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ABSTRACT

KSHY Susceptibility and Transmission Within Tonsillar Specimens

by Farizeh Aalam

Despite nearly three decades of research, not much is known regarding the early stages of
development for KSHV lymphoproliferative disorders, hindering our ability to develop
prophylactic measures or effective treatments. This dissertation will focus on the host and viral
factors influencing the magnitude and dynamics of KSHV infection in the human tonsil to pave

the way for future interventions directed at limiting person-to-person transmission of KSHV.

To understand the contribution of host factors to KSHV susceptibility in B lymphocytes, we
generated a library of 40 tonsillar specimens. Our results indicate that the immunological
composition of tonsillar lymphocytes varies across our donor samples, and KSHV possess a
diverse B lymphocyte tropism. Furthermore, the highly specific targeting of plasma cells is not
due to CD138 (Syndecan-1) being used as an attachment factor, and heparan sulfates, in general,
do not play an important role in KSHV infection of B cells. Finally, the donor-dependent
immunological factors and immune status of individual samples influences the overall

susceptibility, as well as specific targeting of B cell lineages.

To understand the significance of viral gH/gL glycoprotein interaction with some of the key EphA
family of receptors in the process of KSHV entry into B lymphocytes, we demonstrate that the
expression of EphA2, EphA4, and EphA7 are donor and subset-specific and gH/gL-EphA

interactions are important for KSHV-WT infection of primary tonsil lymphocytes. These

VI



interactions are critical for establishing KSHV-WT infection of plasma cells and germinal center

cells, and KSHV exploits alternative mechanism of entry in absence of gH.

Finally, we develop a model for cell-to-cell transmission of KSHV within human tonsils by
examining KSHV spread within and between primary cell types derived from tonsil specimens,
located at the proximity of the crypt lumen, which are in direct contact with external pathogens
present in saliva. We show that a variety of primary tonsillar cells are susceptible to KSHV
infection and can differentially transmit the infection into B cells. We demonstrate that KSHV
spread between and within tonsil cell types is directed, suggesting, this tropism may be influenced

by differential virion composition arising from each cell type.
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1 CHAPTER I; Introduction

Associated Publications and Author Contributions:

Much of this chapter is extracted from the following publication, and was researched and written

in its entirety by Farizeh Aalam and edited by Dr. Totonchy.

Aalam F, Totonchy J. Molecular Virology of KSHV in the Lymphocyte Compartment-Insights

From Patient Samples and De Novo Infection Models. Front Cell Infect Microbiol.

2020;10:607663. doi: 10.3389/fcimb.2020.607663. eCollection 2020. Review. PubMed PMID:

33344267; PubMed Central PMCID: PMC7746649.



1.1 Introduction

Herpesviridae are a family of over 200 types of herpesviruses known to infect vertebrates
(Edelman 2005). Human herpesviruses (HHVs) are the most prevalent viral infections in humans
(Lan and Luo 2017). The three subfamilies of alphaherpesvirinae, betaherpesvirinae, and
gammaherpesvirnae encompass eight known members of HHVs that are distinctively divided
biologically and phylogenetically. The eight human herpesviruses are: cytomegalovirus (CMV),
herpes simplex virus 1 (HSV-1), herpes simplex virus 2 (HSV-2), human herpesvirus 6A (HHV-
6A), human herpesvirus 6B (HHV-6B), human herpesvirus 7 (HHV-7), varicella-zoster virus
(VZV), Epstein-Barr virus (EBV), and Kaposi’s sarcoma herpesvirus (KSHV) (Minson et al. 2000;
Lan and Luo 2017) (Fig 1.1.1). Although HHVs vary substantially in their biology, they share the
characteristic of establishing infection that persists for the lifetime of the host. They accomplish
this by exploiting two distinctive biological programs: latency, in which the viral DNA is
maintained as an extrachromosomal episome, allowing the virus to hide from immunological
surveillance and remain quiescent for years in the same host, and lytic reactivation which allows

for the creation of viral progeny and person-to-person spread (Lan and Luo 2017).
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Figure 1.1-1 Phylogeny tree of herpesviruses based on amino acid sequence similarity.

Partially adapted from (Moore et al. 1996)



1.1.1 Alphaherpesvirinae

Among the alphaherpesvirinae subtamily, HSV-land HSV-2 are the most prevalent pathogens
causing simplex infections associated with encephalitis, conjunctivitis, oral and genital herpes in
90% of the people infected with either or both viruses (Boppana and Fowler 2007).
Alphaherpesvirinae tend to have broad cellular tropism due to an abundance of entry receptors on
the target cell types, but their persistent infection occurs in the nervous system (Margolis et al.
2007; Kramer and Enquist 2013; Oliver, Zhou, and Arvin 2020). Latency is the default pathway
for HSVs, with some sporadic reactivations leading to viral shedding (Roizman and Whitley 2013).
Alphaherpesviruses usually infect epithelial cells, and, following replication, they are transmitted
into the peripheral nervous system and travel through axons of the neurons to establish lifelong
latent infection. Reactivation of the virus may result in travel back to the epithelium resulting in
lesions at the skin or mucous membranes, or, in rare cases, viral spread into the central nervous
system and subsequently fatal encephalopathy (Steiner, Kennedy, and Pachner 2007; Antinone

and Smith 2010).

Generally, HSVs are considered sexually transmitted diseases and their primary infections are
mainly localized and asymptomatic. HSV-1 is a significant cause of viral encephalitis in adults in
developed countries; the impact and the extent of this orofacial infection can be as simple as cold
sores or as severe as herpes keratitis leading to blindness (Farooq and Shukla 2012; Kaye and
Choudhary 2006). HSV-1 is chiefly associated with primary genital infection, and since HSV-2 is
more frequently reactivated than HSV-1, it can be isolated and detected at any time during the
course of infection. Hence, HSV-2 is associated with genital lesions as well as neonatal

encephalitis (Pereira et al. 2012; Kaneko et al. 2008; Looker, Garnett, and Schmid 2008).



Another member of alphaherpesviruses subfamily is VZV that causes chickenpox (varicella)
during the initial infection, and shingles (herpes zoster) during the viral reactivation (Oliver, Zhou,
and Arvin 2020). The risk of viral reactivation increases with age and immunological status (P. O.
Lang et al. 2013). VZV is transmitted via air droplets and direct contact with blisters from zoster
rashes, and its primary infection is systemic and widespread (Kennedy et al. 2015). VZV is the
only HHYV for which vaccines have been successfully developed, with both the live attenuated and
recombinant VZV vaccines significantly reducing the risk of primary infection and/or reactivation

(P.-O. Lang and Aspinall 2021).

1.1.2 Betaherpesvirinae

The betaherpesvirinae subfamily includes HHV-6A, HHV-6B, HHV-7, and cytomegalovirus
(HCMV) (Nishimura and Mori 2018). Co-infection of HHV-6A&B and HCMV with KSHV plays
an essential role in KSHV tumorigenesis and reactivation (Thakker and Verma 2016). HHV-6 was
initially labeled as a lymphotropic virus comprising two variants of HHV-6A and HHV-6B. It is
now established that HHV-6 and HHV-7 replicate within CD4+ lymphocytes, and HHV-6A and
HHV-6B are two distinct viruses (F.-Z. Wang and Pellett 2007; Ablashi et al. 2014). HHV-6B is
the causative agent of Roseola infantum and is generally acquired during infancy or childhood and
HHV-6A is generally contracted during adulthood through asymptomatic infection. Similarly,
primary HHV-7 infections cause roseola, although to a lesser extent (King and Al Khalili 2021;
de Andrade 1989). The HHV-6s and HHV-7 can infect monocytes, T cells, epithelial cells, and
fibroblasts (Gugliesi et al. 2020). HHV-6A and HHV-6B infection of neuronal cells is associated
with progressive multifocal leukoencephalopathy and multiple sclerosis (MS) (Tyler 2003;

Caserta, Mock, and Dewhurst 2001). Although the current data regarding HHV-6 transmission are



limited, studies show that HHV-6 is transmitted through saliva or vertical transmission in utero

(Joshi et al. 2000; Braun, Dominguez, and Pellett 1997).

HCMV (HHV-5) is capable of infecting a broad cell range, including epithelial cells, fibroblasts,
vascular endothelial cells, smooth muscle cells, hepatocytes, macrophages, and dendritic cells
(Gugliesi et al. 2020). Cellular enlargement and intracellular inclusion bodies due to formation of
new virions and lysosomes are the typical characteristics of HCMYV infected cells (Boppana and
Fowler 2007). HCMV primary infection is usually asymptomatic but when symptomatic, it can
cause rash, fatigue, fever, night sweats, hypertransaminasemia, joint and muscle pain that lasts for
weeks (Horwitz et al. 1986). Severe HCMV infection can cause gastrointestinal tract and
hematological abnormalities, central nervous system morbidities, blindness, hepatitis, pneumonitis
of the lungs, and thrombosis of the vasculature (Rafailidis et al. 2008). HCMYV is acquired during
childhood through direct contact with bodily fluids or transmitted prenatally (Gugliesi et al. 2020).
Prenatal transmission of HCMV during the first or second trimester can lead to significant
impairments in development of the fetal nervous system, bone marrow, and internal organs

resulting in birth defects, as well as mental and motor deficits (Buxmann et al. 2017).

1.1.3 Gammaherpesvirinae

Epstein-Barr virus (EBV) and Kaposi Sarcoma Herpes Virus (KSHV) are lymphotropic viruses,
and their infection is associated with increased risk of viral tumorigenesis in HIV infected and
immunocompromised individuals (Thakker and Verma 2016). It is thought that the combination
of chronic antigenic activation and immunosuppression are the hallmarks of EBV infection in
developing this neoplastic course (Shannon-Lowe, Rickinson, and Bell 2017). While these viruses

belong to the same subfamily, they differ in tropism, oncogenicity, and prevalence (Thakker and



Verma 2016). EBV infection is detected in more than 90% of the adult population globally and
KSHYV seropositivity varies between 20 - 80% in Mediterranean and African regions and it is less
than 10% in the USA and Europe (Shannon-Lowe, Rickinson, and Bell 2017; Minhas and Wood
2014). The focus of this section will be only on EBV as we have dedicated a separate part for

KSHV.

EBV infection of lymphocytes and epithelial cells is associated with several cancers including
Burkitt’s lymphoma, Hodgkin's lymphoma, nasopharyngeal carcinoma, and gastric carcinoma
(Shannon-Lowe, Rickinson, and Bell 2017; Kempkes and Robertson 2015). Diffuse large B-cell
lymphoma (DLBCL) is the most aggressive form of B cell lymphoma that sometimes co-exists
with EBV infection (Shannon-Lowe, Rickinson, and Bell 2017). Like other herpesviruses, EBV
has two life cycles, lytic replication and latency. The lytic phase occurs at the beginning of the
infection and is required for cell-to-cell transmission. The lytic phase takes place before activation
of immune surveillance. After activation of cellular and humoral immunity, EBV resumes latency
in memory B cells (its reservoir) to remain unrecognized by the immune system. EBV has three
distinctive latency types characterized by different patterns of viral gene expression. The EBV
latent phase in B cells proceeds from type III to II to I (Taylor et al. 2015). EBV encodes for latent
membrane protein (LMP 1, 2A and 2B) and EBV nuclear antigen (EBNA 1, 2, 3A, 3B, 3C and —
LP) proteins. Expression of these proteins in the pre-latent phase of infection begins the B
lymphocyte reprogramming (Mrozek-Gorska et al. 2019). Initially, EBV infects resting naive B
cells and maximally expresses its viral genes at its latency stage III, leading to viral protein
production to initiate the cytotoxic T-cell reaction. Subsequently, viral protein expression gets
limited to fewer proteins such as latent membrane protein (LMP)-1, LMP-2, and Epstein-Barr

nuclear antigen (EBNA)-1, marking the entrance into the type II latency. Latency II drives the



differentiation of naive to the memory B cells. EBNA2 expression is lost in B cells with type 11
latency and the only EBV's gene products expressed are EBNA1, LMP1, LMP2A, viral
microRNAs, and small nuclear RNAs (EBERs). Ultimately, the type I latency is achieved by
expressing EBV-encoded small RNA (EBER) and EBNA-1 to maintain and replicate the EBV
episome. EBV-infected resting memory B cells can undergo long-term latency with maximal
suppression of viral antigens (Kempkes and Robertson 2015; Taylor et al. 2015). There are two
major serotypes of EBV found in humans: type 1 and type 2. Their genomes are closely identical
except for some nuclear protein encoding genes that ultimately determines their oncogenesis and

alters T cell responses (Kempkes and Robertson 2015; Moss et al. 1988).

1.2 Kaposi Sarcoma Herpes Virus

KSHV (HHVS8) belongs to the gamma-herpesvirus family and is associated with both lymphoid
and non-lymphoid cell tumors in humans (Y. Chang et al. 1994; Cesarman et al. 1995). KSHV-
associated malignancies occur primarily in the context of immunodeficiency. KSHV is the
etiologic agent of Kaposi’s sarcoma (KS), as well as B cell lymphoproliferative disorders; primary
effusion lymphoma (PEL) and multicentric Castleman disease (MCD) (Y. Chang et al. 1994;
Cesarman et al. 1995) and the recently discovered KSHV inflammatory cytokine syndrome (KICS)

(Uldrick et al. 2010).

While KSHV persistence in non-human primates has been reported (H. Chang et al. 2009), as a
human virus, a true KSHV infection model system representing its biology does not exist. In the
absence of such model systems, transgenic animals and homologous viruses have been
investigated. Rhesus monkey rhadinovirus (RRV) and herpesvirus saimiri (HVS) are two lineages

under the rhadinovirus subgroup that often serve as good model systems for KSHV (Dittmer,



Damania, and Sin 2015). RRV has two different strains that share high similarities to each other
and the KSHV genome. HVS on the other hand shares some positional homology with KSHV
genome, implements similar molecular mechanisms, and has similar tropism (Damania 2004; Guo
et al. 2014). Murine herpesvirus 68 (MHV68) is the murine homolog of KSHYV that replicates with
high titer in vitro and in vivo, but does not cause lymphoma and skin lesions in non-transgenic
mice (Liang et al. 2011). Each of these viruses can represent distinctive characteristics of KSHV
in terms of pathogenesis and determining the function of specific viral gene products, which
contributes to advances in KSHV research. In addition, some groups have recently had success

with KSHV research in humanized mice (Miinz 2020).

1.3 KSHYV Pathology and Etiology
Primary infection of KSHV in immunocompetent individuals is associated with fever,
maculopapular rash, and lymphadenopathy in adults (Yan et al. 2019; Q. J. Wang et al. 2001), and

maculopapular rash and febrile illness in children (Andreoni et al. 2002).

KS is the most prevalent cancer in sub-Saharan Africa associated with HIV infection (Gbabe et al.
2014). KS lesions classically involve the mucosal surface or dermal area of the upper and lower
extremities, it can also emerge from viscera of the spleen and lung as well as lymph nodes
(Restrepo et al. 2006). KS lesions are heavily vascularized and are characterized by the presence
of poorly differentiated spindle cells of endothelial cell origin and inflammatory cell infiltration.
KS spindle cells are mostly latently infected with sporadic lytic infection (Yan et al. 2019).
Whether these endothelial spindle cells are of vascular or lymphatic origin is still debated (Li et
al. 1996; Hong et al. 2004; Morris, Punjabi, and Lagunoff 2008). Lymph node involvement and

immune status of the host are the primary determinants of the severity and the stages of KS



progression (J. F. Taylor et al. 1971; Kyalwazi 1981). Among the four variants of KS, classical
KS is the most benign form of KS, and primarily affects elderly men of eastern Europe and
Mediterranean regions (DiGiovanna and Safai 1981). Epidemic KS is the most aggressive form of
KS associated with HIV-infected individuals (Gbabe et al. 2014), and endemic KS is found in
eastern and central African countries with the lymphadenopathic type occurring primarily in
children and associated with high mortality rate (Stein et al. 1994; Dutz and Stout 1960; J. F.
Taylor et al. 1971). The last type is iatrogenic KS, which occurs in patients receiving

immunosuppressant after a transplant to prevent organ rejection (Siegel et al. 1969).

KSHYV inflammatory cytokine syndrome is the newly characterized KSHV-associated disease that
occurs in the patients with classical MCD with no pathological symptoms (Uldrick et al. 2010). It
is typically characterized by elevated viral and human IL-6 and IL-10 cytokines, accompanied by
high viral load in the bloodstream (Uldrick et al. 2010). In fact, KICS, MCD, and PEL share some

common clinical manifestations of disease (Lurain et al. 2019).

MCD and PEL are two B cell proliferative disorders associated with KSHV infection (Cesarman
et al. 1995; Chang et al. 1994). PEL, a non-Hodgkin lymphoma, was named as it was initially
detected as an effusion lymphoma in HIV patients; the extracavitary manifestation of PEL was
subsequently detected in other patients (Y. Chang et al. 1994; Soulier et al. 1995; Cesarman et al.
1995). Nearly 80% of PEL cases are coinfected with EBV, occasionally with the combined KS
and MCD clinical manifestation (Ramaswami et al. 2016). Cytologically, PEL neoplastic cells are
large with a noticeable nucleoli and round to irregular nuclei with immunoblastic, plasmablastic
or anaplastic morphology (Calabro and Sarid 2018). PEL cells secrete high levels of both the viral
and cellular IL-6 and IL-10 and vascular endothelial growth factor (VEGF) (Foussat et al. 1999),

while human and viral IL-6 stimulate B cell growth and angiogenesis, IL-10 is important for tumor
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progression, and VEGF enhances vascular permeability (Foussat et al. 1999; Drexler et al. 1999;

Calabro et al. 2009; Aoki and Tosato 1999).

MCD is a rare polyclonal B cell proliferative cancer, affecting both HIV-negative and HIV-
positive subjects (Castleman, Iverson, and Menendez 1956) and EBV co-infection is rarely
detected in MCD cases (Barozzi et al. 1996). MCD is a benign mass of lymphoid tissue that can
involve single or several lymph nodes (Chan et al. 2016). Histologically, there are three variations
of MCD; the hyaline vascular type (representing 90% of unicentric cases), plasmablastic type, and
the mixed variants of these two (Calabro and Sarid 2018). Furthermore, the phenotypic
characteristics of MCD are not necessarily plasmablastic, as cases have been identified that are
CD20 positive and CD138 negative (Dupin et al. 1999, 2000). MCD plasmablasts are polyclonal
but are of monotypic IgM-lambda type and the lack of somatic mutation in their Ig genes
rearrangement may be indicative of their origin from naive pre-GC B cells (Du et al. 2001; Calabro
and Sarid 2018). Finally, the systemic illness including cell-free pleural effusion,
thrombocytopenia, lymphadenopathy, edema, anemia, severe fatigue, fever, weight loss and

splenomegaly are associated with high levels of human and viral IL-6 (Calabro and Sarid 2018).

1.4 KSHYV Life Cycle

KSHYV has a double-stranded DNA genome of about 165 kb, encoding for nearly 100 proteins.
The genomic DNA is enclosed in a nucleocapsid and covered with a lipid bilayer envelope. The
space between the capsid and the envelope is known as the tegument, a loosely associated layer of
capsid associated proteins and microRNAs (Yan et al. 2019). Like other herpesviruses, KSHV
undergoes lytic or latent replication after entry into the host cells, characterized by unique patterns

of gene expression (Barrett et al. 2020). The latent state allows for persistent infection; where
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KSHV persist as extrachromosomal episome in its inert state, avoiding the lytic phase and
immunosurveillance through manipulation of the immune system (Yan et al. 2019; Grinde 2013).
Viral latency is marked by the expression of latency-associated nuclear antigen (LANA/ORF73),
viral Fas like inhibitory protein (v-FLIP/ORF72), the viral cylin D homolog (vCyclin/ORF71),

and viral microRNAs (Uppal et al. 2014).

LANA is a multifunctional protein capable of tethering the KSHV genome to the host chromosome
to maintain its replication and segregation during cell division (Uppal et al. 2014). LANA is
considered an oncoprotein, and its binding to various proteins such as p53, p73, and VHL promotes
oncogenesis and represses apoptosis (Santag et al. 2013). v-Cyclin is viral mimicry of a human
cyclin D that regulates cellular proliferation and cell cycle (Van Dross et al. 2005). It forms a
complex with CDK®6 to facilitate phosphorylation and inhibition of p7, pRb, CDK inhibitors, and
histone H1 (Direkze and Laman 2004). v-Cyclin-CDK6 complex can bind to LANA and recruit

epigenetic factors that control the latent-lytic switch (Sarek et al. 2010; Uppal et al. 2014).

v-FLIP is another viral mimicry of a human gene; homologous to cellular FLIP. It activates the
NF-kB pathway through binding to IkB kinase y (IKKYy) to promote cell survival signals (Field et
al. 2003). It also inhibits KSHYV lytic replication through NF-kB-mediated suppression of the AP-
1 pathway (Guasparri, Keller, and Cesarman 2004). vFLIP-mediated activation of the NF-xB
pathway leads to modulation of genes involved in cell proliferation, cytokine secretion, immune
activation, acute phase responses, transformation, and protection against apoptosis (Rayet and

G¢élinas 1999).

Physiological and environmental stimuli such as hypoxia and oxidative stress act as effective

triggers to lytic reactivation (Ye et al. 2011; Davis et al. 2001). The productive phase of viral
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infection is lytic replication, when KSHV genome replication, infectious virion production,
assembly, and release leads to cell lysis (Aneja and Yuan 2017). The reactivation state leads to
transcription of the immediate early regulatory genes (regulators and transcription factors) and
early genes (required for the production of viral protein and DNA replication), and finally late

genes (viral structural components) (Yan et al. 2019).

Following the expression of lytic genes, the assembly of the virus commences in the nucleus by
incorporation of replicated genome into the synthesized capsids and its association with tegument
proteins, and lastly budding from the cell membrane resulting in cell lysis and release of the viral
progeny (Gradoville et al. 2000). Although the latent infection is required for viral persistence
(Giffin and Damania 2014), lytic reactivation plays an important role in pathogenesis of KSHV

associated malignancies, particularly MCD and PEL (Uldrick and Whitby 2011).

1.5 KSHY Tropism and Entry

KSHYV DNA has been detected in B cells of both the peripheral blood and secondary lymphoid
organs as well as keratinocytes, monocytes, fibroblasts, epithelial cells, and endothelial cells
(Chandran 2010). These cell types can all be infected in vitro (Muniraju et al. 2019; Cerimele et
al. 2001). However, primary B cells and B lymphoma cell lines show poor susceptibility to KSHV
infection in vitro compared to adherent cell lines (Bechtel et al. 2003). HHV-8 DNA is detectable
in B cells from both HIV+ and HIV-PEL and MCD cases (Dupin et al. 1999). Interestingly, KSHV
isolated from EBV+PEL cells is able to infect B cells from seronegative patients (Mesri et al.
1996). Phylogenetic analysis and the association of KSHV infection with pathological
lymphoproliferations are sufficient to characterize KSHV as a lymphotropic gamma-herpesvirus.

The extensive in vitro susceptibility of adherent cell lines can partly be explained by the presence

13



of various cellular receptors used by the viral glycoproteins for attachment and entry (Gro3kopf et
al. 2019; S M Akula et al. 2001a; Chen et al. 2019; Hahn et al. 2009; Muniraju et al. 2019; S M

Akula et al. 2001b; S M Akula et al. 2002; Rappocciolo et al. 2008)

The process of KSHV entry into cells is a multistep and sequential process that requires interaction
of several host cell receptors with viral envelope glycoproteins. The first step of KSHV entry into
target cells begins with binding of the KSHV’s glycoproteins to host cell receptors (Chandran
2010). Among the herpesvirus conserved glycoproteins; gB (ORFS), gH (ORF22), gl. (ORF47),
gN (ORF53), gM (ORF39), and KSHV-specific glycoproteins proteins; K8.1A and B, KCP
(ORF4), ORF45, ORF68, ORF27, ORF28, the canonical core entry machinery gB, gH/gL, K8.1,
and KCP are thought to be essential in facilitating KSHV entry into a variety of cell lines (Wang
etal. 2001; Akula, Wang, et al. 2001; Akula, Pramod, et al. 2001; Birkmann et al. 2001; Spiller et
al. 2006; Chandran 2010; Kerur et al. 2010; Dollery et al. 2019; van der Meulen et al. 2021). Not
all of the host cellular receptors used by these glycoproteins are entry receptors, some serve as
binding receptors to concentrate KSHV on the cell surface (Connolly et al. 2011; van der Meulen
etal. 2021). Once the interaction between the virion and the host cell membrane is established, the
subsequent signal transduction involving tyrosine kinase activation leads to viral entry and
trafficking (Veettil et al. 2014). As an example, KSHV binding to cellular integrins results in
phosphorylation of focal adhesion kinase (FAK), leading to the activation of Src tyrosine kinases,
Diaphanous 2, PI3-K, and Rho GTPases to control virion internalization (Chandran 2010). Viral
entry into cells employs different endocytosis pathways such as caveolin or clathrin mediated
endocytosis, and micropinocytosis, depending on the cell type (Veettil et al. 2014; Raghu et al.

2009).
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Once KSHYV is internalized, the capsid is released into the cytoplasm as a result of the fusion of
viral envelope to the membrane of the endosome. Thereafter, the capsid transits to the nuclear
membrane and the KSHV genome passes through nuclear pores and forms a circular episome in

the nucleus (Chandran 2010; van der Meulen et al. 2021)

1.6 KSHYV Entry into B cells

As mentioned earlier, the process of KSHV entry into the cells is a complex process that involves
various cellular and viral proteins interaction. The remainder of this section discusses these cellular
interactions, focusing on our current knowledge and the gaps in KSHV entry into B lymphocytes.
KSHYV virion attachment to adherent cells can be facilitated through heparan sulfate proteoglycans
on the host cell surface (S M Akula et al. 2001a), and the low in vitro susceptibility of B cells has
been attributed to a lack of HS expression. This theory is supported by the observation that
restoration of cell surface HS in B cell lines results in increased susceptibility to infection
(Jarousse, Chandran, and Coscoy 2008; Dollery et al. 2019; Jarousse et al. 2011). Whether heparan
sulfate proteoglycans play a role in KSHV attachment to primary tonsillar B cells or any B cell

subsets remains to be answered.

The lectin DC-SIGN has also been implicated as an attachment factor for KSHV entry into B cells.
Approximately 8% of CD19+CD20+ peripheral blood B cells and 26% of tonsillar B cells are
positive for DC-SIGN, and activation of peripheral blood B cells with IL-4 and CD40L results in
3 to 3.5 fold increase in DC-SIGN and CD23 expression (Rappocciolo et al. 2006). Activated B
cells are more susceptible to KSHV infection and KSHV infected B cells show increased DC-
SIGN levels compared to uninfected cells (Rappocciolo et al. 2008). Interestingly, B cells

expressing DC-SIGN can bind and transfer HIV-1 virions to T cells (Rappocciolo et al. 2006).
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Taken together, these observations suggest that KSHV and HIV infections act synergistically.
KSHV infection of B cells can facilitate the dissemination of HIV-1 to CD4+ T cells via
upregulation of B cell DC-SIGN expression, and HIV, in turn, depletes the CD4+ T cell pool

creating an immunological milieu in which KSHV benefits from the lack of immune surveillance.

KSHYV encodes a variety of glycoproteins which facilitate virion attachment, fusion, and viral entry
into the host cell. Among the various KSHV glycoproteins, gH/gl. complex is proved to be the
major antigenic determinant of KSHV-specific nAbs in the plasma of KS patients regardless of
their disease status (Mortazavi et al. 2020), suggesting that this complex is critical for virus entry.
Binding of gH/gL glycoprotein complex to the surface is not well characterized, but it is not HSPG-
dependent (Hahn et al. 2009). KSHV entry into the BJAB cell line has been linked to gH/gL
binding to EphA7 (GroBkopf et al. 2019). Eph4 also binds to gH/gL., and is expressed in B cells,
endothelial, fibroblast, and epithelial cells (Chen et al. 2019). In HEK293T cells Eph4 binds more
tightly with gH/gL than Eph2 (Chen et al. 2019). RNA sequencing data shows that B cells express
Eph4 on their cell surface, albeit not as abundant as endothelial cells but higher than epithelial
cells (Chen et al. 2019). Thus, it is possible that gH/glL complex can establish interaction with
Eph4 in B cells, since B cells may have almost the same level of Eph4 as HEK293 (epithelial cells)
on their surface. However, use of Eph4 as a KSHV entry receptor for B cells has not been studied
specifically. Interestingly, the MC116 lymphoma cell line expresses both EphA7 and Eph4, and is
susceptible to KSHV infection, but studies with a KSHV mutant lacking gH demonstrated that
KSHYV entry into MC116 cells is not dependent upon gH/gLL (Muniraju et al. 2019). This study, in
particular, highlights the significant gaps in our understanding of the molecular virology of KSHV

entry into B cells (Fig 1.6.1).
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Another study showed that K8.1A is required for KSHV infection of both MC116 and
CD20+CD3- B cells from tonsil. The cellular receptor interacting with K8.1A in this context is not
known, but it is independent of HS binding (Dollery et al. 2019). Finally, the KSHV glycoprotein
gB, which is presumed to be the KSHV fusion protein, binds to DC-SIGN in sifu in a dose
dependent manner (Hensler et al. 2014), but whether this interaction is essential for KSHV entry
into B cells has not been formally studied. xCT, the light chain has been shown to be involved in
KSHYV fusion and entry in several cell lines. Although, its mRNA expression is undetectable in
CD19+ peripheral blood mononuclear cells (PBMCs) (Kaleeba and Berger 2006b, 2006a) xCT is
highly expressed on the surface of PEL cell lines and targeting it by xCT selective inhibitor,
induces apoptosis in a caspase dependent manner. Selective inhibition of xCT in an immune
deficient mouse xenograft model proves that it plays a key role in tumor progression, survival, and
growth of PEL cells (Dai et al. 2014). The expression of XCT can be induced by KSHV miRNAs
conferring permissiveness to KSHV in murine microphages and HUVEC cells. Additionally, the
expression of XCT within the KS lesion is correlated with the tumor stage (Qin et al. 2010).
Whether KSHV miRNAs and change in redox balance contribute to upregulation of xCT in

primary B cells to increase the KSHV permissiveness, remains to be answered.

To date, no comprehensive studies been done on primary human B cells samples to elucidate the
cellular receptors involved in KSHV entry into B lymphocytes or the individual and collective
contributions of KSHV glycoproteins to this process. Further studies are needed to determine these
important interactions to facilitate the rational design of vaccine strategies that will effectively

limit the establishment of infection in the lymphocyte compartment.
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Figure 1.6-1 Schematic of early infection events for KSHV in B lymphocytes
highlighting some of the significant questions that remain unanswered in the field.
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1.7 B Lymphocyte Maturation

B cells and their antibodies are an integral part of both humoral and adaptive immunity. Any defect
in the developmental stages of B cells can impact the maturation and the functionality of B cells,
resulting in allergies, autoimmunity, immunodeficiencies, and malignancies (Pieper, Grimbacher,
and Eibel 2013). There are significant gaps in our understanding of how KSHYV targets B cells for
infection, and how the virus manipulates B cell physiology in the development of PEL and MCD.
Further studies of KSHV molecular virology of lymphocytes are needed to understand the
pathogenesis of KSHV-associated lymphoproliferation, so that effective treatments can be
developed. Therefore, this section is intended to provide a brief background on B cell development.
In the next section, we explore our current understanding of KSHV biology in B cells by
concentrating on studies which use de novo infection of human B cells, analysis of patient samples

from KSHV lymphoproliferative disease, and relevant lymphoma cell lines.

Development of B lymphocytes begins in the fetal livers’ hematopoietic stem cells (HSC) and
continues in the bone marrow (BM) during the lifetime of an individual (Miiller et al. 1994). Early
B-cell development in BM is a series of functional genomic rearrangements of immunoglobin
called V(D)J recombination. The functional V(D)J recombination of heavy chain and light chain
results in expression of antibody repertoires to facilitate recognition of billions of antigens by B
cells (Pieper, Grimbacher, and Eibel 2013). At the pre-B cell stage, the cell undergoes one to two
divisions, along with rearrangement of the gene encoding either « or A light chain genes. Formation
of the p heavy chain combined with one of the light chains leads to expression of [gM molecules
on the cell surface (van Zelm et al. 2007). These cells are immature B cells ready to depart BM
and travel to the secondary lymphoid organs, where they can begin their early developmental stage

by differentiation into naive, follicular, or marginal zone (MZ) B cells (Pieper, Grimbacher, and
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Eibel 2013; Shahaf et al. 2016). Immature B cells arrive at the peripheral lymphoid tissues as
transitional B cells (Shahaf et al. 2016) (Fig.1.7.1). Transitional B cells concentrate into different
locations to mature into professional antibody secreting plasma cells via either T-cell dependent

or T-cell independent pathways (Dunkelberger and Song 2010).

Germinal centers (GC) are the important sites of antibody maturation, where T-cell dependent B
cell differentiation takes place (Stebegg et al. 2018). The germinal center is partitioned into two
major compartments: dark zone and light zone. B cells within the dark zone undergo proliferation,
somatic hypermutation, class-switch recombination and differentiate into centroblasts.
Centroblasts exiting the cell cycle are entering into the light zone as centrocytes (Stebegg et al.
2018). Centrocytes within the light zone are the target of selection, and in order to survive, they
should successfully process the internalized antigen and present it on their Major
Histocompatibility Complex Class II (MHC 1) to helper T cells via binding to CD4 and the T cell
receptor (Adler et al. 2017). This binding results in upregulation of CD40L on the T cells that can
subsequently bind to the CD40 receptor on the centrocytes and initiate secretion of cytokines. The
cytokines further stimulate the proliferation of centrocytes, and their somatic hypermutation leads
to the formation of memory cells, plasmablasts, and plasma cells as B cells depart GC zone (Adler

etal. 2017).

