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ABSTRACT (in english)

To understand protein structure emergence is to comprehend the evolutionary transition from messy
chemistry to the first heritable molecular systems. Early proteins were probably flexible in structure,
promiscuous in activity and ambiguous in sequence. Moreover, first sequences were presumably composed
of prebiotically plausible amino acids from endogenous and exogenous sources which form only a subset
of the extant protein alphabet. Here we investigate the effect of most recent additions to the amino acid
alphabet on protein structure/function relationship and the properties of random proteins as the evolutionary
point-zero for the earliest sequences as well as for proteins emerging de novo from the non-coding parts of
the genome. Random or never born proteins are of a special interest for the contemporary biology as they
unveil the unexposed side of the protein sequence space. We constructed an in silico library of random
proteins with the natural amino acid alphabet, analyzed its structure/disorder/aggregation content and
selected 45 sequences for subsequent experimental preparation and biophysical characterization. We
observed that structure content in random sequence space does not differ significantly from the natural
proteins. However, the analyses of the aggregation propensity showed a significant level of optimization in
natural protein space. Experimental characterization led to the surprising discovery of random disordered
proteins being the most tolerated sequences upon the in vivo expression. Next, we designed a high
throughput pipeline for experimental library preparation with proteins composed either of canonical 20
amino acids as well as of prebiotically plausible set of 10 amino acids. In order to implement this design
experimentally we built CoLiDe — COmbinatorial Library Design tool based on degenerate codon
composition optimization. We designed the libraries using CoLiDE, prepared them in a cell free expression
system, and tested their properties by means of chaperone interaction analysis and selective proteolysis.
Preliminary results suggest structure formation in prebiotic amino acid library and higher disorder content
in canonical amino acid library of random proteins. Subsequently, as a case study we analyzed structure
and function of contemporary protein dephospho coenzyme A kinase upon substitution of its aromatic
amino acids by their prebiotically plausible counterparts. This analysis showed that protein function can be
maintained in the absence of aromatic amino acids although structure is inevitably destabilized. Moreover,
we observe significant structural changes upon ligand binding in aromatic-less mutants foreshadowing the
essential effects of ancient cofactors on early protein stabilization.

Overall, this thesis represents one of the first windows into properties of evolutionary early
proteins, with respect to prebiotically plausible amino acids. Its results imply that even proteins composed
of prebiotically early amino acids have structural and functional propensities and could play an important

role in the early biosphere.



ABSTRAKT (in czech)

Porozuméni piivodu prvotnich proteinti je pochopenim pfechodu komplexnich chemickych smési k prvnim
biologickym systémiim. Prvotni proteiny byly pravépodobn¢ strukturné flexibilni, s promiskuitni aktivitou
a se sekvencemi predstavujicimi spiSe fyzikaln¢ chemické vlastnosti nez definované sekvencni motivy.
Rané proteiny byly rovnéz pravdépodobné sloZzeny pouze z prebioticky dostupnych aminokyselin z
endogennich a exogennich zdroji. V této praci jsme se zaméfili jak na studium vlivu nejpozdéjsich
prirtstkli aminokyselinového repertoaru na strukturu a funkci proteinti tak na charakterizaci nahodnych
sekvenci jakozto prekurzorti pro vznik nejranéjsich tak i soucasnych proteinii generovanych z ptvodné
transkripcné/translacné neaktivnich oblasti genomu. Vyzkum nahodnych proteinti je obzvlast zajimavy z
pohledu neprobadané strany svéta proteinovych sekvenci. V této praci jsme charakterizovali in silico soubor
nahodnych proteinovych sekvenci s pfirozenymi vyskyty aminokyselin pomoci predikce sekundarnich
struktur/proteinové nesuporadanosti/agregace a rovnéz jsme vybrali 45 sekvenci pro nasledujici in vitro
charakterizaci. Pomoci analyzy in silico knihovny jsme mohli konstatovat, ze vyskyt sekundarnich struktur
v ndhodném sekvencnim prostoru neni vyrazn€ odlisny od toho v ptirodnich proteinech. Na druhou stranu,
evoluéni optimizace se nejvice projevovala v antiagregacnich vlastnostech pfirozenych proteinovych
sekvenci. Experimentalni charakterizace vedla k piekvapivému odhaleni, Ze neuspotfaddané sekvence jsou
nejvice tolerovanymi ndhodnymi proteiny in vivo. Nasledné jsme pripravili experimentalni strategii pro
charakterizaci proteinovych knihoven slozenych z 20 a z prebioticky dostupnych 10 aminokyselin. Za
ucelem experimentalni charakterizace téchto knihoven jsme navrhli algoritmus CoLiDe pro optimizaci
aminokyselinovych pomérit v rozsahlych knihovnach ndhodnych proteini pomoci kombinace
degenerovanych kodond. S pouzitim CoLiDe jsme piipravili obé knihovny a otestovali jejich vlastnosti in
vitro pomoci selektivni proteolyzy a vyhodnoceni interakci s chaperony. Predbézné vysledky naznacuji
vys$§i pritomnost struktury v knihovné proteinu s prebiotickym aminokyselinovym sloZzenim a vysokou
neusporadanost knihovny slozené ze vSech 20 proteinogennich aminokyselin. V posledni studii této prace
jsme vyhodnotili vliv substituce v§ech aromatickych aminokyselin v sekvenci defosfo koenzym A kinazy
jejimi prebiotickymi protéjsky. Pomoci této modifikace jsme ukazali, ze protein je schopen funkce pfi
absenci aromatickych aminokyselin i pfes zna¢nou destabilizaci terciarni struktury. Pozoruhodnym
vysledkem byla vyrazna zména struktury proteinu bez aromatickych aminokyselin pfi interakci s ligandy
jenz naznacuje klicovou roli kofaktorti pti stabilizaci ranych proteinovych struktur.

Tato prace je vhledem do evolu¢né nevyvinutého sekvencniho prostoru proteinti s diirazem na
charakterizaci rané proteinové abecedy. Vysledky disertace naznacuji, Zze proteiny sloZzené z ranych
aminokyselin disponuji strukturnimi a funkénimi vlastnostmi jenz mohly hrat dilezitou roli v Casech

prvotniho vyvoje biosféry.
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INTRODUCTION

1. Proteins

Proteins are versatile functional biopolymers utilised by all contemporary biological systems. Protein
functions include chemical catalysis, interactions with ligands, processing of cellular genetic information,
and mediation of intra and extracellular signalisation. Structurally, proteins are linear polyamide
condensates of various lengths distinguished by their primary sequence, i.e., a specific succession of
monomeric building blocks — amino acids. However, the most striking feature of proteins is their ability to
fold into the compact three-dimensional structure. The ability of proteins to fold can be defined by local
and global structural transitions of a polypeptide chain. On a local level, C=0 carbonyl and N-H secondary
amine groups of protein backbone interact to create secondary structures. Secondary structures manifest in
helical backbone organisation if interactions are short-ranged or in pleated backbone stretches in the case
of long-range interactions between distant residues of the protein chain. Further local arrangements of a

single backbone combined with a global transition of protein chain form a unique spatial organisation

A

— Lys — Ala — His — Gly — Lys — Lys — Val — Leu - Gly — Ala -

B

Figure 1. Overview of protein structures. (A) Primary structure represented as amino acid sequence of protein.
(B) Secondary structure is characterized by local arrangement of protein backbone. (C) Tertiary structure is a
global conformation of protein chain and (D) quarternary structure is a composition of multiple protein chains.
Figure adapted from !
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known as tertiary structure. In some proteins, the final structure is composed of several tertiary units. This
composed arrangement of several protein chains represents the quaternary protein structure (Fig. 1) L.
Mechanistically, protein folding can take place independently, via interaction with ligands (folding
upon binding) or with the help of specialised assisting proteins — chaperones. Independent protein folding
relies on a compact core formation with hydrophobic amino acids situated in the protein interior and polar
amino acids on the protein surface. The resulting collapsed structure is protected from spontaneous
unfolding by hydrophobic interactions in the core as well as by polar interactions with the solvent on the
exterior. Furthermore, this stabilisation can be established by the interactions with different ligands —
proteins, nucleic acids, or small molecules. In fact, a particular class of proteins — intrinsically disordered
proteins (IDPs) — undergo the folding process primarily upon interaction with a ligand. These conditional
folders attracted significant attention from the scientific community in the last two decades because of their
unconventional structural, functional, and material properties (reviewed in ?). They contrast folded proteins
in amino acid composition, absence of a stable hydrophobic core, and low sequence conservation levels .
Functionally, such proteins are often promiscuous (i.e., interact with several binding partners) and serve as
conditional binders in transcriptional and signalling pathways *. The last and equally important track to
protein structure is assisted folding by chaperones and chaperonins. These molecules evolved specifically
to facilitate the complex folding pathways and played a significant role in the expansion of the protein

structural universe.

2. Evolution of proteins

The evolution of proteins and their structure presents a thought-provoking conundrum. It is estimated
that 107-10® existing species with 10°~103 proteins per proteome cover approximately 10'°-10"* different
protein variants on Earth >, These numbers represent a minuscule fraction of the 103210’ possible amino
acid chain permutations given by estimates of average protein lengths in contemporary genomes . How
did Nature discover that specific sequence sub-space? Considering 10* prokaryotic cells on Earth with
turnover rates of ~8x10%° cells per year, and mutation rates of 4x1077 per cell per generation, we can
estimate at most ~2x103? total amino acid mutations in microbial proteins over 4 Gy history of life, which
is still a negligible number in comparison to the vast protein sequence space **!°.

The first conserved functional molecules were likely related to simple biopolymers that were
available when life originated. In the case of proteins, experimental and theoretical considerations suggest
that early sequences consisted of abiotically available amino acids '"'?. The prebiotic condensation of
peptide bonds could be achieved simply by the elimination of water. Synthesis could occur by means of

ATP/Mg*" dependent chemical catalysis as was suggested by Martinez-Bachs et al. or by wet-dry cycling

of the amino acid mixture on the mineral surfaces !>, Interestingly, short prebiotically-plausible dipeptides
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were shown to exhibit catalytic activities such as asymmetric aldol condensation and even peptide bond
synthesis !>1¢, However, the identity of the first prebiotic peptide sequences remains obscured.

In order to identify the common precursors of contemporary proteins, Alva et al. exploited a
combination of both sequence and structure similarity comparisons and derived 40 ancient sequences found
among otherwise non-homologous protein families !”. These peptides are hypothesised to be vestiges of
early life, and, interestingly, 14 of them establish folds by repetition. A different approach to the
identification of protein evolution relics was taken by Caetano-Annoles and coworkers. The authors of that
study built on an observation that protein structure distribution in nature is driven by a power-law — few
folds are used in most proteins, while most of the folds are utilised a few times. Based on phylogenetic
analyses of the most widely occurrent folds, the authors discovered that most ancient protein structures
included P-loop NTPases (SCOP fold ¢.37), TIM beta/alpha barrel (c.1), NAD(P)-binding Rossman fold
domains (c.2), DNA/RNA binding 3-helical bundle (a.4), and oligonucleotide/oligosaccharide binding fold
(b.40) (Fig. 2) '*2.

/

Figure 2. Most ancient protein folds by Caetano-Annoles and coworkers 32!, (A) P-loop NTPase, (B) TIM P/a
barrel, (C) NAD(P)-binding Rossman fold, (D) DNA/RNA binding 3-helical bundle, (E)
ololigonucleotide/oligosaccharide binding fold

The functions of these folds are notably connected with nucleotide and carbohydrate metabolism.
Interestingly, some of the peptides identified by Alva et al. are prevalent in these ancient folds . Goldman
et al. investigated translation-related proteins as translation is considered an exemplary early protein
function ?°. The study reported that 9 of the 10 most ancient folds identified by Caetano-Annoles et al. are
widespread in these proteins; their functions involve RNA modification, binding, and phosphoryl transfer.
Indeed, recent studies indicate that RNA-binding by flexible random coils was the ancestral function of

proteins and that RNA facilitated the formation of first folded proteins 4. Furthermore, protein structural
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flexibility is connected to higher sequence evolvability (i.e., the ability of a sequence to adopt new functions
or structures rapidly); it has been shown that evolutionary younger protein families feature higher levels of
structural flexibility 2525,

Considering the sequences of early peptides, the first proteins were likely characterised by global
physicochemical properties rather than specific sequence motifs. This condition could be described by
Eigen’s quasispecies model, which postulates that in the absence of precise repair mechanisms, the
evolution is not directed towards the fittest sequence but towards the “cloud” of many sequences ». These
earliest precursors of modern proteins were probably sufficient to provide the simplest functional and
structural benefit to already existing catalytic structures of RNA. Subsequently, when the first protein-

coding was established, these sequences reached opportunities governed by classic evolution mechanisms

— mutate, recombine, and be selected up to the following generations.

3. Evolution of protein alphabet

The evolution of proteins is inevitably intertwined with the evolution of its coding DNA and, from the
global perspective, with the evolution of genetic code itself. The amino acid repertoire of contemporary
proteins is the result of constant organismal adaptation to the environment. Since biosynthetic possibilities
of early life must have been limited, first proteins could emerge mainly from prebiotically available amino
acids. These could be provided either by endogenous (formed on Earth) or exogenous (brought by
extraterrestrial material, e.g., meteorites) sources. Despite the lack of direct evidence for the exact form of
the early amino acid alphabet, the research community inclines to the scenario of alphabet divergence from
simple prebiotic to more complex biosynthesised amino acids !!:1%17:24.30.31,

Miller and Urey’s seminal experiment tested the abiogenesis of complex organic compounds from
simpler prebiotic precursors *. The late analyses of Miller and Urey experiments showed that more than
22 different amino acids could be created by spark discharge in the mixture of water, methane, ammonia,
and hydrogen gas. Among these 22, seven constitute part of the modern amino acid alphabet (V, G, A, D,
S, E, and F). However, none of the contemporary cationic (H, K, R) nor the aromatic (W, Y, F) amino acids
were detected. By contrast, many other non-proteinogenic amino acids were identified *2. More elaborate
syntheses such as the Strecker reaction and cyano sulphide base reaction demonstrated the abiotic formation
of other amino acids not found in the spark discharge experiment. However, the connection of these
syntheses to actual prebiotic conditions is yet to be established 3¢, Similarly, a simulated chemical
environment of oceanic hydrothermal vents was shown to be permissive for early amino acid formation
under high pressure and temperature conditions *>*°, In addition to endogenous sources, meteorite analyses
consistently show a variety of non-biogenic and biogenic amino acids (G, S, A, T, D, V, E, L, I, F, and

Y) ¥73%. These findings led to the two independent meta-analyses summarising numerous reports on
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prebiotically plausible amino acid sets from endogenous and exogenous sources. These reports agree on an
early amino acid alphabet consisting of approximately 10 members — G, A, D, E, V, I, L, P, T, and S ¥+,
Aromatic amino acids were among the latest arrivals into the protein amino acid alphabet (Table 1) 34,
Interestingly, a combination of quantum chemical computation and biochemical experiments allowed
Granold et al. to hypothesise that these late arrivals were introduced consequently with early oxygenation
of the atmosphere to protect cells against destruction by oxygen free radicals *'.

Analyses of the contemporary protein world also provide some clues on the early alphabet
evolution. Gulik ef al. analysed PDB data and showed enrichment of prebiotic amino acids A, G, D and V
in the most conserved parts of the enzymes — active centres 2. Sobolevsky and Trifonov performed in silico
translation of prokaryotic genomes and analysed most conserved short octapeptide sequences that allowed

to derive a temporal order of amino acids, with the most conserved ones being the earliest *°.

Table 1. Temporal order of amino acid introduction according to Trifonov and Higgs&Pudritz *4°. Both
studies derive a relative ages of amino acid introduction based on numerous criteria

amino acid Trifonov rank Higgs & Pudritz relative rank
relative age age
G 35 1 1.1 1
A 4 2 2.8 2
D 6 3 43 3
v 6.3 4 8.5 5
P 7.3 5 10 9
S 7.6 6 8.6 6
E 8.1 7 6.8 4
T 9.4 8 11.7 10
L 9.9 9 9.4 8
R 11 10 13.3 13
N 11.3 11 14.2 14
1 11.4 12 9.1 7
Q 11.4 13 14.2 14
H 13 14 133 13
K 133 15 12.6 11
C 13.8 16 142 14
F 14.2 17 13.2 12
Y 15.2 18 142 14
M 15.4 19 14.2 14
W 16.5 20 142 14
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From the opposite side of the evolutionary timeline, the appearance of late coming amino acids
tryptophan and cysteine were approached in two studies **4°. In the former study, Fournier ez al. have shown
that tryptophan was introduced into the modern amino acid alphabet only after tyrosine, following the
tyrosyl-tRNA synthetase divergence. This evolutionary fork allowed tryptophan to be incorporated into

proteins through newly developed biosynthetic pathways *

. In the latter study, Fujishima et al
demonstrated that the amino acid repertoire could be extended through biosynthetic pathways using
enzymes composed of an alphabet lacking the newly synthesised amino acid. The cysteine metabolic
pathway was successfully engineered to absent both sulphur-containing amino acids — cysteine and
methionine *.

The question if the early amino acid alphabet exhibits sufficient structure and function forming potential
was investigated both computationally and experimentally. Virtual mutagenesis of modern protein
sequences toward the early amino acid alphabet showed a surprising degree of structural information
conservation *, Furthermore, the Akanuma group’s experimental studies suggested that stable protein folds
can be constructed from the prebiotically plausible 10 amino acid alphabet *’. However, the function of
such proteins was still dependent on the presence of the late amino acids. A recent study by Longo et al.
showed that an ancestrally reconstructed peptide sequence derived from P-loop NTPase and assembled
from prebiotically available amino acids maintains both structure and function. In addition, the
reconstructed peptide exhibited coacervation in the presence of RNA 3°.

In summary, the development of the protein alphabet and the emergence of the first proteins is still
veiled by uncertainties brought by the constant works of evolution. Although novel proteins do emerge
consistently from the genome’s non-coding parts, their amino acid composition is given by modern genetic
code architecture *8. Contemporary experimental methods for “reverse evolution” of proteins towards the
early alphabet are limited by already optimised scaffolds which do not necessarily represent the earliest
structure precursors. While computational approaches such as ancestral sequence reconstruction could shed
light on the evolutionary paths, the sequences beyond the last universal common ancestor (LUCA) are
unreachable in this way *. In addition to these top-down methods, the bottom-up approach relying on
creating new proteins within the defined amino acid repertoire, lacking any similarity to conserved natural
sequences, could bring a desired insight into the early protein development. Here, as in many other fields,
Richard Feynman’s famous quote “What I cannot create, I do not understand.” remains relevant and

inspiring.

4. Cofactors and protein evolution

While a considerable amount of protein functions rely solely on amino acid chemistry, at least 30 % of

all proteins in living cells operate through organic or metal-based cofactors. Four decades ago, it was
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proposed that some nucleotide-based cofactors (e.g., ATP, NAD(P)H, and coenzyme A) may represent
remnants of ancient ribozymes *°. This hypothesis is supported by the observation that some of the most
ancient protein folds are related to the nucleotide-binding cofactors, i.e., P-loop NTPases bind ATP and
GTP, ABC transporters bind ATP and Rossman fold proteins are able to bind NAD(P) and FAD 33,
Goldman et al. analysed previously reported 286 enzyme families dated back to LUCA and derived 10
ancient enzyme groups based on previously derived omnipresent sequence and structural motifs in all
kingdoms of life. All of these enzyme families represented cofactor binding (specifically metal binding)
proteins 434,

In addition to their role in catalysis, cofactors were shown to facilitate protein folding, illustrated in an
example of ATP and NAD binding to glyceraldehyde-3-phosphate dehydrogenase 3. From a
thermodynamic point of view, free energy released by cofactor/protein binding is comparable to the free
energies of protein folding (~10-15 kcal/mol vs 10-20 kcal/mol, respectively) *’. Thus, it was hypothesised
that protein function and its conformation could have been selected by ligand binding from the early pool
of disordered proteins %°. Furthermore, it was recently demonstrated that ATP promotes the peptide/DNA
complex coacervation (or liquid-liquid phase separation), foreshadowing one of the potential mechanisms
of the early compartments formation and global biological system organisation 8.

Besides the organic cofactors, transition and alkaline earth metals probably played a vital role in
essential prebiotic processes. The most common metal cofactors of contemporary proteins are ions of zinc
(Zn?"), iron (Fe**?"), manganese (Mn*"), copper (Cu?"), magnesium (Mg?"), and calcium (Ca*"). According

3% alongside Mn**, Co?*, and Ni*" was abundant in soluble forms in an anoxic

to geological records, Fe
archean ocean and might have been available to the early proteins **°°. The anoxic-to-oxic ocean transition
triggered by the emergence of photosynthesis (Great Oxidation Event — GOE) decreased the bioavailability
of soluble Mn?**, Fe?** and Co?*, and introduced soluble forms of Cu?>" and Zn?>' into the environment
(Table 2) ®-92, These geochemical transitions are traceable in modern proteins. Dupont ef al. analysed the
metal cofactor usage (Mn-, Fe-, Zn-, and Co-binding metallomes) in all three kingdoms of life and
suggested that prokarya and eukarya evolved in anoxic and oxic environments, respectively. Indeed, the
earliest Mn, Fe, Zn, and Cu binding proteins appear to be the 14™, 74" 105" and 164" in protein structural
chronology established by Caetano-Annoles and coworkers 86364,

The central role of Fe*" in early protein evolution is supported by the recent study suggesting ferredoxin
FeS-binding fold be the most ancient protein structure along with the Rossman fold . Interestingly, it was
suggested that Mg?" in an oxic environment could play a similar role to the Fe** before the GOE . The
authors tested this hypothesis by replacing Mg** with Fe*" in an anoxic environment and demonstrated that

three enzymes under investigation not only retained their activity but that Fe?* could be an even more

effective cofactor than Mg?* %, Similarly, a cofactor replacement experiment was performed by Bray et al.,
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investigating the function of the ribosome. Authors demonstrated that under anoxic conditions, Mg** could
be replaced by Fe?* and Mn?* without impairment of ribosomal synthetic activity ¢’. Apart from
participation in protein functions, Mg?*, Ca**, and polyamines are efficient chemical chaperones and
promote folding of a 60-amino-acid-long ancestral protein .

All these findings suggest that cofactors have played a central role in protein function and structure
evolution. Metal cofactors, being the only part of proteins that can not be biosynthesised, provide an

important retrospective look at the ancient link between proteins and their environment.

