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Abstract

This paper addresses the problem of automatic detection and tracking of slalom paddlers through a long sequence of sports
broadcast images comprised of persistent view changes. In this context, the task of visual object tracking is particularly
challenging due to frequent shot transitions (i.e. camera switches), which violate the fundamental spatial continuity
assumption used by most of the state-of-the-art object tracking algorithms. The problem is further compounded by
significant variations in object location, shape and appearance in typical sports scenarios where the athletes often
move rapidly. To overcome these challenges, we propose a Periodically Prior Regularised Discriminative Correlation
Filters (PPRDCF) framework, which exploits recent successful Discriminative Correlation Filters (DCF) with a periodic
regularisation by a prior that constitutes a rich discriminative cascade classifier. The PPRDCF framework reduces
the corruption of positive samples during online learning of the correlation filters by negative training samples. Our
framework detects rapid shot transitions to reinitialise the tracker. It successfully recovers the tracker when the location,
view or scale of the object changes or the tracker drifts from the object. The PPRDCF also provides the race context
by detection of the ordered course obstacles and their spatial relations to the paddler. Our framework robustly outputs
the evidence base pre-requisite to derived race kinematics for analysis of performance. Experiments are performed on
task-specific dataset containing Canoe/Kayak Slalom race image sequences with successful results obtained.

Keywords: Detection, Tracking, Cascade Classification, Discriminative Correlation Filter, Multi-class SVM, Canoe
Kayak Slalom, Shot Transition, Sports Biomechanics, Performance Analysis

1. Introduction

In competitive Canoe/Kayak Slalom (CK Slalom), ne-
gotiation of obstacles through gates is the fundamental
skill and key determinant of overall performance. In race
context where the winner is commonly decided by frac-5

tions of a second, minimising task time-to-completion is
paramount. Thus, developing an optimal strategy and
techniques for negotiation of gates that minimises over-
all course time-to-completion is critical. However, there
is currently little quantitative data that characterises the10

trajectory of gate negotiation in Slalom.
Through extensive literature survey, we have found but

only one paper that attempted to characterize the strategy
employed by slalom paddlers in negotiation of upstream
gates [24]. It analyzed upstream gate negotiation strate-15

gies of 17 elite Slalom paddlers using manual extraction of
spatial kinematic data of the boat and athletes’ head from
image sequences obtained by overhead camera. The utility
of the methodology used by [24] is, however, limited by the
use of a custom calibration rig when there is no water on20
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the course, obtrusive attachment of markers to the boat
and athlete, and laborious object labelling for extraction
of trajectory kinematic information. In order to be rel-
evant in elite sport training environment or competition
and improve the likelihood of feedback driven technical25

or tactical amendments, an analysis method must provide
near real-time results.

In this work, we investigate the challenging problem
of simultaneous human detection and long-term tracking
from readily available image sequences comprised of per-30

sistent view changes obtained from multiple uncalibrated
cameras typical of broadcast image sequences. This task
serves as a crucial evidence base, a pre-requisite to kine-
matic motion analysis of athletes aimed to optimise tech-
nique and performance in sport (see figure 2). We aim to35

tackle the limitations of existing visual object detection
and object tracking algorithms especially for long term se-
quence with frequent view changes. We develop a new and
unified framework for object detection and tracking from
disparate multi-view image sequences that couples the ad-40

vantages of each approach to overcome the limitations of
the other. The method is applied to detection and tracking
of CK Slalom paddlers through gate negotiation of a race
course, which enables near real-time performance analysis.
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Figure 1: Our PPRDCF framework outputs location and scale of the slalom paddler, and the location and order of the gates.

Contributions. A Periodically Prior Regularised Discrim-45

inative Correlation Filters (PPRDCF) framework is pro-
posed for tracking fast moving objects in sport event us-
ing broadcast image sequences with possibly frequent shot
transitions. Our framework exploits recent successfully
applied Spatially Regularised Discriminative Correlation50

Filters (SRDCF) [7] with a periodic regularisation by a
prior discriminative cascade classifier that is learnt offline.
To overcome tracking failure associated with rapid shot
transition, we introduce a robust adaptive shot transi-
tion detection algorithm that allows soft initialisation of55

the tracker. Finally, our framework provides race con-
text through the detection of course obstacles and their
spatial relations to the paddler. We perform experiments
on task-specific dataset containing CK Slalom race im-
age sequences and compare our results to state-of-the-art60

trackers. Our framework robustly outputs the evidence
base pre-requisite to derived race kinematics for analysis
of performance.

2. Related Work

A comprehensive survey of visual object tracking is65

outside of the scope of this paper. Instead, this section
presents a brief survey of recent techniques relevant to our
task, to provide the context for our new method.

Visual Tracking

Visual tracking is an important computer vision prob-70

lem of estimating an object’s kinematics from an image
sequence. State-of-the-art tracking algorithms generalise
the object’s appearance from a small set of training sam-
ples. The tracker then performs temporal search for prob-
abilistically matching candidates in the spatial vicinity of75

the object’s previous image location under the assumption
of trajectory smoothness [3, 19]. Online learning trackers
update the model with the selected candidate [2, 16, 8].