T-cell-independent, GC independent, or extrafollicular pathway of B cell development requires no
T cell interactions (Pieper, Grimbacher, and Eibel 2013). It takes place in the marginal zone, the
region interfacing non-lymphoid and lymphoid pulp of the spleen (Palm and Kleinau 2021). This
maturation pathway is triggered by Pathogen Associated Molecular Patterns (PAMPs) binding
pattern recognition receptors on naive B cells (Yam-Puc et al. 2018). PAMPs are polysaccharides

(PS) or lipopolysaccharides having repetitive epitopes capable of activating toll-like receptors
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(TLR) to initiate B cell proliferation and its differentiation into plasmablasts and plasma cells
(Yam-Puc et al. 2018). Plasmablasts are short-lived B cell lineages awaiting maturation into the
long-lived plasma cells that mainly reside in BM and secrete functional antibodies (Khodadadi et
al. 2019). Memory B cells are incapable of differentiating into plasma cells without the interference
of helper T cells (Yam-Puc et al. 2018). Whether follicular or extrafollicular, B cell development
and maturation is required for the maintenance of the host defense against pathogens. Moving to
the next section, readers will be introduced to the molecular mechanism implemented by KSHV
to manipulate B cells to its own advantage. What B cell lineages are targeted by KSHV? And how
does KSHV enter into primary human B lymphocytes? These are the rudimentary questions that

haven’t been answered thus far.
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Figure 1.7-1 B lymphocyte maturation
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1.8 KSHYV in the Lymphocyte Compartment

1.8.1 KSHYV manipulation of the cell cycle in B cells

KSHYV can establish latent infection in many adherent cell lines, including human and non-human
cells of epithelial, endothelial, and mesenchymal origin (Bechtel et al. 2003). Previous studies in
primary human B cells report that infection is lytic, particularly in the absence of T cells, but what
controls the lytic switch in these cells remains to be established (Myoung and Ganem, 2011a). In
addition to T cell control of latency, B cell immunophenotype and activation state have been
implicated as factors influencing the lytic/latent balance in B cells (Rappocciolo et al. 2008;
Hassman et al. 2011; Myoung and Ganem, 2011a), as well as the immunological status of the

individual and the presence of other pathogens (Gregory et al. 2009).

Although the latent phase of infection allows viral persistence and immune-evasion, the production
of viral progeny and viral transmission and spread between the cells, depends on the lytic phase.
De novo infected PBMCs exhibit simultaneous expression of numerous latent and lytic markers at
the very beginning of the infection (Purushothaman et al. 2015). This short lytic replication seems
to be a prerequisite for the establishment of the latent phase in PBMCs infected with EBV (Halder
et al. 2009). Nevertheless, the lytic gene expression is not required for KSHV infection of PBMCs
before or after EBV infection or mitogenic activation (Faure et al. 2019). Do B cells represent a
significant source of KSHV virions during human infection? The early lytic gene K8 (K-bZIP), a
cell cycle regulator showing homology to EBV’ Zta, is required for viral lytic DNA replication
and virion production in PEL cell lines (Wu et al. 2002; Lefort and Flamand, 2009). Its expression
concurs with augmented C/EBPa, p21 and p27 in the nucleus, causing the cell arrest in G1 phase
(Wu et al. 2002; Izumiya et al. 2003a). This prolonged G1 arrest is as a result of K8 binding to

CKD2, interfering its kinase activity, giving ample time for viral early gene transcription and

23



translation (Izumiya et al. 2003a). K8 also interacts with p53 inhibiting its transcription, preventing
apoptosis (Park et al. 2000). However, in another study by Hollingworth et al. lytic replication in
PEL cells was shown to require S phase entry (Hollingworth et al. 2020). Replication and
transcription activator (RTA) is a protein encoded by ORF8 has been shown to co-localize with
K8 within the nucleus of the PEL cells, and its association with the K8 (Izumiya et al. 2003b) can
initiate lytic reactivation from latency by binding to a particular sequence on the host and viral
DNA further modulating the transcription of viral and host regulatory genes throughout KSHV
lytic reactivation (Kaul et al. 2019). Viral DNA replication is controlled by both transcriptional
coactivator p300 and CBP. P300 was shown to be involved in the oncogenesis of PEL by driving
B cell proliferation and inhibiting KSHV lytic replication. Knockout of p300 in PEL cells
decreased KSHV genome copy number and virion production by suppressing lytic gene
expression, possibly maintaining the latency of KSHV via binding with ATF3 (Sun et al. 2020).
Nonsense-mediated mRNA decay (NMD) is an RNA quality control implemented by the cells to
restrict the action of the RNA viruses and serve cellular quality control. Interestingly, viral RTA’
mRNA is targeted by NMD, impeding KSHV lytic reactivation in PEL cells (Zhao et al. 2020).
However, KSHV has evolved to overcome some of these quality controls and exonuclease
activities by circularizing its structural and regulatory RNAs incorporated into the virions (Abere
et al. 2020). Taken together, the current literature demonstrates that multiple layers of both viral
and cellular regulation influence KSHYV latency and lytic reactivation in B cells. It is notable that
most of this work has been done in PEL cells, and future studies investigating how KSHV

manipulates the cell cycle and cell type specific control of latency and reactivation in primary B
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lymphocytes will be critical for understanding early events in KSHV infection and pathogenesis

of KSHV-associated lymphoproliferative diseases.

1.8.2 Immune evasion

KSHYV infection persists for the lifetime of the host and, like all herpesviruses, KSHV must have
an arsenal of mechanisms for evading host immunity in order to accomplish this. Lymphotropic
gamma-herpesviruses are particularly interesting in this regard because they can manipulate and
evade the host immune system via mechanisms that require direct infection of immune cells.
Moreover, the inflammatory nature of KSHV-associated malignancies indicates that KSHV
immune-evasion mechanisms may also directly contribute to pathogenesis in KSHV-associated
diseases. Indeed, this immune-evasion is manifested at the transcriptional level within the first few
hours of infection, by hampering the expression of immune response genes and inducing the
proapoptotic regulators in BJAB cells (Naranatt et al. 2004). KSHV can infect both B and T cells
in tonsil primary cell culture, however evidence suggests that infection of T cells is abortive
(Myoung and Ganem, 2011b). Moreover, there is reciprocal activation of T cells by KSHV-
infected B cells and contact-dependent control of KSHV lytic reactivation by T cells in ex vivo
tonsil cultures, and in this system the activation of T cells is independent of both KSHV antigen

and MHC restriction (Myoung and Ganem, 2011a).

Activated, KSHV infected B lymphocytes from PBMC and tonsils show downregulation of MHC
class I (HLA-A, HLA-B, and HLA-C) within 24 h of infection as well as decreased expression of
CD20 (Rappocciolo et al. 2008). Modulation of MHC class I expression is also observed in PEL
derived B cell-lines and is thought to be partially due to reduced expression of the TAP-1 gene.

Importantly, this MHC-I modulation can disrupt cytotoxic T lymphocyte surveillance of KSHV
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infected cells (Brander et al. 2000), aiding in KSHV persistence and tumorigenesis in B cells. The
CD20 low phenotype of KSHV infected cells is also present in MCD and may limit B cell-targeted
treatment options for MCD patients. However, these patients still show clinical benefit from

rituximab (an anti-CD20 monoclonal antibody) treatment (Naresh et al. 2009).

KSHYV encodes four viral interferon regulatory factors (VIRFs). These proteins have minimal
homology to human IRFs, but vIRF1, vIRF2, and vIRF3 are known to bind DNA elements similar
to their human IRF counterparts (Lubyova and Pitha, 2000; Park et al. 2007; Hu et al. 2016) vIRFs
exert their regulatory role at varying levels ranging from hampering the antiviral interferon
response to inhibition of signaling pathways to control the function of cellular proteins, thereby
interfering with the cellular processes such as apoptosis (Rivas et al. 2001; Nakamura et al. 2001,
Lee et al. 2009) proliferation and angiogenesis (Wies et al. 2008; Li et al. 2019; Li et al. 2020)
vIRF3 (LANA-2) expression is detected in nearly all virus infected cells in PEL and MCD tumors,
and vIRF3 is a bona fide oncogene which can inhibit the function of p53. Moreover, among the
KSHYV vIRFs, the function of vIRF3 is thought to be B cell-specific. Interestingly, the expression
level of VIRF3 does not fluctuate even after lytic reactivation (Rivas et al. 2001), suggesting that
there is an alternative level of regulation driving vIRF3 expression in B cells. In latently infected
PEL cell lines, vIRF3 is linked to decreased MHC-II expression, and vIRF3 also modulates both
type II (Schmidt et al. 2011) and type I interferon responses (Lubyova et al. 2004). vIRF3-mediated
inhibition of IFNy results in inhibition of both PIII and PIV promoter of class II transactivator
(CIITA) transcription (Schmidt et al. 2011). Importantly, vIRF3 is required for the survival of both

EBV co-infected and EBV negative B cell lymphomas in vitro (Wies et al. 2008).
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1.8.3 Proliferation and plasmablast differentiation

PEL is an immunoblastic tumor affecting the pericardial or pleural area of the body cavities. PEL
tumor cells are negative for most B cell surface markers except CD138/syndecan, a marker of
terminal plasma cell differentiation (Jenner et al. 2003). These terminally differentiated
CD138+CD20+ and CD20— plasma cells are highly targeted by KSHV infection in primary B cells
of tonsillar sample, gaining greater survival rate for CD20— cells over 3 days post infection. This
indirect survival effect is as a result of differentiation of other B cell lineages into the CD138+
cells (Aalam et al. 2020). Interestingly, more than 60% of the KSHV infected B cells from PBMCs
of KS positive patients are positive for CD138 (Bella et al. 2010). In MCD, the pathological cells
are monotypic/polyclonal plasmablasts located in the mantle zone of spleen and lymph nodes (Du
et al. 2001). These cells express PRDM1 / BLIMP1 marking them as pre-plasma or terminal
plasma stage of B-cell differentiation (Chadburn et al. 2008). Most of KSHV infected B cells in
MCD patients express IL-6 (Du et al. 2001), and the importance of IL-6 signaling in MCD is
illustrated by the finding that tocilizumab (an IL-6R blocking monoclonal antibody) can ameliorate
the symptoms or even lead to prolonged remission in some MCD cases (Song et al. 2010; Galeotti
et al. 2012; Ramaswami et al. 2020). In ex vivo infection models, particularly those performed in
tonsillar B lymphocytes, the immunophenotype of infected cells closely resembles the pathological
cells present in MCD (Du et al. 2001; Chadburn et al. 2008; Totonchy et al. 2018). Latently KSHV
infected B cells from the tonsil (characterized by LANA dots), proliferate, and express a high level
of IL-6R and CD27 on their surface exhibiting plasma blast morphology at 72 h post-infection
(Hassman et al. 2011). Similarly, KSHV infection of naive B lymphocytes from human tonsil
upregulates IL-6 secretion as well as CD27 expression (Totonchy et al. 2018). Ex vivo infection

of activated peripheral blood B cells expressing DC-SIGN results in infection of primarily naive
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and IgM memory B cells at early times post-infection (Rappocciolo et al. 2008). Remarkably, a
similar expansion of MZ-like memory and naive B cells is seen in PBMC from HIV negative KS
patients (Bella et al. 2010). Taken together, the concordance between pre-disease
immunophenotypes, ex vivo infection immunophenotypes and the phenotypes seen in KSHV
lymphoproliferative diseases suggests that KSHV infection manipulates B cell compartment
toward particular immunophenotypes even in the absence of overt KSHV-associated

lymphoproliferation.

1.8.4 Induction of immunoglobulin light chain revision

One of the more puzzling characteristics of MCD is the fact that KSHV infection is restricted to
Igh positive B lymphocytes in patient samples (Du et al. 2001). The same restriction is observed
in KSHV infected B lymphocytes derived from tonsil samples (Hassman et al. 2011). Moreover,
in PEL, most infected B cells are g negative with occasional IgA positive B cells (Matolcsy et al.
1998). Our group was able to show that KSHV infection in Igk tonsil lymphocytes induces Igi
expression via re-induction of V(D)J recombination driving BCR revision. These cells express
LANA, K8.1 and ORF59 markers, indicating a mixed population of lymphocytes in latent and
lytic stages of infection (Totonchy et al. 2018). The same study also detects the Ighi+ KSHV
infected cells in biopsies of HIV positive patients with AIDS-related lymphadenopathy (ARL)
having no histologically similar characteristics of MCD, again supporting the conclusion that
KSHV manipulates B cell physiology even in the absence of KSHV-associated
lymphoproliferative disease and establishing that the IgA+ phenotype in MCD is driven directly
by KSHYV infection. Further study is needed to characterize the intervening events that drive KSHV
infected B cells from these early manipulations of B cell phenotype and physiology to overt

pathological lymphoproliferation.
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1.9 KSHYV Transmission

Serological diagnosis is the standard method of KSHV detection and prevalence estimation, as
KSHV DNA is not detectable in all infected individuals (Uldrick and Whitby 2011). Sadly, a
majority of the conducted epidemiological studies suffer from implementation of unstandardized
serological diagnostic techniques, underestimating the cases with low titers of anti-KSHV
antibodies (Tedeschi, Dillner, and De Paoli 2002). As a result, not only are the epidemiological

studies impacted, but the KSHV pathology is somewhat underrepresented as well.

Unlike other herpesviruses, the epidemiology of KSHV is not the same around the world, and its
transmission is mainly affected by the sociodemographic background and endemicity (Iftode et al.
2020). KSHV was initially thought to be a sexually transmitted disease during the AIDS pandemic
(Mesri, Cesarman, and Boshoff 2010). It is now believed that salivary transmission is the major
route of KSHYV transmission in endemic areas, while sexual risk factors dominate transmission in
certain populations (Martin and Osmond 2000). The seroprevalence of KSHV is higher in men
who have sex with men as compared to heterosexuals (Martin et al. 1998), which is most likely
due to presence of other risk factors associated with homosexuality and sexual practices; such as
number of sexual partners and co-infection with other pathogens, along with salivary exchange

(Martin et al. 1998; Martin and Osmond 2000; Martr¢6 et al. 2007; Wakeham et al. 2013).

Primary KSHV infection usually occurs during childhood, and transmission may occur anytime in
adulthood via both sexual and non-sexual routes (Minhas and Wood 2014). KSHV DNA has been
detected in oropharyngeal mucosa, saliva, PBMCs, prostate glands, semen, and cervicovaginal
secretions (T. Chen and Hudnall 2006; Kedes et al. 1996; Mantina et al. 2001; Mbulaiteye et al.
2003). KSHV infected solid organ transplants and blood transfusions are also routes of KSHV

transmission that should not be neglected (Marcelin et al. 2004; Hladik et al. 2006).
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KSHYV is thought to be transmitted from mother to child, and seropositivity increases with age
(Wakeham et al. 2013). In a study conducted on South African mothers, KSHV DNA was detected
in breast milk of about 20% of the subjects, suggesting that KSHV may be transmitted from mother
to child via breastfeeding (Dedicoat et al. 2004). However, this finding was not supported by
another study, thus the transmission via this route is debatable (Brayfield et al. 2004). Another
possible route of KSHV transmission from mother to child is during gestation, indicated by high
KSHYV DNA load in genital secretions (Lisco et al. 2006). The development of KS during infancy
is further proof of this route of transmission at the prenatal stage (Gutierrez-Ortega et al. 1989).
Nevertheless, in endemic and non-endemic areas, the prevalence of premastication of food for
young children could account for salivary transmission as a prominent mode of horizontal
transmission, if KSHV is not acquired prenatally (Cunha et al. 2005; Rohner et al. 2016; Cao et al.

2014).

1.10 Justification and Significance of Study

Saliva is widely accepted as the principal mode of KSHV transmission (Casper et al. 2004, 2007)
and KSHYV disease frequently manifests in the oral cavity (Pantanowitz et al. 2013; Feller et al.
2007). KSHV DNA is detectable in human saliva, and salivary transmission is thought to be the
primary route of person-to-person transmission for KSHV (Quinlivan et al. 2001; Olp et al. 2016;
Totonchy et al. 2018), making the oral lymphoid tissue a likely site for the initial infection of B
lymphocytes in a naive human host. Thus, the tonsil and other oral lymphoid tissues, which are in
contact with transmitted saliva and are rich in KSHV target cell types, represent a critical niche

for early infection events in the human host.
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To date, several other groups, including our own, have been successful in infecting B lymphocytes
derived from human tonsils (Hassman, Ellison, and Kedes 2011; Myoung and Ganem 2011b,
2011a; Bekerman et al. 2013; Nicol et al. 2016; Totonchy et al. 2018). Ex vivo infection of tonsil
lymphocytes is emerging as a viable strategy for studying early infection events for KSHV
infection in B lymphocytes. However, the existing literature on KSHV infection of tonsil
lymphocytes is highly varied in both approach and outcome. The previous studies of B cell
infection suffer from analyzing limited markers (Hassman, Ellison, and Kedes 2011; Totonchy et
al. 2018; Nicol et al. 2016; Bekerman et al 2013) and use of co-culture method of B cell infection
(Bekerman et al 2013). Thus, limiting our understanding of KSHV targets within B cell sub-
populations. In these studies, we aim to characterize the frequency of lymphocyte populations in
human tonsillar specimens using lineage-defining immunological markers by flow cytometry. We
then attempt to infect naive B cells with KSHV according to our unique in-house method to
determine the host factor's contribution to KSHV susceptibility of B cells by correlating baseline

frequencies of immunological subsets with susceptibility of tonsil specimens to KSHV infection.

An extensive body of literature has illustrated saliva, blood, and organ transplants as the main
sources of horizontal KSHV transmission (Uldrick and Whitby 2011; Minhas and Wood 2014),
indicative of KSHV transmission within and between different cell types. Although tonsillar
primary cells can be successfully infected in tissue culture (M Duss et al. 2004; Muniraju et al.
2019) the dynamic of the transmission of KSHV infection within the tonsillar cell types has not
been appropriately addressed. This represents a significant gap in our understanding, which
specifically limits our ability to develop strategies to decrease KSHV transmission. Hence, limiting
our understanding of how KSHV transmitted from these cells to target B cells or vice versa to

manipulate B cell physiology in the development of PEL and MCD.
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Many models predict that transfer of EBV infection from tonsillar B lymphocytes to epithelial
cells contributes substantially to the release of EBV particles into saliva (Thorley-Lawson et al.
2013), but similar mechanisms have not been characterized for KSHV. A variety of the adherent
cell lines including primary adherent cell lines from tonsils are susceptible to KSHV infection
(Bechtel et al. 2003; Muniraju et al. 2019). Having access to patients’ autologous cell types makes
our experimental approach distinctly unique in that the viral transmission within these cell types
can be demonstrated. Thus, analyzing the dynamics of infection, persistence and virus production
in non-lymphocyte tonsil cell types may reveal novel but generalizable avenues for limiting initial
infection and preventing the spread of infection to B lymphocytes, which has not been done in the
past. Thus, we aim to develop a model for cell-to-cell transmission of KSHV within the human
tonsil. For this approach, we extract and sort the tonsillar primary cells (epithelial, fibroblast, and
B lymphocytes), and monitor the dynamic of KSHV infection via cell-to-cell and cell free virion

transmission through implementation of co-culture and use of appropriate markers for analysis.

Another major gap in our understanding of KSHV transmission is KSHV’s broad cellular tropism
and the implementation of a distinctive collection of viral and cellular receptors for the entry
process into each cell type (van der Meulen et al. 2021). The majority of the data on KSHV entry
comes from studying adherent cells, while there is limited data regarding KSHV entry into B cells

(van der Meulen et al. 2021).

Erythropoietin producing hepatocellular receptors (Eph) are tyrosine kinases, together with their
corresponding ephrin ligands, they are fundamental regulators of a diversity of cellular processes,
such as proliferation, differentiation, cell migration, angiogenesis, and tissue boundary formation
(Hagshenas and Doerig 2019). Eph receptors are divided into A and B classes according to their

sequence similarity and their binding affinity towards their ligands (de Boer, van Gils, and van
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Gils 2020). Among the EphA class of receptors, EphA2 serves as an entry receptor for KSHV,
Epstein—Barr virus (EBV) or HHV-4 (Chen et al. 2018; Zhang et al. 2018; Hahn et al. 2012).
KSHYV interaction with EphA2 results in the amplification of the signaling events required for
efficient infection (Chakraborty et al. 2012). It has been demonstrated that gH/gL. binding to
EphA2 activates its phosphorylation, which leads to KSHV endocytosis (Hahn et al. 2012). The
dynamic of EphA2 interaction with gH/gL has been established (Hahn and Desrosiers 2014; Light
etal. 2021; Su et al. 2020), and its role in KSHYV infectivity of epithelial, endothelial and fibroblast
cells have been evaluated (Hahn et al. 2012; Chakraborty et al. 2012; Dutta et al. 2013). However,
its role in entry into B cells has not been demonstrated. We have recently analyzed the role of gH
glycoprotein and DC-SIGN cellular receptor in KSHV infection of B lymphocytes. We were able
to demonstrate that KSHV entry into B cell subsets is subtype specific (Palmerin et al. 2021).
Given the importance of EphA2 in KSHV entry (Hahn et al. 2012), it is distinctly possible that
EphA2 serves as an entry receptor in some of our tonsillar B cell subtypes. KSHV gH/gL has
binding affinity towards EphA4 and EphA7, albeit with lower avidity as compared to EphA2
(Hahn et al. 2012; Chen et al. 2019; GroBkopf et al. 2019). Indeed, it has been demonstrated that
EphA4 and EphA7 can serve as entry receptors for KSHV as well (J. Chen et al. 2019; Gro3kopf

et al. 2019).

Glycoprotein gH is not dispensable for the infection of epithelial, endothelial, and fibroblast cells.
Therefore, KSHV-AgH is incapable of infecting these cells (Muniraju et al. 2019b). Studies
demonstrate that gH/gL binding to EphA2 complex is established by the contribution of both the
gH and gL glycoproteins (Light et al. 2021; Su et al. 2020). Absence of gH results in retention of
gl within the cell (A. Hahn et al. 2009), thus KSHV-AgH virions lack the gH/gl. complex.

Therefore, to analyze the role of EphA2, A4, and A7 as the entry receptors for KSHV in tonsillar
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B cells, we will use a strain of KSHV in which gH has been functionally removed via insertion of
sequential stop codons into the open reading frame (KSHV-AgH) to infect total B lymphocytes
and determine whether EphA-gH interactions are important for KSHV entry. We first aim to
determine the distribution of EphA receptors on tonsillar B lymphocyte subtypes, we then assess
their biological role in the infection process by neutralization strategies. Comparing the
neutralization conditions of both WT and AgH with the baseline level of EphA2, A4, and A7 allows
us to discover the importance of gH/glL complex interaction with these Eph receptors in the

infection process in lymphocyte subtypes that have not been investigated before.
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2 CHAPTER II: Analysis of KSHV B lymphocyte lineage tropism
in human tonsil reveals efficient infection of CD138+
plasma cells

Associated Publications and Author Contributions:

This chapter was published in 2020 with the following citation:

Aalam F, Nabiee R, Castano JR, Totonchy J. Analysis of KSHV B lymphocyte lineage tropism

in human tonsil reveals efficient infection of CD138+ plasma cells. PLoS Pathog. 2020
Oct;16(10):¢1008968. doi: 10.1371/journal.ppat.1008968. eCollection 2020 Oct. PubMed PMID:
33075105; PubMed Central PMCID: PMC7595638.

Farizeh Aalam and Romina Nabiee were co-first authors on this manuscript. Ms. Aalam performed
the extensive baseline analysis of tonsil lymphocyte T and B cells subsets that is used to determine
whether immunological baseline factors correlate to susceptibility on a per-sample basis (Figure
2.3-1, Figure 2.3-3F, Figure 2.3-5, Figure 2.3-6). In addition, Ms. Aalam performed the
experiments testing the contribution of HSPG and CD138 to KSHV infection in tonsil lymphocytes
(Figure 2.3-4).

35



Abstract

Despite 25 years of research, the basic virology of Kaposi Sarcoma Herpesviruses (KSHV) in B
lymphocytes remains poorly understood. This study seeks to fill critical gaps in our understanding
by characterizing the B lymphocyte lineage specific tropism of KSHV. Here, we use lymphocytes
derived from 40 human tonsil specimens to determine the B lymphocyte lineages targeted by
KSHV early during de novo infection in our ex vivo model system. We characterize the
immunological diversity of our tonsil specimens and determine that overall susceptibility of tonsil
lymphocytes to KSHV infection varies substantially between donors. We demonstrate that a
variety of B lymphocyte subtypes are susceptible to KSHV infection and identify CD138+ plasma
cells as a highly targeted cell type for de novo KSHV infection. We determine that infection of
tonsil B cell lineages is primarily latent with few lineages contributing to lytic replication. We
explore the use of CD138 and heparin sulfate proteoglycans as attachment factors for the infection
of B lymphocytes and conclude that they do not play a substantial role. Finally, we determine that
the host T cell microenvironment influences the course of de novo infection in B lymphocytes.
These results improve our understanding of KSHV transmission and the biology of early KSHV
infection in a naive human host and lay a foundation for further characterization of KSHV

molecular virology in B lymphocyte lineages.
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Author summary

KSHYV infection is associated with cancer in B cells and endothelial cells, particularly in the
context of immune suppression. Very little is known about how KSHYV is transmitted and how it
initially establishes infection in a new host. Saliva is thought to be the primary route of person-to-
person transmission for KSHV, making the tonsil a likely first site for KSHV replication in a new
human host. Our study examines KSHV infection in B cells extracted from the tonsils of 40 human
donors in order to determine what types of B cells are initially targeted for infection and examine
how the presence (or absence) of other immune cells influence the initial stages of KSHV infection.
We found that a variety of B cell subtypes derived from tonsils can be infected with KSHV.
Interestingly, plasma cells (mature antibody-secreting B cells) were a highly targeted cell type.
These results lay the foundation for further studies into the specific biology of KSHV in different
types of B cells, an effort that may help us ultimately discover how to prevent the establishment
of infection in these cells or reveal new ways to halt the progression of B cell cancers associated

with KSHV infection.
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2.1 Introduction

Kaposi Sarcoma-associated Herpesvirus (KSHV/HHV-8) is a lymphotropic gammaherpesvirus.
In addition to its role in the pathogenesis of Kaposi Sarcoma (KS) (Chang, et al. 1994), KSHV
infection is associated with two lymphoproliferative disorders, multicentric Castleman disease
(MCD) and primary effusion lymphoma (PEL) (Cesarman E, 1995; Soulier J, 1995), as well as a
recently characterized inflammatory disorder KSHV inflammatory cytokine syndrome (KICS)
(Uldrick TS, 2010 ). Although KSHV-associated lymphoproliferative disorders are rare, their
incidence has not declined as HIV treatment has improved (Powles T, 2009; Bhutani M, 2015)
suggesting that, in contrast to KS, immune reconstitution is not sufficient to prevent KSHV
associated lymphoproliferative disease in people living with HIV/AIDS. Moreover, the KSHV-
associated lymphoproliferative diseases are uniformly fatal with few effective treatment options
(Carbone A V. E. 2014 ). Despite the fact that KSHV is lymphotropic and causes pathological
lymphoproliferation in vivo, study of de novo KSHV infection in B lymphocytes has historically
been difficult (Kang S, 2017). Resting peripheral B cells and many established B cell-derived cell
lines are refractory to KSHV infection but unstimulated tonsil-derived lymphocytes are susceptible
to infection (Rappocciolo et al. 2008 ). To date, several other groups, including our own, have been
successful in infecting B lymphocytes derived from human tonsils (Hassman LM, 2011; Myoung
J,2011; Myoung J, 2011; Bekerman E, 2013; Totonchy et al 2018; Nicol SM, 2016 ). KSHV DNA
is detectable in human saliva and salivary transmission is thought to be the primary route of person-
to-person transmission for KSHV (Casper C K. E.-L. 2007; Pauk J, 2000; Casper C R. M.-L. 2004;
Vieira J, 1997 ) making the oral lymphoid tissues a likely site for the initial infection of B
lymphocytes in a naive human host. Thus, in addition to being susceptible to ex vivo infection,

tonsil lymphocytes represent a highly relevant model for understanding early infection events in
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KSHYV transmission. The existing studies of KSHV infection in tonsil-derived B cells have
explored a limited number of cell surface markers including IgM, immunoglobulin light chains
and activation markers on infected cells (Hassman LM, 2011; Totonchy J, 2018; Nicol SM, 2016).
One study using PBMC-derived B lymphocytes identified naive, memory and plasma cell-like
lineages as infection targets in both in vitro infection experiments and blood samples from KS
patients (Knowlton ER, 2014 ). However, no studies to date have comprehensively explored the

specific B lymphocyte lineages targeted by KSHV infection in human tonsil specimens.

In this study, we performed KSHYV infection of 40 human tonsil specimens from diverse donors
and utilized lineage-defining immunological markers by flow cytometry to establish the primary
B cell lineage tropism of KSHV. Our results demonstrate that the susceptibility of tonsil-derived
B lymphocytes to ex vivo KHSV infection varies substantially from donor-to-donor, and that a
variety of B cell lineages are susceptible to KSHV infection and that, at least at early stages post
infection KSHYV 1is primarily latent in most cell types. In particular, CD138+ plasma cells are
highly targeted by KSHV infection despite the fact that they are present at low frequencies in tonsil
tissue. We demonstrate that high susceptibility of plasma cells to KSHV infection is not due to the
presence of CD138 heparin sulfate proteoglycan as an attachment factor. Moreover, HSPG are not
generally important for infection of primary B lymphocytes. Finally, we demonstrate that although
the baseline T cell microenvironment does not seem to influence overall susceptibility of tonsil
specimens to KSHV infection, the specific lineage distribution of KSHV infection is affected by
the T cell microenvironment and manipulation of CD4/CDS8 T cell ratios can alter the targeting of

specific B cell lineages by KSHV. These results provide new insights into early events driving the
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establishment of KSHV infection in the human immune system and demonstrate that alterations

in immunological status can affect the dynamics of KSHV infection in B lymphocytes.

2.2 Materials and Methods

2.2.1 Ethics statement

Human specimens used in this research were de-identified prior to receipt from NDRI and thus

were not subject to IRB review as human subjects research.

2.2.2 Reagents and cell lines

CDw32 L cells (CRL-10680) were obtained from ATCC and were cultured in DMEM
supplemented with 20% FBS (Sigma Aldrich) and Penicililin/Streptomycin/L-glutamine (PSG/
Corning). For preparation of feeder cells CDw32 L cells were trypsinized and resuspended in 15
ml of media in a petri dish and irradiated with 45 Gy of X-ray radiation using a Rad-Source
(RS200) irradiator. Irradiated cells were then counted and cyropreserved until needed for
experiments. Cell-free KSHV.219 virus derived from iSLK cells (Myoung & Ganem, 2011 )was
a gift from Javier G. Ogembo (City of Hope). Human tonsil specimens were obtained from NDRI.
Human fibroblasts were derived from primary human tonsil tissue and immortalized using HPV
E6/E7 lentivirus derived from PA317 LXSN 16E6E7 cells (ATCC CRL-2203). Antibodies for

flow cytometry were from BD Biosciences and Biolegend and are detailed below.

2.2.3 Isolation of primary lymphocytes from human tonsils
De-identified human tonsil specimens were obtained after routine tonsillectomy by NDRI and
shipped overnight on wet ice in DMEM+PSG. All specimens were received in the laboratory

lessthan24hourspost-surgeryandwerekeptat4 ‘C throughout the collection and transportation
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process. Lymphocytes were extracted by dissection and maceration of the tissue in RPMI media.
Lymphocyte-containing media was passed through a 40um filter and pelleted at 1500rpm for 5
minutes. RBC were lysed for 5 minutes in sterile RBC lysing solution (0.15M ammonium chloride,
10mM potassium bicarbonate, 0.1M EDTA). After dilution to 50ml with PBS, lymphocytes were
counted, and pelleted. Aliquots of 5(10)7 to 1(10)8 cells were resuspended in 1ml of freezing

media containing 90% FBS and 10% DMSO and cryopreserved until needed for experiments.

2.2.4 Infection of primary lymphocytes with KSHV

Lymphocytes were thawed rapidly at 37°C, diluted dropwise to 5ml with RPMI and pelleted.
Pellets were resuspended in 1ml RPMI+20%FBS+100ug/ml DNase I+ Primocin 100pg/ml and
allowed to recover in a low-binding 24 well plate for 2 hours at 37°C, 5% CO2. After recovery,
total lymphocytes were counted, and Naive B cells were isolated using Mojosort Naive B cell
isolation beads (Biolegend 480068) or Naive B cell Isolation Kit II (Miltenyi 130-091-150)
according to manufacturer instructions. Bound cells (non-naive B and other lymphocytes) were
retained and kept at 37°C in RPMI+20% FBS+ Primocin 100pg/ml during the initial infection
process. 1(10)6 Isolated naive B cells were infected with iSLK-derived KSHV.219 (dose
equivalent to the ID20 at 3dpi on human fibroblasts) or Mock infected in 400ul of total of virus +
serum free RPMI in 12x75mm round bottom tubes via spinoculation at 1000rpm for 30 minutes at
4°C followed by incubation at 37°C for an additional 30 minutes. Following infection, cells were
plated on irradiated CDW32 feeder cells in a 48 well plate, reserved bound cell fractions were
added back to the infected cell cultures, and FBS and Primocin (Invivogen) were added to final
concentrations of 20% and 100pug/ml, respectively. Cultures were incubated at 37°C, 5% CO2 for
the duration of the experiment. At 3 days post-infection, cells were harvested for analysis by flow
cytometry.
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2.2.5 Flow cytometry staining and analysis of KSHYV infected tonsil
lymphocytes

A proportion of lymphocyte cultures at baseline or 3dpi representing ~500,000 cells were pelleted
at 1400 rpm for 3 minutes into 96-well round bottom plates. Cells were resuspended in 100ul PBS
containing (0.4ng/ml) fixable viability stain (BD 564406) and incubated on ice for 15 minutes.
Cells were pelleted and resuspended in 100ul cold PBS without calcium and magnesium
containing 2% FBS,0.5% BSA (FACS Block) and incubated on ice for 10 minutes after which
100pl cold PBS containing 0.5% BSA and 0.1% Sodium Azide (FACS Wash) was added. Cells
were pelleted and resuspended in FACS Wash containing B cell phenotype panel as follows for
15 minutes on ice: (volumes indicated were routinely used for up to 0.5(10) 6 cells and were
based on titration of the individual antibodies on primary tonsil lymphocyte specimens) CD19-
PerCPCy5.5 (2.5ul, BD 561295), CD20-PE-Cy7 (2.5ul, BD 560735), CD38-APC (10ul, BD
555462), IgD-APC-H7 (2.5ul, BD 561305), CD138-v450 (2.5ul, BD 562098), CD27-PE (10ul
BD 555441). After incubation, 150ul FACS Wash was added and pelleted lymphocytes were
washed with a further 200ul of FACS Wash prior to being resuspended in 200ul FACS Wash for
analysis. Data was acquired on a BD FACS VERSE Flow Cytometer and analyzed using FlowJo
software. Readers should note that the BD FACS VERSE analysis instrument lacks a 561nm laser
so RFP lytic reporter expression from the KSHV.219 genome is not detectable in the PE channel.
For baseline T cell frequencies 0.5¢6 cells from baseline uninfected total lymphocyte samples were
stained and analyzed as above with phenotype antibody panel as follows: CD95-APC (2ul,
Biolegend 305611), CCR7-PE (2ul, BD 566742), CD28-PE Cy7 (2ul, Biolegend 302925),
CD45RO-FITC (3ul, Biolegend 304204), CD45RAPerCP CyS5.5 (2ul, 304121), CD4-APC H7

(2ul, BD 560158), CD19-V510 (3ul, BD 562953), CD8-V450 (2.5ul, BD 561426).
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2.2.6 B lymphocyte lineage isolation by cell sorting

At 3 days post-infection cells were collected and pelleted at 1400 rpm for 3 minutes into 12x75mm
round bottom tubes. Cells were resuspended in 200ul PBS containing (0.4ng/ml) fixable viability
stain (BD 565388) and incubated on ice for 15 minutes. Cells were pelleted and resuspended in
200ul cold MACS buffer containing 5% FBS (Sort Block) and incubated on ice for 10 minutes
after which 200ul cold MACS buffer was added. Cells were pelleted and resuspended in MACS
buffer containing B cell phenotype panel as follows for 15 minutes on ice: (volumes indicated are
for each 1(10)"6 cells and were scaled depending upon the number of cells being stained for
sorting). For single cell sorting of plasma cells the panel was follows: CD19-PerCPCy5.5 (5ul, BD
561295), CD20-PE-Cy7 (5ul, BD 560735), and CD138-APC (5ul, Biolegend 352307). For other
lineages the panel was as follows: CD19-PerCPCy5.5 (5ul, BD 561295), CD38-APC (20ul, BD
555462), 1gD-PE-Cy7 (5, BD 561314), CD27-PE-Cy5 (5ul eBioscience 15-0279-42). After
incubation, 500ul MACS buffer was added and pelleted lymphocytes were washed with a further
500ul of MACS buffer prior to being resuspended in 200ul MACS buffer and put through a cell

strainer before sorting using the 70-micron nozzle on a BD FACSAria Fusion Cell Sorter.

