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We develop an improved quantitative model of mammalian rod phototrans-
duction, and we apply it to the prediction of responses to bright flashes of
light. We take account of the recently characterized dimeric nature of PDE6
activation, where the configuration of primary importance has two transducin
molecules bound. We simulate the stochastic nature of the activation and
shut-off reactions to generate the predicted kinetics of the active molecular
species on the disc membrane surfaces, and then we integrate the differential
equations for the downstream cytoplasmic reactions to obtain the predicted
electrical responses. The simulated responses recover the qualitative form of
bright-flash response families recorded from mammalian rod photoreceptors.
Furthermore, they provide an accurate description of the relationship between
the time spent in saturation and flash intensity, predicting the transition
between first and second ‘dominant time constants’ to occur at an intensity
around 5000 isomerizations per flash, when the rate of transducin activa-
tion is taken to be 1250 transducins s−1 per activated rhodopsin. This rate is
consistent with estimates from light-scattering experiments, but is around
fourfold higher than has typically been assumed in other studies.We conclude
that our model and parameters provide a compelling description of rod
photoreceptor bright-flash responses.
1. Introduction
Vertebrate phototransduction has been studied extensively since the 1970s, and a
number of quantitative molecular models have been developed that have pro-
vided a good description of many features of the rod’s electrical response to
light (e.g. [1–8]). However, we contend that each of these models suffers impor-
tant shortcomings, which we enumerate below. In light of these issues, we have
developed a new quantitative model of vertebrate phototransduction, and we
have investigated its applicability to the electrical responses of mammalian
rods to bright flashes of light.

We suggest that the most serious shortcoming in previous quantitative
descriptions of the vertebrate phototransduction cascade is that they have invari-
ably overlooked the dimeric nature of the activation of the PDE6 by transducin, as
originally reported decades ago [9], and recently re-examined [10,11]. In order to
simplify quantitative analysis, Lamb & Pugh [2] proposed that the activation of
the PDE6 might be approximated as occurring independently for the two sub-
units, and in a number of respects that approach has indeed been adequate.
However, our recent examination of the implications of dimeric activation [11]
and our further analysis in this paper have shown that the ‘independent acti-
vation’ simplification can lead to errors in the predicted kinetics of both
activation and shut-off of the light response.

A second significant shortcoming of previousmodels involves themagnitudes
of the parameter values that need to be assumed. Most importantly, we contend
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Figure 1. Reactions of transducin and phosphodiesterase at the disc mem-
brane. Activation steps are in red, and shut-off steps are in blue. Activated
transducin, G*, is created (dotted arrow) when activated R* is present. Mol-
ecules of the phosphodiesterase PDE6 exists in one of three forms: as E, with
no G* bound; as E*, with one G* bound; or as E**, with two G*s bound.
G* binds with E to form E* at rate r1, and binds with E* to form E** at rate
r2; expressions for these rates are given in the text. The three shut-off steps
each involve hydrolysis of the terminal phosphate of a G*. The singly bound
E* shuts off with rate constant kE*; the doubly bound E** shuts off with rate
constant kE**; and the unbound G* shuts off with rate constant kG*.
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that in the past the rate of activation of transducin by a single
activated rhodopsin (R*) has been greatly underestimated,
and various other parameters have been overestimated, in
order for the models to correctly emulate the experimentally
observed amplification of the single-photon response. Rather
than the previously accepted rate of transducin activation in
mammalian rods of approximately 300–350 G* s−1 per R*, we
shall present evidence that a more accurate estimate of the
rate is around 4× higher, at approximately 1250 G* s−1 per R*.

A key piece of evidence supporting this higher rate of trans-
ducin activation relates to the ‘transition intensity’ at which the
change from a lower to a higher dominant time constant is
observed tooccur, inmeasurements of the time that the response
remains in saturation. Using the previous rate of 300–350 G* s−1

per R*, the transition intensity is calculated to be around 12 000–
20 000 R* per rod (depending on exactly what other assump-
tions are made; see Discussion), whereas the observed
transition intensity for a mouse rod is 4000–5000 R* per rod.
This substantial discrepancy represents a third shortcoming of
previous modelling, which we will show is eliminated under
our revised model and with our revised parameter values.

We think that a fourth shortcoming of the independent
activation model is that it predicts the first dominant time
constant, τD1, to be equal to the tail recovery time constant,
τrec, measured at late times in the response (i.e. τD1 = τrec).
However, experiments show a genuine discrepancy between
these two measured parameters, with τD1 roughly 20–25%
larger than τrec (see, for example, [12,13]). Remarkably,
we will show that such a ratio, of τD1≈ 1.2 τrec, is indeed
predicted by our dimeric PDE6 activation model.

A fifth shortcoming of the independent activation model
is that it fails to explain an additional delay of approximately
5 ms (compared with cone responses) that is observed in
the rising phase of rod responses to moderate flashes [8,11],
a feature that is accounted for in the new model.

We suggest that another shortcoming of almost all previous
modelling relates to the assumed time-course of R* activity.
When modelling bright-flash responses, it has generally been
assumed that R* decays exponentially, but there is no exper-
imental evidence for this contention. On the other hand, for
simulation of single-photon responses, it has instead typically
been assumed that R* activity declines in multiple small steps,
with each additionally attached phosphate group. However,
we have shown that that assumption leads to non-physiological
properties for the simulated single-photon responses [14],
including an implausible shape for the amplitude distribution
histogram and the occurrence of individual events with kinetics
deviating considerably from those that are observed experimen-
tally. An alternative model, in which phosphorylation instead
simply alters the stochastic rate of abrupt R* shut-off, provides
a better description of the single-photon response properties
[14], and we will adopt that description here.

Finally, we note that the late component that is observed
between 3 s and 10 s after flashes delivering 10 000–50 000 R*
per rod is not accounted for in previous modelling. Here we
will see that, by invoking the occurrence of a low rate of ‘aber-
rant’ R* shut-off events (as reported by [6,15,16]), it is possible
to generate responses bearing close similarity to thosemeasured
experimentally frommammalian rods.

By combining these ideas, we have developed an improved
quantitative model of mammalian rod phototransduction, and
wehave applied it to thepredictionof responses tobright flashes
of light, as follows. We consider the case of abrupt shut-off of
R* [14], and we take account of the dimeric nature of PDE6
activation and shut-off, where the doubly activated form E** is
of primary importance [11]. In analysing the time-course of
E**(t), we model the case of multiple photoisomerizations per
disc surface in three different ways, in each of which we take
account of the decay of free (i.e. unbound) activated transducin
(G*). By then solving the downstream (cytoplasmic) reactions,
wepredict the electrical response overawide rangeof saturating
flash intensities, and we show that the predictions account well
for the qualitative form of experimentally measured responses
of wild-type mouse rods to bright flashes. From these predicted
electrical responses, we can plot the time in saturation (Tsat) as a
function of flash intensity (Φ, in photoisomerizations per rod)
semi-logarithmically [17]. As seen in experiments, the model
predicts two intensity regimes exhibiting dominant time con-
stants, τD1 and τD2, of around 250 ms and 750 ms, respectively,
when a 10% criterion is used to define recovery. Importantly,
we obtain the correct transition intensity between regimes, of
Φtrans≈ 5000 R* per rod, when we use a transducin activation
rate of νG* = 1250 G* s−1 per R*.

2. Model
We begin by describing the reactions at the disc surface that
underlie response recovery, and thereafter we outline our
approaches to simulating these reactions in the case of bright
flashes. Our simulation methods can be divided into three
categories: (i) avery time-consuming ‘full’approach that simulates
the2Ddiffusional interactionsof reactingmoleculesat thediscsur-
face; (ii) a much faster ‘mass-action’ approach that relies on the
attainment of spatial homogeneity on the disc membrane; and
(iii) a variant of the second case that additionally takes account
of the low probability of stochastic occurrence of ‘aberrant’ R*
shut-off events on different disc surfaces. The three approaches
are now outlined, and details of the methods are given in §5,
along with several analytical solutions that we obtained, some of
which provide checks on the simulations. Thereafter, for evalu-
ation of the rod’s electrical response, our methods closely
followed those in other recent studies, and are described in §5.12.

2.1. Disc-based reactions of transducin and the
phosphodiesterase

The disc-based reactions involving transducin and the PDE
are shown schematically in figure 1. Activation reactions
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are shown in red, with the dotted arrow denoting G* for-
mation at a rate proportional to R* activity, and the two
curved red arrows indicating binding to form E* and E** at
rates r1 and r2. The shut-off reactions are shown in blue,
and each involves hydrolysis of the terminal phosphate of a
G*·GTP, that is either (i) singly bound as E*, or (ii) doubly
bound as E**, or (iii) unbound as free G*; the corresponding
three rate constants are kE*, kE** and kG*.
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Figure 2. Predicted mean single-photon response (SPR). (a) Disc reactants.
The full 2D simulation approach of method 1 was applied, using the standard
parameters listed in table 1, and with a single R* created at a random pos-
ition on the disc surface at time zero in each trial. Traces represent the mean
responses to 2000 trials. (b) Electrical response. The downstream reactions
were solved for the case of longitudinal diffusion in the outer segment,
using the standard parameters listed in table 2, in response to each individual
simulation of E**(t) time-course used in deriving (a). The trace in (b) is the
mean of those 2000 individual downstream responses.
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2.2. Approaches to simulation of the disc-based
reactions (methods 1, 2, 3)

Method 1: Stochastic simulation of 2D diffusional interactions. Our
first approach to calculating the bright-flash responses was to
undertake ‘full’ simulations of the 2D diffusional interactions
between the molecules on the disc membrane, using the
same methods as in our recent analyses of single-photon
responses [11]. We refer to this as method 1, and it is described
further in §5.1. Unfortunately, though, this approach becomes
excessively time-consuming for intense flashes, because of
the combination of the need to simulate multiple cases with
different numbers of R* per disc surface, the need to simulate
out to long post-flash times, and the need to repeat the simu-
lations many times in order to achieve a reliable average. On
the laptop computer that was available, it took around 17 h
to obtain a good average for the E**(t) response in the case of
a fixed number of 10 R*s per disc surface. And because of the
Poisson nature of photon absorption on different discs, we
required comparable simulations at numerous other numbers
of R*s per surface, in order to be able to calculate the electrical
response to a bright flash. Therefore, we developed and
validated a much faster approach.

Method 2: Approximation in the case of spatial homogeneity of
disc reactants. Within approximately 100 ms of the delivery of
a bright flash, the punctate activity of R* molecules will have
subsided (see trace for R* in figure 2a), and within a total of a
few hundred milliseconds the distributions of reactant species
(G*, E, E*, E**) on the disc membrane will have each become
spatially homogeneous (see §5.3.1). After that time, we can
simply model the interactions between the molecules using
a mass-action approach that ignores spatial effects. In §5.3
we present the differential equations applicable in this case,
and we derive expressions for the rates r1 and r2 in figure 1
above. Section 5.5 then gives details of this approach, which
we refer to as method 2. This method was more than 2000-
fold faster than method 1, primarily because it required no
simulation of spatial interactions. In the Results section, we
compare the predictions of methods 1 and 2, and show
close agreement between them. As a further check, in §5.6
we derive an analytical solution for a lower limit to the
time-course for the decay of free G*, and we show that
the simulated G* traces for method 2 are just marginally
above this theoretical lower limit.

Method 3: Addition of stochastic occurrence of ‘aberrant’R* shut-
off events. If even a small proportion of activated R* fail to inac-
tivate normally (i.e. within 200 ms), and instead take seconds to
shut off, then this will markedly affect the recovery predicted at
late times for very intense flashes. In particular, our simulations
show a slow tail in the predicted recovery, that bears a marked
resemblance to experimentally recorded late slow tails. How-
ever, because of the relatively small number of aberrant R*
events (even at quite high flash intensities), and the fact that
these events occur at stochastic locations along the outer seg-
ment, it is unfortunately necessary to simulate the activity on
each disc surface, and then subsequently integrate the down-
stream cytoplasmic equations for the spatial case, and as a
result this method is slow. Section 5.10 gives further details of
this approach, which we refer to as method 3.

