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Abstract. An approach to achieve tunable free-space waveplate operation based on a two-layer cascaded
metastructure is proposed. Phase retardation is varied through changing the axial distance between the two
layers. Full control on the ellipticity of the output wave is attained with wavelength-scale variations in the
axial distance. The theoretically desired characteristics of the metastructures are presented and multiple
physical implementations are suggested based on inverse design topology optimization.

Résumé. Une approche est proposée pour obtenir un retard de phase d’onde électromagnétique accordable
en s’appuyant sur une méta-structure avec deux couches planes en regard l’une de l’autre. Le retard de
phase est ajusté par l’intermédiaire de la variation de la distance axiale entre les deux couches. Un contrôle
complet de l’ellipticité de l’onde en sortie de dispositif est atteint avec des variations de la distance axiale à
l’échelle de la longueur d’onde. Les caractéristiques désirées des méta-structures sont présentées et plusieurs
applications physiques sont suggérées, en s’appuyant sur des optimisations topologiques ou des algorithmes
génétiques par conception inverse.
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1. Introduction

Generation of controllable ellipticity and tunable polarized light in a single device could enable a
variety of applications in optical devices and set-ups, such as polarization cameras and material
characterization. Waveplates are conventionally built using natural birefringent crystals which
provide different effective indices depending on the polarization and direction of the incident
wave. While propagating inside the crystal, a phase shift (retardation) is gradually created be-
tween two orthogonally polarized waves aligned with fast- and slow-axes of the crystal. Due to
the small birefringence (e.g. ∆n ' 9×10−3 for quartz crystal at 633 nm [1]), such devices are typi-
cally multiple-wavelengths thick and less desirable for direct integration purposes. Alternatively,
an approach that may provide potentially thinner solutions which are more suitable for inte-
gration purposes is to use metastructures (a general term we use hereafter referring to metasur-
faces and metamaterials). Orientation, dimensions, material properties, and geometrical shape
of surface elements in metastructures have been optimized to create the desired retardation be-
tween orthogonal polarizations, e.g. to create electromagnetically thin quarter-wave plates and
halfwave plates [2–13], both in transmission and reflection modes. In addition to the smaller size,
designer metastructures provide a platform to enforce application-based characteristics as the
response is not anymore limited by the naturally available birefringent materials. For instance,
attaining specific bandwidth of operation, angular dispersion, loss, etc. may be targeted using
metastructure-based waveplates. In this article we propose a new scheme to attain phase shift
“tunability” in a planar waveplate consisting of two cascaded metastructures and with close to
ideal conversion efficiencies. One of the main advantages of our proposed platform resides in the
fact that the controllable retardation is independent from the specifics of the employed metas-
tructures. We show that by using a pair of metastructures as polarization-dependent beam split-
ters (anisotropic anomalous refraction), it is possible to achieve any amount of retardation sim-
ply through adjusting the distance between the two cascaded metastructures. Polarization sen-
sitive anomalous refraction is implemented using the inverse topology optimization technique.
These techniques have gained increasing amount of interest in the recent years due to relatively
fast convergence and versatile range of applications [14–23]. The tunability can be expressed as
a linear dependence between the retardation and the physical distance between the layers. Fast-
and slow-axes of the structure are also automatically specified in the design and there is no need
for additional steps to determine them, as required in conventional birefringent crystals. Pre-
viously reported tunable waveplates have relied on several reconfigurable elements to achieve
some range of phase tunability, including incorporation of liquid crystals [24–26], phase change
materials [27, 28], and electromechanically actuated capacitor arrays [29]. Our proposed wave-
plates, by contrast, are formed by two metasurfaces whose axial separation is the only movable
part. In the following we will present the theoretical formulation of the transfer function of the
waveplate in Section 2, followed by two sets of numerical examples in Sections 3 and 4. We will
also look into several cases including oblique incidence and extreme refraction.