2.2.7 RT-PCR

At 3 days post infection, lymphocytes were harvested into Trizol or sorted into Trizol LS reagent
300ul Trizol was used for >1e5 cells and 100ul Trizol was used for <le5 cells. An equal volume
of DNA/RNA shield (Zymo Research R110- 250) was added after collection and RNA extraction
was performed using Zymo Directzol Microprep (Zymo Research R2060) according to
manufacturer instructions. RNA was eluted in 10ul H20 containing 2U RNase inhibitors and a
second DNase step was performed for 30 minutes using the Turbo DNA-Free kit (Invitrogen

AMI1907M) according to manufacturer instructions. One step RT-PCR c¢cDNA synthesis and
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preamplification of GAPDH, LANA and KS8.1transcripts was performed on 5ul of RNA using the
Superscript III One-step RT-PCR kit (ThermoFisher 12574026) and 2uM outer primers for each
target gene as follows: GAPDH outer forward (5’-TCGGAGTCAACGGATTTGGT-3"), GAPDH

outer reverse (5’- GGGTCTTACTCCTTGGAGGC-3’), LANA outer forward (5°-

AATGGGAGCCACCGGTAAAG-3’), LANA outer reverse (5-
CGCCCTTAACGAGAGGAAGT-3’), K8.1 outer forward (5-
ACCGTCGGTGTGTAGGGATA-3’), K8.1 outer reverse (5-

TCGTGGAACGCACAGGTAAA-3’). Duplicate no RT (NRT) control reactions were assembled
for each lineage/sample containing only Platinum Taq DNA polymerase (Thermofisher 15966005)
instead of the Superscript III RT/Taq DNA polymerase mix. After cDNA synthesis and 40 cycles
of target pre-amplification, 0.002pl of pre-amplified cDNA or NRT control reaction was used as
template for multiplexed real-time PCR reactions using TagProbe 5x qPCR MasterMix - Multiplex
(ABM MasterMix-5PM), 5% DMSO, primers at 900nM and probes at 250nM against target genes
as follows: GAPDH forward (5’- TCGGAGTCAACGGATTTGGT-3"), GAPDH reverse (5’-
GGGTCTTACTCCTTGGAGGC-3’), GAPDH probe (5’[HEX]-
ACGCCACAGTTTCCCGGAGG-[BHQI1]3") LANA forward (5°-
AATGGGAGCCACCGGTAAAG-3"), LANA reverse (5’-CGCCCTTAACGAGAGGAAGT-
3”), LANA probe (5' [(FAM]- ACACAAATGCTGGCAGCCCG-[BHQ1]3’), K8.1 forward (5°-
ACCGTCGGTGTGTAGGGATA-3’), K8.1 reverse (5’- TCGTGGAACGCACAGGTAAA-3’),
K8.1 probe (5’[FAM]-TGCGCGTCTCTTCCTCTAGTCGTTG-[TAMRA]3’) and analyzed using
a 40 cycle program on a ThermoFisher QuantStudio 3 real time thermocycler. Data is represented
as quantitation cycle (Cq) and assays in which there was no detectable Cq value were set

numerically as Cq=41 for analysis and data visualization..
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2.2.8 Single cell RT-PCR

Single cells meeting lineage sort criteria were sorted into each well of a 0.2ml 96-well PCR plate
containing 4ul of 0.5x PBS, 10mM DTT (Pierce no-weigh A39255), 1.2U RNase inhibitor
(Lucigen 30281-2). After sorting, plates were sealed, centrifuged briefly to collect all material in
the bottom of the well and stored at -80°C prior to analysis. Plates were thawed on ice and 2pl of
DNase buffer (Invitrogen 18068-015) containing 0.5ul 10x buffer, 0.1U DNase, 0.4ul H20) were
added to each well. After incubation at room temperature for 15 minutes, EDTA (Thermofisher
AM9260G) was added to a final concentration of 2mM and DNase was inactivated by incubation
for 10 minutes at 65°C. One-Step RT-PCR reactions and no RT (NRT) controls were assembled
using outer primers to GAPDH, LANA, and K8.1 as described above. 2l of pre-amplified cDNA
was used in the real time PCR reactions for GAPDH, K8.1, LANA as described above with the
exception that the assay was multiplexed with all three targets using the same K8.1 probe sequence
labeled with 5°Cy5 and 3’BHQ-2 quencher and analyzed on a BioRad CFX96 real time PCR
thermocycler. KSHV neutralization via soluble CD138 Syndecan-1. Infections were performed as
described above except KSHV.219 virus was pre-incubated for 30 minutes on ice with serum free
RPMI only or serum free RPMI containing recombinant human syndecan-1 protein (srCD138, Bio
Vision, 7879-10) prior to being added to Naive B lymphocytes. srCD138 concentrations noted in
the text indicate the final concentration of recombinant syndecan-1 in the reconstituted total
lymphocyte culture. Infection was analyzed at 3 days post-infection by flow cytometry for B cell
lineages and KSHV infection as detailed above. For experiments involving human fibroblasts virus
was added to cells in serum free media, cells were spinoculated for 30 minutes at 1000rpm,
incubated at 37°C for 1 hour, then infection media was removed and replaced with complete media.

At 3dpi cells were harvested via trypsinization and analyzed for infection by flow cytometry.
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2.2.9 Heparinase treatment of human fibroblasts and lymphocytes

Total lymphocytes were thawed and recovered as described above and treated with Heparinase I
and III Blend from Flavobacterium heparinum (Sigma-Aldrich # H3917) at 9U/25e¢6 of
lymphocytes and incubated over irradiated CDW32 feeder cells at 37°C, 5% CO2 for 24 hours in
complete media. E6/E7 transformed fibroblasts from human tonsil were treated at 4.5U/1e6 for
24hrs at 37°C, 5% CO2. To evaluate the effectiveness of the Heparinase treatment the samples
were stained for flow cytometry, as described above, with Heparan Sulfate (10E4 epitope) (FITC)
(United States Biological # H1890) at 2 ul/5e5 of the lymphocytes or E6/E7 transformed
fibroblasts and analyzed with flow cytometry for loss of HSPG signal. Control untreated or
Heparinase-treated samples were either Mock infected or infected with KSHV as described above.
At 3 days post infection, fibroblasts were trypsinized and analyzed for GFP expression by flow
cytometry and lymphocytes were harvested, stained for B cell lineages, and analyzed by flow

cytometry as described above.

2.2.10 T cell depletion studies

Infections were performed as described above except a sub-population of total lymphocytes were
depleted of either CD4 or CD8 T cells using positive selection magnetic beads (Biolegend
MojoSort Human CD4 T Cell Isolation Kit 480009, MojoSort Human CDS8 T Cell Isolation Kit
480011). The resulting depleted fractions or unmanipulated total lymphocytes were used to
reconstitute naive B lymphocytes following infection rather than bound lymphocyte fractions as

described above.
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2.2.11 Statistical Analysis

Statistical Analysis. Data plots and statistical analysis were performed in R software[40] using
ggplot2, ggcorrplot{ggcorrplot:2018tg} and RColorBrewer packages. Specific methods of
statistical analysis and resulting values for significance and correlation are detailed in the

corresponding figure legends.

2.3 Results

2.3.1 Variable immunological composition of human tonsil specimens

In order to explore the B cell lineages targeted by KSHV infection in human tonsils, we procured
a cohort of 40 de-identified human tonsil specimens from donors of diverse age, sex, and self-
reported race (Figure 2.3-1A and Table 2.3 1). Analysis of the baseline frequencies of B and T cell
lineages by multi-color flow cytometry (Appendix A.1, Appendix A.2 and Table 2.3 2) revealed
that the composition of individual human tonsil specimens is highly variable (Fig 2.3-1B&D). This
variation was independent of donor age for many lineages. However, overall B cell frequencies
declined with age as did germinal center, plasmablast and transitional B cell populations while
memory and naive populations increased in frequency with donor age (Fig 2.3-1C). Similarly,
most T cell lineages were not significantly correlated with donor age except for CD4+ transitional
memory and CD8+ terminal effector lineages which were both moderately, but significantly,

negatively correlated with donor age (Fig 2.3-1E).
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Table 2.3-1. Donor demographics for the tonsil specimens used in the study (n=40)

Sex, n (%)
Male 19 (47.5)
Female 21 (52.5)
Race, n (%)
ND 6 (15)
White 17 (42.5)
Black 13 (32.5)
Hispanic 1(2.5)
Asian 1(2.5)
Other 2(5)
Age, (years)
(mean + S.D.) 262 +16.47
Range 2-65

https://doi.org/10.1371/journal.ppat.1008968.t001
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Figure 2.3-1. Variability and age-dependence of B lymphocyte lineage distribution in
human tonsils.

(A) Donor demographics for human tonsil specimens used in this study. Plotted by age (y-
axis), sex (x-axis) and self-reported race (color) ND = not determined. (B) Frequency
distributions of B cell lineages in tonsil specimens (see S1A Fig and Table 2.3-2 for lineage
definitions). All B cells are shown as frequency of viable lymphocytes, other B cell subsets are
shown as frequency of viable, CD19+ B cells unless otherwise specified in parenthesis. (C)
Frequency of B cell lineages based on donor age. Pearson correlation coefficients (r) with an
absolute value greater than or equal to 0.4 are shown as red or blue inset text in the subset
panels. (D) Frequency distributions of T cell lineages in tonsil specimens (see S1B Fig and
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Table 2.3-2 for lineage definitions). All T cells are shown as frequency of viable CD4+ (top)
or CD8+ (bottom) T cell except total CD4+ and total CD8+ (far left) which are shown as
frequency of viable lymphocytes. (E) Frequency of CD4+ (left) and CD8+ (right) T cell
lineages based on donor age. Pearson correlation coefficients (r) with an absolute value greater
than or equal to 0.4 are shown as red or blue inset text in the subset panels
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Table 2.3-2

. Lineage definitions for lymphocyte subsets used in the study

B Lymphocytes
Subset Molecular Markers
Plasma CD19*, CD20*-, CD138*Mid to High) ' C[3g-
Transitional CD19*, CD138", CD38Mid, [gD* (Mid to High)
Plasmablast

CD19", CD138", CD38Mish, [gD* - (mosty )

Germinal Center

CD19*, CD138", CD38Mid 1gD-

Naive

CD19*, CD138", CD38%", CD27-, IgD* (Mid to High)

Marginal Zone Like (MZ-

Like) CD19*, CD138-, CD38Lov, CD27* Mid to High) To[y* (Mid to High)
Memory CD19*, CD138", CD38Lov, CD27* Mid to High) 1oTy-
Double Negative CD19*, CD138, CD38%, CD27-, IgD"
T lymphocytes
Subset Molecular Markers
CD4+ CD19-, CD4*Mid to High) ' CTyg-
CD8+ CD19-, CD4-, CDg* (Mid to High)
Naive

CD197, CD4+ or CD8+, CCR7+High CD45RA*Mid to High)  CD45RO-, CD28", CD95

Stem Cell Memory

CD19,, CD4+ or CD8+, CCR7*™igW CD45SRA*Mid o High | CD45RO", CD28*, CDY5* (Lo to Mid)

Central Memory

CD19", CD4+ or CD8+, CCR7*, CD45RA" CD45RO*"Mid to High) /[y g+ (Mid to High)

Transitional Memory

CD19, CD4+ or CD8+, CCR7-, CD45RA" CD45RO*™Mid) CD2g* (Mid to High)

Effector Memory

CD19, CD4+ or CD8+, CCR7-, CD45RA" CD45RO*™Mid) CD28-

Terminal Effector Memory

CD19, CD4+ or CD8+, CCR7-, CD45RA" CD45R0O", CD28§"

TEMRA CD4+ Cells

CD19, CD4+ or CD8+, CCR7-, CD45RA*High CD45RO", CD28§"

https://doi.org/10.1371/journal.ppat.1008968.t002
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2.3.2 Variable susceptibility of tonsil-derived B cells to ex vivo KSHV
infection

Because of the heterogeneous nature of the tonsil samples, we predicted that each sample would
also have variable levels of susceptible B cell subtypes. Therefore, we employed a method for
normalizing infectious dose from donor-to-donor in order to obtain cross-sectional data that was
directly comparable (Fig 2.3 2A). For each sample we used magnetic sorting to isolate untouched
naive B cells, which are a known susceptible cell type (Totonchy J, 2018 ), and infected 1 million
naive B cells with equivalent doses of cell-free KSHV.219 virus. After infection, bound
lymphocytes from the magnetic separation were added back to each sample to reconstitute the total
lymphocyte environment. Infected cultures were incubated for three days and analyzed for both B
cell lineage markers and the GFP reporter present in the KSHV.219 genome to identify infected
cells. We restricted our analysis to a single timepoint at 3 days post-infection in order to observe
the establishment of infection in different lineages with minimal contribution of virus mediated
shifting of cellular immunophenotypes, which we observed in our previous study (Totonchy J,
2018), We first compared the overall lymphocyte populations between baseline (day 0 uninfected),
Mock, and KSHV infected conditions to determine whether our infection and culture system
and/or KSHYV infection itself was causing significant shifts in the B lymphocyte composition of
the samples. These results demonstrate that most lineages were not substantially altered by our
culture system or KSHV infection compared to the baseline samples (Fig 2.3 2B, Appendix A.2,
Appendix A.3). However, naive B cells were significantly reduced compared to baseline levels in
both Mock and KSHV infected samples at 3 dpi, suggesting that the infection method may reduce
naive cell survival in this mixed model or that the culture model drives differentiation of naive
cells into a different immunophenotype. Interestingly, B cells with a transitional phenotype are

significantly increased compared to baseline in both Mock and KSHV-infected cultures. Given
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that there is a relationship between transitional (IgD+, CD38mid) and naive (IgD+, CD38low,
CD27-) it is possible that naive B cells are acquiring increased CD38 expression as a result of the
infection and culture process and are thus falling into the transitional lineage gate at 3 dpi. Finally,
this analysis shows that our culture system does not favor the survival of CD138+ plasma cells
indicated by a significant decrease comparing baseline and Mock at 3dpi. However, this effect was
lower in the KSHV-infected cultures. This result suggests that KSHV infection is either providing
a survival advantage for CD138+ cells in the culture system or driving the differentiation of new

CD138+ cells during infection.

Overall, susceptibility of B cells to KSHV infection varied substantially within the cohort with the
majority of samples showing between 1 and 2% GFP+ B cells at 3dpi and an overall range of 0.76-
3.27% (Fig 2.3 2C, Appendix A.2). Analysis by point-biserial correlation revealed that
susceptibility was not significantly correlated with sex (rpb=0.17). Kruskal-Wallis rank sum test
showed no significant association of race and susceptibility (p=0.6) and both Pearson (r=0.09) and
Spearman (r=0.01) correlation tests indicated no linear or monotonic relationship between donor
age and susceptibility in our data set. Thus, we can conclude that donor demographics do not

substantially contribute to the variable susceptibility we observe in our tonsil lymphocyte samples.
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Figure 2.3-2. Tonsil-derived B lymphocytes from diverse donors display variable
susceptibility to KSHV infection.

(A) Schematic of lymphocyte infection procedure. Untouched naive B cells are magnetically
separated from total lymphocytes and 1e6 naive B cells are infected per condition. Following
infection, bound fractions are added back to reconstitute a total lymphocyte environment and
cells are plated on X-ray irradiated CDw32 feeder cells. Analysis is performed by flow
cytometry at 3 days post-infection for B cell lineage markers as shown in S1 Fig and Table
2.3-2 and GFP reporter expression for KSHV infection. (B) The effect of KSHV infection and
the culture system on overall B cell lineage frequency was examined by comparing the
frequency of B cell lineages at baseline (BL, unmanipulated samples) and 3 days post infection
in Mock infected and KSHYV infected cultures. Student’s T test was used to determine statistical
significance for all comparisons **p<0.004, ***p<0.0002, ****p<le-6 (C) Infection
frequency data for viable, CD19+GFP+ lymphocytes at 3 dpi n = 50 from 40 tonsil specimens
with biological replicates for 10 specimens displayed with respect to donor age (xaxis, left
panel), sex (color), and self-reported race (shape, left panel). The histogram in the right panel
is included to show the distribution of infection frequencies with the majority of infections
resulting in 1-2% GFP+ B lymphocytes at 3 dpi.
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2.3.3 Specific targeting of individual B cell lineages by KSHYV infection

We next sought to establish the B lymphocyte tropism of KSHV in human tonsil lymphocytes by
determining which B cell lineages are targeted for KSHV infection at early timepoints. Because
levels of individual B cell lineages are highly variable between samples (Fig 2.3-1B), we have
generally represented lineage-specific susceptibility data as the percentage of GFP+ cells within
each lineage so that data could be directly compared cross-sectionally within the sample cohort.
Our analysis of specific B cell lineages targeted for infection by KSHV revealed that, although
they represent a small proportion of the B cells within human tonsils (Fig 2.3-1B), CD138+ plasma
cells are infected at high frequencies at this early timepoint. Indeed, CD19+ CD20- plasma cells
displayed the highest within-lineage susceptibility of any cell type with several replicates showing
100% infection of this lineage at 3 dpi (Fig 2.3-3A). Other B cell lineages were susceptible to
infection but were infected at relatively low within-population frequencies compared to plasma
cells (Fig 2.3-1A&B, Appendix A.2). Most B cell lineages showed linear correlation between
within-lineage infection and overall infection, while others like Plasmablast, double negative, and
CD20- plasma cells showed no significant correlation between within-subset infection frequency

and overall infection (Fig 2.3-3B).

The observation that plasma cells are highly targeted for infection is interesting given that we
observed a decrease in overall plasma cell numbers in our cultures system that was somewhat
abrogated in the KSHV-infected conditions (Fig 2.2-3B). Thus, we wanted to determine whether
the apparent survival advantage for plasma cells in the KSHV-infected cultures was a direct result
of infection. Interestingly, subset analysis for the plasma cells into total, CD20+ and CD20- plasma
cells showed that the greatest survival effect (KSHV-Mock for the lineage) was within the CD20-

population (Fig 2.3-3C, left panel), which was also the population with the highest level of
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infection among B lymphocytes (Fig 2.3-3A) When we plotted survival of each plasma cell sub-
population against the percent of infection for that population, there was no significant correlation

observed (Fig 2.3-3C, right panels).

This data supports a conclusion of an indirect effect of KSHV infection on survival or
differentiation of a different B cell lineage into CD138+ cells in our KSHV infected tonsil
lymphocyte cultures rather than KSHV conferring a survival advantage only to infected cells. We
next calculated within-subset frequency of infection for each lineage as a proportion of the total B
lymphocytes (i.e. within-lineage % GFP x frequency of lineage within B lymphocytes) for each
sample in order to determine the contribution of each lineage to the overall infection (Fig 2.3-3D
& E). When shown on a per-sample basis, the data reveals high variability between donors with
no discernable contribution of the overall susceptibility (shown by the order of the samples on the
x-axis) (Fig 2.3-3D). When shown on a per-lineage basis, the data reveals that germinal center,
transitional and memory cells make the largest contributions to overall infection, plasma cells and
MZ-like cells are intermediate contributors and double negative, naive and plasmablast lineages

make up a minor proportion of the infected cells (Fig 2.3-3E).
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Figure 2.3-3. B lymphocyte lineage tropism of KSHV
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Naive B lymphocytes from 40 individual human tonsil specimens (n = 50) were infected with
KSHV.219 as in Fig 2.3-2A. Cells were collected at 3dpi, stained for B cell lineages as shown
in Appendix Aland Table 2.3-2 and analyzed flow cytometry for B cell lineages and KSHV
infection based on GFP reporter expression. The within-lineage infection frequency (y-axis)
as a function of overall B cell infection frequency (x-axis) at 3dpi in for n = 50 infections from
40 individual tonsil specimens shown (A) normalized to 100% or (B) scaled to each individual
lineage population. Pearson correlation coefficients (r) with an absolute value greater than or
equal to 0.4 are shown in (B) as red inset text in the subset panels. (C) The survival of plasma
cell lineages (frequency of viable B lymphocytes in KSHV-Mock samples at 3 dpi) was plotted
for all CD138+, CD20-CD138+ and CD20+CD138+ lineages (left panel) and each lineage’s
frequency of KSHV infection was plotted against its survival (right three panels) with
individual tonsil samples designated by color. Statistical analysis was performed for both linear
(Pearson) and monotonic (Spearman) correlations. For all plasma cells r = 0.15, p = 0.2; for
CD20- plasma cells r = 0.3, p = 0.32, for CD20+ plasma cells r = 0.15, p = 0.13. The
contribution of specific B cell lineages to overall infection in each sample was calculated as %
GFP within lineage * % of lineage within viable B cells in each sample, and results are shown
in (D) for each tonsil sample ordered from highest to lowest (right to left) based on overall
GFP+ B lymphocytes (overall susceptibility) and (E) by lineage with individual samples
designated by color and the mean infection frequency of each lineage shown as a red diamond.
Correlation matrix analysis showing linear relationships (Pearson’s correlation coefficient)
between within-lineage infection frequency and (F) baseline (pre-infection) overall frequency
or (G) 3 dpi overall frequency in KSHV-infected cultures for B lymphocytes and their subsets.
Statistical power analysis indicates that this dataset can predict correlations at the level of r >
|0.4| with alpha = 0.05 and power = 0.8. Thus, r values > 0.4 can be considered a statistically
significant correlation for this data. (H) KSHV transcripts LANA and K8.1 as well as GFP and
GAPDH transcripts analyzed for n = 20 tonsil specimens by RT-PCR in bulk lymphocyte
cultures at 3 dpi. Left panels show Ct values with individual samples designated by color and
the mean Ct values for each condition shown as a red diamond. Student’s T-test was used to
determine statistical significance for all comparisons ***p<le-7, ****p<2e-10. (I) At 3 dpi,
10 million KSHV-infected lymphocytes from three tonsil specimens were stained for B
lymphocyte surface markers and lineages were sorted into Trizol LS. RNA was extracted,
reverse transcribed (black triangles) or amplified without reverse transcriptase (NRT, red
circles) and analyzed by nested RT-PCR for viral transcripts in sorted B lymphocyte lineages.
(J) At 3 days post-infection, 1 million KSHV-infected B cells from three tonsil specimens were
stained for viability, CD19 and CD138. 187 single cells that were viable, CD19+, CD138+
were sorted into 96- well plates and analyzed by nested RT-PCR for viral transcripts. Colors
indicate single plasma cells analyzed with RT-PCR (left) or control reactions including no
reverse transcriptase (right) The bottom panel is a venn diagram quantitating the number of
plasma cells in RT-PCR reactions which amplified for each and both viral transcripts.
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Next, we wanted to determine whether the targeting of individual B cell lineages by KSHV
infection is merely a function of the frequency of that lineage within the sample or dictated by the
virus biology. Pairwise correlations between KSHV infection of specific lineages and the baseline
(pre-infection) frequency of that lineage within the sample revealed no significant effect of the
baseline frequency of any B cell lineage on the susceptibility of that lineage to KSHV infection,
(Fig 2.3-3F). Interestingly, there were some significant correlations between baseline frequencies
of specific lineages and infection of other lineages. Infection of plasmablasts was positively
correlated with the baseline number of both CD20 negative B cells in the culture and the number
of CD20+ plasma cells, and infection of CD20+ plasma cells was negatively correlated with the
baseline frequency of memory B cells in the sample. Similarly, given that some populations shift
in their frequency during the infection time course (Fig 2.3-2B), we wanted to determine whether
KSHYV infection of specific lineages was a result of the frequency of that population within the
sample at 3 dpi. Pairwise correlations between KSHV infection of specific lineages and the
frequency of that lineage at 3 dpi similarly revealed no direct correlations between lineage
frequencies and infection frequencies (Fig 2.3-3G). These comparisons revealed more strong
relationships between lineage frequencies and infection frequencies. Infection of CD138+ plasma
cells and CD20+ plasma cells (which are the more numerous of the two-plasma cell sub-
populations as shown in Fig 2.3-1B was negatively correlated with the total population of plasma
cells and the CD20+ sub-population of plasma cells. This result may indicate that infection of
CD20+ plasma cells results in significant toxicity for that lineage. Moreover, infection of many B
cell lineages was negatively correlated with germinal center B cells at 3 dpi with MZ like B cell
infection being significantly associated. This observation could indicate that lymphocyte cultures

with a microenvironment that favors the survival of germinal center cells establish a different
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subset distribution of B lymphocyte infection. Finally, the 3dpi level of CD20- plasma cells were
positively correlated with infection of both Plasmablast and memory B cell lineages. This data

could indicate that these lineages are differentiating into plasma cells upon infection.

Taken together, these data indicate that the B lymphocyte tropism of KSHV is broad and highly
variable from donor to donor. Plasma cells are highly targeted as a lineage, but transitional,
memory and germinal center lineages make up the bulk of the viral load in tonsil specimens. The
distribution of KSHV infection among lineages is not simply a function of lineage population
frequency within the sample and is likely dictated by cell-intrinsic factors as well as complex

immunological interplay within the sample that remains to be fully characterized.

2.3.4 Viral gene expression in KSHYV infected B lymphocytes

Our observation that KSHV targets diverse B cell lineages for infection is based on expression of
the GFP reporter in the KSHV.219 genome, which is controlled by a non-viral EF1-alpha
promoter. We wanted to validate that the GFP signal we observed by flow cytometry represents
bona fide infection and not simply virus entry. In order to do this, we first examined total RNA
extracted from mock or KSHV-infected lymphocyte cultures at 3 dpi and analyzed these samples
by RTPCR for viral transcripts (LANA and K8.1) as well as GFP as a marker for virus entry and
GAPDH as a housekeeping gene for the efficacy of RNA extraction (Fig 2.3-3H). The data show
that viral transcripts and GFP are absent in Mock samples but present in KSHV-infected samples
with an average -ACt of 6.1 cycles for LANA, 6.6 cycles for K8.1 and 4 cycles for GFP. NRT
controls were consistently negative, confirming that viral DNA was not the source of genetic

material for these results.
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Both LANA and K8.1 were detected in the majority of samples, suggesting a mix of lytic and
latent infection programs in B lymphocytes. This data demonstrates bona fide infection, with the
production of viral transcripts, is present in tonsil lymphocyte samples at 3 dpi. Given that the bulk
RT-PCR data showed mixed lytic and latent transcripts present in our tonsil lymphocyte cultures,
we wanted to determine whether B lymphocyte lineages preferentially undergo a particular viral
replication program. To accomplish this, we performed large-scale lymphocyte infections, as
above, for three unique tonsil specimens, stained for B cell lineage markers, and sorted individual
lineages using our FACSAria Fusion cell sorter. We were able to obtain between 10,000 and
200,000 cells for each lineage from the cell sorting. Total RNA was extracted from sorted samples
and subjected to nested RT-PCR analysis for GAPDH, LANA and K8.1. These results show that
LANA transcripts are present in all lineages for at least 2/3 tonsil samples analyzed. Transcription
of the K8.1 late lytic gene was observed in memory cells and transitional cells for 1/3 tonsil
samples along with LANA transcripts indicating that in this sample there was a mixture of lytic
and latent cells within the lineage populations. NRT negative controls (red circles) for most
lineages were negative or amplified >10 cycles later than the matched RT positive samples
indicating that viral DNA was not the source of genetic material for these results. However, the
MZ-like lineage had positive amplifications in NRT controls for 2/3 tonsil samples. This result
may indicate that in some samples there is a high load of KSHV DNA present in this lineage so
that even the extensive DNase digestion used in our protocol failed to remove it sufficiently (Fig
2.3-31I). Because plasma cells are a low abundance cell type in our tonsil samples, we were
uncertain whether bulk sorting would result in sufficient cells to successfully extract RNA for RT-
PCR analysis. Thus, in order to determine the viral transcription program in plasma cells we gated

viable/CD19+/CD138+ cells and sorted single cells directly into 96-well plates containing a
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hypotonic lysis buffer. We performed single cell nested RT-PCR analysis without RNA extraction
for LANA, K8.1 and GAPDH on 187 plasma cells from three unique tonsil samples (Fig 2.3-3J,
left panel). NRT controls were consistently negative confirming that viral DNA was not the source
of genetic material for these results (Fig 2.3-3J, right panel). We observed 19 plasma cells
expressing LANA transcripts only, 11 plasma cells expressing K8.1 only and 6 plasma cells

expressing both viral transcripts (Fig 2.3-3J, bottom).

Our gene expression data validates the lineage-specific tropism observed in our flow cytometry
data, showing that each lineage identified as susceptible by GFP expression also contains viral
transcripts, indicating bona fide KSHV infection. Moreover, these results demonstrate that most B
cell lineages express latent transcripts only, with few lineages including plasma cell, memory,
transitional and possibly MZ-like lineages contributing to lytic replication. Given that transitional
and memory cells represent a high proportion of the per-sample viral load in our analysis (Fig 2.3-
3D & E) it is not surprising to find that they are competent for lytic replication. However, germinal
center cells are uniformly latent in this data, but were a highly represented cell type in our analysis
of lineage contributions to overall infection. This may indicate that germinal center B cells are
another highly targeted cell type. Finally, differences in this data between tonsil samples indicates
that lytic replication in our system may be more dependent upon host factors than lineage-specific

factors.
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2.3.5 KSHY infection of B lymphocytes does not rely on heparin sulfate
proteoglycans

Previous studies have shown that heparin sulfate proteoglycans (HSPG) of the syndecan family
can serve as an attachment factor facilitating KSHV entry via interaction with the gH/gL
glycoprotein complex (Hahn A, 2009 ). In order to test whether the high susceptibility of tonsil-
derived plasma cells was due to increased attachment via CD138 (syndecan-1), we attempted to
selectively neutralize KSHV entry by pre-treating cell-free virus particles with soluble
recombinant CD138 (srCD138) protein prior to infection. We utilized recombinant CD138 for
these experiments rather than a neutralizing antibody against CD138 because the biochemistry of
the putative interaction between CD138 and gH has not been established. Thus, the soluble protein
will contain all of the protein sequences that might be bound by gH while an antibody blocks only
specific epitopes which may or may not be part of the interaction domain. Pre-treating KSHV
virions with 12.5pug/ml of srCD138 showed a small decrease in overall KSHV infection of B
lymphocytes in 6 of 7 tonsil samples tested (Fig 2.3-4A). However, the inhibition was not dose-
dependent for any sample. B cell lineage analysis revealed decreased infection of plasma cell
lineages in 3 of 7 samples, but again the effect was inconsistent within the data set and was not
dose-dependent for any sample. KSHV infection of other B cell lineages was similarly
inconsistently affected by srCD138 treatment of virus particles (Fig 2.3-4B). Next, we used
srCD138 pre-treated virions to infect human fibroblasts to determine whether srCD138 was able
to neutralize gH on another cell type. In these experiments we observed a slight decrease in
infection in 4 of 6 replicates (Fig 2.3-4C). Taken together, these results suggest that, although
srCD138 treatment seems to weakly neutralize KSHV viral particles, the effect is not B cell
specific. As a way of confirming these results with a cell-directed method as opposed to a virus

neutralization approach, we used heparinase treatment to remove all HSPG prior to KSHV
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infection. Treatment of human fibroblasts with a heparinase I/I1I blend resulted in decreased cell
surface heparin sulfate by flow cytometry analysis (Fig 2.3-4D) and, as demonstrated previously
in human fibroblasts (Akula SM, 2001), consistently reduced KSHV infection of treated target
cells compared to untreated controls (Fig 2.3-4E). Lymphocytes had lower steady-state HSPG
levels compared to fibroblasts, which was further reduced by heparinase treatment (Fig 2.3-4F).
Interestingly, heparinase treatment of lymphocytes did not result in a reproducible decrease in
KSHYV infection (Fig 2.3-4G). We next wanted to determine whether there was any effect of
heparinase treatment on KSHV infection of particular B cell lineages. Because the most reliable
cell surface marker for plasma cells is the CD138 HSPG, which would be removed by heparinase
treatment, we first confirmed that plasma cells recovered CD138 expression before our 3 dpi
analysis timepoint (Fig 2.3-4H). Subset analysis revealed no significant differences in KSHV
infection between control and heparinase treated populations for any B lymphocyte lineage (Fig
2.3-41). Taken together these data do not support the conclusion that plasma cell expressed CD138
is used as an attachment factor for KSHV entry and, indeed, indicates that HSPG are not a

significant factor in KSHV attachment to B primary lymphocytes.
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Figure 2.3-4. CD138 and heparin sulfate proteoglycans as attachment factors for
KSHY in B lymphocytes

(A) Purified KSHV virions were pre-treated with srCD138 protein at indicated concentrations
(x-axis) and used for infection of B lymphocytes. Cells were collected at 3dpi, stained for B
cell lineages as shown in S1A Fig and Table 2.3-2 and analyzed by flow cytometry for linecage
frequencies and KSHYV infection by GFP reporter expression. 8 experimental replicates of 5
unique tonsil specimens are shown where the average infection rate was 1.8+0.5% in untreated
controls. Data is represented as change in GFP+ cells at each dose of srCD138 compared to
untreated control. Colors denote individual experimental replicates and red diamonds are the
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mean change at each dose for all replicates. (B) Data as in (A) for within-subset GFP
quantitation. (C) Similar experiments were performed in E6/E7 transformed fibroblasts
derived from human tonsils. 6 experimental replicates are shown where the average infection
rate was 25.5£16% in untreated controls. Data is represented as change in GFP+ cells as in
(A). (D) 1 million E6/E7 transformed human tonsil fibroblasts were treated with 4.5 units of
heparinase I/I1I blend for 24 hours and removal of heparin sulfate proteoglycans was verified
by flow cytometry using a heparin sulfate-FITC antibody. Black line indicates no antibody
control. (E) Control (untreated) or heparinase-treated fibroblasts were infected with
KSHV.219 and analyzed for infection by GFP reporter expression at 3 dpi. Student’s T-test
was used to compare control and heparinase-treated cultures for n = 3 experimental replicates
p = 0.007. (F) 25 million human tonsil lymphocytes were treated with 9U of heparinase I/I11
blend and plated on X-ray irradiated CDW32 feeder cells for 24 hours. After incubation
removal of heparin sulfate proteoglycans was verified by flow cytometry as in (D). (G) After
heparinase treatment lymphocytes were fractionated and infected as shown in Fig 2A and
viable, GFP+ B lymphocytes were quantitated by flow cytometry at 3 days post-infection. 6
experimental replicates with 6 tonsil specimens were performed and colors designate unique
samples and can be compared between this panel, panel H and panel 1. Student’s t-test was
performed to compare infection of control and heparinase treated lymphocytes p = 0.969. (H)
the recovery of cell surface CD138 HSPG after 3 days of culture was examined by comparing
CD138+ cells as a percent of viable B cells in control and heparinase treated samples for both
mock and KSHV-infected conditions. Colors indicate unique tonsil specimens. Student’s T-
test was performed to compare control vs. heparinase conditions for mock p =0.57, for KSHV
p =0.52 (I) Data for KSHV-infected cultures at 3dpi with or without heparinase pre-treatment
as in (G) showing the level of KSHV infection for specific B cell lineages. Student’s T-test
indicates no significant difference comparing control and heparinase treated samples for any
lineage.
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2.3.6 Immune status alters KSHYV infection of B lymphocytes

KSHYV lymphoproliferative disorders occur primarily in the context of immunosuppression, and
other studies have shown interactions between T cells and KSHV infected B cells in tonsil
lymphocyte cultures affecting the frequency of lytic reactivation (Myoung J, 2011). Therefore, we
wanted to determine whether the immunological composition of the tonsil lymphocyte
environment would affect the establishment of KSHV infection in B lymphocytes and specifically
whether overall susceptibility or targeting of particular B cell lineages is influenced by the presence
or absence of T cells. Like B cell lineages, levels of CD4+ and CD8+ T cell lineages vary
considerably between tonsil donors (Fig 2.3-1D). However, unlike B lymphocyte subsets, the
distribution of T cell subsets are not generally correlated with donor age (Fig 2.3-1E). Examination
of whether the ratio of CD4/CDS8 T cells in individual tonsil specimens was correlated with the
susceptibility of B lymphocytes to KSHV infection revealed no significant correlation (Fig 2.3-

5A).

