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Abstract

Static program analysis is widely used in many software applications such as in security

analysis, compiler optimisation, program veri�cation and code refactoring. In contrast

to dynamic analysis, static analysis can perform a full program analysis without the need

of running the program under analysis. While it provides full program coverage, one of

the main issues with static analysis is imprecision � i.e., the potential of reporting false

positives due to overestimating actual program behaviours. For many years, research

in static program analysis has focused on reducing such imprecision while improving

scalability. However, static program analysis may also miss some critical parts of the

program, resulting in program behaviours not being reported. A typical example of

this is the case of dynamic language features, where certain behaviours are hard to

model due to their dynamic nature. The term �unsoundness� has been used to describe

those missed program behaviours. Compared to static analysis, dynamic analysis has

the advantage of obtaining precise results, as it only captures what has been executed

during run-time. However, dynamic analysis is also limited to the de�ned program

executions.

This thesis investigates the unsoundness issue in static program analysis. We �rst

investigate causes of unsoundness in terms of Java dynamic language features and iden-

tify potential usage patterns of such features. We then report the results of a number

of empirical experiments we conducted in order to identify and categorise the sources

of unsoundness in state-of-the-art static analysis frameworks. Finally, we quantify and

measure the level of unsoundness in static analysis in the presence of dynamic language

features. The models developed in this thesis can be used by static analysis frameworks

and tools to boost the soundness in those frameworks and tools.

viii



Acknowledgments

Firstly, I would like to express my sincere gratitude to my supervisors: Associate Pro-

fessor Jens Dietrich and Dr. Amjed Tahir for the continuous support of my study and

related research, for their patience, motivation, and immense knowledge. Their guid-

ance has pointed me in the right direction throughout the work.

I also would like to express my appreciation to Dr. Catherine McCartin for her patient

guidance and advice on writing this thesis. My sincere thanks also go to Dr. George

Fourtounis and Mr. Shawn Rasheed for their active collaborations on writing related

papers.

This dissertation would not have been possible without funding from the Science for

Technological Innovation National Science Challenge of New Zealand under the project:

Closing the Gaps in Static Program Analysis.

Last but not the least, I must express my very profound gratitude to my parents and

to my partner Shuwen, with their unfailing support and encouragement throughout the

development of this thesis and my life in general.

1



Chapter 1

Introduction

Software systems are ubiquitous in society, penetrating all aspects of modern life. How-

ever, poor software quality and vulnerabilities that can be exploited for malicious activi-

ties cause signi�cant problems. Novopay [10] is a good example of why software quality

matters. Novopay is a payroll system responsible for the pay of 110,000 teachers at

2,457 schools in New Zealand. By the year 2015, Novopay had cost over $45 million in

order to be �xed [9]. Bugs can also be fatal. An Airbus that crashed in Spain in 2015

[1] caused 4 casualties due to software bugs. The Panda Burning Incense virus spread

widely between 2006 and 2007 in China, with more than 10 million infected devices

[115]. During this time, attackers were able to bypass security processes in the Win-

dows operating system and replaced infected �les with an hilarious image of a panda

burning incense. Furthermore, a staggering number from the Common Vulnerabilities

and Exposures (CVE) dataset shows a total of 134,671 vulnerability entries in 2018, of

those, 2,088 are Java-related vulnerabilities [3].

Program analysis plays a very important role in modern software development. The

focus of this thesis is on static program analysis. There are many applications for

static analysis, including bug detection and security analysis, that use program analysis

techniques to correctly and fully model how programs behave, so that those bugs or

vulnerabilities can be detected.

Static and dynamic analysis are the two main categories of program analysis. Static

analysis performs an analysis without the need to execute the program. Static analysis

techniques, in particular, have been widely used to detect bugs and other issues early

in the development cycle, when it is much cheaper to �nd and �x bugs. Companies like

Google and Facebook are increasingly using static analysis techniques and integrating

them into their work �ow, as part of their development pipeline, to detect di�erent

types of bugs and issues [62, 165]. On the other hand, analysis which requires the

execution of actual programs is referred to as dynamic program analysis. Commonly

used techniques include program testing, debugging and pro�ling. Program analysis

1



CHAPTER 1. INTRODUCTION 2

works for all program languages but this thesis will focus on Java, as it remains one

of the most popular programming languages since 2012 [14, 15, 37], and is used across

di�erent platforms.

Program bugs can be simple. Consider the code snippet demonstrated in Listing

1.1, which shows a simple in�nite recursive loop. If the code is executed and it calls

itself recursively, the method stack will exceed its capacity and throw an exception

eventually. Another common bug pattern is dereferencing a null pointer as shown at

line 2 in Listing 1.2. The code will compile as normal, but a runtime exception will be

thrown due to the null pointer error.

Listing 1.1: In�nite recursive loop

1 public void f oo ( ) { // i n f i n i t e r e cu r s i v e loop

2 foo ( ) ;

3 }

Listing 1.2: Dereferencing the null pointer

1 public void bar ( ) {

2 // dere f e r ence the n u l l po in t e r

3 mayBeNull (0 ) . t oS t r i ng ( ) ;

4 }

5 public Object mayBeNull ( int i ) {

6 Object a=null ;

7 i f ( i >0){

8 a=new Object ( ) ;

9 return a ;

10 }

11 return a ;

12 }

Generally, static analysis reasons about the relationship between di�erent models,

based on a program's semantics, to predict program behaviours. Those behaviours

are represented by calling relationships among methods, which can be modelled using

a directed graph. We refer to such graphs as call graphs. Considering the code in

Listing 1.1 for example, method foo() is calling itself, which forms a circular pattern

(foo()→ foo()). This indicates a potential in�nite recursive loop. Static analysis also

considers all possible relationships among program models: in the example shown in

Listing 1.2, by looking at the method mayBeNull(), we can predict the null value by

inspecting the state of variable a under two circumstances: (1) assume i>0, then a has

been assigned a new object and (2) if i<=0, then a is never assigned. In general, static

analysis assumes both can happen, but this is imprecise, as only one of the conditions

can actually be satis�ed. To model this precisely, we could use a dynamic technique,

such as testing, to invoke the method mayBeNull() with a parameter i=-1. As a result,
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the second circumstance (i<=0) is achieved.

1.1 Research Motivation

There is a recent increase in awareness that more research on the soundness of static

analysis is needed. In 2015, a manifesto on the soundness of static analysis [129] was

published, which outlines the unsoundness issue in static analysis. Many researchers

have been working on pushing the boundaries of what static program analysis can de-

tect. However, there is no single static analysis tool that can handle complex language

features soundly in reality [129]. A sound static analysis is expected to model all possible

program behaviours. To achieve this, an over-approximation strategy is used to esti-

mate how programs behave. A precise analysis requires to fully model actual program

behaviours. A typical strategy is to reduce �noise� in obtaining more precise results.

Dynamic analysis, on the other hand, guarantees that only actual program behaviours

are captured. We refer to models produced from dynamic analysis as soundness ora-

cles, which can be used to assess statically modelled program behaviours. Moreover,

there are parts of the program behaviour that static analysis may under-approximate

(shown as the gaps in static analysis in the Figure 1.1), but that dynamic analysis is

able to capture. The goal of the thesis is to identify the gaps in static analysis by using

oracles which are generated by means of dynamic analysis to assess static analysis.

The term recall that is used later in this thesis represents quantitative measurement of

the level of unsoundness with respect to a given oracle. Figure 1.1 also visually demon-

strates that it is possible to have a part of the program behaviour that neither static

nor dynamic analysis can model, due to the low quality of the oracle (e.g., low program

coverage).
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Figure 1.1: Precision and Soundness

Security analysis is one application of static program analysis. It motivates this

research, since Java security issues have increased over the years as the language and

its usage have evolved. Unsound analysis could miss a security breach, which may lead

to serious problems. The soundness of static analysis therefore is desirable, in order

to �nd as many security holes as possible. However, the presence of dynamic language

features in Java makes it hard for static analysis to provide such sound analysis. For

instance, features like re�ection, serialisation, dynamic class loading and the use of

native libraries can all be potential sources of unsoundness.

1.2 Research Objectives and Questions

The main objectives of this thesis are:

1. Investigate the impact of dynamic language features in Java on the soundness of

static analysis and identify potential usage patterns of such features.

2. Explore an alternative way of oracle generation through mining software reposi-

tories.

3. Assess state-of-the-art Java static analysis tools and their ability in handling dy-

namic language features.

4. Quantify and measure the level of unsoundness in static analysis.

Speci�cally, we investigate the following �ve research questions:

RQ1 What are the sources of unsoundness in static analysis? (Results are reported in

Chapter 4.)
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RQ2 Are state-of-the-art static analysis tools able to successfully model dynamic lan-

guage features in Java? (Results are reported in Chapter 4.)

RQ3 Can information obtained from stack traces improve the soundness of static anal-

ysis? (Results are reported in Chapter 5.)

RQ4 What is the level of recall achieved by state-of-the-art static analysis tools? (Re-

sults are reported in Chapter 6.)

RQ5 Which particular language features cause unsoundness in real-world programs?

(Results are reported in Chapter 6.)

1.3 Overview of the Thesis

This thesis is divided into �ve main chapters, as follows:

� Chapter 2 presents a detailed literature review as well as background of program

analysis. This chapter covers related work in program analysis techniques and

frameworks, including call graph construction, and static, dynamic and hybrid

analysis techniques.

� Chapter 3 describes the research methodology we followed in this thesis.

� Chapter 4 categorises Java dynamic language features and presents a bench-

mark for static program analysis. Such a benchmark provides an intuitive way of

investigating soundness in static analysis tools. The results are reported in the

following publication:

� Sui, L., Dietrich, J., Emery, M., Rasheed, S., & Tahir, A. (2018). On the

soundness of call graph construction in the presence of dynamic language

features-a benchmark and tool evaluation. In Asian Symposium on Pro-

gramming Languages and Systems (APLAS). Springer, Cham.

� Chapter 5 presents the result of the using mining techniques to extract stack

traces from on-line resources, to construct oracles which are used to assess stati-

cally built ones. The results are reported in the following publications:

� Dietrich, J., Sui, L., Rasheed, S., & Tahir, A. (2017). On the construction

of soundness oracles. In the 6th ACM SIGPLAN International Workshop on

State Of the Art in Program Analysis (SOAP), ACM.

� Sui, L., Dietrich, J., & Tahir, A. (2017). On the use of mined stack traces

to improve the soundness of statically constructed call graphs. In 24th Asia-

Paci�c Software Engineering Conference (APSEC). IEEE.
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� Chapter 4 and Chapter 5 discuss the notion of the soundness of static analysis in a

binary form: either the analysis is able to capture the calling relationship (sound)

or not (unsound). In Chapter 6, we report on a large empirical study that we

conducted to measure the level of unsoundness (recall) in real-world programs.

The results are published in the following publications:

� Dietrich, J., Schole, H., Sui, L., & Tempero, E. (2017). XCorpus�An

executable Corpus of Java Programs. Journal of Object Technology, 16(4).

� Sui, L., Dietrich, J., Tahir, A., & Fourtounis, G. (2020). On the Recall

of Static Call Graph Construction in Practice. In the 42nd International

Conference on Software Engineering (ICSE). ACM.

� Chapter 7 presents the main conclusions from this work and outlines a number

of future work directions.



Chapter 2

Literature Review

2.1 Introduction

Understanding how programs behave is an essential part of software engineering. With

the increase in programs' size and complexity, there is a growing need for automated

approaches to analyse such large programs. Program analysis o�ers an automated

mechanism to predict a program's behaviour at either compile-time or run-time [147,

sect 1.1]. In general form, program analysis falls into two main categories: static and

dynamic analysis. Static program analysis is usually performed on programs without

running them. There are various static analysis techniques that are widely used in-

cluding: points-to, control �ow and data �ow analysis. On the other hand, dynamic

program analysis samples program behaviour at run-time by means of execution. Typ-

ical dynamic program analysis techniques include: pro�ling, monitoring, testing and

program slicing. Hybrid analysis capitalises on the advantages of both static and dy-

namic analyses by focusing on the combination of both techniques. It is typically used

in malware detection.

Program analysis techniques are widely used to validate the quality of software

systems. Applications are extended to security analysis. Particularly, static analysis

can identify security issues early in the development cycle [50, 51, 136]. Program analysis

has also been used for compiler optimisation. For instance, Java Just-In-Time compiler

(JIT) [145] compiles byte code to native code at run-time to improve the Java virtual

machine (JVM)'s performance. During execution, the JIT compiler optimises methods

that are often invoked by inlining them. This can save a great amount of computing

resources. Another usage is dead code elimination [110, 89]. The compiler can perform

data �ow analysis to remove the parts of the source code that are either unreachable or

do not impact the output. Other examples of program analysis usage are complexity

analysis, anti-pattern/code smell detection and performance evaluation.

This chapter provides a detailed overview of program analysis techniques, with a

7
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focus on static analysis, and discusses advantages and limitations (in terms of precision

and recall) of static analysis. The remainder of the chapter is structured as follows:

static analysis algorithms and applications are presented in Section 2.2.1, followed by

a discussion of dynamic analysis techniques in Section 2.2.2, and �nally, Section 2.3

discusses the gaps in static analysis, alongside a number of related works that deal with

�lling these gaps.

2.2 Background

2.2.1 Static Analysis

In many applications, static analysis is used for client analysis for the purpose of quality

control at an early stage of the development. It usually takes source code or compiled

code (i.e., byte code in Java ) as input, and then applies various analysis techniques

to model the program's behaviours. The program behaviours can be represented by a

points-to set or a call graph. A points-to set is a collection of relationships between

pointers and a call graph indicates calling relationships among methods. More details

of points-to and call graph analyses are given in following sections.

2.2.1.1 Points-to Analysis

Points-to analysis is a foundation of static analysis as it provides information about the

relationships between pointers. The points-to set contains heap references of created

instances (i.e., objects). A heap reference is a memory location which indicates where

an object is located. The analysis of the heap shows which variables may point to which

objects. There are three ways to describe a pointer operation: referencing, dereferencing

and aliasing.

Listing 2.1: Pointer Operation in Java

1 class Foo {

2

3 St r ing bar ;

4

5 public stat ic void main ( St r ing [ ] a rgs ) {

6 Foo foo=new Foo ( ) ;

7 foo . bar ;

8 Foo foo2=foo ;

9 }

10 }

Referencing refers to a variable being created and assigned to a speci�c address

(refers to allocation site in Java). The statement at line 6 in Listing 2.1 indicates that
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variable foo is assigned to (references) a new object Foo. The process for a variable

accessing an allocation site is called dereferencing. Line 7 shows the variable foo being

used to access the �eld bar. At line 8, the variable foo is copied to another variable

foo2. We refer to this process as aliasing.

A points-to set can form a directed graph where the vertices are variables/objects

and edges indicate points-to relationships. In the most simple form, we can assume all

objects �point to� each other and the result of having such a points-to set is useless.

There are two foundational algorithms that can help to �nd a more precise points-to

set: Steensgaard's and Andersen's algorithms.

� Steensgaard's points-to analysis [174] performs in almost linear time O(nα(n, n))

where α is the inverse Ackermann's function [20] and n is the size of the input

program. The algorithm can be summarised as �nding a union of two points-to

sets that contain possible allocation sites of a variable. Considering the aliasing

example which is shown in Listing 2.1, the points-to set would be:

p(foo2) ∪ p(foo). The downside for using such equality constraints is that the

merged allocation sites are represented in either direction, therefore the result is

imprecise.

� Andersen's points-to analysis [31] delivers a relatively more precise analysis than

Steensgaard's analysis. The di�erence is Andersen's analysis computes a transitive

closure to propagate points-to relations. However this entails a compromise in

performance, as any transitive closure computation requires cubic running time

O(n3).

To demonstrate the di�erences between the two approaches, consider the set of

points-to relations: p(a) = {b, c} and p(k) = {b}. Figure 2.1(a) demonstrates the models

produced by Andersen's analysis which is the correct representation. Steensgaard's

analysis yields an incorrect relation where k also points to c (shown in Figure 2.1(b)).

Andersen's analysis provides a greater level of precision with a reduction in performance.

Collapsing strongly connected components is an important optimization that can be

applied in the case of Andersen's analysis [92]. All strongly connected components

share the same points-to relation, so therefore can be reduced to one representation

(see Figure 2.2).
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(a) Andersen's static analysis

(b) Steensgaard's static analysis

Figure 2.1: Andersen vs Steensgaard analysis

Figure 2.2: Cycle elimination

To further improve the precision of points-to analysis, we have to consider sensitivity

in static analysis. There are two major factors that contribute to a precise analysis:

program �ow and execution context. In the following sections, we explore sensitivity

analysis techniques in more detail.

2.2.1.2 Sensitivity in Static Analysis

Flow-sensitivity [184, 49] emphasises the program execution order. Considering the

example provided in Figure 2.3, the code on the left side is evaluated top-down. A �ow

insensitive analysis computes a conservative prediction and yields an imprecise points-to

set where a may point to i and j at the same time. However, if an analysis is �ow
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sensitive, we can observe that, at some point, a no longer points to i. To achieve �ow-

sensitivity, the program needs to be transformed to Static Single Assignment (SSA)

form [56]. This is an intermediate representation (IR) of assignment which ensures

each variable is assigned exactly once. In this case, the code presented in Figure 2.3

can be transformed by renaming variable a to a_1 and a_2 to represent its two stages

(shown in Figure 2.4). IR can be generated using an Abstract Syntax Tree (AST) [102].

It represents the program syntax in a tree structure. Figure 2.5 shows an AST for a

simple arithmetic expression: 3*5+1.

Figure 2.3: Flow-sensitivity
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Figure 2.4: Static single assignment (SSA) form

Figure 2.5: Abstract Syntax Tree (AST)

Data �ow analysis was �rst introduced by Kildall [107] in 1973. It is a �ow-sensitive

analysis that is used to gather information about a set of possible values in a given

program at various points. The notion of control �ow [26] is applied here. The control

�ow indicates the program state and is represented in a graph structure. Figure 2.6

demonstrates a control �ow graph of the code shown in Listing 2.2. If we set up two

observation points A (at line 2), B (at line 6), the possible value set for variable a with

respect to point A is [0] and for B is [0, 1]. Note that variable c is not alive at the

observation point B as it is never used.
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Listing 2.2: Forward Data Flow analysis

1 int a=0;

2 int b=1;//Observat ion Point A

3 i f (b>0){

4 a=1;

5 }

6 int c=a*b ; //Observat ion Point B

Figure 2.6: Control �ow graph

The example analysis provided in Figure 2.6 is usually referred as forward data

�ow analysis [105]. The analysis is conducted along the direction of execution. On

the other hand, backward data �ow analysis [105] requires to propagate in a reverse

manner. One of the classic static analysis problems is the live-variables problem [93]. It

describes the problem that arises when using static analysis techniques to calculate the

liveness of variables for a given program state. Backward data �ow analysis does exactly

this: an application of backward data �ow analysis is compiler optimisation. During

the compilation phase, the compiler can remove some unnecessary variable assignments

and initialisations to avoid possible additional memory access. In the example shown

in Listing 2.3, the analysis will try to decide which statements are unnecessary for the

�nal state of the program (which is the statement do(b);). The statement at line 5

(k=3;) obviously cannot have an impact on variable b therefore can be eliminated.
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Listing 2.3: Backward Data Flow analysis

1 int b=1;

2 i f (k>0){

3 b=k ;

4 i f (k>2){

5 k=3;

6 }

7 }

8

9 do(b) ;

In contrast to �ow analysis, context analysis focuses on execution context, especially

on calling context. Context sensitivity [171, 166, 138] refers to di�erentiating between

pointers in given contexts, such as call site and object allocation.

A call site is a method location where the method is invoked. As Figure 2.7 shows,

a context insensitive analysis does not distinguish between the di�erent contexts where

the method id() is invoked. On the other hand, call site sensitivity requires the analysis

to model the correct calling context. In this case, method id() belongs to two di�erent

call sites: bar() and foo().

Figure 2.7: Callsite-sensitivity

If an analysis is sensitive to object allocation, it can distinguish between di�erent

receivers for various object allocation sites [171]. A typical example is shown in Listing

2.4, there are two allocation sites (marked as �alloc 1� and �alloc 2�) and they are not

identical as each allocation references to a unique address in memory. Using an object
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insensitive analysis, the two allocations could be merged. Therefore, object sensitivity

analysis should �gure out that the receiver list actually points to di�erent allocation

sites.

Listing 2.4: Object-Sensitivity

1 class Foo {

2

3 L i s t l i s t ;

4

5 void bar ( ) {

6 l i s t . add (new Object ( ) ) ; // a l l o c 1

7 l i s t . add (new Object ( ) ) ; // a l l o c 2

8 }

9 }

Yong et al. [187] �rstly discussed a �eld-sensitive analysis to boost precision in ob-

taining points-to sets. Similar to object-sensitive analysis, �eld-sensitive analysis needs

to consider a �eld access for an object. Andersen's analysis [31] is a �eld-insensitive

analysis as it does not track object reference �elds. Listing 2.5 demonstrates where

an object is instantiated and assigned to a variable: foo = new Foo(), and the �eld

access: foo.a needs to be in the points-to set. Field-sensitive analysis can provide a

more precise modelling but the computation of each �eld can be extremely expensive

[154].