Table 2. Molar concentrations of metals (M) in anoxic and oxic oceans %

Anoxic (M) @ Oxic (M)

Mg?* 10?2 10?2
Fe 107 Fe(ll) 10" Fe(IIl)
Mn?* 106 108
Co?* 10 10°
Ni** 10° 10°
Cu 1020 Cu(l) 1010 Cu(IT)
Zn** 10712 108

5. Characteristics of unevolved protein space

The first protein sequences must have been simple, random polymers with defined amino acid
composition, as discussed in chapter 3. Later, these proto sequences diverged into the modern variety of
primary and tertiary protein structures. Current natural protein sequences are estimated to fold into ~2000
different topologies. This estimate raises several questions regarding protein evolution, engineering, and
design. Are there other protein folds beyond the natural structure space? To what extent is protein structure
space explored and how optimised are contemporary proteins? An attempt to reconstruct all possible protein
folds computationally showed that all the natural topologies could be modelled by ab initio simulation of
homopolymeric sequences. Vice versa, all modelled structures matched their natural counterparts
suggesting the completeness of our knowledge of naturally occurring protein folds ®. Nevertheless, whether
other protein folds in the unnatural sequence space are possible, and the global trends of natural optimisation
remain enigmatic 7°.

Several computational and experimental studies approached the characterisation of unnatural
sequence space, focusing either on structural and/or functional potential of random or never born proteins
(NBP’s). Minervini et al. and Prymula et al. analysed random libraries of canonical amino acid proteins

using Rosetta tertiary structure predictor 772, Their results suggested that structured molecules frequently
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occur in random sequence space. Moreover, the secondary and tertiary structure content was reported to be
similar to the natural distribution.

From an experimental point of view, Chiarabelli et al. used selective proteolysis to investigate the
folding propensity of 50-residue long NBP’s with natural amino acid alphabet displayed on the phage
library 7°. The authors demonstrated that 20 % of proteins in the library were protease-resistant, suggesting
the occurrence of stable tertiary structure. In the following study, LaBean ef al. showed that proteins with
native conformation and cooperative denaturation profile could be isolated from a library of random 71-
amino acid long proteins "%, In the protein evolution-motivated inquiry of Tanaka et al., the authors
characterised random proteins built either of all 20 amino acids as well as prebiotically plausible amino

acids . Interestingly, proteins with a simplified amino acid alphabet

showed higher solubility than their canonical counterparts. The study /
of Newton et al. agree with these observations and highlight that
random proteins of various evolutionary relevant alphabets tend to
be disordered °. Davidson and Sauer proceeded further in alphabet
reduction and created random protein libraries with a 3-amino acid
alphabet consisting of leucine, glutamine and arginine ”’. Analysis of
these proteins confirmed the tertiary structure in 5 % of sequences.
Other works suggest that random proteins are able to form
hydrophobic cores and perform rudimentary enzymatic activities ’*
80 Activity centred investigation of Keefe and Szostak used mRNA-
display to select ATP-binding proteins from a large library of random
sequences 8'. The ATP binding was detected in 4 proteins in a 6x10'2
random sequence pool. Interestingly, the structure of one ATP-

Figure 3. Structure of the novel
binder was solved by another group and revealed a completely  flexible zinc-dependent ATP

binding o/ protein selected by
Keefe and Szostak and solved by
Spontaneous appearance of function in random proteins is  Surdo ez. al. 3!%2

unknown flexible, metal-cofactor dependent protein fold (Fig. 3) 5.

an attractive concept for de novo gene emergence — transcription and

translation of a protein from a previously non-coding part of the genome. Such proteins are not homologous
to any known conserved sequence; thus, the term “orphan gene” was coined for their DNA template
sequences. In that context, random or pseudo-random sequences could provide an organism with an
evolutionary “wild card” — Neme et al. showed that expression of random proteins in E. coli cell culture

could positively and negatively affect organismal fitness .
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Although studies of random sequences are scarce, they provide a rich source of thought-provoking
topics and gedankenexperiments. Furthermore, random protein’s biological and biophysical characteristics

are being revised in light of a rapidly growing field of de novo protein emergence.

6. Protein libraries for sequence space exploration

Traditionally, protein sequence space exploration is accomplished by experimental library construction
and screening for desired functional protein or peptide variants. The most straightforward approach is an
oligopeptide synthesis via solid-phase chemistry, allowing for fast, controlled and pure peptide product
preparation *. Unfortunately, synthesis costs are high, proteins need to be refolded, and the length of
chemically synthesised products is currently limited to ~120 residues %. Nevertheless, solid-phase synthesis
is the method of choice for short peptide and peptide library preparation, especially when unnatural amino
acid incorporation is required. Alternatively, a biochemical method for protein library preparation is
through DNA template modification by error-prone PCR %¢. The principle of the method relies on the
amplification of protein-coding DNA via error-prone DNA polymerase. The DNA polymerase introduces
1-5%10° mutations/base in each amplification cycle resulting in a DNA template library with randomly
mutated positions. The method is cost-effective and robust. However, the degree of sequence space
exploration is low, with the possibility of introducing a specific kind of mutation (PCR-bias) ¥. Efficient
sequence space exploration can be achieved with a direct DNA template modification. By reason, the
simplest way to design a protein library on a

Table 3. [IUPAC nomenclature for degenerate nucleotides
DNA level is to synthesise combinatorial

templates chemically from the amino acid symbol bases symbol bases
. . . .. A A K G/T
coding triplets — codons. Triplet synthesis is the
. . . C C S C/G
golden standard for a combinatorial library
o G G w AT
preparation — it brings complete control over the
T T H A/C/IT
mutagenised positions and frequencies of
I I B C/G/T
. . . . gs
amino acids on a given position °°*. However, R AJG v AC/G
the method is rarely utilised because of its % /T D A/G/IT
immense costs and reduced stability of M A/C N A/C/G/T

protected  trinucleotide  precursors.  An

alternative approach utilises combinatorial nucleotide synthesis. An equimolar nucleotide mixture is added
during the coupling step of synthesis, which results in a degenerate position on the synthesised DNA strand
(Table 3.). This synthetic degeneracy allows designing a specific pattern of three degenerated positions —

degenerate codon.
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Considering 4-letter DNA code and equimolar ratios of synthesised nucleotides, the total number
of all possible degenerate codons is (2% — 1)* = 3375 (where 2* represent all A, C, T, G combinations and -
1 stands for the empty combination set). A typical example: degenerate codon NNN where all three
positions are randomised with all four nucleotide types allows to encode all 64 codons. However, if such
codon is included in a degenerate position of DNA strand, frequencies of amino acid occurrence will be
driven by the architecture of genetic code and include mostly unwanted STOP codons. Alternatively, codon
NNK (G or T in a third position) can encode all 20 amino acids using only 32 different codon combinations
with fewer STOP codon occurrences. Nevertheless, the frequency of amino acid occurrence in NNK based
mutagenesis is still uneven, with a higher incidence of amino acids coded by multiple codons (e.g. leucine,
serine, and arginine). Degenerate codons can be combined to embed a specific amino acid distribution in a
mutated position. In that scheme, several templates with degenerate codons are synthesised and mixed in
appropriate ratios in one tube. An example of such a method is the “22c¢ trick”, which combines three or
four degenerate codons and achieves uniform coding of all 20 amino acids using 22 or 20 codons,
respectively *. If even more precise control over the amino acid distribution is required, one can utilise
spiked codons — triplets consisting of degenerate nucleotides with non-equimolar nucleotide ratios °°. This
modification allows for fine-tuning the amino acid frequencies coded by traditional degenerate codons and
potentially cover a sufficient protein space at lower costs (fewer templates to combine in one tube).
Unfortunately, the rational design of spiked codons is non-trivial, and design software is not publicly
available.

Overall, degenerate codon synthesis offers a cost-efficient and versatile solution for site-specific library
construction. The selection of 3375 different degenerate codons, their spiked variants and their
combinations provide sufficient space for amino acid distribution approximation. The method is widely
used in protein engineering studies. Although it offers satisfactory results for small targeted libraries, it
does not provide a solution for a combinatorial design of diverse random protein libraries with precise

amino acid distributions — an essential instrument of random protein space exploration.

7. Algorithms for degenerate libraries design

Traditionally, algorithms for degenerate codon library design aim to construct a compact DNA template
with the lowest codon diversity. This allows for efficient protein library screening as the molecular diversity
for in vitro screening is limited by experimental constraints (in most cases, reaching 10'>~10'* different
species). These constraints dictate the choice of degenerate codons with the highest degeneracy (more
amino acids per degenerate codon) and the lowest amino acid redundancy (fewer codons to code each amino
acid). Pines et al. designed a codon compression algorithm that provides an optimal codon combination

t91

according to a user-defined amino acid alphabet °'. The algorithm is implemented in two versions — the first
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one is suitable for codon compression with the lowest amino acid redundancy, and the second mode is
optimised for maximum codon degeneracy. These approaches have their distinct advantages in optimising
screening efficiency or cost-effectiveness, respectively, and both are implemented as web applications °2.
Parker et al. built an alignment-based codon optimiser using a linear programming algorithm to automatise
the library design process **. The algorithm analyses all positions from the input multiple sequence
alignment and outputs the most suitable degenerate codon for each variable position respecting their mutual
co-variation. Similarly, web implemented algorithm SwiftLib uses dynamic programming to identify
optimal codon choice for a given amino acid alphabet **. SwiftLib can fit amino acid distributions via
multiple degenerate codon combinations; however, it does not employ mutual residue information from
multiple sequence alignments.

A further step in degenerate codon library design is the inclusion of codons with variable nucleotide
ratios (spiked codons). Spiked codons allow for fine-tuning intrinsic amino acid distribution of a canonical
degenerate codon. Wolf ef al. and Craig et al. designed spiked codon optimisation schemes based on
numerical optimisation and genetic algorithms °>%. Both algorithms are non-deterministic and provide only
one of the several possible solutions for the amino acid distribution. Unfortunately, neither of these
algorithms is implemented in a publicly available form.

The task of degenerate codon optimisation was shown to be mathematically straightforward. Finding
the most fitting codon for a given distribution can be solved precisely by optimal methods (e.g., dynamic
programming or linear integer programming). However, the task becomes increasingly complex when
combinations of all 3375 degenerate codons come into consideration. In this work, we have designed a
heuristic algorithm for the diverse library construction composed of several types of degenerate codons that

provide protein templates with a specific amino acid composition (Fig. 4).

DLLLA DLLLS

DKKLA AKKVS
' DKLLA ALKVS  ~
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20% A ALKVS DLLLS .
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Figure 4. (left) degenerate codon string encodes various peptide sequences (right), the amino acid distribution of
the whole peptide set is given by identity of degenerate codons. In a case of a short sequences, degenerate codons
describe the distribution of the whole protein library rather than amino acid distribution of a single peptide. With
extension of coding template, amino acid distribution of each protein approaches the global amino acid distribution
of the whole protein library
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8. Chaperones from an evolutionary perspective

Protein evolution is the process of sequence adjustment which under selection pressure grants the
selected individual the highest reproduction or survival advantage in a given environment. These
sequence/structure adjustments can perturb the complex pathway of protein folding and lead to spontaneous
aggregation and organismal dysfunction before reaching the optimal phenotype °’. Thus, from the
evolutionary perspective, aggregation suppression is imperative. Indeed, numerous studies have shown that
minimisation of aggregation propensity is one of the specific evolutionary optimisation outcomes %1%, It
was pointed out that most essential cellular proteins have the lowest aggregation propensities '°!. Foy et al.
analysed protein families differing in their degrees of evolutionary optimisation (e.g., evolutionary age).
They demonstrated that although both old and young protein families possess a hydrophobic core, younger
proteins tend to avoid aggregation by increased dispersion of hydrophobic residues throughout their
sequences '®. In contrast, evolutionary older proteins show frequent hydrophobic amino acid clusters,
suggesting carefully optimised sequence parameters to achieve independent and stable folding '*. In fact,
the tendency of proteins to aggregate strongly correlates with global biological properties such as cellular
protein abundance and subcellular localisation 1%,

One of Nature’s evolved mechanisms of aggregation prevention is protein-dependent folding
assistance. The proteins which facilitate the folding process are known as chaperones, and they can be
divided into three functional classes — chaperonins, assisting enzymes and stabilisers ',

(i) Chaperonins are large protein complexes that recognise unfolded or misfolded proteins via
solvent-exposed hydrophobic residues. They act on already translated polypeptide chains in the cytoplasm
and utilise ATP hydrolysis to either unfold and release the protein or encapsulate it into the molecular cage
and promote the refolding through conformational changes of the polar environment of the cage.

(i) Assisting enzymes include proteins with very specific functions such as protein disulfide
isomerase or peptidyl prolyl cis-trans isomerase, which promote the formation and reorganisation of
disulfide bridges and catalyse cis-trans shift of proline peptide bond in the protein.

(iii) Stabilizers bind to the nascent protein chains via their exposed hydrophobic residues, prevent
translated proteins from aggregation and serve as a hub to the downstream folding machinery. Examples of
such proteins are heat shock proteins (HSPs) which can function either in ATP independent or dependent
ways.

In this work, we have exploited the stabilising activity of ATP-dependent Hsp70 protein (known
as DnaK in E. coli) which cooperates with its co-chaperone DnalJ and nucleotide-exchange factor GrpE
(Fig. 5) 119 Although DnaK and its co-chaperones are not essential for E. coli, the DnaK lacking mutants
can not withstand elevated temperatures due to overwhelming protein misfolding '. DnaK protein is

composed of nucleotide-binding (NBD) and substrate-binding (SBD) domains with a total molecular
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weight of 60 kDa. NBD domain contains a MgATP/MgADP binding site and exhibits ATPase activity '*
The SBD domain of DnaK displays an unspecific binding preference towards mis/unfolded and partially
folded proteins with exposed hydrophobic residues !%°. The substrate recognition begins with SBD binding

to a stretch of ~5—7 hydrophobic amino
DnaK

acids, which subsequently induces a
DnaJ Non-native /4’/
conformational change in SBD. The pr°te'” B@v Q
affinity to the substrate is regulated by 7’
ATP — when bound to NBD, the
chaperone persists in a low-affinit ATP ADP
p p w y s

GrpE
conformation known as an open state

- 4 ATP =
When ATP is hydrolysed to ADP, the N

affinity of SBD is increased and leads
ADP

: 110 1
to the closed conformation ''°. This Native

. S tei
shuffling between the conformations is ~ »"*°" Chaperonin

GroEL/ES
arranged by co-chaperones Dnal and
GrpE. While Dnal acts as a substrate  Figure 5. DnaK/DnaJ/GrpE chaperone cycle. DnaJ-bound unfolded
protein interacts with SBD of DnaK which shifts to the closed state
via ATP hydrolysis. Subsequently GrpE releases bound ADP and is
conformation inducer, GrpE releases  exchanged by an ATP which causes the release of protein in native

NBD-bound ADP and recycles the conformation or towards downstream processing '!!

recognition protein and closed

chaperone. The mechanism of refolding consists in kinetic restriction of the substrate folding, allowing the
molecule to fold its distinct parts independently !

The indispensability of chaperones for contemporary organisms is marked by their abundance
amounting to ~0.3 % of all genes in the genomes ''2. Besides the evident function of chaperones in
housekeeping and stress-induced folding assistance, they can serve as evolutionary capacitors facilitating
otherwise impossible evolutionary trajectories. It was demonstrated that overexpression of either DnaK or
GroEL/GroES chaperone system in E. coli leads to survival and adaptation of the cells with impaired
essential functions ''*!'*, These results indicate that protein solubility/stability is a major evolutionary
constraint that can be buffered by a chaperone system. Furthermore, Aguilar-Rodriguez et al. studied
evolutionary rates of DnaK chaperone clients and revealed a direct correlation between interaction levels
with chaperones and the rate of protein evolution . The study of Kadibalban e al. confirmed this
correlation and particularised that the most potent chaperon binders evolve 4.3x faster than the least potent
chaperon-binding proteins ''°. In a more recent study, Alverez-Ponce et al. analysed the effect of chaperone
dependence on evolutionary divergence of proteins and confirmed that the genes encoding chaperone

clients had diverged faster than genes encoding non-client proteins ''°
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The connection between chaperones, natural protein world and alphabet evolution was pointed out by
Houben et al. They studied the effects of basic and acidic amino acids on protein structures and showed
that although positively charged residues are more compatible with folded conformation, they also tend to
drive protein into the aggregated state '°°. The authors hypothesised that chaperones co-evolved with the
introduction of basic amino acids into the genetic code and allowed the expansion of the structural variety
of the protein universe. This conclusion agrees with the evolutionary analysis of proteome expansion across
the tree of life performed by Rebeaud et al. ''>. The authors showed that from the simplest archaea to
eukaryotes, the total number of proteins per proteome expanded 200x%, proteins became larger, and
aggregation-prone proteins became 6x more frequent. They proposed that the proteome expansion network
was supported by higher abundances of intracellular chaperones and their interconnection into the
misfolding prevention network.

In summary, evolution carefully selected proteins able to perform specific functions and reach compact
conformations. The role of chaperones in protein folding is similar to that of DNA-repair enzymes in
replication — both maintain the functionality of a precisely evolved state to guarantee the smooth transition
of biological information to the next generations. Moreover, chaperones play an indispensable role in
allowing evolution to experiment with potentially beneficial protein phenotypes, which would not be

achievable without their assistance.

9. Dephospho Coenzyme A Kinase

As was described in chapter 3., the amino acid alphabet appears to evolve concurrently with the
development of proteins. While the latest additions to the protein amino acid alphabet are considered
essential for the fold stabilisation, the earliest, prebiotically available amino acids are among the strongest
promoters of protein disorder ''7. Here, on the example of enzyme dephospho coenzyme A kinase (DPCK),

we investigate the effect of complete aromatic amino acid replacement with their prebiotically plausible
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counterparts. Dephospho coenzyme A kinase (ATP:dephospho-CoA 3'-phosphotransferase) catalyses the
final step in coenzyme A biosynthesis — y-phosphate group transfer from ATP to 3-hydroxyl ribose moiety
of dephospho CoA (Fig. 6) !'8.
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Figure 6. Reaction catalyzed by DPCK !'®

DPCK is a well folded and conserved protein with high a-helical content; it is divided into three functional

parts — CoA binding domain, ATP binding domain and lid domain (Fig. 7)

Lid domain

Figure 7. Structure of DPCK with highlighted lid, ATP, and CoA domains and both bound substrates. [llustration

adapted from '

While ATP and CoA domains bind and activate their substrates by hydrophobic interaction and an
extensive network of hydrogen bonds, the lid domain protects the active site from water molecules, which
would hydrolyse the phosphoanhydride bond of the activated ATP. The y-phosphate transfer from ATP to

dephospho CoA requires a significant conformational change of the mobile CoA and lid domains; hence
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the enzyme exists in an open and closed conformation in substrate unbound and bound states, respectively
119‘

Both substrates of the enzyme — ATP and CoA are among the essential nucleotide-derived cofactors
of life (as was summarised chapter 4). Coenzyme A and its derivatives are indispensable for ~4 % of all
cellular enzymes and engage in a diverse repertoire of biochemical pathways. On the protein side — the
ATP binding domain is an example of an ancient P-loop NTPase fold which comprises ~10-18 % of the
predicted gene products in both prokaryotic and eukaryotic genomes 2. The P-loop NTPases appear to
have emerged in a very early stage of protein evolution and were already present in the last universal
common ancestor '21'22, Moreover, recent studies suggest that the P-loop NTPase and Rossman fold might
be the most ancient phosphor-binding proteins and carriers of the earliest protein function .

Here we study the impact of evolutionary youngest amino acids removal from the contemporary protein
structure. We investigate the structural properties of the aromatics-less DPCK mutant via enzyme kinetics,
circular dichroism spectroscopy, nuclear magnetic resonance, dynamic light scattering, and limited

proteolysis.

10. Selective proteolysis as a tool for protein conformation
screening

Selective proteolysis is a simple and low-resolution technique for protein conformation assessment.
The principle of the method relies on a differing sensitivity of compact and folded parts of a protein in
comparison to its unfolded chains. While unfolded proteins are degraded rapidly, proteolysis of folded
molecules shows slower kinetics. Nevertheless, even folded proteins can be hydrolysed by proteases by

initial nicking of locally unfolded part and subsequent proteolysis of disordered fragments (Fig. 8)
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Figure 8. Proteolysis of a folded protein can be followed by global protein unfolding or by initial nicking of
flexible protein parts and subsequent degradation of resulting disordered fragments '23
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Limited proteolysis can be carried out by proteases with broad specificity as well as specific
enzymes. The former allows analysing the global conformational properties of the studied protein substrate.
If the amino acid sequence of the substrate protein is known, broad specificity proteolysis followed by the
mass spectrometric detection of proteolytic fragments can provide insight on the sites of increased protein
flexibility '**. By contrast, site-specific proteolysis offers insight into either naturally occurring or
engineered regions of a protein substrate. Here we utilised both approaches to characterise global
conformational states of random proteins as well as the local protease accessibility to engineered cleavage
site in the centre of a random protein sequence. We exploited the broad specificity of E. coli Lon protease

and site-specificity of bovine thrombin.

a. Thrombin

Thrombin is the key protease of the blood coagulation cascade in the vertebrates. This enzyme
belongs to the serine protease family along with trypsin, with which it shares ~50 % sequence similarity.
The mechanism of serine proteases depends on the catalytic triad of histidine, aspartate, and serine. Both
thrombin and trypsin preferentially cleave peptide bonds following basic amino acid residue

Unlike trypsin, thrombin exerts significant specificity, as was demonstrated on variant oligopeptide
substrates 5712, These investigations showed that thrombin exhibits a preference for an aliphatic residue
at the P4 position, for Pro at P2, Arg at P1 and for a basic residue at P3’. Furthermore, acidic residues are

unfavored at all positions from P3 to P3’ (Fig. 9).

57?

284 = S
@ V
8 . L A o
o Y v A
[ P6 P5P4 P3P2 R P1 P2 P3'P4' PS5’
% S é = a3 = S
R GGG GG

-28-

-574 p-value=0.05

Figure 9. Substrate specificity of thrombin with preferred (positive % difference) and undesirable (negative %
difference) residues on position P6 to P5° of substrate sequence '»

21| Page



Here, in order to investigate the collective folding/aggregation behaviour of random proteins, we
engineered the DNA sequence of the thrombin-specific cleavage site into the central part of the library
template. The rationale for the experiment was adopted from the study of Chiarabelli et al., where a similar
specific sequence was engineered into the phage-displayed random sequence library 7°. Authors of that
study subjected phage displayed library to proteolysis, collected the resistant proteins via affinity
chromatography and examined the genotypes of the resistant variants by high throughput sequencing of

phage embedded DNA.

b. Lon protease

Lon protease is one of the central regulatory proteases in bacterial cells. In E. coli, it participates in
processes of bacterial communication, biofilm formation and general stress response (heat, acidic,
nutritional or pathogen-induced, reviewed in '*°). Since the protease is involved in ~50 % of total abnormal
protein degradation in E. coli, it was proposed and experimentally demonstrated that Lon broadly
recognises exposed patches of hydrophobic residues that are normally buried in properly folded proteins
(reviewed in '), Interestingly, protein-bound ligands were shown to protect the polypeptides against Lon
degradation.