2. Theoretical formulation

2.1. Idea and formulation: normal incidence

Figure 1 illustrates the idea of the tunable free-space wave-plate configuration. Two planar
metastructures (depicted with roman numbers I and II) are placed parallel to each other and
with a finite distance “d” along the x-axis. Each metastructure has a thickness of “h” in the x-
direction and it is periodic in the y-direction with fundamental periodicity of “L” (one period is
shown in Figure 1). While the metastructures may be designed in the most general format, a two-
dimensional (2D) configuration which is z-invariant in our arrangement is in principle sufficient
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Figure 1. Polarization-dependent phase control. Schematic illustration of the idea of tun-
able waveplate metastructures. Two planar 2D (i.e. z-invariant) metastructures (I and II)
are placed parallel to each other, each with thickness of “h” in the direction of wave illumi-
nation and period of “L” in y-direction. The two metastructures are identical in all aspects,
except their placement orientation. Metastructure II is the mirror image of metastructure I
in both x- and y-directions, i.e., it is rotated 180◦ around the z axis. In the example shown,
metastructures only affect the momentum of TE waves (i.e. electric field polarized out-of-
plane), but not the momentum of TM waves. Due to their arrangement, the change in the
momentum imposed by the first structure is canceled out by the second one, creating a
controllable phase retardation between the two polarizations.

to achieve polarization control and therefore it is not necessary to assume a 3D patterning. The
distribution of the permittivity inside each metastructure is optimized according to the goal
functions discussed in the following.

Waveplates (also known as wave retarders) operate based on creating a phase shift between
two orthogonal polarizations whose orientations are specified based on the optical axis of the
waveplate [30]. Although using metasurfaces have enabled a large variety of ultrathin polarizing
elements, extensive parametric studies are typically required to attain the required phase shift
(retardation) between the orthogonal polarization [5–13]. Quite contrary, here we rely on the
difference in the imposed momentum on the Transverse Electric (TE) and Transverse Magnetic
(TM) incident waves to attain controllable phase retardation [31]. As a result, once the core
metastructure (as in Figure 1, metastructure I) is designed, the system can be tuned to create any
desired phase shift between the two orthogonal incident waves. In other words, the retardation
is determined by the arrangement (e.g. distance) of the two metastructures rather than intrinsic
properties of each surface.

Assuming a monochromatic plane wave normally incident on the structure from left to right in
Figure 1, the role of metastructure I is set to impose an abrupt, polarization-sensitive momentum
change on the impinging wave. Upon refraction through the metastructure I, the TE incident
wave is tilted by an angle of θTE which, as an example, is set at 45◦ throughout this article, and the
TM incident wave is tilted by an angle of θTM 6= θTE which we set at 0◦ hereafter. Metastructure
I therefore operates similar to a polarization beam splitter, yet implemented with a planar and
potentially thin structure. As the wave propagates beyond metastructure I, assuming e jωt time-
harmonic convention, the total electric field may be written as,

Etotal,1 = cosθTM
−1/2(y ·Ei )[ycosθTM −xsinθTM]e− j k0(x cosθTM+y sinθTM)+ jϕTM,1

+ cosθTE
−1/2(z ·Ei )ze− j k0(x cosθTE+y sinθTE)+ jϕTE,1 (1)

C. R. Physique, 2020, 21, n 7-8, 625-639
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indicating the polarization dependent beam splitting effect. Notably, the cumulative propagation
phases of the two polarizations are different and depends on the refraction angles θTM and θTE.
Note that in writing (1) we assume an ideal transmission response, meaning that reflected waves
from metastructure I (for both co- and cross-polarizations) are negligible. Here, Ei is the incident
electric field vector lying in the y–z-plane, k0 is the free space wave number, and ϕTM,1 and
ϕTE,1 are constant phases added to TM and TE waves upon traversing metastructure I. While the
phase difference between the two polarizations varies upon propagation, the two waves are also
angularly separated after metasurface I. In order to restore the original wavefront of the incident
wave we use a second metastructure (as shown in Figure 1 with metastructure II), whose role is to
restore the original momentum of both polarizations. This means that the TE and TM waves must
be rotated by angles of −θTE and −θTM, respectively. Interestingly, in order to restore the original
momentum of the incident wave components it is not required to separately design a second
metastructure from scratch. Indeed, investigating Figure 1, the trajectory of waves traversing
metastructure II are identical to the trajectory of their interaction with metastructure I when they
are time-reversed. As a result, it is sufficient to use an identical design for both metastructures,
while the second structure is rotated 180◦ around the z-axis compared to the first one. Again,
assuming ideal transmission with zero reflection by metastructure II, the total outgoing electric
field beyond metastructure II then takes the following form,

