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Angle-resolved Wigner time delay in atomic photoionization:
The 4d subshell of free and confined Xe
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The angular dependence of photoemission time delay for the inner nd3/2 and nd5/2 subshells of free and
confined Xe is studied in the dipole relativistic random phase approximation. A finite spherical annular well
potential is used to model the confinement due to fullerene C60 cage. Near cancellations in a variety of the dipole
amplitudes, Cooper-like minima, are found. The effects of confinement on the angular dependence, primarily
confinement resonances, are demonstrated and detailed.
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I. INTRODUCTION

With the advancements in the state-of-the-art of laser
pulse production and manipulation, time domain studies have
become of significant interest, as well as very challenging
[1–11]. It is now possible to study the dynamics of electrons
on the atomic time scale, i.e., the attosecond (as) scale.
Photoionization time-delay studies of various systems have
been carried out, such as of free atoms, surfaces, molecules,
encaged atoms, etc. [11–16]. Most of the measurements are
the pump-probe type where the measured time delay can
be separated into the Wigner contribution [17–19], which is
a property of the one-photon ionization of the target, and
the measurement-induced [Coulomb laser coupling (CLC)
or continuum-continuum (CC)] parts [14]. In this study, we
concentrate upon the Wigner time delay, a concept that was
developed for collisions but has seen wide application to
photoionization in recent years [16]. The phase of the one-
photon ionization transition matrix element and its variation
with respect to the energy, angle, correlation in initial and
final states, polarization, presence of other potentials, etc.
result in various structures in Wigner time-delay spectra.
Thus, studies of atomic and molecular photoionization have
received significant attention from both experimentalists and
theorists. One of the possible bridges between the behavior
of free (gaseous) atoms and condensed matter is the study of
the atomic characteristics in the environment of an additional
potential; hence, the study of the behavior of an atom under
confinement, which is a system intermediate between a free
atom and condensed matter, is both interesting and important.
In addition, trapped atoms are of interest owing to their
potential applications, such as their use in building qubits for
quantum computation [20].
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Many aspects of atoms confined in fullerenes have been
studied in the recent past [21–27]. The effect of fullerene con-
finement on the photoionization time delay was studied very
recently; it was found that confinement-induced correlation
influences the temporal evolution of the photoelectron from
different hybridized states of Ar confined within C60 (Ar@C60)
[15]. Furthermore, it was found that confinement effects are
more prominent in the photoionization time-delay spectrum
compared to other observables such as the cross section [28].
Thus, since (i) the understanding of the effects of confinement
is of significant basic and applied importance [21,22], (ii)
photoionization time delay is rather sensitive to the effects of
confinement and confinement resonances, and (iii) photoion-
ization time delay is, in general, anisotropic with respect to the
polarization of the photon owing to the interference of contin-
uum waves of differing angular momenta [29,30], a detailed
study in this arena is needed. In addition, an important feature
of probing a system with photons (as opposed to, say, electrons
or heavy ions) is that photons cause a much weaker perturba-
tion of the system, thereby allowing the study of the properties
of the target, unencumbered by the interaction process.

In the present work, the effect of confinement on the angular
dependence of Wigner time delay upon photoionization of the
4d subshell of atomic xenon confined in C60 (Xe@C60) is in-
vestigated using the relativistic-random-phase approximation
(RRPA). Xe@C60 was chosen for this case study because it can
be synthesized in sufficient quantities to allow experimental
scrutiny [31].

This paper is organized as follows. In Sec. II, a brief
theoretical formulation is given. In Sec. III the results for
the angle and energy dependence of Wigner time delay for
photoemission from inner 4d3/2 and 4d5/2 subshells of free and
confined atomic Xe are presented, compared, and discussed.
Conclusions are drawn and a summary is presented in Sec. IV.

