]. The
performances of CoMet and remaining binning methods
were evaluated with a metagenomic sample consisting of
multiple strains downloaded from CAMI web site. CAMI
is a project initiated for creating benchmark datasets of
different complexities to evaluate methods for assembly,
taxonomic profiling and binning of metagenomics data
[42]. Assemblies and abundance profile of a simulated
strain dataset comprised of 30 organisms of size 15 Gbp
were downloaded from https://data.cami-challenge.org/.
Mentioned dataset that was downloaded from CAMI is
referred as sim30_cami.

Evaluation of CoMet on strain datasets with varying
coverage distributions

The effect of varying coverage distributions on perfor-
mances of CoMet was evaluated based on the contigs in
sim30_cami dataset which consists of contigs generated
from sequences of 30 strains. Random coverage values of
the organisms were sampled from 1, 2, 3, 5, 6, 10, 15 and
30 different coverage distributions and their values were
in the range of 1-300. For each number of distinct cover-
age distributions considered, 10 samples were generated
with contigs that were assigned coverage values sampled
from the given distribution pattern. CoMet was evaluated
on the 80 datasets for precision, F1-score and number of
species discovered.
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Evaluation on a real metagenome

The metagenomic experiment conducted to analyze
human infant gut microbiome [43] was considered for
evaluating the applicability of CoMet on real data. The
assembled contigs generated from Illumina reads, cov-
erages computed using Bowtie 2 and binning informa-
tion from the original study were obtained from https://
sourceforge.net/projects/sb2nhri/files/MyCC/Data. The
outcome of binning of these contigs using CoMet was
compared against the results obtained from binning
them using MyCC (default) and MyCC(coverage). MyCC
(default) and MyCC (coverage) were selected for compar-
ison because they have shown higher performance than
other methods in previous work [22]. The experiment has
had 18 sequence runs of 11 fecal samples. Since CoMet is
suggested for binning a single metagenomic sample, the
run with least number of contigs with zero coverages was
considered for evaluation.

Binning performance measures

The true assignments of the contigs (ground truth)
are available for the simulated data. For the real
metagenome, the binning assignments made in the exper-
iment were downloaded from https://sourceforge.net/
projects/sb2nhri/files/MyCC/Data and were used as the
gold standards. Based on the gold standards, CoMet and
four other binning methods were evaluated using four
measures including precision, recall, F1-score and the
number of species discovered [22, 23, 27, 32]. The def-
initions of these measures are provided below. All the
binning methods were ranked on their performances in
order to make a comprehensive comparison of their per-
formances with different datasets.

Assume there are N genomes in the dataset and the
method outputs M clusters C; (1 < i < M). Let R; be
the number of reads in C; which are from genome j and
C; represent genome j when R; = max;R;. The overall
precision, recall and F1-score are calculated as below.

M
Y imq maxiR;;

Precision(%) = —;; * 100 (1)
N
Yit1 Z,‘:1 Rij
N
1 maxiR;
Recall(%) = N ZFI Y * 100
ity Zi:l Rjj + number of unclassified reads
(2)

F1-score is the harmonic mean of precision and recall and
is defined as

Precision * Recall
F1=2x% — 3)
Precision + Recall

Given all contigs originated from a particular genome S,
if there is a cluster C such that > 50% contigs in C belongs
to S and > 50% of the contigs of S are in bin C, then the §
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genome is considered to be discovered by the bin C. The
total number of discovered species with each dataset is
then calculated accordingly.

Results and discussion

Binning performance comparison of different binning
strategies

The binning strategies based on both contig coverage
and compositional features (MaxBin, MyCC (default),
MyCC (coverage), CoMet) yielded higher precision than
binning using only tetranucleotide frequencies of con-
tigs (Metawatt) (Table 1). CoMet had the highest rank-
ing score in precision, followed by MyCC (coverage),
MyCC (default) and MaxBin. The relative abundances
of genomes considered in sim10_1 are similar [22, 41].
The precisions yielded from Metawatt and CoMet, MyCC
(default) and MyCC (coverage) on this sample of genomes
with similar abundances are comparable and are in the
range of 97-98%.