Etotal,2 = e− j k0x [(y ·Ei )ye− j k0d cosθTM+ jϕTM,2 + (z ·Ei )ze− j k0d cosθTE+ jϕTE,2 ]. (2)

Note that the full transmission of both polarizations from the second metastructure is guar-
anteed due to reciprocity [32, 33]. Investigating (2), it is clear that the phase difference ∆Φ =
Φzz −Φy y for the transmitted wave is controllable with the distance “d”, as well as choice of θTM

and θTE. For instance, if∆Φ is set at 90◦, the metastructure in Figure 1 operates as a quarter wave-
plates, while for ∆Φ of 180◦ we will have a half waveplate. This structure is analogous to a bire-
fringent crystal, with the TE wave experiencing lower effective index (fast axis) and the TM wave
is aligned with the slow axis with effective refractive index of 1 (assuming θTE of 45◦ and θTM of
0◦). The waveplate is automatically “cut” in the right plate such that the fast and slow axes are
parallel to the surface of the waveplate. In addition, note that we implicitly assume that if the
metastructures are finite in the y-direction (i.e. a few periods of each surface are present), they
are extended enough such that the waves will not spillover from the sides. As a rule of thumb, for
Gaussian wave of waist w0 focused on metastructure I, the structure must be extended at least to

y = (2w0/cosθ)
√

1+ (λ0d/πw2
0 cosθ)2 +d tanθ, with θ = max(θTM,θTE).

Several techniques may be envisioned to attain polarization selective anomalous refraction.
With electromagnetically thin surfaces, anomalous refraction can be created through carefully
engineering the surface impedance profile to generate an effective constant momentum on the
incident wave [34–36]. Along the same procedure, the surface profile maybe designed anisotropic
(i.e. surface response depends on the polarization of the incident wave) to imprint a polariza-
tion dependent momentum on the wave [37, 38]. The choice of a specific technique to design
such metastructures primarily depends on the wavelength of operation and the available com-
putational resources. Here, we use optimization techniques (details in Sections 3 and 4) to cre-
ate two sets of anisotropic metastructures complying with (2) and (4). While the performance of
the system in Figure 1 is independent of the specifics of metastructures I and II (at the designed
wavelength and angle of illumination), we note that several other properties of the system may
strongly depend on the choice of platform. For instance, gradient metasurfaces have been shown
to possess reasonably broadband behavior and angular stability [39,40]. Such properties may not
be automatically given using other platforms such as inverse design, yet, they can be encoded
into the optimization [19, 22]. Here, we focused on narrowband optimization to demonstrate the
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concept. However, available broadband optimization techniques may be used to create broad-
band devices.

Prior to characterizing the system and providing numerical examples, as a side note it is
also worth mentioning the case of Panchantram-Berry (PB) or geometrical phase metastruc-
tures [41, 42]. Through systematic rotation of a half-waveplate surface element, PB metastruc-
tures create a desired phase profile on their surface which is used to alter the properties of the
transmitted wave. For instance, by creating a linear phase profile (when each surface element
is rotated by a constant degree compared to its neighboring elements), the momentum of the
transmitted wave can be altered according to the slope of the phase profile. PB phase operates
on circularly polarized (CP) incident fields and the imprinted phase flips sign depending on the
handedness of the incident light [41]. As a result, left-and right-hand CP waves experience op-
posite transformations along interaction with PB metastructures. While in this article we focus
on waveplates for orthogonal linearly polarized waves, it is also possible to use PB surfaces to
achieve polarization conversion in a system similar to Figure 1, as explained briefly in the fol-
lowing: Assume metastructure I implemented using PB surface elements to change the direction
of normally incident right-handed CP (RCP) plane waves by an angle of θRCP. Therefore, the left-
handed incident wave (LCP) will be rotated by an angle of θLCP =−θRCP. Metastructure II is a 180◦