II. THEORETICAL METHOD

A. Photoionization amplitude

We adopt the multichannel RRPA formalism of
Refs. [32,33] and follow the method as discussed in Ref. [30].
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For completeness, some detail of the calculation is given. The
amplitude for a transition from the ground state (ui) to an
excited state (ωi±), induced by a time-varying external field
v+e−iωt + v−eiωt is given by

T =
N∑

i=1

∫
d3r(ω†

i+�α · �Aui + u
†
i �α · �Aωi−). (1)

Here, �A is the vector potential, and the electromagnetic
interaction is written in Coulomb gauge, expressed in terms of
the Pauli spin matrices

�α =
(

0 �σ
�σ 0

)
.

In a one-electron approximation, the multipole transition
amplitude reduces to

T
(λ)
JM =

∫
d3rω

†
i+�α · �aλ

JMui. (2)

Here the indices J and M are the photon angular momentum
and its projection and λ = 1 or 0 for electric or magnetic mul-
tipoles, respectively. Specifically, for a one-electron transition
from an initial state characterized by the quantum numbers
ljm to a linear combination of final continuum states l̄j̄ m̄ with
the photoelectron spin described by a two-component spinor
χν , T

(λ)
JM takes the form

T
(λ)
JM = i

√
2π2

Ep

√
(2J + 1)(J + 1)

J

ωJ

(2J + 1)!!

×
∑
κ̄m̄

(χ †
ν
κ̄m̄(p̂))(−1)j̄−m̄

(
j̄ J j

−m̄ M m

)

×i1−l̄ eiδκ̄
〈
ā
∥∥Q

(λ)
J

∥∥a
〉
(−1)j̄+j+J . (3)

Here E and p̂ are the photoelectron energy and momentum
direction, respectively, ω is the photon frequency, δκ̄ is the
phase of the continuum wave (with respect to free waves) with
κ̄ = ∓(j̄ + 1

2 ) for j̄ = (l̄ ± 1
2 ), respectively. In addition, κ is

used below as shorthand for l and j with κ̄ used similarly for
l̄ and j̄ . The spherical spinor is defined as


κm(n̂) =
∑

ν=±1/2

C
jm

l,m−ν,1/2νYlm−ν(n̂)χν. (4)

The corresponding Clebsch-Gordan coefficients, C, are tabu-
lated in Ref. [34]. The reduced matrix element of the spherical
tensor between the initial state a = (nκ) and a final energy
scale normalized state ā = (E,κ̄) is written as

〈
ā
∥∥Q

(λ)
J

∥∥a
〉 = (−1)j+1/2[j̄ ][[j ]

(
j j̄ J

− 1
2

1
2 0

)

×π (l̄,l,J − λ + 1)R(λ)
J (ā,a). (5)

Here π (l̄,l,J − λ + 1) = 1 or 0 for l̄ + l + J − λ + 1 even
or odd, respectively, [j ] = (2j + 1)

1
2 , and R

(λ)
J (ā,a) is the

radial integral. While Eq. (5) is derived for a single-electron
transition, it also applies to closed-shell atomic systems. In
order to include the RRPA correlations, the only change in
Eq. (3) is to replace 〈ā‖Q(λ)

J ‖a〉 with 〈ā‖Q(λ)
J ‖a〉

RRPA
.

Finally, as we will be dealing with electric dipole photoion-
izing transitions, we set λ = 1, J = 1 and choose M = 0,
which corresponds to linear polarization in the z direction. In
this case,

T 1±
10 ≡ [

T
(1)

10

]
ν=±1/2 =

∑
κ̄m̄

C
jm̄

l,m̄−ν,1/2νYlm̄−ν(p̂)

×(−1)2j̄+j+1−m̄

(
j̄ 1 j

−m̄ 0 m

)
i1−l̄ eiδκ̄

〈
ā
∥∥Q

(1)
1

∥∥a
〉
.

