
IFAC PapersOnLine 50-1 (2017) 4968–4972

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2017.08.761

10.1016/j.ifacol.2017.08.761 2405-8963

A Direct Coupling Coherent Quantum Observer for a Qubit, including

Observer Measurements

Ian R. Petersen and Elanor H. Huntington

Abstract— This paper proposes a direct coupling coherent
quantum observer for a quantum plant which consists of a
two level quantum system. The quantum observer, which is
a quantum harmonic oscillator, includes homodyne detection
measurements. It is shown that the observer can be designed
so that it does not affect the quantum variable of interest in
the quantum plant and that measured output converges in a
given sense to the plant variable of interest. Also, the plant
variable of interest-observer system can be described by a set
of linear quantum stochastic differential equations. A minimum
variance unbiased estimator form of the Kalman filter is derived
for linear quantum systems and applied to the direct coupled
coherent quantum observer.

I. INTRODUCTION

A number of papers have recently considered the problem

of constructing a coherent quantum observer for a quantum

system; e.g., see [1]–[3]. In the coherent quantum observer

problem, a quantum plant is coupled to a quantum observer

which is also a quantum system. The quantum observer is

constructed to be a physically realizable quantum system so

that the system variables of the quantum observer converge in

some suitable sense to the variables of interest for the quantum

plant.

The papers [4]–[7] considered the problem of constructing a

direct coupling quantum observer for a given quantum system.

In particular, the paper [5] considered the case in which

the quantum plant was a two level system and the quantum

observer was a linear quantum harmonic oscillator. Also,

the papers [8], [9] considered the problem of whether such

direct coupling coherent observers could be experimentally

implemented. In addition, the paper [10] considered with the

direct coupling coherent observer of [4] could be experimen-

tally implemented in an experiment which included homodyne

detection measurements of the observer.

In this paper, we build on the results of [5] and [10]

to consider the case in which the quantum plant is a two

level system and the quantum observer is a linear quantum

harmonic oscillator subject to measurements using homodyne

detection. Similar convergence results for the quantum ob-

server as obtained in [10] are obtained in this case. Also,
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as in [5], the plant observer system considering only the

plant variable of interest is described by a set of linear

quantum stochastic differential equations (QSDEs) in spite

of the fact that finite level systems are normally described in

terms of bilinear QSDEs; e.g., see [11]. However, in this case,

measurements are available from the quantum observer. This

means that we can apply a version of the Kalman filter to the

linear plant observer QSDEs.

The paper develops a notion of a minimum variance un-

biased estimator for a general set of linear QSDEs, building

on the fact that the classical Kalman Filter can be regarded

as the minimum variance unbiased estimator even in the case

of non-Gaussian noises and initial conditions; e.g., see [12],

[13]. The equations for this estimator are developed for the

general case and then applied to the particular case of the plant

observer system. This provides a numerically straightforward

way of estimating the variable of interest for the qubit system

when using homodyne detection measurements.

Some proofs and details have been omitted from this

version of the paper due to page limitations. The full details

and proofs can be found in the archive version of the paper

[14].

II. DIRECT COUPLING COHERENT QUANTUM OBSERVER

WITH OBSERVER MEASUREMENT

We first consider the dynamics of a single qubit spin system,

which will correspond to the quantum plant; see also [11].

The quantum mechanical behavior of the system is described

in terms of the system observables which are self-adjoint

operators on the complex Hilbert space Hp = C
2. The

commutator of two scalar operators x and y in Hp is defined

as [x, y] = xy − yx. Also, for a vector of operators x in Hp,

the commutator of x and a scalar operator y in Hp is the

vector of operators [x, y] = xy − yx, and the commutator of

x and its adjoint x† is the matrix of operators

[x, x†] � xx† − (x#xT )T ,

where x# � (x∗
1 x∗

2 · · · x∗
n)

T and ∗ denotes the operator ad-

joint. In the case of complex vectors (matrices) ∗ denotes the

complex conjugate while † denotes the conjugate transpose.

The vector of system variables for the single qubit spin

system under consideration is

xp = (x1, x2, x3)
T � (σ1, σ2, σ3),

where σ1, σ2 and σ3 are spin operators. Here, xp is a self-

adjoint vector of operators; i.e., xp = x#
p . In particular xp(0)
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is represented by the Pauli matrices; i.e.,

σ1(0) =

�

0 1
1 0

�

, σ2(0) =

�

0 −iii
iii 0

�

,

σ3(0) =

�

1 0
0 −1

�

.