Listing 2.5: Field-Sensitivity

1 class Foo{

2

3 St r ing a ;

4 }

5

6 class Main{

7

8 public stat ic void main ( St ing [ ] a rgs ) {

9 Foo foo =new Foo ( ) ;

10 }

11 }

The program calling context can be further categorised as either intraprocedural or

interprocedural. Intraprocedural analysis is an analysis of a single procedure, whereas

interprocedural analysis focuses on multiple procedures. Consider Listing 2.6, where

we have three classes A, B and Main and both class A and class B contain the method

foo(). An interprocedural analysis needs to decide which of the two foo() methods is

being called � the variable a (at line 18 in Listing 2.6) points to the heap allocation of

the object A, which indicates that the method A#foo() is being invoked.
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Listing 2.6: Interprocedural analysis

1 class A{

2

3 foo ( ) {

4 // c a l l i n g o ther methods

5 }

6 }

7

8 class B{

9

10 foo ( ) {

11 // c a l l i n g o ther methods

12 }

13 }

14

15 class Main{

16

17 public stat ic void main ( St ing [ ] a rgs ) {

18 A a= new A() ;

19 a . foo ( ) ;

20 }

21 }

Listing 2.7: Intraprocedural analysis

1 class A{

2

3 foo ( ) {

4 bar ( ) ;

5 }

6

7 bar ( ) {

8 }

9 }

Intraprocedural analysis studies the calling relationship within a single procedure.

Listing 2.7 illustrates a calling relationship where the method A#foo() invokes the

method A#bar(). We often store this calling relationship in a graph representation. A

call graph is an important representation of program behaviours as many analysis algo-

rithms build upon this model. Call graph construction is discussed in Section 2.2.1.3.

There are number of related studies in sensitivity analysis: An early work for �ow

analysis [104] studied the live-variables problem. Later Graham et al. [82] proposed a

fast algorithm that runs in linear time. Distinctive work done by Allen [27] introduced

control-�ow to data �ow analysis. [21] used the cartesian product of the types of ar-

guments to improve precision. Interprocedural analysis is applied for pointer analysis
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in [94, 68, 94] to elevate precision. The study [139] implemented a framework that

uses object sensitive analysis. Wang et al. [181] proposed an algorithm that improves

precision for constraint-based type inference. Reps et al. [159] managed to perform

interprocedural data �ow analysis in polynomial time. Giga [59] aims to improve the

performance of computing point-to sets. It used a transitive closure data structure to

deal with �eld-sensitive points-to analysis. Some noted works done for �eld-sensitivity

based on constraint pointer analysis are: [163], [185] and Spark [119] (Spark is used in

the experiment described in Section 4.2.2).

2.2.1.3 Call Graph Construction

The call graph is a directed graph where a vertex represents a call site and an edge

represents a calling relationship. In fact, a call graph is a set of interprocedural calling

relationships among procedures [164, 63]. Call graph analysis and points-to analysis are

mutually dependent as a method invocation needs to know which object the method

operates on and objects are connected via method invocations. A precise call graph can

improve the precision of points-to sets and an accurate points-to set helps call sites to

resolve receivers. This is also known as call graph construction on-the-�y.

There is a large body of research into call graph construction algorithms, mainly

di�ering in achieving di�erent trade-o�s between precision and performance. Tip and

Palsberg [179] conducted a large study on comparing the main approaches, such as Class

Hierarchy Analysis (CHA) and Rapid Type Analysis (RTA). The following list presents

a number of algorithms and how they model the code example provided in Listing 2.8.

This code example is constructed by using run-time polymorphism which determines

method calls at run-time. In line 30, the super class reference variable a can refer to

subclass object X. The challenge of it is that the method a#foo() is not resolved at

compile-time.
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Listing 2.8: Run-time polymorphism

1 abstract class A {

2

3 public abstract void f oo ( ) ;

4 }

5

6 class B extends A {

7

8 public void f oo ( ) {}

9 }

10

11 class X extends A {

12

13 public void f oo ( ) {}

14 }

15

16 class Y extends A {

17

18 public void f oo ( ) {}

19 }

20

21 class Z {

22

23 public void f oo ( ) {}

24 }

25

26 public class Main {

27

28 public stat ic void main ( St r ing [ ] a rgs ) {

29 A a = new X() ;

30 a . foo ( ) ;

31 }

32 public stat ic void neverused ( ) {

33 A a= new Y() ;

34 a . foo ( ) ;

35 }

36 }

� Class Hierarchy Analysis (CHA) [58, 88] is a classic call graph algorithm that

takes class hierarchy information into account. It assumes that the type of a re-

ceiver object (at run-time) is possibly any subtype of the declared type of the

receiver object at the call site. CHA is able to eliminate method foo() in class Z

because it is not a subclass of A. The call graph produced: Main#main()→X#foo(),

Main#main()→Y#foo(), Main#main()→B#foo(). Note that Class Hierarchy Anal-

ysis is not a context nor a �ow sensitive analysis, therefore imprecision is expected.
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� Rapid Type Analysis (RTA) [35] is more precise. Meaning RTA produces a sub-

graph of the graph produced by CHA. It analyses object types that are referenced.

It produces the following call graph: Main#main()→X#foo(), Main#main()→Y#

foo(). The instance of B is not created, therefore has been ignored.

� Variable Type Analysis (VTA) [175]. Unlike RTA, VTA analyses the allocation

type of a variable. Method foo() can not be applied to Y because the type does

not match the allocation site in main().

� Control Flow Analysis of order k (k-CFA) [169]. The parameter k in k-CFA deter-

mines the context-sensitivity of the analysis. Roughly, higher context-sensitivity

leads to better precision, at the expense of performance. For instance, 1- and 2-

CFA analysis. These two analyses are considered heavy in performance [137, 44,

120]. Take 2-CFA for example, only the edge Main#main()→X#foo() is identi�ed

which is con�rmed to a context-sensitive analysis.

Murphy et al. [142] presented one of the earlier empirical studies in call graph

construction, which focused on comparing the results of applying 9 static analysis tools

(including tools like GNU c�ow) for extracting call graphs from three C programs.

Lhoták [118] proposed tooling and an interchange format to represent and compare call

graphs produced by di�erent tools. Judge [157] builds upon [158], and also contains a

case-study experiment on xalan in order to assess the recall of the static call graphs

constructed by several static analysis tools. Karim and Lhoták studied the construction

of call graphs for the application part of programs [24]. They used a methodology to

assess the statically constructed call graphs against recorded program executions.

2.2.1.4 Static Analysis Tools

Static analysis tools are widely used in both industry and the research community.

Tools like SpotBugs1, Checker Framework, Infer and PMD focus on detecting a variety

of bugs (including security violations), bad patterns and code smells [76]. They are all

considered to be lightweight tools as they are often required to respond quickly to bugs

during development. Other tools like Soot, WALA and Doop provide whole-program

analysis and therefore are more suitable for research projects. They include various deep

analyses such as sensitivity and data �ow analysis to serve di�erent needs. Some of these

features are considered very expensive in term of computation. They also provide basic

features for program analysis, such as computing call graphs and points-to set. Below

is a brief discussion of the di�erent known and widely used tools for Java.

1formally known as FindBugs
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� SpotBugs2 is the successor of FindBugs which was �rst introduced in 2006 [98].

The tool uses byte code analysis techniques to detect potential program defects

(such as null pointer exceptions). It also supports identifying other violation pat-

terns such as security violations (i.e., empty database password) and performance

issues (i.e., explicit garbage collection). SpotBugs is available as a plug-in for

popular IDEs such as Eclipse and IntelliJ for easy developer access. There are

some famous SpotBugs users: GlassFish (Java EE framework), Sat4j (the boolean

satisfaction and optimization library in Java) and Java Server Faces (Java-based

web application framework).

� Checker framework3 is developed by the MIT Program Analysis Group. It pro-

vides 24 di�erent checkers (such as nullness checker, initialization checker, tainting

checker for security issues) [152]. It takes advantages of annotation to describe

additional information about Java types. For instance, annotating with @NonNull

indicates the �eld/return value should not be null. Checker framework provides

support for Android. It also can be con�gured via a build system such as Ant,

Maven and Gradle.

� Infer4 is developed and distributed by Facebook. It is a multi-language static

analysis tool. Infer provides checks for null pointer exception, resource leaks,

coding conventions for C++, C, iOS/Objective-C and Java/Android [46]. Bugs

can be detected and presented to developers using a warning message. Many

software companies, including Facebook, Amazon, Spotify, Uber, WhatsApps,

Instagram and Mozilla, are currently using Infer in their development pipeline for

early software defect detection [62].

� PMD5 is a static code analyser that not only provides rules for Java but also

supports JSP, Maven POM and XML. Developers are able to extend those rule sets

by adding their PMD rules. Writing rules can be done by using either XPath query

(de�ning the rule set directly in XML) or Java visitor (extending AbstractRule

class). Most modern build systems, such as Ant, Maven and Gradle, have support

for PMD.

� Soot [112] is a Java optimization framework which can provide call graph construc-

tion and points-to analysis. Tami�ex is an extension to Soot that complements

Soot 's re�ection support in a dynamic approach.

2https://spotbugs.github.io/, accessed 27 July 2020
3https://checkerframework.org/, accessed 27 July 2020
4https://fbinfer.com/, accessed 27 July 2020
5https://pmd.github.io/, accessed 27 July 2020

https://spotbugs.github.io/
https://checkerframework.org/
https://fbinfer.com/
https://pmd.github.io/
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� WALA [17] is a tool developed by IBM that supports Java and JavaScript. It is

also capable of providing call graph construction and points-to analysis. WALA

provides support for re�ection analysis.

� Doop [44] is based on Datalog which is a declarative logic programming language.

It provides a fast pointer analysis as well as call graph construction.

� Sou�e [103] provides high-performance execution models by compiling Datalog

into optimised C++ code.

2.2.2 Dynamic Analysis

Static program analysis predicts program behaviours and captures what could poten-

tially happen during program execution. Dynamic program analysis, on the other

hand, re�ects the actual program behaviour. It can provide a view of what actually

happened during a particular execution scenario. The code shown in Listing 2.9

gives an example of a program with two possible execution scenarios. Depending on the

input, the di�erent methods might get called (either foo() or bar()). A static analysis

will decide that both scenarios are possible (we refer to this as an over-approximation

strategy). Dynamic analysis requires the program to run with an actual input (i.e.,

executing the program with �foo� as an input will lead to exactly one edge in the call

tree: main()→foo()).

Listing 2.9: Strength of Dynamic analysis

1 class Main{

2

3 public stat ic void main ( St r ing [ ] a rgs ) {

4 i f ( args [ 0 ] . equa l s ( " foo " ) ) {

5 foo ( ) ;

6 }

7 i f ( args [ 0 ] . equa l s ( "bar" ) ) {

8 bar ( ) ;

9 }

10 }

11

12 public stat ic void f oo ( ) {}

13

14 public stat ic void bar ( ) {}

15 }

Dynamic analysis has been widely used in debugging, software testing and program

pro�ling. Typical dynamic techniques involve code instrumentation, symbolic execution

and program slicing which are explained further in the following sections.
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2.2.2.1 Code Instrumentation

Code instrumentation is the fundamental technique in dynamic analysis. Instrumen-

tation allows code to be modi�ed to facilitate external observers which can be used

to record program behviours. Java code instrumentation can be done for two aspects:

source code and byte code. Listing 2.10 demonstrates the instrumented source code

provided in Listing 2.9. After running such a program, the print function will inform

which input has been taken and which method has been correspondingly called.

Listing 2.10: Source code instrumentation

1 class Main{

2

3 public stat ic void main ( St r ing [ ] a rgs ) {

4 i f ( args [ 0 ] . equa l s ( " foo " ) ) {

5 //added code

6 System . out . p r i n t l n ( " the input i s foo " ) ;

7 foo ( ) ;

8 //added code

9 System . out . p r i n t l n ( " foo ( ) has been executed " ) ;

10 }

11 i f ( args [ 0 ] . equa l s ( "bar" ) ) {

12 //added code

13 System . out . p r i n t l n ( " the input i s bar" ) ;

14 bar ( ) ;

15 //added code

16 System . out . p r i n t l n ( "bar ( ) has been executed " ) ;

17 }

18 }

19

20 public stat ic void f oo ( ) {}

21

22 public stat ic void bar ( ) {}

23 }

JVM provides a set of instructions which usually are referred to as byte code. It is

the code that is compiled from Java source code and executed by the JVM. There are

di�erent types of instructions in Java byte code.

� Object creation. i.e., The new instruction allocates a new instance.

� Arithmetic operation. i.e., The iadd instruction adds up two integers.

� Reference operation i.e., The aload instruction loads reference onto the stack from

a local variable.

� Control transfer. i.e., Jumping to another instruction uses the goto instruction.
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� Method invocation. i.e., The invokestatic instruction is used to invoke a static

method.

Byte code instrumentation can be done statically as well as dynamically. The .class

�les can be directly modi�ed and later executed. Java also allows to modify byte code

at run-time � Java agent [7] is the core Java feature introduced in Java 1.5. It hooks

a premain() method to register a class transformer before the JVM loads the actual

class. Listing 2.11 demonstrates a list of byte code instructions compiled from Listing

2.10. The injected statement shown at line 6 in Listing 2.10 is represented by a group

of instructions: getstatic, ldc and invokevirtual.

There are a number of instrumentation frameworks available for Java, which are

presented below:

� Javassist6 provides a high level interpretation of byte code instrumentation. Byte

code can be added in a form of source code and compiled at run-time. The

instrumentation is also performed at run-time through a provided class loader

[52].

� ASM 7 is a byte code manipulation framework that employs the visitor pattern

[78] to traverse di�erent types of statements and expressions. It is focused on

simplicity of use and performance.

� SUN compiler library8 also uses the visitor pattern to present a program's AST,

but this library is not designed to rebuild or modify the AST.

� JavaParser9 is a lightweight source code instrumentation library. It provides an

AST parser as well as allowing to modify or create an AST from scratch.

� AspectJ 10 is an implementation for aspect-oriented programming (AOP) [106] for

Java. AOP allows to add new behaviours without modifying the code in order to

retain modularity.

� DiSL11 is a domain-speci�c language for Java byte code instrumentation [132].

6https://www.javassist.org/, accessed: 22 June 2020
7http://asm.ow2.org/, accessed: 22 June 2020
8https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source/util/

package-summary.html, accessed: 22 June 2020
9https://github.com/javaparser/javaparser, accessed: 22 June 2020

10https://github.com/eclipse/org.aspectj, accessed: 22 June 2020
11https://disl.ow2.org/view/Main/, accessed: 22 June 2020

https://www.javassist.org/
http://asm.ow2.org/
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source/util/package-summary.html
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source/util/package-summary.html
https://github.com/javaparser/javaparser
https://github.com/eclipse/org.aspectj
https://disl.ow2.org/view/Main/
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Listing 2.11: Byte code instrumentation

1 class Main {

2 Main ( ) ;

3 Code :

4 0 : aload_0

5 1 : i n vok e sp e c i a l #1// java / lang /Object ."< in i t >":()V

6 4 : return

7

8 public stat ic void main ( java . lang . S t r ing [ ] ) ;

9 Code :

10 0 : aload_0

11 1 : iconst_0

12 2 : aaload

13 3 : ldc #2//Load the S t r ing : foo

14 5 : i n vok ev i r t u a l #3// java / lang / S t r ing . e qua l s : ( Ljava/ lang /Object ; ) Z

15 8 : i f e q 30

16 11 : g e t s t a t i c #4// i n j e c t e d p r i n t s ta tement

17 14 : ldc #5//Load the S t r ing : the input i s foo

18 16 : i n vok ev i r t u a l #6// i n j e c t e d p r i n t s ta tement

19 19 : i n v ok e s t a t i c #7// invoke foo : ( )V

20 22 : g e t s t a t i c #4

21 25 : ldc #8

22 27 : i n vok ev i r t u a l #6

23 30 : aload_0

24 31 : iconst_0

25 32 : aaload

26 33 : ldc #9//Load the S t r ing : bar

27 35 : i n vok ev i r t u a l #3// java / lang / S t r ing . e qua l s : ( Ljava/ lang /Object ; ) Z

28 38 : i f e q 60

29 41 : g e t s t a t i c #4// i n j e c t e d p r i n t s ta tement

30 44 : ldc #10//Load the S t r ing : the input i s bar

31 46 : i n vok ev i r t u a l #6 // i n j e c t e d p r i n t s ta tement

32 49 : i n v ok e s t a t i c #11// i n j e c t e d p r i n t s ta tement

33 52 : g e t s t a t i c #4 // invoke bar : ( )V

34 55 : ldc #12

35 57 : i n vok ev i r t u a l #6

36 60 : return

37 }

Run-time pro�ling is one application where code instrumentation is applied. A

pro�ling tool, such as Java VisualVM12, provides a visual interface to inspect pro-

gram execution at run-time. For instance, heap dump contains allocated objects in the

memory. Heap dumps with allocation traces can forge call graphs for the purpose of

inter-procedural analysis. A thread dump continues stack traces for all threads. This

12https://visualvm.github.io/, accessed: 22 June 2020

https://visualvm.github.io/
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information can be harvested from Java VisualVM as well (Figure 2.8). An uncon-

ventional approach is discussed in Section 5.4.2.2 which uses stack traces mined from

software repositories to construct call graphs.

Figure 2.8: Thread stack by Java VisualVM

Code instrumentation is also used in fault location, such as �debugging�, a term that

describes the process of �nding program defects. Modern debuggers allow to suspend

the program to reveal its state. This process is achieved by code instrumentation. Java

Platform Debugger Architecture (JPDA)13 provides core functionality for the debugging

process. It also allows to implement a custom debugger by access through the Java

Debug Interface (JDI).

2.2.2.2 Program Slicing

Program slicing was �rst introduced by Weiser [182]. It is a method for reducing the

program to a minimal state while maintaining its original behaviours. The reduced

forms are referred as �program slices�. Programs slices are generally used during de-

bugging to reduce the size of program under analysis, thereby narrowing the source of

errors. Originally it has been used as a static approach where data �ow and control

�ow analysis are applied to construct program slices [183]. Listing 2.12 demonstrates a

program that is to be sliced for the given variable e. Statements: c=a+1 and d=b+1 do

not contribute to the variable e therefore are not included in the sliced program shown

in Listing 2.13.

13https://docs.oracle.com/javase/8/docs/technotes/guides/jpda/index.html, accessed: 22
June 2020

https://docs.oracle.com/javase/8/docs/technotes/guides/jpda/index.html
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Listing 2.12: Before slicing

1 a=1;

2 b=2;

3 c=a+1;

4 d=b+1;

5 e=a+b ;

Listing 2.13: After slicing

1 a=1;

2 b=2;

3 e=a+b ;

Korel, B and Laski, J [111] developed the idea of dynamic program slicing in 1988.

Unlike static slicing which is processed at compile-time, dynamic program slicing can

construct slices for a known input at run-time which is convenient for specifying slices

related to a particular execution. The work done by Agrawal et al. [22] extended dy-

namic slicing to relevant slicing which is used in incremental regression testing. Relevant

slicing not only considers statements directly related to a variable, but also statements

that could potentially be a�ected. Conditional slicing [47] produces program slices for

a given set of execution paths. Hall et al. [91] proposed using union slicing to combine

dynamic slicing algorithms for a set of test cases.

2.2.2.3 Testing

Testing can be also considered as a dynamic analysis method. A main goal of testing

is to verify the outputs of the program (actual vs expected outcomes). Testing can

not only improve software quality by writing test cases to locate faultiness, but also

it has been proved to be a very e�cient method in the area of project management

[134, 36, 48, 99], such as in test-driven development (TDD), a software development

methodology that uses test cases as requirements.

In general, three testing levels are considered: unit testing, integration testing,

and system testing [42, Chapter 4]. Unit testing focuses on an individual module to

be tested. Integration testing can test a particular functionality via a collection of

unit tests. System testing requires complete testing of the whole system to meet user

requirements.

Typical metrics used to measure the quality of tests include code coverage, lines of

code (LOC) and cyclomatic complexity. Miller et al. [140] �rst introduced the code

coverage method for systematic software testing. Nowadays, code coverage is widely

used in software development. Well known coverage tools for Java include: Jacoco [96],

EMMA14, and Atlassian Clover15. Code coverage can be categorised as follows [143]:

� Statement coverage: the coverage of each program statement.

� Function coverage: the coverage of each method.

14http://emma.sourceforge.net/, accessed: 22 June 2020
15https://www.atlassian.com/software/clover, accessed: 22 June 2020

http://emma.sourceforge.net/
https://www.atlassian.com/software/clover
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� Branch coverage: the coverage of each execution path.

� Condition coverage: reports the boolean outcome of each condition.

Lines of code (LOC) is used to indicate the size of a program. Some works [101, 70]

argue that this metric provides weak support for software quality. McCabe and Thomas

[135] developed cyclomatic complexity in 1963, It uses control �ow graphs to represent

program complexity. Each node indicates a program component, and directed edges

link nodes based on decision points (i.e., a condition ). For instance, if a program has

no conditional statement then the cyclomatic complexity of such a program is 1.

Symbolic execution [108, 55] is a testing technique that uses symbolic input values

instead of concrete values to evaluate program executions. Symbolic input values are

used to execute a program symbolically to collect a symbolic constraint path. Consider

the code provided in Listing 2.14. Let variable x have the value �λ�. To reach line 3,

the constraint must satisfy: λ > 6 and in order to reach the statement at line 8: λ <=

6. The statement at line 5 will never be reached as the constraint: (λ > 6 ∧ λ < 3)

is not satis�able.