Human movement tracking is challenging due to the
varied pose and appearance caused by severe occlusions80

induced by the articulated body motions. The challenge is
compounded in typical broadcast of sporting races, where
an athlete rapidly changing pose, occlusion and appear-
ance. In our CK Slalom task, the pose can rapidly change
form front to rear view, and from top view of paddler and85

boat to bottom view of the boat and no visibility of the
paddler. Further, the paddler is often partially or fully
submerged or severely occluded from view by obstacles or
water. These present critical challenges to tracking algo-
rithms that assume small changes in the object’s pose or90

appearance.
Many tracking algorithms model the image background

[33] or extract a temporal flow field [4, 10] to aid the object
tracking under the strong assumption that the object dif-
fers from the background in either appearance or motion.95

For example, most tracking benchmark datasets constitute
image sequences of a stationary background (e.g. roads,
streets or buildings) and a moving object (e.g. cars, bi-
cycles or pedestrians). In our CK Slalom task, however,
the background water often flows in the same direction100

as the paddler and rapidly changes in appearance due to
illumination and reflections, essentially eliminating the re-
alistic option of background modelling. Moreover, image
sequences with rapid shot transition from multiple moving
cameras remain the majority of available race and train-105

ing data. This severely violates the global smoothness and
brightness assumptions for dense correspondences require-
ments of tracking algorithms [22, 4]. Hence, shot transi-
tion detection and regularisation or re-initialisation of the
tracker model is paramount to enhance the chance of re-110

covery from occlusion or loss of track, contamination by
negative samples, or rapid change in pose or appearance
due to fast motion, or sudden change in view.

Recent best performing tracking algorithms use a Fast
Fourier Transform (FFT) based Discriminative Correla-115
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Figure 2: An illustrative schematic overview of a CK Slalom annotation system for the daily training environment and competition. The
system includes global race course and obstacles geotagging, penalty detection and race annotations from image sequences, and outputs a
detailed comprehensive race annotations including split times and penalties. This paper focuses on the race annotations from image sequences
(encompassed by the dashed line).

tion Filter (DCF) approach (see section 3.1). The ap-
proach, however, accumulates errors during online learning
and typically drifts from the object, as detection recovery
after occlusion is poor [7]. Consequently, even the current
state-of-the-art tracker is not robust in long-term tracking120

of rapidly moving and deforming objects (see fig. 3).
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Figure 3: Results of state of the art trackers on our test data demon-
strating rapid tracking deterioration, manifested by rapid loss of
overlap with ground truth (bottom figure; value approaching 1 is
indicative of good performance) and increase in precision score (top
figure; value approaching 0 is indicative of good performance) within
camera view (shot). Vertical black lines indicate shot transition (a
sudden change of camera view). This violates the continuity as-
sumption of the tracker and requires reinitialisation (here, by ground
truth).

Object Detection

Similar to visual tracking, object detection, often a pre-
requisite to tracking algorithms, is a challenging computer
vision problem due to the variable appearance and pose125

that may be present. Robust discriminative methods ex-
tract an extensive set of features at multiple scales from
positive and negative image samples to train a classifier.
Due to the very large feature set, learning is computation-
ally expensive and typically performed offline. The resul-130

tant classifier is comprised of rich feature descriptors that
capture the object of interest. In inference, a multi-scale
sliding window search scheme scores candidate patches and
the best scored patches are selected as detections. While
this approach has been very successful [9, 15, 13, 6, 39],135

the computational cost of feature extraction and exhaus-
tive search restricts the scheme from being used for track-
ing at every time step of an image sequence. Moreover, a
detection score does not guarantee temporal continuity of
an object detection. Post-hoc regimes are required to en-140

force spatial continuity [21, 36]. Furthermore, the scheme
is susceptible to candidate proposal multiplicity. A heuris-
tic, adaptive [29] or learnt score threshold influences the
number of detections selected and subsequently the inci-
dence of false positive and false negative detections.145

3. Periodically Prior Regularised DCF (PPRDCF)

In this section, we introduce our Periodically Prior
Regularised Discriminative Correlation Filters (PPRDCF)
unified framework that couples the advantages of each
technique to overcome the limitations of the other. Our150
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framework exploits recent successfully applied Spatially
Regularised Discriminative Correlation Filters (SRDCF)
[7] with a periodic regularisation by a prior discrimina-
tive cascade classifier that is learnt offline. We introduce
the tracking framework in section 3.1 followed by the ob-155

ject detection using a cascade of rejectors classifiers in sec-
tion 3.2. Section 3.3 introduces our shot transition de-
tection algorithm that enables soft re-initialisation of the
tracking framework. In addition, our framework provides
race context by detecting the ordered course obstacles and160

their spatial relations to the paddler (further details are
provided in section 4.4).

3.1. Discriminative Correlation Filters

Discriminative approaches cast tracking as an online
learning and classification problem that differentiates the165

tracked object from the background. Given an image patch
containing the object, a classifier is learnt that discrimi-
nates the object from the environment, a process akin to
tracking-by-detection. Robust object detector classifiers,
however, richly characterise not only the object of interest,170

but importantly its environment through a very large num-
ber of negative samples. This computationally expensive
and time consuming typically offline process is not fea-
sible for online tracking algorithms, for which speed is a
critical performance criterion. For this reason, discrimina-175

tive tracking approaches use a compromise approach that
severely under-samples negatives [2, 17], consequently, acutely
hindering the tracker’s performance [20].