(6)

Here we dropped the common scaling factor for brevity.
In the following, we use a shorthand for the reduced matrix
element modified by the phase factors:

Dlj→l̄j̄ = i1−l̄ eiδκ̄
〈
ā‖Q(λ)

J ‖a〉
. (7)

B. Formulation of the angular-dependent time delay

In recent work [30], the relativistic formalism was applied
for outer np (np1/2 and np3/2) subshells of Ar, Kr, and Xe in the
Cooper minima region in their spectra. Wigner time delay was
computed for these cases along with an estimate of CLC in the
hydrogenic approximation. Here we employ this technique to
study the Wigner time delay for a higher angular momentum
state (nd3/2 and nd5/2) for the free as well as confined atom.
An electric dipole transition from a nd initial state leads to the
following six ionization channels:

nd3/2 → εp1/2,εp3/2,εf5/2

nd5/2 → εp3/2,εf5/2,εf7/2.

Using Eq. (6), we derive the following expressions for the
nd3/2 ionization amplitudes:

[
T

′(1+)
10

]
nd3/2,1/2

= − 1

3
√

2
Dnd3/2→εp1/2Y10(p̂)

+1

3

√
2

5
Dnd3/2→εp3/2Y10(p̂)

+
√

3

70
Dnd3/2→εf5/2Y30(p̂); (8)

[
T

′(1−)
10

]
nd3/2,1/2

= 1

3
Dnd3/2→εp1/2Y11(p̂)

+ 1

6
√

5
Dnd3/2→εp3/2Y11(p̂)

−
√

2

35
Dnd3/2→εf5/2Y31(p̂); (9)

[
T

′(1+)
10

]
nd3/2,3/2

= 1

2

√
3

5
Dnd3/2→εp3/2Y11(p̂)

+
√

2

105
Dnd3/2→εf5/2Y31(p̂); (10)

[
T

′(1−)
10

]
nd3/2,3/2

= −
√

1

21
Dnd3/2→εf5/2Y32(p̂). (11)
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The angular-resolved amplitudes for the nd5/2 initial state
take the following forms:

[
T

′(1+)
10

]
nd5/2,1/2

= 1√
15

Dnd5/2→εp3/2Y10(p̂)

− 1

7
√

10
Dnd5/2→εf5/2Y30(p̂)

−
√

2

7
Dnd5/2→εf7/2Y30(p̂); (12)

[
T

′(1−)
10

]
nd5/2,1/2

= 1√
30

Dnd5/2→εp3/2Y11(p̂)

+1

7

√
2

15
Dnd5/2→εf5/2Y31(p̂)

−1

7

√
3

2
Dnd5/2→εf7/2Y31(p̂); (13)

[
T

′(1+)
10

]
nd5/2,3/2

= 1√
15

Dnd5/2→εp3/2Y11(p̂)

−1

7

√
3

5
Dnd5/2→εf5/2Y31(p̂)

− 5

14
√

3
Dnd5/2→εf7/2Y31(p̂); (14)

[
T

′(1−)
10

]
nd5/2,3/2

= 1

7

√
3

2
Dnd5/2→εf5/2Y32(p̂)

− 1

14

√
10

3
Dnd5/2→εf7/2Y32(p̂); (15)

[
T

′(1+)
10

]
nd5/2,5/2

= −1

7

√
5

6
Dnd5/2→εf5/2Y32(p̂)

−
√

6

14
Dnd5/2→εf7/2Y32(p̂); (16)

[
T

′(1−)
10

]
nd5/2,5/2

=
√

5

7
Dnd5/2→εf5/2Y33(p̂)

− 1

14
Dnd5/2→εf7/2Y33(p̂). (17)

The corresponding amplitudes with negative m projection
have exactly the same structure, owing to the symmetry about
the photon polarization (z-direction) axis, so they are not given
explicitly. Each ndj amplitude has its own photoelectron group
time delay (Wigner time delay) [17,18]) defined as (in atomic
units)

τ = dη

dE
,η = tan−1

[
ImT 1±

10

ReT 1±
10

]
. (18)

For the situation where neither the orientation of the residual
ion nor the spin of the photoelectron is detected, the angle-
dependent time delay is evaluated as

τndj
(θ ) =

∑
m,ν τndj,m,ν

(θ )
∣∣[T ′(1ν)

10

]
ndj,m

∣∣2

∑
m,ν

∣∣[T ′(1ν)
10

]
ndj,m

∣∣2 , (19)

which is the weighted average of the initial m states and
final spin states of the photoelectron. Note, incidently, that
the situation is somewhat more complicated for circularly

polarized incident photons where the amplitudes for positive
and negative m differ.