rotated version of metasurface I (see Figure 1 caption), thus it will restore the trajectory of each
CP wave to normal direction. We note that due to |θLCP| = |θRCP| for the normal incidence, both
waves will experience equal retardation even though they are first split and then re-combined in
the system. Let us now consider an obliquely incident “linearly polarized” wave (angle of inci-
dence θoblique, defined as the angle between the wave vector and the vector normal to the metas-
tructure I interface), illuminating the system from left to right. The linearly polarized wave can be
expressed as the summation of two CP waves with opposite handedness, each experiencing their
corresponding surface momentum. Following momentum conservation, the refraction angles in
the area between metastructures I and II can be written as,

θ′RCP = sin−1(sinθRCP + sinθoblique); θ′LCP = sin−1(sinθLCP + sinθoblique). (3)

Consequently, by breaking the symmetry of refraction through oblique illumination we achieve
θ′RCP 6= −θ′LCP and RCP and LCP waves experience different propagation phases as they traverse
the system. When re-combined at Metastructure II, the polarization state of the outgoing wave
may be designed at will, for instance the system can be fully transformed the input into the
orthogonal linear polarization (i.e. TE to TM conversion or vice versa). This is especially appealing
considering the straightforward design procedure of PB metasurfaces. While in the following
we focus on linear polarization (i.e. the surface momentum is designed for two orthogonal
linearly polarized waves), the above discussion shows that similar argument is also valid for PB
metasurfaces with proper considerations.

Returning to our design, following (2), the phase difference ∆Φ=Φzz −Φy y can be written as,

∆Φ=−k0d(cosθTE −cosθTM)+ϕcte (4)

in which ϕcte is a constant phase enclosing the local properties of metastructure I. For instance,
assuming θTE of 45◦ and θTM of 0◦, the system can be tuned from quarter waveplate functionality
to half waveplate functionality through changing the separation of the metastructures by λ0/(4−
2
p

2). At 633 nm, this is about 540 nm tuning in the distance between metastructures. The tuning
might be achieved through several effects to create mechanical movement such as using MEMS,
motorized stages, flexible substrates, thermal expansion, electrostatic forces, etc. [43–49]. For
instance, MEMS tunable metasurface devices have been shown to offer micron-scale distance
tunability [45], enough to achieve arbitrary retardation control in our example.

C. R. Physique, 2020, 21, n 7-8, 625-639
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2.2. Oblique incidence

Equation (4) is written for the case of normal illumination on the system. Interestingly, the
design in Figure 1 may also provide a platform for dual (or multiple) functionality under oblique
incidence. Let us consider an incident angle of θinc (angle between the wave vector and the
vector normal to the metastructure I interface, in the plane of incidence). Assuming θinc to be
small enough such that the structure is still reflectionless, the imprinted momentum enforces the
refracted angles of the TM and TE waves to be (in the region between metastructures I and II),

θ′TE = sin−1(sinθTE + sinθinc), θ′TM = sin−1(sinθTM + sinθinc). (5)

As a result, the phase shift between the orthogonal polarizations is a function of incidence
angle following,

∆Φ′ =−k0d(cosθ′TE −cosθ′TM)+ϕ′
cte. (6)

There are several possibilities to use such form of dependence on the illumination angle. For
example, one can imagine a structure specifically tuned to create half waveplate response for
normal incidence and quarter waveplate response for oblique incidence. As another example,
one can imagine a system correcting unwanted phase shifts depending on the angle of incidence.
Clearly, exploiting the angular response of the system requires metastructures to be designed
with reasonable angular stability. As mentioned, gradient metasurfaces typically maintain their
performance over a wide range of incident angles [39, 40]. If other platforms are used, this
property is to be built in the optimization procedure [19, 22].