Functionally, the enzyme belongs to the family of AAA+ proteins (ATPases Associated with a
variety of cellular Activities). It is composed of ATP binding and proteolytic domains situated on one
polypeptide chain. Additionally, as shown by limited proteolysis studies, bacterial Lon proteases possess a

132 In E. coli, the active form

large N-terminal domain believed to be responsible for substrate recognition
of Lon protease is a homohexameric ring protein with a central cavity known as the proteolytic chamber.
The hydrolysis is mediated through a unique Ser-Lys dyad, unrelated to the serine protease His-Asp-Ser
catalytic triad. Since the specificity of Lon protease is broad and takes place in a confined proteolytic
chamber, it is hypothesised that the substrate is degraded by rounds of substrate binding, cleavage, release
and rebinding '*°.

Here we exploited the broad specificity of the Lon protease against exposed hydrophobic residues
to assess the folding state of random library proteins. The approach was adopted from a recently published
methodology on cell-free based protein folding assay '**. In comparison with the limited proteolysis of

purified proteins, proteolysis by Lon allows to evaluate the protein folding propensity directly during the

in vitro translation and to assess the immediate dynamics of protein folding.
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AIMS OF THE THESIS

The overall aims of this work were to (i) investigate properties of random protein space and relation of
random protein sequences to the natural proteins and (ii) study the effect of amino acid alphabet on protein

structure and function.

The specific goals were:

e To analyze structure occurrence in random protein sequence pool and characterize selected random

proteins in vitro.

e To build a computational tool for degenerate protein library construction capable to design a diverse

library of random proteins with specified amino acid occurrencies.
e To experimentally characterize libraries of random proteins with different amino acid alphabets.

e To investigate the effect of latest amino acids on a selected protein structure and function.

23| Page



METHODS

The research papers included in this Ph.D. thesis provide a detailed description of methods and experimental
procedures used together with details necessary for the reproduction of the presented results. Therefore,
this chapter only lists experimental techniques used throughout the thesis and selection of methods

concerning the presented unpublished data.

List of used research methods:

e Recombinant expression in E. coli

e Protein purification via affinity, ion exchange and gel chromatography
e [n vitro transcription

e (Cell free protein synthesis

e Electronic circular dichroism

e Dynamic light scattering

e Nuclear magnetic resonance

e  Amino acid analysis

e High throughput sequencing

e Bioinformatic analysis of protein secondary structure, solubility and aggregation
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Selection of methods supporting the unpublished material

1. Preparation of template DNA library
Synthetic DNA oligonucleotides of 197 (Oligonucleotide 1) and 198 (Oligonucleotide 2) bases in length
were ordered from Integrated DNA technologies (IDT). The oligonucleotides were dissolved in RNAse

free water to a final concentration 100 M. The annealing reaction was mixed as follows:

Component Volume (pl)
NEB buffer 2 (New England Biolabs) 5
Oligonucleotide 1 (100 uM) 1
Oligonucleotide 2 (100 uM) 1
dNTPs (10 mM) 2
H>O 39

The mixture was incubated at 95 °C for 5 minutes in a thermocycler and cooled down by turning the closed
appliance off. After 30 minutes, 2 ul of Klenow polymerase (10 units, NEB) was added and the reaction
was incubated for 1 hour at 25 °C. Subsequently, Klenow polymerase was inactivated by 5-minute
incubation at 85 °C and the annealed DNA template was purified using the DNA Clean&Concentrator Kit-

25 (Zymo Research) according to the manufacturer inctructions.

2. In vitro transcription of DNA library template and mRNA purification
The annealed and purified DNA template was transcribed into mRNA using the HiScribe™ T7 Quick High
Yield RNA Synthesis Kit (NEB) according to the manufacturer’s recommendations; 1 pg of the template
DNA was added to one 20 pl reaction. Transcription underwent for 2 hours at 37 °C. Subsequently, one
reaction volume of 5 M ammonium acetate (Sigma-Aldrich) was added into the mixture, the reaction was
mixed and left on ice for 15 minutes. The formed RNA precipitate was collected by centrifugation at
21 000 xg at 4 °C for 30 minutes, pellet was washed twice with 70 % ethanol and let dry on air. Dried RNA

precipitate was dissolved in RNAse free water to the final concentration of 3 pg/ul.

3. Agarose gel electrophoresis of nucleic acids
Synthesized ssDNA, annealed dsDNA and in vitro transcribed RNA oligonucleotides were analyzed for its
molecular size and homogeneity by electrophoresis in 1 % (w/w) agarose. The agarose gel was prepared as
follows: 0.2 g of powdered agarose (Sigma-Aldrich) was dissolved in 20 ml of TBE buffer by boiling in
microwave oven. Solution was cooled down to 50 °C and 2 pl of 10000x GelRed® Nucleic Acid Gel

Stain (Biotium) was added. The liquid was poured into the gel holder, provided with a plastic comb, and
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let cool until solid. DNA samples were resuspended with /s volume of 6xDNA Sample buffer, RNA
samples were resuspended with 2 volume of 2x RNA Loading Dye (NEB) and boiled for 5 minutes at
95 °C. Samples were put into the wells and electrophoresed for 40 minutes under constant voltage of 100 V
in TBE buffer filled electrophoresis tank. Separated products were visualized under UV illumination at

340 nm.

4. Cell free protein expression
Protein libraries were expressed using PUREfrex 2.0 cell free expression kit (GeneFrontier). The mixtures

including variable additives were prepared as follows:

Component Volume (pul)

Solution I (buffer, NTPs and amino acids) 10
Solution Il (proteins and tRNAs) 1
Solution 11l (ribosomes) 2

Triton X-100 (5 % in dH>0) 0.2
Library mRNA (3 ug/ul) 1
Lon protease (2 uM hexamer) 1
DnaK chaperone mix 1

Reactions were incubated at 30 °C for 2 hours (unless stated otherwise) and quenched by addition of 4 pg

of RNAse A (NEB) per reaction.

5. Solubility assay of the protein libraries in presence of additives
Protein libraries were expressed according to the protocol described above. In order to analyze quantity of
total protein product, 1 pl of reaction mixture was diluted with 14 pl of water and denatured with 5 pl of
6% SDS-PAGE sample buffer. The rest of the reaction mixture was centrifuged at 21 000 xg for 30 minutes
at 21 °C and 1 pl of soluble content in supernatant was prepared for SDS-PAGE analysis simalarly to the
total reaction sample. Both fractions were analyzed by SDS-PAGE and Western blotting.

6. Purification of the protein libraries
Protein libraries were expressed as described in paragraph 4, diluted 10x by buffer A and incubated for 12
hours with 2.5 pl of TALON affinity purification resin (Clontech) pre-equlibrated with buffer A.
Subsequently, resin with the immobilized library was washed 3% by 1 ml of buffer A and library was eluted
to buffer A supplemented with 10 mM EDTA equlibrated to pH 8.5.
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7. Folding assay of the purified library by thrombin digestion
A library sample purified by protocol from paragraph 6 was split into 10 pl aliquots representing digested
and non-digested sample. Digestion was initiated by addition of 0.2 pl (0.2 U/ml) thrombin protease
(Sigma-Aldrich) and proceeded for 4 hours at 37 °C. Reaction was quenched by addition of 3 ul of 6x SDS-
PAGE sample buffer and products were analyzed by SDS-PAGE and Western blotting.

8. Acrylamide gel electrophoresis of proteins in presence of sodium dodecyl
sulphate
Proteins were prepared for acrylamide gel electrophoresis by boiling the sample in the presence of /s
sample volume of 6x Sample Buffer at 95 °C for 5 minutes. In this study we utilized the commercial Novex
Tris-Tricine gels (Thermo Fisher) with gradiet acrylamide concentration ranging from 10 to 20 %. Gels
were unpacked and inserted into the electrophoresis apparatus according to the manufacturer instructions.
Electrophoresis tank was filled with 10x diluted Tricine running buffer and electrophoresis was proceeded

for 1.5 hours in constant voltage of 100 V.

9. Protein western blotting with chemiluminiscent detection
Acrylamide gels with separated protein samples were equilibrated in 50 ml of Western Blot transfer buffer
for 10 minutes. PVDF membrane (0.22 um pore size) was activated by incubation in methanol for 30
seconds and equilibrated in 50 ml of Western Blot transfer buffer for 5 minutes. The western blot apparatus
was assembled according to the manufacturer recommendation, the transfer cell was filled with 1 L of
Western Blot transfer buffer and proteins were electroblotted onto PVDF membrane for 1 hour under the
constant voltage of 100 V. Subsequently membranes were transferred into 5 % BSA (Sigma-Aldrich)
solution in PBST buffer and incubated for 1 hour at 21 °C. Membranes were briefly washed with PBST
buffer and incubated for 1 hour in 3 ml of PBST buffer supplemented with Monoclonal ANTI-FLAG M2-
Peroxidase (HRP) antibody (Sigma-Aldrich) diluted 10 000x. Next, membranes were washed 3x for 5
minutes with PBST, overlayed with 1 ml of Immobilon Forte Western HRP substrate (Merck-Millipore)

and visualized with Amersham™ ImageQuant™ 800 biomolecular imager.

10.Expression and purification of the recombinant Lon protease
Plasmid with coding sequence of recombinant Lon protease with hexahistidine affinity tag was provided
by prof. Hideki Taguchi from Tokyo University of Technology, protein was prepared following the

134

published instructions '**. In summary, E. coli BL21-(DE3) chemically competent cells were transformed

with 10 ng of plasmid. Starter culture for expression was prepared by picking a colony from the plate and
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by incubation in 5 ml of ampicillin supplemented LB media (Sigma-Aldrich) overnight. Starter culture was
subsequently added to 1 L of ampicillin supplemented 2xYT media (Sigma-Aldrich) and cells were grown
at 37 °C until ODgoo = 1 was reached. Culture was equilibrated to 25 °C and induced by addition of IPTG
(Sigma-Aldrich) to the final concentration of 1 mM. Expression proceeded for 12 hours at 25 °C, cells were
harvested by centrifugation at 5000 xg for 30 minutes and resuspended in 20 ml of Lysis buffer. Cells were
disrupted by sonication with alternating 5/10 seconds pulse on/off cycles at 15 W power. Lysate was
centrifuged at 4 °C at 30 000 xg for 30 minutes and supernatant was loaded directly to 2 ml of QIAgen
NiNTA Superflow resing equilibrated with Lysis buffer. Lysate was incubated with resin for 1.5 hours at
4 °C and washed 3x with 25 ml of 100 mM imidazole supplemented Lysis buffer. Lon protease was eluted
by 20 ml of Lysis buffer supplemented with 300 mM imidazole which was subsequently removed by 3x
concentration/dilution cycles with Lysis buffer on Amicon Ultra-15 Centrifugal Unit (Merck-Millipore)
with 50 kDa cut-off. Protein concentration was assessed by Bradford assay and adjusted to hexamer

concentration of 2 uM. Protein was aliquoted and frozen at -80 °C.
11.High throughput sequencing data processing

Paired end Illumina reads were joined by fastq-join utility at Galaxy web server, DNA sequences were

translated and statistically analyzed by a set of MatLab scripts available from Heinis lab 3136,
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List of buffers

TBE buffer
DNA sample buffer
SDS-PAGE sample buffer

Buffer A

Western Blot transfer buffer
Tricine running buffer (10X)
Lysis buffer
PBST buffer

90 mM Tris base, 90 mM boric acid, 2 mM EDTA

0.25 % Bromophenol Blue, 50 % (v/v) glycerol

0.375M Tris pH 6.8, 12% SDS, 60% glycerol, 0.6M DTT, 0.06%
bromophenol blue

50 mM Tris, 100 mM NacCl, 100 mM KClI, 0.05 % (v/v) Triton X-100,
pH 7.5

25 mM Tris, 192 mM glycine, 20 % methanol, pH 8.5

IM Tris base, 1M Tricine, 1 % (w/v) SDS

20 mM HEPES, 400 mM NaCl, 20 % (v/v) glycerol, pH 7.5

137 mM NaCl, 2.7 mM KCI, 10 mM Na,HPOs, 0.1 % (v/v) Tween-20
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RESULTS AND DISCUSSION

1. Scarce sampling of random sequence space

Results in this section were included in the attached paper I - Tretyachenko V. et al. Random protein
sequences can form defined secondary structures and are well-tolerated in vivo. Scientific reports. 2017
Nov 13;7(1):1-9.

Contemporary proteins are the result of 4 Gy of evolutionary optimization. Our knowledge of
protein structure, function and evolution heavily relies on theoretical and experimental analyses of natural
proteins. However, the behaviour of proteins lacking evolutionary background and optimization remains
largely unexplored. Therefore, we performed a systematic computational and experimental investigation of
random proteins (never born proteins, NBP’s) with canonical amino acid alphabet and studied their

relevance to naturally evolved sequences.

In silico random protein library construction and analysis

We generated 4 datasets with 10 000 protein sequences of 100 amino acids in length each to
investigate properties of random proteins and compare them to their natural counterparts. We used 5
secondary structure predictors, 3 protein disorder predictors and protein aggregation predictor to compare
libraries of (A) random sequences with natural-like amino acid occurrences (Random), (B) fragments of
natural proteins from the TOP8000 database of non-redundant structurally characterized proteins from PDB
database (PDB), (C) natural protein fragments from the UniProt database (Uni) and (D) fragments of natural
intrinsically disordered proteins from the disprot database (Dis) !*”-!*°. Predictions for the random
sequences (A) were also performed with the libraries extended by a 9 amino acid tag that was later used
during recombinant expression of selected random proteins to verify that the tag addition did not alter the
structural properties. Random protein library was searched against known natural sequences using blastp

method and only low-significant matches were found.

Prediction of secondary structure and disorder

Statistical analysis of consensual secondary structure and disorder predictions showed that the
overall occurrence of secondary structure and motif distribution were comparable for the random and
PDB/Uni proteins (Fig. 10). The overall occurrence of secondary structure was approximately 5 % lower
for the random sequence library than for the PDB/Uni dataset, thus we did not identify any profound

differences between them. This finding is in contrast with previous reports which revealed statistically
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significant differences in structure content between random and natural sequences. However, these

conclusions were based on reports from a single secondary or tertiary structure predictor 72,
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Figure 10. Predictions of secondary structure occurrence in the (A) Random, (B) PDB, (C) Uni, and (D) Dis
datasets. a-helical and B-sheet content was determined by five different predictors. The center of the box represents
the median; upper, and lower borders are 3™ and 1% quartile respectively. The solid lines illustrate maximum and
minimum contents, which are shown as dots. The Dis dataset is included as a negative reference

Aggregation prediction analysis

Prediction of the aggregation propensity indicated that with exception of the Dis dataset, overall
trends are similar in random and natural datasets. However, differences appear when aggregation
predictions are correlated with the predictions of secondary structure. Each dataset was divided into three
sequence subsets with (i) high structure, low disorder; (ii) average structure, average disorder, (iii) low
structure, high disorder predicted contents. First, aggregation propensity in the random dataset shows
positive correlation between structure content and aggregation tendency (Fig. 11A). This correlation is

maintained in the Uni dataset, however sequences with average aggregation propensity appear to be
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enriched. This enrichment can be explained by the natural tendency of proteins to suppress aggregation
while maintaining the structural content (Fig. 11C). Interestingly, protein fragments in the Uni dataset
exhibit higher content of aggregation prone sequences than random dataset, the identity of these were
examined by ontology analysis which showed that they belong to the membrane proteins. Similar analysis
of the Dis dataset showed that disordered sequences tend to be least aggregating which can be explained by
their unique amino acid composition enriched by polar and charged residues (Fig. 11D). The PDB dataset
shows an expectable clustering of all sequences in average aggregation zone - experimentally characterized
proteins tend to behave reasonably for the purposes of in vitro analyses suggesting that conclusions on
protein sequence space derived solely from experimentally determined structures tend to be biased by the

proteins itself (Fig. 11B).
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Figure 11. Aggregation propensity of the datasets depending on secondary structure analysis. Aggregation
analysis was performed on the whole Random (A), PDB (B), Uni (C) and Dis (D) datasets as well as on the subsets
defined by various predicted structure content. The subsets are indicated in green (high structure), blue (average
structure content) and red (unstructured). Scatterplots in the top right corner of the distribution illustrate the total
sequence pool for each dataset (grey dots) with the structural subsets highlighted. The values in brackets indicate
total number of sequences in each subset
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Biophysical characterization of random proteins

To perform detailed characterization of random proteins, we selected 45 sequences from the
random dataset for subsequent expression, purification, and biophysical analysis. Selection of experimental
candidates was based on secondary structure, disorder, and solubility predictions. Three groups of 15
proteins were selected: GROUP 1 - sequences with high predicted structure (either a-helical and B-sheet
content) and solubility, GROUP 2 - sequences selected randomly from the whole dataset and GROUP 3 -
soluble sequences with low occurrence of secondary structure and high disorder.

DNA sequences encoding all selected random proteins were synthesized to include N-terminal
methionine and C-terminal hexa-histidine tag. Two more amino acids (Leu-Glu) were introduced into C-
terminus of the resulting proteins because of the restriction cloning pipeline. Synthesized genes were
expressed in E. coli BL21 (DE3) cells and proteins were analyzed for the expression levels and solubility.
Out of 15 proteins in each group the following expressed/soluble ratios were observed: GROUP 1 - 13/4,
GROUP 2 - 8/6 and GROUP 3 - 14/14. Notably, protein solubility decreased with the increasing predicted
secondary structure content of the proteins (Fig. 12, left). In total 22 recombinant proteins were successfully
produced and purified for subsequent biophysical characterization. Group 1 proteins showed pronounced
ellipticity and minima between 205 and 220 nm in their electronic circular dichroism (ECD) spectra typical
of proteins with high secondary structure content while Group 3 ECD spectra indicated low structural
content (Fig. 12, right). Unlike for Group 3 proteins, presence of denaturing agent moderately decreased
ellipticity of Group 1 proteins. Furthermore, addition of trifluoroethanol, a secondary structure inducer,
caused induction of structure in Group 3 proteins. ID'H-NMR of Group 1 proteins further suggested the
presence of a hydrophobic core and a certain degree of aggregation. The narrow and less dispersed signals
of Group 3 and 2 proteins spectra are typical for IDPs.

Proteins were also subjected to dynamic light scattering (DLS) to reveal the aggregation tendencies
of random proteins in different groups. Determined hydrodynamic radii correlated with the aggregation
propensity predictions supporting our iz silico observation that random proteins with high structural content

tend to aggregate more than their unstructured counterparts (Fig. 13).
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Figure 12. Summary of expression/solubility analyses and circular dichroism spectra of random proteins from
Group 1, 2 and 3. (Left) western blot expression analysis of NBP’s in E. coli. S — soluble fraction of the lysate,
I - insoluble fraction; (Middle) a pie graph summarizing the solubility of NBP’s based on western blot profiles;
(Right) electronic circular dichroism spectra of successfully overexpressed and purified proteins from groups 1-

In summary, we concluded that in terms of secondary structure occurrence and overall aggregation
propensity random proteins do not differ significantly from natural proteins. However, natural proteins do
exhibit significantly higher levels of optimization towards aggregation suppression while maintaining
comparable structure content. This optimization is based on a protein sequence modification rather than on
amino acid composition tuning. While in young proteins the clusters are short and dispersed, in more
evolved sequences, they tend to be longer and concentrated in a few specific positions which seed the
formation of a hydrophobic core '®. As surprising came the discovery of random disordered proteins to be

tolerated in vivo. It has long been suspected that unevolved sequences might be toxic or degraded by cells
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as their disordered nature can make them an excellent substrate for intracellular proteases or lead to a
nonspecific aggregation via exposed hydrophobic residues. Here we showed that random proteins have
essential properties (low aggregation, high solubility, intracellular tolerance) to be suitable precursors for
the following evolutionary optimization as novel proteins. Indeed, several de novo proteins have recently

been confirmed to continuously arise from the non-coding genome regions (reviewed in '4%),
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Figure 13. Scatterplot summarizing the experimentally determined molecular sizes of purified NBPs (red) and
predicted aggregation scores for the corresponding sequences (green)

Author’s contribution: I designed the protein expression and purification protocols, performed

all biochemical experiments and analyzed the bioinformatic prediction data.
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2. Development of combinatorial library design tool (CoLiDe)

Results in this section were included in the attached paper II - Tretyachenko V. et al. CoLiDe:
Combinatorial Library Design tool for probing protein sequence space. Bioinformatics. 2020 Sep 21.

Following the scarce characterization of random protein space, we decided to undertake an
investigation of collective protein structural features via library approach. Unfortunately, the existing and
available design tools are not optimal for the stated tasks. While current algorithms allow for an efficient
design of small targeted libraries for protein engineering, our objective was to construct a diverse protein
library with each protein sequence constrained only by its amino acid composition rather than sequence.
For that reason, we implemented the combinatorial library design (CoLiDe) tool which is optimized for a

computationally efficient and accessible diverse library construction.

CoLiDe design principle and implementation

The purpose of CoLiDe is to compute such a combination of degenerate codons which, when
combined into one DNA template, will produce a protein-coding library with user defined amino acid ratios.
Inputs to the algorithm are the length of the target library, its amino acid composition, the degeneration
level (maximum number of amino acids per codon) and the expressing organism codon preferences.
Moreover, the algorithm allows to remove specified non-degenerate codons from inclusion into the library
or to reassign certain codons to the user defined amino acids and include them into the target distribution.
The primary output of the CoLiDe is a degenerate codon string which encodes the target protein library
with defined amino acid distribution. The program graphically illustrates library degenerate codons with
color coded amino acid coding content as well as provides statistics on mean GC content of the DNA
template, average molecular weight of the protein library and differences between target and calculated
distribution. CoLiDe was designed to operate either in degenerate or spiked codon optimization mode, the
inputs/outputs for both are identical.

The principle of CoLiDe consists in a simplified evolutionary algorithm - specimens are optimized
via random mutations, however since only one template is optimized during the calculation there is no
population to select from. After initialization of the input parameters, the pool of total 3375 possible
degenerate codons is filtered to contain only those which code for amino acids from the input distribution.
Subsequently the program generates an initial random set of filtered degenerate codons in the size of the
library's protein amino acid length. The deviation of the amino acid distribution given by this initial codon
set from the target distribution is calculated as the sum of squared errors for each amino acid. Next, one

degenerate codon in the initial set is exchanged for a randomly picked codon from the filtered set and the
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error is recalculated. If the error decreases, the exchanged codon is kept, otherwise the exchange is rejected.
This cycle is repeated until 1000 x / subsequent rejections (where / stands for a protein library length in
amino acids) are reached. This set, where no other exchanges provide a decrease in a sum of squared errors

is returned as a solution. The computational pipeline is depicted in Fig. 14.

rejected < 1000 x | count of rejected rejected = 1000 x |
l exchanges
return to I
previous template exchange rejected
'NNK NNK | 'NNK
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VGT VGT NO VGT return solution
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continue exchanges with new template
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Figure 14. Schematic representation of CoLiDe computational pipeline. Input is a user defined library length and
amino acid distribution of the protein library. Program filters degenerate codon pool and excludes all codons which
code non defined amino acids. Subsequently algorithm randomly generates a string of degenerate codons of the
library length and introduces codon exchanges until the input amino acid distribution is approximated

We tested the algorithm’s performance on four library designs with differing amino acid alphabets
and library lengths of 5, 10, 15, 20, 40, 60, 80 and 100 amino acids. Mean squared errors were highest on
the short templates ranging from 0.11 to 0.17 and decreased with the growing template length reaching
0.005. Variance in precision showed a similar trend - coefficient of variation in short libraries ranged
between 102 and 10~ and decreased to 10 in longer templates. Solutions using spiked codons showed
better precision with a similar variance within each group. CoLiDe runtimes were tested on all four
alphabets with template sizes ranging from 5 to 400 degenerate codons. Reported runtimes of algorithm

ranged between 3 to 600 s on an Intel 15-8250U equipped laptop.