2.3. Considerations relevant to the numerical
simulations

2.3.1. Sources of fluctuation in the activation and shut-off steps

In approximating the response to a very bright flash, one
might think it sufficient to analyse the downstream behaviour
elicited by the mean level of activation across all the disc sur-
faces, but our analysis shows that this is not the case. A major



Table 1. Parameters for simulation of lateral diffusion reactions underlying dimeric activation of PDE**. The stimulus corresponded to a brief flash at t = 0 that
delivered Q photoisomerizations at random locations on the circular disc. G*s were generated stochastically using the ‘shortcut’ method (see text), at a mean
rate νG* at the position of each R*; thus the density CG of G-protein holomers Gαβγ was only needed in calculating depletion of G-protein. The initial numbers
of G-protein and PDE holomers were the same in each trial (i.e. they were not stochastic variables). Reactions between diffusing molecules occurred at the
simulated diffusion limit (i.e. upon each contact between molecules that could react with each other).

symbol description value units

dimensions and time increment

d diameter of circular disc 1.3 µm

Δx lattice grid spacing 5 nm

Δt time increment 0.5 µs

lateral diffusion at the disc membrane

CG density of G-protein Gαβγ on disc membrane 2500 µm−2

Km Michaelis constant of G-protein depletion 0.14

CE density of PDE holomers on disc membrane 80 µm−2

DR* lateral diffusion coefficient of R* 1.5 µm2 s−1

DG* lateral diffusion coefficient of G* 2.2 µm2 s−1

DE lateral diffusion coefficient of PDE 1.2 µm2 s−1

DE* lateral diffusion coefficient of PDE* 1.0 µm2 s−1

stochastic R* shut-off [14]

M minimum phosphates required before Arr binding 3

μ common rate of the M + 1 R* shut-off reactions 60 s−1

rates of transducin activation and PDE shut-off

νG* rate at which fully active R* creates G*s 1250 s−1

kE* rate constant of PDE* decay to PDE 2.5 s−1

kE** rate constant of PDE** decay to PDE* 5 s−1

kG* rate constant of decay of unbound G* 1.0 s−1
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non-linearity is introduced in the system by the saturation of
PDE activation that occurs at the very high levels of activated
transducin elicited by bright flashes; this has the result that an
alteration in the initial level G*(0) of activated transducin does
not cause a vertical scaling of E**(t) activity, but instead
causes an approximately horizontal shift. This effect is
shown in the simulations of figure 6 in the Results section,
where the number of photoisomerizations per disc surface
differs in the three panels. Intuitively, one can see that
when the PDE is ‘overloaded’ with excess transducin, then
further overloading simply holds the PDE in saturation for
even longer. A consequence of this non-linearity is that we
need to simulate the activity occurring on individual disc sur-
faces as a result stochastic fluctuations, rather than simply
taking the average across all discs.

One major source of fluctuation is stochastic variability in
thenumberofphotoisomerizations elicitedondifferent disc sur-
faces, but another crucial source turns out to be stochastic
variability in the lifetimes of individual activated rhodopsin
molecules—and this variability needs to be considered even at
very high flash intensities. Our subsequent analysis suggests
that, by taking account of these two sources of fluctuation, we
are able to obtain a good description of the rod’s bright flash
response. Other sources of variation that we do not take into
accounthere are thosedownstreamofR*, suchas stochastic fluc-
tuations in the rates of activation and shut-off of transducin and
PDE6; these sources appear to be considerably less important
because of the larger numbers of molecules participating.
2.3.2. Depletion of transducin Gαβγ with very intense flashes

Another phenomenon that needs to be taken into consi-
deration, though only at the very highest intensities, is
depletion of the G-protein holomer Gαβγ. Intensities eliciting
only a single photoisomerization per disc surface will elicit
minimal depletion, even with the high rates of activation νG*

analysed here. For a G-protein density of CG = 2500 µm−2

and an outer segment diameter of d = 1.3 µm, with a corre-
sponding disc surface are of A = 1.33 µm2, the total number
of G-protein molecules per disc surface is around 3300. And
for a mean R* lifetime of 68 ms (0.068 s) together with an acti-
vation rate of νG* = 1250 G* s−1 per R*, the mean number of
G*s activated by the single R* would be 84, or just 2.5% of
the complement of G-protein on that surface. However, for a
very bright flash that delivered Q = 40 R* per disc surface,
there would be near-total depletion of G-protein—at least,
on the simplifying assumption that those different R*s acted
independently of each other. This calculation makes it clear
that, for modelling intense flash responses, we will need to
determine the extent of depletion of transducin. This analysis
is undertaken in §5.9.
2.3.3. Phototransduction cascade parameter values

The standard phototransduction cascade parameters that
we settled upon, following preliminary analyses, are listed
in table 1 for the disc-based reactions, and in table 2 for



Table 2. Downstream phototransduction cascade parameters.

symbol description value units

parameters that determine the resting state

βDark dark rate constant of cGMP hydrolysis 4.0 s−1

αmax maximal rate of cGMP synthesis by GC 150 µM s−1

fCa fraction of CNGC current carried by Ca2+ 0.12

KGCAP Ca2+ concentration parameter of GCAP 80 nM

mGCAP Ca2+ cooperativity of GCAP 1.5

JcG, max maximal CNGC current for the OS 2000 pA

ncG cooperativity of CNGC activation by cGMP 3

KcG cGMP concentration parameter of CNGC 20 µM

Jex, max maximal exchange current for the OS 4.6 pA

Kex Ca2+ concentration parameter of exchanger 1100 nM

calculated resting dark state

cGDark dark cGMP concentration 4.12 µM

CaDark dark Ca2+ concentration 322 nM

αDark dark rate of cGMP synthesis by GC 16.5 µM s−1

JDark dark current 18.4 pA

parameters not affecting the resting state

βE** rate constant of cGMP hydrolysis by a PDE** 0.017 s−1

L length of outer segment 22 µm

Nsurfs number of disc surfaces per OS 1320

fcyto fraction of OS volume cytoplasmic 0.5

Vcyto cytoplasmic volume of OS 0.0146 pL

BCa buffering power of cytoplasm for Ca2+ 50

longitudinal diffusion parameters (when used)

DcG longitudinal diffusion coefficient for cG 40 µm2 s−1

DCa longitudinal diffusion coefficient for Ca2+ 2 µm2 s−1

nx number of longitudinal elements simulated 100
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reactions in the cytoplasm and at the plasma membrane.
The great majority of these parameter values are unchanged
from our recent study [11]. However, we raised the rate of
transducin activation per R* to νG* = 1250 G* s−1 (from our
recently assumed value of 1000 G* s−1), and lowered βE**
to compensate (see below). We also adopted a slightly smal-
ler diameter for the rod outer segment, of d = 1.3 µm, based
on recent cryo-anatomical studies [18,19]. In addition, we
now need the number of disc surfaces per outer segment,
which we take as Nsurfs = 1320, calculated for an outer seg-
ment length of L = 22 µm using the number of discs per
unit length of 30 discs µm−1 determined in several recent
studies [18–21].
3. Results
Prior to presenting our main results on the recovery of bright-
flash responses, we begin by checking that the parameters
specified in tables 1 and 2 provide a suitable description of
the single-photon response, and then we examine the kinetics
of the rising phase of the response.
3.1. Single-photon response
Figure 2a presents the mean simulated single-photon
response at the level of the disc-based reactants (R*, G*, E*
and E**) using the standard parameters in table 1. We stan-
dardized on a G-protein activation rate of νG* = 1250 s−1

because (as set out in §3.6) this provided a good description
of the transition intensity between dominant time constants
in the bright-flash regime. This rate of activation is 25%
higher than assumed in our recent analysis of single-photon
responses [11] and, as shown by the red trace in figure 2a,
it leads to a peak for E**(t) of 23.8 molecules in the mean
single-photon response, which is about 32% larger than we
obtained previously.

Therefore, in order to achieve a single-photon electrical
response comparable with experiment, and with our
earlier simulations, we reduced the hydrolytic activity for
E** to βE** = 0.017 s−1 (table 2), from our previous value of
βE** = 0.024 s−1. As shown in figure 2b, this generated a
mean single-photon amplitude of 3.8% of the dark current,
corresponding to 0.7 pA for a dark current of 18.4 pA,
which is broadly consistent with experimental measurements
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from mammalian rods in the literature. Thus, exactly the
same set of parameters that we use to describe mammalian
rod bright-flash responses also provides a satisfactory
description of mammalian rod single-photon responses.
3.2. Rising phase of bright-flash responses
We next investigated the early rising phase of PDE6 activity,
E**(t), averaged from repeated runs with method 1, which
simulates the 2D diffusional interactions using the WalkMat
program. The collected mean E**(t) responses are shown in
figure 3a for fixed numbers of photoisomerizations per disc
surface, of Q = 1, 2, 3, 4, 5, 10 and 20. As Q increases, the
mean E**(t) response becomes larger and rises earlier, while
continuing to display an S-shaped onset. The form of that
initial onset is examined more closely in the zoomed-
in view of figure 3b, where the dotted blue traces are
least-squares fits of the theoretical function equation (5.1)
that is derived in §5.2 (see below).

In previous work, for the case of a single photoisomeriza-
tion (Q = 1), we fitted the onset phase of E**(t) with the
expression for a ramp in time convolved with an exponential
decay, representing a single delay stage of roughly 7 ms pre-
ceding the ramp-wise appearance of the doubly activated E**;
see eqn (2.1) of [11]. Here, though, with responses to multiple
R*s per disc surface (and with a 25% higher rate of acti-
vation), it became apparent that an additional shorter delay
stage was also required, to provide an adequate description
at very early times. Furthermore, we discovered that by
fixing this shorter time constant at the expected first-contact
time for activation of G* by R*, namely at τ1 = 1/νG*, we
could achieve a very good fit to the rising phase of the
entire set of E**(t) responses. Thus, the fitted dotted blue
traces in figure 3b plot the expression for a ramp in time
(with slope νE**) convolved with two exponential decay
stages having time constants τ1 and τ2, with the shorter of
these (τ1) held constant.

We interpret the good fit of the ‘doubly delayed ramp’ to
indicate that, at early times, the activation of PDE behaves as
a linear process, that is delayed firstly by a very short time
constant corresponding to the first contact time for collision
of R* with a transducin, and delayed secondly by a somewhat
longer time constant of roughly 5 ms. However, we do not
have an intuitive explanation for why the dimeric activation
of PDE to E** should behave in this manner. Instead, this is
simply the observed behaviour when molecules of G* are
sequentially activated locally at a high rate, and when two
such G* molecules need to make diffusional contact with
one molecule of PDE.

The fitted values that we obtained for νE** and τ2 are
plotted in figure 4. The upper panel shows that νE** was
essentially independent of Q, indicating that the initial rate
of rise of E** remained directly proportional to the number
of isomerizations per surface, even up to Q = 20. The lower
panel shows that the time constant of the second delay, τ2,
was roughly constant for Q≤ 5 R* per surface, corresponding
to approximately 6000 R* per rod, but shortened somewhat at
higher intensities. As a rough description of this shortening,
we have drawn a Gaussian function, though we attach no sig-
nificance to the actual shape used. In the Discussion we will
consider the possible relevance of a shortening of this delay
time constant at high intensities.

3.3. Recovery phase of PDE6 activity with multiple
isomerizations per disc surface: comparison of
methods 1 and 2

Our analysis of bright-flash recoveries in this section employs
the relatively fast homogeneous approximation (method 2) to
simulate the mean time-course of recovery of E**(t) for fixed
numbers, Q, of isomerizations per disc surface. First, though,
we check the predictions from that method against the very
time-consuming 2D diffusion simulations (method 1), for a
numberof test values ofQ. Then in the next sectionwe consider
the Poisson distribution of isomerizations received by different
disc surfaces, in response to bright flashes uniformly illuminat-
ing the outer segment, to derive the mean E**(t) activity
per outer segment, and then we integrate the downstream
equations to predict the electrical response. Subsequently, in
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Figure 5. Sample simulations for the recovery phase of disc-based reactions
for Q = 10 photoisomerizations per disc surface. (a) Full 2 D stochastic simu-
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All parameters were as listed in table 1. Note that the PDE is completely
saturated when all 106 molecules per surface are in the E** state (as
occurs with this initial 15-fold excess of free G*).
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§3.5, we use quite a different approach (method 3) to simulate
the bright-flash responses when a small proportion of isomer-
izations generate ‘aberrant’ R* shut-off events. Finally, in §3.6,
we measure and plot the time Tsat that each response remains
in saturation, as a function of flash intensityΦ on a logarithmic
scale, in order to investigate the dominant time-constant
behaviour of rod phototransduction.