III. RESULTS AND DISCUSSION

Since photoionization of atoms involves correlated many-
electron dynamics, the ab initio relativistic random-phase
approximation (RRPA), which includes both relativistic in-
teractions (since it is based on the Dirac equation) and
many-electron correlation effects [32,33], is applied for the
calculation of the dipole matrix elements and transition ampli-
tudes. In order to include final-state correlations (interchannel
coupling), the calculations have been performed with the
following 13 coupled channels:

5p3/2 → εd5/2,εd3/2,εs1/2,

5p1/2 → εd3/2,εs1/2,

5s1/2 → εp3/2,εp1/2,

4d5/2 → εf7/2,εf5/2,εp3/2,

4d3/2 → εf5/2,εp3/2,εp1/2.

The calculations have been carried out from about 15 eV
above the 4d thresholds up to a photon energy of 150 eV; the
near-threshold region, where the Wigner time delay is domi-
nated by the Coulomb phase, is not considered. The omission
of the photoionization channels from more tightly bound sub-
shells, starting with 4p and on down, is unimportant since they
contribute only a negligible amount to the 4d matrix elements
in the chosen range of energies. Note that earlier calculations
based upon the RRPA formalism have been found to be in very
good agreement with experiment in many previous studies
(see, for example, Refs. [28,35,36] and references therein).

The effects of the fullerene C60 molecular cage was taken
as a spherically attractive potential [V (r)] defined as

V (r) =
{−V0, for r0 � r � r0 + �;

0, otherwise,

[21] with inner radius (r0) = 5.8 a.u., thickness (�) = 1.9 a.u.,
depth (V0) = 0.302 a.u.. This model has been shown to be
a reasonable approximation in a number of previous studies
[21,31,37–40].

Since the RRPA methodology employs Dirac-Hartree-Fock
(DHF) thresholds in the calculation, these threshold energies
for the valence (n = 5) and inner (n = 4) subshells are shown
in Table I for both free and confined Xe. Of note here is that the
binding energies for the confined case are slightly larger for
Xe@C60, and that the differences get somewhat larger as the
subshell depth increases. This occurs because a spherical shell
potential shifts the potential for electrons fully inside the shell
by a constant amount. However, if part of the charge density of
a subshell is not contained fully inside the shell potential, the
change is less; this has been pointed out and explained earlier
in the context of alkali-earth atoms [41]. In any case, this is
exactly what Table I reveals.

The Wigner time delays are calculated from the basic matrix
elements for each amplitude as given in Eqs. (8)–(17). They
are measurable, and we start with the time delay associated
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TABLE I. Dirac-Hartree-Fock (DHF) thresholds for free and
confined Xe in eV.

Subshell Xe Xe@C60

5p 3
2

11.97 12.31
5p 1

2
13.40 13.78

5s 1
2

27.49 27.88
4d 5

2
71.67 72.21

4d 3
2

73.78 74.32
4p 3

2
162.80 163.34

4p 1
2

175.58 176.12
4s 1

2
229.38 229.93

with each of these amplitudes because the physics is most
easily revealed in these individual, unaveraged, channels.