Products of the spin operators satisfy

σiσj = δij + iii
�

k

ǫijkσk. (1)

It then follows that the commutation relations for the spin

operators are

[σi, σj ] = 2iii
�

k

ǫijkσk, (2)

where δij is the Kronecker delta and ǫijk denotes the Levi-

Civita tensor. The dynamics of the system variables x are

determined by the system Hamiltonian which is a self-adjoint

operator on Hp. The Hamiltonian is chosen to be linear in xp;

i.e.,

Hp = rTp xp(0)

where rp ∈ R
3. The plant model is then given by the

differential equation

ẋp(t) = −iii[xp(t),Hp];

= Apxp(t); xp(0) = x0p;

zp(t) = Cpxp(t) (3)

where zp denotes the system variable to be estimated by the

observer and Cp ∈ R
1×3; e.g., see [11]. Also, Ap ∈ R

3×3. In

order to obtain an expression for the matrix Ap in terms of

rp, we define the linear mapping Θ : C3 → C
3×3 as

Θ(β) =





0 β3 −β2

−β3 0 β1

β2 −β1 0



 . (4)

Then, it was shown in [11] that

xp(t)xp(t)
T = I + iiiΘ(xp(t)).

Similarly, the commutation relations for the spin operators are

written as

[xp(t), xp(t)
T ] = 2iiiΘ(xp(t)). (5)

Also, it was shown in [11] that

−iii[xp(t), r
T
p xp(t)] = −2Θ(rp)xp(t) (6)

and hence Ap = −2Θ(rp).
Note that a quantum system of this form will be physically

realizable which means that the commutation relation (5) will

hold for all times t ≥ 0.

We now describe the linear quantum system which will

correspond to the quantum observer; see also [15]–[19]. This

system is described by QSDEs of the form

dxo = Aoxodt+Bodw; xo(0) = x0o;

dyo = Coxodt+ dw;

zo = Kyo (7)

where dw =

�

dQ

dP

�

is a 2 × 1 vector of quantum noises

expressed in quadrature form corresponding to the input field

for the observer and dyo is the corresponding output field; e.g.,

see [15], [17]. The observer output zo will be a real scalar

quantity obtained by applying homodyne detection to the

observer output field. Ao ∈ R
2×2, Bo ∈ R

2×2, Co ∈ R
2×2.

Also, xo =

�

qo
po

�

is a vector of self-adjoint system vari-

ables corresponding to the observer position and momentum

operators; e.g., see [15]. We assume that the plant variables

commute with the observer variables. The system dynamics

(7) are determined by the observer system Hamiltonian and

coupling operators which are operators on the underlying

Hilbert space for the observer. For the quantum observer under

consideration, this Hamiltonian is a self-adjoint operator given

by the quadratic form: Ho = 1
2
xo(0)

TRoxo(0), where Ro is

a real symmetric matrix. Also, the coupling operator L is

defined by a matrix Wo ∈ R
2×2 so that

�

L+ L∗

L−L∗

i

�

= Woxo. (8)

Then, the corresponding matrices Ao, Bo and Co in (7) are

given by

Ao = 2JRo +
1

2
WT

o JWo, Bo = JWT
o J, Co = Wo (9)

where

J =

�

0 1
−1 0

�

;

e.g., see [15], [17]. Furthermore, we will assume that the

quantum observer is coupled to the quantum plant as shown

in Figure 1. We define a coupling Hamiltonian which defines

Quantum
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Quantum
Observer Homdyne

Detector
zoyo

Fig. 1. Plant Observer System.

the coupling between the quantum plant and the quantum

observer:

Hc = xp(0)
TRcxo(0).

The augmented quantum system consisting of the quantum

plant and the quantum observer is then a quantum system

described by the total Hamiltonian

Ha = Hp +Hc +Ho. (10)

where the coupling operator L defined in (8).

Extending the approach used in [4], [5], we assume that

Hp = 0 and we can write

Rc = αβT , (11)
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is represented by the Pauli matrices; i.e.,

σ1(0) =

�

0 1
1 0

�

, σ2(0) =

�

0 −iii
iii 0

�

,

σ3(0) =

�

1 0
0 −1

�

.