3.3.1. Sample recoveries for disc-based reactants using methods
1 and 2

Figure 5 illustrates our two approaches to calculating the
recovery phase of the disc-based reactions elicited by mul-
tiple photoisomerizations per disc surface. Each panel
presents a sample set of 25 stochastic simulations for a repre-
sentative case of Q = 10 photoisomerizations per disc surface,
with colour coding: free G*, green; E, black; E*, blue; and E**,
red. Figure 5a was obtained using the 2D spatial simulations
of the WalkMat program (method 1), whereas figure 5b was
obtained using the faster spatially homogeneous macroscopic
approach described in §5.4 (method 2). The sets of traces in
the two panels appear qualitatively similar, apart from the
absence in the lower panel of stochastic fluctuations in
the numbers of molecules, as would be expected for any
macroscopic approach.

However, there was a huge difference in computation time,
with each simulation taking approximately 5 min in the upper
panel (method 1), compared with approximately 120 ms in
the lower panel (method 2); this was on a 2.8 GHz laptop PC,
running Matlab R2016a under Windows 10. Accordingly, a set
of 200 simulations for Q = 10 with method 1 took around 17 h,
and sowith thatmethodwe restrictedourselves to just a handful
of values ofQ; in contrast, we could run 1000 simulations of the
macroscopic approach in approximately 2 min using method 2.
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Inspection of the traces in figure 5 highlights the impor-
tance of taking account of stochastic fluctuations in R*
lifetime in the macroscopic approximation. Thus, the differ-
ences between the individual traces in figure 5b stem from
the different levels of transducin activity elicited in the different
runs, which in turn resulted from differences in the summed
activity of the Q individual R* molecules, even though every
trial corresponded to the same number of isomerizations,
Q = 10. Because of this variation in integrated R* activity, and
the resultant temporal dispersion of individual recoveries,
the mean E**(t) response (shown in figure 6b, red trace) has a
shallower decline than that for the individual simulations.
Had we instead assumed that the macroscopic response
could have been calculated using the mean R* lifetime, then
we would incorrectly have obtained a decline of E**(t) that
was too steep.

3.3.2. Mean disc-based activity as a function of isomerizations
per surface

The mean activity calculated over repeated simulations is
plotted in figure 6, for three sample values of the numberof iso-
merizations per disc surface (Q = 5, 10 and 20). The continuous
traces are averages from method 2, whereas the thinner dot-
dashed traces are averages from method 1, and in each of the
three panels the two methods generate very similar mean
responses, as demonstrated by the fact that the dot-dashed
traces are mostly obscured. In fact, for Q = 10 and 20, we
think it possible that the macroscopic approximation approach
of method 2 may have generated marginally more accurate
mean responses, because of the larger number of stochastic
simulations that we conducted (1000) compared with the
more modest numbers of simulations using method 1
(200 and 100 in the lower two panels). On the other hand, for
Q = 5 the predicted E**(t) mean response did not quite reach
saturation, with the result that recovery had begun before
spatial homogeneity was likely to have been achieved, and
so in this case (as well as for smaller values of Q) the assump-
tions underlying the macroscopic approximation in method 2
would not have been fulfilled. Accordingly, for these lower
intensities, it is necessary to use method 1 rather than the
approximate approach.

Comparison of the three panels in figure 6 shows that the
main effect of increasing Q is to shift recovery to later times.
This shifting can also be seen in the collected traces for the
mean E**(t) in figure 7a where, to avoid overcrowding, only
a selection of values of Q have been presented, as listed in
the legend. The red traces are for method 2 and, although
only selected traces are shown, we calculated the mean recov-
ery kinetics for every value of Q from 1 to 60. The black traces
are for method 1 and, because of the time-consuming nature
of this method, we only calculated responses for Q = 1… 5, 10
and 20. Even though the approximation of spatial homogen-
eity (upon which method 2 is based) is unlikely to be
applicable for the first several hundred milliseconds, the
red traces for Q = 5, 10 and 20 all provide reasonable descrip-
tions of the corresponding black traces for method 1. And
perhaps surprisingly, the red traces for Q = 1, 2, 3 and 4 are
also quite good approximations to the black traces.

In considering the quality of fit of the red traces in
figure 7a as a description of recovery of the rod’s bright-
flash response, we are in fact only interested in the final
decline, below about 5 E** per disc surface, because it is
only then that the rod’s electrical response escapes saturation.
Accordingly, we examined the tail phase of the predicted
recoveries of E**(t) in the semi-logarithmic plot of figure 7b,
for the same traces as in panel a. For each value of Q, the
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red traces for method 2 are very nearly straight lines, with a
common slope corresponding to a rate constant of decline of
kE** = 5 s−1 (or a time constant of 200 ms). The seven black
traces for method 1 are sufficiently similar to the red traces
to give us confidence that methods 1 and 2 predict closely
similar recoveries in this small-signal region that is relevant
to the post-saturation electrical response.

3.3.3. Super-linearity of the PDE6 response

A noteworthy feature of the E**(t) traces in figure 7 is super-
linearity of response amplitude as a function of the number Q
of isomerizations per disc surface. This property is barely dis-
cernible in the linear plot of figure 7a, because the underlying
super-linearity is counteracted by response compression as
the E**(t) amplitude approaches the total number of available
PDE6 molecules, Etot = 106. The amplitudes of the tail
responses (in panels a or b), measured at a fixed time of
700 ms, are plotted in figure 7c as a function of Q, and it is
clear that the values increase more steeply than the linear
relation shown by the dotted line. The continuous blue
trace plots the function R1 Q (1 + ρ)(Q−1), with ‘super-linearity
parameter’ ρ = 0.32, and with the single-quantum amplitude
R1 = 1.42 E** per surface. This relation, which is set out sub-
sequently in equation (5.16), provides a good description of
the measurements for Q = 1, 2, 3 and 4, at t = 700 ms. Because
of the parallel nature of the tails, the same equation (with an
appropriate value for R1) also applies at other times, pro-
vided that the measurement time avoids the first few
hundred milliseconds where method 2 is not valid, and pro-
vided that the amplitudes are not so large that response
compression contributes appreciably.

This pronounced super-linearity of the response falling
phase stands in contrast to the linearity that we found for
the rising phase of the responses in figures 3b and 4a, and
the difference can be appreciated intuitively in the following
terms. For the rising phase, where the activation of transdu-
cin occurs in a punctate manner at each R* location, the
level of activation is essentially independent for each R*,
and hence the total activity at any instant is directly pro-
portional to the number of photoisomerizations. But for the
falling phase, where there has been spatial equilibration of
the levels of proteins on the disc membrane, the intrinsic
super-linearity of the PDE6’s dimeric activation by two
transducin molecules is exposed.

One consequence of this super-linearity, that is inherent in
the dimeric model of PDE6 activation, turns out to be a sig-
nificant deviation from the notion of a ‘dominant time
constant’, as used in conventional analyses of the relationship
between flash intensity and the time Tsat that the electrical
response spends in saturation [17]. This effect is examined
analytically in §5.8, and the prediction obtained there is com-
pared with simulation and with experiment in §3.6. The
position of the arrow in figure 7b is used in that analysis to
predict the vertical position of the theoretical curve.

3.4. Family of bright-flash responses (method 2)
To predict the entire time-course of the mean E**(t) response,
summed over all the discs of the rod outer segment, we took
the predicted responses for defined numbers of isomerizations
per disc surface in figure 7 andweighted them according to the
Poisson distribution, to generate the traces shown in figure 8a.
These traces for mean E**(t) over the outer segment broadly
resemble the previous traces for individual values of Q,
though the recoveries are shallower because of the ‘blurring’
caused by averaging across traces for multiple values of Q.
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Figure 8. Mean E** activity over all the disc surfaces of the outer segment
(a), and mean electrical response (b), calculated using method 2, for a series
of bright flashes. Flash intensities were 100, 200, 300, 500, 1000, 2000, 3000,
5000, 10,000, 20,000, 30 000 and 50 000 R* per outer segment. All par-
ameters were as listed in tables 1 and 2. Dashed horizontal lines show
the 10% criterion level for recovery of the electrical response from saturation
in (b), and the corresponding level of 2.6 E** per disc surface in (a).
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Using the E**(t) traces in figure 8a, the equations for the
downstream reactions were then integrated, to generate the
rod’s electrical response (figure 8b). The two panels in figure 8
use the same set of flash intensities, with Φ running from
100 R* to 50 000 R* per rod per flash.

The dashed horizontal line in figure 8b shows the level of
10% recovery of circulating current, that we will subsequently
use to define the time in saturation, Tsat. The corresponding
dashed horizontal line in figure 8a shows the mean level of
PDE6 activity, approximately 2.6 E** per disc surface, at
which the electrical response escapes saturation, and its pos-
ition emphasizes that only the final tail of E**(t) is relevant to
the recovery of the electrical response.

As a modification of the downstream integrations, we tried
replacing the mean E**(t) traces obtained using method 2
with those obtained using method 1, for Q = 1… 5, because
figure 7a showed minor differences between the two methods.
However, the only discernible difference in the calculated
responses for the outer segment was the introduction of
small fluctuations in the late recovery of the electrical response
at intermediate intensities, whichwe attribute to fluctuations in
the tail traces of E**(t) for method 1 in figure 7b. Therefore,
we chose to use E**(t) traces only from method 2 in all the
downstream integrations.
3.5. Late slow recovery: inclusion of aberrant R*
shut-off events (method 3)

Up to this point, our simulations have not attempted to incor-
porate any description of the late slow phase of recovery that
is seen with flashes exceeding a few thousand R*. But, as it is
possible that the presence of this late component will delay
the escape of the electrical response from saturation, we
decided to attempt a description. We based this preliminary
description on the occurrence of ‘aberrant’ R* shut-off
events [6,15,16] reported in the electrical response to flashes
delivering approximately 10–1000 isomerizations, together
with the assumption that comparable activity likewise
occurs at even higher intensities. Our simulation approach
is described in §5.10, and is termed method 3.

Three additional parameters are needed to describe the
rod’s response to aberrant R* shut-off events: the probability
paberr that each R* will generate such an event; the mean life-
time τaberr of these stochastic shut-off events; and a measure
of their plateau amplitude. In monkey rods, Kraft & Schnapf
[16] reported paberr≈ 1/400 and τaberr≈ 6.5 s, with a plateau
level of approximately 0.8 pA for a rod with a maximal
response of 25 pA. Perhaps surprisingly, this plateau level is
similar to the peak amplitude of the normal single-photon
response, rather than being around twice its amplitude, as
might be expected if the R* were to retain full activity during
its aberrant lifetime; later we will consider the significance of
this value. In our simulations, the way in which we set the pla-
teau amplitudewas by specifying the fractional activity aaberr of
theR* during its aberrant lifetime,with 0 < aaberr≤ 1; in order to
achieve a plateau level approximately equal to the peak of the
single-photon response, we set aaberr = 0.25. For the other two
parameters, we set paberr = 0.002 and τaberr = 4 s, similar to the
values above for monkey rods, because we found that this
choice provided a reasonable qualitative description of the
late tail phase in experiments from the literature (see electronic
supplementary material, figure S1, panels E and F).

The predictions of method 3, with the inclusion of aber-
rant R* events occurring at low probability, are shown by
the red traces in figure 9, for the same set of flash intensities
as in figure 8 but on an extended time-base; for comparison
the blue traces show the predictions without aberrant R*
events, using method 2 (and are therefore the same as in
figure 8). For the mean E**(t) traces in the upper panel, it
might be thought that the aberrant events appear to contrib-
ute little, yet for the mean electrical responses (red traces in
the lower panel) it is clear that the aberrant events have a sub-
stantial impact at late times for intense flashes. Furthermore,
these predicted traces bear a strong qualitative resemblance to
intense-flash responses reported in a number of studies in the
literature (see electronic supplementary material, figure S1),
as will be considered in the Discussion.