Shown in Fig. 1 are the Wigner time-delay results for
the photoionization 4d3/2 in both free Xe and Xe@C60. A
ubiquitous feature of the results is the existence of confinement
oscillations [42], which are present in all cases for the
confined Xe atom; these are due to the interference of electron
waves which are emitted directly, and the waves which are
reflected back from the confining potential. It is seen that,
with increasing photon energy, all time delays at all angles tend
towards zero. This is a general phenomenon, seen previously
[43]. It occurs because the phases of the various dipole matrix
elements all tend to zero, with increasing energy [44]. In
addition, for each amplitude that includes contributions from
transitions to final states with different final angular momenta
(hence spherical harmonics of different l), it is seen that the
time delay is angular dependent. This occurs for three of the
four amplitudes depicted in Fig. 1.

Scrutinizing now the time delays for each of the four 4d3/2

amplitudes individually, starting with the 4d+
3/2,1/2, the results

are depicted on the top panel of Fig. 1. As can be seen from
Eq. (8), the amplitude contains a linear combination of the
spherical harmonics Y30 and Y10, so that the time delay has an
angular dependence, as seen in Fig. 1. However, in the chosen
energy range, D4d3/2→εf5/2 is much larger than the 4d → εp

matrix elements so that the angular variation is fairly small at
most energies; this is also seen in Fig. 1, except in the region
of 90 eV. The nonmonotonic bump in the 30◦ time delay, as a
function of energy, is owing to a combination of factors. First,
30◦ is near the kinematic node of Y30 (which is at about 40◦).
Since Y30 is the angular factor of the D4d3/2→εf5/2 term in Eq. (8),
the terms in Eq. (8) become competitive at 30◦, in contrast to
other angles, causing considerable cancellation. Specifically,
the interference causes an inflection point in the phase, in the
90 eV region, thereby resulting in the bump in the energy
derivative of the phase. The situation for the confined case
is essentially the same with the exception of the confinement
oscillations; these are seen to be present at all angles.

For the 4d−
3/2,1/2 amplitude (see Fig. 1), the time-delay

situation is somewhat similar with an angular dependence
resulting from the interference of Y31 and Y11, Eq. (9). In this
case, however, Y31 has a node at about 63◦. Correspondingly
at 60◦ the contribution of the normally dominant D4d3/2→εf5/2

term in Eq. (9) is decreased considerably so that there is

FIG. 1. Channel-specific time delay as calculated using
Eqs. (8)–(11) for the 4d3/2 initial state. Bold lines are the Wigner
time delay for Xe@C60 (abbreviated by @ in the figures) and thin
lines are for free Xe. Different colors correspond to different angles.

significant interference among the terms. This results in a near
cancellation around 90 eV, causing a Cooper-like minimum in
the amplitude; the amplitude goes through a deep minimum
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because both the real part and the imaginary parts go through
zeros, but not exactly at the same energy, as in the case of
an ordinary Cooper minimum. Thus, in that region, there is a
very rapid increase in phase, followed by a very rapid drop,
again just like in an ordinary Cooper minimum; there is a
phase increase by π over a small energy region resulting in a
huge spike in the time delay. This occurs in both the free and
confined case, as seen in Fig. 1, i.e., the perturbating potential
does not alter this cancellation. Additionally, as in the previous
case, the confinement oscillations are present at all angles.

The 4d+
3/2,3/2 amplitude, shown in Fig. 1, is almost exactly

like the previous case, except for the situation at 60◦ around
90 eV. The cancellation is much more tenuous in this case
and the confinement has an important effect, as seen. The time
delay for the free atom at 60◦ exhibits a deep dip rather than
a rise. This occurs because near the Cooper-like minimum
in the amplitude, where the imaginary part goes through a
zero, the real part of the amplitude has the opposite sign
compared to the other cases, thereby moving the phase in
the opposite direction. The perturbing potential alters this, so
that in the confined case, there is a spike, like the previous
case, rather than a dip. Thus, there is a remarkable sensitivity
of both the phase and the time delay, in the vicinity of these
Cooper-like minima, to the details of the variations in the signs
of the real and imaginary parts of the amplitude; this can be
altered very significantly by a small perturbing potential. As a
consequence, the difference in time delay at 60◦ in the 90 eV
photon energy region between the free and confined atom is
huge (by attosecond standards), of the order of femtoseconds.