3. Numerical results: Part I

In this section we present a set of numerical results to elucidate the principles of the operation
of the proposed system, implementing a tunable waveplate. While the principles of the opera-
tion are similar, the same functionality may be implemented in several platforms and with dis-
tinct characteristics that maybe required for a specific application. Fabrication limitations, de-
sired operational bandwidth and dispersion characteristics, availability of materials, desired an-
gular response, and insertion loss are some of the main parameters that affect the choice of plat-
form. Here, we start by an inverse-designed topology-optimized dielectric structures exploiting
the entire design space (Section 3) and continue with topology-optimized complex multilayer
structures with the goal of better compatibility with currently available fabrication techniques.

Figure 2 shows a set of four optimized geometries to achieve waveplate operation, following
the schematic demonstration in Figure 1 (four separate examples are provided). The distribution
of the permittivity inside each of the four metastructures is optimized such that the structure
imprints zero momentum shift on the incident TM wave (θTM is 0◦) and constant momentum
shift on the incident TE waves (θTE is 45◦). We exploit low-loss materials (e.g. TiO2 with permit-
tivity of approximately 5.5 at 633 nm [50]) as shown in panel (a), as well as higher index mate-
rials (e.g. Silicon with approximate permittivity of 11.7 at 3000 nm [51]), as shown in panel (b).
In each case, topology optimization [52] is used to find the distribution of permittivity, enforc-
ing a quantized pattern as much as possible. In this regard, we are looking for patterns consist-
ing of either air (blue) or dielectric (pink). This is especially clear in Figure 2b where we could
achieve a bi-material pattern (Silicon and air) due to high refractive index of Silicon. We also note
that the availability of materials play a crucial role on the size of the metastructures. In our ex-
amples shown in Figure 2, desired functionality was achieved over a thickness of approximately
0.8λ0 at 633 nm and 0.25λ0 at 3000 nm. Clearly, adding additional constraints on the optimiza-
tion (such as angular stability, broadband operation, less granularity, etc. as discussed above) will
entail larger structures. In the following, we will present the simulation results for the structure
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Figure 2. Inverse-design topology-optimized permittivity distributions to achieve
polarization-dependent momentum control. The distribution of relative permittivity
inside metastructure I in Figure 1 for θTE of 45◦ and θTM of 0◦, optimized for two different
thickness at (a) 633 nm when colors indicate TiO2 and air at the extreme values, and
(b) 3000 nm when colors indicate Si and SiO2 at the extreme values. In each case, one unit
cell in the y-direction is shown. The second case in panel (a) exhibits graded permittivity
distribution, while the three other examples are approximately quantized.

shown in Figure 2a-left panel. The other three examples offer similar performances. The overall
response of the system as shown in Figure 1, is indeed predominantly set based on the accuracy
in the design of metastructure I. As a result, as long as efficient polarization-dependent beam
splitting is achieved with metastructure I, the entire system operates efficiently following (4).

Enforcing θTE to be 45◦ (and θTM being 0◦) requires a periodicity of 1.4λ0 for the structure
in the y-direction [40]. This is approximately 900 nm at the design wavelength of 633 nm in the
visible range. Optimization goals are set as simultaneous total transmission into zeroth order
mode for the TM polarization and total transmission to the first order Floquet mode (n = 1) for
the TE polarization. We note that the choice of θTE is arbitrary, and as it can be seen in Section 3.1,
it merely affects the sensitivity of the waveplate operation to variations in the distance between
the two metastructures. On the other hand, extreme angles of propagation in the area between
metastructure I and II may be more difficult to achieve while maintaining full transparency.
Figure 3 demonstrates the performance of the optimized structure shown in Figure 2a-left panel.
Simulations are performed in COMSOL Multiphysics® using the frequency domain solver [52].
The optimized topology is capable of transforming more than 99% of the incident power into the
desired diffraction modes for both polarization states of the incident wave. While the distribution
of the wave inside the optimized layer exhibits complicated behavior, the evanescent decay is
quite rapid and after a distance of approximately half a wavelength the desired scattering mode
is dominant. This implies that when assembling the system in Figure 1, we can bring the surfaces
as close as 300 nm for operation at 633 nm wavelength. Inspecting the field distributions in
Figure 3, we note that the y-component of the electric field shown in the lower panel is not the
tangential component of the field in the dielectric region. As a result, this component is mostly
discontinuous across the dielectric region. This does not imply higher Q modes in the case of TM
illumination. Indeed, one might look at the distribution of the z-component of the magnetic field
in this case, which is continuous across all layers.