The mean responses with the inclusion of aberrant
events (red traces in figure 9) are each averaged from at
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Figure 9. Inclusion of aberrant R* shut-off events, on slower time-base, for
the same flash intensities as in figure 8. (a) Mean E** activity. (b) Electrical
response. Blue traces are in the absence of aberrant events, and plot the
same responses as in figure 8. Red traces are from method 3, with the
inclusion of aberrant R* shut-off events occurring with a probability of
0.002, a mean lifetime of 4 s, and with activity 25% that of fully activated
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to 10 000/Φ for Φ < 1000; e.g. 50 trials averaged for Φ = 200 R*.
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Figure 10. Fluctuations in raw responses to bright flashes, when aberrant R*
events are included. For each of three intensities, the first 10 simulated responses
are shown. Black, 500; blue, 10 000; red, 50 000 R* per outer segment.
For 500 R*, six of the trials elicited no aberrant event, and superimpose.
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least 10 simulation trials, and they therefore obscure the mag-
nitude of the underlying fluctuations. To illustrate these
fluctuations, figure 10 plots a sample of 10 raw simulated
responses for three representative intensities: 500, 10 000
and 50 000 R*. At the lowest of these intensities (black
traces), individual aberrant R* shut-off events are clearly vis-
ible, whereas at the higher intensities (blue, red) the events
overlap, so that one sees fluctuations rather than clear-cut
transitions. The plateau level for the lowest intensity, of
4–5% of the dark current, is a direct result of our choice of
an R* activity level of aaberr = 0.25 in the aberrant state. How-
ever, the magnitude of this parameter is not crucial, because
we found the simulated responses to be qualitatively similar
for different values of aaberr, though of course the plateau
level and the amplitudes of the fluctuations were larger
when aaberr was increased.
3.6. Dominant time constant of recovery
For the bright-flash response recoveries predicted by methods
2 and 3, we measured the time Tsat taken for the mean
electrical response to escape saturation, defined here as recov-
ery to 10% of the circulating current (i.e. 90% remaining
suppressed). We made these measurements not only for the
traces shown in figure 9b, but also for additional traces that
are not illustrated, obtained at more closely spaced intensi-
ties. Our measured values of Tsat from the simulations are
plotted against flash intensity semi-logarithmically in
figure 11, using blue for method 2 (which does not include
any late slow component of recovery) and red for method 3
(which includes aberrant R* shut-off events). For intensities
up to 5000 R*, the blue and red curves virtually superimpose,
demonstrating internal consistency between the methods.

The heavy dotted black trace (shown only up to 10 000 R*)
is the prediction obtained from equation (5.18) with ρ = 0.32,
based on the observed super-linearity in the scaling of the
final tails of E**(t) recovery in figure 7 (see §5.8). The thinner
dotted straight lines have been fitted by eye, and have slopes
corresponding to time constants of 245 and 780 ms; these
lines intersect at Φ≈ 4900 R*. Finally the symbols are the
measurements plotted by Burns & Pugh [22].

The heavy dotted black curve, predicted from super-
linearity of the tails of E** recovery using equation (5.18),
provides an excellent qualitative description of the intensity
dependence of Tsat up to at least Φ≈ 3000 R* per flash.
Furthermore, both the blue curve and the red curve, obtained
for simulations without and with aberrant R* events, provide a
reasonable description of the experimental data across the
entire range of flash intensities investigated, up to approximately
50 000 R* per flash. Furthermore, the blue and red curves both
show a transition from a shallower to a steeper slope, and they
both show some degree of curvature over the entire intensity
range. Thus, for the parameter values that we have chosen, our
simulations of the dimeric model of PDE6 activation provide a
perfectly acceptable description of the experimentally observed
dependence of Tsat on flash intensity for mouse rods.
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Figure 11. Saturation time Tsat versus flash intensity Φ, semi-logarithmically.
Symbols are experimental measurements for mouse rods from fig. 4B of
Burns & Pugh [22]. The blue and red curves are for method 2 (without aber-
rants) and method 3 (with aberrants), respectively, with parameter values as
listed in tables 1 and 2. For both methods, the flash intensities ranged from
100 to 62 500 R*. For method 2 the intensities were spaced at intervals of
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smooth red curve is a fifth-order polynomial fitted through the measure-
ments. For the aberrant R* events, the probability of occurrence was
paberr = 0.002, the mean stochastic lifetime was τaberr = 4 s and the activity
relative to full R* activity was aaberr = 0.25. The heavy dotted black curve
plots equation (5.18) with ρ = 0.32 and vertical shift 585 ms. The dotted
straight lines have slopes corresponding to dominant time constants of
τD1 = 245 ms and τD2 = 780 ms, and intersect at a transition intensity of
Φtrans≈ 4900 R* per rod.
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At intensities around Φ = 1000 R*, the tangent to the simu-
lated curves has a slope of approximately 245 ms (see dotted
line), in contrast to the time constant of 200 ms that we used
for the decay of E** (τE** = 1/kE**, where kE** = 5 s−1). By way
of comparison, we measured the tail phase of the simulated
electrical responses, and found that these all had a final
decay time constant of approximately 208 ms, marginally
longer than τE**. As a check, we also measured the tails of the
E**(t) traces (figure 7b), and confirmed that these all had a
time constant of 200 ms, as expected. These measurements
show that the dimeric model of PDE6 activation predicts an
apparent first dominant time constant, τD1, that is around
20% greater than the time constant of the tail of the electrical
response, τrec. In the Discussion we consider the significance
of this difference.
4. Discussion
We consider the most important outcome of this study to be
our demonstration that, with appropriate choice of parameter
values, the recently proposed model of dimeric activation of
the rod phosphodiesterase PDE6 [10,11] is able to provide a
compelling description of bright-flash responses recorded in
experiments on mammalian rods. Not only is there a close
qualitative similarity to the form and kinetics of families of
flash responses reported in many studies in the literature
(see §4.2 below), but in addition the relationship between
flash intensity and time spent in saturation is accounted for
accurately. Furthermore, the super-linearity that is intrinsic
to the model predicts that the first dominant time constant
of recovery, τD1, should be around 20–25% greater than the
time constant of recovery of the tail of the electrical response,
τrec, as is observed experimentally, with τD1≈ 240 ms and
τrec≈ 200 ms. In addition, the simulated responses account
for the occurrence of an additional delay in the rising
phase. Achievement of the illustrated level of agreement
between simulation and experiment requires constraints on
the values of certain parameters, including the rate of trans-
ducin activation per R* and the number PDE6 holomers per
disc surface, as we discuss below in §4.3.

4.1. Initial delay in the rising phase of the rod’s flash
response

In our previous study, we examined the rising phase of the
simulated response to a single photoisomerization (Q = 1) for
a rate of transducin activation of νG* = 1000 G* s−1, and we
reported a delay corresponding to a time constant of approxi-
mately 7 ms. Here we have extended that analysis to the
case of multiple photoisomerizations per disc surface (up to
Q = 20), using a higher activation rate of νG* = 1250 G* s−1.
These simulations exposed a second shorter time constant,
and we were able to fit the responses accurately by holding
that shorter time constant fixed at t1 ¼ n�1

G� ¼ 0:8 ms: The
least-squares fitting procedure reported the rate of rise (νE**)
to be approximately independent of Q, with a mean of
416 E** s−1, and reported the second time constant to decrease
as Q increased, from an initial value of approximately 5 ms at
Q = 1. The larger of these two delays, τ2, is likely to explain
the recent report of the existence of a longer delay in the
activation of rods compared with cones [8].

On the other hand, the relevance of the decrease in time
constant τ2 predicted in figure 4bwith increasing Q is unclear.
One might anticipate that this would cause a shortening
of the effective delay time teff required to fit the delayed
Gaussian description [2] to the electrical responses. However,
for suction pipette recordings from mammalian rods we are
not aware of any study where this fit has been examined
at intensities as high as 25 000 R* per rod, corresponding to
Q = 20. And although ERG scotopic a-wave experiments
have been conducted at these and higher intensities, there
is currently controversy regarding the origin of the ERG
signal with very intense flashes. Thus, Robson & Frishman
[23] report simulations showing that with very bright flashes
the ERG a-wave includes a substantial signal arising from the
flow of capacitive current in the outer nuclear layer, with
the consequence that it may be quite inappropriate to attempt
to fit and interpret the delayed Gaussian description in the
case of ERG a-wave responses at very high intensities.

4.2. Predicted bright-flash response recoveries and time
spent in saturation

The simulated electrical responses in figure 9b (red traces,
including aberrant events) provide a close qualitative resem-
blance to families of flash responses that have been reported
in the literature for mammalian rods, in those studies that
delivered sufficiently high intensities and/or examined the
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Figure 12. Comparison of experimentally recorded family of flash responses
from a mouse rod (black traces), from fig. 4A of Burns & Pugh [22], with the
predictions of our model for bright flashes (red traces). The estimated flash
intensities were extracted from examination of fig. 4B in [22], and may be
subject to error. The lowest four intensities were sub-saturating, and have
not been modelled; the nine saturating intensities were estimated to
range from 330 to 48 000 R* per flash. All parameters were as listed in
tables 1 and 2, together with the parameters for aberrant events given in
figure 9; at least 10 simulated responses were averaged for each trace.
The gaps in the black traces occurred where symbols (shown as red in
panel E of electronic supplementary material, figure S1) were removed.
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responses out to sufficiently long times. In electronic sup-
plementary material, figure S1 we have collected example
flash response families for suction pipette recordings from
six such studies, in which the species examined were
human [24], monkey [15,16], rabbit [25] and mouse [13,22].
Examination of these panels shows that the averaged intense
flash responses typically display a phase of rapid recovery as
soon as the current escapes from saturation, followed by a
slower phase of decline at later times, and this slower
phase becomes more prominent at higher intensities. We
are not aware of previous quantitative accounts of this late
slower phase, and in §4.4 below we discuss the model that
we developed here.

For one of those studies (for a mouse rod in fig. 4A of [22]),
figure 12 compares the experimental responses (black traces)
with the predictions of our model (red traces). Clearly there
is a qualitative similarity between experiment and model,
though there are quantitative differences. In considering this
comparison, it is important to realize that we were working
from published images, and that we did not have the original
data or the original flash intensities. We estimated the intensi-
ties by examining the semi-logarithmic plot against intensity in
fig. 4B of [22], which was for collected cells; hence there are
inevitably uncertainties in the comparison, especially in
relation to the values of the flash intensities.

Two shortcomings of the model predictions are apparent.
Firstly, the initial slopes of the predicted recoveries for the
first four saturating flash intensities are lower than seen in
the experiment, and the reasons for this deserve future exam-
ination. Secondly, the final tail of the predicted recovery after
intense flashes is shallower than experiment, presumably
indicating that for this mouse rod the mean duration of the
aberrant R* shut-off events was shorter than the value of
4 s used in the model. However, given that we did not expli-
citly alter any parameters in order to describe the kinetics
of this particular mouse rod’s responses, we suggest that
the level of qualitative agreement is reasonable.

The standard procedure for quantifying bright-flash recov-
ery behaviour is to plot the time Tsat that the response remains
in saturation as a function of the logarithm of flash intensity
[17], which is equivalent to plotting the intensity scale logar-
ithmically. This coordinate system is chosen on the basis that,
if an activating substance is produced in direct proportion to
light intensity, and if it decays exponentially, then the time
spent in saturation should be proportional to the logarithm
of flash intensity, and the slope of that line will give the
time constant of decay [17]. However, if there are mechanistic
departures from proportionality, or if the experimentally
observed relationship deviates from a straight line, then the
interpretation is not so simple.

The Tsat versus Φ relationships determined from our simu-
lations were presented in figure 11, using the model of dimeric
PDE6 activation, either on its own (blue curve), or also taking
account of aberrant R* shut-off events (red curve). Because
our modelling of the aberrant events is preliminary, we chose
parameter values for the model that generated a blue curve
marginally shallower than measurements from the literature,
together with a red curve marginally steeper.

Both curves display a degree of curvature over the entire
range of intensities, so that there is no region that is strictly
‘straight line’, though it is possible to draw straight lines that
provide approximate fits in two regions, as has been done in
the literature for measurements from experiments. The
dotted straight lines that we have drawn in figure 11 have
slopes of τD1 = 245 ms and τD2 = 780 ms, representing the first
and second so-called ‘dominant time constants’ of bright-
flash recovery. However, it is important to note that neither
of these values corresponds to the time constant of removal
of an active substance in the molecular model that we have
simulated, though 245 ms differs by only about 20% from the
time constant of E** decay, tE�� ¼ k�1

E�� ¼ 200 ms:
This discrepancy turns out to be accounted for accurately

by the super-linearity in E** level that is inherent in the
dimeric activation model. Our measurements of the E**(t)
tails in figure 7b showed that this super-linearity can be
approximated by the expression in equation (5.16), with a
fitted ‘super-linearity parameter’ of ρ = 0.32. That relation
leads in turn to the prediction that the time Tsat for recovery
to a fixed criterion level will depend on flash intensity Φ
according to equation (5.18). This predicted relationship is
plotted by the heavy dotted black curve in figure 11 and pro-
vides a very good description of the blue and red curves in
the low-intensity region. Importantly, this predicted relation-
ship is curved, and not a straight line. The vertical offset of
this curve is set by the horizontal position of the arrow in
figure 7b, where the E**(t) trace for a single photoisomeriza-
tion crosses the saturation level of 2.6 E** per surface at a
time of 585 ms.