Next, we examined correlations between B cell infections and baseline levels of various CD4 and
CD8+ T cell subsets to determine whether any T cell lineages affected the tropism of KSHV for
particular B cell lineages (Fig 2.3-5B). Interestingly, levels of naive and stem cell memory CD4+
T cells was positively correlated with infection of plasma cells (Fig 2.3-5B and Fig 2.3-5C, left
panels) with a greater effect on CD20+ plasma cells than CD20- plasma cells, while overall levels
of CD45RO+ activated memory T cells were negatively correlated with KSHV infection of plasma
cells (Fig 2.3-5C, right panel). In addition, although the correlations were too weak to be
significant in this data set, nearly every B cell lineage and overall KSHV infection was negatively
correlated with the presence of CD4+ T cells expressing a TEMRA phenotype (Fig 2.3-5B).

Baseline levels of CD8+ T cells had less effect on KSHV infection with only one significant
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positive correlation observed in our dataset between CD8+ terminal effector cells and KSHV

infection of naive B cells (Fig 2.3-5B).
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Figure 2.3-5. The donor specific CD4+ T cell microenvironment influences infection
of CD138+ plasma cells.

(A) For each donor, baseline levels of CD4+ T cells/CD8+ T cells is plotted against the overall
susceptibility of the specimen based on the percent of GFP+ B lymphocytes at 3 dpi. Blue line
indicates least means linear regression. Correlation analysis reveals no significant linear or
monotonic relationship between the variables. (B) Pairwise linear correlations (Pearson
method) were performed for overall (Total) and lineage specific KSHV infection at 3 dpi
(vertical axis) and baseline T cell subsets as defined in S1 Fig and Table 2.3-2. Power analysis
reveals that the data set can predict significant correlations at the level of p>|0.4| with alpha =
0.05 and power = 0.8. (C) Scatter plots of significant correlations from (B) between the
baseline frequency of CD4+ T cell subsets (x axis) and KSHV infection of CD138+ plasma
cells (y-axis). Blue lines indicate least means linear regression and grey shading is standard
error. Colors indicate unique tonsil specimens and can be compared across panels within the
figure.
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To determine whether manipulating the T cell environment would affect KSHV infection in
individual tonsil samples, we performed T cell depletion experiments. Based on the correlation
data shown in Figure 2.3-5B, we hypothesized that depletion CD4+ T cells would have a greater
effect on KSHV infection. We performed KSHV infections in which total lymphocytes, CD4-
depleted total lymphocytes or CD8-depleted total lymphocytes were added back following
infection of sorted naive B cells. At 3dpi, we validated T cell depletions (Fig 2.3-6A) and analyzed
KSHYV infection of B lymphocytes. The effect of T cell depletion varied substantially from sample
to sample and neither CD4 nor CDS8 depletion significantly altered overall KSHV infection in
tonsil-derived B cells when data from 11 tonsil samples were aggregated (Fig 2.3-6 B). However,
due to the heterogeneous nature of our tonsil samples (Fig 2.3-1B & D), we hypothesized that the
baseline T cell composition of each sample might influence the effect of T cell depletion on KSHV
infection. Indeed, when the change in KSHV infection in depleted fractions is plotted against the
baseline CD4/CD8 T cell ratio, we observe that KSHV infection increased when depletions were
performed in samples with high baseline levels of CD4+ T cells (Fig 2.3-6 C). We next analyzed
the effect of T cell depletion on KSHV infection of specific B cell lineages (Fig 2.3-6 D). These
data reveal that depletion of CD4+ T cells increases infection of plasma cells as well as MZ-like
and Transitional B cell lineages and that the effect is dependent upon the baseline CD4/CD8 T cell
ratio in the sample with CD4+ T cell-rich samples showing the greatest effect. Interestingly, CD8
depletions altered infection of different lineages compared to CD4 depletions but showed a similar
dependence on the baseline level of CD4+ T cells. Power analysis indicates that only the effect on
CD138+ cells and MZ-like lineages in the CD4-depleted condition and plasmablast lineage in the

CD8-depleted condition can be considered statistically significant based on the sample size. Taken
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together, these data support the conclusion that the T cell microenvironment influences the

lineages targeted by KSHV infection in the B lymphocyte compartment.
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Figure 2.3-6. Manipulation of T cell microenvironment alters KSHV tropism for B
cell lineages.

Naive B lymphocytes from 11 human tonsil specimens were infected with KSHV.219 as in
Fig 2.3-2A, total lymphocytes added back following infection were either untreated or depleted
of CD4+ or CD8+ T cells. At 3 days post-infection cells were collected. (A) T cell depletions
were validated by flow cytometry and (B) Cells were stained for B cell lineages as shown in
S1A Fig and Table 2.3-2 and analyzed flow cytometry for lineage frequencies and KSHV
infection by GFP reporter expression to determine the change in GFP+ B lymphocytes (viable,
CD19+) in CD4 or CD8 depleted samples compared to non-depleted controls. Colors indicate
individual tonsil specimens (n = 11). Student’s T test reveals no statistically significant change
in GFP+ B cell frequency between either CD4-depleted or CD8-depleted and non-depleted
controls. (C) Infection data for T cell depletion studies as in (A) plotted against the baseline
(pre-infection) CD4/CD8 T cell ratio in the sample. (D) Within-lineage infection frequency
plotted against baseline (pre-infection) CD4/CD8 T cell ratio. For B and C linear regression of
the data is shown as a blue line and Pearson correlation coefficients (r) are shown as red text
within panels only for r with an absolute value > 0.6. Statistical power analysis indicates that
this dataset can predict correlations at the level of r > |0.7| with alpha = 0.05 and power = 0.8.
Thus, r values > 0.7 can be considered a statistically significant correlation for this data.
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2.4 Discission

Ex vivo infection of tonsil lymphocytes is emerging as a viable strategy for studying early infection
events for KSHV infection in B lymphocytes. However, the existing literature on KSHV infection
of tonsil lymphocytes is highly varied in both approach and outcome. Hassman et. al. used cell
free wild-type BCBL-1 derived KSHV virions to infect total CD19+ B lymphocytes from tonsil
specimens and used staining for LANA as the only marker for infection, thus limiting their analysis
to latently infected cells (Hassman LM, 2011). Bekerman et. al. also used isolated CD19+ B cells
as infection targets but employed a co-culture infection procedure using iSLK cells infected with
the recombinant KSHV.219 strain employing the GFP reporter as a marker for infection. Nicol et.
al. also employed a co-culture method to infect tonsil lymphocytes with KSHV.219 but used Vero
cells as producers and did not isolate CD19+ B cells prior to infection. In two studies, Myoung et.
al. used cell free KSHV.219 produced from Vero cells to infect mixed lymphocyte cultures. With
the exception of Bekerman et. al, all of the abovementioned studies employed some kind of
activating agent (PHA stimulation or CD40L stimulation) to manipulate the activation and/or
proliferation of cells in vitro. For our studies, we used cell-free, iISLK-derived KSHV.219 to infect
naive B lymphocytes followed by reconstitution of the total lymphocyte environment. We also
avoided activation of lymphocytes in both the isolation and culture procedures using our
previously characterized CDw32 feeder cell system (Totonchy J, 2018). To date, no consensus has
yet emerged on how to perform tonsil lymphocyte infection studies with KSHV, and how
differences in infection and culture procedure influences the resulting data remains to be

established.

Although previous studies in mixed lymphocyte cultures have explored limited surface markers

including immunoglobulins and activation markers (Hassman LM, 2011; Nicol SM, 2016 ) and
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NK cell ligands (Bekerman E, 2013), these studies essentially treated all B cells as one population.
Targeting of specific lineages including naive, memory and CD138+ plasma cell-like B
lymphocytes was explored by Knowlton et. al. using B cells derived from peripheral blood, but
their detection method for infected cells was immunostaining for ORF59 protein and thus their
enumeration of infection was biased towards cells undergoing lytic replication (Knowlton ER,
2014). Our current study is the first to use a comprehensive panel of lineage-defining cell surface

markers to carefully explore the lineage-specificity of KSHV infection in B lymphocytes.

Although previous studies of KSHV infection in tonsil-derived B lymphocytes have shown the
acquisition of plasmablast-like features at later timepoints post-infection (Hassman LM, 2011;
Kang S, 2017), the CD38 high plasmablast lineage is a minor proportion of our infected cultures
at 3 dpi. Based upon these studies, we might expect to see the emergence of more plasmablast-like
cells over time and it will be interesting to determine whether this is a result of infected
plasmablasts expanding or trans-differentiation from other lineages. Our observation that KSHV-
infected B cells are primarily latent in our mixed tonsil lymphocyte cultures is consistent with
previous observations that T lymphocytes control lytic reactivation of KSHV in tonsil-derived B
cells (Myoung J, 2011). For the gamma-herpesviruses EBV and MHV 68, the current consensus is
that naive B cells are the primary infection target and infected cells transit the germinal center as
a way of increasing viral load without resorting to lytic replication and lifelong latent infection is
established in memory B cells while plasma cells are a source of lytic replication constantly
replenishing the viral reservoir by producing virus which infects more naive B cells (Johnson KE,
2020). Here, we show that multiple lineages from human tonsils, including terminally
differentiated CD138+ plasma cells, can be targeted by KSHV for de novo infection. In our data,

plasma cells are not primarily lytic as in EBV models, but instead are a mix of lytic and latent

74



transcription programs with latency slightly predominating (Fig. 2.3-3J). This result is not
surprising given that KSHV-associated lymphoproliferative diseases are characterized by
primarily latent infection in cells with plasma-like features but PEL derived cell lines are
competent for KSHV replication given the proper stimulus. In future studies, it will be interesting
to examine what factors influence the lytic/latent balance for KSHV in primary plasma cells.
Additionally, our data indicate that memory cells are competent for lytic replication (Fig 2.3-31),
which is also different from the current model for EBV. However, the studies upon which the EBV
models are based are primarily examination of cells from previously infected human hosts,
representing EBV distribution in an established infection. We are unaware of any study of EBV
infection in human tonsil that recapitulates the early infection timepoint and the level of detail in
characterizing B cell lineages that is used here, thus it is difficult to place our data in the context
of EBV infection. Given that recombinant EBV molecular genetics systems and ex vivo tonsil
lymphocyte culture systems are now well established, perhaps a second look at the early-stage B

lymphocyte tropism of EBV is warranted.

Our finding that KSHV efficiently targets CD138+ plasma cells early in infection of tonsil B
lymphocytes is particularly intriguing and relevant in the context of KSHV mediated
lymphoproliferative diseases, which often have a plasma cell or plasmablast-like phenotype
(Chadburn A, 2008; Carbone A V. E., 2014 ). Particularly for PEL, which uniformly presents as a
clonal CD138+ neoplasm, these results suggest that the pathological cells may not be derived from
KSHV-driven differentiation from less mature lineages, but instead could be the result of
modifications of differentiated plasma cells by direct infection. Recent studies have revealed that
XBP-1, a critical cellular mediator of the unfolded protein response (UPR) which is essential for

the differentiation of plasma cells (Iwakoshi NN, 2003), can activate expression of KSHV vIL-6
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without inducing ORF45 or other lytic genes (Hu D, 2016). The fact that the UPR and XBP-1 are
uniformly active in immunoglobulin-producing cells, like plasma cells, suggests that these cells
may provide a unique niche for KSHV persistence where vIL-6 can be produced to support
infected plasma cell survival in the absence of KSHV lytic replication. Future studies will examine
whether vIL-6 is responsible for the survival advantage we observed for plasma cells in the KSHV-

infected conditions in this study (Fig 2.3-2B).

Current models of human plasma cell maturation suggest that CD20 expression is lost on plasma
cells as they mature and migrate from peripheral lymphoid organs (such as the tonsil) to the blood
and finally the bone marrow (Medina F, 2002). Thus, CD138+CD20- plasma cells in tonsil that
are highly targeted by KSHV in our analysis may represent a population of cells that is ready to
leave the tonsil and migrate to the bone marrow. A few studies have shown KSHV infection in
bone marrow from patients with MCD (Bacon CM, 2004; Ibrahim HAH, 2016) and HIV positive
patients without MCD (Meggetto F, 2001), and it would be interesting to pursue the idea that
KSHYV uses plasma cells to disseminate to the bone marrow early in infection. Certainly, our results

highlight the virology of KSHYV in primary plasma cells as an area urgently requiring further study.

In this study, we were unable to establish that targeting of plasma cells was due to enhanced virion
binding via gH/gL interaction with the CD138 HSPG molecule, as was suggested by a previous
study (Hahn A, 2009). However, we acknowledge that selectively blocking virion binding to a
specific HSPG in a primary cell system is technically difficult, and we have no way to directly
verify that our neutralization of gH/gL binding sites using soluble CD138 was effective. Our data
using heparinase treatment to remove HSPG from B lymphocytes prior to infection supports the
conclusion that CD138 is not used as an attachment factor for plasma cells, and indeed, HSPG are

generally dispensable for infection of B cells in our system (Fig. 2.3-4G-I). These results are
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consistent with a previous study that shows low HSPG levels on the KSHV-susceptible MC116
lymphoma cell line (Dollery SJ, 2018) and another study showing that ectopic HS expression
enhanced binding but was not sufficient to allow efficient KSHV infection of the BJAB lymphoma
cell line (Jarousse N, 2011). Thus, the mechanisms underlying KSHV targeting of plasma cells
and other B lymphocyte lineages for infection remains to be established. Additional studies in
lymphoma cell lines have identified Ephrin receptors as critical factors in KSHV entry (Gro8kopf
AK, 2019; Muniraju M, 2019). Thus, our future studies in this area will examine Ephrin family

receptors in KSHV infection of tonsillar B lymphocyte lineages.

Our characterization of immunological diversity of a large cohort of human tonsil specimens will
be of interest to the general immunology community. Although a few studies have examined T
cell (Petra D, 2015) or B cell (Varon LS, 2017) subsets in tonsils associated with particular disease
states. To our knowledge, only one other study has used multicolor flow cytometry to examine the
immunological composition of both B cells and T cells in a large cohort of human tonsil samples
(Stanisce L, 2018), and this study was focused on comparing the microenvironments present in
matched tonsils and adenoids rather than comparison between donors based upon demographic

data as we have done here.

In this study, we make the observation that manipulating the T cell composition has a more
profound effect on KSHV infection in tonsil specimens that were CD4+ T cell rich at baseline.
Moreover, although the specific B cell lineages affected by depletion was different depending on
whether CD4+ or CD8+ T cells were experimentally depleted, the greater effect in CD4+ T cell
rich samples was consistent. This data in combination with the viral transcript data shown in
Figure 2.3-3H-J reveals that KSHV infection of B cells and the lytic/latent balance is sensitive to

the host-specific overall immunological microenvironment and highlight that there is complexity

77



to this relationship that cannot be adequately understood in the context of the current study. It will
be interesting in future studies to explore the contribution of donor-specific and context-specific

immunology to KSHYV lytic reactivation in tonsillar B lymphocyte lineages.
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Abstract

KSHYV entry into cell is an intricated process, requiring engagement of multiple viral and cellular
receptors. In this study, we assess the importance of KSHV glycoprotein H (gH) and gl. complex
and EphA family of cellular receptors in KSHV infection of tonsil-derived B lymphocytes. We
characterize EphA2, A4, and A7 distribution at baseline in tonsil lymphocytes and relate EphA
levels to KSHV susceptibility. We then directly assess the importance of EphA receptors in KSHV
entry by blocking either EphA receptors on target cells or using soluble EphA receptors to
neutralize virus particles. We use both KSHV-WT and a gH mutant virus (KSHV-AgH) in these
experiments to assess the contribution of gH/gL to these interactions. Our results indicate that
although KSHV-gH interaction for entry into B cells appears to be indispensable, (1) gH/gL and
EphA interactions are important for the establishment of infection in tonsil-derived B cells; (2)
gH/gL and EphA interactions are important for entry into plasma cells and germinal center cells,

and in the absence of gH/gL, KSHV exploits alternative mechanisms to enter B lymphocytes.
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3.1 Introduction

Kaposi sarcoma associated herpesvirus (KSHV) is associated with both lymphoid and non-
lymphoid cell tumors in humans (Chang et al. 1994; Cesarman et al. 1995), primarily in the context
of immunosuppression. The two lymphoproliferative disorders, primary effusion lymphoma
(PEL), and multicentric Castleman disease (MCD) are associated with KSHV infection of B cells
(Cesarman et al. 1995; Soulier et al. 1995). One strategy for prevention of these diseases is the
design and implementation of a preventative vaccination. However, rational design of such a
vaccine is limited by our understanding of the mechanisms of KSHV entry into target cells,
particularly cells of the immune system, which are thought to be the major reservoir of long-term

KSHYV infection (Flafio et al. 2000).

The process of KSHV entry into cells is a multistep and sequential process that requires
interactions between several host cell receptors and viral envelope glycoproteins; as a result,
KSHYV has tropism for a variety of adherent cell types (Bechtel et al. 2003; Muniraju et al. 2019)
and also targets a wide variety of B cell subsets (Aalam et al. 2020). To infect different cell types,
KSHV employs a repertoire of glycoproteins; some are specific to KSHV (i.e. K8.1A and B,
ORF4), and others are structurally conserved across herpesvirus families (i.e. gB, gH/gL, gN, and
gM) (van der Meulen et al. 2021). Functional binding of glycoproteins to entry receptors induces
fusion of the viral membrane with the host membrane, and there is often a non-essential, secondary
tethering interaction that improves infection efficiency by concentrating virions on the host cell
surface, and in some cases facilitating endocytosis of virions, prior to entry receptor binding and
fusion (Connolly et al. 2011). Among the ten known KSHYV glycoproteins, only a few of them are
characterized to bind to the cellular targets. For instance, glycoprotein machinery gB, gH/gL

complex, K8.1, and KCP are implicated for interaction with heparan sulfate (HS) in epithelial
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cells, endothelial , and fibroblast cells, and monocytes (F. Z. Wang et al. 2001; Akula, Wang, et
al. 2001; Akula, Pramod, et al. 2001; Birkmann et al. 2001; Spiller et al. 2006; Chandran 2010;
Kerur et al. 2010). In addition to HS interaction, there are some orphan host-cell receptors for
KSHV whose binding partners are unidentified, for example the combination of avf1, avB5, and
a3p1 integrins in monocytes and fibroblast cells (Kerur et al. 2010; Veettil et al. 2008) and avf1,

avp5,a3p1, xCT, and CD98 cellular receptors in endothelial cells (Veettil et al. 2008).

Much less is known about KSHV entry for B cells, and most studies have been performed in
transformed B cell lines and not in primary human B lymphocytes. In the BJAB lymphoma cell
line, HSPG binding is important for entry (Jarousse, Chandran, and Coscoy 2008) as well as DC-
SIGN-gB interactions (Akula, Pramod, et al. 2001). Previous studies in primary human B cells
(Rappocciolo et al. 2008) also indicated that DC-SIGN is critical for B cell entry, but we recently
published data that contradicts this claim (Palmerin et al. 2021). Moreover, our recent work
demonstrated that HSPG are dispensable for infection of tonsil-derived B cells (Aalam et al. 2020).
Finally, our recent work has shown that gH/gL is dispensable for KSHV entry into B cells
(Muniraju et al. 2019), but there are subset-specific mechanisms of KSHV entry that depend upon
gH/gL (Palmerin et al. 2021). Thus, the current literature shows that KSHV entry into B cells
employs distinct mechanisms that differ from those used for entry into other cell types, but our

understanding of these mechanisms is currently very limited.

Erythropoietin producing hepatocellular receptors (Eph) are tyrosine kinases, that together with
their corresponding ephrin ligands, are fundamental regulators of a diversity of cellular processes
such as proliferation, differentiation, cell migration, angiogenesis, and tissue boundary formation
(Hagshenas and Doerig 2019). Eph receptors are divided into A and B classes according to their

sequence similarity and their binding affinity towards their ligands (de Boer, van Gils, and van
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Gils 2020). Among the EphA class of receptors, EphA2 serves as an entry receptor for both KSHV
and Epstein—Barr virus (EBV) (Chen et al. 2018; H. Zhang et al. 2018; Hahn et al. 2012). KSHV
interaction with EphA2 results in amplification of the signaling events required for efficient
infection (Chakraborty et al. 2012). It has been demonstrated that gH/gL. binding to EphA2
activates its phosphorylation, leading to KSHV endocytosis (Hahn et al. 2012). Indeed, gH/gL
binding to EphA2 receptor is a mimicry of the natural Ephrin ligand (Light et al. 2021; Hahn and
Desrosiers 2014). The dynamic of EphA2 interaction with gH/gL has been established by several
studies (Hahn et al. 2012; Chen et al. 2019; GroBkopf et al. 2019) and its role in KSHV infectivity
of epithelial, endothelial and fibroblast cells have been evaluated (Hahn et al. 2012; Chakraborty
et al. 2012; Dutta et al. 2013). KSHV gH/gL has binding affinity towards EphA4 and EphA7,
albeit with lower avidity as compared with EphA2 (Chen et al. 2019; GroBBkopfet al. 2019). EphA4
was shown to participate in KSHV infection of epithelial cells, and EphA7 facilitates cell-to-cell
transmission of KSHV in BJAB lymphoma cell lines (Chen et al. 2019; GroBkopf et al. 2019).
While, primary B cells express appreciable amount of these EphA receptors (GroBkopf et al. 2019;
Huang et al. 2016; Alonso-C et al. 2009) no study has directly characterized their contribution to

KSHYV infection of primary human B cells.

In this study, we utilize our established tonsil lymphocyte culture model to characterize the
expression and distribution of EphA2, A4 and A7 receptors in tonsil-derived B lymphocytes. We
utilize different strategies for blocking the interaction of KSHV virions with EphA receptors in the
context of both KSHV-WT and KSHV-AgH infections. Our results demonstrate that EphA
expression is broad within B cell subtypes and highly variable between donors in tonsil
lymphocyte samples. We show that gH/gl-EphA interactions are important for KSHV-WT

infection of primary tonsil lymphocytes, but that KSHV-AgH has a separable entry mechanism
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that is EphA independent. The gH/EphA-dependent entry mechanism seems to be critical for
establishing KSHV-WT infection particularly in plasma cells and germinal center cells. Finally,
our data supports the conclusion that gH-independent entry mechanisms exist for KSHV, but that
their use is masked by the presence of gH/gl. in KSHV-WT particles and, therefore, many not be
particularly physiologically relevant for infection and dissemination of KSHV within the human

immune system.

3.2 Materials and Methods

3.2.1 Cell-free KSHYV Virion Preparation

Stably infected iSLK cell lines with recombinant BAC16, KSHV-WT (Myoung and Ganem 2011)
and KSHV-AgH (Muniraju et al. 2019) were cultured in DMEM supplemented with 10% CCS,
G418 (250 pg/mL), hygromycin (1.2 mg/mL), puromycin (1 uM), and 1% PSG at 37°C in 5%
CO2. The cell lines were expanded to 12 x T185 flasks and upon 70-80% confluency, they were
induced with 2 uM doxycycline hyclate and 3 mM sodium butyrate. At 72 hours post induction,
supernatants were collected and centrifuged at 1700 rpm for 10 min at 4°C and passed through
0.45um vacuum filter. To pellet the virions, clarified supernatant was overlayed on a 25% sucrose
cushion prepared in TNE buffer [pH 7.4] (50 mM Tris, 0.1 mM EDTA, 100 mM NaCl) and
centrifuged at 22,000 rpm for 2 hours. The pelleted virions were the resuspended in 2mL TNE and
stored in smaller aliquots at —80°C. Doses for B cell infection with KSHV-WT were calculated
by titration on human fibroblast cells and quantified at 3 days post infection with flow cytometry
detecting the GFP reporter present in the BAC16 genome and calculation, via linear regression, of
the dose needed to achieve 20% infection (ID20) in microliters per cell. KSHV-AgH was titered

by quantitative real-time PCR using the GFP cassette in the BAC16 backbone as a target and
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infections were performed using equivalent genome copy numbers compared to KSHV-WT at its

1D20.

3.2.2 Isolation of Primary Tonsillar Lymphocytes

Informed consent exempted (de-identified) human tonsil specimens were provided by National
Disease Research Interchange (NDRI). The specimens were maintained in DMEM+ 1%PSG, at 4
°C, and shipped to the laboratory within 24h following the routine tonsillectomy. To extract the
lymphocytes, tonsillar tissue was dissected and macerated in RPMI media. The media was then
passed through a 40 um filter and the lymphocytes were pelleted at 1500 rpm for 5 min. The
lymphocyte pellet was resuspended in red blood cell lysing solution (10 mM potassium
bicarbonate, 0.15 M ammonium chloride, 0.1 M EDTA), after incubation for 3 min, cells were
diluted to 50ml with PBS-/-, counted, pelleted, and resuspended in freezing media (90% FBS, 10%

DMSO) in aliquots of 1e8 cells/vial and cryopreserved.

3.2.3 Total B cell Isolation and Infection Procedure

Cryopreserved aliquots of tonsillar lymphocytes were thawed rapidly at 37°C, and gradually
diluted with RPMI, and pelleted at 1400 rpm for 5 min. Lymphocytes were resuspended in 1 mL
20% FBS, RPMI, 100 pg/mL Primocin, with addition of 100 pg/mL DNase I, maintained for two
hours of recovery in a well of low-binding plate at 37 °C and 5% CO2 incubator. After recovery,
Mojosort™ Human Pan B cell isolation kit (Biolegend 480082) was used to isolate total B
lymphocytes following manufacturer’s instructions. The bound fraction of magnetic sorting were
retained in complete media at 37 °C and 5% CO2. The sorted fraction containing total B
lymphocytes were resuspended in serum free RPMI at 400ul/1e6 cells per experimental condition

and total B lymphocytes were infected through spinoculation at 1000 rpm for 30 min at 4° C.
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Thereafter, the cells were incubated at 37 °C and 5% CO2 for 30 min. After incubation, the cells
were reconstituted with the equal proportion of the bound fraction and supplemented with 20%

fetal bovine serum, and 100 pg/mL of Primocin and cultured over x-ray irradiated feeder cells

(CDW32 L cells) for 3 days.

3.2.4 EphrinA2-Fc Cell Neutralization Experiments

B lymphocytes were isolated as described above, resuspended in serum-free RPMI and incubated
with Recombinant Human Ephrin-A2 Fc Chimera Protein (7856-A2, R&D systems) at varying
concentrations (0 pg/ml, 20 pg/ml, 40 pg/ml, 60 pg/ml) for 45 min on ice. Cells were then washed

twice with serum free RPMI prior to infection as described above.

3.2.5 Soluble EphA Receptor Virus Neutralization Experiments

Purified virions for KSHV-WT and KSHV-AgH were incubated with Recombinant Human Eph-
A2 (3035-A2, R&D systems), Eph-A4 (6827-A4, R&D systems), Eph-A4(6756-A7, R&D
systems) at varying concentrations (0 ug/ml, 0.25 pg/ml, 1 pg/ml, 2 pg/ml) for 30 min on ice and

subsequently used to infect B lymphocytes as described above.

3.2.6 Flow cytometry staining and analysis of baseline EphA receptor
expression

Following thawing and recovery, 0.5 (10)° total lymphocytes at day zero (baseline) were collected
into 96-well round bottom plates and pelleted at 1400 for 4 min. The cells were resuspended in
100 pul of PBS containing fixable viability dye (BD 565388) and were incubated on ice for 15 min.
The cells were pelleted and incubated with 100 ul FACS Block (PBS, 0.5% BSA, and 2% FBS)
for 10 min on ice, followed by addition of 100 ul FACS Wash (PBS, 0.5% BSA, and 0.1% Sodium

Azide) and pelleting the cells. The baseline staining of lymphocytes were done using 10 ul BD
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Brilliant Stain Buffer Plus (BD 566385) and antibodies as follows: CD19-PerCPCy5.5 (2.0 ul/test,
BD 561295), CD20-PECy7 (2.5 pl/test, BD 560735), IgD-BUV395 (2.5 pl/test BD 563823),
CD38-V450 (3 pl/test BD 561378), CD138-BUV737 (2 ul/test BD 612834), CD27-BV750 (2
ul/test BD 563328) in 50 pl of FACS Wash for 15 min. The lymphocytes were permeabilized and
fixed by resuspension in 100 ul of BD Cytofix/Cytoperm™ (BD554722) for 15 min at room
temperature followed by 2X washes of BD Perm/Wash™ (BD554723). Thereafter, 50ul
Perm/Wash containing EphA2-PE(2.5 ul/test, BioLegend 356803), EphA4-AF647 (2.5 ul/test,
Santa Cruz Biotech. sc-365503), andEphA7-AF680 (2.5 ul/test, Santa Cruz Biotech. sc-393973)
antibodies was added to the cells and incubated at room temperature for 20 min, followed by two
washes and resuspension in FACS Wash followed by data acquisition on BD Fortessa X20 flow
cytometer and analysis of the data using FlowJo software. The concentration of antibodies for
intracellular EphA staining were determined by titration on lymphocytes and fluorescent minus

one (FMO) controls were used to establish the gating for the intracellular EphA stains.

3.2.7 Flow cytometry staining and analysis of KSHYV infection

At 3 days post infection, a half of the cultures were collected into 96-well round bottom plates and
pelleted at 1400 for 4 min. The cells were resuspended in 100 pl of PBS containing zombie violet
fixable viability dye (423113, BioLegend) and were incubated on ice for 15 min. The cells were
pelleted and incubated with 100 pul FACS Block (PBS, 0.5% BSA, and 2% FBS) for 10 min on
ice, followed by addition of 100 ul FACS Wash (PBS, 0.5% BSA, and 0.1% Sodium Azide) and
pelleting the cells. Thereafter, the cells were resuspended in 50 ul FACS Wash containing 10 pl
BD Brilliant Stain Buffer Plus (BD 566385) and antibodies as follows: CD19-PerCPCy5.5 (2.0
ul/test, BD 561295) CD20-APCH?7 (2 pl/test BL 302313), IgD-BUV395 (2.5 ul/test BD 563823),

CD38-APC (10 pl/test BD 560158), CD138- BUV737 (2 pl/test BD 612834), CD27-BV750 (2
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ul/test BD 563328), CD77-BV510 (2.0 pl/test BD 563630) for 15 min on ice. The staining was
followed by 2X FACS Wash and resuspension of lymphocytes in FACS Wash for data acquisition

on BD Fortessa X20 flow cytometer and data was analyzed using FlowJo software.

3.2.8 Statistical Analysis

Data plots and statistical analysis were performed in Rstudio software (version 7.0) using reshape2
(Z. Zhang 2016), and tidyverse (Wickham et al. 2019) packages. Statistical analysis was performed
using R package: rstatix (Kassambara 2020). Specific statistical tests and the resulting values are

described in detail in the corresponding figure legends.