Products of the spin operators satisfy

σiσj = δij + iii
�

k

ǫijkσk. (1)

It then follows that the commutation relations for the spin

operators are

[σi, σj ] = 2iii
�

k

ǫijkσk, (2)

where δij is the Kronecker delta and ǫijk denotes the Levi-

Civita tensor. The dynamics of the system variables x are

determined by the system Hamiltonian which is a self-adjoint

operator on Hp. The Hamiltonian is chosen to be linear in xp;

i.e.,

Hp = rTp xp(0)

where rp ∈ R
3. The plant model is then given by the

differential equation

ẋp(t) = −iii[xp(t),Hp];

= Apxp(t); xp(0) = x0p;

zp(t) = Cpxp(t) (3)

where zp denotes the system variable to be estimated by the

observer and Cp ∈ R
1×3; e.g., see [11]. Also, Ap ∈ R

3×3. In

order to obtain an expression for the matrix Ap in terms of

rp, we define the linear mapping Θ : C3 → C
3×3 as

Θ(β) =





0 β3 −β2

−β3 0 β1

β2 −β1 0



 . (4)

Then, it was shown in [11] that

xp(t)xp(t)
T = I + iiiΘ(xp(t)).

Similarly, the commutation relations for the spin operators are

written as

[xp(t), xp(t)
T ] = 2iiiΘ(xp(t)). (5)

Also, it was shown in [11] that

−iii[xp(t), r
T
p xp(t)] = −2Θ(rp)xp(t) (6)

and hence Ap = −2Θ(rp).
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hold for all times t ≥ 0.
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dxo = Aoxodt+Bodw; xo(0) = x0o;

dyo = Coxodt+ dw;

zo = Kyo (7)

where dw =

�
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dP

�
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expressed in quadrature form corresponding to the input field

for the observer and dyo is the corresponding output field; e.g.,
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observer output field. Ao ∈ R
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2×2.
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�
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ables corresponding to the observer position and momentum

operators; e.g., see [15]. We assume that the plant variables

commute with the observer variables. The system dynamics

(7) are determined by the observer system Hamiltonian and

coupling operators which are operators on the underlying

Hilbert space for the observer. For the quantum observer under

consideration, this Hamiltonian is a self-adjoint operator given

by the quadratic form: Ho = 1
2
xo(0)

TRoxo(0), where Ro is

a real symmetric matrix. Also, the coupling operator L is

defined by a matrix Wo ∈ R
2×2 so that

�

L+ L∗

L−L∗

i

�

= Woxo. (8)

Then, the corresponding matrices Ao, Bo and Co in (7) are

given by

Ao = 2JRo +
1

2
WT

o JWo, Bo = JWT
o J, Co = Wo (9)

where

J =

�

0 1
−1 0

�

;

e.g., see [15], [17]. Furthermore, we will assume that the

quantum observer is coupled to the quantum plant as shown

in Figure 1. We define a coupling Hamiltonian which defines
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Fig. 1. Plant Observer System.

the coupling between the quantum plant and the quantum

observer:

Hc = xp(0)
TRcxo(0).

The augmented quantum system consisting of the quantum

plant and the quantum observer is then a quantum system

described by the total Hamiltonian

Ha = Hp +Hc +Ho. (10)

where the coupling operator L defined in (8).

Extending the approach used in [4], [5], we assume that

Hp = 0 and we can write

Rc = αβT , (11)

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

5130



4970 Ian R. Petersen  et al. / IFAC PapersOnLine 50-1 (2017) 4968–4972

Ro = ωoI , Wo =
√
κI where α ∈ R

2, β ∈ R
2, ωo > 0 and

κ > 0. In addition, we assume

α = CT
p . (12)

Then, the total Hamiltonian (10) will be given by

Ha = αTxp(0)β
Txo(0) +

1

2
xo(0)

TRoxo(0)

since in this case the quantities αTxp(0) and βTxo(0) are

commuting scalar operators. Also, it follows that the aug-

mented quantum system is described by the equations

dxp(t) = −2Θ(α)xp(t)β
Txo(t)dt; xp(0) = x0p;

dxo(t) = −κ

2
xodt+ 2ωoJxodt+ 2JβαTxpdt−

√
κdw;

xo(0) = x0o;

dyo =
√
κxodt+ dw;

zp(t) = αTxp(t);

zo(t) = Kyo(t); (13)

e.g., see [11], [15], [17].