Experimental validation of the protein libraries

To validate the computational methodology, we expressed and purified 45 amino acid long protein
library with 33 variable amino acid positions. The rest of the construct consisted of affinity purification tag
and unstructured linking sequence. The DNA template construct as well as the reverse-transcribed mRNA

were characterized by high-throughput sequencing (HTS), protein library was expressed in a cell free
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system and characterized by MALDI-TOF mass spectrometry and by amino acid analysis of the purified
product.

Both DNA and mRNA showed good agreement with the designed template. However, we did
observe a bias in purine/pyrimidine base content introduced through oligonucleotide synthesis. Upon
in silico translation, this bias resulted in enrichment of valine, leucine, and isoleucine (2.9, 2.2 and 1.6 %
respectively) and depletion of proline, threonine, and alanine (3, 2.2 and 2.4 %) (Fig. 15.). Overall mean
squared error of amino acid composition remained around 0.02. Statistical analysis of the sequencing data
showed that most of all sequences (99.9 %) are unique. These results indicate that while CoLiDe can
provide a precise amino acid distribution for a designed library, one should be aware of the nucleotide bias
that might be introduced during oligonucleotide synthesis of highly degenerate DNA templates. Such
nucleotide composition bias of DNA libraries depends on each synthesis provider (unpublished

observation).
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Figure 15. Agarose gels of DNA (middle right) and mRNA (bottom right) libraries and sequence logos
representing the amino acid occurrence on all variable positions of designed library (top left), experimental DNA
library (middle left) and experimental mRNA library (bottom left)

Following the initial sequence variability, the degenerate DNA template was transcribed, and
library was expressed via cell free system, purified by His-tag affinity chromatography under the denaturing
conditions and its molecular weight distribution was analysed by MALDI-TOF mass spectrometry. Mass

spectrometric evaluation of molecular weight distribution is in a good agreement with the expected values
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obtained by in silico translation of 600 000 randomly generated proteins and 600 000 sequences from
sequenced DNA and mRNA templates. The experimental spectrum is represented by normal weight
distribution with a mean value 5 029 Da and a standard deviation of 120.6. Expected mean value from the
template design is 4 902 Da and an expected mean from the HTS is 4 957 Da (Fig. 16B). Thus, while part
of the shift can be explained by nucleotide bias of the synthesized DNA template, the rest of it lies on the
additional compositional bias introduced by translation and purification. Amino acid analysis of the purified
library showed under-representation in alanine, aspartic acid and threonine (by 2-4 % of the target amount)
and enrichment in glutamic acid and glycine (by ~5 % from the input), likely due to their impact on protein
solubility and possibly also as a result of contamination by carry-over proteins from the cell free expression

system (Fig. 16C).
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Figure 16. Experimental analysis of the cell free expressed protein library by SDS-PAGE gel/western blot (A),
MALDI-TOF mass spectrometry (B) and amino acid analysis (C)

Author’s contribution: 1 wrote an intial code, performed all biochemical experiments, and

analyzed the HTS data.
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3. Characterization of combinatorial protein libraries with distinct
amino acid alphabets

Results in this section represent preliminary progress on combinatorial protein library
characterization. This study builds on the results from the previous two sections.

The previously described sampling of 45 random proteins allowed us to focus on individual NBP’s
in detail, however, to infer general characteristics of random protein space as well as to deduce the impact
of amino acid alphabet on protein structure, high-throughput approaches are necessary. Here we utilized
CoLiDe to design two libraries with 20 (canonical set) and 10 (early set) amino acid alphabets and studied
their behaviour in the presence of contemporary protein folding enhancers (DnaK, Dnal and GrpE
apparatus). We assessed libraries solubility, aggregation propensity and sensitivity against two different

proteases.

Library design, preparation and validation

Combinatorial libraries of 100 amino acids in length and two different alphabets in composition
were designed using the CoLiDe algorithm. The first library is constructed with a full 20 amino acid
alphabet (20F), while the second one consists of a prebiotically plausible subset of this alphabet (10E, i.e.
A,S,D,G,L, V,E, T, 1and P). The amino acid ratios of both libraries reflected the natural amino acid
distribution adopted from the UniProt statistics. Additionally, sequences for affinity purification were
inserted on N’- (FLAG tag) and C’- (6xHis tag) termini and coding sequence of the thrombin cleavage site
(F+ and E+, sequence ALVPRGS) and corresponding negative control non-cleavable site (F- and E-,
sequence ALVGSGS) in the middle of the construct (Fig. 17.).

FLAG thrombin cleavable HIS
[ T7 promotor __ RBS | RANDOMIZED REGION 1 RANDOMIZED REGION [ |

FLAG thrombin uncleavable HIS
[T7 promotor _RBS I RANDOMIZED REGION || RANDOMIZED REGION [ |

Figure 17. Schematic illustration of random protein library coding DNA template. Template contains T7 promoter
sequence for in vitro transcription, ribosome binding site (RBS) for translation, FLAG-tag and His-tag encoding
sequences on N’- and C’- termini of proteins, thrombin cleavage site (ALVPRGS) encoding sequence in the center
of the template and randomized part encoding 85 amino acids

The libraries were synthesized in the form of two oligonucleotides, annealed on the cleavage-site coding
sequences and filled in with the Klenow polymerase fragment (Methods, 1; Fig. 18). The linear double
stranded construct contained all functional sequences required for in vitro transcription and translation. The

identity of constructs was validated by HTS (Fig. 19). Assembled templates were in vitro transcribed and
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translated using a cell free protein synthesis system (Methods, 2 and 4), purified via His-tag affinity
chromatography (Methods, 6) and analysed by MALDI-TOF mass spectrometry (Fig. 20).
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Figure 18. Agarose gels illustrating DNA library assembly (A) and RNA product of in vitro transcription (B).
Library was assembled of 2 degenerate oligonucleotides within overlapping thrombin cleavage site encoding
region

10E-
g- VovV V VI VALVLVLLLY AATLEEDEDELFEE D ELLDL LENLEADLE
LSO S | e st I L DR e
10E+

probability

Figure 19. Sequence logos based on a high throughput sequencing data analysis illustrating the frequencies of
amino acid occurrencies on all positions of the library
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Figure 20. MALDI-TOF analysis of one-step purified libraries 20F (red) and 10E (green). Wide mass distribution
signifies the broad variability of the produced library

Effect of DnaK chaperone on library solubility

Chaperones, as was pointed out in Chapter 8, play a major role in the contemporary protein world
helping proteins to reach native conformations and to allow evolution to test potentially beneficial
mutations without taking aggregation hazards. Here, we tested whether random, unevolved sequences
would interact with chaperones similarly as their natural counterparts and we studied the effects of this
interaction on protein folding and solubility. First, we screened DnaK chaperone effect on expression levels
and solubility of library 20F and 10E in 25, 30 and 37 °C (Methods, 5; Fig. 21). Western blot analysis
showed a pronounced effect of chaperones on library 20F solubilization in all tested temperatures
(Fig. 21B). Marked solubilization effect of chaperones on the library can be of significance for de novo
gene formation, protein products of which can be aggregation-prone provided their unevolved nature. In
contrast, solubility of library 10E was not affected by the presence of chaperones and moreover, library
expression was suppressed (Fig. 21A). This effect can be partially explained by the absence of positively
charged residues in 10E library which in natural proteins mark the aggregation-prone sequence stretches in
order to navigate the chaperone binding '®. However, basic residues are not required for successful
interaction with chaperones which associate unspecifically with hydrophobic amino acid patches in a
protein sequence. Moreover, amino acid distributions of 10E produces proteins with increased overall
hydrophobicity when compared to 20F proteins, hence with increased number of potential chaperone

binding sites. An alternative explanation for the observed effect is that highly soluble 10E proteins are
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already structured and do not require chaperone-assisted solubilization and folding. However, this

hypothesis needs to be elaborated by subsequent experiments.
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Figure 21. Western blot analysis of 10E (A) and 20F (B) solubilities in 25, 30 and 37 °C. Reactions were
performed in absence (-DnaK) and presence (+DnaK) chaperones. Equal volumes of total (T) and soluble (S)
reaction products were analysed

Analysis of antagonistic effects of DnaK and Lon protease on library proteins

To investigate the dynamic nature of random protein folding, libraries were expressed in the
presence of either DnaK chaperone, Lon protease or both. DnaK and Lon participate in natural protein
misfolding response. While DnaK stabilizes and kinetically restricts protein, helping it to fold into the native
conformation, Lon protease degrades unfolded proteins reducing the intracellular stress levels. Hence, both
proteins act antagonistically and inclusion of Lon protease into the cell free expression system can help to
determine whether chaperone-assisted solubilization leads to soluble unfolded proteins or rather to
compacted structures protected from the digestion by Lon. All four possible inclusions of chaperone and
protease were tested and assessed by western blot solubility assay.

The solubility analysis confirmed the previously described observations (pronounced chaperone
effect on 20F library, inhibition of expression of 10E library, Fig. 21) and in addition provided an interesting
insight into the library intrinsic behaviour (Fig. 22). Proteins of the 20F library are degraded by Lon
protease in both DnaK+/Lon+ and DnaK-/Lon+ samples suggesting an increased levels of protein disorder
within the library (Fig 22B). A marked decrease in the soluble fraction of the 20F proteins in DnaK-/Lon+
indicates formation of insoluble aggregates with a minute fraction of folded proteins and/or soluble
aggregates (Fig 22B). On the other hand, soluble fraction of the 20F proteins in DnaK+/Lon+ is equal to
the total fraction of expressed proteins revealing the dominant role of chaperones on protection against Lon

protease digestion (Fig 22B). In contrast, similar analysis of 10E proteins indicates comparable levels of
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Lon degradation in both DnaK+/Lon+ and DnaK-/Lon+ supporting previously stated hypothesis of the
independence of 10E proteins on chaperone assisted folding (Fig 22A).
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Figure 22. Western blot analysis of 10E (A) and 20F (B) solubilities in co-translational presence/absence of
chaperones (K+/K-) and Lon protease (L+/L-). Same volumes of total (T) and soluble (S) reaction products were
analysed

Analysis of the purified protein libraries by specific thrombin digestion

To assess posttranslational folding state of protein libraries, proteins were purified by affinity
chromatography and subjected to selective proteolysis by thrombin. Purification step allows to control the
proteolytic reaction conditions as well as to enrich monomeric and low-oligomeric fraction of the expressed
proteins due to potentially increased accessibility of affinity tag in non-aggregated forms of proteins.

Analysis of the purified library shows high and moderate thrombin sensitivity of the 20F proteins in
DnaK-/Lon- and DnaK+/Lon-, respectively (Fig. 23B). This observation agrees with the previous Lon
digestion analysis which showed that both DnaK+/Lon+ and DnaK-/Lon+ samples of library 20F are
enriched in unfolded proteins (Fig. 22B) — both thrombin and Lon degraded unfolded fraction of the library.
However, while Lon protease digests unfolded proteins co-translationally, thrombin acts on a fully
translated protein. This nuance can explain higher proportion of the uncleaved product in DnaK+/Lon- in
comparison to DnaK-/Lon- where proteins had an opportunity to interact with the chaperones post-
translationally (Fig. 23B). In addition, both DraK+/Lon+ and DnaK-/Lon+ library samples show moderate
level of degradation suggesting the flexible nature of some of the 20F proteins central part (Fig. 23B). A
possible interpretation of the additional proteolysis by thrombin suggests partial folding of library proteins
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and inaccessibility of hydrophobic core residues. While Lon might not recognize such substrates, thrombin
will cleave on unstructured and accessible specific site.

Library 10E exhibits weak sensitivity to proteolysis in all tested samples except DnaK-/Lon+
(Fig. 23A). The proteolysis of 10E proteins in DnaK-/Lon- can be explained by simple digestion of library’s
unfolded fraction and absence of it in DnaK-/Lon+ by co-translational library filtering for the unfolded
proteins. However, the interpretation of the DnaK+/Lon+ sample cleavage is non-trivial. A possible
explanation could be in unproductive interaction (stabilization of soluble aggregates and unfolded proteins)
of chaperones with unfolded and aggregation-prone 10E proteins. This interaction can also explain higher
purification efficiency of chaperone-treated 10E library which previously exhibited lower expression levels
(Fig. 21A, Fig. 22A). Proteins from the 10E library could be expressed in the form of soluble aggregates
which are not purified efficiently and thus the yields of DnaK-/Lon- library is lower in comparison to
DnaK+/Lon- sample. However, this anti-aggregation activity does not lead to the folded proteins and so
library is subjected to thrombin digestion. In summary, this proposed scenario leads to the conclusion that
(1) Lon co-translational and thrombin post translational proteolyses lead to the isolation of the folded
fraction of the library and (ii) DnaK+/Lon- and DnaK-/Lon- samples cleaved by thrombin represent the
combined folded and aggregated fractions with the enrichment in soluble aggregates in DnaK+/Lon-
library.
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Figure 23. Western blot analysis of 10E (A) and 20F (B) thrombin sensitivity assay on affinity purified libraries
in co-translational presence/absence of chaperones (K+/K-) and Lon protease (L+/L-). Same volumes of total (T)
and soluble (S) reaction products were analysed
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Data presented in this chapter represent a qualitative characterization of protein libraries and served to
form an initial hypothesis on library collective structural characteristics. The next stage of the
characterisation will gather quantitative input from Western Blot assays — library chemiluminescent signal
will be calibrated to ensure linear response to concentration changes and signals will be averaged from
multiplicate measurements. Moreover, levels of protein compactness in the combinatorial libraries will be

assessed by analytical size exclusion chromatography.

Author’s contribution: I designed and performed all the libraries biochemical experiments and analyzed

the HTS data

46 |Page



4. Characterization of aromatic-less variant of dephospho coenzyme-
A kinase (DPCK)

Results in this section were included in the attached paper III — Makarov M. et al. Enzyme catalysis
prior to aromatic residues: Reverse engineering of a dephospho-CoA kinase. Protein
Science. 2021, 1-13.

Aromatic amino acids are hypothesized to be among the latest arrivals into the amino acid alphabet
and at the same time are the strongest structure promoters of contemporary proteins °. However, early
proteins probably served their function in their absence. To test the hypothesis that aromatic amino acids
might be dispensable for the basal protein function we designed an aromatics-less version of a contemporary
enzyme dephospho coenzyme A kinase (DPCK). Since none of the aromatic amino acids in the protein are
known to be essential for enzymatic function, DPCK represents an ideal candidate for alphabet/structure

relationship investigation.

Mutant generation, expression and purification

We searched the PDB database for solved structures of confirmed and putative DPCKs from
different thermophilic bacterial species and selected DPCK from Aquifex aeolicus based on an initial
expression/solubility screening. Mutant variants were designed as follows. All aromatic amino acids were
substituted by (i) Leu residues (DPCK-LH) and (ii) non-aromatic amino acids (DPCK-MH) based on the
best preservation of thermodynamic stability using the Hot Spot Wizard server '*!. Additionally, all His
residues (besides the aromatics Tyr, Phe, Trp) were substituted by Leu or other non-aromatic residues using
the same logic (DPCK-L and DPCK-M). In comparison with the wild type DPCK, 10 % (DPCK-LH/MH)
and 11 % (DPCK-L/M) of aromatic residues were substituted (Fig. 24A). Upon preliminary expression,
purification in E. coli and activity assessment, only DPCK-LH and DPCK-M variants were selected since
DPCK-L and DPCK-M did not have any measurable phosphotransferase or ATPase activities.

DPCK WT, -LH and -M variants were purified to homogeneity using a three-step purification
protocol and their identity was confirmed by mass spectrometry. Additionally, analytical size-exclusion
chromatography showed that while DPCK-WT and LH eluted as monomers corresponding to their
molecular weights, DPCK-M variant resembled either dimeric or disordered monomeric form in the elution

profile.
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Figure 24. Summary of mutated aromatic residues and their positions in comparison to the DPCK-WT sequence
(A) and (B) structure of the DPCK enzyme with highlighted aromatic amino acids (grey) and bound ATP substrate
(yellow)
Characterization of aromatic-less mutants and comparison with the wild type
enzyme
We characterized the enzymatic activity and specificity of both DPCK mutants and compared them
to the wild-type enzyme. The measured catalytic efficiency of DPCK-WT for ATP and dCoA (3.4x10* and
5.7x10* M - 57! for dCoA and ATP, respectively) were similar to the previously reported values of DPCK
from E. histolytica. Unlike DPCK-WT, both mutants showed the ability to hydrolyze ATP in absence of
dCoA with 1000x lower catalytic efficiencies (355 and 118 M! - s for ATP, respectively). Comparing
both mutants, DPCK-M has lost the phosphotransferase activity, e.g. only ATPase activity was
observed. On the other hand, DPCK-LH maintained the dCoA-dependent phosphotransferase activity
above 80 mM dCoA with Ky greater than 200 mM. We performed HPLC-MS analysis to confirm the
identity of reaction products catalyzed by both DPCK-WT and DPCK-LH. Analysis proved CoA formation
in both, however we detected 100% less CoA in the reactions catalyzed by DPCK-LH (summarized in
Table 4).
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Table 4. Summary of measured kinetic properties of wild type and aromatic-less mutants of DPCK

Enzyme Substrate Ky (UM) Vinax (MM * mint) Keat (571) Kot/ Ky (ML - s°1)
DPCK-WT  dCoA (with 200 pM ATP) 243 £ 1.7 1.57 £ 0.17 0.817 £+ 0.088 33621.4
ATP (with 200 uM dCoA) 127 £ 0.3 1.41 + 0.05 0.730 £+ 0.026 57480.3
ATP (without dCoA) n.d. n.d. n.d. n.d.
DPCK-LH dCoA (with 200 pM ATP) >200 n.d. n.d. n.d.
ATP (with 200 uM dCoA) 65.9 £ 4.5 0.30 + 0.010 0.0234 + 0.0008 355.1
ATP (without dCoA) 40.2 £ 3.8 0.11 £+ 0.013 0.0086 + 0.0010 213.9
DPCK-M  dCoA (with 200 uM ATP) n.d. n.d. n.d. n.d.
ATP (with 200 uM dCoA) 323+ 34 0.088 + 0.003 0.0038 £ 0.0001 117.6
ATP (without dCoA) 29.2+£25 0.085 + 0.002 0.0037 + 0.0001 126.7

The structure content of all three studied proteins was assessed by electronic circular dichroism
(ECD) measurement followed by numerical analysis of the spectra (Fig. 25A). DPCK-WT showed high a-
helical content in correspondence with available PDB structure. Variants DPCK-LH and -M demonstrated
higher B-sheet content and in case of DPCK-M enrichment in protein disorder. The stability of mutants was
investigated by urea-titrations and ECD spectroscopy (Fig. 25B). While DPCK-WT and -LH spectra
remained relatively constant upon urea titration up to 2 M concentration, DPCK-M variant started to lose
its structural integrity already in very low urea concentrations (> 100 mM). Structural similarity of DPCK-
LH and -WT was further confirmed by 1D and 2D HN NMR spectroscopy (Fig. 25C). Yet, while DPCK-
WT showed clear signals near 1 ppm indicative of methyl groups in the hydrophobic core, these were absent

in DPCK-LH spectra. However, the signal dispersion in the -NH- region implies that the -LH variant is at

least partially folded in contrast to DPCK-M which showed lack of a tertiary structure formation.
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Figure 25. Secondary and tertiary structure characterization of dephospho CoA kinase (DPCK) variants. (A) Far-
UV CD spectra of DPCK proteins. (B) Change in ellipticity at 222 nm upon 0-2 M urea titration of DPCK
proteins. (C) 2D NMR of DPCK proteins

Furthermore, structural integrity of all three proteins was assessed by a limited proteolysis by LysC

proteinase (Fig. 26). While DPCK-WT was protease resistant, both mutant variants were gradually digested

by time of the experiment. Mutants showed different proteolysis dynamics - while DPCK-LH was

hydrolysed to yield large fragments with the approximate sizes of 15 kDa, DPCK-M variant was fully

digested indicating lack of the intradomain folding patterns and overall tertiary structure.
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Fig 26. 14% SDS-polyacrylamide gels of limited proteolysis of dephospho CoA kinase (DPCK) proteins
visualized by imidazole-zinc staining after SDS-PAGE with the protein samples exposed to LysC endoproteinase

for different times

In addition, we investigated the dynamics of the proteins upon ATP binding via NMR, dynamic

light scattering and titration by 8-anilinonaphthalene-1-sulfonic acid (ANS). These approaches confirmed
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the molten globular nature of the ATP-unbound form of DPCK-LH and interestingly, indicated protein
compaction upon the ligand binding. According to the DLS measurements, hydrodynamic radius of DPCK-
LH is reduced by ~20 % and reaches that of value DPCK-WT value upon ATP addition (Fig. 27B,C). This
observation supports the previously stated hypotheses that cofactors might play a crucial role in early

protein structure stabilization.
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Figure 27. Structural characterization of dephospho-CoA kinase (DPCK)-WT and -LH upon substrate binding.
(a) An exemplary closeup of DPCK-LH 2D NH NMR spectra induced by ATP binding (red—free protein [100
pM], blue—300 uM ATP, green—1000 uM ATP); labeled peaks: (P1) N-H signal not influenced by protein-ATP
interaction. (P2, P3) N-H signal undergoing medium-slow to slow exchange on NMR chemical shift time scale
(us-ms). (P4) N-H signal documenting a slow exchange process. (b) Mean hydrodynamic radius of DPCK-WT
and -LH variants with and without 200 uM ATP measured by dynamic light scattering. (c) The steady-state
fluorescence spectra of ANS binding at excitation wavelength 380 nm. The spectra were measured at different
concentrations of ATP (with and without 200 pM dCoA), and each spectrum is the average of three individual
scans. The fluorescence was recorded between 410 and 650 nm after exciting the protein solution at 380 nm

Author's contribution: participated on initial project outline, protein expression/purification and
structural characterization assays design. Moreover, | supervised the first author of the study.

51|Page



SUMMARY

The overall aims of this work were to (i) investigate properties of random protein space and their
relationship to natural proteins and (ii) study the effect of amino acid alphabet on protein structure and
function.