3.3 Results

3.3.1 EphA receptor distribution on tonsil-derived B cells

In order to determine the importance of gH/gL interaction with EphA family of receptors, we
included EphA2, A4, and A7 in our study. EphA2 and EphA4 are involved in KSHV entry into
various adherent cells (Hahn et al. 2012; Chakraborty et al. 2012; Dutta et al. 2013; Chen et al.
2019) and EphA7 was demonstrated to be critical for cell-to-cell transmission of KSHV in B cells
(GroBkopfetal. 2019). We first wanted to establish the distribution of these EphA family receptors
in tonsil lymphocytes. To do this, we used a surface immunophenotyping panel to quantitate the
baseline level of B cell subsets within 27 unique tonsil specimens followed by fixation and
intracellular stain for EphA2, EphA4 and EphA7. B cell subset definitions are listed in Table 1
and a representative gating scheme for B cell subsets can be found in our previous study (Palmerin
etal. 2021). The intracellular staining approach for EphA receptors was necessary due to a lack of
commercially-available antibodies binding the extracellular domains of these proteins. However,

we acknowledge it is not ideal given that it does not specifically quantitate cell surface EphA
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receptor expression, which might be most relevant for understanding binding and entry of KSHV.
This analysis reveals that EphA2 has the highest mean expression in tonsil B lymphocytes while
EphA7 is least abundant (Fig 3.3-1A). Our analysis clearly shows that EphA receptor expression
varies substantially based on tonsil donor (Fig 3.3-1B-D). In most samples, within-subsets
expression of EphA2 and EphA4 were fairly consistent between subsets, while EphA7 shows the
most variable, subset-specific expression (Fig 3.3-1B). Moreover, many tonsil samples show high
levels of EphA2 in all B cell sub-populations, while other samples show uniformly low EphA2
expression except for plasma cell and plasmablast lineages which were enriched for EphA2
expression even in samples with low EphA2 in other lineages. Similarly, EphA7 expression is low
in most tonsil samples, but there is an enrichment of EphA7 expression in the plasmablast lineage.
EphA4 levels were generally consistent across all B cell subsets within tonsil donors, but donor-
specific levels of EphA4 were highly variable with the majority of samples showing less than 25%
EphA4 expression across all lineages. However, we observe that EphA4 is particularly enriched
in germinal center cells (Fig 3.3-1C). When we examined co-expression of EphA receptors on
tonsil-derived B cells in a subset of our tonsil samples, we observed similarly variable results based
on tonsil donor. However, even within these variable data, we observed that EphA2 and EphA4
are more likely to be co-expressed, while EphA2/EphA7 double positive cells and cells expressing
all three EphA receptors are rare (Fig 3.3-1D). Taken together, these results suggest that EphA
expression in tonsil B lymphocytes is most heavily influenced by donor-specific factors but some

subset-specific influences exist.
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Table 3.3-1. B lymphocytes subtype definitions used in this study.

Subset Molecular Markers

Plasma CD19", CD20", CD138"Midto High) \ C)3§-
Transitional CD19*, CD138", CD38Mid [gD* (Mid to High)
Plasmablast CD19*, CD138", CD38Mtigh gD /- (mostly -)

Germinal Center

CD19%, CD138", CD38Md, 1gD-

Naive

CD19*, CD138", CD38% CD27-, IgD" (Mid to High)

Marginal Zone Like (MZ-Like)

CD19+, CD138_, CD38LOW’ CD27" (Mid to High)’ IgD+ (Mid to High)

Memory

CD19*, CD138, CD38v, CD27*+ Midto High) "1o1)-

Double Negative

CDI19*, CD138", CD38%, CD27", IgD"
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dependent.

Thawed and recovered tonsil lymphocytes from 27 unique tonsil specimens were stained for
surface markers to identify B cell subsets followed by fixation, permeabilization and
intracellular staining for EphA2, EphA4 and EphA7 and analyzed by flow cytometry. (A)
Percent of viable, CD19+ cells positive for each EphA receptor. (B) distribution of B cell
subsets (see Table 3.3-1) within EphA positive cells in each sample. Samples are ordered on
the X-axis based on their overall percent positivity for the corresponding EphA with higher
positivity sam-ples to the left. (C) Percent of each B lymphocyte subset that was positive for
each EphA receptor. Colors in Figures A and C represent individual tonsil specimens and are
comparable between the panels. (D) cell-level co-expression data for EphA2 (red), EphA4
(blue) and EphA7 (yellow), in 5 representative tonsil specimens. n represents the total number
of viable B lymphocytes included in the analysis and sample designations are preceded by
“ND”.
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3.3.2 Baseline expression of EphA receptors is not positively correlated with
susceptibility to KSHYV infection

We next wanted to determine whether the baseline level of EphA receptor expression within B cell
subsets is correlated with overall infection or subset-specific infection for KSHV-WT or KSHV-
AgH at 3dpi. Interestingly, there were no positive correlations between EphA receptor expression
and overall susceptibility of tonsil samples to KSHV infection in this dataset (Fig 3.3-2A).
Similarly, subset-specific expression of EphA receptors was not positively correlated with overall
susceptibility to infection (Fig 3.3-2B). EphA4 expression had the strongest negative correlation
with KSHV-WT infection while infection with KSHV-AgH was not correlated with the baseline

expression of EphA2, EphA4 or EphA7 (Fig 3.3-2A&B).
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Figure 3.3-2. Baseline expression of EphA receptors is not positively correlated with
susceptibility to KSHV infection.

Tonsil lymphocyte samples were infected with KSHV-WT or KSHV-AgH and analyzed by
flow cytometry at 3 dpi for B cell immunophenotypes and the frequency and subset-specific
distribution of GFP+ cells to assess KSHV infection. Total viable, CD19+GFP+ cells at 3dpi
were correlated with baseline frequencies of EphA receptors in the same samples and linear
regressions were performed using linear model fit with 95% confidence intervals represented
by grey shading for (A) total EphA expression and (B) within subsets EphA expression. No

correlations in this analysis were statistically significant using Pearson’s method.
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3.3.3 Treatment of target cells with an EphA ligand inhibits B lymphocyte
infection by KSHV-WT but not KSHV-AgH

In order to more directly determine whether EphA receptors are participating in KSHV entry into
B lymphocytes, we treated lymphocytes from 12 unique tonsil donors with a recombinant ephrin-
A2-Fc fusion protein prior to infection with either KSHV-WT or KSHV-AgH. The ephrin-A2
ligand binds all EphA family receptors with varying affinities (Darling and Lamb 2019) and has
been used as a broadly-acting EphA blocking reagent in previous studies (Hahn and Desrosiers
2013). We analyzed these data at 3 days post-infection (dpi) for KSHV infection (using the
constitutive GFP reporter contained in the BAC16 genome) and B lymphocyte immunophenotypes
by flow cytometry analysis. We previously showed that KSHV-WT and KSHV-AgH target tonsil-
derived B lymphocytes at similar rates and with similar subset distributions, and demonstrated that
gH is not required for entry into any lymphocyte subsets (Palmerin et al. 2021). The data sets in
this study are consistent with our previous work, showing similar levels of total GFP and similar
subset distributions for KSHV-WT and KSHV-AgH in untreated cultures (Fig 3.3-3A&B) with
the exception of a significant increase in targeting of memory B cells with KSHV-AgH (Fig 3.3-
3B). This difference was also present in our previous study but was not statistically significant,
likely because of the smaller sample number. Analysis of KSHV infection as GFP+ cells within
the viable CD19+ B cell population shows that treatment of lymphocytes with ephrin-A2-Fc
inhibits infection of B cells with KSHV-WT in a dose-dependent manner, but has no effect on
infection with KSHV-AgH (Fig 3.3-3A). Two-way repeated measures ANOVA analysis reveals
that the main effect of WT vs. AgH in this context is significant (p=0.04, F=5.6) and there is a
significant interaction of virus strain and dose in the data (p=0.04, F=3.1). Post-hoc paired T tests
revealed that total infection is significantly different between the two viruses at the 40 (p=0.001)

and 60pg/ml (p=0.04) doses of ephrin-A2-Fc.
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We then examined the within subsets distribution of infection to determine whether ephrin-A2-Fc
was altering the ability of KSHV-WT to target specific B cell sub-populations. The effect of
ephrin-A2-Fc treatment on targeting of specific B cell subsets by KSHV-WT and KSHV-AgH is
shown in Figure 3.3-3C. Figure 3.3-3D shows the same data normalized to the untreated control
for each sample within each subset and virus strain so that the effect of ephrin-A2-Fc treatment
can be more easily visually interpreted. We performed two-way repeated measures ANOVA
analysis on the raw data (Fig 3.3-3C) to determine the main effects of ephrin-A2-Fc treatment and
virus strain as well as interactions between these factors for each B cell subset. The results of the
ANOVA analysis are shown in Table 3.3-2. Significant main effects of KSHV-WT vs. KSHV-
AgH are indicated by blue boxes on Figure 3C and significant interaction effects of virus strain
and ephrin-A2-Fc treatment are indicated by red boxes on Figure 3D. These results reveal that the
decrease in overall infection in KSHV-WT infected, ephrin-A2-Fc treated cultures is associated
with a decrease in CD20+ plasma cell and germinal center cell infection in most samples. For
KSHV-AgH under the same conditions, infection of CD20+ plasma cells increased and germinal
center cell infection was unchanged. Taken together, these results show that binding of KSHV-gH
to EphA receptors is important for KSHV-WT entry, but in the absence of gH alternative entry
strategies are exploited. Moreover, blocking EphA receptors limits the establishment of KSHV-
WT infection in CD20+ plasma cells and germinal center cells, specifically, suggesting that gH-

EphA interactions are particularly important for entry into these B cell subsets.
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Figure 3.3-3. Treatment of target cells with an EphA ligand inhibits B lymphocyte

ISP O PP

infection by KSHV-WT but not KSHV-AgH.

Tonsil lymphocytes from 12 unique tonsil donors were pre-treated with indicated
concentrations (in pg/ml) of recombinant ephrin-A2-Fc protein and subsequently infected with
KSHV-WT or KSHV-AgH. B cell immunophenotyping and assessment of the frequency and
distribution of KSHV infection was analyzed by flow cytometry at 3 dpi. (A) total percent of
viable, CD19+ B lymphocytes that were GFP+ in each condition. **p=0.001, *p=0.04 (B)
Subset-specific targeting of KSHV-WT vs. KSHV-AgH in untreated controls. *p=0.03 (C)
GFP+ cells within each B cell subset for each condition. Blue boxes indicate subsets with
significant main effects of virus strain via two-way repeated measures ANOVA. (D) data as in
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(C) normalized to the sample, subset and virus-specific GFP value in untreated control cultures.
Red boxes indicate subsets with significant interaction effects of virus strain and ephrin-A2-
Fc treatment via two-way repeated measures ANOVA. ANOVA statistics can be found in
Table 3.3-2. For panels B-D red diamonds indicate the mean of all values in the condition and
colors indicate specific tonsil specimens and can be compared between panels in the figure.
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Table 3.3-2. Statistical analysis of the data shown in Figure 3.3-3D

Subset Effect DFn DFd F p p<.05 ges
Plasma cell Dose 3 33 1.006 0.402 0.021
Plasma cell Cond 1 11 3.747 0.079 0.076
Plasma cell Dose:Cond 3 33 3.599 0.024 * 0.065
CD20- PC Dose 1.25 13.77 0.619 0.48 0.007
CD20- PC Cond 1 11 0.782 0.396 0.000507
CD20- PC Dose:Cond 1.2 13.16 0.556 0.499 0.021
Double Neg  Dose 3 33 0.212 0.888 0.006
Double Neg  Cond 1 11 14.523  0.003 * 0.076
Double Neg  Dose:Cond 3 33 0.38 0.768 0.012
Memory Dose 1.97 21.72 0.274 0.76 0.005
Memory Cond 1 11 13.846  0.003 * 0.134
Memory Dose:Cond  2.13 23.42 0.174 0.854 0.003
MZ-like Dose 1.88 20.73 0.361 0.689 0.017
MZ-like Cond 1 11 2.227 0.164 0.017
MZ-like Dose:Cond  1.41 15.55 1.116 0.331 0.027
CD20+ PC Dose 3 33 0.855 0.474 0.017
CD20+ PC Cond 1 11 3.353 0.094 0.071
CD20+ PC Dose:Cond 3 33 5.079 0.005 * 0.094
Naive Dose 3 33 0.566 0.642 0.017
Naive Cond 1 11 4.68 0.053 0.062
Naive Dose:Cond 3 33 0.442 0.725 0.011
Germinal

Center Dose 1.93 21.23 0.829 0.446 0.02
Germinal

Center Cond 1 11 1.839 0.202 0.038
Germinal

Center Dose:Cond 3 33 3.003 0.044 * 0.043
Plasmablast Dose 3 33 0.257 0.856 0.008
Plasmablast Cond 1 11 8.812 0.013 * 0.082
Plasmablast Dose:Cond 3 33 2.61 0.068 0.047
Transitional ~ Dose 3 33 1.123 0.354 0.034
Transitional Cond 1 11 8.674 0.013 * 0.064
Transitional Dose:Cond 3 33 1.815 0.164 0.051
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3.3.4 Neutralization of KSHYV virions with soluble EphA receptors reveals
that EphA binding is essential for KSHYV entry into CD20- plasma cells

Because of the broad binding of ephrin-A2 to multiple EphA receptors, treating target lymphocytes
with the recombinant ephrin-A2-Fc ligand putatively blocks multiple EphA receptors with varying
efficacy depending on their affinities for the ligand. In order to more specifically examine which
EphA receptors might be participating in entry for KSHV-WT and KSHV-AgH, we performed a
second set of experiments in which we treated KSHV virions with different doses of soluble
recombinant EphA receptors prior to infection of lymphocytes. In this scenario, the recombinant
EphA receptors should compete with cell-associated EphA receptors for binding of KSHV
glycoproteins. In this data, we observed no significant impact of neutralization via soluble
recombinant EphA ligands on overall infection with either virus (Fig 3.3-4A). When we
normalized the data to the untreated control within each KSHV strain, we observed that
neutralization had a highly variable effect on KSHV-AgH, but the effect was consistent within
tonsil samples and across EphA proteins. In contrast, neutralization had minimal to effect on
KSHV-WT except for one tonsil sample where infection was reduced via treatment with any
soluble EphA receptor (Fig 3.3-4B & C). These data are consistent with the conclusion that the
effectiveness of soluble EphA proteins in neutralizing KSHV virions is highly donor-dependent,
which is consistent with our previous data showing the levels and distribution of EphA2, A4 and

A7 on tonsil-derived B lymphocytes also vary substantially based on donor.

When we examined the subset-specific response to EphA-mediated neutralization via three-way
repeated measures ANOVA, results showed that KSHV targeting of most subsets was not affected
by the treatment (Supplemental Figure in Appendix B1 and Supplemental Table in Appendix B2).

The only significant effect in this analysis was that of EphA neutralization dose on infection of
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CD20- plasma cells (p=0.03, F=6.6). We can observe that any EphA ligand was able to reduce
infection of CD20- plasma cells by both KSHV-WT and KSHV-AgH (Fig 3.3-4D&E). Indeed, in
several samples, GFP+ CD20- plasma cells were not observed in any neutralized conditions. This
observation is notable because, although they are a rare cell type in tonsil, CD20- plasma cells
have one of the highest within-subsets targeting during early KSHV infection (Aalam et al. 2020).
These data indicate that KSHV requires EphA receptor binding to enter CD20- plasma cells, but
that gH is not involved in this interaction. Finally, we wanted to determine whether the effect of
EphA-mediated neutralization on infection was related to the baseline levels of EphA receptor
expression in the tonsil samples. Interestingly, we observed significant correlations between
response of infection to EphA2 treatment and baseline EphA2 expression. However, the effects
were opposite for the two virus strains with EphA2-mediated neutralization having a greater
inhibitory effect on KSHV-WT infection in samples with higher baseline EphA2 expression
(r=0.7, p=0.006), and EphA2-mediated neutralization having an enhancing effect on KSHV-AgH
infection in samples with high baseline EphA2 expression and an inhibitory effect in samples with
low EphA2 expression (r=-0.8, p=0.0001) (Fig 3.3-4F). For KSHV-WT, the negative correlation
between total EphA2 expression and response to virion neutralization with soluble EphA2 may
indicate that this EphA receptor, in particular, is critical for gH-dependent KSHV entry into B
cells. The positive correlation seen in the same data with KSHV-AgH is more difficult to interpret,
but may indicate that gH-independent entry mechanism(s) are influenced by EphA signaling and
adding soluble EphA receptors in the context of low baseline EphA expression deprives cells of

ephrin signals which facilitate entry specifically for KSHV-AgH.
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Figure 3.3-4. Neutralization of KSHYV virions with soluble EphA receptors reveals
that EphA binding is essential for KSHYV entry into CD20- plasma cells.

Purified virions for KSHV-WT and KSHV-AgH were treated with indicated doses (in pg/ml)
of soluble recombinant EphA2, EphA4 or EphA7 protein. Virions were then used to infect
tonsil lymphocytes from 7 unique tonsil donors. B cell immunophenotyping and assessment of
the frequency and distribution of KSHV infection was analyzed by flow cytometry at 3 dpi.
(A) total percent of viable, CD19+ B lymphocytes that were GFP+ in each condition. (B) data
as in (A) normalized to the sample and virus-specific GFP value in untreated control cultures.
(C) data as in (B) separated by sample with colors indicating virus strain and shapes indicating
treatment dose for each EphA protein. (D) Percent of GFP+ cells within the CD20- plasma cell
subset for each condition. (E) Data as in (D) normalized to the sample and virus specific GFP
value. This data for all subsets can be found in Supplemental Figure (Appendix B1). For panels
A, B, D and E red diamonds indicate the mean of all values in the condition and colors indicate
specific tonsil specimens and can be compared between panels in the figure. (F) Correlation
of the frequency of EphA expression within viable CD19+ B cells at baseline (day 0) with the
ability of soluble recombinant EphA receptors to neutralize KSHV infection at 3 dpi. Linear
regressions were performed using linear mode fit and grey shading indicates 95% confidence
intervals. Correlation coefficients and p-values calculated using Pearson’s method are shown
on panels with significant correlations.
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3.4 Discussion

The success of immunization in reducing rates of human papilloma virus-associated cancers
provides a strong rationale driving efforts to limit virus-associated cancers by the simple, but often
difficult, strategy of limiting the spread of the pathogen within the human population. The
oncogenic lymphotropic herpesviruses pose a particular challenge for this strategy given that they
are generally acquired early in life and the human immune system is uniformly unable to clear the
infection, which remains for the lifetime of the host. Moreover, these viruses cause
lymphoproliferation, so infection of even a single B cell can serve as an expansion point that will
greatly limit the effectiveness of a vaccination strategy that is designed to block the establishment
of infection. Thus, the rational design of a vaccine to prevent primary KSHV infection requires
much more complete knowledge of how KSHV infects B cells than is currently available, and our

group has begun a series of studies aimed at filling this critical knowledge gap.

We previously showed that KSHV entry in primary tonsil-derived B cells is not dependent on DC-
SIGN, and that KSHV can still enter tonsillar B cells when the gH/glL complex is removed from
the virion by directed mutagenesis of the gH gene (Palmerin et al. 2021). Importantly, results from
that previous study indicated that gH/gl. does have a role in B cell tropism, but that, in all B cell
subsets, alternative mechanisms are employed when gH/gL is absent. Here, we extend these
findings using the same virus strains and tonsil lymphocyte infection system, but aim to determine
whether EphA receptor-gH interactions play a role in KSHV infection of B cells. We employ two
complementary strategies to block KSHV-EphA interactions: (1) broadly binding EphA receptors
on target cells using a recombinant ephrin-A2 protein, and (2) neutralizing EphA-gp interactions

by treating virion preparations with soluble EphA receptors.
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We propose a model unifying our interpretation of the data in Figure 3.4-1. In the first set of
experiments with ephrin-A2 occupying cell surface EphA receptors, we observe that KSHV-WT
infection is inhibited but infection with KSHV-AgH is unaffected by treatment. These results imply
that EphA-gH interactions are important for entry of KSHV-WT but that in the absence of gH/gL
KSHYV is able to enter B cells via an alternative route. Importantly, the inhibition we see for KSHV-
WT implies that these alternative entry strategies are unavailable when gH/gL is incorporated into
the virion, but a lack of inhibition in the corresponding experiments in which we treated KSHV
virions with soluble EphA receptors may indicate that binding of soluble EphA to gH unmasks

gH-independent entry mechanisms that can be exploited for entry.
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Figure 3.4-1. A theoretical model, supported by the data, of interactions in the
different experimental conditions in the study.
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Our experiments using soluble EphA receptors to neutralize KSHV virions revealed that all three
EphA types tested (EphA2, EphA4, and EphA7) behaved similarly and generally failed to
significantly inhibit KSHV entry (Fig 3.3-4). Indeed, the effect of these treatments was more
dependent upon the particular tonsil sample than the virus strain, EphA type or dose of treatment.
Previous studies have shown that EphA2, in particular, is an important receptor for KSHV entry
into endothelial cells, epithelial cells and fibroblasts (Hahn et al. 2012; Chakraborty et al. 2012;
Dutta et al. 2013) and that EphA4 can mediate KSHV entry in HEK-293 cells (Chen et al. 2019)
while EphA7 seems to be important for direct cell-cell transmission of KSHV in the BJAB
lymphoma cell line (GroBkopf et al. 2019). Our data neither supports nor refutes these observations
for B cells given that virion neutralization with soluble EphA2, EphA4 and EphA7 had similar,
non-significant effects on infection in our system with both KSHV-WT and KSHV-AgH virus
strains. We did observe significant, but opposite, correlations with the two virus strains when we
compared the response to soluble EphA treatment and baseline EphA2 expression (Fig 3.3-4F).
Although these results are difficult to interpret, the fact that they are sample specific and correlated
to the baseline levels of EphA2 specifically indicates that the effect may due to soluble EphA
receptors depriving EphA2 of ephrin ligands. In this context, the data support a contribution of
EphA2 signaling to KSHV entry or early dissemination of infection in B cells that is independent
of actual interactions between EphA2 and virion glycoproteins. Indeed, the effect of EphA2
signaling on early events in KSHV infection has been previously reported for endothelial cells
(Chakraborty et al. 2012). In particular, our data with KSHV-AgH in the context of soluble EphA
neutralization leads us to speculate that EphA signaling might regulate the expression of the

receptor(s) mediating gH-independent binding and entry. Additionally, EphA signaling may

106



facilitate the early proliferation or differentiation of infected cells as has been shown previous with

EphA4 in EBV-infected lymphocytes (Huang et al. 2016).

Although other studies have examined transcripts for EphA receptors and ephrin-A ligands in B
lymphocytes (Alonso-C et al. 2009; Chen et al. 2019), we believe that the data presented in Figure
1 of this study is the first detailed examination of EphA receptor distribution and co-expression in
tonsil-derived B cell subsets. We demonstrate that, although there are some subsets that are
enriched for expression of particular EphA proteins, distribution of these receptors is much more
dependent upon host factors vs. subset-specific factors. This is interesting in light of our previous
work showing highly variable targeting of tonsil-derived lymphocytes based on unknown host-
level factors that are independent of age, sex or racial demographics (Aalam et al. 2020). Although
we did not find any significant correlation between baseline EphA receptor expression and overall
susceptibility of tonsil lymphocytes to KSHV infection in this study (Fig. 3.3-2), these new results
provide evidence that receptors important for KSHV infection are one factor that can vary
substantially from host-to-host, and may be partially responsible for the variable susceptibility we
observe. Thus, a broader survey of putative entry receptors and their distribution within B cell

subsets and between tonsil lymphocyte samples is warranted.

The very different responses of KSHV-AgH vs. KSHV-WT in our studies underscore the
longstanding issue of using glycoprotein knockout mutants to study herpesvirus entry. The
complexity and interactions of herpesvirus gps with cellular receptors can make interpretation of
results difficult, and glycoprotein mutant virions may utilize entry mechanisms that are not
available in a wild-type context and therefore are not necessarily physiologically relevant. Thus,
in future studies we would propose to combine glycoprotein mutants with experiments employing

specific anti-gp neutralizing antibodies in the context of KSHV-WT in order to dissect the
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functional interactions more carefully and obtain a clearer picture of how KSHV entry might be
targeted immunologically. Moreover, future studies examining the role of additional putative
receptors and KSHV-glycoproteins are needed to support and extend these studies to develop a

more complete picture of KSHV entry into the human immune system.
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Associated Publications and Author Contributions:

Authors: Farizeh Aalam, Romina Nabiee, Emily Romano and JenniferTotonchy}

This chapter is a manuscript submitted to Journal of Virology

Farizeh Aalam performed the experiments presented in Figure 3.4-1B, Figure 3.4-2, Figure 3.4-3,

Figure 3.4-4, and Figure 4.4-1.

109



Abstract

Saliva is widely accepted as the primary route of person-to-person transmission for KSHV, making
the oral cavity a likely site for the establishment of KSHV infection in a new human host. However,
it is yet to be determined how KSHYV infects the oral mucosa and what cell types play a role in
establishing KSHV infection in disease-relevant cell types like B cells. Here, we take advantage
of our library of primary tonsillar lymphocytes and donor-matched adherent cell lines to explore
KSHYV transmission between tonsil-derived cell types. We show that a variety of primary tonsillar
cells are susceptible to KSHV infection and can differentially transmit the infection into B cells.
We demonstrate that KSHV spread between and within tonsil cell types is directed, suggesting
that, as has been demonstrated for EBV, tropism may be influenced by differential virion
composition arising from each cell type. Our results represent a first step toward establishing the
mechanisms of KSHV spread within this physiologically important tissue and may have significant
implications for the prevention of person-to-person transmission of KSHV and the establishment

of infection in disease-relevant cell types in humans.

Importance

Kaposi Sarcoma Herpesvirus (KSHV) is associated with several cancers in humans including
immunological cancers in B cells. Despite many years of research, how KSHV establishes
infection in a new human host is poorly understood. Because KSHYV is present in saliva, and infects
B cells and cells of the lymph vessels in tumors, the tonsil is a likely site for the initial

establishment of KSHV infection in humans. This study examines the transfer of KSHV infection
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between cell types extracted from human tonsils as a first step to understanding how the virus

might invade this tissue and establish infection in the human immune system.

4.1 Introduction

An extensive body of literature has established saliva, blood, and organ transplant as the main
sources of horizontal KSHV transmission (Uldrick and Whitby 2011; Minhas and Wood 2014).
KSHYV DNA is readily detected in human saliva and epidemiological data suggest that salivary
transmission is the primary route of person-to-person transmission for KSHV in endemic areas
(Pica and Volpi 2007; Quinlivan et al. 2001; Olp et al. 2016) Moreover, the oral cavity is a major
site for viral replication, indicated by readily detectable infectious virus in saliva and viral
transcripts in oral tissues (Vieira et al. 1997; Pauk et al. 2000; Gasperini et al. 2005; Chagas et al.
2006; Webster-Cyriaque et al. 2006). These observations, taken together with the broad tropism
of KSHYV for cell types present in tonsil (Bechtel et al. 2003; Muniraju et al. 2019; Totonchy et al.
2018) and the presence of disease-relevant cell types like B cells and lymphatic endothelial cells,
makes the oral lymphoid tissues a likely site for initial infection events during KSHV transmission
into a naive human host. Moreover, the oral lymphoid tissues are particularly likely to be the site
at which KSHV initially invades the immune system. Importantly, the dynamics of KSHV
infection within and transmission between tonsillar cell types has not been addressed. This
represents a significant gap in our understanding of the early events that occur during KSHV
transmission into a new human host. Furthermore, this knowledge gap specifically limits our
ability to develop strategies to prevent both person-to-person transmission of KSHV and the

establishment of infection in disease-relevant cell types.
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Many models predict that transfer of EBV infection from tonsillar B lymphocytes to epithelial
cells contributes substantially to the release of EBV particles into saliva (Thorley-Lawson et al.
2013), but similar mechanisms have not been characterized for KSHV. The presence of KSHV
latent and lytic transcripts in epithelial cells found in saliva samples (Vieira et al. 1997) prompted
many investigations regarding KSHV transmission within oral epithelial cells (Cerimele et al.
2001; Bechtel et al. 2003; Duus et al. 2004; Johnson, Maronian, and Vieira 2005; Seifi et al. 2011;
Gong et al. 2014; Muniraju et al. 2019) and the current in vitro models of KSHV transmission
suggest that viral replication and shedding is due to differentiation of epithelial cells (Johnson,
Maronian, and Vieira 2005; Seifi et al. 2011). However, these studies do not address whether
epithelial derived virions are responsible for early infection and dissemination of KSHV during

primary infection.

In this study, we leverage our unique library of donor-matched tonsil lymphocyte and adherent
cell cultures to examine how KSHYV is transmitted within and between cell types as a first attempt
at developing a model for cell-to-cell transmission of KSHV within the human tonsil during the
early stages of primary infection. We successfully isolate and culture epithelial cells and
fibroblasts from human tonsil specimens and demonstrate that they are susceptible to KSHV
infection in vitro. Subsequently we perform both co-culture and supernatant transfer experiments
to determine whether KSHYV is efficiently transmitted within and between these cell types as well
as whether there is spread to/from these cell types to donor-matched B cells. We demonstrate that
KSHYV transmission between tonsil-derived cell types is specific and directed, and that B cells can
receive infection efficiently from both epithelial and fibroblast cell types via direct contact. These

results establish a foundation for understanding KSHV transmission and the establishment of

112



KSHYV infection in B cells, and strongly suggest that KSHV employs mechanisms for directed

transmission between cell types during early infection which requires further study.

4.2 Material and Methods

4.2.1 Preparation of CDw cells

CDw32 L cells (CRL-10680) were obtained from ATCC and were cultured in DMEM
supplemented with 20% FBS (Sigma Aldrich) and Penicililin/Streptomycin/L-glutamine (PSG/
Corning). For preparation of feeder cells CDw32 L cells were trypsinized and resuspended in 15
ml of media in a petri dish and irradiated with 45 Gy of X-ray radiation using a Rad-Source
(RS200) irradiator. Irradiated cells were then counted and cryopreserved until needed as feeder

cells for lymphocyte and epithelial cell cultures

4.2.2 Isolation of tonsillar primary cells

De-identified human tonsils removed by routine tonsillectomies were provided by the National
Disease Research Interchange (NDRI). The tonsil specimens were maintained on ice and in
DMEM and 1%PSG until delivery to the laboratory for processing within 24 hours post-
surgery. The epithelial layer of the tonsillar surface was carefully excised and transferred to a
gentleMACS™ C Tubes (Miltenyi Biotech) containing 2 ml of DMEM/PSG, 100ug/ml of
DNasel, 62.5ug/ml of Liberase™ DH (05401054001, Roche Applied Science). The remaining
tissue was dissected and macerated in RPMI media to release lymphocytes. The media was passed
through a 40um filter and pelleted at 1500rpm for 5 minutes for collection of lymphocytes. The
lymphocytes were further resuspended in RBC lysing solution (0.15M ammonium chloride, 10mM

potassium bicarbonate, 0.1M EDTA) for 5 minutes and diluted with 50ml of PBS. Lymphocyte
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aliquots of 5(10)7 to 1(10)8 cells were cryopreserved in 90% FBS and 10% DMSO for later

experiments.

The remaining tonsillar tissue was transferred to another gentleMACS™ C tube containing 125ug
of Liberase and 100ug of Dnasel. Both the epithelial layer and residual tissue were dissociated
via two rounds of incubation at 37 °C with 600rpm shaking for 15 minutes followed by processing
on a gentleMACS™ Dissociator (Miltenyi Biotec) using “Multi-a-c-tube ““ program. After the last
dissociation step, the cells were resuspended in RPMI and passed through a 40um cell strainer and
pelleted at 1500rpm for 5 minutes followed by RBC lysis step as described above. Cells from the
dissociated epithelial fraction were subjected to CD45 depletion using magnetic CD45 microbeads
(480029, BioLegend) according to manufacturer instructions and plated on collagen I treated plates
(354456, Corning) in epithelial media (NC0117184, Sciencell Research Laboratories) with the
addition of 1e5 CDW32 feeder cells, 20% FBS, 100pg/ml primocin, and 10uM of ROCK inhibitor
(Y27632, Hello Bio). The remaining dissociated cells were supplemented with Endothelial media
(CC-4147, Lonza) and primocin and plated on collagen I treated plates. At 24 h post plating, the
plates were gently washed with PBS++ and supplemented with the media without FBS until

confluent and ready for sorting.

4.2.3 Cell sorting

The cells were gently lifted with Accutase ® (A6964, Sigma-Aldrich) and pelleted in FBS
containing media at 1500 rpm. The pellet was resuspended in MACS Buffer (PBS + 2% FBS +
ImM EDTA) + 5% FBS and then incubated on ice for10 minutes for blocking. After incubation,

the cells were pelleted and resuspended in MACS Buffer containing the following antibodies;

CD44-PerCPCy5.5 (338819, BioLegend), CD90-PE-Cy7 (328123, BioLegend), NGFR-PE
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(345106, BioLegend) and incubated on ice for 15 minutes. After incubation the cells were washed
two times with MACS buffer, passed through 35um cell strainer, and resuspended in MACS
Buffer + 25% Accumax (A7089, Sigma-Aldrich). The stained cells were sorted with BD
FACSAria™ Fusion cell sorter, using a 100pum nozzle and purity sort mode. The sorted cells were
collected in PBS containing 20% FBS and plated in appropriate media (see above) for further

experiments.

4.2.4 Preparation and titration of cell free KSHV

1SLK stably infected with recombinant KSHV BAC16 (Myoung and Ganem 201 1a) were cultured
in DMEM supplemented with 10% Cosmic Calf Serum (CCS), 1% PSG, 250ug/ml G418, 50ug/ml
gentamicin, 1.2mg/ml Hygromycin, 1uM Puromycin. The cells were expanded to twelve confluent
T185 flasks at 37 °C in 5% CO2. Upon reaching 70-80% confluency, the cells were induced with
2uM Doxycycline and 3mM Sodium Butyrate for 72 hours. Supernatants from induced cultures
were collected and clarified by centrifugation at 1500rpm for 12 minutes at 4°C and passed through
a 0.45um filter. The virions were pelleted by ultracentrifugation over a 25% sucrose/TNE cushion
(100 mM NaCl, 50 mM Tris [pH 7.4], 0.1 mM EDTA, pH 7.4) at 22,000 rpm for 120 minutes.
Virus pellets were resuspended in 2ml TNE buffer and aliquots were stored at -80°C. Virus stocks
were titrated on immortalized human fibroblasts and analyzed for expression of the GFP reporter
at 3 dpi by flow cytometry. Linear regression was used to calculate the virus dose (in microliters
per cell) needed to infect 20% of fibroblasts at 3 dpi and this dose is used to normalize infection

on all cell types for each virus preparation.
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4.2.5 Primary cell infection with concentrated, iSLK-derived KSHV

All the experiments using adherent cells were performed on passage-matched autologous cells
with passage numbers ranging between 3 to 6, to avoid phenotypic changes due to culture
conditions. Primary lymphocytes were used directly after thawing together with autologous
adherent cells from the same tonsil specimen to avoid artifacts due to allogenic reactions. Primary
cells (total B cells, epithelial, and fibroblast cells) were infected with BAC16 WT KSHV based on
cell-number adjusted ID20 from fibroblast titers (see above). Infection of fibroblast and epithelial
cells were performed in 1ml of serum free RPMI at 37 C and 5% CO2 for 90 minutes followed

by cell surface washes and addition of complete growth media.