It follows from (13) that the quantity zp(t) = αTxp(t)
satisfies the differential equation

dzp(t) = −2αTΘ(α)xp(t)β
Txo(t)dt = 0. (14)

That is, the quantity zp(t) remains constant and is not affected

by the coupling to the coherent quantum observer:

zp(t) = zp(0) ∀t ≥ 0.

Now using this result in (13), it follows that

dxo(t) = −κ

2
xodt+ 2ωoJxodt+ 2Jβzpdt−

√
κdw.

(15)

Combining equations (13), (14) and (15), we obtain the fol-

lowing reduced dimension QSDEs describing the augmented

quantum plant variable of interest and the quantum observer:

dzp(t) = 0; zp(0) = αTx0p;

dxo(t) = −κ

2
xodt+ 2ωoJxodt+ 2Jβzpdt−

√
κdw;

xo(0) = x0o;

dyo =
√
κxodt+ dw. (16)

This is a set of linear QSDEs. Hence, we can analyze

this system in a similar way to [10]. To analyse the system

(16), we first calculate the steady state value of the quantum

expectation of the observer variables as follows:

< x̄o > =
4

κ2 + 16ω2
o

[

κ 4ωo

−4ωo κ

]

Jβzp.

Then, we define the quantity

x̃o = xo− < x̄o >= xo−
4

κ2 + 16ω2
o

[

κ 4ωo

−4ωo κ

]

Jβzp.

We can now re-write the equations (16) in terms of x̃o as

follows

dx̃o =

[

−κ
2

2ωo

−2ωo −κ
2

]

x̃odt−
√
κdw;

dyo = −2
√
κ

[

−κ
2

2ωo

−2ωo −κ
2

]−1

Jβzpdt+ dwout(17)

where

dwout =
√
κx̃odt+ dw.

We now look at the transfer function of the system

˙̃xo =

[

−κ
2

2ωo

−2ωo −κ
2

]

x̃o −
√
κw;

wout =
√
κx̃o + w, (18)

which is given by

G(s) = −κ

[

s+ κ
2

−2ωo

2ωo s+ κ
2

]−1

.

It is straightforward to verify that this transfer function is such

that

G(jω)G(jω)† = I

for all ω. That is G(s) is all pass. Also, the matrix
[

−κ
2

2ωo

−2ωo −κ
2

]

is Hurwitz and hence, the system (18)

will converge to a steady state in which dwout represents

a standard quantum white noise with zero mean and unit

intensity. Hence, at steady state, the equation

dyo = −2
√
κ

[

−κ
2

2ωo

−2ωo −κ
2

]−1

Jβzpdt+ dwout (19)

shows that the output field converges to a constant value plus

zero mean white quantum noise with unit intensity.

We now consider the construction of the vector K defining

the observer output zo. This vector determines the quadrature

of the output field which is measured by the homodyne

detector. We first re-write equation (19) as

dyo = ezpdt+ dwout

where

e = −2
√
κ

[

−κ
2

2ωo

−2ωo −κ
2

]−1

Jβ (20)

is a vector in R
2. Then

dzo = Kezpdt+Kdwout.

Hence, we choose K such that

Ke = 1 (21)

and therefore

dzo = zpdt+ dn

where

dn = Kdwout

will be a white noise process at steady state with intensity

�K�2. Thus, to maximize the signal to noise ratio for our

measurement, we wish to choose K to minimize �K�2 subject

to the constraint (21). If we choose

K =
eT

�e�2 (22)

then (21) is satisfied and this value of K is the optimal K.
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We now consider the special case of ωo = 0. In this case,

we obtain

e = 2
√
κ

[

2
κ

0
0 2

κ

]

Jβ =
4√
κ
Jβ.

Hence, as κ → 0, �e� → ∞ and therefore �K� → 0. This

means that we can make the noise level on our measurement

arbitrarily small by choosing κ > 0 sufficiently small.

However, as κ gets smaller, the system (18) gets closer to

instability and hence, takes longer to converge to steady state.