The following results were obtained and included in the three attached scientific publications and

preliminary data which will lead to a subsequent publication.

e Computational analysis of random protein library showed similar secondary structure content but

different aggregation tendencies in comparison to natural proteins.

e Experimental characterization of 45 random proteins showed agreement with computational
analysis in the secondary structure content and aggregation propensity and revealed that
disordered random sequences are better tolerated in intracellular mileu than their structure-rich

counterparts.

e Combinatorial library design tool (CoLiDe) was implemented and made available to the broad

scientific community.

e The CoLiDe algorithm was validated experimentally. The validation demonstrated the biases in

library preparations for further experiments.

e Combinatorial protein libraries with different amino acid compositions were prepared and
purified in vitro and their biochemical characterization suggest different structural tendencies

within the random sequence space.

o Characterizations of aromatic-less variants of dephospho coenzyme A kinase supported the role
of aromatic amino acids in achieving the structural stability of contemporary proteins but

demonstrated that enzyme activity can still be gained even in their absence.

e Enhanced compaction upon the interaction of aromatic-less mutant of dephospho coenzyme A
kinase with its ligands indicated the plausible importance of cofactor on early protein structure

stabilization.
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JifiVondrasek? & Klara Hlouchova(®*?

The protein sequences found in nature represent a tiny fraction of the potential sequences that could
be constructed from the 20-amino-acid alphabet. To help define the properties that shaped proteins

to stand out from the space of possible alternatives, we conducted a systematic computational and
experimental exploration of random (unevolved) sequences in comparison with biological proteins. In
our study, combinations of secondary structure, disorder, and aggregation predictions are accompanied
by experimental characterization of selected proteins. We found that the overall secondary structure
and physicochemical properties of random and biological sequences are very similar. Moreover,

random sequences can be well-tolerated by living cells. Contrary to early hypotheses about the toxicity
of random and disordered proteins, we found that random sequences with high disorder have low
aggregation propensity (unlike random sequences with high structural content) and were particularly
well-tolerated. This direct structure content/aggregation propensity dependence differentiates random
and biological proteins. Our study indicates that while random sequences can be both structured and
disordered, the properties of the latter make them better suited as progenitors (in both in vivo and in
vitro settings) for further evolution of complex, soluble, three-dimensional scaffolds that can perform
specific biochemical tasks.

The proteinogenic amino acid alphabet has remained largely unchanged during the past ~3 billion years of aston-
ishing evolutionary diversification. The 20 amino acid building blocks could be combined to construct a plethora
of polypeptides, yet only a fraction of potential sequences are found in life on Earth'~. For example, 10"*" possible
sequences for a 100-residue polypeptide can be formed from the canonical alphabet, but the number of existing
proteins is estimated to be at most 10",

It appears that a finite, relatively small library of protein domains has evolved®—°. Structural classification data-
bases (such as SCOP and CATH) have amassed ~1,500 different domain families that account for more than 70%
of genomic sequences®". The prevailing assumption is that once evolution arrived at a set of stable protein folds,
evolutionary pressure was dominated by functional constraints’. In most cases, a protein’s structure determines
its functional properties. This raises the question of whether a defined secondary or tertiary structure is a unique
property of the sequences found in nature, or whether random sequences also have the potential to form defined
structures. Understanding how the structural potential of natural protein sequences differs from that of sequences
not subjected to billions of years of evolutionary constraints could provide insights into evolutionary history.

Contrary to early assumptions, a few recent studies suggest that there are unknown functional folds outside
the natural protein space, but estimates of their frequency differ'’-"% Systematic characterization of the folding
potential of random sequences has been attempted using tertiary structure prediction algorithms such as Rosetta,
but parallel studies questioned the reliability of these algorithms for random sequences unrelated to those found
in nature'*'". In their Rosetta ab initio study, Minervini et al. reported that random sequences (with equal relative
content of each amino acid) have higher a-helical content (by nearly 10%) and lower 3-sheet content than biolog-
ical sequences. Using a single predictor of secondary structure occurrence, Yu et al. recently reported an opposite
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conclusion of the c-helical/3-sheet preference, although they used nearly the same input parameters as Minervini
et al."”. Besides a random dataset with equal relative content of each amino acid, Yu et al. additionally included a
random dataset with natural occurrence of amino acids, both reporting a comparable distribution of secondary
structure content. A few experimental studies have used random 50- to 80-residue sequences to assess secondary
structure outside the natural protein space, but these studies had to rely on relatively sparse sampling™'®!". The
researchers estimated that compact folding is a property for 5-20% of random sequences'®!”. Taken together, all
of these studies agree that formation of secondary and tertiary structures seem to be general features of polypep-
tide chains. However, there is a clear lack of correlation among the available bioinformatics/experimental studies,
making it difficult to draw conclusions about protein structure evolution.

Here, we present a systematic computational and experimental exploration of the amino acid alphabet and
the structural and biophysical consequences of random sequence formation. We generated an in silico library
(10% sequences) of 100-amino-acid proteins and evaluated the occurrence of secondary structure by 5 different
prediction algorithms, comparing the properties of random polypeptides with those of natural proteins. Next,
we selected 3 x 15 candidate proteins from the library based on their predicted properties (high, low, or random
secondary structure occurrence) and experimentally characterized the individual proteins. Because they stem
from identical input parameters, the outcomes of these two approaches can be directly compared, allowing us to
assess the prediction algorithm accuracy when applied to the unevolved sequence space.

Results and Discussion

Frequencies of secondary structure motifs are similar in random sequences and biological pro-
teins. We used numerous bioinformatic predictors of secondary structure and protein disorder to compare
four polypeptide libraries: (A) random sequences in which the ratios of individual amino acids reflect those
found in natural proteins, (B) fragments of natural proteins from the TOP8000 database of non-redundant struc-
turally characterized proteins extracted from the PDB database, (C) a selection of fragments of natural pro-
teins from the UniProt database, and (D) fragments of natural intrinsically disordered proteins (IDPs) from the
DisProt database'®"*". The four libraries each comprise 10* 100-residue sequences (the predictions were per-
formed with the same outcome also with 109-residue sequences including additional residues that were added for
the purpose of recombinant expression). Additionally, we investigated the similarity of the random and charac-
terized protein sequences. Only low-significant matches were found by BLAST method for the whole set (Fig. 1)
as well as for sequences chosen for experimental characterization (Table S1).

According to statistical analyses of the bioinformatic predictions, both the overall occurrence of secondary
structure and the distribution of motifs were comparable for the random and Uni/PDB protein sequence space
(Fig. 1 and Table S2). The total occurrence of secondary structure motifs was approximately 5% lower for the
random sequence library than for the Uni/PDB natural protein datasets (‘Table S2). Therefore, our results did not
identify any profound differences between random and biological sequences secondary structure formation and
thus contrast with previous reports that were based on a single secondary or tertiary structure prediction and
which reported statistically significant differences'*'*. The overall a-helical and 3-sheet content predicted by the
different algorithms correlate well for all libraries in our study, with an average Pearson correlation coefficient of
approximately 0.7 (Table $3).

Experimental sampling of random sequences confirms frequent occurrence of secondary struc-
ture and demonstrates tolerance in vivo. Based on the bioinformatic analyses, three groups of 15 pro-
teins each were selected from the random sequence library based on the following criteria (Fig. 2):

GROUP 1: (i) High occurrence of predicted secondary structure (samples with both «-helices and 3-sheets)

and low disorder, (ii) high predicted solubility

GROUP 2: Random selection

GROUP 3: (i) Low occurrence of predicted secondary structure and high disorder, (ii) high predicted

solubility

DNA sequences encoding the selected never-born proteins (NBPs) were synthesized so that each NBP has methio-
nine as the N-terminal residue and a 6 x His tag at the C-terminus. The bioinformatic predictions were repeated with
sequences including the methionine and 6 x His tag, to confirm that there were no variations between the predictions
of the unmodified and modified sequences. The NBPs were recombinantly expressed in E. coli BL21(DE3), and the
protein expression level and solubility were analyzed. Out of 15 proteins in each group, the following expressed/soluble
ratios were observed: 13/4 in group 1, 8/6 in group 2, and 14/14 in group 3 (Fig. 3). Notably, protein overexpression
and solubility in cells increased from group 1 (most structured) to group 3 (least structured). In total, 22 proteins
were successfully overexpressed and purified for further characterization. While group 1 proteins have pronounced
ellipticity and minima between 205-220 nm in their electronic circular dichroism (ECD) spectra (typical of proteins
with high secondary structure content), group 3 ECD spectra indicate proteins with low structural content (Fig. 3).
Low concentration of denaturing agent (0.4 M guanidinium hydrochloride) moderately decreases ellipticity for group
1 proteins unlike for group 3 proteins. Conversely, upon addition of a helical structure inducer (50% trifluoroethanol),
structure is significantly induced in group 3 spectra, indicative of its original lack of structure unlike for group 1 pro-
teins (Fig. $2). This observation is further supported by the 1D'H NMR spectra (Fig. S3). The overall signal dispersion
in the spectra obtained for group 1 proteins (panels A and B) suggests the presence of a hydrophobic core. In addition,
the relatively broad signals are indicative of a certain degree of aggregation. The narrow and significantly less dispersed
signals observed in the spectra of group 2 and 3 proteins are typical for IDPs.

To compare the performance of bioinformatic predictors and the experimental sampling, the ECD spec-
tra were subjected to hierarchical cluster analysis. Two dominant clusters clearly distinguished groups 1 and 3,
the groups that were differentiated based on bioinformatic predictions. The ECD spectra of group 2 (randomly
selected from the bioinformatics dataset) were evenly distributed between these major clusters (Fig. 4). Despite
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Figure 1. Predictions of secondary structure occurrence in the (A) random, (B) PDB, (C) Uni, and (D) Dis
libraries. a-helical and (3-sheet content determined by five different predictors are shown with statistical
information. The center of the box represents the median, and the upper and lower borders represent the
3rd and 1st quartile, respectively. The solid lines illustrate the maximal value and minimal value, excluding
outliers, which are shown as dots. The Dis dataset secondary structure prediction is included as a negative
reference.
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Figure 2. Selection of sequences from the random dataset for experimental characterization. Scatter plot of the
secondary structure (y-axis) and disorder prediction (x-axis) in which the selection of group 1 (green), 2 (blue),
and 3 (red) proteins for experimental sampling is highlighted as circles (circles with 4-digit codes assigned were
successfully purified and characterized). The secondary structure prediction is based on the overall average
structure content stemming from five different predictors. The final disorder score is based on the z-value of the
average rank of individual sequences from four different disorder predictors.
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Figure 6. Aggregation propensity of the datasets depending on secondary structure analysis. Distributions

of aggregation propensities for the entire random (A), PDB (B), Uni (C) and Dis (D) datasets showing the
“ordered”, “average” and “disordered” subsets (<0.5SD value, SD £ 0.5SD, and >0.5 SD values, respectively,
from mean values of predicted disorder and secondary structure). The top right corners graphically
demonstrate the “ordered”, “average” and “disordered” selections from the secondary structure predictions
(y-axis, total % of secondary structure content) and disorder (x-axis, z-score units) - equivalent to Fig. 2. Values
in brackets for individual subsets in the legend indicate the population numbers.

the small number of proteins sampled experimentally, the experimental data provide reasonable support for the
power of bioinformatic predictors when applied to random sequences.

Bioinformatic and experimental analyses highlight the evolutionary potential of random disor-
dered sequences. Dynamic light scattering (DLS) experiments, expression/solubility profiles, and analysis
of physicochemical properties relevant to aggregation using the ProA-RF algorithm all suggested that group 1
proteins (most structured) are prone to oligomerization and aggregation. In comparison, along with their better
E. coli expression profile, group 3 proteins (most unstructured) form smaller particles in solution and do not tend to
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aggregate (Fig. 5)*'. The same trend persisted for the entire random dataset when the ProA-RF algorithm was used to
predict aggregation of the “ordered” and “disordered” segments of the dataset (Fig. 6A). Therefore, random sequences
with higher structural content have a greater tendency to aggregate than those with less structural content.

It has long been suspected that random and IDP-like sequences would tend to aggregate and be toxic to cells.
However, a recent computational study reported that random proteins do not have an increased aggregation
propensity compared with existing proteins, which is in full accordance with our experimental and bioinfor-
matic results’”. Several studies have suggested that while natural IDP sequences were expected to be aggregation
prone (because of the increased likelihood of exposing aggregation-prone residues to solvent at the absence of a
hydrophobic core), it is not so probably as a result of strong anti-aggregation evolutionary pressure*-!. Qur study
demonstrates that low aggregation propensity is in fact a natural property also of random “disordered” sequences.

This trend is less pronounced for natural proteins in the Uni dataset (Fig. 6C) and completely absent for the PDB
proteins (the PDB dataset contains proteins that were successfully expressed and structurally studied and there-
fore represents a biased sample of all extant proteins) (Fig. 6B). To better understand these differences, we per-
formed sequence analysis of each library based on the structural content (ordered, average, and disordered). The
ordered and disordered subsets deviated from the mean amino acid composition in the same fashion for each library
(Fig. $4). As expected, the control Dis dataset generally deviated in amino acid composition, strengthening the trend
observed for the “disordered” subsets of the other datasets. These deviations are in agreement with those observed in
previous studies”™. In addition, for natural proteins, these deviations may reflect a functional purpose. For example,
according to ontology analyses (not shown), the “ordered” shoulder shown in Fig. 6C (aggregation score >60) is
occupied mostly by membrane proteins. While amino acid composition generally affects the secondary structure
content, it determines the aggregation propensity only in unevolved sequences. Evolutionary pressure can work with
a given amino acid composition to minimize aggregation and/or prepare the protein for specific conditions, such as
the membranous environment. Hypotheses that aggregation-prone sequences are disfavored by evolutionary selec-
tion and possible mechanisms for this phenomenon have been described in previous reports® %>,

In summary, random sequences are not significantly different from natural proteins in terms of secondary
structure occurrence and overall aggregation properties. Random sequences with low structural content may
actually represent advantageous origin points for further evolution into soluble functional proteins, as they are
better tolerated in vivo and have lower aggregation scores than random sequences with structural content. This is
consistent with recent studies reporting that random sequences are often bioactive and can even increase fitness in
vivo, as well as work suggesting that non-coding DNA translation (one of the hypotheses about de novo gene birth)
gives rise to highly disordered proteins®***, It is therefore not surprising that structurally dynamic proteins are
often encountered during protein-directed evolution experiments in which proteins are selected based on func-
tion (rather than structure) from sequence libraries, even if they are originally based on a structured scaffold'>*.
If proto-proteins arise from random sequences with high structural content, they would likely be disfavored
based on their natural physicochemical properties unless their aggregation properties are selected for. Our study
provides rationale for this hypothesis on a protein-sequence-space scale.

Methods

Construction and bioinformatic analysis of in silico libraries.  Using the composition statistics of the
TOP8000 dataset, a library of 10* random sequences (100-amino-acid randomized sequences both with and with-
out additional 9 amino acids incorporated for recombinant expression, including an N-terminal methionine and
C-terminal hexahistidine tag) was generated in silico. Each amino acid at a randomized position was picked randomly
from the complete amino acid set with frequencies corresponding to the TOP8000 dataset. All positions in the random
sequences were treated independently and without any correlation and additional constraints imposed with respect to
the sequential neighbors, position in the sequence and the total composition. In parallel, we constructed three control
libraries of 100/109-residue protein fragments from (i) the TOP8000 dataset of structured proteins deposited in the
PDB database, (ii) the Uniprot sequence database, and (iii) the DisProt database of IDPs'*-*°,

The similarity of the random and the known proteins sequences was assessed by the BLAST method imple-
mented in BLAST 4 2.6.0 software package. The NCBI Protein Reference Sequences (Sep 18, 2017; 92 439 966
sequences) were employed as the reference database. The alignments were constructed using default parameters
(BLOSUMBS62 similarity matrix, gap opening and extension penalty 11 and 1, respectively)*"*.

The secondary structure content was predicted using several methods - GOR4, Jnet, Predator, Simpa, and
Psipred®~¥’. In addition, the libraries were analyzed by different protein disorder predictors (Disopred, DisEmbl,
VSL2 and IUpred) and empirical indices predicting solubility (CVsol and Gravy)**-*.

To investigate the aggregation propensity of structurally distinct protein sequences, proteins of high (ordered), low
(disordered), and average structure content were selected from the random, PDB, Uni, and Dis datasets. Secondary
structure and protein disorder predictions for each sequence were combined with the intention of reducing the false
positive rate of individual predictors. Sequence selection into the three groups was based on the following criteria:

Ordered Disordered Average

1 o 1 1 1
Secondary structure SSeont = Mgg + 7 Oss SSeomt S fhgg —5 s Mg 5 Tss 2 88com = fgg —5 s

s N 1 N 1 1 M 1
Disorder Disorder < ju,.. =3 Tis Disorder = ju;, + 3 Oldis My 37 G 2 Disorder =y, =3 Tiis

SScont 1s the total secondary structure content of the sequence; Disorder is the relative disorder score of the
sequence; f15s and p1y; are the mean values of total secondary structure content and relative disorder score distri-
butions, respectively; and o4 and o, are the standard deviations for those distributions.
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Per-residue aggregation scores were generated with the ProA predictor. The final aggregation score for each
sequence was obtained by summing all per-residue scores from the ProA output.

Experimental screening of the in silico library. Protein expression and solubility analysis. DNA
sequences encoding the 3 x 15 selected proteins were codon-optimized for E. coli expression and synthesized
by Thermo Fisher Scientific, USA. The DNA sequences were subcloned into the pET24a plasmid using Ndel/
Xhol restriction sites, and the resulting proteins had an additional Met residue at the N-terminus and a Leu, Glu,
and 6 x His-tag at the C-terminus (equivalent to the sequences used for bioinformatics analyses controls). The
proteins were expressed in 5mL cultures of E. coli BL21 (DE3) for 5h with 0.5mM IPTG at 30 °C. The cells were
harvested, and pellets were resuspended in 0.5 mL B-PER reagent (Thermo Fisher, USA) supplemented with
5U/mL benzonase and 100 pg/mL lysozyme. The lysate was centrifuged at 13,000 x g for 10min at 4°C, and the
supernatant (soluble fraction) was separated from the pellet (insoluble fraction). The pellet was resuspended in
7.5mL SDS-PAGE sample buffer, and 10 uL soluble fraction and 6 L insoluble fraction were analyzed by 18%
SDS-PAGE. As a control, bacterial pellet from 1 mL pre-induction culture was resuspended in 1 mL sample buffer,
and 30 pL of this sample was analyzed in parallel. After electroblotting onto a nitrocellulose membrane, proteins
of interest were specifically detected with an anti-His-tag iBody (a synthetic antibody mimetic, present at 5nM
concentration) overnight at 4 °C*. The conjugate carries the Cy7.5 fluorophore, which was detected using an
Odyssey CLx Imager (LI-COR)".

The identities of all expressed proteins were verified using LC-MS following in-gel tryptic digest according to
standard procedures*.

Large-scale expression and purification of selected proteins. Larger-scale expression and purification were
attempted for all proteins that expressed in a soluble form. Some proteins that were not soluble in the initial anal-
ysis were also overexpressed on a larger scale after further optimization of the expression conditions to solubilize
them (such as decreasing the expression temperature). Briefly, proteins were expressed in 0.2-4 L of LB medium
for 4-12h, typically with 0.2 mM IPTG at 20-37 °C, depending on the individual optimal conditions. The bac-
terial pellets were resuspended in 50 mM phosphate buffer, 30 mM NaCl, 1 mM 2-mercaptoethanol, pH 8, and
sonicated 5 x 30 on ice prior to centrifugation at 20,000 x g for 30 min at 4°C. The supernatant was subjected to
purification on Talon matrix (Clontech, USA) using a gravity-flow arrangement. The eluted fractions (in 50 mM
phosphate buffer, 30 mM NaCl, 250 mM imidazole, 1 mM 2-mercaptoethanol, pH 8) were dialyzed thoroughly
into 10mM Tris, 10mM NaCl, 1 mM TCEP, pH 8, and concentrated to approximately 1 mg/mL before further
characterization. Where preliminary DLS measurement suggested a mixture of aggregated and lower-oligomeric
species, gel filtration chromatography was used to isolate the lower oligomeric form. Only 22 proteins were puri-
fied in sufficient quantity and stability to allow downstream characterization.

Biophysical characterization of selected proteins. Prior to analysis, the identities and molecular weights of puri-
fied proteins were confirmed by mass spectrometry. In addition, precise protein concentrations were determined
by amino acid analysis using a Biochrom 30 + Series Amino Acid Analyser (Biochrom, UK).

The same protein preparations were used for ECD and DLS measurements. ECD spectra were collected using
a Jasco 815 spectrometer (Japan) in the 185-300 nm spectral range using a 0.02 cm cylindrical quartz cell. The
experimental setup was as follows: 0.1 nm step resolution, 5nm/min scanning speed, 16 s response time, and
1nm spectral band width. After baseline correction, the spectra were expressed as molar ellipticity per residue
0 (deg-cm®dmol~!). If needed, samples were diluted in 10 mM Tris, 10mM NaCl, 1 mM TCEP, pH 8. To collect
ECD spectra with co-solvents, the samples were diluted to reach the final concentrations of 0.4 M GuHCl and
50% (v/v) TFE.

The ECD spectra of individual proteins were subjected to hierarchical cluster analysis using the Euclidean
distance and Ward linkage algorithms in the MATLAB environment (MathWorks, USA).

One dimensional hydrogen NMR spectra were acquired at 25 °C on 850 MHz Bruker Avance III spectrometer
equipped with a triple-resonance (15 N/13 C/1 H) cryoprobe. The sample volume was 0.35ml.

Prior to DLS measurement, the protein samples were centrifuged at 20,000 x g for 30 min at 4°C. To com-
pletely remove dust particles, the samples were immediately filtered using 0.1 jum Ultrafree®-MC centrifuga-
tion filters (Millipore, USA). The measurements were performed at 20°C using a Zetasizer Nano ZS instrument
(Malvern Instruments, Great Britain) equipped with an internal 633 nm He-Ne laser. Proteins were measured in
a3 x 3mm quartz cuvette (internal volume of 40 uL). The results were processed using the original Zetasizer 6.2
Malvern Instruments software (Great Britain).
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Abstract

Motivation: Current techniques of protein engineering focus mostly on re-designing small targeted regions or
defined structural scaffolds rather than constructing combinatorial libraries of versatile compositions and lengths.
This is a missed opportunity because combinatorial libraries are emerging as a vital source of novel functional pro-
teins and are of interest in diverse research areas.

Results: Here, we present a computational tool for Combinatorial Library Design (CoLiDe) offering precise control
over protein sequence composition, length and diversity. The algorithm uses evolutionary approach to provide solu-
tions to combinatorial libraries of degenerate DNA templates. We demonstrate its performance and precision using
four different input alphabet distribution on different sequence lengths. In addition, a model design and experimen-
tal pipeline for protein library expression and purification is presented, providing a proof-of-concept that our proto-
col can be used to prepare purified protein library samples of up to 10''-10" unique sequences. CoLiDe presents a
composition-centric approach to protein design towards different functional phenomena.

Availabilityand implementation: ColLiDe is implemented in Python and freely available at https://github.com/vor

acval/ColLiDe.