The relative abundances of genomes in sim10_20x
and sim10_80x are different. All the binning methods
yielded similar precisions on the sample which consists of
genomes of different relative abundances and high cover-
age (sim10_80x). However, on sim10_20x which has lower
coverage than sim10_80x, binning methods based on both
contig coverage and composition provided higher preci-
sions than the binning method based only on contig com-
position. From the precisions obtained with sim10_20x
and sim10_80x, it is observed that when applied on two
samples of different overall contig coverages, CoMet and
MaxBin yield higher precisions with the low coverage
sample than with the high coverage sample.

The precision of CoMet was significantly higher than
the other binning approaches when applied to the strain
dataset comprised of 30 organisms. Multiple strains may
have similar compositional features and hence, it may
be difficult to discriminate them by only considering
their genetic composition; however, their relative abun-
dances in the sample which can be inferred from their
contigs coverage may be different. Consequently, the pro-
posed approach of binning may be beneficial in discrim-
inating species from a metagenomic sample of multiple
strains.
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CoMet was higher in binning precision than MaxBin.
MaxBin considers both tetranucleotide frequencies and
coverage values in a single feature space. On the contrary,
CoMet adopts a two-tired approach considering contig
coverage and tetranucleotide frequencies separately, and
was shown to improve precision over MaxBin.

In comparison to MyCC (default) and MyCC (coverage),
CoMet yielded higher or comparable binning precisions.
MyCC primarily uses k-mer frequencies of contigs in clus-
tering and marker genes for cluster correction. In MyCC
(coverage), contig coverage is considered in addition to
the k-mer frequencies for clustering contigs. The results
from MyCC and CoMet show that, the integration of cov-
erage in conjunction with compositional features did not
yield an improvement in precision over MyCC (default)
except with sim10_20x sample. However, the precision
improvement of CoMet over MyCC(default) is higher
than the precision improvement of MyCC(coverage) over
MyCC (default). These results suggest that, a tiered bin-
ning approach may yield higher precisions than binning
contigs in a single feature space.

Binning strategies were evaluated on their recall in bin-
ning datasets of different complexities (in Additional file 1:
Table S1). Both MaxBin and MyCC (coverage) had the
highest ranking score in recall, while Metawatt had the
lowest ranking score in recall. CoMet had a lower rank-
ing score than MaxBin, MyCC (coverage) and MyCC
(default), but yielded higher or comparable recall values in
comparison to Metawatt. In CoMet, a set of contigs is fil-
tered out if they act as outliers in the initial binning step
or belong to an output bin of smaller size. Consequently, a
set of input contigs remains unclassified which leads to the
lower recall. Moreover, multiple bins representing a sin-
gle species lowers the recall. MyCC (coverage) improves
the recall of MyCC (default) except on the contigs from
genomes of similar abundances (sim10_1).

The binning strategies considered in this work, vary
in their performances in Fl-score (Table 2). Consider-
ing the ranking scores in F1-score, MyCC (coverage) had
the highest ranking score followed by MyCC (default),
MaxBin, CoMet and Metwatt. It suggests that, the binning
approach in MyCC is useful in improving the F1-score.
CoMet had the lowest F1-score on the dataset of genomes

Table 1 Precision comparison between CoMet and other contig coverage and/or composition based binning methods

Dataset Metawatt MaxBin MyCC (default) MyCC (coverage) CoMet
sim10_1 96.69 (4) 92.44 (5) 9747 (2) 9742 (3) 97.94 (1)
sim10_20x 84.25 (5) 96.90 (2) 90.66 (4) 96.71 (3) 98.66 (1)
sim10_80x 95.13 (5) 95.63 (4) 98.55(2) 98.63 (1) 97.12(3)
sim30_CAMI 53.68 (5) 66.60 (4) 7502 (2) 75.02 (2) 92,93 (1)

Binning methods are ranked based on their precision with different datasets with their ranks given in parentheses. Bold values indicate the highest of the precisions
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Table 2 F1-Score comparison between CoMet and other contig coverage and/or composition based binning methods