Lymphocytes were thawed rapidly and gradually diluted with 5 to 6 ml of RPMI and pelleted at
1400 rpm for 5 minutes. The lymphocyte pellet was resuspended in 1 ml RPMI containing 20%
FBS, 1% PSG, 100pg/ml of DNasel, and 100pg/ml of Primocin and plated on a low-binding 24
well plate and kept at 37° C and 5% CO2 for two hours. Naive B cells were isolated by subjecting
lymphocytes to magnetic separation using Mojosort™ Naive B cell isolation kit (480068,
BioLegend) according to manufacturer’s instructions. The bound fraction of the lymphocytes was
maintained at 37 °C and 5% CO2 incubator in complete media during the infection procedure. For
the infection, naive B cells were resuspended in serum free RPMI media at 400ul/1e6 cells per
experimental condition and the infection was performed through spinoculation at 1000 rpm for 30
min at 4° C followed by incubation at 37° C and 5% CO2 for 30 min. After incubation, the infected
naive B cells were cultured in 48-well plates containing a confluent layer of CDW32 feeder cells
and reconstituted with the same proportion of the bound fraction, 20% fetal bovine serum, and 100

pug/mL of Primocin. All the primary cells were incubated at 37° C, 5% CO2 for 3 days
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4.2.6 Transfer of infection to lymphocytes

At 3 dpi, a fresh aliquot of donor-matched tonsil lymphocytes was thawed and magnetically
separated as described above. A total of le6 naive B cells per transfer experiment were
resuspended and reconstituted with the same proportion of the bound fraction in 400l of epithelial
media and incubated over the infected confluent layer of adherent cells in a 24 well plate for 1
hour at 37 °C and 5% CO2 incubator. After the incubation, the lymphocytes were supplemented
with CDw32 cells and 100pg/ml of Primocin in 100ul of FBS with the addition of ROCK inhibitor
in case of epithelial cell co-culture. The primary cell co-cultures were further incubated at 37° C,
5% CO2 for 3 days. At 3 days post co-culture, the lymphocytes were resuspended in the media
and pelleted at 1500 rpm for antibody staining and FACs analysis. For the experiments involving
supernatant transfer to lymphocytes, the collected supernatants at 3dpi were clarified of cellular
debris by centrifugation, added to the freshly sorted naive B lymphocytes and incubated for 1 hour
at 37 °C and 5% CO2 incubator. After incubation, the naive B lymphocytes were reconstituted
with bound fraction in fresh epithelial media containing a total of 20% FBS and cultured over a

well of CDw32 plate cells for 3 days.

4.2.7 Transfer of infection to adherent cells

At 3 days post infection, infected B lymphocytes and uninfected and infected primary fibroblasts
and epithelial cells were gently lifted with Accutase and pelleted in FBS containing media at 1500
rpm. The cells were further washed and resuspended in epithelial media containing CDw32 cells,
100pg/ml of Primocin, 20% FBS (for the lymphocyte co-culture) and ROCK inhibitor (for the
epithelial cell co-culture), counted and seeded at appropriate densities to cover the surface of
collagen coated 24 well plate and allowed to recover at 37° C, 5% CO2 for 3 hours before co-

culturing with lymphocytes.
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4.2.8 Genome titer (QPCR)

To evaluate the viral copy number in the supernatants, qPCR was performed. DNA was extracted
from donor cell’s supernatant using Quick-DNA/RNA Viral kit (D7020, Zymo Research)
according to the manufacturer’s instruction. Extracted genome was quantified using TagMan™
Fast Advanced Master Mix (4444557, Applied Biosystems™), along with 1uM primers targeting
the BAC16 eGFP cassette (Fwd: 5° -TGACCCTGAAGTTCATCTGC-3’, Rev: 5’-
GAAGTCGTGCTGCTTCATGT-3, and 250nM of Probe:5’-[6FAM]-
CCCACCCTCGTGACCACCCT-3’. The samples were analyzed in duplicate reactions. Standard
curves for absolute quantification of viral genome copies were assembled using linearized pCR2.1
plasmid containing a cloned fragment of the GFP gene covering the gPCR amplicon sequence,
diluted in 10ng/pul salmon sperm DNA. The samples were run and analyzed a standard 40 cycle

program on a Thermofisher QuantStudio™ 3 real time PCR instrument.

4.2.9 Flow cytometry analysis

At 3 days post co-culture, a portion of cells were harvested for staining and flow cytometry
analysis. The staining procedures were performed on ice using cold buffers and the centrifugation
steps were done at 1500 rpm for 5 minutes. The adherent cells of about ~500,000 cells were gently
lifted using Accutase ® (A6964, Sigma-Aldrich) and diluted with 10% FBS in PBS and pelleted
at 1500 rpm. The cell were stained with 500ul PBS containing viability dye (see below) and
incubated for 15 minutes. Cells were further washed with FACS Block (PBS, 0.5% BSA, and 2%
FBS), pelleted, resuspended and incubated in FACS Block for 10 minutes. After the incubation,
equal volume of FACS Wash (PBS, 0.5% BSA, and 0.1% Sodium Azide) was added to the cells
for pelleting. The cells were resuspended in 500ul of FACS Wash containing antibodies (see

below) and incubated for 15 minutes. After incubation, the cells were washed two times with
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FACS Wash, and resuspended in FACS Wash. Data was acquired on a BD Fortessa X20 flow
cytometer and analyzed using FlowJo software. Co-cultures of adherent cells were stained with
viability dye (423113, BioLegend), CD44-PerCPCy5.5 (338819, BioLegend), CD90-PE-Cy7
(328123, BioLegend), and NGFR-PE (345106, BioLegend). Lymphocytes samples were stained

with fixable viability dye (BD 565388) and CD19-PerCPCyS5.5 (BD 561295).

4.3 Results

4.3.1 Isolation and infection of non-lymphocyte tonsil cell lines

We have previously showed that a variety of tonsillar B lymphocyte subsets are susceptible to
KSHYV infection via direct inoculation with iSLK-derived BAC16 KSHYV virions (Aalam et al.
2020). In this study, we wanted to characterize whether other non-lymphocyte cell types could
infect tonsil-derived B cells and examine whether adherent cell types have directed methods of
transfer within and between them. Thus, we developed a method for isolating non-lymphocyte cell
types during our tonsil extractions. In early experiments, mixed tonsil epithelial cell cultures were
prone to differentiation and loss of adherence, making longitudinal experiments difficult.
However, when we isolated CD44+/CD90+/NGFR+ epithelial cells via cell sorting (Figure 4.3-
1A), which are found in the relatively thin crypt epithelium and the lower layers of surface
epithelium (S. Y. C. Kang et al. 2015) and cultured them in the absence of FBS and the presence
of the ROCK inhibitor Y-27632, we were able to obtain stable epithelial cell cultures for
experiments (Figure 4.3-1B). CD44+/CD90+/NGFR- fibroblasts were readily cultured from both
residual tissue following tonsil lymphocyte extraction as well as the NGFR- fractions from
epithelial cell sorting (Figure 4.3-1A). Unfortunately, despite multiple attempts using various

isolation and culture conditions as well as markers and methods for cell sorting, we were unable
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to obtain cultures of endothelial cells that were free of fibroblast contamination. Thus, we have
excluded endothelial cells from this manuscript as the experiments performed herein would be

uninterpretable without a pure endothelial cell culture.

Cells Singlet CD90+
T CD90+ |Fibro Epi
T Single Cells g
FSC-A—>» NGFR —»
Fibroblasts Epithelial cells

B Y-27632- FBS+ Y-27632+ FBS+

Y-27632-FBS- Y-27632+ FBS-

Figure 4.3-1. Phenotypic characterization of non-lymphocyte primary cells.

A) Gating strategy for cell sorting and morphology at 4X magnification of resulting primary
fibroblasts and epithelial cells. B) Optimization of the culture conditions for primary epithelial
cells. 5e5 sorted epithelial cell cultures were sub-cultured in 35mm collagen coated plates in
epithelial cell basal media containing the indicated additives for 24hrs prior to analysis via
microscopy at 4X magnification
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4.3.2 Tonsillar Tonsil-derived primary fibroblasts and epithelial cells are
susceptible to KSHYV infection

With tonsil epithelial and fibroblast cultures in hand from 10 human tonsil specimens, we first
wanted to validate that these cells are susceptible to KSHV infection. For these experiments, we
seeded equal numbers of epithelial cells and fibroblasts in 24-well plates and infected them with
equivalent doses of purified, iISLK-derived BAC16 KSHV-WT virions. After 3 days of infection,
we examined the cultures for GFP+ cells as an indicator of infection. These experiments revealed
that, in all specimens GFP+ cells can be detected at 3 dpi for both fibroblast (Figure 4.3-2A) and
epithelial cell (Figure 4.3-2B) cultures. White light microscopy reveals that, despite plating at a
specific cell density the day before infection, samples from different tonsil donors have variable
growth rates in culture. When we quantitated the sample-specific infection efficiency from these
images (GFP+ cells/total cells), the data show that fibroblasts are generally much less susceptible
to infection compared to epithelial cells and that susceptibility of both cell types varies
substantially based on tonsil donor (Figure 4.3-2C). These data suggest that, like our previous
lymphocyte data (Aalam et al. 2020), donor-specific factors can influence KSHV infection in

tonsil-derived primary cell lines.

In order to compare the production of KSHV from these cultures, we performed DNA isolation
and qPCR analysis for KSHV genomes on clarified supernatants from infected cell cultures at 3
dpi. KSHV genomes per ml of culture supernatant were much higher for B cells compared to
epithelial cells and fibroblasts (Figure 4.3-2D). When we corrected for the differing densities of
cells at day 0, a very different picture emerges with fibroblasts displaying significantly higher and

B cell significantly lower per-cell levels of KSHV DNA in culture supernatants (Figure 4.3-2E).
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Figure 4.3-2. Susceptibility of tonsil-derived cell cultures to KSHV infection and
estimation of productive infection.

Microscopy images taken at 4X magnification at 3 dpi for GFP (top panels) or merged GFP
and white light images (bottom panels) of matched donor A) fibroblasts and B) epithelial cells
infected with 1ID20 of BAC16 KSHV-WT. C) GFP quantification via cell counting from
images in (A) and (B) D) Quantitation of genome copy number per ml of culture supernatant
by qPCR for the GFP reporter cassette in the BAC16 genome E) Data as in (D) normalized to
the starting cell number for each cell type. P-values for significance were derived using
Student’s T test. For panels D and E colors indicate unique tonsil specimens and can be
compared between the panels.

122



4.3.3 Transmission studies reveal B lymphocyte-derived virus has broad
tropism

We next performed a detailed set of experiments to examine the transmission of KSHV within and
between cell types using epithelial cells, fibroblasts and B cells from the same tonsil donor. For
these experiments, we had matched sets of all three cell types from 15 unique tonsil donors. An
example of the experimental setup for epithelial cells is summarized in Figure 4.3-3A and
analogous procedures were performed starting with fibroblasts and B cells for each tonsil specimen
in the study. Briefly, donor cells were infected at the per cell ID20 dose from titration on
fibroblasts and cultured for 3 days to establish infection. Recipient cultures were thawed (for
lymphocytes) or trypsinized (for epithelial and fibroblast) at 3 dpi, and directly mixed with donor
cells for epithelial and fibroblast co-culture experiments or were allowed to adhere to dishes for
three hours prior to the addition of lymphocytes or clarified supernatants from infected cultures.
After a further three days of culture, recipient cultures/co-cultures were analyzed by flow
cytometry to determine the transfer of infection. For epithelial/fibroblast co-cultures we utilized
cell surface immunophenotyping to distinguish donor cells from recipient cells (Figure 4.3-3B,
right panels). Interestingly, despite being CD44+ at the time of cell sorting, after culture, tonsil
epithelial cells become CD44 low. Thus, in co-cultures epithelial cells are CD44-CD90- and
fibroblasts are CD44+CD90+. The same immunophenotyping was used on cultures where
supernatant was transferred to validate that results were not due to unintentional transfer of infected
cells (Figure 4.3-3B, center panels). Within cell-type studies were performed only using transfer
of clarified supernatants as donor/recipient cells would not be distinguishable in co-cultures for
the same cell type. For B cell recipient cultures, adherent donor cells were left on the plate at
analysis and surface staining for CD19 was used to identify only recipient B cells. In all cases,

viability dyes were used to exclude dead cells from the analysis.
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Figure 4.3-3. Experimental procedure for examining KSHV transfer between tonsil-
derived cell types.

Fibroblast
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A) Schematic overview of experimental procedure. Epithelial cells (Epi) are used as donor
cells in this example, but analogous experiments were performed with fibroblasts (Fibro) and
lymphocytes as infected donors. B) Representative immunophenotypic analysis of fibroblast
and epithelial cells before (left panels) and after co-culture (right panels) or supernatant transfer

(center panels).
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When we examined B cells as the recipient cell type for co-culture and supernatant transfer
experiments, the data showed that both epithelial and fibroblast cultures can efficiently transfer
infection to B cells in direct co-culture. Indeed, these infections were generally higher than what
we observe using purified iISLK-derived virions at the same time point (Aalam et al. 2020). In
contrast, supernatants were less effective at transferring infection to B cells. Indeed, only a few
epithelial cell supernatants showed detectable B cell infection at 3 days post-transfer and fibroblast
supernatants were uniformly unable to infect B cells (Figure 4.3-4A). These data indicate that
efficient infection of B cells is possible from both epithelial and fibroblast cells but that cell-cell
contact is needed for efficient transfer. Conversely, B cell-derived virus is able to infect both
epithelial and fibroblast cells efficiently by both direct contact and supernatant transfer with
epithelial cells notably more susceptible to infection from B cells compared to fibroblasts for both
transfer methods. These results indicate that B cells produce cell-free virus that is able to efficiently

infect both adherent cell types (Figure 4.3-4 B&C, left columns in panels).

4.3.4 Fibroblast-derived KSHYV is non-infectious to autologous fibroblasts

When we examined fibroblasts as acceptor cells (Figure 4.3-4B), we observed that they are
relatively refractory to infection by other tonsil cell types. We observed more frequent, but lower-
level transfer from B cells and epithelial cells via supernatant transfer. The highest levels of
infection in fibroblasts were obtained via direct co-culture with infected B cells. However, only a
few samples displayed this behavior with the remaining samples remaining uninfected. These data
further support our observation that, even in adherent cell types, donor-specific factors have some
impact on susceptibility to KSHV infection. Interestingly, supernatant transfer from infected
fibroblasts cultures was completely unable to infect both new fibroblast cultures and B cell cultures

despite detectable KSHV DNA in these supernatants (Figure 4.3-2D&E) and the same
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supernatants causing detectable infection in a subset of epithelial cell cultures (Figure 4.3-4C).
This lack of spread within fibroblast cultures may also explain the overall low level of fibroblast
infection we observed at 3dpi during de novo infection with iISLK-derived virions (Figure 4.3-
2C), These data are consistent with the conclusion that tonsil fibroblasts produce KSHV virions
that are selectively non-infectious to fibroblasts and B cells while being competent to infect

epithelial cells.

4.3.5 Fibroblast-epithelial transmission is unidirectional via cell-cell contact

When we examined epithelial cells as acceptors in these experiments (Figure 4.3-4C), there was
high transmission to epithelial cells from B cells and this high rate of transfer was consistent
between both co-culture and supernatant transfer conditions. Interestingly, co-culture of epithelial
cells with KSHV-infected fibroblasts resulted in high rates of transfer while fibroblast supernatants
were much less efficient at infecting epithelial cells. It should be noted that recovery of viable
epithelial cells was relatively poor after co-culture with fibroblasts, limiting the number of samples
where we were able to obtain interpretable data. Finally, epithelial-derived supernatants reliably
infected autologous epithelial cell cultures, although at relatively low rates compared to B cell

supernatants.
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Figure 4.3-4. Transfer of KSHYV between tonsil-derived cell types by direct contact or
supernatant transfer.

Left panels are data from transfer via direct contact and right panels are data from transfer via
clarified supernatant. Different data point colors represent the primary cell samples from each
of 15 unique tonsil specimens and can be compared between panels in the figure and the red
diamonds indicate mean value for each sample group. In all cases, the indicated donor cell
types (x-axis) were from autologous tonsil specimens to A) recipient B cells, B) recipient
epithelial cells and C) recipient fibroblasts. Red shading is set at 0.5% which is the limit of
detection for this analysis. N/A indicates same cell-type co-culture which was not performed
for this set of experiments.
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4.4 Discussion

Despite KSHV being lymphotropic, KSHV infection of B cells has been generally inefficient
without activation of B cells (S. Kang and Myoung 2017). While KSHV seems to replicate poorly
in B cells and de novo infection of B lymphocytes results in predominantly latent infection of B
cells (Hassman, Ellison, and Kedes 2011; Myoung and Ganem 2011b; Aalam et al. 2020), our
previous work has shown that some B cell subsets can undergo lytic replication and that donor-
dependent factors exert a strong influence on lytic replication in our tonsil lymphocyte culture
system (Aalam et al. 2020). We generally obtain less than 2% infection at 3 dpi in tonsil specimens,
and on a per-cell basis in this study B cell supernatants contain much less KSHV DNA compared
to fibroblast and epithelial cell cultures. Despite this, B cell-derived supernatants can effectively
infect epithelial cells and they produce a higher level of infection of autologous B cells compared
to de novo infection with purified, iISLK-derived virions (Figure 4.3-4A&B). These results may
indicate that B cell-derived virus is either more infectious to B cells based on a unique virion
composition or that KSHV infection of B cells is associated with the secretion of soluble factors
which increase the efficiency of KSHV transmission within and between B cells. Further studies
are needed to determine if this second hypothesis is true and whether soluble factors play a

substantial role in the initial spread of KSHV within the lymphocyte compartment.

Our results are contrary to the directed transmission of EBV that epithelial-derived virions more
efficiently infect B cells than B cell derived-virions (Borza and Hutt-Fletcher 2002). A
combination of gH/gL. and gp42 in virion formation is required for EBV entry into B lymphocytes
and the interaction of gp42 and HLA II is necessary for this entry process. While HLA II
processing in B lymphocytes affects the integration of gp42 into the nascent virions, these virions

are ineffective in infection of B cells as opposed to the epithelial-derived virions (Borza and Hutt-
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Fletcher 2002). By contrast, KSHV infection of B cells results in down regulation of MHC 1
(Rappocciolo et al. 2008) and MHC II (Schmidt, Wies, and Neipel 2011). It remains to be
determined whether the differences we observe are a result of differential virion composition or
other factors, but our data indicate that KSHV differs substantially compared to EBV in this

regard.

On the other hand, KSHV gH/gL is indispensable for the infection of epithelial and fibroblast cells,
but it is not necessary for the infection of B cells (Muniraju et al. 2019), as alternative entry
mechanisms exist (Palmerin et al. 2021). Furthermore, KSHV glycoproteins K8.1A, which is
thought to be a B cell tropism determinant, is dispensable for the infection of other cell types
(Dollery et al. 2019). K8.1 shares no homology with gp42 of EBV and it is transcribed from the
gene positionally homologous to BLLF1 gene of EBV encoding for gp350/220 and positional
homologs of BLLF1 gene of EBV in some human and non-human herpesviruses encode for
glycoproteins resulted from alternative splicing and implicated in the tropism switch between
different cell types (Stewart et al. 1996; Hutt-Fletcher 2007; Machiels et al. 2011, 2013).
Therefore, the fact that fibroblast-derived virions were not infectious and direct contact is the only
efficient mode of transmission from fibroblasts to the other cells could imply that fibroblasts may

tamper with the processing and splicing of some glycoproteins.

Our observation that the effectiveness of KSHV transmission from epithelial cells to B
lymphocytes increases with the direct contact (Figure 4.3-4A) is not surprising. Our infection
methodology uses 1ISLK derived cell free virions that generally results in less than 2% infection at
3dpi in tonsil-derived B cells (Aalam et al. 2020). However, it has previously been shown that co-
culturing B cells with iSLK, which are an epithelial carcinoma cell line, yields better infection

efficiency than cell-free virions (GroBkopf et al. 2019; Bekerman et al. 2013)
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Mature surface epithelial cells of the oral cavity are difficult to infect and it has been hypothesized
that efficient entry for EBV and HPV may require access to deeper layers of epithelium via
wounding (Temple et al. 2014; Temple, Meyers, and Sample 2017; Roberts et al. 2007; S. Y. C.
Kang et al. 2015). However, the tonsillar crypts represent a unique niche where the epithelial layers
are thin and interspersed with B cells that may be able to directly interact with external antigens
(S. Y. C. Kang et al. 2015; Perry and Whyte 1998). Given that CD44+NGFR+ epithelial
progenitors are located at the crypt lumen of tonsil (Kang et al. 2015), and our data presented in
this study show that these cells are highly susceptible to infection without need for any activation
or other aid to viral entry. Thus, we speculate that crypt epithelium, along with the resident B
lymphocytes, can be directly infected by KSHV present in oropharyngeal secretions. It has been
demonstrated that KSHV lytic activation resulting from epithelial cell differentiation into
keratinocytes contributes to viral production (Johnson, Maronian, and Vieira 2005) while, our
culturing system avoided the differentiation of epithelial cells by addition of ROCK inhibitor, it is
possible that differentiation of infected epithelial cells located at the basal layer and their
transmission to the outer layers of epithelial cells sheds virus into saliva (Seifi et al. 2011).
However, we showed that these epithelial cell derived virions are not as effective as B cell derived
virions in infection of the epithelial cells residing at the crypt lumen (Figure 4.3-4C), indicating
that differentiation of infected cells likely plays a larger role than spread of infection within the

epithelial cell layers of the tissue.

We have previously shown that KSHYV targets a variety of the tonsillar B cells, whether mature or
immature; but plasma cells are a rare but highly targeted population and that infected plasma cells
show a mixture of lytic and latent infection based on viral transcript analysis (Aalam et al. 2020).

Moreover, KSHV infection of B cells derives their proliferation and differentiation (Hassman,

130



Ellison, and Kedes 2011) into plasma cell-like phenotypes. Our current results show that B cell-
derived KSHYV is highly infectious to both B cells and other cell types. Co-culture experiments
demonstrate that B cells are a likely amplification point for KSHV. Moreover, we would speculate
from the infectivity of B cell supernatants that B cell derived virions produced at the tonsil crypt,
where epithelial cells do not form a significant barrier, may contribute to KSHV viral shedding

into saliva.

Fibroblasts play a major role in enhancement of tumor progression, angiogenesis and tumor
invasiveness (Crawford et al. 2009; Mueller et al. 2007). KSHV infected fibroblasts are also known
to contribute to KS pathogenesis (Akula et al. 2003; Qin et al. 2011; Dai et al. 2012). However,
their role in KSHV transmission and propagation within tonsillar cells have not been characterized.
Our data indicates that fibroblast-derived cell-free virus is poorly infectious to B cells and
epithelial cells, making it unlikely that fibroblasts play a large role in the release of KSHV virions
into saliva. However, fibroblasts can efficiently infect both B cells and epithelial cells via direct
contact. These results imply that there is an uncharacterized mechanism of KSHV spread that
requires direct contact. This will be an important mechanism to unravel in future studies. Previous
studies have shown that KSHV establishes latent infection in oral fibroblast cells and confers the
tumor-associated fibroblast phenotype to these cells, enhancing the KS microenvironment (Dai et
al. 2012). Interestingly, tonsillar progenitor mesenchymal cells (TMPC), have spindle fibroblast-
like morphology and express CD44 and CD90 surface markers and are immunosuppressive by
inhibition of T cell proliferation (Janjanin et al. 2008). Thus, although fibroblasts may play a minor
role in KSHV dissemination, their targeting may have a role to play in KSHV persistence and

pathogenesis.
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We believe these data are among the first evidence that KSHV utilizes directed mechanisms for
cell-to-cell spread within tissues, and we have developed a working model from these results as a
starting place for understanding how KSHV may invade tonsil tissues and gain access to the
lymphocyte compartment (Figure 4.4-1). Future studies that include both blood vascular and
lymphatic endothelial cells derived from tonsil are important and will certainly add critical
information about how KSHV accesses the vasculature to this model. Based on the extensive
literature for EBV and other herpesviruses, we hypothesize that, at least for cell-free virions, this
directed spread is accomplished by differential glycoprotein compositions in virions derived from
different cell types. Our group has recently updated the KSHV virion proteome from iSLK cells,
and we detected some additional proteins incorporated into KSHV virions (Nabiee et al. 2020) that
were not detected by previous studies using PEL-derived virions (Bechtel, Winant, and Ganem
2005; Zhu et al. 2005). This raises the question of whether these differences are as a result of
producer cell line variations, implementation of different methodologies, or both. Indeed, KSHV
induction of cellular transcription profile is unique and cell line specific, affecting many cellular
processes ranging from immune modulation, cell cycle regulation and angiogenesis (Naranatt et
al. 2004). Future studies examining the protein composition of virions from different producer cell
types are certainly warranted by our results. However, feasibility will be an issue with these studies
as obtaining sufficient purified virions from primary cell cultures for proteomic analysis will be

challenging.
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Figure 4.4-1. Schematic overview of KSHV entrance, egress, and transmission via
cryptic lumen of tonsil

At the crypt lumen, where the reticulated epithelium is interspersed with the lymphocytes, B
cells can readily interact with the external antigens. When KSHV enters the crypt lumen; It
directly infects B cells (A) and epithelial cells (E). The infected B cells transmit KSHV to
epithelial, fibroblast and other B cells by cell-free virions (B) and direct contact with the
epithelial and fibroblast cells (C). The infected fibroblasts can transmit KSHV to the
neighboring B cells and epithelial cells by direct contact only (D) Directly infected epithelial
cells infect B cells, fibroblasts and other epithelial cells by cell-free virions (E).
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5 CHAPTER V: Conclusions and Future Directions

Despite nearly three decades of research, many fundamental questions remain about KSHV
biology. In this dissertation, we explored the early dynamics and B cell subset-specific tropism of
KSHYV infection in tonsil specimens, examined KSHV entry mechanisms in B lymphocytes, and
evaluated the dynamics of transmission within and between some primary tonsillar cells. We have
developed a robust model for KSHV infection in human tonsil lymphocytes that recapitulates the
total lymphocyte environment and used it to uncover biologically relevant mechanisms that inform
our understanding of KSHV transmission and the initial establishment of KSHV infection in a new
human host. Moreover, we have developed novel tonsil-derived primary cell cultures that can be
used for studying KSHV infection of other primary cells to monitor the behavior of KSHV as it
enters the tonsil tissue. It should be noted that the tonsil specimens used in these studies were
removed due to either sleep apnea or tonsillitis conditions. Consequently, the immunological
composition and T cell activation of these samples could be perturbed due to inflammation
(GeiBler et al. 2020). Studies have shown that acute tonsillitis induces a weaker T cell receptor
stimulation response (Boomer et al. 2012; Geiller et al. 2017) and this T cell response has a
distinctive signature in local vs. chronic tonsillitis cases (GeiB3ler et al. 2017). While we did not
include any self-reported viral infection or pathological conditions, KSHV susceptibility of our
samples could be affected by viral and/or bacterial co-pathogens, and commensal microbe
populations. Recent studies propose that the oral microbiome can strongly influence KSHV
biology and virulence (Yu et al. 2014; Dai et al. 2014). Importantly, household transmission
studies in Africa strongly indicate that establishment of KSHV infection may require an inflamed

microenvironment as KSHV seroconversion young children often happens immediately following
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exposure to a different pathogen (Gantt et al. 2016). If this is the case, the baseline inflammatory
state of tonsil lymphocytes may be one reason the mode is so successful compared to peripheral
blood B cells, which are generally refractory. Furthermore, KSHV pathogenesis is frequently
associated with co-infection with EBV and HIV (da Siva and de Oliveira, 2011), considering the
high prevalence of herpes virus infections within human population (Boppana and Fowler 2007),
it 1s highly likely that most of our samples were infected with at least one of these micro-
organisms. Thus, in future, our lab plans to perform metagenomic sequencing of the samples to
correlate microbial taxa and other viral infections that may influence susceptibility to KSHV
infection. Hence, our results lay a foundation for future investigation of KSHV pathology within
lymphocyte compartment. The significant findings of our studies and conclusions of each chapter

with suggested future directions are presented below.

5.1 KSHY tropism in B lymphocyte compartment

Although KSHYV is a lymphotropic herpesvirus, there is sparse data regarding KSHV infection of
primary B lymphocytes. Only a small number of previous studies analyzed primary B lymphocyte
targets of KSHV and these used limited markers to identify specific B cell subtypes (Rappocciolo
et al. 2008; Hassman, Ellison, and Kedes 2011; Totonchy et al. 2018; Nicol et al. 2016; Knowlton
et al. 2014). Therefore, to fill this gap, we aimed to establish KSHV B lymphocyte tropism by

analyzing the B lymphocyte lineages targeted by KSHV early during de novo infection.

Using a comprehensive panel of antibodies, we first generated a library of lymphocyte specimens
from 40 human tonsils and evaluated the level of B and T lymphocyte lineages at the baseline. We
demonstrated that tonsillar lymphocytes varied in composition among donors and overall B cell

frequencies declined with age as did germinal center, plasmablast and transitional B cell lineages.
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However, memory and naive populations increased in frequency as the age increased. Similarly,
among T cell lineages, the level of CD4+ transitional memory and CD8+ terminal effector lineages

declined with age.

In order to determine which B cell lineages were targeted by KSHV infection at early timepoints,
we analyzed our data at 3 dpi and implemented a methodology for normalizing infectious dose
from donor-to-donor. Our analysis showed that a variety of B lymphocyte subtypes are susceptible
to KSHV infection and this susceptibility was independent of donors’ demographic backgrounds.
However, the donor-dependent immunological factors could be correlated with overall
susceptibility. The ratio of CD4/CD8 T cells with the susceptibility of B lymphocytes to KSHV
infection revealed no significant correlation, however, the levels of naive and stem cell memory
CD4+ T cells was positively correlated with infection of plasma cells with a larger effect on
CD20+ plasma cells than CD20- plasma cells. We observed that the overall levels of CD45RO+
activated memory T cells were negatively correlated with KSHV infection of plasma cells and
although not significantly, nearly every B cell lineage and KSHV infection in general was
negatively correlated with the presence of CD4+ T cells expressing a TEMRA phenotype. Baseline
levels of CD8+ T cells in turn, had less pronounced effect on overall KSHV infection but the level

of CD8+ terminal effector cells was positively correlated with KSHV infection of naive B cells.

Additionally, we have demonstrated that a variety of tonsillar B lymphocyte subsets are targeted
at different frequencies, and CD138+ plasma cells are a highly targeted cell type in our de novo
infection model. Indeed, plasma cells are terminally differentiated B cells and this phenotype is
the characteristic of PEL and MCD cells (Chadburn et al. 2008; Carbone et al. 2010). Our results
may suggest that KSHV has a particular tropism towards this population rather than KSHV driving

differentiation of less mature B subtypes to plasma population, as was expected from the related
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gammaherpesvirus EBV (Johnson and Tarakanova, 2020). We further showed that KSHV
infection of CD138+ plasma cells and overall B cell infection is HSPGindependent and that the
particular susceptibility of plasma cells is not due to KSHV using the CD138 HSPG as an

attachment or entry factor.

Overall, our study generated a library of tonsil lymphocytes and data relevant to the B lymphocyte
tropism of KSHV that can benefit both immunology and the KSHV research community. We have
used our unique methodology for the extraction and infection of B lymphocytes that avoids B cell
activation and our culture condition system did not significantly affect B cell population. Hence,
further studies implementing our model system can be used to explore whether KSHV preferential
targeting of plasma cells is due to abundance of any particular cellular KSHV entry receptor or as
a result of rapid differentiation of other KSHV infected B cell lineages into plasma cells early in
infection. To explore whether differentiation of less mature B lineages to plasma cells resulted in
our finding, one approach could be the infection of each B cell lineage and then constituting it with
total uninfected lymphocytes. Application of tracking dye on infected lineage before reconstitution
allows for detection of differentiated lineage that may fall into the plasma gate at 3 days post

infection.

Studies have shown that both the viral and human cytokines have a pronounced impact on the
control and development of PEL and MCD (Foussat et al. 1999; Drexler et al. 1999; Calabro et al.
2009; Aoki and Tosato 1999; Calabro and Sarid 2018). Our observation that the immune status of
individuals affects the course of infection can be further explored by analyzing the role of secreted
cytokines in this microenvironment. Indeed, in our preliminary studies, we were able to show that
the elevated level of some cellular interleukins are the major determinant of the refractory status

of samples (data not shown). Interested readers are further encouraged to refer Alomari et al. 2021
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(Appendix C) to explore our findings in this regard. Hence, studies can be conducted on
determining the role of individual cytokines in promotion/prevention of KSHV transmission and
infection in B lymphocytes and the influence of cytokines on the early targeting of plasma cells

and other B cell subsets.

5.2 KSHY entry into B cells

KSHYV entry into cells is a sequential process accomplished by the engagement of a variety of viral
and cellular receptors (Connolly et al. 2011). As with all herpesviruses, entry mechanisms are
highly complex and they are particularly poorly characterized for KSHV. In particular, the viral
glycoproteins and cellular receptors utilized for KSHV entry into B cells have not been rigorously
characterized, and, thus, the rudimentary question of how KSHV enters B cells remains to be
answered. In the third chapter of this dissertation we investigated whether EphA2, A4 and A7
receptors in tonsil-derived B lymphocytes are used as entry receptors by KSHV, and whether this
interaction is gH/gL complex-dependent. We showed that the distribution of tonsillar EphA
receptors varies within B cell lineages and between donors. Indeed, the different results in
neutralization of the cellular EphA receptors and the virion glycoproteins using soluble EphA
mimics support the conclusion that gH/gl./EphA interactions are important for KSHV entry into
B cells. In the cell neutralization scenario, when the EphA receptor is engaged with the ephrin-A2
ligand, the gH/gL interaction with EphA receptor is prevented in KSHV-WT and in the case of
virus neutralization with the soluble EphA receptors, the engagement of the gH/gL in WT leaves
the other WT-gps available to engage alternate mechanisms for entry into B cells. Our
neutralization experiments indicated that gH/gL-EphA interactions are important for KSHV-WT
infection of primary tonsil lymphocytes, but that KSHV-AgH implements different entry

mechanisms, independent of EphA receptors. Our results further indicated that KSHV entry into
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plasma cells and germinal center cells is strictly gH/gL/EphA-dependent. However, we were
unable to specifically distinguish which EphA receptors used by the gH/gL complex in our cell
neutralization experiments, as ephrin-A2 binds to multiple EphA receptors. Nevertheless, previous
studies indicated that gH/gl. complex binds to EphA2, A4, and A7 with the different affinities.
However, our virion neutralization experiments detected no difference in the manner of
neutralization across all three (EphA2, EphA4, and EphA7), with no significant effect on inhibition
of KSHV entry. Therefore, based on the neutralization experiment results, there could be some
other EphA receptors involved in KSHV entry that were not specifically addressed in our study.
Remarkably, the EphA family of receptors exploit a variety of ephrin-ligand interactions with
different avidities and sometimes one type ephrinA ligand is able to inhibit various EphA receptors
with the same affinity (Darling and Lamb 2019). Therefore, distinction of the type of EphA
receptor involved in the context of KSHV infection of B lymphocytes is impossible with our
current knowledge. For future studies, use of selective inhibitors of each of the EphA receptors

would be a suitable strategy, if there are any.