III. KALMAN FILTER FOR THE PLANT OBSERVER SYSTEM

Since the QSDEs (16) describing the plant observer system

are linear, it should be possible to apply Kalman filtering to

this system in order to estimate zp based on the available

measurements. However, the QSDEs (16) are not physically

realizable; e.g., see [15], [16]. Hence, the quantum Kalman

filter such as discussed in [20], [21] formally does not apply;

see also [22]. Although the QSDEs (16) could be made

physically realizable by adding an extra fictitious quadrature

variable to pair with zp, using the technique described in

[23], the issue would remain that zp corresponds to a finite

level quantum system and hence, its initial condition cannot

be Gaussian. To overcome this issue, we will take another

approach to Kalman filtering for quantum systems noting

that in the classical case, the Kalman filter also has the

property that it is optimal linear unbiased estimator for a linear

stochastic system, even in the case of non-Gaussian noise and

initial conditions; e.g., see [12], [13].

We first consider a general set of linear QSDSs:

dx(t) = A(t)x(t)dt+B(t)dw; x(t0) = x0;

dy(t) = C(t)x(t)dt+ dw(t) (23)

where x is a n × 1 vector of self adjoint operators on an

underlying Hilbert space, dw is a m × 1 vector of quantum

noises expressed in quadrature form corresponding to the

input field of the system and dy represents the corresponding

output field; e.g., see [15]–[17]. Here m is assumed to be even.

The measured output of the system z(t) will be a real vector

quantity of dimension m
2

obtained by applying homodyne

detection to yield one quadrature of each of the output fields;

i.e., we write

dz(t) = Ddy(t) = DC(t)x(t)dt+Ddw(t). (24)

Also, A(t) ∈ R
n×n, B(t) ∈ R

n×m, C(t) ∈ R
m×n, D ∈

R
m

2
×m. The augmented system (16) is a system of the form

(23).

We will consider linear filters of the following form:

dx̂(t) = F (t)x̂(t)dt+G(t)dz(t); x̂(t0) = x̂0; (25)

where x̂(t) ∈ R
n is a vector of estimates for x, F (t) ∈ R

n×n

and G(t) ∈ R
n×m

2 . The filter (25) is said to be an unbiased

estimator for the system (23) if

< x(t) >= E {x̂(t)} ∀t ≥ t0;

e.g., see [12]. Here < x(t) >= Tr(ρx(t)) denotes the

quantum expectation of x(t) where ρ is the system density

operator; e.g. see [15]–[17]. It is straightforward to verify that

if (25) is an unbiased estimator for the system (23) then

F (t) = A(t)−G(t)DC(t) ∀t ≥ t0

and x̂0 =< x0 >; e.g., see [12]. Hence, an unbiased estimator

for the system (23) will be a filter of the form

dx̂(t) = (A(t)−G(t)DC(t)) x̂(t)dt+G(t)dz(t);

x̂(t0) = < x0 > . (26)

Corresponding to the system (16) and the filter (26) is the

estimation error

e(t) = x(t)− x̂(t)

which satisfies

de(t) = [A(t)−G(t)DC(t)] e(t)dt+ [B(t)−G(t)D] dw(t).

The corresponding error variance is defined by

J =< e(T )T e(T ) >= Tr[Σ(T )]

where

Σ(T ) =
1

2
< e(t)e(t)T + (e(T )e(T )T )T >

is the error covariance matrix. It is straightforward to verify

that the matrix Σ(T ) satisfies the following matrix differential

equation:

Σ̇(t) = [A(t)−G(t)DC(t)]Σ(t)

+Σ(t)[A(t)−G(t)DC(t)]T

+ [B(t)−G(t)D] [B(t)−G(t)D]
T

where

Σ(t0)

=
1

2
< e(t0)e(t0)

T + (e(t0)e(t0)
T )T >

=
1

2
< (x(t0)− < x0 >)(x(t0)− < x0 >)T >

+
1

2
< ((x(t0)− < x0 >)(x(t0)− < x0 >)T )T >

= Σ0;

e.g., see [12]. The filter of the form (26) which minimizes the

quantity J is the minimum variance unbiased estimator for

the system (23). This filter is a version of the Kalman filter

for the case of general QSDEs of the form (23).