Dataset Metawatt MaxBin MyCC (default) MyCC (coverage) CoMet
sim10_1 91.58 (4) 94.91 (3) 97.47 (1) 96.09 (2) 89.28 (5)
sim10_20x 70.5 (5) 98.16 (1) 8346 (4) 88.35(3) 96.7 (2)
sim10_80x 7521 (5) 95.61 (3) 98.55(2) 98.64 (1) 88.56 (4)
sim30_CAMI 60.55 (5) 75.58 (4) 8093 (2) 8093 (2) 82.71(1)

Binning methods are ranked based on their F1-score with different datasets with their rank given in parentheses. Bold values indicate the highest of the F1-scores

of similar abundances (sim_10x) in comparison to its F1-
scores on other datasets. As far as the contigs of genomes
with different relative abundances are considered (i.e.
sim10_20x and sim10_80x), F1-scores of both CoMet and
MaxBin were higher on the low coverage dataset than that
on the high coverage dataset. In contrast, the F1-scores
obtained from MyCC (default) and MyCC (coverage) on
low coverage dataset (sim10_20x) were lower than that
on the high coverage dataset (sim10_80x). CoMet yielded
highest F1-score on contigs of multiple strains; however,
the F1-scores of all the binning methods on strain dataset
are lower than their F1-scores on other datasets.

Furthermore, CoMet and existing contig coverage
and/or composition based binning methods were evalu-
ated on the number of species identified (Table 3). MyCC
(default) and MyCC (coverage) discovered the highest
number of species from the sim10_1 dataset. Considering
sim10_20x and sim10_80x, all binning methods recovered
more species from the high coverage sample (sim10_80x)
than from the low coverage sample. Moreover, both
CoMet and Metawatt identified the highest number of
species from the low coverage sample (sim10_20x). The
results show that CoMet was able to recover 40-90% of
the species in a sample. Furthermore, CoMet identified
the highest number of species from the dataset of multi-
ple strains. MyCC (default) and MyCC (coverage) ranks
second in number of species identified from the strain
dataset.

The GC content distributions of the datasets considered
in this study have been of arbitrary form (in Additional
file 1: Figure S1) and are skewed to the left in all datasets
except sim10_1 (in Additional file 1: Figure S1). The GC
content values of the contigs in the datasets were in the

range of 12—-86. The GC content distribution of the con-
tigs in sim30_CAMI datasets is the most left skewed
distribution because most of the species in the dataset had
higher and similar GC contents. The precision of CoMet
with sim30_CAMI was lower than the precision of CoMet
with other datasets. CoMet may be used to analyze contigs
of different GC content distributions. Similar to other bin-
ning approaches, CoMet perform better on samples with
species with distinct compositional features.

DBSCAN algorithm can extract clusters of different
shapes, but will be hindered by the existence of clusters
of different densities [44]. The GC-log(coverage) distri-
butions of the contigs in the datasets considered in this
study demonstrates the applicability of the DBSCAN algo-
rithm for clustering contigs in GC-log(coverage) space
(in Additional file 1: Figure S2-S5). The clusters in the
GC-log(coverage) space do not have substantial differ-
ences in densities, and the number of distinct components
cannot be determined without a prior knowledge of the
datasets. Therefore, DBSCAN algorithm may be consid-
ered the most appropriate algorithm for the initial coarse
clustering of the contigs.

Binning a real metagenome using CoMet

With the contigs from the metagenome of infant gut
microbiome, CoMet resulted in a precision of 71% and
an Flscore of 67%. These results were compared against
MyCC (default) and MyCC (coverage) which have been
shown to have better performances than other binning
methods before [22]. MyCC (default) and MyCC (cover-
age) both resulted in a precision of 36% and an Flscore
of 49%. The number of species discovered from CoMet,
MyCC (default) and MyCC (coverage) was 6.

Table 3 The number of species recovered from different binning approaches

Dataset Metawatt MaxBin MyCC (default) MyCC (coverage) CoMet
Sim10_1 9(3) 8(5) 10(1) 10(1) 93
sim10_20x 4(1) 3(3) 3(3) 2(5) 4(1)
sim10_80x 6 (5) 10(1) 10(1) 10(1) 7 (4)
sim30_CAMI 9(5) 13 (4) 18 (2) 18(2) 20(1)

Binning methods are ranked based on number of species discovered with their rank given in parentheses. Bold values indicate the highest of the number of species identified
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Binning performance with strain dataset from CAMI
CoMet was shown to be effective in binning the metage-
nomic sample of multiple strains (sim30_CAMI) with the
highest precision associated with the highest number of
species identified. The percentages of species identified
from the strain dataset using CoMet, MyCC (default)
and MyCC (coverage) were 66, 60 and 60 respectively.
Furthermore, for all the identified species from each
binning method, the precision in binning contigs from
each species and percentage of contigs binned from each
species were calculated (Table 4).