Contact: klara.hlouchova@natur.cuni.cz or voracval@fel.cvut.cz
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Considering the vastness of the potential protein sequence space,
naturally occurring proteins are constructed from a small number of
coding sequences that arrange into a limited number of structural
folds. While there are 20" possible combinations for the design of
a 100-amino-acid protein within the canonical amino acid alphabet,
only ~10" sequences encode all proteins on Earth (Luisi, 2006).
Furthermore, these sequences are estimated to fold into only ~2000
distinct topologies (Govindarajan ef al., 1999). These observations
raise numerous questions in the fields of biotechnology, synthetic
biology and evolutionary biology: How easily can a useful sequence
be encountered in the unexplored sequence space? Are there protein
folds and functions outside those formed by the natural sequence
pool?

Several recent studies have started providing answers to these
questions. Both secondary and tertiary structures seem to be

©®The Author(s) 2020. Published by Oxford University Press.

abundant in completely random sequences (Chiarabelli ez al., 2006;
Davidson and Sauer, 1994; LaBean et al., 2011; Tretyachenko et al.,
2017). Novel folds and functions have been encountered in random
and semi-random sequence libraries, and some researchers argue
that protein function may be discovered by entirely stochastic means
(Chao et al., 2013; Donnelly et al., 2018; Fisher et al., 2011; Keefe
and Szostak, 2001; Ravarani et al., 2018). In addition, the bioactiv-
ity of and cellular response to random sequences has been actively
discussed in association with de novo gene birth (Bornberg-Bauer
and Heames, 2019; Neme et al., 2017). While it seems that protein
structure and function can be encountered in random sequence
space, different biological functions have been associated with spe-
cific amino acid composition and hence physicochemical properties.
For example, positively charged and aromatic amino acids are
known to promote protein-RNA interaction, evolutionary early
amino acids promote solubility and trends in amino acid compos-
ition have been related to phenomena such as protein disorder and

1
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liquid-liquid phase separation (Blanco et al., 2018; Doi et al., 2005;
Newton et al., 2019; Wang et al., 2018; Vymeétal ez al., 2019). Local
residue composition is apparently what makes natural sequences
stand out from randomness (Weidmann et al., 2019). Overall, these
studies highlight the importance of developing tools to probe the
protein sequence space in a rational way.

Several approaches to constructing synthetic protein sequence
libraries have been developed. The simplest is direct chemical syn-
thesis of a peptide from amino acid precursors but has major restric-
tions in sequence length and conformational biases [reviewed in
Jaradat (2018)]. Another approach is based on construction of a de-
generate DNA template with subsequent expression. The template
can be designed either using triplet codon as the minimal unit, where
pre-synthesized triplets are linked together, or at the single nucleo-
tide level. Although the former method can provide a library with
unbiased amino acid distribution at each template position, the cost
of the trinucleotide phosphoramidite precursors limits its wide-
spread adoption in laboratory practice (Virnekas ez al., 1994). On
the other hand, template synthesis at the nucleotide level is econom-
ically feasible and is offered by multiple commercial oligonucleotide
synthesis companies. Using this approach, random libraries have
been constructed from simple repeat of frequently used degenerate
codons, such as NNN and NNK. The major drawback of NNN/
NNK method for protein engineering is its high level of degeneracy
(NNK codes 20 amino acids via 32 different codons). An elegant so-
lution to reduce the degeneracy introduced by Kille et al. combines
three degenerate codons in a vertical way to cover all 20 amino acids
using 22 codons (so-called ‘22¢-trick’) without an introduction of
STOP codons (Kille et al., 2013). Nevertheless, this solution is ef-
fective only when screening a few positions because of an increased
cost of oligonucleotide synthesis (mere three mutagenized positions
would demand 3°=27 separate oligonucleotides) and the experimen-
tal effort during template assembly. Both of these methods are
focused on producing the highest mutational coverage without any
attention to amino acid distribution of the mutant library.

While several computational algorithms for library design exist,
they have been optimized to introduce as few degenerate codons as
possible (Jacobs et al., 2015; Shimko et al., 2020; Tang et al., 2012).
An optimal solution to amino acid distribution approximation by
combinations of degenerate codons was recently introduced in
SwiftLib and DeCoDe algorithms (Jacobs et al., 2015; Shimko ef al.,
2020). Both produce compact combinatorial libraries by as few de-
generate codons as possible while DeCoDe implements complex pat-
terns of covariation into the library design (Shimko et al., 2020).
Degenerate codon positions consist of nucleotide mixtures at equi-
molar ratios where more than one nucleotide is found at a single
position. An alternative approach is represented by use of spiked
codons where nucleotides can be represented by variable ratios.
Mapping of amino acid distribution into a single spiked codon was
implemented by Wolf et al. and Craig et al. via numerical optimiza-
tion and genetic algorithms. Unfortunately neither of these algo-
rithms is publicly available (Craig e al.,, 2009; Wolf and Kim,
2008). Although these tools are particularly useful for site-specific
randomization strategies, there remains a missed opportunity for the
overall design of protein libraries. Specifically, the formation of
combinatorial segments of versatile length with a desired amino acid
composition would benefit synthetic biology practitioners.

Here, we present a combinatorial library design tool (CoLiDe)
for the DNA template design of versatile protein libraries. CoLiDe
aids in construction of libraries with specific amino acid distribu-
tions and lengths, i.e. optimization of the overall amino acid com-
position. Such libraries are notably in demand for investigating
phenomena that are principally related to amino acid composition—
protein liquid-liquid phase separation (Wang et al., 2018), intrinsic
protein disorder (Vymétal et al., 2019), spatial protein localization
in vivo (Cedano ef al., 1997), protein degradation half-life in the cel-
lular milieu and chain elongation rate during ribosomal synthesis
(Guruprasad et al., 1990; Riba et al., 2018). In addition, our algo-
rithm allows for incorporation of spiked trinucleotides (i.e. with

variable nucleotide composition for single position) and removal of
specific codons, such as for codon reassignment and incorporation
of unnatural amino acids (Liu and Schultz, 2010).

As a proof-of-concept, we demonstrate the use of CoLiDe by
construction of a combinatorial protein library of 33 amino acids in
length and composed of a 10 amino acid alphabet (A, S, D, G, L, E,
T, I, P and V). Total amino acid composition of the library and
therefore each protein sequence was specified using the CoLiDe in-
put option. Moreover, CoLiDe can be used to upgrade currently
available DNA block shuffling methods to prepare combinatorial
libraries that are hundreds of amino acids in length.

2 Materials and methods
2.1 ColLiDe algorithm

2.1.1 Basic definitions

The following procedure addresses problem-solving with spiked
codons (degenerate codons with variable nucleotide composition). If
the domain is restricted to degenerate codons, the procedure differs
slightly, as noted below. We considered spiked codon to be a 12-
tuple concatenated from 4-tuples representing each degenerated pos-
ition of the triplet:

(Th.C1, A1, Gy, T2, Cp, Ay, G2, T5, C3, A3, Gs)
satisfying

vie{l,2.3}:Ti+C+A+G =1
vie{1,2,3¥S e {T,C.A,G}: 5 >0.

We also introduced a 12-tuple base-codon term:
(T1,C1,A1,G1, T2, Cy, Az, G2, T3, C3, A3, G3)
satisfying

Vie{l,2,3}: T+ C+A+G;>1
vie {1,2,3}WSe {T,C, A G}:85 <{0,1}.

Base-codons serve as templates for codons. For example, the
codon NNS can be represented by the 12-tuple
(1,1,1,1,1,1,1,1,0,1,0,1), meaning that the first two positions can in-
clude all four bases and the last position is restricted to C or G only.
By defining base-codon b, a spiked codon can be obtained by replac-
ing 1’s in b with non-zero numbers. Note that in cases of restriction
to degenerate codons, there is one-to-one mapping between degener-
ate codons and base-codons.

The optimization problem can be formulated as follows: given
amino acid sequence length I; desired amino acid distribution D,
which is a vector of 21 non-negative numbers summing up to 1, one
number for each amino acid; a set of forbidden codons F; and a dis-
tance function dist, find a multiset M cardinality I of codons, mini-
mizing dist(D, M), subject to ¥Ym € MVf € Fp : f, # 0 = m, = 0,
where f, is an element of f on position p. This condition guarantees
that there are no forbidden codons in M.

Every codon encodes a distribution of amino acids. Hence, M
representing a multiset of degenerate codons, can be considered as a
mixture distribution of amino acids encoded by its codons. The
closer the mixture distribution encoded by M is to D, the smaller
dist(D, M) should be. We defined D as a vector in R*!, so that we
could use a norm to measure the distance between two distributions.
Common norms include the L! norm, which is a sum of absolute
values of elements, and the L* norm, which is a square root of the
sum of squares of elements. As square root is a strictly increasing
function, minimizing the square root of a sum of squares and mini-
mizing a sum of squares yield the same optimal argument. The third
common norm is the L™ norm, which is the greatest absolute value
of elements. We used the L* norm in our implementation, as it
penalizes large differences considerably but is permissive for slight
deviations.In the first step, valid base-codons are generated. There
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ColLiDe

Algorithm

We present the base implementation of the CoLiDe algorithm
as a pseudocode:

1. BC « generate valid base-codons
. M—g
3. Fori=1ltol:
a. bc « random element from BC
b. ¢« make random codon from bc
c. M—Muc}
. rejected «— 0
5. While rejected < 1000 - 1:

a. bc — random element from BC
b. ¢+ make random codon from bc
c. dgg — dist(D, M)
d. M2 +— MU {c}\(random element from M)
e. dhew « dist(D, M2)
f. If dnew < dcld
i M M2
il. rejected «— 0
Else
i. rejected «— rejected + 1
6. Output M
are 3 independent sequences in base-codon

(Ti, Ci, Ai, G;.i € {1,2,3}), and every sequence is an arbitrary bin-
ary string of length 4, excluding string 0000. There are 16 — 1 such
strings, so the number of base codons is (16 — 1)°=3375. Along the
fact that there are at most 64 forbidden codons, the time needed to
execute this step is negligible with any reasonable implementation.

In the third step, filling multiset M with random codons yields
an initial result.

In the fifth step, the optimization is performed. Once per loop, a
random codon is generated, and an attempt is made to replace a ran-
dom codon in M with this codon. If the objective improves, the
change is accepted; otherwise, it is rejected. The algorithm works
reasonably well and reasonably quickly (visualization of results is
many times slower than the algorithm itself). The base algorithm
can be easily modified, because dist can be chosen arbitrarily. In our
implementation, dist is chosen as the L2 norm of the vector of differ-
ences between D and the distribution of amino acids encoded by
codons of M. This problem also could be formulated as a quadratic
programming task, but it would be difficult or even impossible to
add new requirements to the result. The ability of the algorithm to
be easily extended to new problems offers flexibility.

2.2 Library construction

2.2.1 Preparation of DNA and RNA templates

A degenerate ssDNA of 197 bases was synthesized by Integrated
DNA Technologies (Supplementary Material Sequences, library).
The oligonucleotide was converted to dsDNA by Klenow extension
with a §' complementary reverse primer (Supplementary Material
Sequences, reverse). Annealing of the primer was performed by cool-
ing down a mixture of 2 uM oligonucleotide and primer in the pres-
ence of 200 uM dNTPs in buffer NEB1 from 90 to 25°C at a rate of
1°C/min. Total 10U Klenow polymerase was added to the annealed
mixture, and extension step was carried out for 1 h at 37°C followed
by polymerase deactivation at 50°C for 15 min. The dsDNA library
product was purified with the Monarch® PCR & DNA Cleanup Kir
(New England Biolabs) and used for the downstream in vitro tran-
scription, carried out with the Ampliscribe T7-Flash kit (Lucigen)
according to the manufacturer’s recommendations. The resulting

mRNA was purified by ammonium acetate precipitation and dis-
solved in RNase free water to a final concentration of 3 pg/ul.

2.2.2 ¢cDNA preparation for high-throughput sequencing (HTS)
Complementary DNA (cDNA) was prepared from 1 pg transcribed
mRNA. ¢DNA was synthesized according to the SuperScript 1V
(Thermo Fisher Scientific) instruction manual using reverse primer
(Supplementary Material Sequences, reverse) and 20 ul reverse tran-
scribed product was further amplified with Q5 DNA polymerase
(New England Biolabs) in a 100-pl reaction volume for 11 amplifi-
cation cycles with a primer annealing temperature of 68°C.

2.2.3 Protein expression and purification for amino acid analysis
and mass spectrometry

The protein library was prepared in a PUREfrex 2.0 (GeneFrontier
Corporation) cell-free protein expression system. The reaction was
prepared according to the manufacturer’s recommendations, supple-
mented with 0.05% Triton X-100 (v/v), and initiated by addition of
3 ug library mRNA. Protein expression was conducted for 4h at
30°C. The reaction was diluted 10 times with guanidine denatur-
ation buffer (6 M guanidine hydrochloride, 100 mM sodium phos-
phate, 500 mM NaCl, 0.05% Triton X-100, pH 8) and incubated
with 4 pl TALON affinity chromatography resin (Clontech) for 12 h
at 25°C. The resin was washed twice with urea denaturation buffer
(8M urea, 100mM sodium phosphate, 500mM NaCl, 0.05%
Triton X-100, pH 8) and twice with distilled water supplemented
with 0.05% Triton X-100. The library was eluted by boiling the af-
finity matrix in 50pl of 2% (w/v) aqueous SDS. Eluted fractions
were purified from SDS by addition of 5x volumes of ice-cold acet-
one. The precipitates were centrifuged, washed with 100% acetone
and air-dried.

2.2.4 Preparation of libraries for HTS and data analysis

The dsDNA library template was analyzed by HTS with an Illumina
MiSeq. Prior to sequencing the library preparation, quantification
was carried out on a Quantus"™ Fluorometer (Promega). A total of
100 ng of DNA sample was used as an input for library preparation
with the NEBNext Ultra II DNA Library Prep kit (New England
Biolabs) with AMPure XP purification beads (Beckman Coulter).
The length of the prepared library was determined with an Agilent
2100 Bioanalyzer (Agilent Technologies) and quantified with a
Quantus Fluorometer (Promega). Samples were sequenced on a
MiSeq Illumina platform using the Miseq Reagent Kit v2 for 500
cycles (2 x 250) in paired-end mode. Raw data was processed with
Galaxy platform. Sequence analysis of assembled and filtered paired
reads was performed with MatLab scripts developed by the Heinis
lab (Afgan et al., 2018; Rebollo et al., 2014).

2.2.5 Amino acid analysis and mass spectrometry

The purified and precipitated library samples were hydrolyzed in
6 M hydrochloric acid at 110°C for 20 h, the hydrolysate was evapo-
rated, and reconstituted with 0.1 M hydrochloric acid containing
the internal standard. Amino acid analysis was performed on an
Agilent 1260 HPLC (Agilent Technologies) equipped with a fluores-
cence detector using automated o-phtalaldehyde/2-mercaptopro-
pionic acid (OPA/MPA) derivatization. For mass spectrometry, the
purified protein library sample was resuspended in water. The spec-
trum was collected after addition of 2,5-dihydroxybezoic acid ma-
trix substance (Merck) using an UltrafleXtreme™ MALDI-TOF/
TOF mass spectrometer (Bruker Daltonics, Germany) in linear
mode.

3 Results and discussion

In this work, we present a computational tool for automated design
of combinatorial libraries. CoLiDe uses evolutionary approach to
find a satisfactory solution. The algorithm provides a set of degener-
ate codons which approximate the total amino acid distribution of
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rejected < 1000 x | count of rejected rejected = 1000 x |
l exchanges
return to I

previous template
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amino acid distribution
library length - I

random exchange
—

codon pool of INPUT
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one codon
exchange

exchange rejected
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terminate and
return solution
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exchange
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continue exchanges with new template
until no improvement is observed

Fig. 1. Qutline of the CoLiDe algorithm. Based on the input amino acid distribution and length of the randomized library, at first an unoptimized vector of degenerate codons
of given length is generated. Then the vector is optimized by single exchanges of codons until a vector of degenerate codons with minimal distance from the inpur distribution

1s obtained

protein without regard to individual degenerate positions in the cod-
ing template. The principle of the algorithm is summarized
inFigure 1.

Mandatory inputs include library length, amino acid distribution
and degenerate codon type (standard or spiked, Supplementary Fig.
S1). Other parameters, such as organism-specific codon preference,
extent of degeneracy or codon removal/reassignment, also can be
specified (Supplementary Fig. S1). Once the input parameters are
defined, codons are pre-selected based on the amino acid input from
a total pool of 3375 degenerate codons. The codon pre-selection
removes undesired amino acid and STOP codons. This step guaran-
tees that the combinatorial library is composed only of input amino
acids and will not contain prematurely terminated templates. On the
other hand, depending on input distribution, most highly degenerate
codons are removed which reduces degeneracy of individual library
positions.

Only the pre-selected degenerate codons serve in the subsequent
library construction pipeline. The pipeline starts with random sets of
degenerate codons of desired library length and follows with ran-
dom codon exchanges (standard codons) or a shift in nucleotide
ratios (spiked codons). Exchanges and shifts are kept within the
optimized codon set if the amino acid product comes closer to input
distribution (evaluated by mean squared error) and rejected if not.
Optimization is finished when repeated changes do not further im-
prove the solution (specifically, after n=1000 x [library length]
rejected mutations) This threshold was selected after test runs of the
optimization path which recorded the rejection rate of mutations
and provided satisfactory deviation on all tested distributions
(Supplementary Fig. $2A-D). The output of the algorithm is a vector
of degenerate codons of given library length. In other words,
CoLiDe provides a list of degenerate codons combined randomly
into a single oligonucleotide template.

CoLiDe offers a graphical user interface (Supplementary Fig. S1)
that aids input of all variables, displays statistics of the optimized so-
lution and allows the user to generate a report as a PDF document.
CoLiDe is implemented in Python 3, and the source code is available
as open source under MIT license at https://github.com/voracval/
CoLiDe.

3.1 ColLiDe performance analysis

We tested CoLiDe’s precision and reproducibility on the following
four amino acid distributions: (i) a reduced alphabet used in protein
evolution studies to approximate an early version of the genetic
code (Solis, 2019), (ii) a functional distribution derived from an ana-
lysis of RNA-binding proteins (Blanco et al., 2018), (iii) a natural

amino acid distribution from the UniProt database (UniProtKB/
Swiss-Prot UniProt release 2019 _11) and (iv) a rational selection of
a reduced set of amino acids for protein engineering (Murphy et al.,
2000) (Fig. 2A-D and Supplementary Table S1). For each amino
acid distribution, optimization was performed 10 independent times
for library lengths of 5, 10, 15, 20, 40, 60, 80 and 100 amino acids
(Fig. 2E-H). CoLiDe was able to reliably spread all the tested distri-
butions on a DNA template of given length.

Mean squared errors in the shortest amino acid libraries ranged
from 0.11 to 0.17 between individual alphabets and converged with
increasing template length to values around 0.005. Variance in pre-
cision between solutions—measured as a coefficient of variation was
highest in short libraries, ranging between 1072 and 1073, and
decreased to values around 107° in longer templates
(Supplementary Table S2).

Our results confirmed that the algorithm consistently finds pre-
cise solutions to selected input amino acid distributions. The preci-
sion of the solution increases and the variance between solutions
within each group decreases along with the increase in library tem-
plate length. With reduced template length, error became dependent
on the specific amino acid alphabet. Solutions using spiked codons
showed better precision with similar variance within each group
(Supplementary Table 52). CoLiDe runtimes were tested on four li-
brary templates (Fig. 2A-D) with the template sizes ranging from §
to 400 degenerate codons. Reported runtimes range from ~3 to
600 s on Intel 15-8250U laptop (Supplementary Fig. S3).

Diverse degenerate libraries can be produced with other avail-
able tools, even though they are designed for construction of differ-
ent library types. CoLiDe, in contrast to alternative design tools
(SwiftLib, DeCoDe), focuses on combinatorial library design with-
out position-specific restraints. Designed libraries are suitable for
probing the constrained sequence space rather than for screening
small, rationally designed library of protein variants (Jacobs et al.,
2015; Shimko et al., 2020). As an example, we compare the solu-
tions for combinatorial libraries provided by degenerate codon opti-
mization algorithm SwiftLib (Jacobs et al., 2015). SwiftLib outputs
an optimized set of degenerate codons which cover the provided
amino acid variability with as few degenerate codons as possible.
Such approach faces difficulty to assure the precision of the distribu-
tion when targeting longer regions, whereas that is not the case for
ColLiDe (Supplementary Fig. §5). On the other hand, SwiftLib out-
performs CoLiDe when very short randomized regions (of 2-3
codons) are calculated (Supplementary Fig. S4). Deviations of ratios
of single amino acids are reported in Supplementary Tables $4 and
S5. CoLiDe provides a better choice for combinatorial design of lon-
ger protein templates provided that overall amino acid distribution
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of sequence is preferred over the specific amino acid variations on
predefined positions. Furthermore CoLiDe can be used in protein
engineering applications for coarse grained yet computationally effi-
cient vertical design (multiple degenerate oligonucleotides per one
tube) of degenerate codons to approximate amino acid distributions
in single protein positions, similarly to established deterministic
approaches described by Jacobs and coworkers (Jacobs et al., 2015).

3.2 Proof-of-concept experimental library design

To identify general pitfalls and experimental bottlenecks of library
preparation, we experimentally evaluated one specific CoLiDe solu-
tion from DNA to protein level. A 45 amino acid protein library
was prepared with a randomized region of 33 amino acids,

following the early alphabet distribution (Fig. 2A). The mean
squared error of the randomized region with CoLiDe solution was
0.0022 with an error variance of 0.00011 (Fig. 3). The random 33
codon region was tagged with an 8xH+QH (i.e. octa-His + Gln-
His) coding sequence (separated by a two amino acid linker, KS) on
the C-terminus for subsequent purification (Supplementary
Material, Sequence). The protein coding sequence was embedded
into a linear expression cassette, and the library was transcribed as
described in Section 2 (Supplementary Fig. S6).

The length of the protein library was selected so that a single
commercially synthesized oligonucleotide could be used for the
downstream procedure. However, a larger construct could be pre-
pared by DNA shuffling methods as previously described (Cho
et al., 2000). Thus, CoLiDe algorithm can also be utilized for the
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construction of random protein libraries with amino acids residues
up to several hundreds.

3.3 Construction and characterization of the

oligonucleotide library

Nucleotide sequences for degenerate libraries were analyzed on the
DNA and mRNA template levels by high-throughput sequencing
(HTS). The in silico translated amino acid composition (from both
the DNA and mRNA templates) showed good agreement with the
designed construct (Figs 3 and 4, Supplementary Table 56). While
deviations of whole distributions are listed here as mean squared
error calculated on (0,1) scale, we plot single amino acid occurrence
as percentage of input distribution on (0,100) scale. Deviations be-
tween the CoLiDe solution and the in silico translated DNA tem-
plate were observed in enrichment of valine, leucine and isoleucine
(2.9, 2.2 and 1.6%) and depletion of proline, threonine and alanine
(3, 2.2 and 2.4%) (Figs 3 and 4, Supplementary Table $6).