In the next step, two metastructures with the profile shown in Figure 2a-left panel are arranged
cascaded (see Figure 1) with proper rotation of the second metastructure to achieve controllable
retardation. The results are qualitatively portrayed in Figure 4 where we show time snapshot of
the electric field distribution when the cascaded system is illuminated with TE and TM fields,
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Figure 3. Polarization beam splitting metastructure. Snapshot in time of numerical simu-
lation of electric field distribution when metastructure shown in Figure 2a-left panel is il-
luminated from left side with a plane wave (normal to the structure interface, i.e. θinc = 0).
The upper panel shows the distribution of the z-component of the electric field for TE illu-
mination (i.e. Ei = E0z z). The entire incident energy is funneled into the first order trans-
mission Floquet mode, designed at θTE equal to 45◦. The topology-optimized metastruc-
ture creates a complex near-field in the vicinity of the structure, however the evanescent
waves decay rapidly. The lower panel shows the distribution of the y-component of the
electric field for TM illumination (i.e. Ei = E0y y). The entire incident energy is funneled
into the zeroth-order transmission Floquet mode, indicating θTM equal to 0◦. Note that in
this case, the plotted component of the electric field (i.e. y-component) is not tangent to
the metastructure pattern boundaries. As the result, the field distribution is discontinuous
at the air-dielectric interfaces. Here, we have used COMSOL Multiphysics® frequency do-
main solver [52]. The structure is truncated with periodic boundaries at the top and bot-
tom, linked to two periodic ports on the left (for excitation) and right. The polarization of
the incident field is set at the ports and all incident waves are normal to the surface of the
optimized structure, i.e. propagating in the x-direction.

respectively shown in the upper and lower panels. As expected, the wave experiences a different
trajectory in the area between the two metastructures depending on the polarization of the
incident wave. As viewed from the outside, normally incident waves experience polarization-
dependent retardation as they traverse the system. Here we show four examples with the phase
delay between the two polarizations changing between 0◦ (Figure 4a), 90◦ (Figure 4b), 180◦

(Figure 4c), and 270◦ (Figure 4d). Clearly, any other value of phase retardation can be achieved by
adjusting the distance between the two layers in the values between such distances. Each degree
of change in retardation requires a movement of approximately 6 nm in the distance between
metastructures (see (4)).

The results are quantitatively studied in Figure 5 where we show the transmission amplitudes
and phases as a function of the separation “d”. As expected, the transmission amplitudes (Fig-
ure 5a) are very high for both polarizations and above 95% power transmission for TE wave
and above 99% power transmission for the TM wave are achieved, independent of the spacing
between metastructures. This is the direct result of enforcing zero reflection in the topology-
optimized design of metastructure I, which ensures minimal Fabry–Pérot effects. The amplitude
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Figure 4. Tunable retardation. Snapshot in time of the numerical simulation of electric field
distribution (both polarizations) for different values of “d” parameter, as shown in Figure 1.
Metastructures I and II are identical and 180◦ rotated version of each other. Due to proper
cascading, TE and TM waves experience different trajectories in the area between the two
metastructures, but they merge after the second metastructure. The axial separation between
metastructures (i.e. “d”) is chosen such that the phase shift between two polarizations is (a) 0◦,
(b) 90◦, (c) 180◦, and (b) 270◦. Details on the simulation setup are given in the caption of Figure 3.
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Figure 5. Tunable waveplate characterization. Simulation results for (a) Transmission am-
plitude of the TE (blue) and TM (red) normally incident plane waves from the waveplate
system (shown in Figures 1 and 2a-left panel). Due to enforcing zero reflection in the op-
timization procedure, no resonance effect is observed. (b) Amplitude ratio defined as the
ratio between the transmission amplitude of the TE wave divided by the transmission am-
plitude of the TM wave. (c) Transmission phase of the TE (blue) and TM (red) normally inci-
dent plane waves. Phases are recorded at constant positions regardless of the distance “d”.
Since the TM refraction angle is chosen at 0◦, i.e. θTM = 0, the output phase is not a function
of “d” for this polarization. (d) Phase difference between the outgoing waves, compared to
the analytical expression given in (4).