Listing 2.14: Symbolic execution

1 foo (x ) {

2 i f (x>6) {

3 y=2;

4 i f (x<3){

5 y=1;

6 }

7 } else {

8 y=0;

9 }

10 }

Mutation testing [33] is another testing technique. It modi�es the test to change

its behaviours to be di�erent from the original version (the new version is referred as

a �mutant�). In Listing 2.15, assuming x = 1, the original code can only cover the

statement at line 4 , with a mutant demonstrated in Listing 2.16, the statement at line

2 can be covered as well.

Listing 2.15: Before mutating

1 i f (x<0){

2 y=1;

3 } else {

4 y=0;

5 }

Listing 2.16: A mutant

1 i f (x>0){ //mutation opera tor

2 y=1;

3 } else {

4 y=0;

5 }
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Tests can be manually or automatically created. Manual testing is a process whereby

developers construct test cases for programs by hand. This can be referred to as built-in

tests. Generated tests are sets of tests that are produced programmatically. There are

a number of Java test generation tools available. Di�erent tools use di�erent algorithms

and techniques for test case generation. Some of the well-known tools that use testing

techniques are listed below:

� Evosuite [77] is a whole-suite test generation framework. The goal is to produce

test cases that can achieve a high branch coverage. Evosuite uses mutation testing

to achieve certain coverage goals.

� Randoop [151] is an unit test generator for Java that can generate unit tests using

feedback-directed random test generation [54, 150].

� jCUTE 16 is an automated test generation tool for Java programs. It uses symbolic

execution and automatic constraint solving, together with randomised inputs to

�nd many di�erent execution paths for a given Java program.

� Korat [43] is a constraint-based generation tool. It automatically generates tests

based on a given Java predicate (i.e., precondition) within a bound on the size of

test inputs. Postcondition is then used to check the correctness of the test result.

2.3 Gaps in Static Analysis

In 2015, a manifesto [129] was published that raises a number of questions regarding

the soundness of static analysis. Figure 1.1 in Section 1.1 illustrates a conceptual model

of unsoundness issues (labeled as �gaps in static analysis�) where modelling of program

behaviours using static analysis is problematic. In the following sections, we are going

to further explain the concepts of soundness/unsoundness and recall in detail, and then

consider the gaps in existing static analysis work.

2.3.1 Soundness and Precision in Static Analysis

Rice's theorem [160] suggests: �In a Turing machine, any non-trivial property of program

behaviours is undecidable�. Thus, approximation of program behaviours is the best that

can be done to approach decidable state. The assumption is that there is no perfect

program analysis possible � we either over-approximate or under-approximate the actual

program behaviour. When an over-approximation is applied, false program behaviours

are expected to be included (i.e., False Positive (FP)). When an under-approximation

is applied, some program behaviours are most likely neglected (i.e., False Negatives

16https://github.com/osl/jcute, accessed 30 August 2020

https://github.com/osl/jcute
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(FN)). We refer to program behaviour that can be correctly modelled as True Positive

(TP). We denote the set of behaviours predicted by static analysis as �SA� and the set

of actual program behaviours as �APB�. The set of TPs by a given static analysis can

be described as follows:

TPs = SA ∩APB (2.1)

The set of FNs is:

FNs = APB \ SA (2.2)

The set of FPs is:

FPs = SA \APB (2.3)

Static program analysis must take into consideration both precision and soundness.

A precise analysis aims to reduce the occurrence of FPs, while a sound analysis will

aim to eliminate the occurrence of FNs (an unsound analysis will obtain FNs.) In a

worst case scenario, we assume all program models are inter-related, therefore it is a

sound but not a precise analysis. Modern static analyses aim to obtain both sound and

precise analysis. However, in reality, this has been a key issue for static analysis as it

has been a problem obtaining a sound analysis while maintaining precision [69]. To

further quantify the term (un)soundness of static analysis, we borrow the concept of

�recall� from the �elds of data analysis and information retrieval. David L. Olson [149]

explains recall and precision, where |TPs| is the number of true positives, |FNs| is the

number of false negatives and |FPs| is the number of false positives.

recall =
|TPs|

|TPs|+ |FNs|
(2.4)

precision =
|TPs|

|TPs|+ |FPs|
(2.5)
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To be more speci�c, in a given call graph produced by static analysis, the TPs can

be seen as a set of calling relationships that are correctly modelled by static analysis.

The FPs are a set of calling relationships that static analysis has incorrectly modelled.

The FNs are a set of calling relationships that are overlooked by static analysis.

2.3.2 Dynamic language features in static analysis

More and more developers favour using dynamic languages due to their e�ectiveness and

productivity [153]. Dynamically typed language such as Python, PHP, JavaScript are

gaining popularity [14, 13, 12]. Statically typed languages generally enforce types and

links at the compilation stage (i.e., Java, C and C++). They have also adopted the ideas

of dynamic languages as a feature to enable �exibility during development. A typical

example would be the use of re�ection where new methods, variables or classes can be

introduced at run-time. However, such dynamic features can cause problems for static

analysis in the modelling of behaviours and, therefore, became the source of unsound

analysis [129]. Many researchers have invested e�ort into improving the precision of

static analysis (discussed in Section 2.2.1.2). The awareness of unsoundness, regarding

the use of dynamic language features, has been addressed very recently [129]. The

following sections present existing work on handling dynamic language features, such

as re�ection, invokedynamic instruction, and dynamic proxy. These approaches indeed

claim that they can model such dynamic language features, but this thesis reveals that

none of current static analysis tools are as sound as we expect. Besides, there are other

dynamic language features that need to be handled, such as serialisation and the use of

native libraries.

Re�ection is one of the most widely used dynamic features in Java. The impact of

re�ection on static analysis has been a focal point of static analysis research [170, 129].

First introduced in LISP and Smalltalk [71, 173], re�ection allows a program to dy-

namically create classes, �elds and methods at run-time [72]. The classes, �elds or

methods information are mostly provided by string literals, which are not usually con-

sidered as part of program models. Therefore, tracking and reasoning about related

string literals is crucial in re�ection analysis. Several works have been presented with

a focus on re�ection analysis. Livshits et al. [130] uses points-to analysis to investi-

gate re�ective call sites by associating objects with them. [130] tracks strings that are

supplied by re�ection and interpreted as class names. Li et al. [123] have proposed

elf to improve the e�ectiveness of handling re�ection by adding additional rules to the

Doop framework [44]. Smaragdakis et al. [170] adds substring and string �ow anal-

ysis in Doop to improve re�ection analysis for Java. Tami�ex uses dynamic analysis

to support handling re�ection analysis for Soot. Tami�ex runs a dynamic pre-analysis
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by instrumenting the byte codes, and then logs all re�ective calls and feeds this infor-

mation into Soot. WALA employs a context-sensitivity policy to deal with re�ections.

WALA has built-in support for certain re�ective methods such as Class#forName(),

Class#newInstance(), and Method#invoke(). Landman et al. [114] have studied the

challenges faced by state-of-the-art static analysers to model re�ection in Java. They

found that the parts of the re�ection API that prove problematic for static analysers

are widely used in practice. The authors used a lightweight static analysis based on

detecting patterns in the abstract syntax tree (AST) of programs for their analysis.

The invokedynamic instruction is another dynamic language feature aimed at pro-

viding developers with more control over method dispatch, and is mainly used to com-

pile lambda expressions de�ned in Java. Several studies have proposed static analysis

support for modelling invokedynamic instructions. Bodden [39] provides a Soot exten-

sion that supports reading and rewriting invokedynamic byte codes. The opal static

analyser also provides support for invokedynamic through replacing invokedynamic

instructions using Java LambdaMetaFactory with a standard invokestatic instruction

[5]. WALA also provides support for invokedynamic generated for Java 8 lambdas17.

Like the di�erent approaches to handle re�ection, support for invokedynamic often

does not address the language feature as such, but only particular usage patterns. In

particular, the above-mentioned approaches assume that a certain bootstrap method

is used to set up the invocation process. This works well as long as this is how the

respective feature is used in real-world Java programs (e.g., making assumptions about

the byte code emitted by the current Java compiler), but fails if byte code produced by

non-Java or non standard Java compilers is analysed. This is a relevant problem as the

JVM has become a polyglot platform. Support for invokedynamic has been recently

added to Doop [74].

Dynamic proxy is a programming pattern that allows a dynamically created proxy

object to act as a client object. Fourtounis et al. [73] have recently proposed the �rst

analysis for dynamic proxies, based on the Doop framework. This analysis shows that

there is a need for the mutually recursive handling of dynamic proxies and other object

�ows via regular operations (heap loads and stores) and re�ective actions. Also, in

order to be e�ective, static modelling of proxies needs full treatment of other program

semantics, such as �ow of string constants.

2.3.3 Hybrid analysis

Hybrid analysis aims to combine both static and dynamic analysis, in order to take

advantage of both approaches. The aim is to combine both the relative soundness of

17https://groups.google.com/forum/#!topic/wala-sourceforge-net/omsGtp_ow7I, accessed 27
July 2020

https://groups.google.com/forum/#!topic/wala-sourceforge-net/omsGtp_ow7I
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static analysis and the accuracy of dynamic analysis [69, 144] in one single analysis. It

involves using the results produced by static analysis to modify the code in order to

perform dynamic checks. It can also be used in performing a dynamic pre-analysis to

record executions, and then the information recorded can be fed into a static analysis.

For instance, by modifying the original code or by creating a speci�cation that can be

used directly to augment a static analysis model. A typical usage would be generating

additional facts for a datalog-based static analyser. Andreasen et al. [32] used a hy-

brid approach that combines soundness testing, blended analysis, and delta debugging

for systematically guiding improvements of soundness and precision of TAJS � a static

analyser for JavaScript18. Soundness testing is the process of comparing the analysis

results obtained from a pure static analysis with the concrete states that are observed

by a dynamic analysis, in order to observe unsoundness. Moser et al. [141] pointed out

the limitation of static analysis especially in program security and suggested dynamic

analysis is a necessary complement for static detection. Furthermore, program models

obtained by dynamic analysis (i.e., log �les) can be used to provide additional infor-

mation for static analysis [57, 162]. Gupta et al. [90] proposed a hybrid approach to

improve precision for program slicing. Dependence cache slicing [180, 176] is another

hybrid approach where data dependencies are analysed statically and other dynamic

information, such as invocations are harvested during execution [148]. Hybrid analysis

is also proposed to analyse Android applications, such as HybriDroid [116].

In more recent years, hybrid analysis has become more popular when it comes to

analysing dynamic features in Java. The work of Hirzel et al. on pointer analysis [95]

combines both static analysis (analyse points-to set and propagating constraints) and

dynamic analysis (generating new constraints when certain events occur). Bodden et

al. [40] incorporated points-to analysis with �ow-insensitive analysis to help to trace

events that occur during program execution. The results suggest that this approach

can signi�cantly improve performance of run-time instrumentation. Bodden et al. [41]

also developed Tami�ex which adopts a hybrid approach where a Java program is

instrumented and method invocations, in particular re�ective invocation, are recorded.

The original code is then enriched with �unre�ected� code. This approach has the

advantage of being tool-agnostic. Grech et al. [83] have proposed heapdl. This tool is

conceptually similar to Tami�ex but also uses heap snapshots to further improve recall.

Mirror by Liu et al. [127] is a hybrid analysis speci�cally developed to resolve re�ective

call sites while maintaining precision.

18https://www.javascript.com/, accessed 27 July 2020

https://www.javascript.com/
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2.4 Summary

This chapter covers related work in program analysis techniques and frameworks. Both

static and dynamic analysis have been discussed. Points-to sets and call graphs are two

essential models for static analysis as they provide information about the relationships

among program models. There are two fundamental points-to analyses: Steensgaard

[174] analysis and Andersen [31] analysis. Each has its own merits. To combat im-

precision in static analysis, sensitivity analysis is introduced to reduce false positives.

Typical analyses include control �ow and data �ow analysis. We also present some clas-

sic algorithms in call graph construction such as CHA and RTA. Both industry focussed

and research focussed tools have been discussed in Section 2.2.1.4.

Compared to static analysis, dynamic analysis delivers a sound analysis but struggles

with completeness (i.e., missing execution branches due to low coverage). Here we listed

techniques to harvest program behaviours at run-time, such as code instrumentation,

program slicing and testing. Additionally, we discussed hybrid analysis, a combination

of static analysis and dynamic analysis.



Chapter 3

Research Methodology

3.1 Introduction

The research presented in this thesis is empirical in nature. The conclusion we draw

from the experiments presented in this thesis are based on observations and analysis

of data collected from various open-source programs. The thesis follows an empirical

analysis method. We conduct a number of experiments in order to answer the �ve

research questions discussed in Section 1.2. Such an empirical approach has been widely

followed in software engineering research [109, 186, 65].

Three main experiments have been conducted in this thesis: building a benchmark

based on observations of dynamic language features in Java (Chapter 4), mining software

repositories to harvest stack traces (Chapter 5) and quantifying the level of unsoundness

on a set of real-world programs (Chapter 6). We explain our general research design in

the following sections, but to improve readability, we discuss the speci�c methodology

for each experiment in the relevant chapters.

3.2 Experimental Design

We �rst observed Java dynamic language features and then categorised those features

based on usage patterns. We then conducted several empirical studies that aim to com-

pare dynamically obtained program behaviours with statically built ones. Speci�cally,

program behaviours can be represented by a calling relationship between methods, and

modelled by the directed graphs drawn from these, known as call graphs. Call graph

analysis is a fundamental analysis for code optimisations, program comprehension and

many security analyses. We harvested call graphs from various sources: (1) stack traces

mined from software repositories (2) the CVE database and (3) a set of real-world pro-

grams. We refer to these call graphs as oracles. These oracles are needed for quantitative

measurements in terms of the proportion of program behaviours that are overlooked by

34
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static analysis. All static analysis tools presented in this thesis (i.e., Soot [112], Doop

[44] and Wala [17]) work at byte code level. There are a number of advantages for using

byte code over source code, including (1) as an intermediate representation, it is easy to

analyse (2) it is more stable than source code (byte code instructions have never been

deprecated) and (3) it works with other program languages that also run on the JVM,

such as Groovy, Scala and Kotlin.

3.2.1 Benchmark Construction

The manifesto of soundness in static analysis [129] highlights that the use of dynamic

language features is a source of unsoundness in static analysis. We constructed a bench-

mark for the following categories of known dynamic language features in Java. These

categories have also been used for the experiment presented in Chapter 6, which is

conducted on a collection of real-world programs. Each feature contains a few usage

patterns. Descriptions for each particular usage pattern are presented in Section 4.3.

� Re�ection is a feature that allows to dynamically instantiate classes or to invoke

methods.

� Serialisation is the process of converting (and storing) objects to a byte stream.

� Dynamic class loading allows to use custom class loaders.

� Invokedynamic is a Java byte code instruction used to control method dispatch.

� Dynamic proxy is a dynamically created object that serves as an intermediary

object between a client and target objects.

� Native code is an implementation at the operating system level, such as C, C++

and assembly. It can be loaded by JVM to make it functional for Java programs.

The callback from a native library triggers new invocations that must be modelled

as well.

The benchmark consists of a number of JUnit1 test cases. The benchmark has two

parts: a harness and a simple program. The harness is responsible for exercising the

program and serves as an entry point to each program. The simple program exhibits

one particular Java dynamic language feature. We use the annotation @Source to

mark the caller and @Target to mark the callee. We also include multiple callees to

see which one can be modelled correctly. For instance, a correct callee is marked as

@Target(expectation = YES). To compute the static call graphs, we choose to use

three well-known static analysis tools: Soot [112], Doop [44] and Wala [17] with various

1https://junit.org/, accessed 18 December 2020

https://junit.org/
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analysis options (details are included in Section 4.2). The evaluation of these tools is

done by looking at each combination of program and static analysis tool and a result

state depending on the annotations found in the methods that are reachable. We refer

to a pair of a caller and a callee that can be correctly reported by static analysis as

a true positive (�TP�). We denote a set of methods predicted as reachable by static

analysis as �PR� (predicted reachable) and a set of actual called methods as �ACM�

(actual called methods). The following equation de�nes a set of TPs:

TPs = PR ∩ACM2 (3.1)

The set of FNs is:

FNs = ACM \ PR (3.2)

The set of FPs is:

FPs = PR \ACM (3.3)

A result state can be one of the following: precision (TP), imprecision (FP), un-

soundness (FN), or a state shows that the results of the static analysis are both unsound

and imprecise (FN+FP).

3.2.2 Mining Stack Traces from Online Resources

We use a mining technique to acquire stack traces from well-known source code hosting

and Q&A online communities: i.e., GitHub3 and Stack Over�ow4. Our mining technique

involves crawling through the internet by sending HTTP requests to retrieve relevant

pages from those sites. To prevent access being denied by the servers (i.e., a DDoS

defense mechanism), a sleep timer is placed between each request. Both parsing stack

traces from web pages and method pairs from stack traces are done by pattern matching

(the regex expression is shown in Listing 5.8). A manual inspection approach is adopted

for the purpose of veri�cation. This is done by verifying the �rst 100 recorded stack

traces against the original web page.

The static call graph is generated by Doop, and locating FNs is achieved by the

following equation where �STM� is a set of methods extracted from stack traces and

�PR� is a set of methods predicted as reachable by Doop:

FNs = STM \ PR (3.4)

2The de�nation for TPs, FNs, FPs are the same as in Equation 2.1, 2.2 and 2.3 , but the names of
the underlying sets have changed to �t this context.

3https://github.com, accessed 18 December 2020
4https://stackoverflow.com, accessed 18 December 2020

https://github.com
https://stackoverflow.com
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3.2.3 Quantifying Unsoundness in Static Analysis

The set of real-world programs is selected from our own dataset: the XCorpus, which

is developed in our previous work leading to the work reported in this thesis [61]. The

dataset provides an executable corpus for various Java programs. However, the XCorpus

uses the JUnit framework which prevents static analysis from locating the entry point.

We therefore adopt a systematic approach to rewrite program entry points. There are

two sets of tests needed to be rewritten: (1) manually created tests and (2) automati-

cally (programmatically) created tests. We use byte code instrumentation to inject an

observer at run-time. As a result, the entire method stacks are recorded. These method

stacks can then be used to assess the (un)soundness. The level of unsoundness is spec-

i�ed by the term �recall�: the percentage of all methods in recorded method stacks to

be reported in Doop. A set of recorded method invocations is denoted as a �CCT�, a

Context Call Tree. A set of statically modelled method invocations is denoted as an

�SCG�. Details are presented in Section 6.2.2. The following equation is used to measure

the level of unsoundness in this experiment:

recall =
|CCTs ∩ SCGs|
|CCTs|

5 (3.5)

When building static call graphs, we also consider the impact, on recall, of di�erent

analysis strategies and setups, such as context-sensitive/context-insensitive, full/light-

re�ection support. We use descriptive statistics to compare the results and also use

visualisation approaches (e.g., violin plots, sunburst graphs) to better compare the

results of di�erent analyses.

5The de�nation for recall is the same as in Equation 2.4, but the names of the set have changed to
�t in this context.



Chapter 4

Benchmark Construction and

Evaluation

4.1 Introduction

This chapter presents a benchmark comprised of a set of simple running programs that

each exhibit one particular Java dynamic language feature and usage pattern. The pur-

pose of this benchmark is to serve as a baseline for evaluating the soundness of static

analysis tools with regard to modelling dynamic language features. Soundness requires

that a static analyser models the entire program behaviour for all possible executions.

The advantage of having a benchmark is that the programs are well designed and be-

haviours are easily modelled in the sense of viewing the source code. We explore several

usage patterns based on these dynamic features. We argue that the word �patterns� can

describe dynamic behaviours better than features, since many features could have more

than one usage case being applicable. Take re�ection for example, there are potentially

two usage patterns: (1) target method name can be resolved via string concatenation

that cannot be folded by the compiler. (2) target method name can be resolved from a

�le IO which is considered as an external resource.

The design goal of the benchmark is to be minimalistic and to use conventions-over-

con�gurations to facilitate experiments. The programs are executable and are designed

to have behaviour that is easy to observe. The construction of the benchmark focuses

on call graph construction for Java programs. The call graphs are not obtained by

executing the benchmark programs but are created manually, based on our complete

understanding of the simple scenarios modelled.

The benchmark contains 34 programs from the following categories: re�ection, se-

rialization, unsafe, dynamic proxies, dynamic classloading, invokedynamic and Java

Native Interface (JNI). Using this benchmark, we conducted an evaluation of how three

state-of-the-art static analysers (Soot,WALA and Doop) handle these dynamic features.

38
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In this chapter, we �rst demonstrate, in detail, dynamic language features in Java

in order to construct the benchmark. We then present minimalistic example programs

for each of these features (usage patterns). At the end, we discuss an experiment that is

conducted with the benchmark to evaluate the capabilities (with regards to modelling

those dynamic language features) of state-of-the-art static analysis frameworks.

4.2 Methodology

4.2.1 Benchmark Structure

The benchmark is organised as a Maven project using the standard project layout [2].

src/main/java contains benchmark source code and tests are placed under src/test

/java. Resources are located at src/main/resources. The actual programs are or-

ganised in name spaces (packages) re�ecting their category. As these programs are

minimalistic, their behaviour is, in most cases, easy to understand for an experienced

programmer by just looking at the source code. All programs have a source() method

and one or more other methods, usually named target(..). This refers to a calling

relationship (from source method to target method).