Upon analysis of nucleotide frequencies at each position, we
found that deviation can be explained by the nucleotide composition
bias during the oligonucleotide synthesis and have been confirmed
as the current bottleneck by the provider (Supplementary Fig. 57).
Statistical analysis of the sequencing data provides a confirmation of
library diversity and shows that vast majority (99.9%) of all sequen-
ces are unique (Supplementary Table S7). Overall, mean squared
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Fig. 5. Preparation and analysis of the protein library. (A) SDS-PAGE and Western
blot analysis of library expression and purification. The library was expressed in a
recombinant cell-free system PUREfrex 2.0. *+ stands for cell free fraction without
and with expressed library, FT is affinity purification flow through and E is eluted
fraction. (B) MALDI-TOF MS analysis of the purified library (black) compared
with the theoretical mass distribution (blue) and mass distribution calculated from
sequenced DNA templates (red). (C) Results of amino acid analysis deviations of
variable (colored) and constant sequence regions/contaminations (grey) of the
expressed and purified protein library in percentage units

error of amino acid distribution of DNA and RNA templates
remained to be around ~0.02 (Supplementary Table $6). Hence, we
found that while CoLiDe algorithm can provide low mean squared
error for the library design, one should be aware of the nucleotide
bias that will be introduced during the oligonucleotide synthesis of
highly degenerate DNA oligonucleotides. Such nucleotide compos-
ition bias of DNA library depends on each oligonucleotide provider
(unpublished observation).

3.4 Construction and characterization of the protein
library

The combinatorial protein library was expressed using an in vitro
translation system and His-tag purified for downstream analysis
(Fig. 5A). Expressed proteins were assessed by mass spectrometry
(Fig. 5B) and amino acid analysis (Fig. 5C, Supplementary Table
$6).

MALDI-TOF mass spectrometry revealed good agreement with
expected values. The expected mass distribution was produced by
analysis of 600 000 random sequences corresponding to the degen-
erate DNA template and by in silico translation of 600 000 sequen-
ces obtained by HTS of DNA and mRNA templates. The
experimental spectrum is represented by normal weight distribution
with a mean value of 5029 Da and a standard deviation of 120.6
(Fig. 5B). This is slightly shifted from the mean value of the molecu-
lar weight distribution expected from the design (4902 Da), partly as
a result of sequence bias during the solid-state oligonucleotide syn-
thesis. However, in silico translation of sequences obtained by HTS
(producing a mean molecular weight of 4957 Da) confirms that this
explains only part of the shift. This result indicates that the transla-
tion and purification steps have introduced additional compositional
shift into the protein library. Most notably, the purified protein
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library is under-represented in alanine, aspartic acid and threonine
(by 2-4% from the desired amount) and enriched in glutamic acid
and glycine (by ~5% from the input) as assessed by amino acid ana-
lysis (Fig. 5C), likely due to their impact on protein solubility and
contamination by carry over protein components from the cell-free
expression system in the purified library sample (Fig. 5A). While
these deviations do not represent a major difference in the overall
amino acid ratio profile [amino acid analysis shows an overall of
0.05 mean squared error (Supplementary Table $6)], it is important
to be aware of the sequence biases that may be introduced into
designed libraries during oligonucleotide synthesis and downstream
procedures as a result of the translation and purification process or
the physicochemical properties of the expressed proteins themselves.

Currently, there is no satisfactory methodology to analyze the
variability of the large protein sequence pool directly. One transla-
tion reaction (in a 20 pl volume) is typically primed with 10*!-10'?
different template molecules. Even with the genotype-phenotype
linked display methods (i.e. mRNA-display, ribosome display, etc.)
number of characterized sequences is limited to the performance of
HTS. Because neither DNA library preparation, RNA transcription
nor the in vitro translation involve sequence amplification, a similar
variability of protein sequences is expected after translation. The
computational protocol therefore presents a tool for truly effective
exploration of the protein sequence space.

4 Conclusions

Here, we present CoLiDe, a novel tool for precise design of com-
binatorial protein libraries of flexible length and desired amino acid
composition. We provide evidence that it performs with minimal
error and variance across several different amino acid distributions
and lengths. It significantly outperforms SwiftLib (that have been
developed for other applications) especially when designing com-
binatorial libraries longer than ~10 amino acids.

In addition, we present a model protocol for combinatorial li-
brary (composed of a 10 amino acid alphabet) preparation by cell-
free expression. By monitoring the DNA and mRNA sequence pool
during library preparation using HTS, we confirmed the desired
variability (99.9% of the sequences representing unique species).
While negligible error is detected between the input sequence and
the CoLiDe solution, up to 3% deviations of individual amino acid
ratios were detected upon in silico translation of the mRNA se-
quence pool. The error was primarily attributable to nucleotide
compositional bias from the synthesis of the starting material.

Using the template mRNA, we expressed and purified a highly
variable protein library (represented by a normal weight distribu-
tion). To our knowledge, this is the first report of purification of a
combinatorial protein library in an amount sufficient for biophysical
characterization. The experimental procedure introduced additional
detectable shifts among several amino acid compositions (up to 5%
deviation), likely occurred during translation and purification steps
of the library. Such an error is to be expected and may vary depend-
ing on the nature of individual amino acid alphabets. We estimate
that 1011-1012 unique protein sequences can be produced in a 20-
ul cell-free translation reaction using our protocol.

The design and experimental strategy presented here can be used
in combination with vertical library design strategies (i.e. mixing
multiple degenerate templates) and DNA shuffling synthesis. This
represents a powerful tool for the synthesis of combinatorial protein
libraries composed of hundreds of amino acids.
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Abstract

The wide variety of protein structures and functions results from the diverse
properties of the 20 canonical amino acids. The generally accepted hypothesis
is that early protein evolution was associated with enrichment of a primordial
alphabet, thereby enabling increased protein catalytic efficiencies and func-
tional diversification. Aromatic amino acids were likely among the last addi-
tions to genetic code. The main objective of this study was to test whether
enzyme catalysis can occur without the aromatic residues (aromatics) by study-
ing the structure and function of dephospho-CoA kinase (DPCK) following
aromatic residue depletion. We designed two variants of a putative DPCK from
Aquifex aeolicus by substituting (a) Tyr, Phe and Trp or (b) all aromatics
(including His). Their structural characterization indicates that substituting
the aromatics does not markedly alter their secondary structures but does sig-
nificantly loosen their side chain packing and increase their sizes. Both vari-
ants still possess ATPase activity, although with 150-300 times lower efficiency
in comparison with the wild-type phosphotransferase activity. The transfer of
the phosphate group to the dephospho-CoA substrate becomes heavily
uncoupled and only the His-containing variant is still able to perform the phos-
photransferase reaction. These data support the hypothesis that proteins in the
early stages of life could support catalytic activities, albeit with low efficiencies.
An observed significant contraction upon ligand binding is likely important for
appropriate organization of the active site. Formation of firm hydrophobic
cores, which enable the assembly of stably structured active sites, is suggested
to provide a selective advantage for adding the aromatic residues.

Mikhail Makarov and Jingwei Meng shares authorship to this study.
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1 | INTRODUCTION

The extant alphabet of canonical amino acids was appar-
ently selected in the first 10-15% of Earth history from a
plethora of amino acids (a) available on primordial Earth
and (b) synthesized through gradually developing metabolic
pathways.! Recent analyses reveal that, compared to alter-
natives, the extant alphabet comprises an unusually good
repertoire of physical properties.”* Even entirely random
sequences built from the canonical alphabet give rise to sec-
ondary structure-rich proteins.” Nevertheless, soluble and
well-expressing proteins have been successfully recovered
from random libraries of simpler alphabet of evolutionary
early amino acids.*” However, the stage of the amino acid
alphabet evolution at which proteins could have gained
dominance in binding and catalysis (i.e., functionally sup-
port early metabolism) remains unclear.

Aromatic amino acids are considered among the last
additions to the genetic coding system, that is, to the
canonical amino acid alphabet.®® Because of their rela-
tively high redox reactivity, their fixation in the genetic
code could be driven by the biospheric oxygen.'® There is
recent support that for some of the aromatics (Tyr and
Trp) this possibly happened even in the post-last univer-
sal common ancestor (LUCA) period.’®** These pro-
posals suggest that there was a time when living cells
existed without aromatic amino acids.

Even though different reduced sets (of 7-13) of the
amino acid alphabet have been shown or predicted to be
sufficient for protein folding and catalysis, to our knowl-
edge, none of the experimental studies recovered enzyme
activity in complete absence of aromatics."*'® Computa-
tional inquiry indicates that the aromatics are the stron-
gest structure promoters among the 20 amino acid
alphabet.'® This conclusion is consistent with observation
that aromatics are mostly clustered within the hydropho-
bic cores of structured proteins and with quantum chem-
istry calculations showing the interactions between
aromatics to be stronger and more specific than aliphatic
side chains interactions.?® A comparison of the structure/
disorder propensities of the 20 amino acids with the chro-
nology of amino acid inclusion into the genetic code indi-
cates that the earliest amino acids are strongly disorder-
promoting while the last to be added, for example, the
aromatics, are among the most strongly structure-pro-
moting.”'**' Indeed, aromatics are heavily under-
represented in intrinsically disordered proteins and

regions (IDPs and IDRs), that is, proteins that lack stable
3D structure and yet frequently carry out crucial biologi-
cal functions, associated with signaling and regulation in
particular.?*?* While some functions can thus be deliv-
ered even in lack of tertiary structure, it remains unclear
if and how early enzymes could achieve specific catalysis
without a stable hydrophobic core supported by the aro-
matic residues.

Here, we perform an analysis of structure/function
consequences of amino acid reduction by aromatic amino
acids. As an exemplary target, we choose a highly con-
served metabolic enzyme from a hyperthermophilic bac-
teria (and hence of potential relevance to early life)—an
enzyme that catalyzes the final step of coenzyme A bio-
synthesis, which is known to be essential for all life and
considered among the most ancient cofactors. At the
same time, the dephospho-CoA kinase (DPCK) enzyme
belongs to the family of P-Loop NTPases that have been
argued to be one of the oldest protein architectures,
widely preserved.** We present evidence that enzyme
catalysis can occur in the absence of aromatic amino
acids and a firm hydrophobic core, formation of which
evidently becomes induced upon ligand binding.

2 | RESULTS
21 | Target selection by analysis of
LUCA proteins

In order to identify conserved structured protein families,
we applied our VSL2B disorder predictor® to a collection
of LUCA assigned proteins identified by their ubiquity
across all kingdoms of cellular life.*® The non-enzymes,
mostly ribosomal or other RNA binding proteins, were
all predicted to be massively disordered while the
enzymes were predicted to be structured. These modern-
day versions of the ancient enzymes all contain multiple
aromatic residues and we have been unable to identify a
single efficient modern enzyme that lacks multiple aro-
matic residues. Among the LUCA assigned enzymes
identified by Brooks and Fresco, we selected DPCK for
further study because it has the lowest number of aro-
matic amino acids.”® Other advantages of this choice are
that there are multiple 3D structures of different DPCK
family members and that the DPCK proteins have rela-
tively small sizes.
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2.2 | Sequence design, expression and
purification of DPCK variants

To evaluate the significance of aromatic amino acids for
the structure and function of DPCK, the PDB database
was first searched for solved structures of confirmed and
putative DPCKs from different thermophilic bacterial
species (Table S1). An initial test of expression, solubility,
ease of large-scale purification and DPCK activity led to
selection of a putative DPCK from Agquifex aeolicus (PDB
ID: 2IF2) for this study (Table S1).

Mutant variants of DPCK were designed as follows.
First, all Phe, Tyr and Trp residues were substituted by
(a) Leu residues (DPCK-LH) and (b) non-aromatic amino
acids based on the best preservation of thermodynamic
stability (DPCK-MH) using the Hot Spot Wizard server.*’
Second, all of the above amino acids plus His were
substituted using the same logic, producing DPCK-L and
DPCK-M variants respectively. DPCK-LH/MH and
DPCK-L/M variants thus have 10 and 11% of the total
protein sequence substituted, respectively. Synthetic genes
of all these variants were subcloned and expressed in
Escherichia coli with a C-terminal polyhistidine tag using
standard protocols (see Section 4 for details). Upon prelim-
inary purification and DPCK activity characterization, only
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DPCK-LH and DPCK-M variants were selected for detailed
characterization (Figure 1). Intriguingly, DPCK-L mutant
had a very poor expression (even after optimization
attempts) in E. coli and both DPCK-L and DPCK-MH
mutants did not have any measurable phosphotransferase/
ATPase activity (Table S2).

DPCK-WT, -LH and -M variants were purified to
homogeneity using a three-step purification protocol
(Figure S1). Prior to further experiments, the identity,
molecular weight, and oligomeric status of the protein
variants were tested by mass spectrometry and analytical
size exclusion chromatography (Figure S1). All protein
variants were of expected molecular weight. DPCK-WT
and -LH eluted as monomers while the -M variant resem-
bles either a dimeric or disordered monomeric form in
the elution profile.

2.3 | Enzyme activity characterization

The specificity and rates of enzyme reactions of the
DPCK variants were initially characterized using a com-
mercial kit relying on a coupling detection of ADP, one
of the reaction products (Figure 2a). In the assay, ADP is
converted to pyruvate which is then quantified by a

S

Modern proteins

(b) Position 21 27 36 38 39 43 46 53 74

92

DPCK-WT H H
DPCK-LH H H
DPCK-M R G

Position 108 121 124 131 134 151 155 167 170

182

189

DPCK-WT W
DPCK-LH L
DPCK-M I

FIGURE 1

Sequence design of dephospho-CoA kinase (DPCK) variants lacking aromatic amino acids. (a) The chronological order and

ranking of 20 amino acids: (i) order of appearance in the genetic code derived by meta-analyses by Trifonov (9); (ii) order of appearance
based on the prebiotic availability and thermodynamic stability by Higgs and Pudritz (8); (iii) ranking based on their increasing propensity to
promote structure (19). (b) Aromatic amino acid content of DPCK-WT, -LH and -M variants. (c) Aromatic residues highlighted in the
structure of DPCK from Aquifex acolicus (PDB ID:2IF2), with ATP molecule positioned based on structural alignment with the Haemophilus

influenzae DPCK complex with ATP (PDB ID:1JIV)
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FIGURE 2 Kinetic characterization of dephospho-CoA kinase (DPCK) variants. (a) DPCK reaction scheme. (b) Michaelis-Menten plots

of DPCK proteins for initial velocity versus (TOP) ATP concentration, monitoring production of ADP; reactions were performed without and
with 200 pM dCoA to estimate ATPase and phosphotransferase activities of enzymes. (BOTTOM) dCoA concentration, monitoring
production of ADP. Reactions were performed in 15 mM Hepes (pH 7.4), 20 mM NaCl, 1 mM EGTA, 0.02% Tween-20, 10 mM MgCl,, and
0.1% bovine gamma globulin, and was initiated with ATP. The lines represent nonlinear least squares fits. (c) Summary of catalytic

efficiencies



MAKAROV ET AL.

oy WILEY-L

fluorometric method. Any basal ATP hydrolysis (in the
absence of enzyme) was appropriately subtracted
(Figure S2a). Because the assay was performed at two
regimes (varying the concentration of ATP or dCoA), it
was possible to observe significant differences in the reac-
tion specificity of the variants (Figure 2b,c).

DPCK-WT has similar catalytic efficiency for both
ATP and dCoA as substrates while the ATP hydrolysis
activity is dependent on dCoA binding (Figure 2). The
herein measured catalytic efficiency of the reaction
(3.4 % 10" and 5.7 x10*M's™! for dCoA and ATP,
respectively) is similar to previously reported efficiency of
DPCK from Entamoeba histolytica.®® In contrast, the cata-
lytic efficiency of DPCK-LH and DPCK-M are signifi-
cantly lower (355 and 118 M~ s™' for ATP, respectively),
resulting in a decreased turnover number (Figures 2 and
S2b). In the case of DPCK-M, the reaction rates are inde-
pendent of varying concentrations of dCoA implying an
impaired efficiency of the phosphate transfer, that is, only
ATPase activity is observed (Figure 2c). While both
DPCK-LH and -M variants have the ability to hydrolyze
ATP in the absence of dCoA (unlike DPCK-WT), DPCK-
LH has also the dCoA-dependent phosphotransferase
activity (above ~80 pM dCoA) with K,; greater than
200 pM. This activity has been difficult to measure using
the commercial kit due to the ATP concentration range
limitation. In order to confirm the identity of the reaction

products and reaction specificity, the DPCK reactions
were performed at a fixed substrate concentration above
the DPCK-WT K,, value (where the reaction rate is less
dependent or independent of substrate concentration) in
order to reach sufficient substrate conversion for detec-
tion of the products using HPLC-MS analysis. This analy-
sis detected significant CoA formation only in the
reaction catalyzed by DPCK-WT and 100x lower CoA for-
mation was detected in the reactions catalyzed by DPCK-
LH (Figure S2b).

2.4 | Secondary and tertiary structure
characterization

Using the purified proteins, their structural properties
were investigated using electronic circular dichroism
(ECD), NMR and limited proteolysis.

ECD spectrum of DPCK-WT (Figure 3a) with compa-
rable intensity of negative maxima at 209 and 225 nm
and with intense positive maximum at 195 nm indicates
relatively high partition of o-helical structure (~45%).
This is confirmed by the numerical data analysis and
agrees with the secondary structure assignment of the X-
ray structure (PDB code: 2IF2) (Table S3). In the case of
DPCK-LH, the first negative maximum is blue-shifted to
207 nm and its intensity is comparable to that of the
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FIGURE 3 Secondary and tertiary structure characterization of dephospho-CoA kinase (DPCK) variants. (a) Far-UV CD spectra of

DPCK proteins. The spectra were collected in PBS buffer (11.8 mM phosphate (pH 7.6), 137 mM NaCl, 5 mM MgCl,, 2.7 mM KCl and
0.5 mM DTT). (b) Change in ellipticity at 222 nm upon 0-2 M urea titration of DPCK proteins. (c) 2D NMR of DPCK proteins. The spectra
were collected in 50 mM phosphate (pH 7.6), 280 mM NaCl, 20 mM KCl, 10 mM MgCl,, and 0.5 mM TCEP
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second negative maximum at 225 nm. This together with
the positive maximum at 195 nm (almost half intensity
compared to ECD spectrum of DPCK-WT) reveals a sig-
nificant content of a-helical structure (~40%) together
with more pronounced partition of p-sheet structure, con-
firmed also by the numerical data analysis (Table S3).
ECD spectrum of DPCK-M has the first negative maxi-
mum also blue-shifted up to 205 nm but this spectral
band is more intense compared to the second negative
maximum at 222 nm, which could imply possible forma-
tion of 3,p-helical structure as well as enrichment of
unordered structure. The overall spectral shape and
mainly spectral intensity of a positive spectral band at
192 nm could be due to a relatively high portion of
p-sheet structure (Table S3).

To estimate the influence of aromatic amino acid sub-
stitution on overall protein structure stability, the pro-
teins were unfolded with urea in concentration ranging
from 0 to 2 M and were further studied using CD spec-
troscopy. While DPCK-WT and -LH ECD spectra remain
relatively constant upon mild urea titration (up to 2 M),
the urea titration spectra indicate loss of structural stabil-
ity in the DPCK-M variant, starting already in very low
urea concentrations (Figure 3b).

Similarity of structural resemblance of DPCK-LH and
DPCK-WT was further confirmed by 1D and 2D HN
NMR spectra. DPCK-WT spectrum has a good signal dis-
persion in the -NH- region (6-9 ppm) and clear signals
near 1 ppm indicative of methyl groups in the hydropho-
bic core, all features corresponding to a well-folded pro-
tein. While the signal of the methyl groups in the
hydrophobic core is absent in the DPCK-LH variant spec-
trum (as expected from the removal of aromatic resi-
dues), the signal dispersion in the -NH- region implies
that the -LH variant is at least partially folded, in contrast
with that of the -M variant where the signal in the same
region is less dispersed, implying lack of specific tertiary
structure (Figures 3c and S3). Based on the analyses of N-
edited 3D NOESY spectra, the following counts of
o-helical peaks at 131, 57 and 14 were estimated for
DPCK-WT, -LH and -M variants, respectively (Table S3).

The tertiary structure of the proteins was additionally
characterized by limited proteolysis using endoproteinase
Lys-C as its cleavage site map is conserved among all
studied variants (Figure S4), DPCK-WT is highly resistant
to proteolytic digestion during the whole-time scale of
the limited proteolysis experiment, reflecting its globular
structure. In contrast, both mutant variants are gradually
digested by Lys-C over time, with the amounts of the
intact DPCK-LH and DPCK-M decreasing exponentially
over time. While relatively large cleavage fragments with
the approximate size of 15 kDa can be observed during
proteolysis of DPCK-LH, no large cleavage fragments are

detected for DPCK-M, an indication of its loose or absent
tertiary structure (Figure 4).

In summary, DPCK-LH variant (which has all the
aromatic amino acids substituted by leucine) shows rela-
tively high conservation of secondary structure but a
loose tertiary structure (probably of molten globular
nature) when compared with DPCK-WT. On the other
hand, both secondary and tertiary structures of DPCK-M
variant are severely impaired, in which all histidines
were substituted in addition to aromatics.

2.5 | Structural characterization of ATP
binding

For an efficient phosphorylation reaction, the 7v-
phosphate of ATP must be protected from a nucleophilic
attack by water molecules. DPCK active site must there-
fore be shielded from water once the ATP molecule is
bound. For several kinases this shielding is accomplished
by an induced-fit conformational change upon ATP bind-
ing. Such a conformational change has also been
observed for DPCK.*

To study the structural changes of DPCK variants
upon ATP binding, 2D HN NMR spectra were collected
in response to ATP titration (see Figure S5). While the
NMR spectra of the DPCK-M variant are of generally low
quality, which is probably caused by complex dynamics
on the millisecond time scale making the protein signals
invisible for NMR spectroscopy, the spectra of both
DPCK-WT and -LH variants show expected perturbations
upon ATP titration. For DPCK-WT we observe typical
examples of slow exchange behavior, where only free and
bound forms are observed with peak intensity propor-
tional to the population. Interestingly, for the DPCK-LH
variant, we typically observed examples of fast exchange
with only a single peak visible at a given protein:ATP
ratio, although examples of slow exchange are observed
as well (Figure 5a). This suggests that compared to the
DPCK-WT:ATP interaction, an additional process occurs
during DPCK-LH titration with ATP.