Current state-of-the-art tracking algorithms use DCF
approach, in which a correlation filter is trained from a180

set of samples and a periodic extension of these samples
[3, 27, 20]. Significant improvements in trackers’ perfor-
mance has risen from recent work that formulates the con-
volution of two patches as an element-wise product in the
Fourier domain [3]. Henriques et al [19] demonstrated that185

translations of an image patch containing the object can be
modelled as cyclically shifted signals using circulant matri-
ces. Thus, the classifier training and detection computa-
tional cost is significantly reduced when the computations
are efficiently performed using FFT.190

The periodic extension reduces the contamination of
the filter by negative samples. Consequently, a better rep-
resentation of the object is learned. The approach, how-
ever, suffers from boundary contamination effects that re-
sult in inferior representation of the object and introduce195

inaccuracies to the learned object model. Thus, reducing
its discriminative power [7, 14]. This problem was par-
tially addressed in Danelljan et al. [7] by utilising spatial
regularisation component in the objective function.

3.2. Cascade of Rejectors Classification200

The object detection problem involves recognition of
the desired object, its location and scale in an image. We
note that in recent years deformable parts based methods
(DPM) outperform cascade classifiers on standard object

detection tasks [13, 38, 5]. DPM, however, strongly relies205

on a spatial relations of parts model, which cannot handle
severe occlusions that are commonly present in our task.

More recently, deep learning of convolutional neural
network (CNN) produced the state-of-the-art performance
on standard detection tasks [32, 15]. In CNN, high level210

features replace low and middle level features with im-
proved discriminative power. Notwithstanding, these fea-
tures are very expensive to compute. Selective search
strategies to reduce the computational cost of using CNN
[15] resulted in object localisation errors [21]. Importantly,215

both low computational cost and accurate object localisa-
tion are critical to our framework. For these reasons, we
opt to use cascade classification for object detection in our
framework tasked with tracking initialisation and periodic
tracking regularisation.220

A cascade detector uses a sequence of node classifiers
to distinguish objects from non-objects and simultaneously
select weak features to form strong ensemble classifiers us-
ing adaptive boosting (AdaBoost). The work of Viola and
Jones [34] leverages the scarcity of the object of interest225

relative to the background to achieve efficient detection by
early rejection of most easily classified negative features.
They also introduced integral images for fast feature com-
putation and utilising AdaBoost for automatic feature se-
lection. These ideas remain a foundation for modern de-230

tectors.
Viola and Jones[35] used low level Haar features due

to low computational cost achieved with the aid of inte-
gral images. However, the cascade classification approach
can be used with other feature descriptors. Significant235

improvements were obtained by using mid-level features,
such as Histogram of Oriented Gradients (HOG) in detec-
tion [6] and in speed [39].

3.3. Shot transition

Typical broadcast sport image sequences are charac-240

terised by frequent shot transitions. We introduce a ro-
bust adaptive shot transition detection algorithm that al-
lows soft initialisation of the tracker. Further details are
provided in 4.3

3.4. Our PPRDCF framework245

Conceptually, our framework is most similar to Kalal
et al. [25] in adopting a unified framework that distin-
guishes between the detection and tracking tasks. Kalal
et al. [25] described a framework of three sub-tasks of
Tracking, Learning and Detection (TLD). The TLD uses250

a naive geometric shape template matching method with
median flow for tracking and a cascade classifier with on-
line learning. We argue that while operating indepen-
dently, the aggregation of the TLD’s three sub tasks are
equivalent to a modern DCF tracker with an online learn-255

ing of the tracked patch. Therefore, due to its online learn-
ing component it suffers from the error accumulation prob-
lem of DCF trackers. Instead, we opt for using a true in-
dependent offline learnt detector to complement an online
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DCF tracker. Furthermore, to enhance the overall frame-260

work performance, our detector uses a different feature
descriptor than the tracker. This enhances the cumulative
discriminative power, as the two models hold complemen-
tary characteristics of the object.

In agreement with Kalal et al. [25], we accept the view265

that neither tracking nor detection can solve the task in-
dependently. We support the view that the two approaches
can be complementary. A detector can initialise the tracker,
provide tracking validation and failure recovery to a tracker.
A tracker accumulates temporal object localisation and270

can reduce the computational cost and running time of
the detection.

We define a spatial discrepancy signal between the prior
classifier and the tracker. To overcome the inherent limi-
tation of tracking algorithms, the object evidence accumu-275

lated by the tracker and the discrepancy signal are used
to prune false positive and overcome false negative detec-
tions. Within each shot sequence, our proposed PPRDCF
formulation introduces a penalty term on the correlation
filter coefficients during online learning. The prior regular-280

isation reduces the corruption of positive samples during
online learning of the correlation filters by negative train-
ing samples. Consequently the PPRDCF successfully re-
covers the tracker when the location, view or scale of the
object changes or the tracker loses the object.285

Alternatively, DCF tracking can be characterised as
tracking-by-detection. However, unlike robust object de-
tector classifiers, rich characterisation of the object is not
possible due to the high computational cost. Hence, DCF
uses a compromise approach that restricts the object re-290

gion and severely under-samples negatives acutely hinder-
ing the trackers performance [20]. Our framework can then
be viewed as tracking by weak detection classifier with pe-
riodic update by a rich detection classifier. Our obser-
vation is that the weak online learnt detector is likely to295

become contaminated, whilst the rich offline learnt detec-
tor will remain immune to contamination and will retain
its strong discriminative power.