Theorem 1: The minimum variance unbiased estimator for

the system (23) is a filter of the form (26) where

G(t) =
(

Σ∗(t)C(t)TDT +B(t)DT
) (

DDT
)−1

and Σ∗(t) is defined by the matrix differential equation

Σ̇∗(t) = [A(t)−B(t)DT
(

DDT
)−1

DC(t)]Σ∗(t)

+Σ∗(t)[A(t)−B(t)DT
(

DDT
)−1

DC(t)]T

−Σ∗(t)C(t)TDT
(

DDT
)−1

DC(t)Σ∗(t)

+B(t)B(t)T −B(t)DT
(

DDT
)−1

DB(t)T ;

Σ∗(t0) = Σ0.
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We now consider the special case of ωo = 0. In this case,

we obtain

e = 2
√
κ

[

2
κ

0
0 2

κ

]

Jβ =
4√
κ
Jβ.

Hence, as κ → 0, �e� → ∞ and therefore �K� → 0. This

means that we can make the noise level on our measurement

arbitrarily small by choosing κ > 0 sufficiently small.

However, as κ gets smaller, the system (18) gets closer to

instability and hence, takes longer to converge to steady state.

III. KALMAN FILTER FOR THE PLANT OBSERVER SYSTEM

Since the QSDEs (16) describing the plant observer system

are linear, it should be possible to apply Kalman filtering to

this system in order to estimate zp based on the available

measurements. However, the QSDEs (16) are not physically

realizable; e.g., see [15], [16]. Hence, the quantum Kalman

filter such as discussed in [20], [21] formally does not apply;

see also [22]. Although the QSDEs (16) could be made

physically realizable by adding an extra fictitious quadrature

variable to pair with zp, using the technique described in

[23], the issue would remain that zp corresponds to a finite

level quantum system and hence, its initial condition cannot

be Gaussian. To overcome this issue, we will take another

approach to Kalman filtering for quantum systems noting

that in the classical case, the Kalman filter also has the

property that it is optimal linear unbiased estimator for a linear

stochastic system, even in the case of non-Gaussian noise and

initial conditions; e.g., see [12], [13].

We first consider a general set of linear QSDSs:

dx(t) = A(t)x(t)dt+B(t)dw; x(t0) = x0;

dy(t) = C(t)x(t)dt+ dw(t) (23)

where x is a n × 1 vector of self adjoint operators on an

underlying Hilbert space, dw is a m × 1 vector of quantum

noises expressed in quadrature form corresponding to the

input field of the system and dy represents the corresponding

output field; e.g., see [15]–[17]. Here m is assumed to be even.

The measured output of the system z(t) will be a real vector

quantity of dimension m
2

obtained by applying homodyne

detection to yield one quadrature of each of the output fields;

i.e., we write

dz(t) = Ddy(t) = DC(t)x(t)dt+Ddw(t). (24)

Also, A(t) ∈ R
n×n, B(t) ∈ R

n×m, C(t) ∈ R
m×n, D ∈

R
m

2
×m. The augmented system (16) is a system of the form

(23).

We will consider linear filters of the following form:

dx̂(t) = F (t)x̂(t)dt+G(t)dz(t); x̂(t0) = x̂0; (25)

where x̂(t) ∈ R
n is a vector of estimates for x, F (t) ∈ R

n×n

and G(t) ∈ R
n×m

2 . The filter (25) is said to be an unbiased

estimator for the system (23) if

< x(t) >= E {x̂(t)} ∀t ≥ t0;

e.g., see [12]. Here < x(t) >= Tr(ρx(t)) denotes the

quantum expectation of x(t) where ρ is the system density

operator; e.g. see [15]–[17]. It is straightforward to verify that

if (25) is an unbiased estimator for the system (23) then

F (t) = A(t)−G(t)DC(t) ∀t ≥ t0

and x̂0 =< x0 >; e.g., see [12]. Hence, an unbiased estimator

for the system (23) will be a filter of the form

dx̂(t) = (A(t)−G(t)DC(t)) x̂(t)dt+G(t)dz(t);

x̂(t0) = < x0 > . (26)

Corresponding to the system (16) and the filter (26) is the

estimation error

e(t) = x(t)− x̂(t)

which satisfies

de(t) = [A(t)−G(t)DC(t)] e(t)dt+ [B(t)−G(t)D] dw(t).