For the 4d−
3/2,3/2 amplitude, also depicted in Fig. 1, there

is only a single term in the amplitude, Eq. (11); hence, there
is no angular dependence in this case. Thus, the time delay is
isotropic. Correspondingly, the time delay is the result of the
phase of the D4d3/2→εf5/2 transition, which is monotone decreas-
ing for the free-atom case and yields a monotone decreasing
time delay; the confined case is essentially the same except for
the confinement modulations around the free-atom time delay.

The situation is similar for the time delays associated
with the six 4d5/2 amplitudes, shown in Figs. 2 and 3, but
with important differences that arise mainly because there
is a significant interchannel coupling effect on the 4d5/2

photoionization matrix elements owing to the interaction
with the 4d3/2 matrix elements known as spin-orbit-activated
interchannel coupling (SOAIC), an effect than has been seen
experimentally and interpreted theoretically in studies of
photoionization cross sections [45,46]. Aside from the effect
of interchannel coupling on the magnitude of the 4d5/2 matrix
elements, whence the SOAIC effect arises, the coupling also
affects the phase of the 4d5/2 matrix elements [47]. As a
result, for example, the 4d5/2 cases show an inflection point
in the phases in the 80 eV region. As a result, the time delay,
the derivative of the phase, is small around 80 eV but rises
with energy as the slope of the phase increases; it starts to
drop off at somewhat higher energies, mimicking the 4d3/2

cases. In fact, except for the rise in time delay around 80 eV,
the 4d+

5/2,1/2 result is rather similar to the 4d+
3/2,1/2 situation.

This is not surprising since the structure of the expressions
for the two amplitudes is quite similar. The confined case
shows the same characteristics with the added confinement
oscillations.

FIG. 2. Channel-specific time delay as calculated using
(12)–(15) for 4d5/2. Bold lines are the Wigner time delay for Xe@C60

(abbreviated by @ in the figures) and thin lines are for free Xe.
Different colors correspond to different angles.

Note that the structure of the amplitudes with the same
initial state m quantum number and final-state photoelectron
polarization ν are similar for both 4d3/2 and 4d5/2 initial
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FIG. 3. Channel-specific time delay as calculated using (16)–(17)
for 4d5/2. Bold lines are the Wigner time delay for Xe@C60 and thin
lines are for free Xe.

states, not only in the above case, but in all cases. Thus, it
is evident that the time delays should be similar as well. This
is exactly what is seen from the comparison of Fig. 1 and
Fig. 2, with some differences owing to relativistic dynamics.
One difference is the rising of the 4d5/2 time delays at around
80 eV for most cases, owing to the interchannel coupling,
as explained above. For another, unlike the 4d+

3/2,3/2 case, for
4d+

5/2,3/2 both the free and confined time delays show a large dip
at 60◦ in the 90 eV region. The introduction of the confinement
potential does not change the situation qualitatively for the
4d+

5/2,3/2 amplitude, although it is seen that it does move the
dip up by a few eV to higher energy. Still another difference
is seen in Fig. 2 for the 4d−

5/2,3/2 time delay as compared
to 4d−

3/2,3/2. The sharp positive spike in the 4d3/2 case at
60◦ near 90 eV becomes a negative spike for 4d5/2. It is
thus found that the Cooper-like minimum in the amplitudes
have significant effects upon the time delay. It is also evident
from the comparisons of the 4d3/2 and 4d5/2 initial states that
relativistic effects can have huge consequences, particularly
near these Cooper-like minima.