The basic structure of our framework is as follows; For
initialisation and regularisation of the tracker we construct300

a rejection cascade classifier similar to Viola and Jones [34]
and described in section 4.1. For tracking, we construct
a DCF following Danelljan et al. [7] as detailed in sec-
tion 4.2. For shot transition detection we use an adaptive
outlier detection method described in section 4.3. The race305

annotation component is detailed in section 4.4. Figure 4
depicts the outline of our framework.

4. System Implementation

4.1. Paddler Detection

Our object detection framework overview is depicted in310

figure 5 for learning and in figure 6 for inference. We con-
struct a rejection cascade similar to Viola and Jones [34].
Essentially, a cascade classifier forms a degenerate deci-
sion tree, where a negative classification of an image patch

results in rejection of the patch. A positive classification315

is passed on for evaluation at the subsequent classifier. In
this manner easily classified patches are rejected early with
improved overall efficiency due to the observation that an
image consists of mostly negative samples. Only positive
samples will be evaluated by a classifier at every stage.320

At each stage a classifier is trained on the examples
that were evaluated as positives in all preceding stages.
Consequently, the classifier’s complexity and discrimina-
tive power increases as stages increase due to the escalating
task difficulty. We use 20 stages in our implementation,325

predicated on our experiments described in section 5.3.
The computational cost of training a cascade classifier

is significant. Inference, however, is fast due to the cascade
of rejectors and boosting. This makes the approach suit-
able for complementary detection in our tracking frame-330

work.
In inference, a sliding window approach is employed

to evaluate the classifier score function f over rectangular
sub-regions of the image I at multiple scales. We select
the object’s region R̃ to be its maximum as

R̃ = argmax
R⊆I

f(R|x̃), (1)

where x̃ is the learnt object’s appearance model and R
ranges over all rectangular sub-regions of the image I. We
incrementally scale the search region as defined by d(mTS ·
SFn)e, where mTS indicates the median patch size used335

to train the classification model (117 × 124), SF a scale
factor determined by the ratio between the size of the input
image I and mTS and the number of increments N(7 in
our implementation), and n ∈ {1, . . . , N} is an indicator
function of the current increment.340

In our experiments (see section 5.3), using rich mid-
level feature descriptors (HOG and LBP) in our detec-
tion classifier results in rare false positives, but high levels
of false negatives. In contrast, using Haar features pro-
duced fewer false negatives, but significantly more false345

positives. In our framework, detection of false positives
corresponds to a high discrepancy signal between detector
and tracker. Hence, they are naturally handled by a se-
vere penalty imposed by a penalty function (eq. 5) that
changes the tracker’s online learning parameters.350

Furthermore, Wojek and Schiele [36] showed that a
combination of several feature descriptors outperforms any
single feature descriptor. Considering our tracker already
uses HOG features, a complementary detector using a dif-
ferent feature descriptor is preferred, as it is likely to cap-355

ture ancillary aspects of the object. For these reasons, we
opt for using Haar features in our detector model.

4.2. Paddler Tracking

The standard DCF tracker [19, 20] is essentially a re-
gressor g(x) = 〈w, φ(x)〉, where φ represents the mapping
to the Hilbert space induced by a kernel function and w
is the discriminative model. Considering all the previous
image patches {xk, k = 1, ..., t− 1} of size M ×N centred
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Figure 4: Overview of our PPRDCF algorithm overview (see details in text)

Figure 5: Training a cascade classifier of a Slalom paddler. See text for details.

on the object, this regressor can be effectively trained by
optimizing

min
w

t−1∑
k=1

αk

∑
i

(〈w, φ(xk
i )〉 − yi)2 + λ‖w‖2, (2)

where k denotes the frame index and αk is the frame
weight. The matrix xk

i , i ∈ {0, . . . ,M−1}×{0, . . . , N−1}360

is a cyclic shift version of the image patch xk. The scalar
yi is the Gaussian-shaped regression target based on the
periodic shift of patch xk.

The power of the DCF tracker lays in the fact that
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all possible cyclic shifts of the object image patches are365

taken into account to train the model while the solution
to the optimisation problem (eq. 2) can be efficiently com-
puted using Discrete Fourier Transform (DFT). To track
an object at frame t, the responses of all cyclic shifts of a
test image sample can be obtained efficiently in the same370

way. The location corresponding to the cyclic shift with
the maximal response is treated as the final result.

SRDCF [7] extended the standard formulation of DCF
to address issues caused by the underlying periodic as-
sumption. It also adapts to object scale change by apply-375

ing the regressor at multiple resolutions similar to Li and
Zhu [28]. We therefore employ SRDCF as the tracking
component and denote its output as the object’s region
R̂t.