Each program has an integrated oracle of expected program behaviour, encoded

using standard Java annotations. Methods annotated with @Source are call graph

sources: we consider the program behaviour triggered by the execution of those meth-

ods from an outside client. Methods annotated with @Target are methods that may

or may not be invoked directly or indirectly from a call site in the method annotated

with @Source. The expectation of whether a target method is to be invoked or not

is encoded in the @Target annotation's expectation attribute that can be one of

three values: Expected.YES � the method is expected to be invoked , Expected.NO

� the method is expected not to be invoked, or Expected.MAYBE � exactly one of the

methods with this annotation is expected to be invoked, but which one may depend

on the JVM to be used. For each program, either exactly one method is annotated

with @Target (expectation = Expected.YES), or some methods are annotated with

@Target (expectation = Expected.MAYBE).

The benchmark contains a vanilla program that de�nes the base case: a single

source method that has a call site where the target method is invoked using a plain

invokevirtual instruction (invokes instance method based on the class). The anno-

tated example is shown in Listing 4.1, this also illustrates the use of the oracle annota-

tions.
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Listing 4.1: Vanilla program source code

1 public class Van i l l a {

2

3 public boolean TARGET = fa l se ;

4 public boolean TARGET2 = fa l se ;

5

6 @Source

7 public void source ( ) {

8 t a r g e t ( ) ;

9 }

10

11 @Target ( expec ta t i on = YES)

12 public void t a r g e t ( ) {

13 this .TARGET = true ;

14 }

15

16 @Target ( expec ta t i on = NO)

17 public void t a r g e t ( int o ) {

18 this .TARGET2 = true ;

19 }

20 }

In Listing 4.1, the target method changes the state of the object by setting the

TARGET �ag. The purpose of this feature is to make invocations easily observable, and

to con�rm actual program behaviour by means of executing the respective programs by

running a simple client implemented as a JUnit test. Listing 4.2 shows the respective

test for the vanilla program � we expect that after an invocation of source() by the

test driver, target() will have been called after source() has returned , and we check

this with an assertion check on the TARGET �eld. We also test for methods that should

not be called, by checking that the value of the respective �eld remains false.

The main purpose of using the annotations is to facilitate the set up of experiments

with static analysers. Since the annotations have a retention policy that makes them

visible at run-time, the oracle to test static analysers can be easily inferred from the

benchmark program. In particular, the annotations can be used to test for both sound-

ness and precision. In this context, we measure the level of unsoundness as the number

of actual calling relationships that are not reported. The missing calling relationships

are referred to as False Negatives (FNs). The level of imprecision is the number of call-

ing relationships that are mistakenly reported by static analysers. i.e., False Positives

(FPs).
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Listing 4.2: Vanilla test case

1 public class Vani l l aTest {

2

3 private Van i l l a v a n i l l a ;

4 @Before

5 public void setUp ( ) throws Exception {

6 v a n i l l a = new Van i l l a ( ) ;

7 v a n i l l a . source ( ) ;

8 }

9

10 @Test

11 public void testTargetMethodBeenCalled ( ) {

12 Assert . a s se r tTrue ( v a n i l l a .TARGET) ;

13 }

14

15 @Test

16 public void testTarget2MethodHasNotBeenCalled ( ) {

17 Assert . a s s e r tFa l s e ( v a n i l l a .TARGET2) ;

18 }

19 }

The experiments are set up as follows: for each benchmark program, we use a

lightweight byte code analysis to extract the oracle from the prede�ned @Target anno-

tations. Then the call graph is computed with the respective static analyser using the

method annotated as @Source as the entry point, and the result is stored in PROBE call

graph format [118]. Finally, using the static call graph, the FPs and FNs are computed

with respect to the oracle, using the annotations as the ground truth.

4.2.2 Static Analysis Tools

We are particularly interested to see whether the benchmark examples were suitable to

di�erentiate the capabilities of mainstream static analysis frameworks. We identi�ed

three state-of-the-art static analysis tools based on the following criteria:

1. Can provide a whole program analysis which �ts our analysis scope. Tools like

SpotBugs1, Checker framework2, Facebook's Infer3 do not provide whole program

analysis, but only serve a speci�c purpose, such as detecting Java NullPointerEx-

ception.

2. Can support call graph construction.

1https://spotbugs.github.io/, accessed 27 July 2020
2https://checkerframework.org/, accessed 27 July 2020
3https://fbinfer.com/, accessed 27 July 2020

https://spotbugs.github.io/
https://checkerframework.org/
https://fbinfer.com/
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3. Are widely used by the program analysis research community, evidenced by cita-

tion counts of core papers, indicating that the respective frameworks are widely

used, and therefore issues in those frameworks will have a wider impact on the

research community.

4. Have some support for modelling dynamic language features, in particular re�ec-

tion.

5. Under active development, indicating that the features of those frameworks will

continue to have an impact.

Based on those criteria, we evaluated Soot, Doop4 and WALA. For each tool, we

considered a basic con�guration (only the basic analysis such as CHA is enabled), and

an advanced con�guration (such as re�ection support) to switch on support for advanced

language features. All three tools have options to switch those features on.

To set up a basic con�guration, we construct call graphs using a mid-precision,

context-insensitive variable type analysis. Given the simplicity of our examples, where

each method has at most one call site, we did not expect that context sensitivity would

have made a di�erence. To the contrary, a context-sensitive analysis computes a smaller

call graph, and would therefore reduce the FNs reported by the analyser. On the other

hand, a less precise method like CHA could lead to reporting of more FPs, caused by

the accidental coverage of non-target methods. An advanced con�guration includes

all options in the basic con�guration, but with extra settings for handling dynamic

features, if they are available. We explain the settings that we used for each of the

analysers below:

WALA: we use the 0-CFA call graph builder. By default, we set com.ibm.wala.ipa

.callgraph.AnalysisOptions.ReflectionOptions to NONE, which means re�ection

analysis is disabled. In the advanced con�guration used, re�ection analysis is enabled

by setting it to FULL.

Soot : we use SPARK [119], a �exible points-to analysis framework that Soot sup-

ports. (cg.spark=enabled,cg.spark=vta). For the advanced con�guration, the fol-

lowing options are being used:

� "safe-forname". The class name is resolved when Class#forName() is used.

� "safe-newinstance" options. The newly created object is resolved when Class

#newInstance() is used.

4as Doop does not release versions, we used a version built from commit
4a94ae3bab4edcdba068b35a6c0b8774192e59eb
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� There is another option to support the resolution of re�ective call sites, typesfor

-invoke. Enabling this option leads to an error that was reported, but at the

time of writing this issue has not yet been resolved 5.

Doop: we use the following options: context-insensitive, ignore-main-method,

only-application-classes-fact-gen for the base analysis. For the advanced con�gu-

ration6, we also enable reflection, reflection-classic, reflection-high-soundness

-mode, reflection-substring-analysis, reflection-invent-unknown-objects,

reflection-refined-objects, reflection-speculative-use-based-analysis.

4.3 Benchmark of Dynamic Features in Java

Dynamic programming language features enable �exibility and productivity for develop-

ers writing programs. Features like re�ection and dynamic class loading allow programs

to be more generic and adaptable. In the following sections, various dynamic features

in Java are discussed in detail.

4.3.1 Re�ection

The benchmark examples re�ect a range of usage patterns, from trivial to sophisticated

patterns. Many programs overload the target method, this is used to test whether a

static analysis tool achieves sound re�ection handling at the price of precision.

Re�ection is a widely used feature in many Java programs. It allows to examine the

program's structure at run-time by inspecting classes, �elds and methods [72]. With

re�ection, classes can be dynamically instantiated, �elds can be accessed and manipu-

lated, and methods can be invoked.

A common usage of re�ection can be found in JUnit. Re�ection can look for methods

that are annotated with @Test, and will then invoke them. Service loader is another ex-

ample of re�ection. It uses java.util.ServiceLoader to load di�erent implementation

of services. Another use case of re�ection is in dependency injection, where dependen-

cies are supplied as a service (created only when it is needed). In order for the service

to be registered, a text �le is needed within the META-INF/service folder to specify the

service provider.

To create an object or invoke a method, the relevant class name, method name

and argument must be supplied. For static program analysis, re�ection is di�cult to

handle because of its dynamic nature. Hirzel et al [95] pointed out that �It is not

known statically which/when/where/whether class will be loaded�. The analysis could

5https://groups.google.com/forum/m/#!topic/soot-list/xQwsU7DlmqM, accessed 6 May 2020
6the meaning of each con�guration is discussed in Section 5.4.2.5

https://groups.google.com/forum/m/#!topic/soot-list/xQwsU7DlmqM
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be over-approximated due to the class name or method name supplied as a run-time

literal in the presence of dynamic class loading [170, 130]. Therefore, modelling re�ective

calls highly depends on the usage context. A re�ective call site for Method#invoke()

can be easily handled if the parameter at the method access site (i.e., the call site of

Class#getMethod() or related methods) are known, for instance, if method name and

parameter types can be inferred as shown in Listing 4.3.

Listing 4.3: Java re�ection example

1 class Main{

2

3 public stat ic void main ( St r ing [ ] a rgs ) {

4 Method m = Main . class . getDeclaredMethod (

5 " t a r g e t " ,

6 new Class [ ] { S t r ing . class }) ;

7

8 m. invoke ( this , " input " ) ;

9 }

10

11 public void t a r g e t ( S t r ing input ) {

12 }

13 }

4.3.1.1 Re�ection Variances

The data needed to accurately identify an invoked method might be supplied by other

methods (therefore, the static analysis must be inter-procedural to capture this), only

partially available (e.g., if only the method name can safely be inferred, a static anal-

ysis may decide to over-approximate the call graph and create edges for all possible

methods with this name), provided through external resources (a popular pattern in

enterprise frameworks like Spring, service loaders, or JEE web applications), or some

custom procedural code.

The following Listing 4.4 shows an intraprocedural usage where the method name

is provided via a series of transformations. Listing 4.5 demonstrates that re�ection can

happen in di�erent procedures, i.e., the method name is supplied from an external �le.

Listing 4.4: Java Intraprocedural Re�ection

1 St r ing methodName = new St r i ngBu i l d e r ( "TEGRAT" ) . r e v e r s e ( ) . t oS t r i ng ( ) .

toLowerCase ( ) ;

2 Method m = Int rap rocedura l 1 . class . getDeclaredMethod (methodName , null ) ;

3 m. invoke ( this , null ) ;
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Listing 4.5: Java Interprocedural Re�ection

1 BufferedReader br = new BufferedReader (new Fi leReader ( this . g e tC la s s ( ) .

getClassLoader ( ) . getResource ( "method . txt " ) . g e tF i l e ( ) ) ) ;

2 S t r ing methodName = br . readLine ( ) ;

3 Method m = Int e rp ro c edu ra l 1 . class . getDeclaredMethod (methodName , null ) ;

4 m. invoke ( this , null ) ;

4.3.1.2 Re�ection with Ambiguous Resolution

We also considered other possible scenarios where a program is (at least partially) not

generated by Java compiler javac. Since, at byte code level, methods are identi�ed

by a combination of name and descriptor, the JVM supports return type overload-

ing, and the compiler may use this in order to support co-variant return types [81,

section 8.4.5] by generating bridge methods. This raises the question how the meth-

ods in java.lang.Class are used to locate methods to resolve ambiguity as they use

only name and parameter types, but not the return type, as parameters. According

to the respective class documentation, �If more than one method with the same pa-

rameter types is declared in a class, and one of these methods has a return type that

is more speci�c than any of the others, that method is returned; otherwise one of the

methods is chosen arbitrarily� 7. In case of return type overloading used in bridge meth-

ods, this rule still yields an unambiguous result, but one can easily engineer byte code

where the arbitrary choice clause applies. The benchmark contains a relevant exam-

ple, dpbbench.ambiguous.ReturnTypeOverloading. As Listing 4.6 shows, there are

two target methods, one returning java.util.Set and one returning java.util.List.

Since neither return type is a subtype of the other, the JVM is free to choose either

of the two. In this case, we use the @Target (expectation = MAYBE) annotation to

de�ne the oracle. We acknowledge that the practical relevance of this might be low at

the moment, but we included this scenario as it highlights that the concept of possible

program behaviour used as ground truth to assess the soundness of static analysis is

not as clear as it is widely believed. Here, possible program executions can be de�ned

either with respect to all or some JVMs.

7https://goo.gl/JG9qD2, accessed 6 May 2020

https://goo.gl/JG9qD2
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Listing 4.6: Co-Variant Return Types

1 @Target ( expec ta t i on=Expected .MAYBE)

2 public Set t a r g e t ( ) {

3 this .TARGET_SET =true ;

4 return null ;

5 }

6

7 @Target ( expec ta t i on=Expected .MAYBE)

8 public L i s t t a r g e t ( ) {

9 this .TARGET_LIST =true ;

10 return null ;

11 }

4.3.2 Dynamic Class Loading

Class instances can be loaded dynamically. Java distinguishes between classes and class

loaders. This can be used to dynamically load, or even generate classes at run-time. As

shown in Listing 4.7, the target class is not set in the class path. It is �rst compiled (at

line 9), and then loaded at run-time (at line 3). This feature is widely used in practice, in

particular for frameworks that compile embedded scripting or domain-speci�c languages,

such as Xalan8.

Listing 4.7: Dynamic class loading example

1 public void source ( ) throws Exception {

2 CustomClassLoader c l a s sLoader = new CustomClassLoader ( ) ;

3 c l a s sLoader . l oadClas s ( "dynamicClassLoading . Target " ) . newInstance ( ) ;

4 }

5

6 @Override

7 protected Class<?> f i ndC la s s ( S t r ing name) {

8 byte [ ] content = new byte [ 0 ] ;

9 content = U t i l i t y . compi le ( this . g e tC la s s ( ) . getClassLoader ( ) , name) ;

10 return de f i n eC l a s s (name , content , 0 , content . l ength ) ;

11 }

4.3.3 Dynamic Proxy

Proxy objects are intermediary objects between a client and target objects. Dynamic

proxy can be used for many purposes: to facilitate distributed object frameworks

like CORBA and RMI, as a transaction management for database connection (i.e.,

Spring framework), or in mocking framework for unit testing (such as Mockito). A

proxy object forces method calls to happen indirectly through another object using

8https://xalan.apache.org/, accessed 6 May 2020

https://xalan.apache.org/
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java.lang.reflect.Proxy. This where unsoundness could occur. Most static analysis

tools assume an implementation in absence of proxy classes [114].

The benchmark contains an example program in the dynamic proxy category (shown

in Listing 4.8). In this program, the source method invokes an interface method foo()

through an invocation handler (MyInvocationHandler). In the invocation handler,

method target() is invoked at line 11. The target method is overloaded in order to

test the precision of the analysis (in this case, the target method with a String as an

argument is taken into account).

Listing 4.8: Dynamic proxy example

1 public void source ( ) {

2 MyInter face proxy = Proxy . newProxyInstance ( MyInter face . class .

getClassLoader ( ) ,

3 new Class [ ] { MyInter face . class } , new MyInvocationHandler ( ) ) ;

4 proxy . foo ( " h e l l o " ) ;

5 }

6

7 public class MyInvocationHandler implements Invocat ionHandler

8

9 @Override

10 public Object invoke ( Object obj , Method m, Object [ ] arg ) {

11 t a r g e t ( ( S t r ing ) arg [ 0 ] ) ;

12 return null ;

13 }

14 }

4.3.4 invokedynamic Instruction

The invokedynamic is a Java byte code instruction which gives a program power to

control method dispatch by using a user-de�ned bootstrap method that computes the

call target. A well known use case for invokedynamic in Java is lambda support which

uses java.lang.invoke.LambdaMetafactory as a default bootstrap method for invoke-

dynamic call sites. In OpenJDK 9, invokedynamic is also used for string concatenation.

An example of lambda usage is shown in Listing 4.9. The benchmark provides four

scenarios of using invokedynamic. It contains three programs with di�erent uses of

lambda. The fourth example is engineered from byte code and is an adapted version of

the Dynamo compiler example from [100]. Here, invokedynamic is used for a special

compilation of component boundary methods in order to improve binary compatibility.

The intention of including this example is to distinguish between invokedynamic for

particular usage patterns, and general support for invokedynamic.
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Listing 4.9: Lambda example

1 Function<Integer , Str ing> c = ( i ) −> ta rg e t ( ) ;

2 c . apply (3 ) ;

4.3.5 Serialisation

Serialisation is the process of converting (and storing) objects to a byte stream. The

reverse process is called deserialisation. An object is deserialised from byte stream

through method java.io.ObjectInputStream#readObject().

The benchmark contains a program in this category that relates to the fact that

deserialisation o�ers an extra-linguistic mechanism to construct objects, avoiding con-

structors. The scenario as shown in the Listing 4.10, constructs an object from a stream,

and then invokes a method on this object. The client class is not aware of the actual

type of the receiver object, as the code contains no allocation site.

Listing 4.10: Java deserialization example

1 ObjectInputStream o i s=new ObjectInputStream (new ByteArrayInputStream (

U t i l i t y . s e r i a l i s e (new Target ( ) ) ) ) ;

2 Targ e t In t e r f a c e foo=(Targe t In t e r f a c e ) o i s . readObject ( ) ;

3 foo . t a r g e t ( ) ;

4 o i s . c l o s e ( ) ;

4.3.6 JNI

The Java Native Interface (JNI) [125] is a framework that allows the JVM to load native

code such as C, C++ and assembly. Static analyses usually do not consider native code

as part of the analysis because the scope is limited to one language. This means it is

not possible to capture the calls that �ow into the native library and then back to the

Java program.

There are two programs using JNI in the benchmark. The �rst scenario is demon-

strated in the Listing 4.11, and uses a custom Runnable to be started by Thread#start().

In Java 8 (OpenJDK 8), Runnable#run() is invoked by Thread#start() via an inter-

mediate native method Thread#start0(). The second program is a custom example

that uses a callback through a native implementation (Listing 4.12).

Listing 4.11: Java JNI Thread example

1 java . lang . Thread t = new java . lang . Thread ( this ) ;

2 t . s t a r t ( ) ;
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Listing 4.12: Native Callback example

1 JNIEXPORT void JNICALL

2 Java_dpbbench_jni_Callbacks_source (JNIEnv *env , j o b j e c t obj )

3 {

4 j c l a s s c l s = (* env )−>GetObjectClass ( env , obj ) ;

5 jmethodID mid = (* env )−>GetMethodID( env , c l s , " t a r g e t " , " ( )V" ) ;

6 i f (mid == 0) {

7 return ;

8 }

9 (* env )−>CallVoidMethod ( env , obj , mid ) ;

10 }

4.3.7 sun.misc.Unsafe

The sun.misc.Unsafe in Java is used for accessing low-level programming. It was

originally intended to facilitate the implementation of platform APIs, and to provide an

alternative for JNI. This feature is now widely used outside the Java platform libraries

[133]. Many developers treat this feature as a less constrained workaround [16]. For

instance, Listing 4.13 illustrates a code example that does not need a constructor to be

called for instantiating a class. It allocates an instance directly on the heap by using

the method Unsafe#allocateInstance().

Listing 4.13: Java Unsafe Allocation example

1 Un s a f e I n i t i a l i z a t i o n . Inner inner=U t i l i t y . getUnsafe ( ) . a l l o c a t e I n s t a n c e (

Inner . class ) ;

2 inner . t a r g e t ( ) ;

The benchmark contains four patterns in this category, using unsafe to (1) load a

class (Unsafe#defineClass()), (2) throw an exception (Unsafe#throwException()),

(3) allocate an instance (Unsafe#allocateInstance()) and (4) swap references (Unsafe#

putObject(), Unsafe#objectFieldOffset()).

4.4 Evaluation and Discussion

For each combination of benchmark program and static analyser, we compute a result

state depending on the annotations found in the methods reachable from the @Source to

an annotated method in the computed call graph as de�ned in Table 4.1. For instance,

the state accurate (ACC) means that in the computed call graph, all methods annotated

with @Target (expectation = YES) and none of the methods annotated with @Target

(expectation = NO) are reachable from the method annotated with @Source. The FP

indicates imprecision and FN indicates unsoundness, the FN+FP state shows that the

results of the static analysis are both unsound and imprecise. Reachable means that
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there is a path from a sink to a source method. This is slightly more general than looking

for a single edge in the call graph and takes into account the fact that a particular JVM

might use intermediate methods to implement a certain dynamic invocation pattern.

Table 4.1: Result for programs with consistent behaviour

Result Methods reachable from source by annotation

state @Target(expectation=YES) @Target(expectation=NO)

ACC all none

FP all some

FN none none

FN+FP none some

Figure 4.1 shows a conceptual illustration of what has been discussed in Section

4.3.1.2 � there are programs that use the @Target (expectation = MAYBE) annota-

tion, indicating that actual program behaviour is not de�ned by the speci�cation, and

depends on the JVM implementation being used. This is illustrated in Figure 4.1(b),

whereas Figure 4.1(a) shows a consistent behaviour across JVMs.

observed call graph

computed call graph

FN

FP

TP

observed call graph (JVM1)

observed call graph (JVM2)

computed 
call graph

(a) Consistent behaviour across

JVMs

observed call graph

computed call graph

FN

FP

TP

observed call graph (JVM1)

observed call graph (JVM2)

computed 
call graph

(b) Inconsistent behaviour across JVMs

Figure 4.1: Observed vs computed call graph

For the programs that use the @Target(expectation=MAYBE) annotation, we mod-

i�ed this de�nition according to the semantics of the annotation: during execution,

exactly one of these methods will be invoked, but it is up to the particular JVM to de-

cide which particular method. We de�ne result states as shown in Table 4.2. Note that

the @Target (expectation = YES) and the @Target (expectation = MAYBE) anno-

tations are never used for the same program, and that there is at most one method
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annotated with @Target (expectation = YES) in each program.