CoMet was able to discover 20 species while MaxBin,
MyCC, MyCC (coverage) and Metawatt discovered 13, 18,
18 and 9 species, respectively. The average percentage of
contigs binned using CoMet was 73.5, while the average
percentage of contigs binned using Metawatt and MaxBin
were 69.1 and 86.5, respectively. In addition, the average
percentage of contigs binned using MyCC (default) and
MyCC (coverage) was 81.85. In comparison to the other
binning methods, the precision of recovering individual
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species of CoMet was higher. However, the percentage
contigs binned using CoMet ranked lower compared to
that using the other binning methods considered in this
study.

CoMet identified 4 species that were not identified by
any of the other binning methods with 94.2% average pre-
cision. The number of species that has not been identified
by CoMet, but has been able to be identified using any
remaining binning method is one. The results also show
that CoMet and MyCC are complementary in terms of
precision in recovering individual strains. In the cases
where a given strain was not identified using CoMet or
was identified with lower precision using CoMet, MyCC
has identified that strain with the highest precisioin and
vice versa. However, CoMet yielded 95.2% average pre-
cision, whereas, with MyCC, the average precision was
84.3%. In summary, the results show that CoMet is able
to discriminate many species with high precision from a
sample of multiple strains which is confronting for the
other binning methods.

Table 4 Individual precision and contigs binned from each identified species from the strain dataset from CAMI

Taxon Id MaxBin Metawatt MyCC (default) MyCC (coverage) CoMet

Precision Contigs Precision  Contigs Precision  Contigs Precision Contigs Precision Contigs

binned (%) binned (%) binned (%) binned (%) binned (%)

1 NI NI NI NI NI NI NI NI 78.33 94.63
2 96.15 100 NI NI NI NI NI NI 100 88
3 NI NI 93.16 63.08 93.58 87.06 93.58 87.06 96.04 92.23
4 88.74 87.31 NI NI 89.37 98.81 89.37 98.81 100 51.32
5 NI NI 74.84 56.93 97.94 87.58 97.94 87.58 100 67.61
6 NI NI 61.84 58.02 83.82 77.03 83.82 77.03 100 77.03
7 NI NI 96.22 59.89 96.59 90.87 96.59 90.87 98.31 5817
8 NI NI NI NI NI NI NI NI 98.33 96.72
9 55.18 86.26 NI NI 9346 88.32 93.46 88.32 99.73 50.07
10 NI NI 80.72 5741 98.21 77.37 98.21 77.37 NI NI
mn 92.96 96.54 NI NI 68.18 51.92 68.18 51.92 100 51.15
12 97.25 96.66 83.25 92.29 96.1 89.97 96.1 89.97 100 63.94
13 50 87.5 NI NI 52.17 75 5217 75 100 75
14 51.14 63.38 NI NI 65.22 63.38 65.22 63.38 88.89 67.61
15 533 57.74 NI NI 82.29 85.71 82.29 85.71 98.13 62.13
16 NI NI NI NI NI NI NI NI 100 62.5
17 NI NI NI NI 78.14 50.55 78.14 50.55 51.09 97.92
18 72.58 93.75 NI NI 66.1 81.25 66.1 81.25 95.56 89.58
19 NI NI NI NI NI NI NI NI 100 58.39
20 75.05 94.62 822 84.17 92.54 96.77 92.54 96.77 100 96.24
20 73.25 74.78 NI NI 77.09 94.93 77.09 94.93 NI NI
22 88.72 87.41 85.23 64.13 89.79 78.15 89.79 7815 NI NI
23 93.97 99 84.29 86.51 96.41 98.66 96.41 98.66 100 70.57

Bold data represent the highest precisions and highest percentage of contigs binned for each identified species. NI: Not Identified
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CoMet was evaluated further on 80 strain datasets gen-
erated based on sim30_cami (Fig. 2). When all the contigs
in the sample have similar coverage values and are simi-
lar in composition, the precision in binning is the lowest.
The precision in binning has improved as the number of
distinct coverage distributions increases. Flscore and the
number of species discovered are higher in samples with
more distinct number of coverage distributions (5,6,10,15
and 30) than in samples with less distinct number of
coverage distributions (1,2,3).