The discriminative model w can be updated via incre-
mental learning as the new training sample xt becomes
available. The weight αk is a key factor associated with
each training sample from frame k. In the original DCF
formulation, it is updated by

αt
k = (1− γ)αt−1

k (3)

where γ = γ0 = 0.01 is a fixed learning rate used to control380

the speed of adapting to the new object appearance.
To properly incorporate the regularization information

from the detector, we choose to adapt the learning rate γ
according to the discrepancy signal between the detector
and the tracker. Specifically, we enforce a strong impact
upon the tracker’s update when the discrepancy signal is
large by setting γ to a higher value. This implies a detec-
tion bounding box that is far from the estimated tracking
result, and indicates that the tracker has most likely ex-
perienced significant failure or drift. Thus,

γt = c exp(− 1

σ2
l

‖d(R̂t, R̃t)− 1‖2), (4)

where c and σl are constants and d(R̂t, R̃t) = 1 − (R̂t ∩
R̃t)/(R̂t ∪ R̃t) is the discrepancy metric based on overlap
between two bounding boxes R̂t and R̃t, estimated from
the paddler tracker and detector respectively.385

We update the new region of the object from R̂t and
R̃t by linear interpolation using the discrepancy signal
d(R̂t, R̃t), such that

Rt = (1− d(R̂t, R̃t))R̂t + d(R̂t, R̃t)R̃t. (5)

This is to say, when the discrepancy signal is large, we
enhance the impact of the detection result when updating
the new position and scale of the object. Essentially, we
impose a penalty on the tracker’s proposed position based
on the discrepancy signal with respect to the detector.390

4.3. Shot Transition Detection

Frequent shot transitions are characteristic of broad-
cast image sequences. This severely violates the spatial

Algorithm 1 PPRDCF Paddler Tracking

Input: Image It, Image It−1

Previous target region Rt−1

The paddler tracker model wt−1, a constant learning
rate γ0 = 0.01 and the global static detector’s object
appearance model x̃
Output: target region Rt and updated tracker model wt

1: if detectShotTransition(It, It−1) = 0 then
2: if period mod frameNum 6= 0 then . Standard

SPRDCF
3: Rt ← trackPaddler(It, Rt−1,wt−1)
4: wt ← updateTrackerModel(Rt, γ0)
5: else . Periodic regularisation - detector’s model
6: R̃t ← detectPaddler(It, x̃) . eq 1
7: R̂t ← trackPaddler(It, Rt−1,wt−1)
8: update γt using d(R̂t, R̃t) . eq 4
9: update Rt using d(R̂t, R̃t), R̂t, R̃t . eq 5

10: wt ← updateTrackerModel(Rt, γt)

11: else . Shot transition detected
12: Rt ← detectPaddler(It, x̃) . eq 1
13: γt = 1
14: wt ← updateTrackerModel(Rt, γt)

continuity assumption of tracking algorithms. It is there-
fore necessary to re-initialise the tracker when a change of395

view takes place.
To detect shot transition we employ a simple yet ef-

fective method. We let the distance metric dt−1,t between
two consecutive frames be the Mean Square Error (MSE)
of pixel intensities between the frames. We fit a Gaussian400

distribution {µt−1, σt−1} to the accumulated distance met-
ric of all preceding images. A new frame is considered to
be a shot transition, if the likelihood of its distance metric
from its predecessor is outside 3 standard deviations from
the expectation, i.e., |dt−1,t−µt−1| > 3σt−1, where dt−1,t is405

the distance metric between two consecutive frames. The
Gaussian model is then incrementally updated with the
new data if no shot transition is detected.

Upon detection of shot transition, we employ a ’soft’ re-
initialisation scheme. The scheme involves re-localisation410

of the object’s position using the detector, and short-term
enhanced learning parameters through boosted γ in eq. 5.
This reflects a higher level of trust in the rich detector’s
model.

4.4. Race Annotation415

For kinematic analysis, in contrast to enhancing spec-
tator experience and entertainment [26], athlete tracking is
only useful, when the context of the motion is understood.
Unlike sports like Football [23] or Athletics [12], where the
field of play is known, constrained and can be modelled,420

in CK Slalom no two venues are the same, the water flow
is rapidly changing as are the obstacles and navigation
gates’ positions. Hence, in order for athlete tracking to be
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Figure 6: Inference detection of a slalom paddler in a new sample using a cascade classifier. See text for details

relevant for further kinematic analysis, the context of the
motion in relation to the environment is necessary.425

For CK Slalom, our framework detects the location of
the gates, through which the athletes need to navigate, and
their assigned order (see figure 7). This is performed via
a discriminative cascade classifier similar to our paddler
detector in 4.1 that is trained offline, with the exception of430

the feature descriptor used (HOG). The classifier outputs
the location of the gate poles and number. This enables
further association between the athlete tracking and the
race context. This analysis is outside the scope of this
paper.435

Figure 7: Gate poles and number detection using discriminative cas-
cade classifier

Gate Number Identification. Once a gate number object
is detected using a cascade classifier, the gate number is

identified using a trained multi-class linear Support Vector
Machine (SVM) classification with a ’one-vs-one’ scheme
over HOG features (see figure 9). Since a finite maximal440

number of 24 gates may be used in slalom competition and
to avoid aggregation of single digit models for two-digit
numbers, our framework learns 24 distinct number classes.
The model is learnt from 4×4 cell HOG features extracted
for each training image in our gate number dataset. This445

dataset contains 201 32 × 32 image patches per number
class, which were extracted from the SlalomImRV dataset
(described below) and scaled. We note that a diagonal red
line may be present on gate numbers in slalom to indi-
cate illegal direction of gate negotiation. The gate num-450

ber dataset contains both appearance types. The number
identification training framework is depicted in figure 8.