The 4d±
5/2,5/2 cases, Fig. 3, have no analog in the 4d3/2

manifold because the latter cannot have m = 5/2. Further-
more, since the present calculation is for linear polarization of
the incident photons, the final continuum states for transitions
from the 4d5/2,5/2 initial states must also have m = 5/2. This
means that only transitions to εf5/2,5/2 and εf7/2,5/2 are possible
(there can be no 4d → εp transitions). This follows from
Eqs. (16) and (17). In addition, since each amplitude involves

FIG. 4. m and final-state spin average time delay for 4d3/2 and
4d5/2 as calculated using Eq. (19). Bold lines are the Wigner time
delay for Xe@C60 (abbreviated by @ in the figures) and thin lines
are for free Xe. Different colors correspond to different angles.

only a single spherical harmonic, the angular distribution
must be isotropic; this is seen for both 4d±

5/2,5/2 cases in
Fig. 3. Nevertheless, owing to relativistic interactions, each
amplitude consists of two terms, which are slightly different
and can interfere. The 4d+

5/2,5/2 case does not appear to show
any significant effects of interference, although the confining
potential induces a factor of five increase in the time delay
at about 82 eV, thereby indicating the sensitivity of the
time delay to small perturbations. For the 4d−

5/2,5/2 case, the
free-atom time delay is monotone decreasing from 80 eV,
which suggests that interference is going on in that energy
region. The confined-atom time delay, however, is seen to
behave quite differently; there is a very large positive spike at
85 eV and an equally large negative spike at about 110 eV. This
occurs because the 4d−

5/2,5/2 amplitude is quite small since it is
the difference of two roughly equal terms [Eq. (17)]. Thus, the
addition of the confinement potential causes oscillations in the
matrix elements. This results in not one but two Cooper-like
minima in the amplitude, one around 80 eV and the other about
110 eV, resulting in the spikes. This does not happen in the
4d+

5/2,5/2 case because, as seen from Eq. (16), this amplitude is
the sum of the two terms. It is noteworthy that the Cooper-like
minima in the confined 4d−

5/2,5/2 case occur despite the absence
of 4d → εp transitions in this amplitude; this speaks to the
importance of relativistic effects.

The calculated time delays for the weighted average over
the initial-state magnetic quantum number m and the final-state
photoelectron polarization [Eq. (19)] are depicted in Fig. 4. Of
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importance here is that for free Xe, for the 4d3/2 initial state, the
time delays are monotone decreasing with energy at all angles,
while for the 4d5/2 initial state, they are rising from 80 eV (at
all angles) and only start decreasing at higher energies. This
occurs owing to the interchannel coupling between the 4d3/2

channels and the 4d5/2 channels, a purely relativistic effect,
as explained in connection with the individual amplitude
time delays. For the confined atoms, there are significant
oscillations around the free results due to the confinement
resonances. The amplitudes of these oscillations decrease with
increasing energy, a well-known characteristic of confinement
resonances [42]. It is also evident that these weighted averages
do not exhibit any of the huge spikes, positive or negative,
present in the time delays associated with the individual
amplitudes. This happens because these spikes are typically
related to the Cooper-like minima in the individual amplitudes
so that, like ordinary Cooper minima, the cross sections are
small in these regions and the effects are washed out in the
weighted averages. It should be mentioned, however, that
there are intermediate weighted averages that could be taken
between the individual amplitude time delays and the Eq. (19)
averages. One might consider the time delays in coincidence
with photoelectron polarization. Then the average, Eq. (19),
would be summed only over m, or in coincidence with the
alignment of the residual ion, in which case the sum would be
only over photoelectron polarization.

An important point to be emphasized, as mentioned earlier,
is that pump-probe photoionization experiments involve the
absorption of a second photon (streaking [7], RABBITT [9]).
The presence of a second photon has consequences for the
time delay. In fact, the measured time delay can be thought of
as a sum of the Wigner time delay, τW , and τCC/CLC , the time
delay due to the second (probe) photon, also called Coulomb-
laser coupling (CLC) [14] or continuum-continuum coupling
(CC) [48].