ratio between the transmitted TE and TM waves is also shown in Figure 5b, maintaining approx-
imate ratio of 1 across all values of “d”. The transmission phase of the two polarization compo-
nents versus the spacing “d” is shown in Figure 5c. Note that the inner refraction angles are set at
θTM = 0◦ and θTE = 45◦. As a result, the outgoing phase of the TM wave is not a function of “d”,
merely maintaining a constant value due to the local constant phases added by metastructures.
The transmission phase of the TE wave, on the other hand, follows a slope of −k0(cosθTE − 1),
as the sampling ports are positioned at fixed distances from each other. Figure 5d illustrated the
simulated phase difference ∆Φ=ΦTE−ΦTM compared with the expected linear variation calcu-
lated in (4), showing very good agreement.
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3.1. Extreme bending

Figure 5d (along with the approximately constant amplitude ratio reported in Figure 5b) illus-
trates the tunable waveplate operation of the system. As mentioned before for our choice of re-
fraction angles an axial distance variation of approximately 540 nm is required to change the re-
tardation by 90◦ (6 nm change for each degree of retardation). More rigorously, this length can be
expressed as a function of both refraction angles as,

∆dπ/2 = λ0

4|cosθTE −cosθTM| . (7)

Evidently, by maximizing the denominator in (7) we can increase the sensitivity of the wave-
plate. As an example of this high sensitivity, we have used topology optimization to design metas-
tructures with θTM of 0◦ and extreme θTE of 85◦. Clearly, the extreme wave bending would entail a
more sophisticated optimization procedure [36]. Here, we adhere to the same size and materials
as used for the previous example to provide a sample design. The optimized metastructure cou-
ples approximately 98% of the incident TE wave power to the first Floquet mode and more than
99% of the incident TM wave to the zeroth order transmission mode. Figure 6a visually illustrates
the performance of the waveplate when adjusted to create 180◦ phase shift between TE and TM
waves (half-wave plate operation). Note the extreme bending in the area between the two metas-
tructures under TE illumination. It is worth mentioning that power conservation requires that
amplitude of the refracted wave to be inversely related to the incident normal wave [36]. For this
reason, the wave in the area between the two metastructures shows a higher amplitude although
it carries the same amount of power as the incident wave. There are no internal reflections or
resonance behaviors involved and the wave smoothly propagates from left to right.

Due to high angle of refraction for the TE wave, cascading the two surfaces is quite challeng-
ing due to the possibility of internal reflections. This is quantified in Figure 6b, where the trans-
mission amplitude of both polarizations is studied for different values of separation. Indeed, and
in spite of the internal extreme bending, we are able to achieve a range with width of approxi-
mately 2000 nm where transmission amplitudes are approximately constant. The internal reflec-
tions create resonances beyond these points, which are to be avoided. In this range, as shown
in Figure 6c, the phase shift between the two linear polarizations approximately follow the ex-
pected trajectory in (4). We note that the optimal phase trajectory is calculated for a reflection-
less structure. As a result, when there is residual reflection from metastructures, or internal reso-
nances are created, the phase shift differs from the optimal value reported in (4). Here, to switch
from quarter-wave plate operation to half-wave plate operation at wavelength of 633 nm (i.e.
90◦ retardation change), the separation must be changed approximately 170 nm (less than 2 nm
change for each degree of retardation). As discussed before, depending on the application, the
sensitivity of the waveplate may be controlled through proper choice of θTE and θTM.