The different response in KSHV-AgH vs. KSHV-WT neutralization experiment shows that in the
absence of gH/glL complex, KSHV can exploit different mechanisms of entry. Thus, for future
studies, we propose to combine glycoprotein mutants with experiments employing specific anti-
gp neutralizing antibodies in the context of KSHV-WT in order to dissect the functional
interactions more carefully and obtain a clearer picture of how KSHV entry might be targeted

immunologically.
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5.3 KSHY transmission within tonsillar compartment

In the previous chapters, we had characterized B cell tropism of KSHV and the primary cellular
interactions involved in entry into B cells. We were interested to study KSHV transmission within
primary cells of the tonsil (epithelial cell, fibroblast cells), and into B cells. To accomplish this,
we took advantage of our library of matched adherent cell lines that are extracted together with

lymphocytes from tonsil specimens in our laboratory.

We used CD44+NGFR+ epithelial progenitor cells that are present at higher density at the basal
layer and in the crypt area of the tonsil (Kang et al. 2015) and the fibroblast cells with progenitor
mesenchymal cells (TMPC) characteristic phenotype (Janjanin et al. 2008). We demonstrated that
primary epithelial and fibroblast cells display variable susceptibilities towards KSHV infection

when infected with the same dose of a KSHV-BAC16 stock.

We observed that tonsil fibroblast-derived virions were ineffective in dissemination of KSHV
between other cell types, but fibroblasts could efficiently transmit the virus via direct contact to
both B lymphocytes and epithelial cells. Considering the important role of fibroblasts in
enhancement of tumor progression, angiogenesis and tumor invasiveness (Crawford et al. 2009;
Mueller et al. 2007) and in KS pathogenesis (Shaw M Akula et al. 2003; Qin et al. 2011; Dai et al.
2012), their targeting may have a role to play in KSHV persistence and pathogenesis in oral cavity.
Nevertheless, presence of other biological factors in the supernatants may have interfered with the
infectivity of our virions. Fibroblasts actively participate in cytokine production and extracellular
vesicles secretion to control a variety of normal and pathological conditions (Bartekova et al. 2018;
Oh et al. 2021; Kadota et al. 2020). Therefore, future studies can focus on the putative role of
fibroblast-secreted cytokines and extracellular vesicles on prevention/promotion of KSHV spread

in the oral cavity.
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Our results indicated that epithelial-derived virions are infectious to other epithelial cells and B
cells, however unlike what is reported for EBV (Borza and Hutt-Fletcher 2002), B cell-derived
virions efficiently infect epithelial cells and, surprisingly, they infect B cells more strongly than
purified virions. Indeed, our data indicate that B cells are universal donors for infection and they
can be efficiently infected via direct contact. The mechanism of directed transmission for EBV is
differential virion composition arising from different cell types, as a result of glycoprotein
processing of HLA II (Borza and Hutt-Fletcher 2002). However, the current knowledge of KSHV
implies that MHCI and II are downregulated in B cells (Rappocciolo et al. 2008; Schmidt, Wies,
and Neipel 2011); therefore, it is unlikely that KSHV employs similar mechanisms for production
of virions with unique glycoprotein configurations. However, our data indicate that KSHV may
employ alternative, as yet uncharacterized mechanisms to accomplish the same goal. For example,
differential protein expression affecting the virion composition may arise due to incorporation of
different splice variants of the glycoproteins such as K8.1 into the virions. Hence, further studies
are encouraged exploring the proteomics of virions prepared from different producer cell lines.
Finally, here we propose that the inefficiency of B cell infection could be as a result of virions
derived from epithelial producer cell-lines. Therefore, it would be interesting to compare the
efficiency of different producer cell-line derived virions in infection of B lymphocytes and their

effect on targeting specific B cell lineages.

Lastly, although they are a disease-relevant cell type important for KSHV biology, we failed to
include endothelial cells in this data due to ongoing issues with fibroblast contamination in primary
endothelial cell cultures which would have invalidated our conclusions from transmission studies.

Hence, future studies with the inclusion of pure vascular and lymphatic endothelial cells into our
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tonsillar transmission model system, will be needed to uncover how KSHV is transmitted into the

lymphatic vasculature.
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Appendix A. Supplementary data of Chapter 11

A.1 Gating schemes for tonsil lymphocyte lineages

Flow cytometry data for a baseline uninfected sample from a 2-year-old male donor showing
representative gating and lineage definitions used in the study for (A) B cell lineages based on
vanZelm et. al. 2007 (van Zelm MC, 2007) and (B) T cell lineages based on Mahnke et. al. 2013

(Mahnke YD, 2013).
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A.2 Analyzed flow cytometry data
Values derived from flow cytometry analysis for baseline B cell and T cell lineage frequencies,
overall infection frequency at 3dpi and lineagespecific infection frequencies for B cells. Comments

associated with column headers contain detailed definitions for each subset. (XLSX)
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A.3 Analyzed flow cytometry data for B cell lineages at 3 days post infection.
Values derived from flow cytometry analysis for overall B cell lineage frequencies in Mock and
KSHYV infected cultures at 3 days post-infection. Abbreviations and lineage definitions are as in

S1 Table comments. https://doi.org/10.1371/journal.ppat.1008968.s003 (XLSX)
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Appendix B. Supplementary data of Chapter 111

B.1 Percent of GFP+ cells within each subset for each condition.

Data normalized to the sample and virus specific GFP value.
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B.2 Three way repeated measures ANOVA analysis of KSHV infection in B cell subsets for

soluble EphA neutralization data.

Target Effect DFn DFd F p p<.05 ges

B cell subset

Plasma cells Eph 1.17 8.17 0.066 0.84 0.000447
Plasma cells Cond 1 7 1.178 0.314 0.022
Plasma cells Dose 1.36 9.53 2.134 0.176 0.065
Plasma cells Eph:Cond 2 14 1.315 0.3 0.006
Plasma cells | Eph:Dose 1.96 13.71 1.379 0.284 0.02
Plasma cells Cond:Dose 1.3 9.11 0.028 0.921 0.001
Plasma cells | Eph:Cond:Dose | 1.85 12.96 1.945 0.184 0.023
CD20- Plasma | Eph 1.1 7.67 1.957 0.203 0.008
Cells

CD20- Plasma | Cond 1 7 0.202 0.666 0.005
Cells

CD20- Plasma | Dose 1.28 8.97 6.55 0.026 * 0.166
Cells

CD20- Plasma | Eph:Cond 2 14 0.063 0.939 0.000244
Cells

CD20- Plasma | Eph:Dose 2.32 16.23 1.612 0.229 0.01
Cells

CD20- Plasma | Cond:Dose 1.26 8.83 0.22 0.706 0.01
Cells

CD20- Plasma | Eph:Cond:Dose | 1.95 13.62 1.113 0.355 0.007
Cells

Double Eph 1.13 7.92 0.296 0.629 0.003
Negative
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Double Cond 1 7 1.08 0.333 0.012
Negative

Double Dose 3 21 2.543 0.084 0.078
Negative

Double Eph:Cond 1.07 7.47 1.68 0.236 0.015
Negative

Double Eph:Dose 1.37 9.58 1.208 0.319 0.028
Negative

Double Cond:Dose 1.25 8.75 0.441 0.567 0.008
Negative

Double Eph:Cond:Dose | 1.24 8.65 1.486 0.264 0.038
Negative

Memory Eph 1.13 7.88 0.385 0.577 0.002
Memory Cond 1 7 0.884 | 0.378 0.034
Memory Dose 3 21 1.379 0.277 0.018
Memory Eph:Cond 2 14 0979 |04 0.006
Memory Eph:Dose 1.33 9.3 0.588 0.509 0.011
Memory Cond:Dose 3 21 1.087 0.376 0.01
Memory Eph:Cond:Dose | 1.61 11.29 1.866 | 0.201 0.03
MZ-like Eph 1.16 8.1 0.971 0.368 0.009
MZ-like Cond 1 7 0.807 10.399 0.01
MZ-like Dose 3 21 1.144 ] 0.354 0.022
MZ-like Eph:Cond 1.07 7.47 1.476 | 0.265 0.015
MZ-like Eph:Dose 1.39 9.76 2.034 ]0.186 0.046
MZ-like Cond:Dose 3 21 2.529 | 0.085 0.044
MZ-like Eph:Cond:Dose | 1.26 8.79 1.268 0.304 0.031
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CD20+ Eph 2 14 0.33 0.725 0.002
Plasma Cells

CD20+ Cond 1 7 0.778 0.407 0.015
Plasma Cells

CD20+ Dose 3 21 0.658 0.587 0.016
Plasma Cells

CD20+ Eph:Cond 2 14 1.136 0.349 0.008
Plasma Cells

CD20+ Eph:Dose 2.32 16.27 1.53 0.246 0.031
Plasma Cells

CD20+ Cond:Dose 3 21 0.249 0.861 0.007
Plasma Cells

CD20+ Eph:Cond:Dose | 2.28 15.96 1.177 0.339 0.023
Plasma Cells

Naive Eph 1.05 7.33 1.622 0.243 0.012
Naive Cond 1 7 0.753 0.414 0.017
Naive Dose 2.03 14.2 1.15 0.345 0.023
Naive Eph:Cond 1.05 7.35 0.938 0.369 0.008
Naive Eph:Dose 1.11 7.8 1.21 0.312 0.029
Naive Cond:Dose 1.62 11.37 0.716 0.482 0.013
Naive Eph:Cond:Dose | 1.12 7.82 1.019 0.354 0.025
Centroblasts | Eph 1.13 7.92 0.233 0.672 0.001
Centroblasts Cond 1 7 1.232 0.304 0.031
Centroblasts Dose 3 21 1.357 0.283 0.029
Centroblasts | Eph:Cond 2 14 0.956 0.408 0.008
Centroblasts | Eph:Dose 1.67 11.72 0.649 0.514 0.012
Centroblasts Cond:Dose 3 21 0.593 0.626 0.012
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Centroblasts | Eph:Cond:Dose | 1.27 8.9 0.482 0.55 0.011
Centrocytes Eph 1.04 7.28 1.17 0.317 0.014
Centrocytes Cond 1 7 0.022 0.886 0.000174
Centrocytes Dose 2 14.01 0.694 0.516 0.015
Centrocytes Eph:Cond 1.06 7.43 0.652 0.454 0.003
Centrocytes Eph:Dose 1.16 8.14 1.363 0.285 0.03
Centrocytes Cond:Dose 1.32 9.27 1.072 0.35 0.016
Centrocytes Eph:Cond:Dose | 1.09 7.62 0.745 0.426 0.029
Germinal Eph 1.15 8.04 0.746 | 0.431 0.005
Center

Germinal Cond 1 7 0.753 0.414 0.011
Center

Germinal Dose 1.86 13.05 1.133 0.348 0.028
Center

Germinal Eph:Cond 1.2 8.39 0.905 0.388 0.008
Center

Germinal Eph:Dose 1.2 8.42 1.163 0.325 0.024
Center

Germinal Cond:Dose 3 21 0.58 0.635 0.009
Center

Germinal Eph:Cond:Dose | 1.12 7.84 0.781 0.418 0.024
Center

Plasmablast Eph 2 14 0.852 0.447 0.011
Plasmablast Cond 1 7 0.622 0.456 0.008
Plasmablast Dose 3 21 1.455 0.255 0.02
Plasmablast Eph:Cond 2 14 3.341 0.065 0.023
Plasmablast Eph:Dose 2.25 15.74 0.444 0.671 0.016
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Plasmablast Cond:Dose 3 21 0.779 0.519 0.014
Plasmablast Eph:Cond:Dose | 2.19 15.35 1.084 0.368 0.027
Transitional Eph 1 7.03 0.953 0.362 0.009
Transitional Cond 1 7 0.479 0.511 0.01

Transitional Dose 1.8 12.61 1.084 0.361 0.022
Transitional Eph:Cond 1.03 7.18 0.772 0.412 0.007
Transitional Eph:Dose 1.16 8.09 1.088 0.34 0.028
Transitional Cond:Dose 1.23 8.61 0.625 0.483 0.01

Transitional Eph:Cond:Dose | 1.12 7.83 0.891 0.386 0.025
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Abstract

Kaposi’s sarcoma-associated herpesvirus (KSHV) extensively manipulates the host immune
system and the cytokine milieu, and cytokines are known to influence the progression of KSHV -
associated diseases. However, the precise role of cytokines in the early stages of KSHV infection
remains undefined. Here, using our unique model of KSHV infection in tonsil lymphocytes, we
investigate the influence of host cytokines on the establishment of KSHV infection in B cells. Our
data demonstrate that KSHV manipulates the host cytokine microenvironment during early
infection and susceptibility generally associated with downregulation of multiple cytokines.
However, we show that IL-21 signaling promotes KSHV infection by promoting both plasma cell
numbers and increasing KSHV infection in plasma cells. Our data reveal that IL-21 producing T
cells, particularly Th17/Tc17 and central memory CD8+ T cells may represent immunological
factors that modulate host-level susceptibility to KSHV infection. These results suggest that 1L-21
plays a significant role in the early stages of KSHV infection in the human immune system and
may represent a novel mechanism to be further explored in the context of preventing KSHV

transmission.

Author Summary

Very little is known about how KSHYV is transmitted and how it initially establishes infection in a
new human host and this lack of information limits our ability to prevent KSHV -associated cancers
by limiting its person-to-person transmission. Saliva is thought to be the primary route of person-
to-person transmission for KSHV, making the tonsil a likely first site for KSHV replication in a
new human host. In particular, the tonsil is likely to be the first place KSHV is able to enter B

cells, which are thought to be a major site of persistent infection. Our previous work identified
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plasma cells as a highly targeted cell type in early KSHV infection in cultured cells from human
tonsil. In this study, we show that the human cytokine IL-21 promotes both overall KSHV infection
and the establishment of infection in plasma cells. We also investigate the immunological
mechanisms underlying this effect. Our results demonstrate that IL-21 and IL-21-producing cells

are a novel factor that influences the initial establishment of KSHYV infection in humans.

Introduction

Kaposi’s Sarcoma Herpesvirus (KSHV) is a lymphotropic gamma-herpesvirus, originally
discovered as the causative agent of Kaposi Sarcoma (KS) [1]. KS is a highly proliferative tumor
derived from lymphatic endothelial cells [2]. KSHV is also associated with the B cell
lymphoproliferative diseases, Primary Effusion Lymphoma (PEL) and Multicentric Castleman’s
Disease (MCD) [3, 4], as well as the inflammatory disorder KSHV inflammatory cytokine
syndrome (KICS) [5]. KSHV s linked to 1% of all human tumors, and the World Health
Organization (WHO) has classified it as class | carcinogen [6, 7]. KSHV infection is asymptomatic
in  most healthy individuals, and KSHV-associated malignancies arise primarily in
immunocompromised patients. Indeed, KS remains one of the most common cancers in people
living with HIV/AIDS [8].

The geographical distribution of KSHV is not ubiquitous. KSHV infection is endemic in sub-
Saharan Africa and in the Mediterranean basin. KSHV prevalence is also high in subpopulations
in other parts of the world such as men who have sex with men (MSM). Saliva is the only secretion
where KSHV DNA is commonly detected [9], and, based on this, person-to-person transmission
of KSHYV is thought to occur via saliva. The oral lymphoid tissues are rich in KSHV target cell

types including lymphatic endothelial cells and B cells, and are therefore a likely site for the initial
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establishment of KSHV infection in a new human host. However, the exact mechanisms for KSHV
transmission and how environmental, behavioral and host factors influence transmission and early
infection events remain to be established. This gap in our understanding dramatically affects our
ability to find efficient strategies to decrease the transmission or influence host-level susceptibility
to KSHV infection. One of the main factors that has been linked to KSHV-associated
lymphoproliferations is cytokine dysregulation [10]. However, their contribution to the early
stages of KSHV infection and whether the cytokine milieu in the oral cavity contributes to host-
level susceptibility to KSHV infection is unclear. KSHV-infected cells in KSHV-associated
lymphoproliferative diseases generally display plasma cell or plasmablast features [11], and our
recent work showed that KSHV targets plasma cells in early infection in tonsil B lymphocytes
[12]. Whether the KSHV-infected plasma cells we observe arise from direct infection or
differentiation from a precursor B cell subset remains to be established. In either case, it is likely
that cytokines play a role in supporting the survival and/or differentiation of KSHV-infected
plasma cells.

IL-21 is a pleiotropic cytokine that has diverse effects on B cell, T cell, macrophage, monocyte,
and dendritic cell biology. It is produced mainly by natural killer T (NKT) cells and CD4+ T cells,
including follicular helper (TFH) cells [13]. The IL-21 receptor is expressed by several immune
cells, including B and T cells and is comprised of a unique IL-21R subunit and the common
cytokine receptor y chain (CD132), which is also part of the receptor for IL-2, IL-4, IL-7, IL-9,
and IL-15 [14]. IL-21 plays a critical role in B cell activation and expansion [15], and plays a
critical role in B cell differentiation to immunoglobulin (1g)-secreting plasma cells. The regulation

of maturation of B cells into plasma cell is driven by the several transcription factors including
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Blimpl and Bcl6 [16], which can both be induced by IL-21 signaling, indicating that IL-21 is an
important regulator of plasma cell differentiation [17, 18].

There are few studies to date examining the contribution of IL-21 to KSHV infection and KSHV-
associated disease. However, IL-21 is detected in interfollicular areas in MCD patients [19].
Moreover, IL-21 induces differentiation of B-lymphoblastoid cell lines (BCLs) into late
plasmablasts/early plasma cells and regulates the expression of many latent proteins in
EBV* Burkitt lymphoma cell lines [20, 21]. Importantly, 1L-21 signaling is required for the
establishment of MHV-68 infection and the generation for MHV-68 infected long-lived plasma
cells in mice [22].

In this study, we use our well-established tonsil lymphocyte infection model to explore whether
KSHYV alters cytokine secretion early in infection and whether cytokine levels have an effect on
the establishment of KSHV infection. We identify IL-21 as a factor that specifically influences
KSHYV infection in plasma cells, which we previously characterized as a highly targeted cell type
in early infection [12]. We demonstrate that IL-21 signaling increases plasma cell levels in our ex
vivo model system and that this effect promotes overall KSHV infection. We explore the
mechanisms of IL-21 signaling by establishing which B cell types are responding IL-21 and what

T cell subsets are producing IL-21 in our model.

We determine that expression of 1L-21 receptor (IL-21R) on naive and classical memory T cells
is correlated with increased KSHV infection in IL-21 treated cultures, and we demonstrate that
both KSHYV infection and IL-21 treatment modulates IL-21R expression on B cells. We examine
IL-21 secretion by T cell subsets in our tonsil lymphocyte cultures and demonstrate that the
magnitude and distribution of 1L-21 secretion varies considerably based on tonsil donor, but is not

significantly modulated by KSHV infection. Interestingly, RoRyT+ T cells (both CD4+ and CD8+)
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contributed substantially to IL-21 secretion and were positively correlated with KSHV infection
of plasma cells at 3 dpi. Moreover, IL-21 secretion by CD8+ central memory T cells was positively

correlated with both overall KSHV infection and plasma cell targeting.

These results identify IL-21 signaling as a factor that influences the establishment of KSHV
infection in B lymphocytes and, together with our previous work, underscores the importance of
plasma cell biology in the initial establishment of KSHV infection in the oral lymphoid tissues.
Based upon this work, we conclude that specific 1L-21 secreting T cell subsets represent an

important susceptibility factor for KSHV transmission.

Results

Host cytokines influence the establishment of KSHV infection B lymphocytes

Despite the critical interplay between KSHV and host cytokine signaling, little is known about
whether cytokines influence host susceptibility to KSHV infection. In fact, the roles of
proinflammatory cytokines during KSHV infection have been studied mostly in naturally-infected
human B cell lines derived from PEL [23, 24]. In order to examine whether cytokines alter the
early stages of KSHV infection in the tonsil, we quantitated the levels of 13 cytokines in the
supernatants of Mock and KSHV-infected tonsil lymphocyte cultures at 3 days post-infection
using a bead-based multiplex immunoassay. This dataset includes 33 independent infections using
24 unique tonsil specimens. IL-6, IFNg, TNFa and IL-22 were the most prevalent cytokines in our
cultures based on the median values overall (Fig 1A, panel order). IL-6 was the only cytokine
significantly induced in KSHV-infected cultures compared to Mock cultures (Fig 1A) and the

magnitude of IL-6 induction by KSHYV infection is far greater than the effect of infection on any
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other cytokine (Fig 1B). This result is consistent with our previous results in cultures containing
only naive B lymphocytes [25]. Our data also reveals statistically significant reductions in IL-5
and IL-4 concentrations in KSHV-infected cultures compared to Mock cultures (Fig 1A), but these
changes are very small compared to those seen with IL-6 (Fig 1B). Interestingly, IFNg
concentrations were highly affected by KSHV infection, but there were sample-specific
differences in whether this effect was positive or negative (Fig 1B).

In order to determine whether cytokines affect the establishment of KSHV infection, we examined
whether the concentration of cytokines in the supernatants of KSHV-infected cultures is correlated
with the level of infection in B lymphocytes (based on GFP reporter expression) in the same culture
by flow cytometry analysis (Fig 1C & D). On a per-sample level, many individual cytokines
(notably IL-6 and IFNg) were induced or repressed independent of susceptibility. However, there
is a cluster of highly susceptible samples (ND19, ND40, ND41, ND32, ND4) in which multiple
cytokines are repressed in the KSHV-infected cultures (Fig 1C). Pairwise comparisons between
overall GFP level in B lymphocytes and the level of each cytokine in the KSHV-infected cultures
revealed universally negative correlations between overall KSHV infection and cytokine levels
with lower cytokine levels observed in more susceptible samples. These negative correlations were
statistically significant for 1L-2, 1L-9, IL-10, TNFa, IL-4 and IL-22 (Fig 1D). Since plasma cells
were identified as a highly targeted cell type in our previous study [12], we examined the
correlations between cytokine levels in KSHV-infected cultures and infection in the CD138+
plasma cell subset. This analysis revealed negative correlations similar to those seen with overall
infection with IL-13, IL-9, IFNg, TNFa and IL-22 levels showing statistically significant negative
correlations with plasma cell infection. However, in this analysis IL-21 levels showed a significant

positive correlation with plasma cell infection (Fig 1E). Taken together, these data
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demonstrate that (1) KSHV infection influences the production of multiple cytokines in our ex vivo
infection model, (2) lower cytokine levels and/or repression of cytokines during infection are
generally associated with higher susceptibility to KSHV infection, (3) several individual cytokines
show significant negative associations with susceptibility to KSHV infection and (4) IL-21 is
positively correlated with KSHV infection of plasma cells. Overall, these data suggest that distinct
inflammatory responses in each tonsil specimen contribute to variable susceptibility to KSHV

infection.

IL-21 supplementation increases KSHV infection in tonsil B lymphocytes

Because IL-21 production was positively correlated with plasma cell infection in our initial dataset
(Fig 1E), we wanted to examine the impact of manipulating IL-21 levels on the establishment of
KSHYV infection. To do this, we performed Mock infection or KSHV infection in 12 unique tonsil
samples and supplemented the resulting cultures with varying concentrations of recombinant IL-
21. At 3 dpi, we analyzed these cultures for GFP+ B lymphocytes by flow cytometry to assess the
magnitude of KSHV infection (Fig 2A & B). Although the specimens included in this data set had
high variability in their baseline susceptibility, we can see increased infection in response to IL-
21 treatment, and the effect seems to be particularly strong in the more susceptible samples (Fig
2A). Normalization of the data to each specimen’s untreated control reveals that at 10/12 samples
show increased infection upon treatment with 100pg/ml of IL-21. Importantly, most of these
concentrations were higher than what was observed in our initial dataset quantitating native
cytokine secretion in our culture system (Fig 1A), which may explain why we didn’t observe an
association of 1L-21 secretion with overall infection in that data (Fig 1D). We then repeated these

supplementation experiments with only the 100pg/ml dose of recombinant IL-21 in an additional
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12 tonsil specimens and examined both overall infection and subset-specific responses in these
cultures at 3 dpi using our B cell immunophenotyping panel. Similar to the initial dataset, this
analysis shows increased infection in response to recombinant IL-21 in the majority of tonsils, and
the difference in GFP+ B lymphocytes was statistically significant in IL-21 treatment compared to

control (p=0.02, F=6.4) (Fig 2C).

IL-21 increases plasma cell frequency and susceptibility in primary human tonsil B

lymphocytes

In order to determine whether I1L-21 signaling influences the overall distribution of B cell subsets
in both Mock and KSHYV infected cultures, we performed B cell immunophenotyping. Analysis of
overall subset frequencies, with all subsets represented as a fraction of viable CD19+ B cells, at 3
dpi revealed that most subsets did not change with either KSHV infection or IL-21 treatment. We
did observe a statistically significant increase in CD20+ B cells and plasmablasts in the KSHV-
infected conditions independent of 1L-21 treatment. Naive B cells showed significant main effects
for both infection and treatment, with both KSHV infection and IL-21 treatment reducing naive B
cells in the culture, but the interaction was not significant. Importantly, this analysis revealed a
highly significant increase in total plasma cell frequency associated with both IL-21 treatment and
KSHV infection with a significant interaction of the two variables. This effect seems to be
restricted to CD20+ plasma cells in the mock conditions and distributed between both CD20+ and
CD20- plasma cells in the KSHV-infected cultures. However, both CD20+ and CD20- plasma
cells showed statistically significant interactions between infection and treatment (Fig 2D, Table
2). Post hoc paired T tests revealed significant differences with IL-21 treatment on total plasma

cells (p=0.0002) and CD20+ plasma cells (p=0.002) for the KSHV-infected conditions only. The
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IL-21 effect on naive B cell frequencies was significant for both Mock (p=0.01) and KSHV
infected conditions (p=0.003). Moreover, in IL-21 treated conditions there was a significant
difference between Mock and KSHV cultures for total plasma cells (p=0.0003), CD20+ plasma
cells (p=0.02) and naive B cells (p=0.006). One interpretation of this data is that IL-21 can
independently drive plasma cell differentiation of B cells in our culture system resulting in
decreased naive cells and increased plasmablast and plasma cells, and KSHV infection acts
synergistically with IL-21 to potentiate the same effect. We next wanted to determine whether IL-
21 treatment altered the B cell subset-specific distribution of KSHV infection. For this analysis,
we quantitated the percent of each B cell subset that was GFP+ to determine the within-subsets
distribution of KSHV infection in control or IL-21 treated cultures (Fig 2E). In this analysis, we
observed a significant increase in plasma cell targeting with IL-21 treatment (p=0.02, F=6.6). We
next examined whether increased frequency of plasma cells or increased plasma cell targeting was
directly correlated with the observed increase in overall KSHV infection in the IL-21 treated
conditions (Fig 2F). These results reveal a significant linear correlation between total GFP and
plasma cell frequency (r=0.7, p=0.007) and a weaker correlation between total GFP and the

frequency of GFP+ cells within the plasma cell subset (r=0.56, p=0.04).

Taken together this data shows that IL-21 treatment promotes the establishment of KSHV infection
in human tonsil lymphocytes and that this increased infection is correlated with both increased
plasma cell frequencies and increased plasma cell infection. Thus, our results suggest that 1L-21
signaling facilitates the establishment of KSHV infection by driving the proliferation, survival or
differentiation of plasma cells in our tonsil lymphocyte cultures. The observation that naive B cell

frequencies are significantly decreased in KSHV-infected, IL-21-treated cultures (Fig 2D)
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supports the latter conclusion that increased plasma cell frequencies are a result of B cell

differentiation in response to IL-21 signaling.

Table 2: Statistically significant effects from two-way repeated measures ANOVA analysis

in Fig 2D
Variable Effect DFn |DFd | F p ges
GFP Treatment |1 13 6.425 0.025 0.081
GFP Infection 1 13 102.896 | 1.52e-07 0.708
GFP Tx:Inf 1 13 7.635 0.016 0.084
Plasma cells Treatment |1 13 18.596 | 0.000844 | 0.163
Plasma cells Infection 1 13 18.575 | 0.000848 | 0.166
Plasma cells (PC) | Tx:Inf 1 13 22.779 | 0.000364 0.09
Naive Treatment |1 13 13.643 | 0.003 0.099
Naive Infection 1 13 8.462 0.012 0.069
Plasmablast Infection 1 13 6.023 0.029 0.02
CD20- PC Tx:Inf 1 13 12.645 | 0.004 0.043
All Infection 1 13 6.234 0.027 0.016
CD20+CD19+
CD20+ PC Treatment |1 13 4.858 0.046 0.028
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CD20+ PC Tx:Inf 1 13 7.798 0.015 0.012

Neutralization of IL-21 inhibits KSHV infection in primary tonsil B lymphocytes

We next wanted to determine whether neutralization of the natively-secreted IL-21 in our tonsil
lymphocyte cultures would affect the establishment of KSHV infection. To do this we performed
infections with Mock or KSHV-infection in 11 unique tonsil specimens, included varying
concentrations of an IL-21 neutralizing antibody in the resulting cultures, and assessed the
magnitude and distribution of KSHV infection at 3 dpi by flow cytometry. These results revealed
decreased KSHV infection in the presence of IL-21 neutralizing antibodies (Fig 3A). One-way
repeated measures ANOVA revealed a significant effect of IL-21 neutralization on GFP in KSHV
infected cultures (p=0.00001, F=9.4) and post-hoc Dunnett test revealed significance at the
100pg/ml dose (p=0.03). When each sample was normalized to its untreated control, we observed
that 9/11 samples had decreased infection in the presence of 100ug/ml IL-21 neutralizing antibody

and this increased to 10/11 samples at higher antibody doses (Fig 3B).

When we examined the overall frequency of B cell subsets at 3dpi in these experiments, we
observed statistically significant effects of IL-21 neutralization on a number of B cell subsets, but
there were no significant interaction effects with IL-21 neutralization and KSHV infection using
two-way repeated measures ANOVA (Fig 3C). Specifically, IL-21 neutralization increased 1gG+
(p=0.04, F=5.0), memory (p=0.03, F=3.4), and double negative (p=0.02, F=3.8) B cells and
decreased IgM+ (p=0.0003, F=8.6) and transitional (p=0.01, F=4.1) subsets. Post-hoc paired T-

tests showed a statistically significant decrease of on both overall (p=0.02) and CD20+ (p=0.005)
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plasma cell frequencies at the 200pg/ml dose in the mock infected cultures only. The observation
that the effect of IL-21 neutralization on plasma cell frequencies is restricted to mock infected
cultures is interesting in the context of our IL-21 supplementation data where we observed
significant main effects of both IL-21 and KSHYV infection on plasma cell frequencies as well as a
significant interaction between the two factors (Fig 2D & Table 1). The two data sets taken together
support several interesting conclusions: (1) IL-21 affects plasma cell frequencies independent of
KSHV infection; evidenced by opposite significant effects of IL-21 supplementation and
neutralization in mock cultures, (2) KSHV infection affects plasma cell frequencies independent
of IL-21 signaling; evidenced by significant main effect of infection in supplemented cultures and
a lack of inhibition in KSHV-infected neutralized cultures, and (3) IL-21 and KSHV can
synergistically affect plasma cell frequencies; evidenced by the significant interaction effect and
the significant increase in plasma cell frequencies in KSHV-infected cultures that are

supplemented with IL-21.

We next wanted to determine whether neutralization of IL-21 influences the frequency of KSHV
infection within B cell subsets. One-way repeated measures ANOVA revealed a significant effect
of neutralization on infection of transitional B cells (p=0.01, F=4.0) but paired T tests were not
significant for any individual dose. When we plotted this data normalized to the per-sample, per-
subset infection rate of the untreated control cultures, we observed that neutralization was
associated with lower levels of infection in transitional, plasmablast, and CD20+ PC populations
(Fig 3D). We hypothesized that if IL-21 signaling is affecting overall infection by contributing
substantially to differentiation of KSHV-infected cells, we might observe a correlation between
overall infection and the contribution of specific subsets to infection within neutralized cultures

compared to control cultures. If this hypothesis is correct, subsets whose differentiation is
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important to the establishment of infection would accumulate with IL-21 neutralization and this
accumulation would correlate with decreased overall levels of infection in the same cultures. To
examine this, we calculated the change in IL-21 neutralized cultures compared to control cultures
(neutralized-control) for both overall infection and the contribution of each subset to infection
(between subsets frequency of GFP), and performed correlation analysis using Pearson’s method.
This analysis reveals that decreased overall infection with IL-21 neutralization was significantly
correlated with a decreased contribution of plasma cells (r=0.6, p=0.0002), CD20+ plasma cells
(r=0.6, p=0.0002), and transitional B cells (r=0.5, p=0.003) and an increased proportion of infected
germinal center cells (r=-0.4, p=0.02) (Fig 3E). Interestingly, these correlations were driven more
by sample-specific differences (indicated by point color) compared to dose response of
neutralization (indicated by point shape). This data could indicate that IL-21 signaling increases
the overall establishment of KSHV infection in tonsil lymphocytes by driving differentiation of
KSHV-infected germinal center cells into transitional and CD20+ plasma cells. Our previous
studies demonstrated that plasma cells display a mixture of lytic and latent KSHV infection [12].
Therefore, we wanted to determine whether the increase in overall KSHV infection with IL-21
treatment and decrease in infection with IL-21 neutralization is due to IL-21-mediated alterations
in KSHV lytic reactivation. To examine this, we performed RT-PCR for LANA (latent) and K8.1
(lytic) on total RNA from untreated, IL-21 supplemented or IL-21 neutralizing antibody treated,
KSHV-infected cultures from 8 unique tonsil specimens. GAPDH was used as a housekeeping
gene and normalizing factor for the viral gene expression data. This data is consistent with our
previous data showing a mix of lytic and latent transcripts in infected lymphocytes [12]. These

data reveal no significant influence of either supplementation or neutralization on lytic gene
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expression (Fig 3F). In the majority of samples K8.1 expression remained unchanged or changes

were also reflected in LANA transcripts (Fig 3G).