This de�nition is very lenient � we assess the results of a static analyser as sound

(ACC or FP) if it does compute a path that links the source with any possible target.

This means that soundness is de�ned with respect to the behaviour observed with only

some, but not all JVMs.

Table 4.2: Result for programs with behaviour that depends on the JVM

Result Methods reachable from source by annotation

state @Target (expectation = MAYBE) @Target (expectation = NO)

ACC some none

FP some some

FN none none

FN+FP none some

Tables 4.3, 4.4 and 4.5 report the number of patterns (also referred to as programs,

since each pattern is independent and executable) with the respective result state for

each framework (Doop, WALA and Soot, respectively). The cell in the tables are for-

matted as follows: number of patterns obtained with basic con�guration /

number of patterns obtained with advanced con�guration. (an explanation of

basic/advanced con�guration is presented in Section 4.2.2). A discussion of the results

from each analyser is presented in following sections.

4.4.1 Doop

There are signi�cant di�erences between the basic and the advanced modes when re�ec-

tion is involved � none of programs are handled by Doop when the basic con�guration

enabled. Four of them can be resolved under the advanced modes, however FPs are gen-

erated as well. For instance, dpbbench.reflection.invocation.Interprocedural2

provides a scenario where the method name is supplied via a di�erent procedure. A

typical FN found under the re�ection category is dpbbench.reflection.invocation.

Interprocedural1. In this case, the method is stored in an external resource and Doop

fails to resolve it (the source code can be found at Listing 4.5). Doop did not support

dynamic proxy and JNI by the time that the experiment been conducted. The supports

were added recently [73, 75].
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Table 4.3: SCG evaluation results for Doop

Category ACC FN FP FN+FP

vanilla 1/1 0/0 0/0 0/0

re�ection 0/0 12/8 0/4 0/0

dynamic class loading 0/0 1/1 0/0 0/0

dynamic proxy 0/0 1/1 0/0 0/0

invokedynamic 0/0 4/4 0/0 0/0

JNI 0/0 2/2 0/0 0/0

serialisation 0/0 1/1 0/0 0/0

Unsafe 0/0 2/2 1/1 1/1

re�ection-ambiguous 0/0 2/1 0/1 0/0

4.4.2 Soot

Soot accurately reports the vanilla case as well as one of JNI patterns, (Thread#start()

as shown in Listing 4.11), and the deserialisation pattern, (dpbbench.serialisation.

Deserialisation as shown in Listing 4.10). With the advanced mode enabled, Soot

is only able to handle 1/12 patterns which is the basic re�ection pattern. The rest of

re�ection patterns are �agged as FNs. Dynamic class loading case is not supported by

Soot.

Table 4.4: SCG evaluation results for Soot

Category ACC FN FP FN+FP

vanilla 1/1 0/0 0/0 0/0

re�ection 0/1 12/11 0/0 0/0

dynamic class loading 0/0 1/1 0/0 0/0

dynamic proxy 0/0 1/1 0/0 0/0

invokedynamic 0/0 4/4 0/0 0/0

JNI 1/1 1/1 0/0 0/0

serialisation 1/1 0/0 0/0 0/0

Unsafe 0/0 2/2 1/1 1/1

re�ection-ambiguous 0/0 2/2 0/0 0/0
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4.4.3 WALA

WALA has support for certain usage patterns of other features: it models invokedynamic

instructions generated by the compiler for lambdas correctly. However, it fails to re-

solve the user-de�ned bootstrap method. WALA also models the intermediate native

call in Thread#start() and the dynamic proxy, when in advanced mode. This may be

a re�ection of the maturity and stronger industrial focus of the tool.

Table 4.5: SCG evaluation results for WALA

Category ACC FN FP FN+FP

vanilla 1/1 0/0 0/0 0/0

re�ection 0/4 12/3 0/5 0/0

dynamic class loading 0/0 1/1 0/0 0/0

dynamic proxy 0/1 1/0 0/0 0/0

invokedynamic 3/3 1/1 0/0 0/0

JNI 1/1 1/1 0/0 0/0

serialisation 1/1 0/0 0/0 0/0

Unsafe 0/0 2/2 1/1 1/1

re�ection-ambiguous 0/0 2/0 0/2 0/0

4.4.4 Discussion

In summary, none of the static analysers tested handled all features soundly, as expected.

None of the frameworks handles any of the Unsafe scenarios well. There is one particular

program where all analysers compute the wrong call graph edge (shown in Listing 4.14):

the target method is called on a �eld that is initialised as new Target(), but between

the allocation and the invocation of target() the �eld value is swapped for an instance

of another type using Unsafe#putObject. While this scenario appears far-fetched, we

note that Unsafe is widely used in libraries [133].
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Listing 4.14: Unsafe type confusion example

1 @Source

2 public void source ( ) throws Exception {

3 ta r g e t = new Target ( ) ;

4 U t i l i t y . getUnsafe ( ) . putObject ( this ,

5 U t i l i t y . getUnsafe ( ) . o b j e c tF i e l dO f f s e t ( UnsafeTypeConfusion . class .

g e tDec la r edF i e ld ( " t a r g e t " ) ) ,

6 new Target2 ( ) ) ;

7 t a r g e t . t a r g e t ( ) ;

8 }

9

10 public class Target {

11

12 @dpbbench . u t i l . Target ( expec ta t i on = NO)

13 public void t a r g e t ( ) {

14 TARGET = true ;

15 }

16 }

17

18 public class Target2 {

19

20 @dpbbench . u t i l . Target ( expec ta t i on = YES)

21 public void t a r g e t ( ) {

22 TARGET2 = true ;

23 }

24 }

A customised invokedynamic call site is unlikely to be supported by many tools.

Jezek et al.[100] presents a case called Dynamo which we have included in the bench-

mark. Dynamo is designed to resolve linkage errors by creating a customised invokedynamic

call site. Even though tools like WALA and Opal [67] can handle lambda by looking

into the bootstrapped method, a customised bootstrapped method is often overlooked.

We note that Soot has better integration with TamiFlex [41]. TamiFlex is a dynamic

analysis tool which requires the program to be executed to obtain program models,

therefore it uses a fundamentally di�erent approach to soundly model dynamic lan-

guage features. How well a dynamic (pre-) analysis works depends a lot on the quality

(coverage) of the driver. For the micro-benchmark we have constructed a perfect driver

that has only one entry point to the program, and exercises the program as intended.

Using Soot with TamiFlex with such a driver would have yielded the same results.

An interesting observation we made from experimenting with the benchmark pro-

grams, is that the behaviour of the program under analysis is not de�ned by the lan-

guage speci�cation nor by the JVM speci�cation. We found that the behaviour varies

across di�erent JVM implementations (i.e., OpenJDK vs HotSpot). This raises a ques-

tion about the ground truth of possible program behaviour. For instance, Oracle JRE
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1.8.0_144 / OpenJDK JRE 1.8.0_40, on the one hand, IBM JRE 1.8.0_171, on the

other, actually do select di�erent methods. We have also observed that IBM JRE

1.8.0_171 chooses the incorrect method in the related dpbbench.reflection.invoca

-tion.ReturnTypeOverloading scenario (as shown in Listing 4.15). In this scenario,

the overloaded target methods return java.util.Collection and java.util.List, re-

spectively, and the IBM JVM dispatches to the method returning java.util.Collection,

in violation of the rule stipulated in the API speci�cation. We reported this as a bug,

and it was accepted and �xed9.

Listing 4.15: Return type overloading

1 @Target ( expec ta t i on=Expected .NO)

2 public Co l l e c t i on t a r g e t ( ) {

3 this .TARGET_COLLECTION =true ;

4 return null ;

5 }

6

7 @Target ( expec ta t i on=Expected .YES)

8 public L i s t t a r g e t ( ) {

9 this .TARGET_LIST =true ;

10 return null ;

11 }

We also observe that the call graphs di�er depending on the JVM being used. For

instance, in the program in Listing 4.16, the target method selected at the call site in

source() is target() for both Oracle JRE 1.8.0_144 and OpenJDK JRE 1.8.0_40 ,

and target2() for IBM JRE 1.8.0_171.

9https://github.com/eclipse/openj9/pull/2240, accessed 6 May 2020

https://github.com/eclipse/openj9/pull/2240


CHAPTER 4. BENCHMARK CONSTRUCTION AND EVALUATION 56

Listing 4.16: An example of re�ection with ambiguous resolution

1 public void source ( ) throws Exception {

2 for (Method method : Invocat ion . class . getDeclaredMethods ( ) ) {

3 i f (method . i sAnnotat ionPresent (Method . class ) ) {

4 method . invoke ( this , null ) ;

5 return ;

6 }

7 }

8 }

9

10 @Method

11 @Target ( expec ta t i on = MAYBE)

12 public void t a r g e t ( ) {

13 this .TARGET = true ;

14 }

15

16 @Method

17 @Target ( expec ta t i on = MAYBE)

18 public void t a rge t2 ( ) {

19 this .TARGET2 = true ;

20 }

21

22 @Target ( expec ta t i on = NO)

23 public void t a rge t3 ( ) {

24 this .TARGET3 = true ;

25 }

Very recently, Reif et al. [158] have published a Java test suite designed to test

static analysers for their support for dynamic language features, and evaluated WALA

and Soot against it. While this is very similar to the approach presented here, there are

some signi�cant di�erences:

1. The authors of [158] assume that the tests (benchmark programs) provide the

ground truth. In this study, we question this assumption, and propose an

alternative notion that also take characteristics of the JVM and the platform

used to execute the tests into account.

2. The study presented here also investigates Doop, which we consider important as

it o�ers several features for advanced re�ection handling.

3. While the construction of both test suites/benchmarks was motivated by the same

intention, they are di�erent. Merging and consolidating them is an interesting area

for future research.
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4.5 Summary and Conclusion

In order to answer RQ1: What are the sources of unsoundness in static analysis?

a set of benchmark program is presented that describes the usage of dynamic language

features in Java. We further sort these usage patterns into the following categories:

re�ection, serialisation, dynamic class loading, invokedynamic, dynamic proxy and the

use of native libraries. An experiment is then conducted to assess RQ2: Are state-

of-the-art static analysis tools able to successfully model dynamic language

features in Java? The short answer is: no, they are not able to model all dynamic

language features in Java. It is not surprising that the static call graphs miss edges in

many cases, such as serialisation and unsafe. Even the widely used feature, re�ection,

has not been fully supported with many detailed usages.

The results indicate that it is necessary to di�erentiate between the actual features

and a usage context for those features. For instance, there is a signi�cant di�erence

between supporting invokedynamic as a general feature, and invokedynamic as it is

used by the Java 8 compiler for lambdas. Another example would be the use of re�ec-

tion in general, and various ways of supplying meta data (class/method name) for the

re�ection. The benchmark design, and the results of the experiments, highlight this

di�erence.

We do not expect that static analysis frameworks will support all of these features

and provide a sound and precise call graph in the near future. Instead, many tools will

continue to focus on particular usage patterns, such as support for re�ection used in

the Spring framework, which have the biggest impact on actual programs, and therefore

should be prioritised. However, as discussed using examples throughout this thesis, more

exotic usage patterns do occur, and can be exploited, so they should not be ignored.

The benchmark provided here can provide some guidance for tool builders from here

on.

An interesting insight coming out of this study is that notions like actual program

behaviour and possible program executions are not as clearly de�ned as widely thought.

This is particularly surprising in the context of Java (even in programs that do not use

randomness, concurrency or native methods), given the strong focus of the Java platform

on writing code once, and running it anywhere, with consistent program behaviour. This

has implications for the very de�nitions of soundness and precision. We have suggested

a pragmatic solution, but we feel that a wider discussion of these issues is needed.



Chapter 5

Oracle Generation from Stack

Traces

5.1 Introduction

In this chapter, we present a technique of using stack traces to complement statically

built call graphs. We treat invocations that are part of reported stack traces as sound-

ness oracles as they represent observed program behaviours � they provide crucial

information about the behaviour of a running program. This behaviour might even be

particularly interesting and valuable in the sense that it has potentially led to excep-

tions, and therefore is likely to be a behaviour that has not been encountered during

a routine dynamic analysis procedure, such as testing. Oracles are generated from:

(1) Common Vulnerabilities and Exposures(CVE) [3], a well-known on-line platform

for reporting vulnerabilities. We recreate some vulnerabilities and capture their stack

traces in order to extract call chains. (2) Re�ective call chains mined from GitHub1

and Stack Over�ow2. GitHub and Stack Over�ow are two well-known communities for

developers to post questions and issues they encounter. These online resources have

practical implications for the usage patterns in the benchmark presented in Chapter 4

� they are either reported as real-world vulnerabilities or program issues that have been

encountered by developers. As a result, we identi�ed some patterns that are missed by

static analysis, and also proved that the mining technique can be used as an alternative

way to construct soundness oracles.

1https://github.com, accessed 18 December 2020
2https://stackoverflow.com, accessed 18 December 2020
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5.2 Java Stack Traces Format

A typical stack trace consists of serial call traces produced by the program when unex-

pected behaviour occurs. This allows developers to locate the source of an issue, as it

provides crucial information to diagnose a crashed program and, therefore, most mod-

ern languages have support to handle such a process. In Java, the keyword try de�nes

a block to be executed and catch handles the exceptions. There are two types of ex-

ception: checked and unchecked exceptions. A checked exception is checked at compile-

time. If the compiler detects an unhandled exception then it must be surrounded with

a try-catch statement or use the throw keyword. An unchecked exception is thrown at

run-time, which makes handling the exception optional. For instance, Listing 5.1 shows

an example of an unchecked exception. A NullPointerException is thrown at line 13

as the variable foo has not been allocated. When a user encounters this exception, the

stack trace shown in Listing 5.2 is generated. The exception type is shown in Line 1.

The rest is the body of the stack trace. The format is de�ned as follows: at followed

by a space, then package name (org.example), class name (Main) and method name

(foo). The text in between brackets indicates the type name (Main.java) and its corre-

sponding line number (8). Parameter type information is not available in a Java stack

trace. As a result, methods with the same parameter type can not be di�erentiated.

In this case, line numbers in source code can be used to distinguish methods with the

same parameter type.

Listing 5.1: Unchecked exception

1 class Main{

2

3 public stat ic void main ( St r ing [ ] a rgs ) {

4 bar ( ) ;

5 }

6

7 public stat ic void bar ( ) {

8 foo ( ) ;

9 }

10

11 public stat ic void f oo ( ) {

12 Object foo=null ;

13 foo . t oS t r i ng ( ) ; // throw Nul lPo in terExcep t ion

14 }

15 }
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Listing 5.2: Java stack trace example

1 Exception in thread "main" java . lang . Nul lPo interExcept ion

2 at org . example . Main . foo (Main . java : 8 )

3 at org . example . Main . bar (Main . java : 4 )

4 at org . example . Main . main (Main . java : 3 )

The call trace is used to infer a calling relationship between two or more methods.

From Listing 5.2, we can see that the root of the method is org.example.Main#main()

at line 3. The exception is thrown at line 8: org.example.Main#foo(). A simple call

graph can then be crafted bottom up, as shown below:

org.example.Main#main()→org.example.Main#bar()

org.example.Main#bar()→org.example.Main#foo()

Exceptions can also be linked. The �Caused by:� clause, as shown in Listing 5.3,

indicates two linked stack trace bodies. The respective stack trace contains two di�erent

bodies, with the method that has the re�ective call site in the �rst block just below

the re�ective call site (Method#invoke()), and the target at the bottom of the second

block. This information can be used to infer the edge b()→c(). It is important to note

that the call graph represents a code snippet that actually has been executed. In other

words, it reveals the real program behaviour.

5.3 The Exception Caused by Re�ective Invocation

Modern programming languages are full of dynamic features that are di�cult to capture

by static analysis, which results in unsoundness. Features such as re�ection, proxies,

dynamic class loading have been discussed in Chapter 4. In this experiment, we focus on

the InvocationTargetException which is raised when a re�ective invocation occurs.

Previous work [61] suggests re�ection is a widely used feature in practice (it is also

presented in Table 6.1) and hence we expect that rich resources can be obtained on-

line. Besides the InvocationTargetException, there are more exceptions that relate

to re�ective invocation which are shown below.

� InstantiationException: re�ective instantiation via Class#newInstance()

� InvocationTargetException: re�ective invocation via Method#invoke()

� UndeclaredThrowableException: used for dynamic proxy, re�ective invocation via

InvocationHandler#invoke()

� Javax.script.ScriptException: a re�ective invocation via script evaluation.
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InvocationTargetException is a checked exception and occurs when an invoked

method throws an exception [81]. It usually can be observed under a re�ection pat-

tern being used. Consider again the program in Listing 5.4. A run-time exception is

thrown at line 22. This will generate the following stack trace (Listing 5.3).

Listing 5.3: InvocationTargetException statcktrace

1 Exception in thread "main" java . lang . r e f l e c t . Invocat ionTargetExcept ion

2 . .

3 at java . lang . r e f l e c t . Method . invoke (Method . java : 498 )

4 at Foo . b(Foo . java : 7 )

5 at Foo . a (Foo . java : 6 )

6 at Foo . main (Foo . java : 3 )

7 . .

8 Caused by : java . lang . RuntimeException

9 at Foo . d(Foo . java : 1 3 )

10 at Foo . c (Foo . java : 1 2 )

11 . . . 12 more

Listing 5.4: InvocationTargetException Example

1 class Foo {

2

3 public stat ic void main ( St r ing [ ] p ) throws Exception {

4 new Foo ( ) . a ( ) ;

5 }

6

7 void a ( ) throws Exception {

8 b ( ) ;

9 }

10

11 void b ( ) throws Exception {

12 Class c = Class . forName ( "Foo" ) ;

13 Method m = c . getDeclaredMethod ( "c" ,new Class [ ] { } ) ;

14 m. invoke ( this , new Object [ ] { } ) ;

15 }

16

17 void c ( ) {

18 d ( ) ;

19 }

20

21 void d ( ) {

22 throw new RuntimeException ( ) ;

23 }

24 }

As we can see from the stack trace, an edge b()→c() which indicates a call from

method b() to c(), via re�ection, can be extracted. This edge is often overlooked by
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static analysis clients due to its dynamic nature.

5.4 Methodology

5.4.1 Oracle Construction from CVE

One objective for the benchmark construction (Chapter 4) was to select features that

are of interest to static program analysis, as there are known vulnerabilities that ex-

ploit those features. The discussed features allow bypassing of Java's security model,

which relies on information-hiding, memory and type safety. Java security vulnerabil-

ities which involve those uses have been reported that have implications ranging from

attacks on con�dentiality, integrity and the availability of applications. For instance,

serialization attack [60, 155] is a form of DDOS attack. A famous attack being bil-

lion laughs [4] in which the attacker crafts a nested object for over-using computing

resources. Between the years of 2015 and 2017, a number of attacks have been re-

ported in the Common Vulnerabilities and Exposures(CVE) dataset. CVE-2015-7450

is a well-known serialisation vulnerability in the Apache Commons Collections library.

Attackers can invoke arbitrary commands though a crafted serialized Java object in

the class org.apache.commons.collections.map.LazyMap. We reconstruct a number

of serialisation-related attacks based on Chris Froho�'s ysoserial repository3, we cap-

ture stack traces and therefore build call graphs. The call graph shown in Listing 5.5,

demonstrates the methods involved along the call chain. The method in line 11 gives

attackers a power to execute any commands (e.g., shutdown the system) that the system

can provide and the method in line 10 (java.lang.reflect.Method#invoke()) grants

the power to do so. Thus, this method is a critical section that needs to be monitored.

A traditional defence mechanism would be running the entire program under a sandbox

environment. However, the performance overhead in that case is also huge. Employing

static program analysis can help to detect such unsafe call chains, preferably before the

program is deployed.

3https://github.com/frohoff/ysoserial, accessed 18 December 2020

https://github.com/frohoff/ysoserial
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Listing 5.5: Unsafe deserialization call graph example [18]

1 java . i o . ObjectInputStream . readObject ( )

2 −>java . u t i l . HashSet . readObject ( )

3 −>java . u t i l . HashMap . put ( )

4 −>java . u t i l . HashMap . hash ( )

5 −>org . apache . commons . c o l l e c t i o n s . keyvalue . TiedMapEntry . hashCode ( )

6 −>org . apache . commons . c o l l e c t i o n s . keyvalue . TiedMapEntry . getValue ( )

7 −>org . apache . commons . c o l l e c t i o n s .map . LazyMap . get ( )

8 −>org . apache . commons . c o l l e c t i o n s . f unc t o r s . ChainedTransformer . trans form ( )

9 −>org . apache . commons . c o l l e c t i o n s . f unc t o r s . InvokerTransformer . trans form ( )

10 −>java . lang . r e f l e c t . Method . invoke ( )

11 −>java . lang . Runtime . exec ( )

Use of re�ection is common in vulnerabilities as discussed by Holzinger et al [97]

where the authors discover that 28 out of 87 exploits studied utilised re�ection vulnera-

bilities. An example is CVE-2013-0431, a�ecting the Java JMX API, which allows load-

ing of arbitrary classes and invoking their methods. CVE-2009-3869, CVE-2010-3552,

CVE-2013-08091 are bu�er over�ow vulnerabilities involving the use of native meth-

ods. As for vulnerabilities that use the Unsafe API, CVE-2012-0507 is a vulnera-

bility in AtomicReferenceArray which uses Unsafe to store a reference in an array

directly that can violate type safety and permit escaping the sandbox. CVE-2016-4000

and CVE-2015-3253 reported for Jython and Groovy are due to serialisable invocation

handlers for proxy instances. While we are not aware of vulnerabilities that exploit

invokedynamic instruction directly, there are several CVEs that exploit the method

handle API used in the invokedynamic bootstrapping process, including CVE-2012-5088,

CVE-2013-2436 and CVE-2013-0422.