τatomic = τW + τCC/CLC. (20)

The present calculation deals only with the Wigner time
delay, τW . However, since the existing experimental techniques
involve two photons, it is of interest to briefly discuss the
consequences of the probe photon. τCC/CLC decreases rapidly
from above the ionization threshold [49] and, thus, since
the present calculations are well above the 4d thresholds,
it is expected that it is small. The initial indication was
that τCC/CLC is hardly dependent on the partial waves [49].
However, a recent RABBITT study of the angular-dependent
time delay in He [50] showed this is not the case. The
time delay from the spherically symmetric 1s shell becomes
angular dependent close to the kinematic node of Y20 at
the magic angle because of an enhanced competition of the
s → p → d and s → p → s photoabsorption channel. This
angular dependence of CLC corrections was also implicitly
demonstrated in a recent theoretical study of the two-photon
ionization of the 2p shell of Ne [51]. The Wigner time delay,
taken alone, could not account for the calculated atomic time
delay. Similarly, the second photon absorption can alter the
presently calculated angular-dependent time delays. However,
if the difference between the photoionization time delays for
Xe and Xe@C60 are studied, τCC/CLC , which depends upon
the effective charge of the residual ion [14,48], should vanish

so that the measurement would return the difference in the free
and confined Wigner time delays. It is hoped, therefore, that
the present results might stimulate such a measurement.

IV. CONCLUSIONS

Wigner time delay in photoionization from 4d3/2 and 4d5/2

subshells has been calculated for free and confined Xe using
a relativistic many-body formalism, the relativistic-random-
phase approximation (RRPA). There were seen to be ten
relativistic amplitudes from the 4djm initial states with positive
values of m. It was found that six of the amplitudes generate
a phase that is angle dependent, and thus, a Wigner time
delay that depends upon the angle between the observation
direction and the photon polarization direction. Over most of
the energies and angles studied, the confined results were found
to modulate around the free results with rather substantial am-
plitudes, tens of attoseconds or more, particularly at the lower
energies, owing to the well-known confinement resonances.
New effects were uncovered in the angular dependence of
the Wigner time delay including Cooper-like minima in the
amplitudes. In the vicinity of these Cooper-like minima, it was
found that the phase of an amplitude could vary quite rapidly,
with energy, thereby resulting in rather large time delays,
hundreds or thousands of attoseconds. These effects were
found to occur both in the free and confined cases. However,
owing to the sensitivity of the amplitudes near the Cooper-like
minima, the large excursion of the time delay were in opposite
directions in the free and confined atoms, in some cases.

A purely relativistic effect was found in the 4d−
5/2,5/2

amplitude. The time delay for free Xe, in this case, decreases
monotonically in contrast to the case for Xe@C60 where huge
excursions in the delay were exhibited, greater than 1000
as, at two different energies, very much larger than could
be expected due to confinement resonances. This behavior
was traced to the interference between the 4d5/2 → εf5/2 and
4d5/2 → εf7/2 transitions, which are different only owing to
relativistic interactions. The interference generated several
Cooper-like minima. As a result, the Wigner time delay
exhibited huge positive and negative values in the energy
region of these minima. It is, thus, evident that relativistic
interactions can induce interferences, which result in large
physical effects. Time-delay measurements in coincidence
with spin polarization of the photoelectron and alignment or
orientation of the residual ion (to determine the m quantum
number of the initial state) are, however, beyond current
experimental capabilities. Nevertheless, the present results
should stimulate research along these lines.

Taking the weighted averages of the amplitudes, the
effects of these Cooper-like minima were found to be largely
gone because, by their very nature, in the vicinity of the
minima, the magnitude of the amplitudes were small. Thus,
they do not contribute much to the averages. Nevertheless,
the results showed significant qualitative and quantitative
differences between the 4d3/2 and 4d5/2 cases for both free
and confined Xe, thereby indicating that relativistic effects are
of importance, even away from the Cooper-like minima. It
was also demonstrated that measurements of the difference in
time delays between free and confined atoms should be most
revealing.
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