Conclusions

In the present study, we proposed CoMet for binning con-
tigs in a metagenomic sample. Both contig coverage and
composition are utilized in CoMet to discriminate con-
tigs belonging to similar genotypes. Employing unsuper-
vised learning methods for grouping contigs, CoMet was
implemented to be executed with minimal user inputs. In
CoMet workflow, contigs are grouped in two steps, first
considering their GC content values and coverages, and
second given their tetranucleotide frequencies. In order
to remove the outliers effectively and learn the number of
distinct groups automatically, the DBSCAN algorithm is
employed in the first step.

An assembly step is not included in CoMet, therefore
sequence assembly should be performed before analyzing
sequence data using CoMet. The outcomes of CoMet are
independent of the assembly method and it is assumed
that assembly of sequences and computation of coverage
profile is performed with high accuracy. The datasets con-
sidered in this study have been generated using different
assemblers and no bias was incurred on the evaluation of
different binning methods.

CoMet demonstrated higher precision than a binning
method based only on contig composition. Moreover,
it yielded higher or comparable precision in compari-
son to other binning methods that consider both contig
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coverage and contig composition. Furthermore, CoMet
showed a significant improvement in precision in bin-
ning of a metagenomic sample consists of multiple strains.
The variation in the relative abundances of genomes in a
sample is beneficial in binning contigs with similar com-
positional features and is exploited by CoMet by using
contig coverage in its work flow. The precision in binning
with CoMet is demonstrated to increase as the distinction
in coverage distribution of the organisms in the sample
increases.

The simulated datasets considered in this study repre-
sent different microbial communities and experimental
setups. The evaluations in our study show that perfor-
mances of different binning strategies vary depending
on the nature of the sample. CoMet was ranked first or
second in the number of species discovered. Different
binning strategies were associated with varying F1-scores
on different datasets. CoMet was significantly higher in
F1-score than the other binning methods on the strain
dataset. All the binning methods considered in this study
are shown to be complementary to each other in F1-
scores and their performances in discovering individual
species. CoMet ranks lower in recall compared to the
other binning methods. Further work may be carried
out to improve the recall yielded from CoMet, including
devising an effective method for assigning the unclassified
contigs into bins identified with high precision, merg-
ing or splitting of bins, and evaluation of overall binning
performance.

As demonstrated with the datasets considered in this
study, CoMet can analyze contigs forming clusters with
similar densities in GC-log(coverage) space with higher
precision. Extending CoMet to be applicable on con-
tigs with significant differences in their range of GC
contents and coverages (hence forming clusters of dif-
ferent densities), ought to be considered in future
research.
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Fig. 2 Performance of CoMet on contigs with different number of distinct coverage distributions. The figure shows the variations of binning
performances of CoMet as the differences in contig coverage values of a sample of multiple strains vary
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The results of our study suggest that binning samples
of multiple strains is a challenging task. However, the
benchmark data available for evaluating binning meth-
ods on samples of multiple strains is limited. Therefore,
future work on the design and development of bench-
mark datasets similar to CAMI is beneficial in improving
the robustness of binning methods. Such datasets may
represent recent experimental setups and different com-
positions of microbial communities including samples of
multiple strains.

CoMet utilizes combinations of features of genomic
sequences and adopts a purely unsupervised approach.
Appropriate clustering methods are employed in CoMet
in order to bin contigs with high precision and in an
automated manner. The results of this study confirm that
both the identification of suitable feature representations
and clustering methods is important in improving the
precision in characterizing metagenomic samples with
various compositions of organisms in an automated and a
database-independent manner.

Additional file

Additional file 1: Supplementary Material file contains the details of recall
values obtained in this study and the GC content distributions and the GC
content - log(Coverage) distributions of the contigs in the simulated
datasets considered in this study. (PDF 203 kb)
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