The corresponding error variance is defined by

J =< e(T )T e(T ) >= Tr[Σ(T )]

where

Σ(T ) =
1

2
< e(t)e(t)T + (e(T )e(T )T )T >

is the error covariance matrix. It is straightforward to verify

that the matrix Σ(T ) satisfies the following matrix differential

equation:

Σ̇(t) = [A(t)−G(t)DC(t)]Σ(t)

+Σ(t)[A(t)−G(t)DC(t)]T

+ [B(t)−G(t)D] [B(t)−G(t)D]
T

where

Σ(t0)

=
1

2
< e(t0)e(t0)

T + (e(t0)e(t0)
T )T >

=
1

2
< (x(t0)− < x0 >)(x(t0)− < x0 >)T >

+
1

2
< ((x(t0)− < x0 >)(x(t0)− < x0 >)T )T >

= Σ0;

e.g., see [12]. The filter of the form (26) which minimizes the

quantity J is the minimum variance unbiased estimator for

the system (23). This filter is a version of the Kalman filter

for the case of general QSDEs of the form (23).

Theorem 1: The minimum variance unbiased estimator for

the system (23) is a filter of the form (26) where

G(t) =
(

Σ∗(t)C(t)TDT +B(t)DT
) (

DDT
)−1

and Σ∗(t) is defined by the matrix differential equation

Σ̇∗(t) = [A(t)−B(t)DT
(

DDT
)−1

DC(t)]Σ∗(t)

+Σ∗(t)[A(t)−B(t)DT
(

DDT
)−1

DC(t)]T

−Σ∗(t)C(t)TDT
(

DDT
)−1

DC(t)Σ∗(t)

+B(t)B(t)T −B(t)DT
(

DDT
)−1

DB(t)T ;

Σ∗(t0) = Σ0.
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Furthermore, the error covariance matrix for this estimator is

given by Σ(t) ≡ Σ∗(t).
We now construct the above Kalman filter for the system

(16). We assume that the density operator for the quantum

plant (3) is ρp. It follows that for t0 = 0,

< zp(t0) >=
3

∑

i=1

Cpi Tr(ρpσi) = z̄p0

and write

< xo(t0) >= x̄o0.

Also using (1), we calculate

< (zp(t0)− z̄p0)
2 > = < zp(t0)

2 > −z̄2p0

=

3
∑

i=1

C2
pi − z̄2p0

= σp0

and write

1

2
< (xo(t0)− x̄o0)(xo(t0)− x̄o0)

T >

+
1

2
< ((x(t0)− x̄o0)(x(t0)− x̄o0)

T )T >

= Σo0.

Now the plant observer system (16) defines a set of QSDEs

of the form (23), (24) where

A(t) ≡
[

0 0
2Jβ −κ

2
I + 2ωoJ

]

;

B(t) ≡
[

0
−√

κI

]

;

C(t) ≡
[

0
√
κI

]

; D = K;

< x0 > =

[

z̄p0
x̄o0

]

; Σ0 =

[

σp0 0
0 Σo0

]

.

Hence, the corresponding Kalman filter for the plant observer

system (16) is defined by the equations

d

[

ẑp
x̂o

]

=

[

0 0
2Jβ −κ

2
I + 2ωoJ

] [

ẑp
x̂o

]

dt

+G(t)

(

dzo −
[

0
√
κK

]

[

ẑp
x̂o

]

dt

)

;

[

ẑp(0)
x̂o(0)

]

=

[

z̄p0
x̄o0

]

;

G(t) = (Σ∗(t) + I)

[

0√
κI

]

KT
(

KKT
)−1

;

Σ̇∗

=

[

0 0

2Jβ −

κ

2
I + 2ωoJ + κKT

(

KKT
)

−1

K

]

Σ∗

+ Σ∗

[

0 0

2Jβ −

κ

2
I + 2ωoJ + κKT

(

KKT
)

−1

K

]T

− Σ∗

[

0 0

0 κKT
(

KKT
)

−1

K

]

Σ∗

+

[

0 0

0 κI − κKT
(

KKT
)

−1

K

]

;

Σ∗(0) =

[

σp0 0
0 Σo0

]

.
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