4. Numerical results: Part II

The results presented in Section 3 utilized the entire design space to provide topology-optimized
metastructures for tunable waveplate operation. In this section we report another example de-
signed using the genetic algorithm optimization technique and enforcing a multi-layer structure
(similar to [22]), suitable for possible fabrication. Structure is designed at mid-infrared (3000 nm)
in form of silicon posts embedded in alumina (shown in Figure 7a). Silicon posts are approxi-
mately 230 nm tall in x-direction and the minimum width of each post is more than 200 nm in
y-direction. Genetic algorithm minimization [53] is used to define the optimum material in each
pixel (total of 107 degrees of freedom). We assume θTM to be 0◦ and θTE of 45◦. The correspond-
ing transmission amplitudes and phase retardation between the two polarizations are shown in
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Figure 6. Tunable retardation with increased sensitivity. (a) Snapshot in time of numer-
ical simulation of electric field distribution (both polarizations) for “d” parameter set at
2900 nm to provide a phase shift of 180◦ between two polarizations. Due to proper cascad-
ing, TE and TM waves experience different trajectories in the area between the two metas-
tructures, but they merge after the second metastructure. (b) Transmission amplitude of the
TE (blue) and TM (red) normally incident plane waves from the waveplate system when the
internal angles are set to 85◦ for TE wave and 0◦ for the TM wave. (c) Phase difference be-
tween the outgoing waves, compared to the analytical expression given in (4), plotted ver-
sus separation “d”. Details on the simulation setup are given in the caption of Figure 3. Here,
due to the extreme bending angle and the enhanced sensitivity of response to the granular-
ity of the metastructure, identical mesh profiles are used at the optimization and simula-
tion stages. The response sensitivity may be controlled as a parameter in the optimization
process.

Figures 7b and 7c, respectively. Here, there are residual unwanted scattering in metastructure I
(which may be eliminated with further genetic algorithm optimization) around 14% for TE and
10% for TM waves. As a result, there is a fluctuation in the amplitude of the desired outgoing wave.
The phase profile, however, is more resilient to such scatterings, as can be seen in Figure 7c.

5. Conclusions

We have numerically presented a new approach to achieve tunable waveplate operation us-
ing two cascaded metastructures. Metastructures are identical and designed to operate as
polarization-sensitive beam splitters with designer refraction angles. It is shown that with proper
arrangements, the phase delay between the two linearly polarized illuminating waves can be
tuned by changing the distance between the metastructures. This can be envisioned through us-
ing MEMS, motorized stages, flexible substrates, or thermal expansion. The full retardation con-
trol (and hence control on the ellipticity of the outgoing wave) is attainable through wavelength-
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Figure 7. Multi-layer tunable waveplate. (a) Distribution of relative permittivity inside
metastructure I. The pink color corresponds to silicon posts and the light blue background
shows the alumina substrate. (b) Transmission amplitude of the TE (blue) and TM (red)
normally incident plane waves from the waveplate system shown in panel a. (c) Phase
difference between orthogonal polarizations of the outgoing wave, compared with the
analytical expression given in (4), plotted versus separation “d”.

scale axial distance variations. The internal refraction angles maybe used to control the sensi-
tivity of the waveplate. Dual or multiple functionality is also possible by changing the incident
angle. Implications of using geometrical phase (PB phase) to achieve linear polarization conver-
sion is also discussed. Topology-optimized physical designs of waveplates for operation at visi-
ble and mid-infrared are presented. We consider both cases of full design space and restricted
multi-layer optimizations using the commercial numerical solvers. In addition to tunable wave-
plate operation at typical cases of quarter and half-waveplate, the proposed structure is espe-
cially interesting to restore the desired polarization when unwanted phase shifts are created be-
tween orthogonal polarization components, in complex multi-elements setups. One of the key
characteristics of the presented approach relies on the decoupling between the induced phase
shift and the individual properties of the metastructure. We showed that the phase shift can be
controlled with variation of a single physical parameter. This significantly reduces the complex-
ity of the design procedure. With the growing interest in using metasurfaces in new realms (e.g.
for non-electromagnetic waves [54–56] or non-classical waves [57–60]), our approach may find
interesting applications in the broader metamaterial community.
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