Multi-class linear SVM classification is a mature tech-
nique. Its goal is to construct a function that will correctly
predict the class of a new sample to one of K different
classes. In its basic form the problem can be trivially
decomposed into mutually exclusive binary classification
problems. The one-vs-one method constructs k(k − 1)/2
classifiers, where each classifier is trained as a binary clas-
sifier on two classes. Thus, given a set of m training sam-
ples (x1, y1), . . . , (xm, ym), where xi ∈ RK , i = 1, . . . ,m
and yi ∈ {1, . . . , k} is the class of xi, the i, j SVM classi-
fier solves the binary classification problem

Dij(x) = wt
ijx+ bij , (6)

where each wij is a m-dimensional vector, bij is a scalar
and Dij(x) = −Dji(x). For the input vector x ∈ RK we
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Figure 8: Gate number identification using a multi-class linear SVM classification

calculate

Di(x) =

k∑
j 6=i,j=1

sign(Dij(x)) (7)

and classify x into the class

arg max
i=1,...,k

Di(x). (8)

Figure 9: Gate Number identification results using multiclass linear
SVM classifier.

5. Quantitative Evaluation

This section reports on a set of quantitative experi-
ments to evaluate the performance of PPRDCF. The ex-455

periments are conducted on a new challenging task-specific
dataset containing image sequences of slalom paddling with
rapid shot transition, and frequent changes in object ap-
pearance and pose in unconstrained environment.

5.1. Datasets460

The SlalomImRV dataset contains 404 images of slalom
paddlers, typically in training or competition in natura,
whose location in each image was manually annotated by
a bounding box. The dataset contains images that have
been either captured by the authors, or obtained from465

publicly available online repositories with a licence search
criteria set to creative commons (Flickr, Vimeo), or la-
belled for reuse (Google Images). The dataset contains
images of paddlers with a wide variety of appearance,
pose, garments, and in varied lighting and illumination470

conditions. Moreover, this dataset contains images with
many instances of occlusions and self-occlusion conditions
including severe cases caused by partial submersion in the
water environment, which present a significant challenge
to the classifier’s model.475

To train our detection models, we have split the SlalomImRV
dataset into a standard 80% and 20% for model learning
and cross-validation sets respectively. Our negative set is
comprised of 1694 images from the positive and negative
training images of the INRIA Person [6] and Parse [31]480

datasets. In both datasets, the positive training images
contain images of people, whilst the negative sets con-
tain mostly background scenery images. Using images
that contain people in our negative set ensures that our
paddler detection model discriminates well between peo-485

ple displaying a variety of activities and paddlers for our
specific task.

The SlalomVidRV dataset contains 30 broadcast im-
age sequences of slalom competition races of 70 to 110 sec-
onds in duration captured at 25 to 30Hz. These sequences490

have been either captured by the authors, or obtained
from publicly available online repositories with a licence
search criteria set to creative commons (Flickr, Vimeo)
from three competition venue locations that distinctively
differ from the images in the SlalomImRV dataset. Specif-495

ically, the datasets differ in venue locations where the im-
ages and sequences were captured. This is reflected in dis-
tinct appearance of the scene, obstacles, slalom gates, and
gate numbering, as well as the environmental and light-
ing conditions in the SlalomVidRV dataset compared to500

the SlalomImRV dataset. Importantly, the majority of
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camera views of the capture differed. In generating our
detector model from a dataset distinct from the dataset
used for testing the tracking algorithm, we ensure that
our framework generalises well within the activity-specific505

target application. Using this dataset, section 5.2 reports
on the performance of our shot transition detector. We re-
port on the performance of our paddler detection module
and the empirical selection of feature type and number of
cascade stages, which were performed on a subset of this510

dataset as described in section 5.3. Section 5.4 evaluates
the performance of the unified tracking framework.

5.2. Shot Transition Results

For all image sequences of the SlalomVidRV dataset,
we manually annotated all frames with a latent random515

binary variable indicating the ground truth for shot tran-
sition. To evaluate the performance of our shot transi-
tion detection we calculate precision and recall using pt/
(pt + pf ) and pt/(pt + nf ) respectively, where pt is true
positive, pf is false positive and nf is false negative with520

respect to the ground truth. The high precision and recall
and low pf achieved by our results (see table 1) indicate
that this algorithm is very effective in detecting shot tran-
sition.

Table 1: Shot Transition Detection Results
#sequences #frames evaluated #pt #pf Precision Recall

30 60,669 233 14 0.94 1

5.3. Paddler Detection Results525

For selection of detector feature type and number of
cascade stages, and to separately evaluate the performance
of our paddler detection module, we empirically tested the
detector on 3 levels of features (Haar, LBP and HOG) and
3 levels of number of cascade stages (15, 20 and 30) ex-530

perimental conditions. The image test set that was used
for these experiments consisted of 1500 images randomly
extracted from 3 image sequences in our SlalomVidRV
dataset (500 random images per sequence) that were man-
ually annotated for the paddler’s ground truth location535

with a bounding box. The images in this set distinctively
differ from the images in the SlalomImRV dataset that was
used to train the detector. The difference in venue loca-
tion is reflected in distinct appearance of the scene and the
environmental and lighting conditions.540

In addition to precision and recall metrics, we consid-
ered the precision score defined as the centre of the pad-
dler’s bounding box relative to the ground truth, and the
success ratio defined in 5.4. The scores on each compari-
son metric were then averaged across the image sequences545

and are presented for all experimental conditions in table 2
(best score for each metric is indicated in bold).