Furthermore, the slope of the tangent to the curve is
given by equation (5.19) as (1þ ðrF=NsurfsÞ)=kE�� . Substituting
Nsurfs = 1320 and ρ = 0.32, and at an intensity of Φ = 1000 iso-
merizations per rod, the factor ρΦ/Nsurfs = 0.24, indicating
that the slope of the tangent line at this intensity is predicted
to be 24% greater than the shut-off time constant of 200 ms,
and this is very close to the slope of the shallower dotted
line. We therefore have a quantitative rationalization for why
the apparent ‘dominant time constant’ at this level of flash
intensity differs from the time constant for shut-off of E**.
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Published experiments on wild-type mouse rods show a
comparable disparity, as exemplified by the measurements
tabulated in two studies [12,13] that each analysed around 30
WT rods, and gave the mean ± s.e.m. for both τD1 and τrec.
Thus, table 1 of Krispel et al. [12] gave τD1 = 246 ± 13 ms
(n = 29) and τrec = 190 ± 9 ms (n = 33). Similarly, table 2
of Sakurai et al. [13] gave τD1 = 271 ± 13 ms (n = 26) and
τrec = 223 ± 9 ms (n = 36). Application ofWelch’s t-test indicates
that we can reject the null hypothesis that the two means are
equal, at p < 0.002, in both studies. The ratio of the means is
τD1/τrec≈ 1.29 in [12] and τD1/τrec≈ 1.22 in [13], bracketing
the prediction of our modelling.

For the steeper region of the Tsat curve, which has been
interpreted as a ‘second dominant time constant’, it is more dif-
ficult to account for the slope, of approximately 780 ms for
method 3 or approximately 720 ms for method 2. The slope
in this region is bound to be affected by the choice of the par-
ameter kG*, representing the rate constant of hydrolysis of
free G*, which we set to 1 s−1, similar to the value reported in
[26]. However, the slope obtained will also be affected by
non-linearities, including depletion of transducin, and in the
case of method 3 by the presence of the late slow phase of
response recovery. So, there seems little justification for imagin-
ing that this slope directly represents the time constant of any
physical process dominating the shut-off of activation.
4.3. Parameter values required to explain the
observed behaviour

Avery important aspect of the predicted Tsat versusΦ relation-
ship, that we have not discussed so far, is the horizontal
position of the steeper part of the curve; this can be character-
ized by the intensity at the intercept of the two fitted straight
lines, which we refer to as the transition intensity, Φtrans.
In the rods of wild-type mice, this transition intensity has
been measured to be approximately 4000–5000 R* per rod
[12,13,22,27,28]. Accordingly, we have chosen parameter
values that have enabled our simulated relationship to
approximately mimic this transition intensity.

It has previously been proposed [28] that the transition
intensity corresponds to the situation where all of the PDE6
is ‘just covered’ by G*, so that any additionally produced G*
will remain unbound, and therefore be inactivated at the
slower rate constant kG*. Our analysis is consistent with this
notion, though our quantitative considerations invoke quite
different numbers in the calculation of transition intensity
than have been used previously. In order to achieve Φtrans≤
5000 R* we found it necessary to adopt a transducin activation
rate of νG* > 1000 G* s−1 per R*, when other parameters were
set to realistic values.

Chief among these other relevant parameter values is the
total complement of PDE6, expressed either per disc surface
or per outer segment. For a PDE6 membrane density of
CE = 80 µm−2 (i.e. approx. 1/300 to rhodopsin [29–31]) and
an outer segment diameter of d = 1.3 µm [18,19], the
number of PDE6 holomers per disc surface is Etot≈ 106.
Then, with the number of disc surfaces Nsurfs = 1320 (for
L = 22 µm, and 30 discs µm−1 [18–21]), the total number of
PDE6 holomers per outer segment is 140 000, so that there
are 280 000 binding sites for G*.

To cover 280 000 G* binding sites, in response to a flash of
5000 R*, would require an absolute minimum of 280/5 =
56 G*s produced per R*, though this is an oversimplification
as it ignores any shut-off of G* throughout the period of
response saturation. For a mean R* lifetime of TR* = 68 ms,
the necessary rate of G* creation must therefore exceed
56/0.068 s−1, or νG* > 823 G* s−1 per R*. However, given
the reality of the occurrence of GTPase activity during the
response, the actual requirement must be higher than this.
Furthermore, if the mean R* lifetime were instead shorter,
at 40–50 ms [32,33], then the required rate would be
correspondingly higher.

In our simulations,we used TR* = 68 ms. Then,with 140 000
PDE6 holomers per outer segment and νG* = 1250 G* s−1 per
R*, we obtained the fit shown in figure 11. With either a
lower rate of transducin activation or a larger number of
PDE6 holomers, the steeper segment of the curve was shifted
rightward, giving a transition intensity higher than 5000 R*.

Using our standard values of νG* = 1250 G* s−1 per R* and
TR* = 68 ms, we obtained the mean number of doubly-
activated PDE6 molecules at the peak of the single-photon
response as 23.8 E** per R* (figure 2), corresponding to a
mean of 47.6 G* per R* bound to PDE6. For comparison,
Yue et al. [34] have recently presented their analyses of
recordings from GCAPs−/− mouse rods, that they interpreted
to show a single-photon response of ‘∼12–14 GT*·PDE*s pro-
duced per Rho*’; this is three- to fourfold lower than our
result, and more in line with values obtained by previous
modelling using the earlier estimates of 300–350 G* s−1 for
the rate of transducin activation. However, as subsequently
pointed out by Heck et al. [35], the estimate of Yue et al.
may need (a) to be doubled because it did not consider the
possibility that the active state corresponds to the binding
of two transducins, and then (b) possibly doubled again
because of a substantial discrepancy between the variance
and squared mean response traces in their noise analysis
[35]. Hence, we do not consider that their estimate differs
reliably from ours.

In the downstream cytoplasmic reactions, we obtained a
good description of the mean single-photon response, as
well as the family of bright-flash responses, using a PDE6
hydrolytic activity parameter of βE** = 0.017 s−1. For compari-
son, the hydrolytic activity can be predicted from the
measured biochemical parameters and physical parameters,
as derived in [2,36], to be

bE�� ¼
kcat=Km

NAv Vcyto BcG
, ð4:1Þ

where kcat and Km are the catalytic activity and Michaelis con-
stant for the fully activated PDE** holomers,NAv is Avogadro’s
number, Vcyto is the cytoplasmic volume of the outer segment
and BcG is the cytoplasmic buffering power for cGMP. If we
adopt values of kcat = 2750 s−1 [10], Km = 10 µM [37], Vcyto =
0.0146 pL (half the outer segment envelope volume) and
BcG = 1.6 (see §5.12.1), then we obtain a predicted value of
βE** = 0.0195 s−1, which represents as close agreement to our
chosen value as we could reasonably expect.
4.4. Late slow phase of recovery
In this paper we have shown that a plausible description of
the late phase of recovery can be achieved by taking account
of aberrant R* shut-off events, which have been clearly
demonstrated to occur at lower intensities, of a few hundred
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to a few thousand isomerizations in monkey rods [15,16], and
of several tens of isomerizations in GCAPs−/− mouse rods [6].
We used values for the frequency of occurrence and mean
event duration, of paberr = 0.002 and τaberr = 4 s, close to
those reported in the literature, and we set the plateau ampli-
tude of an individual aberrant event to be approximately
equal to the amplitude of the normal single-photon response,
at 4–5% of the dark current (see below). Our simulations of
the photoresponses that result from the combination of
normal R* shut-off events and a very low rate of aberrant
events (figures 9 and 10) demonstrated a late phase of
response recovery that appears broadly consistent with
experiment. This regime of flash intensities and recovery
times has been examined in relatively few studies (examples
of which are presented in electronic supplementary material,
figure S1), but the phenomenon has not been investigated
comprehensively, probably because of the excessive time
that is needed to elapse between presentation of repeated
very intense flashes. In our view, the simulated mean
responses in the red traces of figure 9b reproduce the qualitat-
ive features of the late phase of recovery quite well, as shown
for one cell in figure 12, and we likewise consider that the
examples of simulated raw responses in figure 10 show fluc-
tuations consistent with experiment. However, there is a
paucity of relevant experimental data in the literature, and
we acknowledge that our present description is preliminary.

It should be noted that our choice to assign the aberrant
events a similar plateau amplitude to the peak of the normal
single-photon event differs from the view in the literature
that the aberrant events are equivalent to single-photon
events in rods of GRK1−/− animals (i.e. that lack any shut-off
of R*); thus R* events in GRK1−/− animals typically have a pla-
teau of more than double the amplitude of the events in WT
animals. Our reasons for this choice included the following.
Firstly, Kraft & Schnapf [16] reported a plateau level of approxi-
mately 0.8 pA for the aberrant events in monkey rods, similar
to the peak of the SPR. Secondly, when we instead adopted
the ‘GRK1−/− model’, the magnitude of the fluctuations in
our simulations of individual raw responses (comparable to
those in figure 10) appeared excessively large. Thirdly, we are
not aware of any firm evidence that during the aberrant R*
shut-off events the catalytic activity of R* remains unaltered.
But, finally, we note that the assumed fractional activity (aaberr)
of the aberrants events does not affect the qualitative form of
the late stage of recovery of the mean electrical response.
4.5. Implications of the model for phototransduction in
rods with abnormal genes

Abnormalities of phototransduction, that are caused either by
naturally occurring or genetically engineered mutations, are
of significant interest to photoreceptor physiologists and reti-
nal disease researchers. Of particular significance to our
present analysis will be mutations of the genes encoding
PDE6, PDEγ, and transducin, because these would seem to
offer the greatest potential for modifying the dimeric nature
of PDE activation modelled here. For example, if it were poss-
ible to replace the heterodimeric PDE6αβwith a homodimeric
PDE6αα or PDE6ββ, or alternatively to express a chimeric
form of the kind studied by Muradov et al. [38], then it
might be possible either to reduce or to eliminate the native
super-linearity of the PDE6, and to examine the consequences
of this. Likewise, it would be interesting to mutate certain
residues of PDEγ to those found in the cone protein (see,
for example, [39]), and to examine whether the activation of
the PDE6 became more nearly linear. Similarly, it would be
of considerable interest to use the model presented here to
analyse the responses of rods exhibiting altered interaction
between transducin and PDEγ, as occurs with the W70A
mutation of PDEγ [40], or in rods with lowered efficacy of
transducin activation [34].

Mutations in a protein of interest may result in clear and
straightforward changes in the photoreceptor’s response, pro-
vided that the expression levels of other proteins are
unaltered, but it is often the case that the expression levels
of other proteins are indeed modified, leading to a degree
of homeostasis in the cell, and hence to difficulty in interpret-
ation of the underlying molecular mechanisms. We think that
the model developed here may be of use to physiologists in
attempting to separate effects that are directly attributable
to a known mutation from the homeostatic responses of the
cell to such a mutation. Thus, the model presented here
may be a useful tool for dissecting apart the primary and
secondary events caused by these molecular modifications.
4.6. Summary and future directions
We have presented an updated model of rod phototransduc-
tion, based on the recent evidence that activation of the
dimeric PDE6 requires the binding of two molecules of trans-
ducin [10], and we have evaluated the model’s predictions
for the form of the rod’s electrical response to bright flashes
of light. The predicted responses closely mimic experiment,
and our new description eliminates a number of shortcomings
of previous models (that we enumerated in the Introduction).
Of particular note, the transition intensity for the change of
slope in semi-logarithmic plots of saturation time Tsat versus
flash intensity Φ is correctly obtained as Φtrans≈ 5000 photoi-
somerizations per flash (figure 11). The value we adopted for
the rate of transducin activation, of νG* = 1250 G* s−1 per R*,
is consistent with light-scattering measurements [41–44], as
discussed recently in [10,11]. Likewise, the value we adopted
for the hydrolytic activity of the doubly activated PDE6, of
βE** = 0.017 s−1, is close to the value predicted from biochemical
measurements and physical factors.