5.4.2 Oracle Generation from On-line Resources

GitHub and Stack Over�ow are two well-known communities. GitHub is a project host-

ing site used by the open source community. It has a version control system, named Git,

which allows a developer to manage source code and collaborate with others. GitHub

also provides an issue tracking system for tracking problems during the development

phase. Stack Over�ow is one of the largest Q&A online forums. Developers can post a

question and others can give answers. Data from both have been used to support our

understanding about programs and developers. Developers post and share information

in public so everyone in the community can contribute.

The mining process is shown in Figure 5.1. To obtain data from both platforms,

we use a web crawler to gather HTML pages with keywords being searched for within

Github issue tracker and Stack Over�ow Q&A forum through HTTP requests. We then

harvest relevant HTML pages and parse relevant information from each page. From
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extracted stack traces, we then build call graphs from those stack traces. We then

construct static call graphs using Doop. Both call graphs are then compared.

extract discussion / issue 
URLs

extract callgraph with 
static analysis

fetch HTML documents

strip HTML markup

parse stacktraces

extract callgraph edges

remove duplicates

detect missing edges

verify edges by 
inspecting source code 

Figure 5.1: Mining stacktraces process

Static call graphs are constructed based on DaCapo 2009 [38] � a Java benchmark

that is widely used in programming language research. In addition to DaCapo, we also

included the following programs that are known to use re�ection: log4j-2.1, antlr4-4.0,

hbase-hbase-client-0.98.0-hadoop1, guava-11.0, spring-boot-loader-1.2.5 and weld-core-

impl-2.2.12 (by jboss).

5.4.2.1 Mining Technique

The idea of mining software repositories for useful knowledge has been gaining popu-

larity in the past few years. Several mining techniques have been proposed and used in

order to obtain information from on-line repository and knowledge platforms. We have

explored a number of tools and techniques in order to retrieve the information that we

need. Each of these techniques has some limitations. We list a brief description of each

approach.

� Google Custom Search Engine4: Google provides APIs that allow users to use

its powerful search engine to search through the Internet. The main limitation is

that the freely available tool is limited to only 100 search queries per day.

� Ghtorrent5: Ghtorrent [19] provides o�ine data from GitHub. Users can import

the data into a local MySQL database. Because it is a snapshot of the data, the

data set is not up to date. Another limitation is availability of the issues from the

issue tracker - issues entries do not contain the actual issue text.

4https://developers.google.com/custom-search, accessed 18 December 2020
5https://ghtorrent.org, accessed 18 December 2020

https://developers.google.com/custom-search
https://ghtorrent.org


CHAPTER 5. ORACLE GENERATION FROM STACK TRACES 65

� GitHub API6: local GitHub data can be retrieved via the GitHub REST API in a

JSON format. However, and similar to Ghtorrent, it does not provide the issues

text from the issue tracker.

� HTTP+Jsoup7: Jsoup a HTML parser used in Java. HTTP GET requests are

sent to retrieve any desired pages. Jsoup is then used to parse HTML DOM.

The limitation of this approach is that a server may reject the requests, as such

requests tend to consume network resources.

After experimenting with all of the above approaches, we found that the HTTP+Jsoup

is the best option for the following reasons: (1) GitHub API and Ghtorrent do not pro-

vide full text of the reported issues as it appears in the issue tracker. (2) The free version

of Google Custom Search Engine is limited to 100 search queries per day, where HTTP

request does not have such a limitation. (3) The HTTP request always retrieves the

latest information whereas Ghtorrent only provides a snapshot of the data from GitHub,

which can be a few days back. We therefore decided to write a custom HTML client to

search within the GitHub issue tracker and Stack Over�ow Q&A sites for issues and dis-

cussions that include the text java.lang.reflect.InvocationTargetException. In

order to resolve the request rejection issues, we added a time delay between each request.

More details are discussed in the following Section 5.4.2.2.

5.4.2.2 Retrieving Web Resources

The custom HTML client that we wrote mimics a web browser session using the appro-

priate headers, and returns the URLs of the respective static issue web pages. We then

downloaded the respective web pages, stripped HTML mark-up and extracted stack

traces, instantiating the meta-model depicted in Figure 5.2.

HTTP is a stateless protocol. When exchanging information, servers need a cookie

from users for the purpose of authentication. Therefore, the custom HTML client must

encapsulate user's information which stored in a cookie together with a HTTP request.

The following attributes are needed with the request: user agent(Browser), geolocation,

user name, user session, time zone and the query.

Listing 5.6: Github query

https : // github . com/ search ? type=i s s u e&p=1&q=java . lang . r e f l e c t .

Invocat ionTargetExcept ion

6https://developer.github.com/v3, accessed 18 December 2020
7https://jsoup.org, accessed 18 December 2020

https://developer.github.com/v3
https://jsoup.org
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Listing 5.7: Stackover�ow query

http :// s tackove r f l ow . com/ search ?page=1&tab=re l evance&q=java . lang . r e f l e c t .

Invocat ionTargetExcept ion

In the above queries, �elds page and p refer to the page that the query will return.

In GitHub, the �eld type de�nes the search scope, which, in our case, is the issue

tracking system. We are only interested in the text within issues (and their subsequent

discussion). For Stack Over�ow, the �eld tab is to order results and the �eld q is the

search query, which targets java.lang.reflect.InvocationTargetException. After

sending a GET request to the server, 50 results in a single page are returned. Each

result has a link to the issue/question page, another GET request is then dispatched to

the server upon the given link. Once the issue/question page is received, all HTML

mark-up will be stripped, making the text ready for parsing.

This method basically simulates a real user who navigates through a web page.

Potentially, millions of results can be obtained in a second if requests are sent in parallel.

In reality, many servers have anti-crawling mechanisms to prevent its resource from

being overused [128]. So, we have to sacri�ce time to process requests in a linear fashion

by adding a sleep timer between each request. The client will pause for a random time

between sending requests, which makes it harder for the server to predict whether the

request has been sent by a human or by a bot.

5.4.2.3 Extract Stack traces

As shown in Figure 5.2, a stack trace can be modelled as the following: a stack trace

can cause another stack trace. Each stack trace has multiple stack trace elements. A

stack trace element consists of a line number, a class name and a method name.

StackTrace StackTraceElement

+ lineNumber:int
+ className:string
+ methodName:stringjava.lang.Throwable

cause (0..1)

elements 
(1..many)

thrown (1..1)

Figure 5.2: Stacktrace model

To extract the correct stack trace element from a text, the following regular ex-

pression (shown in Listing 5.8) is implemented. A stack trace always starts with at
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(see Listing 5.3). In Java, package, class and method names should only contain ASCII

letters and numbers [34]. A period dot (.) is used as a separator for each subpackage

as well as for class and method names.

Listing 5.8: regular expression to parse stacktrace

at \\ s ( ( [ a−z ]+) \\ . ) (\\p{Alpha } | [ 0 −9 ] ) +\\.(\\p{Alnum}|\\_|\\$|\\ >|\\ <|\\.)

+\\((\\p{Alnum } | \ \ . | \ \ : | \ \ p{Space } | \ \ [ | \ \ ] ) +\\)

There are two processes required to correctly obtain a full stack trace from a plain

text. Firstly, because a page could contain multiple independent stack traces that are

all related to InvocationTargetException, we use the keyword java.lang.reflect.

InvocationTargetException to divide the text into parts and process them indepen-

dently. Secondly, each part is further separated to �nd Caused By clauses. Each

separated piece can be seen as linked element in the order. The drawback of this

method is when non-relevant texts that match the key are presented. Stack traces can

be customised especially with a logging framework.

5.4.2.4 Validation

There are a few issues to be resolved in order to obtain correct results. Firstly, stack

traces in many websites are lacking versioning information. The stack trace edges

extracted may not be the same as in the version of the program we statically analysed.

It is also di�cult to extract this information as it has no �xed format and may result

in a large amount of false results upon parsing. Secondly, the stack trace only contains

method names, but is missing signatures and descriptor information, which is important

for method overloading. Method overloading refers to multiple methods with the same

name but di�erent parameter types. This can also produce imprecise results, as shown

in Listing 5.9. Both stack trace elements would point to the same call vertex without

specifying parameter types: example.foo.

Listing 5.9: Method Overloading and its corresponding Stack trace element

f oo ( i n t i ) −> example . foo (Foo . java : 1 )

foo ( S t r ing i ) −> example . foo (Foo . java : 2 )

To validate the correctness of our approach, two researchers conducted a manual

cross-validation of the �rst 100 recorded stack traces. One would �rst read each stack

trace and decide whether to include or exclude it, based on (1) whether or not it is a

valid Java stack trace (2) whether or not it includes a re�ective call site. The other

researcher then cross-validated the results. The two would discuss any classi�cation

disagreements, until they reach an agreement. To overcome the method overloading

issue and locate the accurate version, line numbers in both stack trace and source code

are used. As result, we found 17 false results. Those stack traces were then eliminated.
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We identi�ed 15 unique edges that connect methods via re�ection in the �nal result,

and no noises were detected.

5.4.2.5 Static Call Graph Construction

Static call graphs are built using Doop. There are two analyses performed. 1): We have

used the following Doop options to enable re�ection analysis:

� �reflection. Enable logic for handling Java re�ection.

� �reflection-classic. Enable (classic subset of) logic for handling Java.

� �reflection-high-soundness-mode. Enable extra rules for more sound handling

of re�ection.

� �reflection-substring-analysis. Allows reasoning on what substrings may

yield re�ection.

� �reflection-invent-unknown-objects. Create an object for unknown objects

(of type java.lang.Class) [170].

� �reflection-refined-objects. Enable extra rules for more sound handling of

re�ection.

� �reflection-speculative-use-based-analysis. This analysis involves a back

/forward-propagation mechanism [170] � gather information from re�ective result

to the original re�ection and vice versa.

2): Without re�ection analysis, we only used the option context-insensitive.

5.5 Result

In total, we mined a total of 18,431 pages (11,932 issues from GitHub and 6,499 posts

from Stack Over�ow). From those pages, we extracted a total of 12,329 stack traces.

We then constructed a total of 11,920 re�ective call graph edges (following the model

explained in 5.4.2.3).

We observed that there are many cases in which stack traces that are reported

on di�erent pages were describing the same call graph edge. After �ltering out those

duplicates, we ended up with 4,747 edges. Among those, we were able to identify 495

re�ective call sites that are matched in our data set8. To compare the results with

the call graph edges generated statically with Doop, we further removed edges with

8DaCapo2009, log4j-2.1, antlr4-4.0, hbase-hbase-client0.98.0-hadoop1, guava-11.0, spring-boot-
loader-1.2.5 and weld-core-impl-2.2.12 (by jboss)
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targets outside the data set. Those removed cases are re�ective calls that are in an

additional client-speci�c library or program. In the end, we only found 15 unique edges

(i.e., methods connected via re�ection) that can be cross-referenced with the statically

built call graphs. Not surprisingly, the number of relevant edges that we found was low,

as the respective issues (in GitHub) and discussions (in Stack Over�ow) cover a wide

range of di�erent projects, most of them not part of our data set. Without re�ection

analysis, Doop did not �nd any of the call graph edges we recovered from stack traces.

With re�ection analysis enabled, Doop found only 4 of the 15 edges. The following

subsections discuss the four chosen edges in detail. Description of the rest of the edges

can be found in Appendix A.1.

5.5.1 Apache Fop

Apache Fop9 (Formatting Objects Processor) is a utility tool used to format console

outputs. The org.apache.fop.cli.Main class speci�es the target's class and method

name in literals, as well as the parameter type (as shown in Listing 5.10). Doop can

capture this edge if re�ection analysis is enabled.

call site: org.apache.fop.cli.Main# startFOPWithDynamicClasspath

target: org.apache.fop.cli.Main#startFOP

stacktrace: https://goo.gl/bfFRhG

source: https://goo.gl/JoXoam

Listing 5.10: Re�ective method invocation in fop

Class c l a z z=Class . forName ( " org . apache . fop . c l i . Main" , true , l oade r ) ;

Method main=c l a z z . getMethod ( "startFOP" ,new Class [ ] { S t r ing [ ] . class }) ;

mainMethod . invoke (null ,new Object [ ] { args }) ;

5.5.2 Antlr

Antlr is a popular parser generator. In org.antlr.v4.parse.GrammarTreeVisitor

class, visitGrammar(GrammarAST)method invokes visit(GrammarAST,String)method

using the string literal grammarSpec as a second ruleName parameter. The rule

name is then interpreted as method name in the method visit(GrammarAST, String).

Doop with re�ection analysis enabled is able to identify the edge, since it tracks string

literals and interprets as method names across procedures.

call site: org.antlr.v4.parse.GrammarTreeVisitor#visit

target: org.antlr.v4.parse.GrammarTreeVisitor# grammarSpec

stacktrace: https://goo.gl/B0ZAOb

source: https://goo.gl/g6JYdN

9https://xmlgraphics.apache.org/fop/, accessed 18 December 2020

https://goo.gl/bfFRhG
https://goo.gl/JoXoam
https://goo.gl/B0ZAOb
https://goo.gl/g6JYdN
https://xmlgraphics.apache.org/fop/


CHAPTER 5. ORACLE GENERATION FROM STACK TRACES 70

5.5.3 Hbase-client

Apache Hadoop is a popular framework for storing and processing big data. The target's

method name: (parseFrom) and signature (byte[].class) are both de�ned within the

GrammarTreeVisitor#visitmethod, but the class name is provided via a dynamic class

loader that is con�gured with information read from project-speci�c con�guration �les.

General-purpose static analysis tools are unlikely to precisely model this. However, the

class must extend org.apache.hadoop.hbase.filter.Filter, and a possible approach

is to ensure soundness by over-approximating the analysis. This can be achieved by

adding edges to all parseFrom(byte[]) methods implemented in subclasses of Filter.

This means that soundness can be achieved by compromising precision. Doop, with

re�ection analysis enabled, will �nd this edge.

call site: org.apache.hadoop.hbase.protobuf.ProtobufUtil#toFilter

target: org.apache.hadoop.hbase.filter.FilterList# parseFrom

stacktrace: https://goo.gl/RUZ027

source: https://goo.gl/bX3ffV

Among the 15 edges, we found a particular edge, where the target is org.apache.had

-oop.hbase.filter.Filter#parseFrom(). Doop can �nd this edge as well, with re-

�ection analysis enabled.

5.5.4 Log4J

Log4j is a widely used logging framework. The use of re�ection that creates the re�ec-

tive call site is the most sophisticated we have encountered; however, this is common

for frameworks that support plugins. Re�ection is used to achieve loose coupling and

sandboxing. In the PluginBuilder#build() method, the detection of the method in-

voked is delegated to the �ndFactoryMethod. This method detects the �rst static

method it can �nd annotated with @PluginFactory. This semantic is almost impos-

sible to capture with static analysis tools, and the only strategy possible here would be

to over-approximate. Doop cannot �nd this edge, even with re�ection analysis enabled.

We discovered a usage pattern based on this particular log4j scenario, which we then

included in our benchmark (shown in Listing 4.16).

call site: org.apache.logging.log4j.core.config.plugins.util.PluginBuilder#build

target: org.apache.logging.log4j.core.appender.RollingFileAppender#createAppender

stacktrace: https://goo.gl/Ohg7lo

source: https://goo.gl/o885Hw

https://goo.gl/RUZ027
https://goo.gl/bX3ffV
https://goo.gl/Ohg7lo
https://goo.gl/o885Hw
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5.5.5 Stack Traces from CVE

We have set up a script10 that demonstrates vulnerabilities provided in Table 5.1. These

vulnerabilities can provide a good understanding of how dynamic features are being used

in a sense of program security. Throughout our analysis of stack traces, we were able to

gain insight into the benchmark presented in Chapter 4, in particular, how serialization

operates with other dynamic features, such as re�ection and dynamic proxy. Table 5.1

contains a set of 19 programs with vulnerabilities. Note that not all of the vulnerabilities

are obtained from existing CVEs, entries labeled as none in the related column in Table

5.1 are obtained from Chris Froho�'s ysoserial repository11.

Table 5.1: CVE results
program versions related CVEs dynamic features

BeanShell 2.0b5 CVE-2017-5586,CVE-2016-2510 dynamic proxy

C3P0 0.9.5.2 none dynamic proxy

clojure 1.8.0 none re�ection

commons-beanutils 1.9.2 CVE-2014-0114 ,CVE-2016-4385 re�ection

commons collections 3.1 and 4.0

CVE-2015-4852,CVE-2015-7501,

CVE-2015-8765,CVE-2017-15708,

CVE-2017-5586,CVE-2017-10932,

CVE-2016-4373,CVE-2016-4372 ,

CVE-2016-4369,CVE-2016-4368,

CVE-2016-3642,CVE-2016-2170,

CVE-2016-2009,CVE-2016-2003,

CVE-2016-2000,CVE-2016-1999,

CVE-2016-1998 ,CVE-2016-1997,

CVE-2016-1986,CVE-2016-1985,

CVE-2016-1114,CVE-2015-7450,

CVE-2015-6934,CVE-2015-6420

re�ection,dynamic proxy

commons-�leupload 1.3.1
CVE-2016-1000031,CVE-2013-2186

CVE-2016-7462,CVE-2016-6793
File operation

JRE

Java 7 update 6, Java 6 update 18

Java 5.0 Update 23, and 1.4.2_25,

JRE 1.7u21

CVE-2012-4681, CVE-2010-0840 re�ection(Field),dynamic proxy

groovy 2.3.9
CVE-2016-6814, CVE-2015-8103

CVE-2015-3253
dynamic proxy

hibernate-core 4.3.11.Final none re�ection

jboss-interceptor-core 2.0.0.Final none re�ection

json-lib 2.4 none dynamic proxy

javassistWeld1
javassist 3.12.1.GA and

weld-core 1.1.33.Final
none re�ection

jboss application server 4.xx and 5.xx CVE-2013-4810 re�ection

jython-standalone 2.5.2 CVE-2016-4000 dynamic proxy

rhino-js 1.7R2 none re�ection

rome 1.0 none re�ection

spring-core 4.1.4.RELEASE CVE-2011-2894 dynamic proxy

URLDNS java.net.URL none dns look up

wicket-util 6.23.0 CVE-2016-6793 File operation

All detailed critical edges and stack traces can be found at [8]. We also report

10https://bitbucket.org/Li_Sui/java-vulnerabilities, accessed 18 December 2020
11https://github.com/frohoff/ysoserial, accessed 18 December 2020

https://bitbucket.org/Li_Sui/java-vulnerabilities
https://github.com/frohoff/ysoserial
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which dynamic features that the vulnerability applies to. GONDVV (also known as

Java Facepalm) [53] is a known vulnerability in early Java 7 update 6. It allows re-

mote attackers to bypass the security manager. Similar vulnerabilities were identi�ed

in Java 6 update 18, 5.0 Update 23, and 1.4.2_25 as well � attackers are able to disable

the security manager via re�ection. Another use of re�ection to execute an abstract

command would be the case found in commons collections. The stack trace is shown in

Listing 5.5 and the critical edge can be presented as follows:

java.lang.reflect.Method#invoke() -> java.lang.Runtime#exec()

Eight out of 19 programs are identi�ed as exploiting through dynamic proxy. For

instance, the following critical edges in spring-core:4.1.4.RELEASE :

com.sun.proxy.$Proxy1#newTransformer() ->..InvocationHandler12#invoke()

5.6 Threats to Validity

There are a few potential issues with the extraction process. We might have missed some

stack traces that are formatted in unusual ways - for instance, stack traces produced

by log frameworks that allow custom stack trace formatting. This might have given us

some more results.

There are several issues that could have caused false positives. Firstly, stack traces

only contain method names, but neither signatures nor descriptors. This can introduce

false positives when methods are overloaded. Secondly, imprecise parsing could have

produced false positives. We sampled 100 results to validate the correctness of parsed

stack traces, 17 false positives were found. Thirdly, stack traces lack version information,

although in some cases version information can be found on the enclosing web sites. This

means that we might have extracted edges not present in the version of the program

we statically analysed. We have mitigated this issue by running a script that matched

the line numbers found in stack traces against program versions, and then selected the

best matched version for analysis.

We addressed all of the issues related to precision by manually checking the 15 edges

obtained against the version of the source code of the program we analysed with Doop.

12org.springframework.beans.factory.support.AutowireUtils$ObjectFactoryDelegatingInvocationHandler
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5.7 Summary and Conclusion

RQ3: Can information obtained from stack traces improve the soundness of

static analysis? The short answer is yes. We found 15 unique edges that link methods

via re�ection, and 11 of them are missed by the static analysis tool, even with re�ection

analysis enabled, Doop will �nd only 4 of the edges we extracted. We argue that while

our analysis does not provide a large number of call graph edges that can enhance the

static analysis, it is useful to retrieve interesting (and in this sense, high-quality) edges

that can point to the weaknesses of static analysis tools. For example, we have included

the Log4J scenario in our benchmark, which can be used to assess static analysis tools

on inconsistent behaviours across JVMs. Moreover, stack traces re�ect program failures

which can add practical meaning to those dynamic language features. It seems more

likely that a programmer encounters an exception or error if the software is used in a

way that was not intended by the programmer, e.g., by bypassing program invariants

or boundary checks, but those are exactly the cases of interest to static analysis as it

has the ambition to discover those cases in order to reveal bugs and vulnerabilities.