These results indicate that using Haar features resulted
in slightly lower precision, and significantly inferior pf ,

precision and success ratio scores compared to using rich550

mid-level feature descriptors (HOG and LBP). However,
since the role of the detector in our framework is to ini-
tialise and recover the tracker, we consider the Haar fea-
ture’s superiority in nf , number of detections and recall
more critical to the overall performance of the framework.555

Hence, the paddler model trained on Haar feature descrip-
tor was selected for our detection module. In addition,
since pf corresponds to a high discrepancy signal between
detector and tracker, they are naturally handled by the
penalty imposed by the penalty function (eq. 5).560

Intuitively, a feature descriptor that aggregates a num-
ber of existing descriptors may result in superior detec-
tion performance. However, due to the computational ef-
ficiency of using Haar features, we decided against it.

Likewise, the empirical results in table 2 show the su-565

perior performance of using 20 cascade stages over the al-
ternative experimental conditions in the number of detec-
tions, nf , and recall. Hence, the corresponding paddler
model was selected for use in our framework.

Table 2: Paddler Detection Results (mean per 500 images)
Feature Type # Cascade Stages

Haar LBP HOG 15 20 30
# Detections 367.67 203.50 268.00 257.50 297.33 284.33

# pt 298.67 180.33 231.67 214.33 259.67 236.67
# pf 69.00 23.17 36.33 43.17 37.67 47.67
# nf 132.33 296.50 232.00 242.50 202.67 215.67

Precision 0.81 0.89 0.86 0.83 0.89 0.84
Recall 0.69 0.38 0.50 0.47 0.57 0.53

Precision Score 103.24 22.67 16.74 31.60 53.24 57.81
Success Ratio 0.25 0.44 0.36 0.36 0.34 0.35

5.4. Paddler Tracking Results570

To evaluate the PPRDCF, we compare its performance
with two tracking algorithms; SPRDCF [7] and TLD [25].
The SPRDCF is currently the state-of-the-art tracker, and
TLD is a tracker that conceptually is comparable to our
framework in using detection to initialise the tracker and575

assist in tracker failure recovery.
The experiments in this section adopt the following

evaluation protocol; We employ the one-pass evaluation
that takes the ground truth at the first frame of a se-
quence as the initialization bounding box then run each580

tracker until the last frame. The produced trajectory is
then compared to manually labelled ground truth using
the standard precision score and success ratio metrics[37].
For each tracker, we calculate a discrepancy signal for the
detected objects’ location error and overlap ratio with re-585

spect to the ground truth. The precision score calculates
the rate of frames whose centre location is within a certain
threshold distance with the ground truth. Here, we use a
commonly used threshold of 20 pixels following Wu et al.
[37]. This metric emphasizes how well a tracker is able to590

clasp the target. The success ratio calculates the same ra-
tio based on bounding box overlap threshold (B∗ ∩ Bgt)/

10



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c
e

s
s
 r

a
te

Success plots (All)

PPRDCF [22.7]

DCF [16.1]

TLD [14.5]

0 10 20 30 40 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Precision plots (All)

PPRDCF [13.1]

TLD [9.1]

DCF [7.4]

Figure 10: Success and precision plots comparing the performance of our PPRDCF with state of the art trackers initialised by detection.
Algorithms are ranked by the area under the curve and the precision score (20 pixels threshold [37]). Our method (magenta) consistently
achieves superior performance.

(B∗∪Bgt), where B∗ and Bgt are the estimated and ground
truth bounding boxes’ areas, respectively. This metric in-
dicates how well a tracker adapts and covers the target. A595

typical value is 0.5 as used in object detection evaluation
[11]. Thus, for both metrics, higher performance is repre-
sented by a greater area under the graph. The results are
summarised in figure 10. We also present results on 3 sam-
ple image sequences of two different slalom disciplines (C1 -600

single blade canoe, and K1 - double blade kayak) that were
captured in different venues and present distinct variation
in the appearance of the scene and environmental condi-
tions in figure 11. Qualitative results from these image
sequences are presented in figure 12. We provide the Area605

Under Curve (AUC) in the figures, which represents the
average of all success ratios at different thresholds when
the thresholds are evenly distributed.

Further, we performed initialisation experiments with
two additional experimental conditions; For the TLD and610

SPRDCF trackers, we performed separate experiments with
initialisation by our paddler detector result and with ground
truth bounding box input at each shot transition. The for-
mer represents an equal opportunity for the three trackers
tested, having an identical initialisation. The latter is a615

standard tracker testing procedure where initialisation is
provided by the ground truth, but is only applied to the
TLD and SPRDCF trackers. This places our PPRDCF at
a disadvantaged starting point. Nevertheless in both ex-
perimental conditions the PPRDCF outperforms the TLD620

and SPRDCF trackers for both precision score and suc-
cess ratio. We note that the first experimental condition
represents a more realistic scenario for automatic systems,
where tracker initialisation requires detection.

6. Discussion625

In this paper, we investigated the challenging problem
of simultaneous human detection and long-term tracking

from image sequences comprised of persistent transitioned
shots obtained from multiple moving cameras typical of
broadcast image sequences, where the object changes ap-630

pearance frequently as it moves in and out of the camera
view.