Even though our rate of transducin activation is around
fourfold higher than assumed by others, this rate can be put
into perspective by calculating the numbers of molecules
involved during the single-photon response. Over the lifetime
of an individual R* molecule, our simulations give the total
number of transducin molecules activated as 84 G*, with the
great majority of these (approx. 83) having been created by
the time of the peak of the mean single-photon electrical
response at 130 ms. At that time, the mean number of doubly
activated PDE6 molecules is approximately 24 E** (figure 2),
so that approximately 47 transducins are bound in the fully
activated form. In addition, another approximately 17 transdu-
cins are singly bound, while just 2–3 are unbound, and the
remaining approximately 16 have already been inactivated
by GTPase activity during the first 130 ms. Thus, the combi-
nation of a high rate of transducin activation with a short
mean R* lifetime (approx. 68 ms) leads to quite modest num-
bers of activated molecules on the disc membrane during the
single-photon response.
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For the future, we intend to obtain more extensive bright-
flash response measurements from mammalian rods, so as
to test the predictions more comprehensively and to extract
estimates of parameter values across species. We anticipate
that examination of responses from rods expressing mutant
forms of PDE6, PDEγ or Gα may help in specifying these
parameters. There is also scope for more exhaustive tests of
whether the late slow phase of recovery is accounted for by
aberrant R* shut-off events, and in this case the use of
mutations in the C-terminal region of rhodopsin may be valu-
able. In parallel, we plan to investigate whether we can
develop improved numerical approaches that provide
appreciably shorter computation times for simulating the
responses, because the approaches we have presented here
are very time-consuming, and not readily amenable to fine-
tuning the values of parameters. One such potential approach
is foreshadowed in §5.7. We also intend to examine whether
we can extend the model to cone photoreceptors, with their
much faster, less-sensitive and noisier responses. And, in
light of the structural information (including high resolution
cryo-EM) that is now available for the PDE6 (e.g. [10,45,46]),
we hope to investigate the link between molecular structure
and state of PDE activation.
5. Methods and theory
This section describes the simulation methods that we used
to obtain the bright-flash responses. In addition, it presents
the analytical solutions that we derived in some simplifying
situations. And it also describes several checks and other
investigations that we conducted.

5.1. Method 1: Full 2-D simulation of diffusional
interactions at the disc surface

For sub-saturating flash intensities, it is rare for any disc surface
to receive more than a single photoisomerization. For example,
at a just-saturating intensity of Φ = 150 R* per rod, and assum-
ing approximately 1300 disc surfaces per rod, the mean
number of isomerizations per surface is approximately 0.1,
and it can be shown that fewer than 1% of the surfaces experi-
ence multiple isomerizations. Hence, over much of the rod’s
operational intensity range up to saturation, its electrical
response can be calculated from knowledge of the effect of a
single photoisomerization per disc surface.

In recent analyses [11,14], we have modelled this regime,
of a single photoisomerization per disc surface, and we now
briefly recapitulate. We modelled the shut-off of R* activity in
terms of multiple steps of phosphorylation, together with the
assumption that the drop in rhodopsin’s enzymatic activity
results not from phosphorylation per se, but instead primarily
from the binding of arrestin, for which the probability of
binding increases dramatically once several (e.g. 3) phos-
phates have attached [14]. We modelled the interactions of
proteins at the disc surface using numerical simulation of 2-
D diffusion, with the ‘shortcut’ simplification that transducin
is activated to G* stochastically, at a fixed mean rate while R*
remains active [47]. The activated G*s then diffuse laterally
(from wherever they were created), and are able to bind
to PDE6, either in its unbound form (denoted E) or in its
singly bound form (E*), thereby creating either E* or the
doubly bound form, E**, respectively. The shut-off of E* and
E** is assumed to occur stochastically, as a result of GTPase
activity, returning the molecule to its resting (E) or singly
bound (E*) state, respectively. A full description of ourmolecu-
lar model was set out in [11]. Using estimated values for the
parameters, we numerically evaluated its predictions and
showed good agreementwith experiment in the sub-saturating
intensity range. In that earlier work we ignored any decay of
unboundG* (which is reasonable in the case of a single isomer-
ization per surface). Here, though, we instead allow unbound
G* to shut off stochastically with a rate constant kG* close to
that reported in the literature [26], because this pathway has
been proposed tomake amajor contribution at very high inten-
sities when all the PDE6 binding sites have G* bound [28].

We refer to this approach using numerical simulation of the
2 D lateral diffusion reactions at the disc surface as method
1. Our Matlab code for all three simulations methods, and
also for numerical integration of the downstream reactions, is
available for download (see Data accessibility).

5.2. Equations describing rising phase of PDE6 activity
with multiple isomerizations per disc surface

In previous work, for the case of a single photoisomerization
(Q = 1), we fitted the onset phase of E**(t) with the expression
for a ramp in time convolved with an exponential decay in
time, representing a single delay stage of roughly 7 ms that
we predicted should precede the ramp-wise appearance of
the doubly activated E**; see eqn (2.1) of [11]. Here, though,
with responses to multiple R*s per disc surface, it became
apparent that a second shorter delay stage is additionally
required, to provide an adequate description at very early
times. Furthermore, we discovered that by fixing this shorter
time constant at the expected first-contact time for activation
of G* by R*, namely at τ1 = 1/νG*, we could achieve a very
good fit to the rising phase of the entire set of E**(t)
responses, as indicated by the dotted traces in figure 3b.

If we take a ramp in time, E**(t) =Q νE** t for t > 0, where
νE** denotes the rate of E** activation per isomerization,
and we convolve this with two exponential decay stages
having time constants τ1 and τ2 (for τ1≠ τ2), we obtain the
doubly delayed ramp expression

E��ðtÞ ¼ Q nE�� {t� ðt1 þ t2Þ
þðt21e�t=t1 � t22e

�t=t2Þ=ðt1 � t2Þ}, t . 0: ð5:1Þ

In fitting this equation to the simulations, our procedure
was to set τ1 = 1/νG*, and then find the values of νE** and τ2
that provided the least-squares best fit to the rising phase
for each mean response, within the region indicated by the
dashed curve in figure 3b, corresponding to an ellipse with
radii 30 ms and 0.35 Etot. Inspection of the traces in figure 3b
shows that each individual dashed curve provides an
excellent description of the data over the fitted region.

5.3. Differential equations for the case of spatial
homogeneity

In order to solve for responses to bright flashes, with multiple
R*s per surface, the only approach available for the onset phase
of the response is method 1 using numerical simulation of 2D
diffusion. However, for the recovery phase of the response,
requiring simulation to times of perhaps 10 s, this approach
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becomes exceedingly time-consuming computationally, and
we therefore developed a much faster approximate method,
that we term method 2. This approach uses a mass-action
approximation, and should be valid once the distribution of
interactingmolecules (G*, E, E* andE**) has relaxed to approxi-
mate spatial homogeneity (see below). The approach also
requires that R* activity has essentially ceased, so that there is
no longer any punctate creation of G*. Both of these require-
ments will be satisfied within a few hundred milliseconds of
flash delivery, for the parameters chosen in our model. And
after that time, we simply model the massed interactions
between themolecules in the reaction schemeshown in figure 1.
We now derive the differential equations that underlie this
approximate approach.

As in model 1, in this spatially homogeneous model we
assume that all lateral interactions occur at their diffusion
limit. These lateral diffusional contacts between two molecu-
lar species may be considered in terms of the average of the
‘sweeping out’ of surface area by individual molecules. For
example, a single G* molecule will ‘sweep out’ molecules of
E that are uniformly distributed across the disc, in proportion
to the spatial density of E. More generally, the rate of contacts
by a single molecule of one species is given by the sum of the
two lateral diffusion coefficients multiplied by the area den-
sity of the other species. Then, to obtain the average rate
across all molecules of the first species, we simply multiply
by its spatial density. In the terminology of figure 1, we can
write the rate at which molecules of G* contact molecules
of E as

r1(t) ¼ k1 G�(t) E(t), ð5:2Þ
where the appropriate bimolecular rate constant is k1 = (DG* +
DE)/A. Likewise, for the second step we can write the rate at
which molecules of G* contact molecules of E* as

r2(t)¼ k2 G�(t) E�(t), ð5:3Þ
where the appropriate bimolecular rate constant is k2 = (DG* +
DE*)/A. In practice, k1 and k2 will be very similar to each other.

The differential equations for transducin and the three
forms of PDE6 may then be written as

d
dt

E(t) ¼ �r1(t)þ kE� E�(t), ð5:4Þ
d
dt

E�(t) ¼ r1(t)� kE�E�(t)� r2(t)þ kE��E��(t), ð5:5Þ
d
dt

E��(t) ¼ r2(t)� kE��E��(t) ð5:6Þ

and
d
dt

G�(t) ¼ �r1(t)� r2(t)� kG�G�(t): ð5:7Þ

Note that the five rate parameters in the equations above
(k1, k2, kE*, kE** and kG*) are constants. Finally, we have the
conservation relation for PDE6 that

E(t)þ E�(t)þ E��(t) ¼ Etot ð5:8Þ
so that any one of equations (5.4)–(5.7) may be omitted, by
substitution.

Numerical solution of equations (5.2)–(5.8) forms the
foundation of method 2, because we have not been able to
derive an analytical solution of the equations as they stand.
Nevertheless, we are primarily interested in cases where
G*(0) is large, so that E*(0) is small and E(0) is even smaller.
Hence, we have the approximation that E**(0)≈ Etot, and in
this limiting case an analytical solution is straightforward,
as we derive in §5.5.

5.3.1. Time for the attainment of spatial homogeneity

The punctate activity of R* molecules will have substantially
ceased within approximately 100 ms of flash delivery (see
R*(t) trace in figure 2a), and thereafter the spatial distribution
of reactant molecules will relax towards spatial uniformity.
The time constant of this equilibration should be given
approximately by the relevant surface area divided by the lat-
eral diffusion coefficientD for themolecular species. Following
the delivery of Q isomerizations randomly across the disc sur-
face, the relevant areawill be the total disc surface area divided
by Q. Hence the effective spatial equilibration time will be
Tequil≈Adisc/(Q D). For an outer segment diameter of 1.3 µm,
the surface area is Adisc = 1.33 µm2. For Q = 5 R* per surface
(the minimum intensity for which the PDE is approximately
saturated) and for transducin, withDG* = 2.2 µm2 s−1, the effec-
tive spatial equilibration time will therefore be Tequil≈ 120 ms;
for Q = 10 R* per surface, the effective equilibration time
will drop to 60 ms. Hence,we can expect that within a few hun-
dred milliseconds of the delivery of 10 R* per surface the
assumption of spatial homogeneity should be valid.

5.4. Stochastic fluctuations contributing to form of
bright-flash responses

As foreshadowed in §2.3, it is perhaps counterintuitive that in
the case of very bright flashes it turns out to be important
to take account of two sources of stochastic fluctuations:
namely, fluctuations in quantal absorptions per disc surface,
and fluctuations in R* lifetime.

5.4.1. Stochastic fluctuations in number of photoisomerizations
per disc surface

For a rod outer segment with Nsurfs disc surfaces, a flash that
delivers a total of Φ photoisomerizations will elicit a mean
number of ϕ =Φ/Nsurfs photoisomerizations per disc surface.
The Poisson distribution then gives the probability pQ that a
disc receives Q (an integer) isomerizations as

pQ ¼ fQ

Q!
exp(�f): ð5:9Þ

Our approach below is to consider all integer values of Q
up to some suitable limit (say, 60, when ϕ = 30), and to con-
sider separately the solution in each subset of disc surfaces
receiving that number of isomerizations.

5.4.2. Stochastic fluctuations in R* lifetime

For the set of disc surfaces that each experience the same
number, Q, of isomerizations, there will nevertheless be differ-
ences in the extent of activation, arising from stochastic
fluctuations in the lifetimes of the individual R* molecules.
For a numerical solution, we can simulate the Q individual R*
lifetimes, and this is one approach that we take, though it is
computationally time-consuming. For a faster (semi-analytical)
approach, we note that all these isomerizations occur synchro-
nously, as we are modelling a very brief flash. Then, by
making the assumption that each R* activates molecules
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of transducin independently, we can approximate the effect of
the multiple isomerizations in terms of the ‘total R* activity’
summed across theQmolecules of R*. Specifically, we calculate
the expected distribution for the sum of the Q stochastic life-
times, and we take this distribution of total activity and we
assume that it applies over a short time interval (corresponding
to the mean R* lifetime). This approach is valid because the
mean R* lifetime (68 ms) is very short in comparison with
the response times being examined for bright flashes.