One could argue that the use of hybrid analysis [41, 84] addresses problems with

(un-)soundness. The main challenge is to create drivers (harnesses) that exercise the

unsound parts of a program. The use of test case generation/fuzzing techniques for

this purpose is promising [61]. It seems that hybrid analysis techniques can mitigate,

but not solve the problem. Extending this study by cross-referencing the call graphs

with the call graphs produced by Tami�ex or similar tools is an interesting and relevant

topic.

An extended study with a larger dataset is an interesting topic for future research.

One particularly interesting issue is the study of call graphs that cover multiple projects

and libraries, including frameworks known for their heavy use of re�ection (plugin-

based systems, dependency injection) and the Java core libraries. We have noticed a

large number of re�ective invocations where the call site and target were in di�erent

libraries. One potential problem here is that it is still challenging to build comprehensive

and su�ciently precise static models for real-world programs that include all library

dependencies, although new algorithms and tools are under development to address

scalability issues [59].



Chapter 6

Recall of Static Call Graph

Construction

6.1 Introduction

In Chapter 4, we presented a micro-benchmark of a number of dynamic language fea-

tures (and usage patterns) in Java. Those features and patterns were used to identify

certain program behaviours that can be potentially missed by standard static analysis

frameworks such as Soot, WALA and Doop. As discussed in previous chapters, mod-

elling dynamic language features in Java via static analysis is a challenge, even for

comprehensive static analysers. In this chapter, we present the results of an in-depth

empirical study into the unsoundness of static program analysis. The main objective is

to provide a quantitative measure of this unsoundness using various static analysis

algorithms and con�gurations for real-world programs. Rather than considering the

outcome of an analysis as sound or unsound in a binary form, we aim to measure the

�degree of soundness� � we use the term recall, which measures the percentage of all

known method invocations present in the statically constructed call graph. We refer

to the known method invocations as the oracles as they are obtained by a dynamic

analysis (i.e., testing). The known method invocations that are not present in the static

call graph are referred to as false negatives (FNs). Two sets of oracles are used to

measure the recall level: 1) manually created tests and 2) automatically (programmat-

ically) created tests. Furthermore, we also investigate whether gaining precision (by

employing a context-sensitive analysis) could increase the level of recall.

6.2 Methodology

The study is empirical in natural. 31 real-world programs are analysed. We have con-

sidered a number of options for a suitable program corpus, such as DaCapo 2009 and

74
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SPECjvm 2008, however, we determined our previous dataset, the XCorpus, to be the

ideal match for our experiment. Reasons for choosing XCorpus are discussed in Sec-

tion 6.2.1. The experiment consists of a comparison study of statically constructed call

graphs and dynamically generated call graphs. Dynamically generated call graphs are

obtained by means of instrumentation, injecting an observer into a running program.

Statically constructed call graphs are generated via a combination of analysis strate-

gies and setups: context-sensitive/context-insensitive, full/light-re�ection support. We

proposed two input con�gurations: (1) pack the program and its dependencies in one

.jar �le. (2) separate them in di�erent .jar �les. The reason to have a such setup is

to gain insight into how dependencies are handled under whole-program analysis. We

have designed a traversable and context-sensitive data format for the oracles. This is

presented in Section 6.2.2.

6.2.1 Dataset Selection

There are several datasets available to assist empirical studies into programming lan-

guage and software engineering research. One of the most widely used benchmarks is

DaCapo 2009 [38] � a set of open source, real-world Java programs with non-trivial

memory loads. DaCapo provides a customizable harness to execute the respective pro-

grams. DaCapo contains 11 programs: antlr, bloat, chart, eclipse, fop, hsqldb, jython,

luindex, lusearch, pmd and xalan. The key purpose of this benchmark is for comparison

of results of empirical studies, e.g., to compare the performance of di�erent JVMs.

SPECjvm 2008 [168] is a multi-threaded Java benchmark focusing on the perfor-

mance of the JRE. It includes 3 executable synthetic datasets: Java Grande [178], Ashes

[64] and Jolden [45]. Both DaCapo 2009 1 and SPECjvm 2008 have not been updated

for a very long time and therefore the versions of programs in these datasets are out-

dated (prior to 2009 and 2008 respectively).

Qualitas Corpus2 [177] provides a larger set of curated Java programs intended to be

used for empirical studies on code artefacts. It consists of 112 programs, 754 versions in

total. However, there is no harness provided to exercise them (some programs contain

test cases).

XCorpus is developed by Dietrich et al. [61]. It provides an executable version of the

Qualitas Corpus. The dataset was designed with the goal of providing high code cover-

age. The dataset contain a variety of real-world programs � it contains 70 programs that

1DaCapo has updated the benchmark recently.https://github.com/dacapobench/dacapobench [ac-
cessed:15/06/2020]

2QualitasCorpus version 20130901

https://github.com/dacapobench/dacapobench
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were ported from Qualitas Corpus3 and it also provides support to extend the dataset

by adding new programs. The current version has 6 additional programs 4 which have

been selected based on popularity and the use of dynamic language features. Programs

have been chosen from di�erent domains � networking programs (Apache JMeter and

tomcat), collection libraries (common-collection and Guava), logging framework (log4j),

template engine (Velocity), bug detection tool (�ndbugs), bytecode engineering tools

(Aspectj and ASM) and data mining tool (weka). Among the programs in the dataset,

there are 28 programs that pack synthetic tests with them, which are created manually

by developers. We refer to them as �built-in tests�.

XCorpus also contains tests generated programmatically. We refer to them as

�generated-tests�. We use Evosuite [77] � a search-based test code generation framework.

It is guided by coverage criteria when generating tests [161]. As mentioned before, the

goal of the dataset is to achieve a high level of coverage. The average branch coverage

of generated tests of the 755 programs in the dataset is 55.86%. For the 28 programs

that have built-in tests, the average branch coverage is 34.42%. This can be considered

a reasonable level, but not high. In comparison, the average branch coverage for the

programs in DaCapo 2009 [38] is only 16.10%.

We decided to use the XCorpus dataset in our experiment for the following reasons:

1. It is based on the widely used Qualitas Corpus that consists of a large curated

(and representative) set of real-world Java programs.

2. It has programs with built-in and generated tests with high coverage.

3. Programs in the XCorpus use several dynamic language features.

4. The dataset has been recently used in other related works [157, 73, 75].

The �le structure of XCorpus is shown in Figure 6.1. The /data folder contains

two datasets: programs from the Qualitas Corpus and corpus-extension which is an

extension from the original Qualitas Corpus. Each program has two sub-folders: 1)

../.xcorpus contains build scripts, reports and generated-tests in source code, and 2)

../project includes program binaries and program resources. The ../.xcorpus/

exercise.xml is an Ant6 script to run tasks such as compiling and running built-

in/generated tests. Program dependencies are managed by Ivy7. The corresponding

script is ../.xcorpus/ivy.xml. Its task is to download dependencies from the Maven

3QualitasCorpus version 20130901
4xcorpus-extension version 20170313
5ASM is removed from the dataset as we use it to process byte code.
6Ant is an automating build tool for compiling and running Java applications https://ant.apache.

org/ [Accessed: 20/06/2020]
7https://ant.apache.org/ivy/, accessed 20 June 2020

https://ant.apache.org/
https://ant.apache.org/
https://ant.apache.org/ivy/
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repository8. The folder /tools contains scripts for adding new programs, exercising

the entire corpus and dependencies for the XCorpus. The DaCapo 2009 dataset is also

included for the purpose of comparing branch coverage, a script is used to calculate the

branch coverage of the dataset (/misc/dacapo-9.12/build.xml).

/

data misc

dacapo-9.12 featureanalysisqualitas_corpus_20130901 xcorpus-extension-20170313

tools

build.xml src lib res build

antlr-3.4 guava-21.0

.xcorpus

exercise.xml

ivy.xml

evosuite-tests.zip evosuite-report

statistics.csv

output

<timestamp1> <timestamp2>

junit-report jacoco-reports

project

...
<binaries and resources>

<other> <other>

Figure 6.1: XCorpus structure

Programs in the XCorpus are chosen from a variety of domains, therefore they pro-

vide a wide range of programming features that are valuable for program analysis. We

included a tool in /misc/featureanalysis that can be used to identify programming

features presented in the XCorpus. These features are extracted by means of byte code

analysis. We group these features under 11 categories:

8https://mvnrepository.com/, accessed 20 June 2020

https://mvnrepository.com/
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� dynamic proxy

� re�ection

� dynamic class loading

� invokedynamic instruction

� Java generics

� weak reference

� threads

� annotation

� system functions

� misc (synthetic/bridge method)

Each category includes a number of features. The features were selected based on

the following criteria:

� It must be possible for a bytecode analyser to locate the feature. For instance,

the use of auto-boxing or annotations with a SOURCE retention policy cannot be

detected in the byte code.

� The currentness of a feature. For instance, the use of lambdas/invokedynamic is

of interest, as lambdas were only introduced in Java version 8.

� The point of interest. In this experiment, we are interested in the impact of

dynamic features for static analysis.

We distinguish between programs from the Qualitas Corpus and programs from

the extension (i.e., newly added programs), and report the total number of programs

in which a feature occurs (�p.count� in Table 6.1), and the average of occurrences for

all programs that contain the respective feature at least once (�avg�). From Table 6.1

we can see that 62/75 programs have reference to java.lang.reflect.Method#invoke

and 13/75 program have reference to java.lang.reflect.Proxy#newProxyInstance.

This indicates that they contain re�ection and dynamic proxy features. None of the

programs in Qualitas Corpus contain the invokedynamic instruction, but 3 programs in

the corpus-extension have reference to invokedynamic. They are guava, jasperreports,

and drools.
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Table 6.1: Features in programs included in the XCorpus

Qualitas Corpus corpus-extension

category feature p.count avg p.count avg

dynProxies java.lang.re�ect.InvocationHandler 10 1.40 3 1.67

dynProxies java.lang.re�ect.Proxy#newProxyInstance 10 1.60 3 1.33

re�ection java.lang.re�ect.Method#invoke 47 15.60 5 9.00

re�ection java.lang.re�ect.Constructor#newInstance 37 5.05 5 6.60

re�ection java.lang.re�ect.Field#get* 29 3.83 4 6.25

re�ection java.lang.re�ect.Field#set* 12 3.75 3 3.00

re�ection java.lang.Class#newInstance 58 11.50 4 20.75

re�ection java.beans.Introspector#* 13 3.62 2 4.00

re�ection java.util.ServiceLoader#* 0 n/a 1 2.00

re�ection java.io.ObjectInputStream#* 39 22.79 5 26.40

re�ection java.beans.XMLDecoder#* 5 4.60 0 n/a

classloading java.lang.ClassLoader#* 51 19.51 6 21.00

classloading java.security.SecureClassLoader#* 2 2.50 0 n/a

classloading java.net.URLClassLoader#* 20 4.80 1 2.00

classloading java.rmi.server.RMIClassLoader#* 0 n/a 0 n/a

invokedyn. java.util.function 0 n/a 1 12.00

invokedyn. java.util.function.*#* 0 n/a 2 59.50

invokedyn. call site of java.util.invoke.*#* 0 n/a 0 n/a

invokedyn. invokedynamic call site 0 n/a 3 430.67

generics generic method signature 34 446.26 4 2662.50

generics generic type signature 32 92.78 4 498.50

generics generic �eld signature 33 223.27 4 536.75

generics generic local variable signature 27 944.85 4 4941.75

dynlang javax.tools.JavaCompiler#* 0 n/a 1 2.00

dynlang javax.tools.ToolProvider#* 0 n/a 1 1.00

dynlang javax.script.*#* 0 n/a 1 37.00

reference java.lang.ref.WeakReference#* 23 13.04 4 7.50

reference java.lang.ref.SoftReference#* 11 13.55 2 4.00

reference java.lang.ref.PhantomReference#* 3 1.00 1 3.00

reference java.util.WeakHashMap#* 19 10.42 2 1.00

threads java.lang.Thread#* 47 12.96 5 4.40

threads subclass of java.lang.Thread 39 10.31 1 6.00

threads java.lang.Runnable 44 26.18 5 13.60

threads java.util.concurrent.Executors#* 7 1.71 3 3.67

annotation declares annotation 10 23.30 3 8.33

annotation uses type annotation 16 78.38 4 235.25

annotation uses �eld annotation 10 140.60 4 97.25

annotation uses method annotation 20 196.10 4 484.25

annotation uses type use annotation 0 n/a 0 n/a

annotation uses type parameter annotation 0 n/a 0 n/a

system native method de�nition 4 73.25 0 n/a

system java.lang.Runtime#* 40 13.23 4 6.00

system sun.misc.Unsafe#* 0 n/a 1 30.00

misc synthetic method de�nition 68 233.71 6 993.00

misc bridge method de�nition 35 115.43 4 1001.50
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Of the 75 programs in the Xcorpus, we studied selected programs that have both

built-in and generated-tests. Only 31 programs are included in our study (each contains

at least one built-in test)9. The list of programs are shown in Table 6.2.

Table 6.2: Selected Programs from the XCorpus

program version program version program version

castor 1.3.1 jFin_DateMath R1.0.1 openjms 0.7.7-beta-1

checkstyle 5.1 jfreechart 1.0.13 oscache 2.4.1

commons-collections 3.2.1 jgrapht 0.8.1 pmd 4.2.5

drools 7.0.0.Beta6 ApacheJMeter_core 3.1 quartz 1.8.3

�ndbugs 1.3.9 jrat 0.6 tomcat 7.0.2

�tjava 1.1 jrefactory 2.9.19 trove 2.1.0

guava 21.0 log4j 1.2.16 velocity 1.6.4

htmlunit 2.8 lucene 4.3.0 wct 1.5.2

informa 0.7.0-alpha2 marauroa 3.8.1 weka 3.7.9

javacc 5.0 nekohtml 1.9.14 mockito-core 2.7.17

jena 2.6.3

We use JACOCO10, a code coverage tool, to measure branch coverage of all pro-

grams. Figure 6.2 shows the branch coverage results for each program with di�erent test

sets: built-in, generated and combined tests. The violin plot in Figure 6.3 demonstrates

the distribution shape of branch coverage. In general, generated tests show a better

coverage than built-in tests. However, combining both generated and built-in tests re-

sulted in a signi�cant increase in the overall coverage. This indicates that generated

and built-in tests may exercise di�erent parts of the programs.

9ASM has built-in test but it is the tool we used to process byte code, therefore cannot be included.
10https://www.eclemma.org/jacoco/, accessed 20 June 2020

https://www.eclemma.org/jacoco/
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Figure 6.2: Branch coverage obtained for each programs by executing built-in, generated
and combined tests in percentage

Figure 6.3: Branch coverage obtained for all programs by executing built-in, generated

and combined tests in percentage
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6.2.2 Context Call Tree (CCT)

We use a tree-like structure (i.e., CCT) [29] to represent program behaviours harvested

at run-time. A vertex in the CCT is a method invocation. The root of this tree is an

entry point, such as the static �main� method of Java programs. Initially, we chose to

present the oracle in a call graph fashion � based on pairs of vertices and an edge in

between. However, we quickly realised that transitive closure over a graph would lead

to an imprecise analysis. In the case of a method being invoked twice, Figure 6.4(a)

illustrates the graph that is constructed without distinguishing two calling contexts:

the method c() is reachable by a(), b() and d(), whereas c() should not be reached

by d(). We can compute the correct relationship by identifying the calling context as

shown in Figure 6.4(b), the invocation of b() from d() is di�erentiated from a() to

b(). Using a CCT, it is easier to reconstruct the method stack which enables us to

precisely model method invocations. The downside of using CCTs is that the call tree

size will expand quickly as every execution path must be recorded. An example of such

a case is a loop which invokes a method multiple times.

(a) without context (b) with context

Figure 6.4: Call Graph construction for edges (a,b) (b,c) and (d,b)

The recorded data format is de�ned in the Table 6.3. We use commas and tabs as

separators. The �eld �kind� indicates the method is either a native or a none-native

invocation (to be discussed in Section 6.2.4.1). The �tag� re�ects which invocations we

tagged � features like re�ective calls, dynamic allocations, dynamic access are tagged

(more details are provided in Section 6.2.4.6). In multi-classloader environments the
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plain name of a class does not unambiguously identify a class [6]. We use the �eld

�classLoaderName� to di�erentiate between classes loaded by di�erent class loaders.

The �elds �threadID� and �threadObjectHash� are used to deal with concurrent pro-

grams � as each vertex is written to a �le sequentially, it is important to group together

methods that belong to di�erent threads. The �eld �depth� refers to position on the

method stack. Note that 0 indicates the root of the CCT.

Table 6.3: CCT format de�nition

�eld description example

classLoaderName the current class loader name
sun.misc.Launcher$

AppClassLoader@18b4aac2

className fully-quali�ed class name nz.ac.massey.Foo

methodName the name of the method putList

parameterType
the method takes

java.util.ArrayList as an argument
(Ljava/util/ArrayList;)

returnType

no return value,

otherwise the type is the same

as parameterType

V

kind not a native invocation none-native

tag
not tagged by object allocation or

�led/array access
noTag

threadID returned by java.lang.Thread#getId() 11

threadObjectHash
returned by java.ang.System

#identityHashCode()
1304359947

methodID hash code returned by boost#uuid 1f6cb0d5-ddbf-468c-8c0a-012eb2979228

threadName
returned by: java.lang.Thread

#getName()
main

depth the position on the method stack 2

6.2.3 Con�rming False Negatives

In order to quantify unsoundness of static analysis, we measure the recall of the analysis

with respect to an oracle. For both the static call graphs (SCGs) and an oracle (set of

context call trees), we can extract sets of reachable methods with a single traversal: for

the SCG, this is just the set of vertices, and for the CCTs, this is the set of methods

that occur in any invocation in any of the CCTs. For a given program, let SCGs and

CCTs be those sets. The recall can then be de�ned as follows:

recall =
|CCTs| ∩ |SCGs|

|CCTs|
(6.1)
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A sound analysis has a recall value of 1, whereas the presence of false negatives (i.e.,

methods that are observed when the program executes, but not computed as reachable

by the static analysis) lowers the recall value. It is important to note that the recall

measured here is relative to the oracle. The oracle itself is unsound as it does not re�ect

all possible program behaviours. We believe that this is the only practical approach

to the problem as it is practically impossible to construct a driver that triggers all

possible program behaviours except for trivial micro-benchmarks (note that: we have

constructed a micro-benchmark for such a purpose in Chapter 4).

The metrics used to identify false negatives are based on call graph vertices (reach-

able methods), not on edges (an edge represents a calling relationship between two

methods). We opted for this approach for the following reasons:

1. We have encountered method invocations by the JVM and they do not have visible

call sites. A vertex-based approach allowed us to capture those methods as sources

of unsoundness.

2. The recall measured with a vertex-based approach can be higher than the recall

that would have been obtained with an edge-based approach. This makes our

measurements conservative. The main takeaway of this experiment is that the

recall observed in practice is relatively low, and this observation is very likely to

remain valid even if we switched to an edge-based approach.

3. A vertex-based approach to study call graphs has been widely used in previous

studies, examples include [121], [24] and [157].

4. There are several analysis clients relying on a vertex-based call graph reachability

analysis, including dead code elimination [110] and static regression test selection

[167].

6.2.4 Experimental Procedure

An overview of the process is shown in Figure 6.5. This study is based on the com-

parison of two models � a static model computed by means of a static analysis (SCG),

and a dynamic model (CCT) that is constructed by observing a running program. The

experiment consists of the following steps: pre-analysis, driver generation, program

instrumentation and exercise, CCTs processing, SCG generation, CCTs tagging, statis-

tics collection and graph construction. Each of these steps is explained in the following

subsections:
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pre-analysisunreflect tests

instrument, run programs, 
record CCTs

process CCTs

build SCGs with Doop

find FNs

add tags to CCTs

compute stats and graphs

Figure 6.5: Study setup overview
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The experiments conducted were extremely resource-intensive, both in terms of run-

time and memory required. We attempted to mitigate the resource issues as follows:

� �horizontal� sampling: The scripts replicating each step of our experiments are

implemented so that a parameter can be used to set whether to execute the script

for all programs, a selected set of programs, or only for a single program.

� �vertical� sampling: The scripts rely on each other as some scripts require the

data produced by others as input, the dependencies are part of the overall process

illustrated in Figure 6.5. The dependencies are listed in Table 6.4 . In cases

where running times are particularly long or a large memory size was required,

we provide cached data that can be used to check the validity of a step without

performing the entire processing pipeline for all input programs up to that point.