We introduced Periodically Prior Regularised DCF frame-
work, which uses complementary detection and tracking
models. We introduced a robust shot transition detection635

algorithm for tracking re-initialisation. For tracking our
framework uses spatially regularised discriminative corre-
lation filters. For detection, we use offline trained cascade
of rejectors classifier. We demonstrated that exploiting the
periodic regularisation and camera shot transition detec-640

tion results in tracker failure and drift recovery.
Our experiments demonstrated that our framework out-

performs the state-of-the-art trackers on a new task-specific
dataset. The output of our framework forms a critical
component and a crucial evidence base pre-requisite to645

kinematic motion analysis of athletes aimed to optimise
technique and performance in sport.

One interesting consequence of our approach is the case
where no paddlers are present in an image sequence. As
afore stated, initialisation is a pre-requisite to our tracking650

module. This means that no tracking takes place unless
the detector finds a likely object candidate. It is possible
that in the absence of a paddler, a false detection initialises
the tracker, but then the tracker’s performance deterio-
rates rapidly. However, when a true detection becomes655

available, the framework naturally overrides the tracker
and recovers the position to the paddler’s location in the
image. In fact, the periodic regularisation of the online
tracker’s object model by a fixed rich object descriptor
highlights a major advantage of our approach. This is fur-660

ther enhanced by our use of different feature descriptors in
the detector module (Haar) and the tracker (HOG), as it
allows a capture of ancillary characteristics of the object’s
appearance.
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Figure 11: Success and precision plots comparing the performance of our PPRDCF (magenta) with state of the art trackers on three specific
image sequences from two distinct venues ( krak and LV) and two slalom paddling types (C1 - single blade canoe; and K1 - double blade
kayak) reflecting varied appearance and environmental conditions. Our method consistently achieves superior performance.

Limitations and Future Work. A number of challenges re-665

main that need addressing for enhanced robustness of the
PPRDCF. For instance, despite the periodic update by the
detector, which reduces the contamination of the tracker
model, the DCF tracker still suffers from drift [1, 18, 30].
This fundamental challenge of all tracking algorithms is670

exemplified by the performance of the DCF and and TLD
on our datasets, which is particularly challenging since
the object rapidly deforms or undergoes severe appear-
ance and occlusion changes. Whilst our approach yields
superior tracking results, it does not directly solve the675

drift problem. Instead it provides a regulating detector
to compensate for, and recover from the drift. At high
frequency of regularisation, the approach is conceptually
akin to tracking-by-detection.

Drift compensation regimes are widely used in vision680

tracking tasks, for instance, maintenance of a probability
distribution function over the object’s state spaceAvidan
[1] or enforcing structural constraints [30]. Most discrimi-
native approaches, however, adapt the appearance model.
To directly address the drift problem, stronger discrimina-685

tive trackers are needed, albeit, at a high computational
cost. This strengthens the argument for enhanced negative
sampling of the background used in the online training of
the tracker. In the current implementation, the detection
method was selected for its low computational cost in infer-690

ence with disregard to its cost in offline training. It would
be interesting to test the performance of recent state-of-
the-art CNN detection techniques as an alternative in the
framework. Furthermore, inherent to the common use of

rectangular image patch to represent the object, is a de-695

gree of background contamination in the object’s model.
The extent to which this degree of contamination should
be controlled by non-rectangular patches or advantageous
is still debated by the community.

For our task, we achieved robust results with a task-700

specific trained classifier. It is, however, impossible to de-
sign a discriminative classifier for the general case because
of the high variability in the appearance of human ambu-
lation. The performance of the approach critically relies
on time consuming and costly process and the availability705

of a large quantity of training samples. Further, the gener-
alisation of the approach can only be achieved through the
addition of adequate training samples, as its adaptability
to unseen body postures is low and typically manifested
by poor performance were occlusions exist.710

An interesting extension to our framework will exploit
recent advances in simultaneous detection and human pose
estimation. These methods exploit in addition to the ap-
pearance of the object’s parts, the spatial [38] and tempo-
ral [5] relations of the parts. This, however, requires pose715

estimation algorithms to better handle occlusions and self-
occlusions than has so far been achieved.

Detailed performance and skill execution analysis of
a paddler negotiating a slalom course requires the con-
struction of a 3D model of the scene (slalom course) that720

is outside the scope of this paper. Nevertheless, whilst
3D reconstruction of dynamic scenes from images remains
an open problem, the information extracted by our race
annotation framework naturally provides additional scene
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Figure 12: Qualitative comparisons of our PPRDCF (magenta) with state of the art trackers on sample image sequences; (a) C1M001 Krak
depicts a sequence of a C1 (single blade canoe) at venue #1. (b) C1M001 LV12 depicts a sequence of a C1 at venue #2. (c) K1M004 LV12
depicts a sequence of a K1 (double blade kayak) at venue #2. Our method attains robust tracking performance and detection recovery in
challenging scenarios including fast motion, motion blur, deformation, and severe occlusion resulting from paddler submersion (#180 and
#852).

depth information and thus can serve as a strong cue for725

computation of partial sparse reconstruction using known
multi-view relations. In particular, the slalom gate de-
sign is standardised to include known sized poles with a
known within-gate gap, as well as height-fixed alternating
pole colour segments (green/white for downstream gates730

and red/white for upstream gates, see fig. 7). Intensity
and feature-based tracking of these structures should sim-
plify the correspondence problem for stereo matching tech-
niques from which globally consistent slalom course mo-
saics can be generated and is intended for future work.735
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