To do this, we begin with the distribution of lifetimes for a
single activated R*. In our recent re-analysis of rod single-
photon responses, we developed a model of ‘binary shut-off’
of R* activity, wherein R*’s activity was assumed to be constant
until it dropped to zero upon arrestin binding, which occurred
stochastically after the binding ofM phosphates. We were able
to obtain a good description of experimental measurements of
single-photon responses by making the simplest assumption
that each of the rate constants of the M + 1 reactions (M phos-
phates plus arrestin binding) were equal, at μ = 60 s−1. With
all rate constants equal, the kinetics are often referred to as
‘Poisson’ (see [48]), though they should perhaps more accu-
rately be referred to as following a gamma distribution. In
this case, the probability density function (pdf) of R* lifetimes
is given by

pdf1 ¼ mðmtÞMe�mt

M!
, ð5:10Þ

and the time integral of this expression gives the cumulative
probability function (cdf) as

cdf1 ¼ 1� e�mt
XM
k¼0

(mt)k

k!
¼ 1� R�(t), ð5:11Þ

where the right-hand side of equation (5.11) links the
expression to the mean time-course of R* activity that was
derived as eqn (2.3) in [14]. In both equations above we have
employed a subscript ‘1’ to denote the case of a single photo-
isomerization. The cdf in equation (5.11) may also be expressed
as the incomplete gamma function, γ(M + 1, μt), with integer
shape parameter M+ 1 and with rate parameter μ (see e.g.
Abramowitz & Stegun [49], §6.5.13).

For our purposes, a crucial property of the gamma distri-
bution is that the sum of Q independent samples (with
common second parameter) is also gamma distributed,
with its shape parameter summed across the Q underlying
distributions. Thus, for Q isomerizations each with shape
parameter M + 1, we have

cdfQ ¼ gðQðMþ 1Þ,mtÞ ð5:12Þ

so that the pdf may be written as

pdfQ ¼ m(mt)Q(Mþ1)�1e�mt=ðQðMþ 1Þ � 1Þ! ð5:13Þ

This last expression gives the probability density, across
trials, for the summed activity of the Q isomerizations that
were delivered to the disc surface at time zero. When the
exponent Q(M + 1)− 1 is very large (e.g. 119, for Q = 30 iso-
merizations per surface and M = 3 sites required to be
phosphorylated for arrestin binding), evaluation of equations
(5.12) and (5.13) can become problematic, because of the combi-
nation of the large exponent and division by the large factorial.
However, evaluation is straightforward in Matlab, using the
functions gammainc and poisspdf in the statistics toolbox.
5.5. Method 2: Numerical simulation of the spatially-
homogeneous macroscopic approximation for
bright-flash recoveries

Based on the theoretical considerations above, together with
our analysis of depletion of G-protein at extremely high
intensities (§5.9), we implemented a composite approach
(termed method 2) to approximating the recovery phase of
the bright-flash response, that was orders of magnitude
faster than the full 2-D diffusion simulations of method 1,
yet that conformed closely with those very slow simulations.

Foreach fixednumberQof isomerizationsperdisc surface, in
the range of interest (e.g. 1… 60), we ran a substantial number of
iterations (typically 1000) of the following procedure. We gener-
atedQpseudorandomR* lifetimes, as inmethod1, anddescribed
in detail in [14]. Then we numerically solved the set of ordinary
differential equations comprising generation of G* at rate νG*
(with allowance for G-protein depletion) for the set of Q R*
molecules with these lifetimes, in conjunction with recovery
according to numerical integration of equations (5.2)–(5.8).

However, because spatial homogeneity was unlikely to
have been achieved for several hundred milliseconds, as a
result of the punctate R* activity prior to its quenching and
the subsequent time required for spatial equilibration, it was
necessary to modify these equations during the initial post-
flash period. We found that, by reducing the first bimolecular
rate constant (k1) by a factor of 5-fold until 400 ms after the
flash, the simulated mean activities for method 2 agreed clo-
sely with the results obtained by the much more time-
consumingmethod 1.We do not have a theoretical explanation
of why this particular adjustment worked, but clearly it was
necessary tomake some kind of modification during the initial
period prior to the attainment of spatial homogeneity, and in
practice this adjustment was found to work, in the sense that
the results of method 2 then conformed closely with those of
method 1.

We found that method 2 was more than 2000-fold faster
thanmethod 1; thus,withQ = 10,method 1 took approximately
17 h for 200 repetitions (approx. 5 min per trial), whereas
method 2 took just 2 min for 1000 repetitions (approx. 120 ms
per trial). Nevertheless, repeating those method 2 calculations
across the 60 values of Q took around 2 h.

5.6. Analytical approximation for the case of spatial
homogeneity, as a check on the numerical
simulations in method 2

Althoughwewere not able to obtain a general solution to the set
of differential equations in equations (5.2)–(5.8), there is a useful
simplification that applies overmuch of the time-course of inter-
est,when sufficientG* remains present to react rapidlywith any
E or E* that is formed by the shut-off reactions. And that is to
assume that, throughout this period, there is rapid equilibration
between E* and E** with the level of unbound E remaining neg-
ligible (i.e.E(t) = 0). Thismeans that, in figure 1, the forward flux
r1 is zero. Hence E*(t) is small, and as a result E**(t)≈ Etot. Fur-
thermore, under these conditions the forward flux r2 will
equal the reverse flux (i.e. r2(t) = kE** E**≈ kE** Etot). Substituting
these expressions for r1 and r2, equation (5.7) simplifies to

d
dt

G�(t) ¼ �kE��Etot � kG�G�(t): ð5:14Þ
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Figure 13. Numerical solution of the set of differential equations for the
spatially homogeneous case, equations (5.2)–(5.8), from an initial level of
G*(0) = 10 000 activated transducins. All parameters in these equations
were set to the values listed in table 1. (a) Semi-logarithmic plot for
decay of activated transducin. (b) Comparison with results for transducin
and PDE using method 2, in linear coordinates. Free G*(t) is solid green;
total G*(t) is dot-dash green. E(t) is black; E*(t) is blue; E**(t) is red.
The dashed black trace in both panels plots the analytical approximation
in equation (5.15), which provides a predicted lower limit on the numerical
solution for free G*(t). The dotted straight line in A plots an exponential
decline with rate constant kG*.
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This differential equation has the solution

G�(t) ¼ G�(0)þ kE��Etot

kG�

� �
exp (�kG� t)� kE��Etot

kG�
, ð5:15Þ

which provides a convenient check, as a lower limit for our
numerical solution for G*(t).

Figure 13 plots the results of our numerical solution of the
full set of differential equations, equations (5.2)–(5.8), for an
initial quantity of free activated transducin of G*(0) = 10 000
molecules, and with the standard set of parameters that
we used in the Results section. Panel a of figure 13 is a
semi-logarithmic plot for activated transducin: both for its
free form, G*(t) (continuous green), and also for its total
including molecules bound to PDE6, G�
tot(t) (dot-dash

green). For comparison, the dashed black curve plots the
approximate check in equation (5.15), and is almost hidden
by the green curve, while the dotted straight line plots an
exponential decline. Figure 13b is in linear coordinates, and
additionally plots the numerical solutions for E(t) in black,
E*(t) in blue and E**(t) in red; note the truncated time scale
in this second panel.

5.7. Potential future shortcut for bright-flash recovery
Although the computation timementioned above formethod 2
was acceptable for our final calculations, it would be very
useful to have an even faster approach for future investigations,
and so we conducted preliminary tests of a potential further
shortcut. For a sufficiently large initial value of activated trans-
ducin, say G*(0) = 10 000, we numerically solved the set of
ordinary differential equations (equations (5.2)–(5.8)) just
once, to generate G*(t), E(t), E*(t) and E**(t), exactly as in
figure 13. Then, for each required value of Q, we generated
the probability distribution predicted by equation (5.13) for
the sum of R* lifetimes, and we scaled this by νG* (again,
with allowance for G-protein depletion) to obtain the prob-
ability distribution of G*(0) expected for that value of Q. We
then interpolated the solved function G*(t) to find the time-
shift corresponding to each such initial value. Then, for each
molecular species, we correspondingly time-shifted the wave-
form, and took a weighted average (weighted according to
the calculated probability distribution) to obtain the predicted
mean kinetics for that molecular species.

This approach would not be applicable for small numbers
of isomerizations (say Q < 6) where E** does not reach satur-
ation, and nor would it be applicable at the earliest times,
because the predicted initial level of E** is E**(0)≈ Etot

rather than zero. Furthermore it requires an additional time
offset, to account for the fact that transducin is not activated
instantaneously. Despite these shortcomings, we found the
approach to be very promising. Thus, we found that for
Q≥ 10 this method generated predictions that were almost
indistinguishable from those obtained with method 2, yet it
was a further factor of more than 1000-fold faster. Accord-
ingly, we plan to put the approach onto sounder
foundations in a future investigation.

5.8. Super-linearity of the PDE6 response
In §3.3 it was shown that the E**(t) activation traces for
the simulated bright-flash responses of figure 7b exhibit
substantial super-linearity, so that the vertical scaling of the
tail-phase increases more steeply than linearly with intensity.
In figure 7c, the response amplitude RQ (at a fixed time) was
shown to be described by the equation

RQ

R1
¼ Qð1þ rÞQ�1, ð5:16Þ

where Q is the number of isomerizations per disc surface, and
ρ = 0.32 is the super-linearity parameter. We now show that
this super-linearity in the simulated responses of the dimeric
model of PDE6 activation leads to the prediction of a signifi-
cant deviation from the notion of a ‘dominant time constant’,
that has been used to characterize the relationship between
flash intensity and the time Tsat that the electrical response
spends in saturation [17].
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Figure 14. Walk2 simulations of G* production. Green traces are the means
of 100 simulations in Walk2, for the indicated numbers Q of R* molecules on
the disc surface (Q = 1 and Q = 50 are not labelled). Dashed black traces plot
the analytical expression in equation (5.21) with Km = 0.14. The Walk2 pro-
gram uses a square region for simulation (set to 1.2 µm on a side), and it
explicitly includes lateral diffusion of G-protein molecules. Parameters were as
in table 1, except that all shut-off reactions were disabled, and the PDE was
removed from consideration by setting CE = 0.
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To allow for the stochastic distribution of photoisomeriza-
tions, we weight the RQ amplitudes according to the Poisson
probability distribution of Q, at any flash intensity ϕ (in R*
per surface). This gives

Rf ¼ exp(�f) fR1 þ 1
2
f2R2 þ 1

3!
f3R3 þ 1

4!
f4R4 þ . . .

� �

¼ exp(�f)f
�
1þ (1þ r)fþ 1

2
((1þ r)f)2

þ 1
6
((1þ r)f)3 þ . . .

�
R1

¼ exp(�f)f exp((1þ r)f)R1

¼ f exp(rf)R1: ð5:17Þ

In the classical model of independent activation of PDE6
subunits, super-linearity does not occur, and instead we
would have ρ = 0, so that equation (5.17) would reduce to
Rϕ = ϕ R1.

In order to calculate the time taken for the tail to recover
to any fixed level of E** (e.g. for the time Tsat spent in satur-
ation), we note that in the tail region R1 = c exp(−kE** t) where
c is a constant, and then we set Rϕ to be constant, so that we
obtain the time Tsat to reach some criterion level of E**(t) as

Tsat � ln(f erf)=kE�� þ ln
c

Rsat

� �
=kE�� : ð5:18Þ

The second term in this equation is a constant vertical
offset, corresponding to the time at which the E**(t) response
to a single photoisomerization per surface (Q = 1) declines to
the level that just causes saturation, of Rsat≈ 2.6 E** per sur-
face. That time is indicated by the arrow in figure 7b, and
has a magnitude of 585 ms.