IL21 receptor distribution in primary human tonsil B lymphocytes affects the magnitude

and distribution of KSHYV infection

Our data presented thus far demonstrates that IL-21 signaling has a positive effect on the overall
establishment of KSHV infection (Fig 2C and 3B) and this increase in overall infection is related
to both the absolute number of plasma cells (Fig 2D&F and 3C), and the establishment of infection
in plasma cells (Fig 2E&F and 3E). Moreover, our data suggests that the increase in plasma cell
numbers and targeting may be due to differentiation of new plasma cells via a process that requires
IL-21 signaling to germinal center B cells (Fig 3E). To further address the early stages of the IL-
21 response during infection, we examined expression of the IL21 receptor in primary human
tonsil B lymphocytes at baseline (day 0) in each tonsil specimen. We observed that IL-21 receptor
expression is rare on B cells in tonsil at less than 3% of total viable B cells in most samples (Fig
4A). The distribution of I1L-21 receptor positive cells among B cell sub-populations is broad, but
IL-21 receptor-expressing B cells are most likely to have an MZ-like or plasmablast
immunophenotype (Fig 4B) and on a per-sample basis, either plasmablast or MZ-like subsets

dominated the IL-21R positive cells in most tonsil samples (Fig 4C)

In order to determine whether IL-21 receptor expression at baseline influenced the establishment
of KSHV infection, we aggregated the untreated conditions from both the supplementation and the
neutralization experiments and examined correlations between baseline IL21R distribution and
KSHYV infection based on overall GFP. This analysis revealed that the proportion of plasmablasts

within IL21R+ B cells is significantly correlated with overall susceptibility to KSHV infection
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(r=0.81, p=0.0007) (Fig 4D). In experiments where we supplemented cultures with IL-21, the
positive effect of IL-21 treatment on overall KSHV infection at 3 dpi (Fig 2C) is correlated with
the baseline frequency of IL-21 receptor expression on naive B cells (r=0.82, p=0.01) and classical
memory B cells (r=0.7, p=0.05) (Fig 4E). The significant correlation between the IL-21 response
and baseline IL-21 receptor expression is particularly interesting and consistent with our
hypothesis that differentiation of naive B cells into plasma cells contributes to the increase in

overall infection we see with IL-21 treatment (Fig 2D).

When we correlated baseline IL21R expression with the positive effect of IL-21 treatment on total
plasma cell numbers in KSHV-infected cultures (Fig 2D), no significant positive correlations were
found (Fig 4F). This lack of correlation suggests that the plasma cell response to IL-21 at 3 dpi in
KSHYV infected cultures may be a product of 1L-21 receptor up-regulation in response to infection
instead of intrinsic baseline levels of IL-21 on plasma cells or plasma cell precursors in our tonsil
lymphocyte cultures. Indeed, modulation of I1L-21 receptor expression by KSHV infection could
be one mechanism for the synergistic promotion of plasma cell numbers we observe with both IL-

21 treatment and infection (Fig 2D).

In order to examine this hypothesis, we analyzed IL-21R expression on B cell subsets at 3 dpi in
our culture system with or without IL-21 supplementation to determine whether KSHV and/or IL-
21 can modulate the response to IL-21 during infection. These results reveal that the majority of
effects on IL-21R at 3 dpi are present in both Mock and KSHV-infected cultures, indicating they
are a product of the culture system and not driven by KSHV. However, the proportion of
plasmablasts within IL21R+ cells was significantly different comparing Mock to KSHV-infected

cultures without IL-21 treatment (p=0.03) and this difference was increased with the combination
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of KSHYV infection and IL-21 treatment (Fig 4G). This result may indicate that infection is
affecting IL21R expression on plasmablasts or that KSHV is infecting a precursor B cell and
driving differentiation of these cells into IL21R+ plasmablasts. Taken together with the fact that
IL-21R expression on plasmablasts at day O is highly correlated with overall infection (Fig 4D),
these data strongly suggest that plasmablasts play a role in the response of KSHV infection to IL-
21 treatment. Although not statistically significant, a similar trend can be observed for IL21R+
plasma cells while the converse trend is seen for IL21R positive germinal center cells (Fig 4G),
these observations are consistent with the data from our IL21 neutralization studies that suggests
germinal center cells may be differentiating into plasma cells in response to IL-21 signaling (Fig

3E), potentially via a plasmablast intermediate phenotype.

Characterization of T cell subsets producing IL-21 in primary human tonsil B lymphocytes

We next wanted to determine the source of native IL-21 secretion in our culture system, and
determine whether the production of IL-21 is affected by KSHV infection. To accomplish this, we
utilized an additional immunophenotyping panel for T cell subsets (Table 1 and Supplemental Fig
1) and performed intracellular cytokine staining (ICCS) to identify IL-21 producing T cells at 3
dpi in Mock and KHSV-infected cultures from 14 unique tonsil samples. This data reveals that IL-
21 secretion in T cells is highly variable between tonsil lymphocyte cultures, but is not significantly
affected by KSHV infection (Fig 5A). More of the IL-21+ cells were CD4+ T cells vs. CD8+ T
cells and this distribution was also not affected by KSHV infection (Fig 5B). When we examined
the subset-level distribution of 1L-21 secretion within T cells, we observed that within CD4+ cells

CD45R0+, central memory, TFH and RoRyT+ cells were contributing most to IL-21 secretion.
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Among CD8+ T cells, CD45RA+, stem cell memory, central memory and RoRyT+ cells were the
highest contributors to IL-21 secretion (Fig 5C). When we examined whether KSHV infection
altered the contribution of T cell subsets to IL-21 secretion in these cultures, we found that the
contribution of CD4+ CD45RA+, CD4+ RoRyT+ and CD8+ central memory subsets was
significantly decreased in KSHV-infected cultures vs. Mock cultures (Fig 5D). However, KSHV
infection did not significantly change the overall levels and subset distribution of T cells within
these cultures, indicating these are biological changes within T cell subsets and not due to changes

in the T cell population during infection (Supplemental Fig 2).

IL-21 secretion by CD8+ central memory T cells influences both overall KSHV infection and

plasma cell targeting

We wanted to determine whether IL-21 secretion by any particular T cell subset was correlated
with susceptibility to KSHV infection in our experiments. To do this, we performed B cell
immunophenotyping analysis to determine the extent and distribution of KSHV infection in the
same cultures where ICCS was performed on T cell subsets. When we examined correlations
between IL-21 secretion by T cell subsets and overall KSHV infection in B cells we found that
only IL-21+ CD8+ central memory cells were significantly correlated (r=0.57, p=0.03) (Fig 6A).
Interestingly, when we examined correlations between IL-21+ T cell subsets and the B cell subset-
specific distribution of KSHV infection at 3dpi, we found that the positive correlation between IL-

21+ CD8+ central memory T cells is coupled with a highly significant positive correlation to the
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targeting of plasma cells (r=0.82, p=0.0003) (Fig 6B & 6C). In addition, both CD4+ and CD8+
IL-21+ T cells that express RoRyT+ (the Th17/Tcl7-defining transcription factor) were
significantly correlated with plasma cell targeting by KSHV (Fig 6B & 6D). These correlations
were stronger for CD4+ cells and were coupled with a negative correlation with KSHV-infection
of naive T cells (Fig 6B). When we examined whether baseline (day 0) frequencies of T cell subsets
influenced the magnitude and distribution of KSHV infection at 3dpi we found several interesting
correlations (1) frequencies of CD8+ central memory cells significantly correlated with KSHV
targeting of plasma cell subsets (Fig 6E and 6F), (2) baseline frequencies of CD4+ RoRyT+ cells
significantly correlated with infection of CD20+ plasma cells (Fig 6D) and (3) both CD4+ and
CDB8+ RoRyT+ were negatively correlated with KSHV infection of naive B cells at 3dpi (Fig 6D).
Taken together, these results support a hypothetical model in which CD8+ central memory T cells
secrete IL-21, which supports the differentiation, survival or targeting of plasma cells, resulting in
higher plasma cell infection frequencies and also an overall increase in dissemination of KSHV
within B lymphocytes. Our data also support the conclusion that RoRyT+ T cells are participating
in KSHYV targeting of plasma cells via IL-21 signaling, possibly by mediating differentiation of
naive B cells, but this effect does not have a significant influence on overall infection in this data

set.

Discussion

Our results presented in this study indicate that KSHV can influence cytokine production in tonsil-
derived lymphocytes and that the host inflammatory state contributes to the dramatic variation in
susceptibility we observe among our tonsil lymphocyte specimens [12]. This result is not

surprising considering dysregulation of the inflammatory environment is a hallmark of all KSHV -
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associated malignancies [24, 26, 27]. However, the role of the baseline inflammatory environment
in the oral cavity as a potentially modifiable susceptibility factor for the acquisition of KSHV
infection in humans is an interesting consideration stemming from these results that deserves

further study.

Our previous work demonstrated that plasma cells are highly targeted during early KSHV
infection, and subsequent results from our group have shown that manipulations which increase
plasma cell numbers also increase overall KSHV infection in B cells [28]. This latter observation
suggested that, in addition to being a highly targeted cell type, plasma cells are playing an active
role in early infection events that ultimately influences the success of initial dissemination for
KSHV within the B cell compartment. The results presented herein are consistent with that
conclusion, and mechanistically extend our understanding of how the immune microenvironment
influences the establishment of infection in plasma cells. Specifically, we uncovered a critical role

for IL-21 signaling in this process.

While the precise role of IL-21 and IL-21R in human KSHV disease is poorly characterized, IL-
21 has been studied in the pathogenesis of chronic lymphocytic choriomeningitis virus (LCMV)
infection, influenza virus, and, perhaps most relevant to this study, murine gammaherpesvirus 68
(MHV68) [22, 29, 30]. Collins and Speck recently used IL-21R knockout mice to demonstrate that
IL-21 signaling is critical for the establishment of MHV68 latency specifically in B cells.
Interestingly, this study showed that the mechanisms of decreased infection were related to
decreases in both germinal center and plasma cell frequencies as well as decreased infection in
both the germinal center and plasma cell compartment at later timepoints post-infection [22],

suggesting a critical mechanism for IL-21 in MHV68 transit of the germinal center and
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differentiation of follicular-derived plasma cells. These results are generally consistent with our
current findings showing that IL-21 signaling promotes KSHV infection and dissemination in
tonsil via promotion of both plasma cell frequencies and plasma cell targeting (Fig 2&3),
potentially via differentiation through a germinal center intermediate (Fig 3E). Despite this, our
data presented herein do not adequately address the question of whether plasma cells are
differentiating in response to KSHV infection and IL-21 signaling, or whether the effect we see is
increased survival or expansion of existing plasma cells. Studies are currently ongoing to address
this question more directly, and to examine the influence of viral and cellular factors on B cell

differentiation in our model system.

Moreover, both IL-21 and IL-6, which is highly induced in our KSHV-infected cultures (Fig 1),
are involved in the generation of RoRyT+ T cells via STAT3 signaling. The resulting Th17 cells
produce IL-17A which is another cytokine that promotes the establishment of chronic MHV68
infection via promotion of the MHV68-mediated germinal center response [31] and is
mechanistically linked to suppression of T cell-intrinsic IRF-1 [32]. These results are particularly
interesting in light of our current findings showing that IL-21 secretion from, and baseline levels
of, RoRyT+ T cells correlate with the early targeting of plasma cells during KSHV infection (Fig
6B and 6D), suggesting that the Th17/Tc17 environment in the tonsil may be a critical factor
influencing donor-specific susceptibility to KSHV infection. Indeed, as an important site for
mucosal immunity in the oral cavity, the Th17/Tc17 environment in tonsil is highly dynamic and
physiologically important. In fact, Th17 cells play a major role in host defenses against several
pathogens and immunopathogenesis [33, 34]. Many studies have shown that certain parasites

modulate the immune response by inducing Th17 [35, 36]. Previous finding suggest that parasite
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infection is linked with KSHV infection in Uganda [37]. Thus, the parasite burden in sub-Saharan

Africa may modulate susceptibility to KSHV infection via manipulating Th17/Tc17 frequencies.

Consistent with the MHV68 literature, our current results mechanistically implicate germinal
center cells in these observations. However, although our ex vivo model of KSHV infection in
primary lymphocytes is a powerful tool, it certainly does not recapitulate the complex interactions
that are needed for a functional germinal center reaction, so further examination of these particular
mechanisms will require the utilization of an alternative model system, such as a humanized
mouse. Interestingly, neither IL-21 secretion from, nor baseline levels of, CXCR5+, PD1+ TFH
cells correlated with increased KSHV infection or increased plasma cell targeting in our study.
This was surprising given that TFH are generally considered the canonical IL-21 producing cells
in secondary lymphoid organs [38]. This observation may indicate that IL-21 acts support plasma
cell numbers during infection via an extrafollicular pathway, which is consistent with literature

implicating extrafollicular maturation of KSHV-infected B cells in the pathogenesis of MCD [39].

We observed that IL-21 secretion by CD8+ T cells with a central memory immunophenotype
(CCR7+CD45R0+CD28+) was significantly correlated with both overall KSHV infection and
plasma cell targeting, and baseline levels of CD8+ central memory T cells were also correlated
with plasma cell targeting at 3 dpi (Fig 6). Interestingly, recent studies have shown that IL-6
regulates 1L-21 production in CD8+ T cells in a STAT3-dependent manner, and that CD8+ T cells
induced in this way can effectively provide help to B cells [40]. Thus, the induction of human IL-
6 during KSHYV infection may modulate the function of CD8+ T cells in a way that favors the
establishment and dissemination of KSHV infection within the lymphocyte compartment

independent of traditional CD4+ helper T cells, which would be an interesting dynamic in the
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context of CD4+ T cell immunosuppression associated with HIV infection where KSHV-mediated

malignancies are common.

Material and Methods

Ethics Statement. Human specimens used in this research were de-identified prior to receipt, and
thus were not subject to IRB review as human subjects research.

Reagents and Cell Lines. CDw32 L cells (CRL-10680) were obtained from ATCC and were
cultured in DMEM supplemented with 20% FBS (Sigma Aldrich) and Penicililin/Streptomycin/L-
glutamine (PSG/Corning). For preparation of feeder cells CDw32 L cells were trypsinized and
resuspended in 15 ml of media in a petri dish and irradiated with 45 Gy of X-ray radiation using a
Rad-Source (RS200) irradiator. Irradiated cells were then counted and cyropreserved until needed
for experiments. Cell-free KSHV.219 virus derived from iSLK cells [39] was a gift from Javier G.
Ogembo (City of Hope). Human tonsil specimens were obtained from the National Disease
Research Interchange (NDRI; ndriresource.org). Human fibroblasts for viral titering were derived
from primary human tonsil tissue and immortalized using HPV E6/E7 lentivirus derived from
PA317 LXSN 16E6E7 cells (ATCC CRL-2203). Antibodies for flow cytometry were from BD
Biosciences and Biolegend and are detailed below. Recombinant human IL-21 was from
Preprotech (200-21) and IL-21 neutralizing antibody was from R&D Systems (991-R2).
Isolation of primary lymphocytes from human tonsils. De-identified human tonsil specimens
were obtained after routine tonsillectomy by NDRI and shipped overnight on wet ice in
DMEM+PSG. All specimens were received in the laboratory less than 24 hours post-surgery and
were kept at 4°C throughout the collection and transportation process. Lymphocytes were

extracted by dissection and maceration of the tissue in RPMI media. Lymphocyte-containing
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media was passed through a 40um filter and pelleted at 1500rpm for 5 minutes. RBC were lysed
for 5 minutes in sterile RBC lysing solution (0.15M ammonium chloride, 10mM potassium
bicarbonate, 0.1M EDTA). After dilution to 50ml with PBS, lymphocytes were counted, and
pelleted. Aliquots of 5(10)7 to 1(10)8 cells were resuspended in 1ml of freezing media containing

90% FBS and 10% DMSO and cryopreserved until needed for experiments.

Infection of primary lymphocytes with KSHV. Lymphocytes were thawed rapidly at 37°C, diluted
dropwise to 5ml with RPMI and pelleted. Pellets were resuspended in 1ml
RPMI+20%FBS+100ug/ml DNasel+ Primocin 100ug/ml and allowed to recover in a low-binding
24 well plate for 2 hours at 37°C, 5% CO2. After recovery, total lymphocytes were counted and
naive B cells were isolated using Mojosort Naive B cell isolation beads (Biolegend 480068) or
Naive B cell Isolation Kit Il (Miltenyi 130-091-150) according to manufacturer instructions.
Bound cells (non-naive B and other lymphocytes) were retained and kept at 37°C in RPMI+20%
FBS+ Primocin 100pug/ml during the initial infection process. 1(10)8 Isolated naive B cells were
infected with iSLK-derived KSHV.219 (dose equivalent to the D20 at 3dpi on human fibroblasts)
or Mock infected in 400ul of total of virus + serum free RPMI in 12x75mm round bottom tubes
via spinoculation at 1000rpm for 30 minutes at 4°C followed by incubation at 37°C for an
additional 30 minutes. Following infection, cells were plated on irradiated CDW32 feeder cells in
a 48 well plate, reserved bound cell fractions were added back to the infected cell cultures, and
FBS and Primocin (Invivogen) were added to final concentrations of 20% and 100ug/mi,
respectively and recombinant cytokines or neutralizing antibodies were also added at this stage,
depending upon the specific experiment. Cultures were incubated at 37°C, 5% CO2 for the

duration of the experiment. At 3 days post-infection, cells were harvested for analysis by flow
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cytometry and supernatants were harvested, clarified by centrifugation for 15 minutes at 15,000

rpm to remove cellular debris, and stored at -80°C for analysis.

Bead-based immunoassay for supernatant cytokines. Clarified supernatants were thawed on ice
and 25ul of each was added to a 13-plex LEGENDplex (Biolegend) bead-based immunoassay
containing capture beads for the following analytes: IL-5, IL-13, IL-2, IL-9, IL-10, IL17A, IL-
17F, IL-6, IL-21, IL-22, IL-4, TNF-a, and IFN-y. These assays were performed according to the
manufacturer’s instructions, data was acquired for 5000 beads per sample (based on approximately
300 beads per analyte recommended by the manufacturer) using a BD FACS VERSE flow
cytometry analyzer and cytokine concentrations in the experimental supernatants was calculated

from standard curves using the LEGENDPIlex software.

Flow cytometry analysis of baseline lymphocyte subsets and KSHV infection. Approximately
5(10)8 lymphocytes per condition were harvested into a 96- well round bottom plate at day O
(baseline) or at 3 days post-infection at 1500 rpm for 5 minutes. Cells were resuspended in 100ul
PBS containing zombie violet fixable viability stain (BL Cat# 423113) and incubated on ice for
15 minutes. After incubation, cells were pelleted and resuspended in 100ul PBS, containing the
following: 2% FBS and 0.5% BSA (FACS Block) was added to the wells. Cells were pelleted at
1500rpm 5 minutes and resuspended in 200ul FACS Block for 10 minutes on ice. Cells were
pelleted at 1500rpm for 5 minutes and resuspended in 50ul of PBS with 0.5% BSA and 0.1%
Sodium Azide (FACS Wash), For B cell frequencies 10ul BD Brilliant Stain Buffer Plus and
antibodies as follows: IgD-BUV395 (2.5ul/test BD 563823), CD77-BV510 (2.0 pl/ test BD
563630), CD138- BV650 (2ul/test BD 555462), CD27-BV750 (2u/test BD 563328), CD19-

PerCPCys5.5 (2.0pl/test BD 561295), CD38-APC (10pl/test BD 560158), CD20-APCH7 (2ul/test
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BL 302313), IgM (2ul/test BL 314524), IgG (2ul/test BD 561298), IgE (2ul/test BD 744319) and
IL-21 receptor (2ul/test BD 330114). For baseline T cell frequencies. For baseline T cell
frequencies 0.5(10)° cells from baseline uninfected total lymphocyte samples were stained and
analyzed as above with phenotype antibody panel as follows: CD95-APC (2ul, Biolegend
305611), CCR7-PE (2pl, BD 566742), CD28-PE Cy7 (2pl, Biolegend 302925), CD45RO-FITC
(3ul, Biolegend 304204), CD45RA-PerCP Cy5.5 (2ul, 304121), CD4-APC H7 (2ul, BD 560158),
CD19-V510 (3ul, BD 562953), CD8-V450 (2.5ul, BD 561426). and incubated on ice for 15
minutes. After incubation, 150ul FACS Wash was added. Cells were pelleted at 1500rpm for 5
minutes followed by two washes with FACS Wash. Cells were collected in 200pul FACS Wash for
flow cytometry analysis. Cells were analyzed using an LSR Fortessa X-20 cell analyzer (BD
Biosciences). BD CompBeads (51-90-9001229) were used to calculate compensation for all
antibody stains and methanol-fixed Namalwa cells (ATCC CRL1432) +/- KSHV were used to
calculate compensation for GFP and the fixable viability stain. Flow cytometry data was analyzed

using FlowJo software and exported for quantitative analysis in R as described below.

ICCS for IL-21 secretion. At 3dpi, cultures were treated for 6 hours with [4 ul for every 6ml of
cel culture] monensin to block cytokine secretion. Following incubation, approximately 1 million
cells were harvested and viability and surface staining for T cell lineage markers was performed
as described above. After the final wash, cells were fixed for 10 minutes in BD cytofix/cytoperm
(51-2090K2), pelleted and further treated for 10 minutes with cytofix/cytoperm+10% DMSO
(superperm) to more effectively get intracellular antibodies into the nucleus. Intracellular
antibodies, as follows, were diluted in 1x BD Permwash (51-2091KZ) and left on fixed cells

overnight at 4°C. RoR-yT-BV421 (563282, 5pl/test), FoxP3-BB700 (566527, 5 pl/test), 1L-21-
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APC (513007, 5 pl/test), BLC6-BV711 (561080, 5ul/test). Cells were then washed twice with 1x

permwash and analyzed as described above.

RT-PCR. At 3 days post infection, 1(10)® lymphocytes were harvested into an equal volume of
Trizol and DNA/RNA shield (Zymo Research R110-250). Total RNA was extracted using using
Zymo Directzol Microprep (Zymo Research R2060) according to manufacturer instructions. RNA
was eluted in 10ul H20 containing 2U RNase inhibitors and a second DNase step was performed
for 30 minutes using the Turbo DNA-Free kit (Invitrogen AM1907M) according to manufacturer
instructions. One-step RT-PCR cDNA synthesis and preamplification of GAPDH, LANA and
K8.1 transcripts was performed on 15ng of total RNA using the Superscript 111 One-step RT-PCR

kit (ThermoFisher 12574026).

Duplicate no RT (NRT) control reactions were assembled for each sample containing only
Platinum Taq DNA polymerase (Thermofisher 15966005) instead of the Superscript 111 RT/Taq
DNA polymerase mix. After cDNA synthesis and 20 cycles of target pre-amplification, 2ul of pre-
amplified cDNA or NRT control reaction was used as template for multiplexed real-time PCR
reactions using TagProbe 5x gPCR MasterMix -Multiplex (ABM MasterMix-5PM), 5% DMSO,
primers at 900nM and probes at 250nM against target genes. All primer and probe sequences used
in these assays have been previously published [12]. Real time PCR was performed using a 40-
cycle program on a Biorad real time thermocycler. Data is represented as quantitation cycle (Cq)
and assays in which there was no detectable Cq value were set numerically as Cq = 41 for analysis
and data visualization. The expression of each gene was normalized to that of a housekeeping

gene GAPDH.
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Statistical Analysis. The indicated data sets and statistical analysis were performed in Rstudio
software using ggplot2 [41], ggcorrplo [42] , and tidyverse [43] packages. Statistical analysis was
performed using rstatix [44] package. Specific methods of statistical analysis including Anova,
independent t-test and Pearson correlations and resulting values for significance and correlation

are detailed in the corresponding figure legends.
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Figure 1: KSHYV alters cytokine secretion and cytokines affect the establishment of infection.
33 replicate infections using 24 unique tonsil specimens were performed using KSHV.219
infection of naive B lymphocytes followed by reconstitution of the total lymphocyte environment
and culture on CDW32 feeder cells. At 3 dpi, cells were collected for flow cytometry analysis for
infection (GFP) and B cell subsets using our previously-characterized immunophenotyping panel
and supernatants were collected for analysis of cytokines by multiplex immunoassay (Biolegend
Legendplex) (A) cytokine production in Mock and KSHV-infected cultures showing individual
sample quantities and means (red diamonds, top panels) and matched Mock and KSHV samples
to show trends of induction/repression (bottom panels) Statistical analysis was performed by one-
way repeated measures ANOVA. p=0.01 F=7.06 for IL-5, p=0.0001 F=14 for IL-6, p=0.5 F=4.3
for IL-4 (B) Data as in (A) showing the level of induction or repression of each cytokine
comparing KSHV to matched Mock cultures (C) Induction or repression of all cytokines (left y-
axis) on a per-sample basis ordered based on overall susceptibility based on percentage of GFP+
B lymphocytes in the same culture (right y-axis, red diamonds) (D) Pairwise correlations using
Pearson method between cytokine concentration (y-axis) and overall infection (x-axis) in KSHV-
infected lymphocyte cultures (E) Pairwise correlations using Pearson method between cytokine
concentration (y-axis) and Percent GFP+ within CD138+ (x-axis) in KSHV-infected lymphocyte
cultures. For panels A, B, D and E colors indicate individual tonsil specimens and can be compared

between panels.
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Figure 2: IL-21 supplementation increases overall KSHV infection and plasma cell
frequencies. Lymphocytes from 12 tonsil donors were infected with KSHV.219 and cultured with
indicated doses of recombinant human IL-21 and analyzed at 3dpi by flow cytometry (A) the dose
effect of IL-21 supplementation on GFP+ viable B lymphocytes. (B) data as in (A) normalized to
the untreated control for each specimen. (C) 14 additional tonsil donors analyzed as in (A) with
only 100pg/ml IL-21 treatment. Red diamonds indicate group means. p=0.02, F=6.4 via one-way
repeated measures ANOVA. (D) tonsil lymphocyte specimens from (C) were stained for B cell
immunophenotypes and analyzed by flow cytometry. Red boxes indicate subsets with significant
main effects of, and/or interactions between, KSHV infection and IL-21 treatment by two-way
repeated measures ANOVA analysis. See Table 1 for p-values and F statistics from this analysis.
(E) immunophenotyping data was used to determine the within-subset frequency of GFP+ cells in
the KSHV-infected conditions with or without IL-21 treatment. Top panels show individual

sample quantities and means (red diamonds) and bottom panels show trends of

214

R X
. wphe ¢

T peas
%)
-



increased/decreased subset targeting on a per-sample basis. Colored points denote unique tonsil
specimens and can be compared between panels D and E. (F) Pearson correlation between overall
GFP+ B cells in KSHV-infected, IL-21 treated cultures as in (C) and the level of plasma cells
(right) and infection of plasma cells (left). Blue line is linear model regression and grey shading

indicates 95% confidence interval.
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Figure 3: IL-21 neutralization inhibits the establishment of KSHV infection. Naive B cells
from 11 unique tonsil specimens were Mock or KSHV-infected and indicated concentrations of
IL-21 neutralizing antibody was added to the resulting total lymphocyte cultures. Cultures were
analyzed at 3 dpi for B lymphocyte immunophenotypes and the distribution of KSHV infection
via GFP expression. Total GFP+ viable B lymphocytes represented as (A) raw percentages or (B)
normalized to the untreated control for each tonsil sample. For (A) one-way repeated measures
ANOVA shows p=0.00001, F=9.4 for the main effect of IL-21 neutralization and Dunnett’s test
reveals p=0.03 at the 100ug/ml dose. (C) frequencies of B cell subsets in the cultures. Red boxes
indicate significant results as follows: Two-way repeated measures ANOVA on the raw data

showed significant effects of IL-21 treatment on B subset frequencies; 1gG+ (p=0.04, F=5.0),
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memory (p=0.03, F=3.4), and double negative (p=0.02, F=3.8), IgM+ (p=0.0003, F=8.6),
transitional (p=0.01, F=4.1). Post-hoc paired T-tests showed significant effect of 200ug/mi
neutralizing antibody on total plasma cells (p=0.02) and CD20+ plasma cells (p=0.005) in Mock
cultures only. (D) Effect of indicated doses of IL-21 neutralizing antibody on KSHV infection of
B cell subsets. Data is normalized to each sample’s untreated control level for each B cell subset.
One-way repeated measures ANOVA on the raw data reveals a significant effect on infection of
transitional B cells (p=0.01, F=4.0). (E) Correlation between the effect of IL-21 neutralization on
overall infection (x-axis) and the contribution of each subset to KSHV infection in the same
condition (y-axis). Shapes indicate doses in this panel (circle=100ug/ml, triangle=200ug/ml,
square=400ug/ml). Subsets with statistically significant correlations are indicated by red boxes
with statistics from Pearson’s linear correlation as follows: CD20+ plasma cells (r=0.6, p=0.0002),
plasma cells (r=0.6, p=0.0003), transitional (r=0.5, p=0.004), germinal center (r=-0.4, p=0.02).
For panels C-E colors indicate unique tonsil specimens and can be compared between these panels
and red diamonds indicate the mean value for all tonsil specimens. RT-PCR analysis of KSHV
transcripts at 3 dpi in 8 unique tonsil specimens with either IL-21 supplementation at 100 pg/ml
(Fig 2) or IL-21 neutralizing antibody at 100pug/ml with LANA (latent) and K8.1 (lytic) transcript
targets. No RT controls were used to determine that RT-PCR signal is not due to DNA
contamination (F) Cq values for viral targets normalized to the within-sample Cq for GAPDH (G)
GAPDH-normalized values further normalized to the within-sample value for the untreated

control.
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Figure 4: IL21 receptor distribution in primary human tonsil B lymphocytes affects the

magnitude and distribution of KSHV infection. B cell immunophenotyping analysis including

IL-21R was performed at baseline (Day 0) for 10 unique tonsil specimens. (A) total percentage of

IL-21R+ within viable CD19+ B cells. (B) Percent of individual B cell subsets within IL-21+ B

cells. Red diamonds indicate the mean value for all tonsil specimens and (C) distribution of B cell

subsets within IL-21+ on a per-tonsil basis. (D) correlation analysis of baseline IL-21 receptor

distribution within subsets and the overall susceptibility of the same tonsil specimen to KSHV

infection at 3 dpi. Pearson correlation coefficients and p-values are denoted on panels where the
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result is statistically significant. (E) correlation analysis of baseline IL-21 receptor distribution
with the effect of IL-21 supplementation on overall KSHYV infection in the same tonsil specimens.
Pearson correlation coefficients and p-values are denoted on panels where the result is statistically
significant. (F) correlation analysis of baseline IL-21 receptor distribution with the IL-21 mediated
increase in total plasma cell numbers at 3dpi in KSHV-infected cultures in the same tonsil
specimens. (G) Distribution of IL-21 receptor at day O (baseline) or 3dpi within Mock,
Mock+100ng/ml IL-21, KSHV or KSHV+ 100ng/ml IL-21 conditions. Red diamonds indicate the

mean values for each condition and significant differences were assessed via paired T-test.

219



- ~ cpba  cps
- w N — 801 _—* |
Ng o | Szeo &g
=151 & 3
Eo = E-4D,
82 10 Eﬂz Ef t::a
5% | «—2 | B32{ *—5 || .
a2 5- “——:a! a I l
{:I-| L) L) T )
S od A . A
&L S
© * ' cD4 J CDB .
g-m- 4
z [ W Mook
E ] . . W ksHY
,gzl:l' . ' . 21 1T . :-
g, LW, - r,..i.|. ...L.._ l.
§ o ¥ o o D D 4K o : &
%ép 6*# e“‘@p{aﬁ‘p ﬁ@*i,iﬁ#%%‘iﬁa‘l&iﬁﬁ dﬁ@" «‘ﬁ A\% .,;a-
FeFe o OF ARG
@#‘ CFQ{.:, e {F&@&:ﬁ‘ &
D * -
i0- Ccbha 3 cbs
:E‘ o . .
‘gﬁs 20 1 LE . * 4 Yo
;’:‘ 10 . . U‘—l‘—t—’u—%-—-‘u—ﬂ—n%h_u_ﬁ_
E.E.. - r 1 ’ .l ‘! L u - l'
‘li; o 3 F p - « 3 ._a ._.2 PO : : . *
AINAE N AR TS b A
EE-HJ L] '] L . n
h; | &
=20 ] 1 . | .
£ & o oF o O @@ @ 1 poog Pl - S .
c‘;“'\ﬂ’”@ ‘@Ff%ﬁ%"@‘? ST e « \ﬁhf ¢ hﬁfﬁf 5‘”@ @ § @;ﬁ? & &
& a8 & . + N
o {fg‘}i@ﬁéﬁ ve & ¢ ﬁ'f“md@ & @6&\ vow
4\‘-. .n’\‘-.

Figure 5: Characterization of T cell subsets producing IL-21 in primary human tonsil B

lymphocytes. T cells were analyzed by surface immunophenotyping, intracellular transcription
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factor staining and ICCS for IL-21 secretion in Mock and KSHV-infected total lymphocyte
cultures at 3 dpi in 14 unique tonsil specimens. (A) Total IL-21+ viable non-B cells (B) percent of
CDA4+ or CD8+ T cells within IL-21+. For (A) and (B) red diamonds indicate the mean value for
the condition and colors indicate specific tonsil specimens and can be compared between the
panels. (C) Immunophenotypic analysis of T cell subsets (Table 1) within IL-21+ in Mock (red)
and KSHV (blue) cultures. (D) Data as in (C) but normalized to show the induction or repression
of the T cell subset within IL-21+ cells (KSHV-Mock). *p=0.05; **p=0.04; ***p=0.003

comparing Mock and KSHV-infected via paired T test pre-normalization.
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Figure 6: IL-21 secretion by CD8+ central memory T cells influences both overall KSHV
infection and plasma cell targeting. Lymphocyte cultures from the experiments shown in Fig 5
were further analyzed for B cell subsets and the magnitude and distribution of KSHV infection.
(A) correlation analysis of total GFP+ within viable, CD19+ B lymphocytes at 3 dpi with total IL-
21 secretion in non-B cells or the contribution of individual T cell subsets to IL-21 secretion.
Pearson’s correlation coefficient and p-value is shown on panels that have statistically significant
correlations. (B) correlogram of Pearson correlations between the distribution of KSHV infection
within B cell subsets (y-axis) and total IL-21 or the contribution of individual T cell subsets to IL-

21 secretion (x-axis). Pearson’s r values with an absolute value greater than or equal to 0.53 are
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statistically significant for this dataset. (C) scatterplot and linear model fit for the correlation
between GFP+ plasma cells and IL-21 secretion by CD8+ central memory T cells (D) Scatterplots
and linear model fits for the correlations between GFP+ plasma cells and secretion of I1L-21 by
RoRyT+ CD4+ (left) or CD8+ (right) T cells. (E) correlogram of Pearson correlations between the
distribution of KSHV infection within B cell subsets (y-axis) and baseline (Day 0) levels of T cell
subsets. Pearson’s r values with an absolute value greater than or equal to 0.53 are statistically
significant for this dataset. (F) scatterplot and linear model fit for the correlation between GFP+
plasma cells and baseline frequency of CD8+ central memory T cells. For A, C, D and F grey

shading indicates 95% confidence intervals.
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Supplemental Figure 1: Representative gating scheme for T cell immunophenotyping using

lineage definitions as detailed in Table 1.
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Supplemental Figure 2: Total T cell subset frequencies in Mock and KSHV-infected cultures as

in Figure 5.
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