To further investigate this intriguing observation,
DPCK-WT and -LH (i.e., those variants that are capable
of phosphotransferase activity that requires a hydropho-
bic core) structural response to substrate binding
was tested wusing dynamic light scattering and
8-anilinonaphthalene-1-sulfonic acid (ANS) titration. The
steady-state fluorescence measurements lend support to
the molten globule nature of DPCK-LH variant since it
shows higher fluorescence intensity values in comparison
with DPCK-WT, resulting from the high affinity of ANS
to the exposed hydrophobic core of molten globular inter-
mediates.*® While the fluorescence intensity decreases for
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FIGURE 4 Limited proteolysis of dephospho-CoA kinase (DPCK) proteins. (a) 14% SDS-polyacrylamide gels visualized by imidazole-
zinc staining after SDS-PAGE with the protein samples exposed to Lys-C endoproteinase for different times. (b) Graphs representing the
amount of the proteins remaining at each time point. (c) Determination of proteolysis rate constants (Kp) assuming pseudo-first order of

proteolytic reactions

both variants upon substrate binding, this change is sig-
nificantly more dramatic for DPCK-LH (Figure 5c). ATP
(out of the two substrates) has a remarkable effect on
additional folding of DPCK-LH protein, explaining its
ability to perform the phosphotransferase activity despite
its molten globular nature in the free state. Both 2D HN
NMR and ANS titration observations were further
supported by DLS measurements where the mean hydro-
dynamic radius of DPCK-LH was recorded to be reduced
by ~20% and reached that of DPCK-WT value upon ATP
addition (Figure 5b).

3 | DISCUSSION

Aromatic residues are essential for formation of a stable
hydrophobic core of extant proteins.”® At the same time,
tight protein folding is frequently required for enzyme
catalysis even though most enzymes undergo dynamic
structural changes during the reaction. With aromatics
being apparently the latest addition to the amino acid
alphabet, how specific protein catalysis could be achieved

in their absence remains unclear. The work reported here
sheds some light on this problem.

To examine the contribution of the aromatic amino
acids to enzyme catalysis, we performed a detailed analy-
sis of two aromatics-less mutants of the Aquifex aeolicus
DPCK where (a) all Phe, Tyr and Trp residues were
substituted by Leu residues (DPCK-LH), and (b) all Phe,
Tyr, Trp and His were substituted by non-aromatic amino
acids based on predicted preservation of thermodynamic
stability (DPCK-M).

DPCK catalyzes the transfer of phosphate group from
ATP to dCoA, where dCoA acts as the leading sub-
strate.®’ It belongs to the ancient family of P-loop
NTPases with the preserved three-layer apa sandwich
architecture.”* The P-loop motif has been detected among
the primordial peptide fragments and is known to under-
lie hundreds of essential enzyme families.*>** Besides
mononucleotide  binding, polypeptides constructed
around this scaffold have been shown to bind polynucle-
otides/RNA/ssDNA and even unwind dsDNA, pointing
to the functional plasticity of the P-loop motif.**** The
specific function of an NTPase relies on the topology and
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FIGURE 5 Structural characterization of dephospho-CoA kinase (DPCK)-WT and -LH upon substrate binding. (a) An exemplary close-

up of DPCK-LH 2D NH NMR spectra induced by ATP binding (red—free protein [100 pM], blue—300 pM ATP, green—1000 pM ATP);
labeled peaks: (P1) N-H signal not influenced by protein-ATP interaction. (P2, P3) N-H signal undergoing medium-slow to slow exchange on
NMR chemical shift time scale (us-ms). (P4) N-H signal documenting a slow exchange process. (b) Mean hydrodynamic radius of DPCK-WT
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binding at excitation wavelength 380 nm. The spectra were measured at different concentrations of ATP (with and without 200 pM dCoA),
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protein solution at 380 nm

overall structural context, including many additional
active site residues. DPCK is a well folded protein with
high a-helical content and its domain movements upon
ATP binding play a crucial role during catalysis.** None
of the aromatic amino acid residues has been reported
essential for the ligand binding and catalysis in DPCK.**
Both aromatics-less mutants and wild type protein
were characterized in terms of their structure and activ-
ity. Interestingly, the DPCK-M variant (selected for best
predicted preservation of thermodynamic stability) had a
more impaired structural integrity than DPCK-LH. This
may be either the consequence of the specific substitu-
tions or the indispensability of the DPCK's His residues.
From an evolutionary perspective, His was among the
last amino acids incorporated into genetic coding.” On
the other hand, according to the order-disorder propen-
sity scale, His is among the most disorder-promoting
amino acids, likely due to its significant positive charge
and the two hydrogen-bonding nitrogen atoms that could
promote structural instability by hydrogen bond
switching.'® Despite its high disorder-promoting ten-
dency, His often plays an important role in inducing pro-
tein structure formation in the presence of divalent
cations, especially zinc, due to its metal ion coordination.
Given the speculative role of His for hydrogen bond
switching, it would be interesting to determine whether

His plays a role in facilitating the domain movements
needed for catalysis.

CD and NMR measurements of the DPCK-LH variant
showed a similar content of secondary structure to the
wild type protein but limited proteolysis and 2D NMR all
imply its molten globule tertiary conformation. DPCK-M
variant has no measurable phosphotransferase activity
while both of the mutant variants are able to hydrolyze
ATP even in the absence of dCoA. This is likely due to
the loss of structural orchestration of the catalytic events
and demonstrates that some activities can be performed
even in the absence of a firm hydrophobic core. However,
this is probably untrue for the phosphotransferase activ-
ity where the gamma-phosphate has to be protected from
a nucleophilic attack by water molecules in order to be
efficiently transferred to the desired substrate. Interest-
ingly, DPCK-LH variant is still able to perform this activ-
ity although with significantly lower efficiency (~100x)
in comparison with the wild type protein. Both DPCK-
WT and -LH variants share slow-exchange behavior in
the NMR spectra upon ATP titration, suggesting the
ATP-induced change in their structural conformation.
However, the DPCK-LH variant undergoes significant
additional folding upon ATP binding, explaining its abil-
ity to perform the phosphotransferase reaction. This
ligand-induced folding scenario is in agreement with
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previously reported behavior of engineered molten globu-
lar enzymes.***°

The study of the engineered molten globular
enzyme®’ includes the hypothesis that modern enzymes
evolved from molten globular precursors. If the earliest
cells indeed existed without aromatics, then the data in
this paper adds weight to this evolutionary scenario of
molten globular polypeptide - molten globular enzyme
- modern enzyme, where the last step is enabled by the
expansion of the genetic code to include the aromatic res-
idues. While small aromatics-less peptides have been
reported previously to have catalytic properties,*®*' aro-
matic amino acids have been considered essential for for-
mation of tight structured proteins to support high-
performance catalysis. Association of protein fold stabili-
zation with genetic code evolution has been addressed by
several recent studies.'®'®**** Most significantly for pro-
tein folding, basic and aromatic amino acids (at least the
canonical ones) were most probably absent in the prebi-
otic set.*® Early protein foldability thus would not be
supported by salt bridges and aromatic core packing
interactions that make up extant protein cores. Earlier
studies suggested that this hindrance could be compen-
sated by a halophilic environment because high salt sta-
bilizes proteins structure and supported halophilic
origins of life scenarios.***® Using a small designed
p-trefoil protein highly enriched in the prebiotic amino
acids (and completely devoid of aromatics), Longo et al.
demonstrated that incorporation of a single aromatic
amino acid can convert a foldable halophilic protein to a
stable mesophile.*” However, two other studies
referenced here concluded that robust protein folds can
be built with prebiotically plausible subset of the current
20 amino acids while the other amino acids
(i.e., evolutionary late) contribute mainly to efficient
catalysis.'®'® These conclusions were drawn from stabil-
ity and catalytic characterization of multiple variants of
nucleoside diphosphate kinase reduced to 13 and
10 amino acid alphabets, respectively. While we cannot
directly deny their conclusions by our study, it is impor-
tant to notice that only ~80% of the proteins' sequence
was occupied by prebiotically available amino acids in
the two studies by the Akanuma group. None of the suc-
cessfully expressed variants was completely rid of aro-
matic and other amino acids that are not regarded as
prebiotically plausible (such as positively charged
Lys/Arg). Therefore, these studies support (or at least do
not rule out) key importance of aromatics in protein fold
stability and their role in the transition from molten glob-
ule to stable globular proteins.

If the transition from molten globular to stable folded
enzymes was mediated by the evolutionary later amino
acids, this transition was also likely accompanied by

evolution of functionality and substrate specificity. The
specific aim of our study was not to resurrect an early
version of DPCK per se but rather to explore the specific
effect of the aromatic amino acid replacements on its
structure-function relationship. However, future reverse
evolution studies of this enzyme class should bear in
mind that the early function could be altered or less
specific.

To further test the role of aromatics in protein fold
evolution, work in progress is to use bioinformatics tools
to carry out disorder prediction with VSL2B on DPCK
and the other identified ancient enzymes with their mod-
ern sequences and with their aromatics replaced by Leu.
All of the ancient enzymes so far tested are predicted to
be structured with the aromatics and disordered without
these residues. The next step will be to apply additional
bioinformatic tools that distinguish molten globules from
other types of disorder.*®

In summary, we report an enzyme without aromatic
amino acids that is still capable of a specific, hydrophobic
core dependent catalysis. This enzyme is rich in second-
ary structure but exhibits a molten globule conformation
in an unliganded form. Our study provides evidence that
a tightly packed protein environment can be formed
upon its ligand binding. This phenomenon could be rele-
vant in the early stages of enzyme catalysis before the fix-
ation of the contemporary amino acid alphabet.

4 | METHODS

41 | Plasmid preparation
DPCK genes for DPCK-WT, DPCK-LH, -L, -MH and -M
were amplified by PCR using Pfu-X DNA polymerase
(Jena Bioscience, Germany) according to the following
program: an initial denaturation at 95°C for 2 min;
followed by the 32 cycles of denaturation at 95°C for 30 s;
annealing at 56°C for 30 s; elongation at 68°C for 30 s;
and a final extension at 68°C for 2 min. The PCR amplifi-
cation for all genes was performed with the same set of
primers: forward, 5-AAAAACATATGAAACGTATCGG
TCTGACC-3/, and reverse, 5-AAAAACTCGAGTTCCAG
CGGGTCACGG-3'. The PCR fragments were digested
with Xhol (New England BioLabs) and Ndel (New
England BioLabs), purified with Monarch PCR & DNA
Cleanup Kit (New England BioLabs) and cloned into
PET-24a (+) C-terminal polyhistidine-tag vector
(Novagen, Germany), which was digested by Xhol and
Ndel and dephosphorylated by Antarctic Phosphatase
(New England BioLabs) prior to ligation.

The plasmids were introduced into One Shot TOP10
Chemically Competent E. coli cells (Thermo Fisher
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Scientific) by heat shock protocol at 42°C for 60 s, and
the cells were grown overnight at 37°C on LB agar plates
containing 50 pg/ml of kanamycin (Sigma Aldrich). A
single colony was selected, cells were grown overnight at
37°C in 5 ml of LB Broth (Sigma Aldrich) supplemented
with 50 pg/ml of kanamycin (Sigma Aldrich) and plas-
mid DNA was isolated and analyzed by Sanger
sequencing.

4.2 | Protein expression and purification
Isolated plasmids were introduced into BL21 (DE3)
Chemically Competent E. coli cells (Thermo Fisher Scien-
tific), and the cells were grown overnight at 37°C in 5 ml
of LB Broth (Sigma Aldrich) in the presence of 50 pg/ml
of kanamycin. The overnight cultures were used to inocu-
late 500 ml of fresh LB medium, and the culture was
propagated at 37°C at 220 rpm shaking. When ODg,
reached 0.7-0.8, isopropyl p-p-thiogalactopyranoside
(IPTG, Sigma Aldrich) was added to final concentration
of 0.5 mM and the cultivation was continued for 4 hr at
37°C. The cells were harvested by centrifugation at
x3000g for 20 min at 4°C. The cell pellets were
resuspended in 15ml of lysis buffer (20 mM Tris
(pH 8.0), 20 mM NacCl, and 1 mM p-mercaptoethanol)
with one tablet of EASYpack protease inhibitor cocktail
(Sigma Aldrich), incubated with 50 pg/ml of Lysozyme
(Sigma Aldrich) and 6 U of RNase-free DNase I (Jena
Bioscience, Germany) at room temperature for 30 min,
sonicated on ice at 1.5 W (18 cycles, 10 s on, 20 s off) and
centrifuged at x35000g for 30 min at 4°C. After, Tween-
20 (Sigma Aldrich) was added to supernatants to the final
concentration of 0.1% (vol/vol), and the crude lysates
were applied to 5 ml HiTrap Capto Q column
(GE Healthcare Life Sciences) equilibrated with 5 vol-
umes of buffer A (20 mM Tris (pH 8.0), 20 mM NaCl,
1 mM beta-mercaptoethanol and 0.1% (vol/vol) Tween-
20). Then, the DPCK proteins were eluted with 0-50%
gradient of buffer B (20 mM Tris (pH 8.0), 1 M NacCl,
1 mM beta-mercaptoethanol and 0.1% (vol/vol) Tween-
20), and fractions from 15 to 35% of buffer B were col-
lected and applied to 5 ml HisTrap HP column
(GE Healthcare Life Sciences) equilibrated with 5 vol-
umes of buffer C (20 mM Tris (pH 7.6), 500 mM NacCl,
10 mM imidazole, 1 mM beta-mercaptoethanol and 0.1%
(vol/vol) Tween-20). The column was washed with 3% of
buffer D (20 mM Tris (pH 7.6), 500 mM NaCl, 500 mM
imidazole, 1 mM beta-mercaptoethanol and 0.1%
(vol/vol) Tween-20) to remove unbound proteins, and the
DPCK proteins were eluted with 0-50% gradient of buffer
D. Fractions from 20 to 30% of buffer D were collected,
concentrated up to 0.5 ml by centrifugation using 4 ml

Amicon Ultra centrifugal unit (MWCO 10000, Millipore)
and applied to Superdex 75 10/300 GL column
(GE Healthcare Life Sciences) equilibrated with 2 column
volumes of buffer E (50 mM Tris (pH 7.6), 500 mM NacCl,
20 mM KCl, 10 mM MgCl, and 0.5 mM DTT). The DPCK
variants were eluted as single peaks with approximate
sizes of 29 kDa (DPCK-WT), 33 kDa (DPCK-LH) and
55 kDa (DPCK-M). Molecular weights were estimated
using Gel filtration low molecular weight calibration kit
(GE Healthcare Life Sciences). After the confirmation of
proteins integrity and purity by SDS-PAGE analysis on
14% SDS-polyacrylamide gel, the purified proteins were
concentrated up to 10 mg/ml concentration and
aliquoted. The aliquots were flash frozen in liquid nitro-
gen and stored at —80°C.

4.3 | Basic biophysical characterization
The identities and molecular weights of purified proteins
were confirmed by mass spectrometry using Ultra-
fleXtreme MALDI-TOF/TOF mass spectrometer (Bruker,
Germany) according to the standard procedure. Protein
concentrations were determined by amino acid analysis
using a Biochrom 30+ Series Amino Acid Analyser
(Biochrom, United Kingdom).

The size distribution of protein samples was character-
ized using dynamic light scattering (DLS) technique. Pro-
tein samples were diluted in PBS buffer (11.8 mM
phosphate buffer (pH 7.6), 137 mM NaCl, 5 mM MgClL,
2.7 mM KCl and 0.5 mM DTT) to the final concentration of
0.5 mg/ml and centrifuged at x25000g for 30 min at 4°C. In
order to remove dust particles, samples were filtered using
0.22 pm Ultrafree-MC centrifugation filter (Millipore). The
DLS measurements were performed in a quartz glass
cuvette (light path 10 mm) at 18°C wusing a laser
spectroscatter-201 system (RiNA GmbH Berlin, Germany).
A series of 35 measurements with a sampling time of 30 s
and a wait time of 1 s was conducted for each sample. A
diode laser of wavelength 685 nm and an optical power of
30 mW was used as the source. The scattered light was col-
lected at a fixed scattering angle of 90°, and the autocorrela-
tion functions were analyzed with the program CONTIN to
obtain hydrodynamic radius distributions. DLS measure-
ments were performed for protein samples in the presence
of 200 pM ATP to estimate the effect of ATP binding on the
hydrodynamic radius of proteins.

4.4 | Enzyme assays

DPCK activities of recombinant proteins were measured
by a coupling assay using ADP Quest Assay kit (Eurofins
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DiscoverX) according to the manufacturer's instructions.
Enzyme assays were carried out using 80 ng (32 nM) of
DPCK-WT, 500 ng (214 nM) of DPCK-LH and 900 ng
(386 nM) of DPCK-M and two kind of substrates, 0-
200 uM for dephospho-CoA (dCoA) at 200 pM ATP and
0-200 pM for ATP without and with 200 pM dCoA to
estimate ATPase and phosphotransferase activities of
enzymes. All reactions were performed in assay buffer
containing 15 mM Hepes (pH 7.4), 20 mM NaCl, 1 mM
EGTA, 0.02% Tween-20, 10 mM MgCl,, and 0.1% bovine
gamma globulin in 96-well black microplate with 40 pl
total volume. After 20 pl of reagent A and 40 pl of reagent
B were added, the plates were heated at 37°C for 10 min,
and the reactions were started by adding ATP. The fluo-
rescent intensity signal was measured at 37°C in kinetic
mode with 2 min intervals using CLARIO star microplate
reader (BMG LABTECH, Germany) at excitation/emis-
sion wavelengths of 530/590 nm. The kinetic parameters
were calculated using the non-linear regression function
using the single saturating concentrations of substrates.
Substrate conversion did not exceed 10%. The experi-
ments were repeated three times, and kinetic values are
presented as the means + SE.

HPLC-MS analysis was used for comparative detec-
tion of the reaction analytes. For this purpose, 100 pl of
reaction mixtures were prepared by mixing 1 pg
(0.42 pM) of protein, 100 pM dCoA and 100 pM ATP in
25 mM NH,HCO; (pH 7.6), 300 mM NacCl, 20 mM KCl
and 10 mM MgCl,. The reaction mixture was incubated
at 37°C for 1 hr, then, reaction was stopped by adding
100 pl of acetonitrile (Sigma Aldrich). Precipitated recom-
binant protein was separated by centrifugation at
%20000g at 4°C for 20 min.

The reaction samples were analyzed using the Dionex
Ultimate 3000RS HPLC equipped with TSQ Quantiva MS
detector (Thermo Fisher Scientific). The ESI source was
used for ionization in a positive mode. The HPLC solvent
system consisted of 10 mM (NH,),CO5 (pH 9.3) (A) and
97% acetonitrile (B). One microliter sample was injected
in 50% B and the analysis was performed using the gradi-
ent of 15% A and 85% B for 3.5 min followed by an
increase to 75% A and 25% B over 11.5 min and its con-
tinuation for 10 min with the SeQuant® ZIC®-pHILIC
column (5 pm, 150 mm X 2.1 mm, Merck), at a flow rate
of 0.13 ml/min.

4.5 | Circular dichroism spectroscopy

ECD spectra were collected using a Jasco 1500 spectrom-
eter (JASCO, Japan) in the 195-280 nm spectral range
using a 0.01 cm cylindrical quartz cell. The experimental
setup was as follows: 0.05 nm step resolution, 5 nm/min
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scanning speed, 16 s response time, 1 nm spectral band
width and 2 accumulations. After baseline correction, the
spectra were expressed as molar ellipticity per residue 6
(deg-cm®.dmol™"). The protein samples were diluted in
PBS buffer (11.8 mM phosphate (pH 7.6), 137 mM NaCl,
5 mM MgCl,, 2.7 mM KCI and 0.5 mM DTT) with addi-
tion of 0-2 M urea (specifically 5, 10, 50, 100, 500, 1000,
and 2000 mM urea concentrations). The blank spectrum
of an aqueous buffer (with or without urea in a
corresponding concentration) was used to correct the
observed spectrum of the sample. The numerical analysis
of secondary structures was performed using the CDPro
software package.*’

4.6 | Limited proteolysis

Kinetic studies on specific proteolytic cleavage by Lys-C
endoproteinase were performed as follows. First, recom-
binant proteins were diluted in Lys-C cleavage buffer
(25 mM Tris (pH 8.0), 300 mM NaCl, 1 mM EDTA, and
0.5 mM TCEP) to the final concentration of 1 mg/ml, and
then reaction mixtures for proteolytic digestion were pre-
pared by mixing 7 pl of 1 mg/ml recombinant protein
and 56 pl of Lys-C cleavage buffer. After incubation at
37°C for 10 min proteolytic cleavage was initiated by
adding 7 pl of 5 ng/pl Lys-C endoproteinase. After 0, 2,
5, 10, 20 and 40 min of incubation at 37°C 10 pl of the
reaction mixture was taken out, and Lys-C was
inactivated by adding 2 pl of 6x SDS-PAGE sample buffer
(375 mM Tris-HCI (pH 6.8), 9% SDS, 50% glycerol, 9%
beta-mercaptoethanol and 0.03% bromophenol blue)
followed by heating at 95°C for 10 min. All samples then
were subjected to SDS-PAGE.

For quantitative evaluation of limited proteolysis, the
rate constants of proteolysis were determined by monitor-
ing the disappearance of an intact protein in a proteolysis
reaction by SDS-PAGE. The areas of the bands
corresponding to the intact proteins were estimated from
the gels using the ImageJ program and then expressed as
the amount of protein remaining after each time point.
Assuming the pseudo-first order kinetics, the natural log-
arithms of the intact protein amounts were plotted
against the time, and the plots were fitted with a first-
order rate equation.

4.7 | Steady-state ANS fluorescence

Steady-state fluorescence measurements were performed
using CLARIO star microplate reader (BMG LABTECH,
Germany). Protein samples were diluted to 2 pM with
ANS buffer (100 mM Tris (pH 7.6), 300 mM NacCl,
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20 mM KCl, 10 mM MgCl, and 0.5 mM DTT) and incu-
bated with 0; 1; 10; 100 and 1000 pM of adenosine 5'-
[y-thio]triphosphate tetralithium salt (ATP-y-S, Sigma
Aldrich) at room temperature for 30 min. After incuba-
tion, 8-anilino-1-naphthalenesulfonic acid ammonium
salt (ANS, Sigma Aldrich) was added to the reaction mix-
tures to the final concentration of 400 pM, and the reac-
tion mixtures were incubated for additional 5 min. The
final volume of each reaction mixture was 50 pl. The
ANS fluorescence was excited at 380 nm, and emission
spectra were recorded between 410 and 650 nm. To esti-
mate the conformational changes induced upon dCoA
binding the fluorescence intensity measurements were
performed for protein samples in the presence of 200 pM
dCoA. All measurements were performed in ftriplicates
and then averaged to yield steady-state fluorescence spec-
tra of ANS binding.

4.8 | NMR spectroscopy

NMR spectra were obtained using the Bruker© Avance
HD III 850 MHz instrument, equipped with ftriple-
resonance cryo-probe. Sample volume was 0.16 ml in
3mm NMR tubes, in 50 mM phosphate (pH 7.6),
280 mM NacCl, 10 mM MgCl,, 20 mM KCI and 0.5 mM
TCEP. Protein concentration was 150 uM for 3D *N/'H
NOESY-HSQC spectra, 30 uM for DPCK-WT ATP titra-
tion, and 100 pM for both aromatic amino acid-lacking
mutants ATP titration. All proteins used in the study
were °N labeled. ATP titrations were followed using a
series of standard 1D and 2D HN correlation spectra.
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