From this analysis of super-linearity in the model of
dimeric PDE activation, equation (5.18) predicts that the
relationship between Tsat and the logarithm of flash intensity
should be curved rather than a straight line. If, instead, the
PDE were activated in a strictly linear manner, then ρ would
be zero, and the first term in equation (5.18) would reduce to
ln ϕ/kE**, giving the conventional straight-line relationship. In
the general case, we can obtain the slope of the tangent line
in a semi-logarithmic plot against intensity by differentiating
equation (5.18) with respect to ln Φ (which is the same as
differentiating with respect to ln ϕ), to obtain

dTsat

d lnF
¼ 1þ ðrF=NsurfsÞ

kE��
: ð5:19Þ

This indicates that the apparent ‘dominant time constant’
will exceed the time constant of E** shut-off by a factor of ρΦ/
Nsurfs (i.e. by a factor of approximately 24% when the tangent
is measured at Φ = 1000 R*). The predictions of equations
(5.18) and (5.19) were compared with our simulations of the
electrical responses and with experiment in §4.2.
5.9. Depletion of transducin Gαβγ with very intense
flashes

To investigate the depletion of G-protein in the case of very
intense flashes, when there are multiple photoisomeriza-
tions per disc surface, it is necessary to use a 2D diffusional
simulation. However, the WalkMat code of method 1 is
not appropriate in its current form, because it employs the
‘shortcut’ approximation that each R* simply activates G*s
at a fixed mean rate; re-coding to include diffusion of the
individual G-protein molecules (at a 30-fold higher concen-
tration than the PDE) would slow the computations by a
further order of magnitude. Instead, we chose to simulate
the lateral diffusion of the holomeric G-protein molecules
and their interactions with R* molecules using the earlier
‘Walk2’ program written by Lucian Wischik in 1996 (see
Data accessibility). That program has the advantage that the
lateral diffusional contacts of each of the molecular species
are simulated (rather than using the ‘shortcut’ activation of
G*), yet it executes very rapidly, in part because of its use of
a ‘quick-and-dirty’ random number generator. However, its
disadvantages are that multi-step inactivation of R* is not
implemented, and the simulated region is square rather
than circular.

The (stochastic) reaction time following diffusional con-
tact between an R* and a G was set to 0.8 ms, thereby
providing an initial rate of G* activation of νG* = 1250 s−1;
the density of transducin was set to CG = 2500 µm−2 (which
gave 3600 Gαβγ molecules on the simulated square region
of membrane, 1.2 µm on a side). In order to separate
depletion effects from shut-off effects, we disabled shut-off
of both R* and G*. In addition, we removed PDE (by setting
CE = 0), so that the only reactants present initially were R*
and G. Accordingly, the simulated trajectories for G*(t) rep-
resent the total numbers of transducin molecules activated,
in the absence of all inactivation reactions. The results
obtained are presented in figure 14.

The green traces plot the simulated activation of G*, when
different numbers Q of R* molecules were present on the disc
surface, averaged in each case from 100 repetitions, and with
Q as indicated near the traces. Each trace begins ramping
upwards, with initial slope Q νG*, but the slope gradually
decreases as G* approaches the total complement of transdu-
cin (i.e. as transducin is depleted). Note that the uppermost
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trace (for Q = 60 R* per surface) shows almost complete
exhaustion of transducin within 60–70 ms of the flash. In
these simulations, shut-off of R* was disabled. In the
normal case, where multi-step shut-off occurs with a mean
lifetime of 68 ms, R* would have been almost fully active
for the whole of this period; see, for example the shape of
the R*(t) trace in figure 2. Hence, for this Q = 60 trace, our
elimination of R* shut-off should have made little difference
to the predicted time-course of transducin depletion.

Somewhat to our surprise, we found that simply by scaling
the time axis in proportion to Q, the simulated traces superim-
posed upon each other. However, in figure 14, rather than
scaling the green traces in time, we have instead scaled the
theoretical curves. Thus, as shown by the dashed black
traces, we found that a common template curve provided a
good fit to each of the traces, when scaled in time in proportion
to Q. The common curve that we found to provide a good fit
has the form of a rate-limited saturation, as expected if
the rate of transducin depletion is not constant, but instead
saturates in a Michaelis–Menten manner, described by

dG
dt

¼ �n0
G=G0

G=G0 þ Km
ð1þ KmÞ, ð5:20Þ

where G denotes the quantity of Gαβγ remaining, and where
Km is the saturation constant (as a fraction of the initial transdu-
cin level, G0). The parameter ν0 is the initial rate of depletion
(i.e. ν0 =Q νG*).

From this relation it can be shown that the fractional
depletion of transducin, 1−G(t)/G0, will be given by

1� G(t)
G0

¼ KmW
1
Km

exp
1
Km

� 1þ 1
Km

� �
n0
G0

t
� �� �

, ð5:21Þ

where W(x) is the Lambert W function [50]. Note that it is the
factor of Q built into ν0 that accomplishes the time-scaling of
the common underlying curve. In fitting equation (5.21) to
the simulated responses in figure 14, we found that the
appropriate value for the saturation constant was Km≈ 0.14.

The outcome of this analysis is that we found a simple func-
tion to describe the depletion of G-protein, that we could use in
conjunction with the ‘shortcut’ method of simulating G* acti-
vation. In other words, this analysis confirmed that there is
no need to model diffusion of the large number of transducin
molecules in our simulations. We were therefore able to
apply this description of G-protein depletion to all of our
simulations of bright-flash responses.
5.10. Method 3: Incorporation of aberrant R* shut-off
events

To analyse the PDE6 activity when aberrant R* shut-off events
are taken into consideration, we specify that there is a very
small probability, paberr≈ 0.002, that an R* fails to inactivate
normally, and that instead its shut-off is greatly delayed, but
nevertheless occurs abruptly after some stochastic lifetime
with a mean of τaberr. Because of the relatively small number
of aberrant R* events (even at quite high flash intensities),
and the fact that these events occur at stochastic locations
along the outer segment, it is unfortunately necessary to simu-
late the activity on each disc surface, and then subsequently
integrate the downstream cytoplasmic equations for the spatial
case, and as a result this method is slow. On a more positive
note, this approach (which we term method 3) provides an
independent check on the single-compartment ‘bulk’ approach
used in method 2.

We first needed to define the plateau level of an individual
aberrant event relative to the peak of the mean single-photon
event, so as to correspond approximately to the ratio reported
in the literature. To accomplish this, we introduced a parameter
aaberr that specifies the fractional R* activity in the aberrant
state, with 0 < aaberr≤ 1. For the simulations presented in
figures 9 and 10 we chose we set aaberr = 0.25; see §3.5. For
the other two parameters, we set paberr = 0.002 and τaberr = 4 s
for mammalian rods.

Our procedure in method 3 was to conduct repeated trials
at each desired flash intensity (i.e. Φ, in R* per outer segment),
assigning a stochastic number Qnorm of normal R* events,
plus a stochastic number Qaberr (often zero) of aberrant
events, to each disc surface. For those trials in which no aber-
rant event occurred, this procedure was essentially the same
as for method 2; but for those trials in which one or more
aberrant event(s) occurred, with stochastic lifetime, it was
more complicated but used similar methodology. For each
trial we simulated the time-course of the disc-based reactions
on every disc surface. As for the other methods, the code is
available online (see Data accessibility). A complete run, for
10 trials at each of 30 intensities, took 3–4 h.

5.11. Summary of approaches for estimating disc-based
reaction kinetics

Here we briefly summarize the relative merits of the compu-
tational approaches that are applicable at different intensities.

(a) For the lowest intensities, and indeed for all intensities up
to approximately 100 R*, it is appropriate to use the
single-photon E**(t) response, that one has calculated in
advance for a large number of trials. However, it cur-
rently takes a long time (approx. 1 day on a laptop
computer) to calculate a set of 2000 such single-photon
responses, because it is necessary to use the full 2D diffu-
sional approach of method 1. Thereafter, one can rapidly
evaluate the downstream reactions, for any intensity up
to approximately 100 R*, by integrating the set of partial
differential equations for diffusion in the outer segment,
and repeating this for an appropriate number of trials.
In this intensity regime, there will be little error in the
mean response if one simply ignores aberrant R* shut-
off events.

(b) For an intermediate range of intensities, between approxi-
mately 100 R* and approximately 6000 R*, we do not
currently have a fast approach, because the assumptions
underlying method 2 are not applicable.

(c) For saturating flash intensities from approximately
6000 R* upwards, the analysis in §3.3 showed that
method 2 (which assumes spatial homogeneity) provides
predictions that are just as accurate as those of the full
method 1, but that are around three orders of magnitude
faster. In this approach, the depletion of transducin at
very high intensities is accounted for. But, on the other
hand, the late slow tail phase (that we suggest is due to
aberrant R* shut-off events) is not accounted for.

(d) If one needs to describe the late slow tail phase, then it is
necessary to adopt method 3, and in this case one can cal-
culate the set of traces shown in figure 12 in a reasonable
time (approx. 1 h on the laptop computer used here).
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(e) For the future, we anticipate that the approach outlined in
§5.7 will provide a much faster method for investigating
the effects of altered parameter values on bright flash
responses, at least for the regime from approximately
6000 R* upwards. Nevertheless, we expect that final
calculations will need to be repeated using method 3.

(f ) Finally, if one is interested in the onset phase of the
response at any intensity, then the only realistic approach
is to use method 1.

5.12. Cytoplasmic (downstream) reactions
Using the simulated PDE6 activity, we integrated the differen-
tial equations for a standard description of the downstream
reactions, as set out explicitly in [11]. In the case of method 2
(the spatially homogeneous approximation method, described
in §5.5), we ignored longitudinal diffusion along the outer seg-
ment, and simply considered the outer segment as a single
lumped compartment. Furthermore, we solved the differential
equations for the driving function given by the mean E**(t)
activity, rather than repeatedly solving for the individual simu-
lations and subsequently averaging. This single-compartment
approach will provide only an approximate solution for just-
saturating intensities (e.g. approx. 200 R* per flash), because
the stochastic distribution of isomerizations along the outer
segment is ignored. However, in the Results section, we
found that the responses predicted in this way differ only
slightly from those predicted by the alternative approach
(described below) using method 3, which takes full account
of the longitudinal distribution of events.

In the case of method 3 (§5.10), where aberrant R* shut-off
events could occur with low probability, we took account of
longitudinal diffusion in the outer segment cytoplasm. Using
the simulated E**(t) activities in the longitudinal array of
nx = 100 compartments, we integrated the set of partial differ-
ential equations set out in [11], to evaluate the spatial profiles
of cGMP and Ca2+, and thereby obtain the rod’s electrical
response to a single trial at a single flash intensity. This pro-
cedure was repeated a number of times (typically 10 trials) to
obtain an averaged flash response, and then the entire process
was repeated at each intensity of interest.

The response waveforms obtained for these multiple
approaches (disc-basedmethods 1, 2 or 3, anddownstream inte-
gration for a single compartment orwith longitudinal diffusion)
are compared in the Results section. The close similarity of the
traces that were obtained under comparable conditions, but
using very different approaches, gives us confidence that there
are unlikely to be serious errors in our calculations.
5.12.1. Cytoplasmic buffering power for cGMP

The buffering power of the cytoplasm for cyclic GMP was
assumed to be BcG≈ 2 in the original Lamb & Pugh analysis
[2], but in other recent analysis such buffering has been
assumed to be negligible, with BcG = 1 [6]. Here we derive a
lower limit for the buffering power, based on the known bind-
ing of cyclic GMP to the ion channels. The density of CNGC ion
channels in the plasma membrane has been reported to be
200–600 channels µm−2 [51,52]. We will adopt the mid value
of 400 µm−2, and take the plasma membrane to be a cylinder
of d = 1.3 µm and L = 22 µm with an area of 90 µm2, thereby
giving a total number of 36 000 ion channels in the outer seg-
ment. Expressing this number in moles, and referencing it to
the cytoplasmic volume of 0.0146 pL (table 2), we obtain an
effective cytoplasmic concentration of CNGC channels of
CCNGC = 4 µM. If there areN sites on each CNGC that indepen-
dently bind cyclic GMP with dissociation constant KcG, then
the buffering power contributed by these channels will be

BcG ¼ 1þN CCNGC

KcG
, ð5:22Þ

provided that the free concentration of cyclic GMP is much less
than KcG (which it certainly will be). Although the CNGC has
four binding sites for cyclic GMP, the Hill coefficient of channel
opening is 3, and so we will take N = 3 in equation (5.22). Sub-
stituting CCNGC = 4 µM and KcG = 20 µM (table 2), we obtain
BcG = 1.6, as used in §4.3 in evaluating equation (4.1).

Data accessibility. The packages of computer code (WalkMat and Walk2)
used to run the simulations and analyse the results in support of the
findings in this article, together with sample simulated data, are
included in the electronic supplementary material. Also included
therein is figure S1, which collects previous experimental recordings
of bright-flash responses from mammalian rods.
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