Table 6.4: Process dependencies and Resources requirement

process prerequisite process
expected

run time

expected

memory

pre-analysis none 10mins 16GB

unre�ect tests none 10mins 16GB

instrument, run program,

record CCTs
pre-analysis, unre�ect-tests 24days 16GB

process CCTs
pre-analysis, unre�ect-tests,

instrument-run-program
45days 256GB

build SCGs with Doop unre�ect-tests 18days 384GB

�nd FNs pre-analysis, unre�ect-tests 10mins 16GB

add tags to CCTs

pre-analysis, unre�ect-tests,

instrument-run-program,process-CCTs,

�nd-FNs

12hours 64GB

compute stats and graphs all above processes 12hours 64GB

6.2.4.1 Pre-analysis

Capturing native methods is tricky as the native methods in Java do not contain a

method body, therefore, there is no corresponding byte code representation. The in-

structions used to invoke such methods are the same as for other normal method invo-

cations such as invokevirtual, invokespecial, invokestatic or invokeinterface.

Since there is no speci�c mechanism for capturing native invocations, we attempt to

�nd a way to relate the call site to the native invocation � a pre-analysis is performed

to record such call sites prior to the instrumentation. For example, in Listing 6.1, the

call site dispatchCall at line 5 is associated with the native method dispatchCall()

at line 12. We perform a static byte code analysis on the code to obtain information
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about native methods such as package/class/method names and method descriptors.

With such unique information, native call sites can be identi�ed and resolved during

the instrumentation, as shown in Listing 6.2. In rare cases, a virtual method can be

resolved to both non-native and native methods � when multiple versions of the same

method are presented. This could result some vertices not being recorded in the CCT.

Listing 6.1: Java Native method example

1 package nz . ac . masssey ;

2 class Test{

3

4 public stat ic void main ( St r ing [ ] a rgs ) {

5 d i spa t chCa l l ( ) ;

6 }

7

8 //a na t i v e d e f i n i t i o n : nz . ac . masssey . Test+d i s p a t c hCa l l +()V

9 public stat ic native void d i spa t chCa l l ( ) ;

10 }

Listing 6.2: Resolve Native call site

1 package nz . ac . masssey ;

2 class Test{

3

4 public stat ic void main ( St r ing [ ] a rgs ) {

5 // t h i s c a l l s i t e matches the na t i v e d e f i n i t i o n :

6 //nz . ac . masssey . Test+d i s p a t c hCa l l +()V

7 obse rve r . push ( " d i spa t chCa l l " ) ; // ins t rumenta t ion

8 d i spa t chCa l l ( ) ;

9 }

10

11 //a na t i v e d e f i n i t i o n : nz . ac . masssey . Test+d i s p a t c hCa l l +()V

12 public stat ic native void d i spa t chCa l l ( ) ;

13 }

All information about native methods are recorded in a �le in pre-analysis which will

be loaded during the instrumentation phase, The data structure format is de�ned as fol-

lows: packageName.className+methodName+(paramterType)ReturnType. An exam-

ple of the data extracted from the code in Listing 6.1 would be: nz.ac.masssey.Test+

dispatchCall+()V.

6.2.4.2 Driver Generation

Xcorpus provides set of executable programs but the harness is built upon the JUnit11- a

testing framework for Java. In general, JUnit test cases are detected (depending on the

11https://junit.org/junit4/, accessed 20 June 2020

https://junit.org/junit4/
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version) by either the presence of annotations (JUnit4 ) or by naming patterns (JUnit3 ).

JUnit then uses re�ection to invoke respective methods. This is a signi�cant issue as it

is the very problem that we are investigating: how re�ection is being handled by static

analysis tools. If the static analysis tool fails to detect the entry point for a program,

then the entire program model will be neglected. We also consider the JUnit framework

not to be relevant to actual program behaviour (for the programs under analysis). It is

likely that the analysis will be impacted as JUnit will add additional vertices and edges

to the oracle. In particular, we remove invocations of assert* methods from tests as

this invokes methods belonging to JUnit. We also remove Evosuite dependencies such

as Evosuite sca�olding classes and annotations of org.evosuite.*.

We refer to the process for creating drivers as �unre�ecting� the tests (JUnit depen-

dency has been removed therefore no re�ection is being used in the tests). Both JUnit3

and JUnit4 conventions are supported. Listing 6.3 and 6.4 demonstrate JUnit3 and

JUnit4 test �xture, respectively. Listing 6.5 shows the corresponding driver code. The

unre�ected code for each test case runs in its own exception handler to ensure that test

cases resulting in exceptions or catchable errors will not prevent the execution of the

subsequent tests. This would fail if these tests resulted in uncatchable throwables, such

as out of memory errors, preventing following unre�ected tests to execute.

Listing 6.3: JUnit4 test case

1 public class Test42 {

2 private T te s t ed = null ;

3 @BeforeClass

4 public void be f o r eC l a s s ( ) {} ;

5

6 @Before

7 public void setUp ( ) {

8 t e s t ed = new T() ;

9 }

10

11 @Test

12 public void t e s t ( ) {

13 t e s t ed . foo ( ) ;

14 }

15

16 @After

17 public void tearDown ( ) {

18 t e s t ed = null ;

19 }

20

21 @AfterClass

22 public void a f t e rC l a s s ( ) {} ;

23 }
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Listing 6.4: JUnit3 test case

1 public class Test42 extend j un i t . framework . TestCase{

2

3 private T te s t ed = null ;

4

5 public void setUp ( ) {

6 t e s t ed = new T() ;

7 }

8

9 public void t e s t ( ) {

10 t e s t ed . foo ( ) ;

11 }

12

13 public void tearDown ( ) {

14 t e s t ed = null ;

15 }

16 }

Listing 6.5: Unre�ected JUnit3&4 test case

1 public class Driver_Test42 {

2

3 public stat ic void main ( St r ing [ ] a rgs ) {

4 try{

5 Test42 t e s t = new Test42 ( ) ;

6 t e s t . b e f o r eC l a s s ( ) ;

7 try{

8 t e s t . setup ( ) ;

9 t e s t . t e s t ( ) ;

10 t e s t . tearDown ( ) ;

11 }catch ( Throwable e ) {

12 System . e r r . p r i n t l n ( e . getMessage ( ) ) ;

13 }

14 t e s t . a f t e rC l a s s ( ) ;

15 }catch ( Throwable e ) {

16 System . e r r . p r i n t l n ( e . getMessage ( ) ) ;

17 }

18 }

19 }

JUnit has some features that are di�cult for any analyser to capture by means

of static byte code analysis. For instance, Rules is a mechanism that extends test

functionality. JUnit provides a wide range of rules to control test execution, such as

timeout, external resource and expected exception. Implementing those rules means

that we have to interfere with the JUnit main functionalities, which is against the main

idea of creating a light-weight driver generator. Furthermore, JUnit allows custom
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rules to be created by implementing org.junit.rules.TestRule interface. This makes

capturing such behaviour even harder. We also exclude the support for Runner which

also can be customised by users. In summary, our driver generation technique supports

the following JUnit features.

� Test methods annotated with @Test.

� Non-static �xtures annotated with @Before or @After.

� Static �xtures annotated with @BeforeClass or @AfterClass.

� Tests annotated with @RunWith(Parameterized.class). An example is shown in

Listing 6.6. The idea is to iterate parameters directly (by calling method data())

and then to pass them to the constructor where �elds are to be initialised. The

corresponding unre�ective driver code can be found in Listing 6.7.

� Test methods in subclasses of junit.framework.TestCase complying to JUnit3

test method conventions.

� Fixtures in JUnit3. For instance, setUp() and tearDown() are implementations

in subclasses of junit.framework.TestCase.

Listing 6.6: JUnit4 parameterized test case

1 public class Test43 {

2

3 public int a ;

4 public int b ;

5

6 public Test43 ( int a , int b) {

7 this . a=a ;

8 this . b=b ;

9 }

10

11 @Test

12 public void t e s t ( ) {}

13

14 @Parameters

15 public stat ic Co l l e c t i on data ( ) {}

16 }
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Listing 6.7: Unre�ected JUnit4 parameterized test case

1 public class Driver_Test43 {

2

3 public stat ic void main ( St r ing [ ] a rgs ) {

4 try{

5 for ( Object [ ] data : Test43 . data ( ) ) {

6 Test43 d r i v e r= new Test43 ( ( int ) data [ 0 ] , ( int ) data [ 1 ] ) ;

7 try{

8 d r i v e r . t e s t ( ) ;

9 }catch ( Throwable e ) {

10 System . e r r . p r i n t l n ( e . getMessage ( ) ) ; }

11 }

12 }catch ( Throwable e ) {

13 System . e r r . p r i n t l n ( e . getMessage ( ) ) ; }

14 }

15 }

6.2.4.3 Instrumentation and Program Exercising

In Section 2.2.2.1, we discussed the use of several instrumentation tools for Java. We

chose to use ASM12 for byte code instrumentation. The goal is to instrument all loaded

classes (core JDK classes as well as application classes) to get a full view of the program

behaviours. However, due to the complexity associated with this process, we have

encountered the following problems when instrumenting all loaded classes.

1. Instrumenting all methods may end up in a loop. e.g., the instrumented code gets

called, calls back into the type that instrumented, which in turns calls back into

the instrumented code.

2. Native method has no method body and therefore it cannot be instrumented

directly.

3. �noise" produced by the instrumentation agent. e.g., Method Instrumentation.

#retransformClasses() retransforms classes that are already loaded by JVM.

This retransformation triggers the Instrumentation#transform() method which

does an installation of the new de�nition of the class. As a result, the call tree

spawned by method Instrumentation#transform() is added to the oracle and

impacts the result. This behaviour is part of the observer, therefore, it cannot be

seen as part of the program behaviour.

4. Throwing an exception can disrupt the logging process � i.e., current method is

never popped from the method stack when an exception occurs.

12http://asm.ow2.org/, accessed 20 June 2020

http://asm.ow2.org/
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To deal with the call loop issue, we implement an observer in C++. In fact, the

entire logging function has been written in C++ to present call back to the instrumented

code. The observer is responsible for logging method stacks. We created 4 functions,

each has its corresponding Java API de�ned below:

� push(String classLoaderName,String className,String methodName,String

descriptor,String invocationID,int kind,int threadObjectHashCode,long

threadID,String threadName,int objectHashCode): push the current method

to method stack.

� pop(int threadObjectHashCode,long threadID): pop the current method from

method stack.

� clear(String classLoaderName,String className,String methodName,String

descriptor,String invocationID,int threadObjectHashCode,long threadID):

clear method stack when an exception occurs.

� addAllocationHash(int objectHashCode,int allocationType): record tagged

objects. See section 6.2.4.6 for detail discussion.

� flush(): output to a �le when program exits. A ShutdownHook is registered to

do this job.

� getInvocationID(): An unique ID is produced for each method invocation for

the purpose of tracing context.

We also created a blacklist of classes and methods that could be considered to cause

a loop call. The list includes the following classes and methods:

� the observer classes and their dependencies: nz.ac.massey.cs.instrumentation*,

org.objectweb.asm.*, module-info* (ASM classes).

� JDKmethods (referenced by the observer): java.lang.Thread#getName(), java.

lang.Thread#getId(), java.lang.Thread#<init>, java.lang.Thread#<init>,

java.lang.Object#<init>. Note that java.lang.System#identityHashCode()

is used by the observer as well, but we did not include it in the list as it is a native

method, and therefore it cannot actually make a call loop (no method body).

Threads are operated based on independent method stacks. Therefore, each thread

is assigned to a unique method stack. In order to di�erentiate thread context (a

method could be invoked multiple times within di�erent thread groups), we chose to use

java.lang.System#identityHashCode(Thread.currentThread()) to create an iden-

ti�er for the method based on the current running thread.
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Native methods cannot be instrumented directly. Therefore, we inject the observer

for native invocations directly around the call site, instead of at the method entry/exit.

As shown in the Listing 6.8, the observer is injected for method �main� at the entry

point at line 4 and exit point at line 8, whereas injection points for the native invocation

are at lines 5 and 7.

Listing 6.8: Instrumenting a call aite for Native invocation

1 class Main{

2

3 public stat ic void main ( St r ing [ ] a rgs ) {

4 obse rver . push ( "main" ) ; // ins t rumenta t ion

5 obse rver . push ( " d i spa t chCa l l " ) ; // ins t rumenta t ion

6 d i spa t chCa l l ( ) ;

7 obse rver . pop ( " d i spa t chCa l l " ) ; // ins t rumenta t ion

8 obse rver . pop ( "main" ) ; // ins t rumenta t ion

9 }

10

11 public stat ic native void d i spa t chCa l l ( ) ;

12 }

We consider the calls that are not related to the program as �noise�. For instance,

the instrumentation agent produces extra calls to the instrumentation API. We chose to

remove the call tree with a root invocation of sun.instrument.InstrumentationImpl

#transform(). Furthermore, we added a check to start logging at the program entry

point (static main method with a descriptor that matches [Ljava/lang/String;)V).

This program entry point is de�ned in Section 6.2.4.2 and it is a �xed point for all

programs.

We have to treat exceptions as a special case, because it is possible that an exception

will be raised before popping the method from the stack. We therefore inserted a state-

ment to keep popping the method from the stack up to the point where the exception is

being handled. In the example shown in Listing 6.9, method clear() is injected at line

11. When an exception is raised within method b() at line 12, the catch block is then

being executed and method b() is popped from the stack before continuing to method

d(). Note that our approach does not track unhandled exceptions. While this can be

done by instrumenting the uncaughtException method in all classes implementing an

exception handler Thread.UncaughtExceptionHandler, this was not necessary in our

case, since the JVM speci�cation states that �If no suitable exception handler is found

before the top of the method invocation chain is reached, the execution of the thread

in which the exception was thrown is terminated� [126, sect 2.10]. For example, there

is no further manipulation of the respective stack that may lead to the recording of any

additional invocations.
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Listing 6.9: Dealing with exception

1 class Main{

2

3 public stat ic void main ( St r ing [ ] a rgs ) {

4 a ( ) ;

5 }

6

7 public stat ic void a ( ) {

8 try {

9 b ( ) ;

10 }catch ( Exception e ) {

11 c l e a r ( ) ; // ins t rumenta t ion

12 d ( ) ;

13 }

14 }

15

16 public stat ic void b ( ) {

17 throw new Exception ( ) ;

18 }

19 }

There is another scenario where an exception could be thrown within a recursive

call (as shown in Listing 6.10). The problem arises in that the method stack does

not actually know which method recursion() should be popped �rst. Therefore, it

is important to label all methods, as a single method that could be invoked multiple

times. In Listing 6.10, we use getInvocationID() at line 11 to create a unique ID and

then reference the context to determine which �recursion� the method currently is at.
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Listing 6.10: Instrumenting the exception within a recursion

1 class Main{

2

3 stat ic int count=0;

4

5 public stat ic void main ( St r ing [ ] a rgs ) {

6 r e cu r s i on ( ) ;

7 foo ( ) ;

8 }

9

10 stat ic void r e cu r s i on ( ) {

11 int id=get Invocat ionID ( ) ; // ins t rumenta t ion

12 count++;

13 i f ( count<=3) {

14 try {

15 r e cu r s i on ( ) ;

16 } catch ( Exception e ) {

17 c l e a r ( id ) ; // ins t rumenta t ion

18 }

19 }

20 i f ( count==4){

21 count++;

22 throw new Exception ( ) ;

23 }

24 }

25 }

6.2.4.4 Removing Duplicate Branches

One of the limitations of using CCTs is that they can quickly grow in size and become

very large. In the case of our experiment, the raw CCTs data (before reduction) occupied

600GB in space. We therefore investigated several approaches to help reduce the size

of the CCTs.

One approach we used is through implementing a simple loop reduction. When

methods are invoked in loops, a new branch is created for each iteration. Often, these

branches are isomorphic and therefore redundant: for each branch, the same methods

are invoked in the same order. More precisely, we can de�ne two branches with roots

v1 = (method1, id1) and v2 = (method2, id2) as isomorphic as follows: if the vertices

don't have successors, they are isomorphic if and only if method1 = method2. Other-

wise, they are isomorphic if and only if method1 = method2 and the ordered lists of

children are element-wise isomorphic. We remove redundant branches caused by loops.

We use the following simple algorithm: traverse the tree to compute structural hashes

from the invoked methods and the hashes of the successors, for all vertices, and then look
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for siblings with identical hashes. For those candidate roots of isomorphic branches, a re-

cursive structure is compared to avoid hash collision. In most cases, this reduced the size

of CCTs dramatically, by an order of magnitude. Removing branches with certain roots

does reduce the number of methods being recorded, and therefore has an impact on met-

rics computed later. However, these branches are not caused by method invocations that

are visible to the static analysis, and therefore, not computing them cannot be consid-

ered a shortcoming of the analysis. We also encountered branches spawned by our instru-

mentation, with invocations of sun.instrument.InstrumentationImpl#transform()

as root. Those branches were removed to ensure that the experimental setup did not

bias the results.

6.2.4.5 Static Call Graph Generation

The static model is the static call graph (SCG), a directed graph (V,E) consisting of a

set of vertices V and a set of edges E ⊆ V ×V . Vertices represent methods, while edges

represent invocation relationships. For our study, we used the Doop framework with

di�erent con�gurations to construct the call graph. Doop implements a wide range of

algorithms including support for context sensitivity and several dynamic language fea-

tures. This support is comparable to, or exceeds, similar features available in alternative

frameworks such as Soot [112] and WALA [17], as demonstrated in Chapter 4 and a

recent benchmark-based comparative study [158]. The Doop version used was 4.14.4.

We proposed to have two categories to study the impact of context sensitivity on recall:

context-sensitive and context-insensitive analysis. Under context-insensitive analysis we

include: base analysis (no advance analysis enabled), re�ection analysis (Doop claims to

handle re�ection, dynamic proxies, method handles and native methods) and re�ection

lite analysis (a light-weight re�ection analysis).

� base analysis: context-insensitive

� context-sensitive analysis: 1-call-site-sensitive

� re�ection analysis: context-insensitive -reflection �reflection-classic

�reflection-dynamic-proxies �reflection-method-handles �simulate-native-returns

� re�ection lite analysis context-insensitive �light-reflection-glue �distinguish-all-

string-constants �reflection-dynamic-proxies �simulate-native-returns

In all cases, the -main option was used with the generated entry point as argument

(discussed in Section 6.2.4.2). In order to run the static analysis, we needed the byte

code of the program and the library the program depends on. This required us to

�rst resolve the symbol references to dependencies in the XCorpus programs. For each
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program, we used the ivy resolve in Ant task to fetch dependencies from Maven and,

in some cases, local repository (under the folder project as shown in Figure 6.1), and

made local copies of these libraries available for the static analysis. A crucial decision

to be made when setting up the static analysis is the handling of libraries. We ran the

static analysis in two modes:

1. superjar mode: all library classes are part of the analysis, this was done by

building a single �super� jar containing all program classes as well as all library

classes.

2. library mode: library code is handled di�erently by only representing the parts

of the library used by the program. This is supported by Doop, but introduces

some additional unsoundness. The main reason for this is that Doop relies on

the facts Soot generates from (library) code, and if library code is only accessed

through re�ection or similar means, those fact sets will be incomplete. Even if

Doop is used with re�ection support, the analyses may still fail to generate some

call graph edges.

Handling libraries and the main program di�erently is a widely used technique in

static program analysis [25, 28, 156]. By investigating both settings, we are in a position

to measure the impact that this has on the analysis recall.

The data structure that Doop produces does not con�rm with our CCTs. We follow

the ASM format [11] which, for example, de�nes a type for ArrayList as Ljava/util/Array

List;. However in Doop, this is how it is presented: java.util.ArrayList. We im-

plemented a parser to covert to our CCTs format. Table 6.5 summarises the types that

have been converted.

Table 6.5: Type Format for CCT and Doop

type CCT Doop

object Ljava/util/ArrayList; java.util.ArrayList

primitive type

I int

B byte

J long

F �oat

D Double

S short

C char

Z boolean

array [[ [][]

other V void
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6.2.4.6 Tagging CCTs

We analyse which particular language features are used to spawn branches within a CCT

that contain invocations of methods which are not reachable in the statically constructed

call graphs (false negatives). For some features, such as method invocations through

re�ection, this is a straightforward process: remove vertices corresponding to invocations

of Method#invoke() from the CCT, and then count the removed vertices labeled as false

negatives (with respect to a static analysis). This process is illustrated in Figure 6.6.

It provides a measure of the actual impact that the presence of Method#invoke() has

on the recall of the static analysis. We refer to dynamic features that can be detected

through the presence of certain methods in the CCT as dynamic invocations (DI).

The main idea here is to tag dynamic invocations with a label corresponding to the

language feature (such as Method#invoke()), and then to measure the percentage of

invocations corresponding to false negatives in the CCT dominated [117] by the tagged

vertices.

m1:1 m2:2

main:0

m3:3 Method::invoke:4 m5:5

false 
negative#Method.invoke

Figure 6.6: CCT cause analysis for dynamic invocations

Another common dynamic invocation pattern occurs when lambdas are compiled

and the invokedynamic instruction is used. We track those invocations by taking

advantage of naming patterns used by the OpenJDK compiler [80].

While we initially expected that dynamic invocations would explain most analysis

false negatives, this was not the case. It turns out that dynamic allocations (DALL)

also have a signi�cant impact. An example is the use of Class#newInstance() (as

shown in Listing 6.11). This dynamically creates an object obj of some type T, and the

static analysis has to track method invocations v#foo() with v pointing to obj. If the

object is not correctly tracked, then devirtualisation would not be modelled correctly,

and the analysis result may contain false negatives.
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Listing 6.11: Invocation of a method with a dynamically allocated object

1 void m3( St r ing clsName ) throws Exception {

2 T foo = Class . forName ( clsName ) . newInstance ( ) ;

3 foo . bar ( ) ;

4 }

It became quickly apparent that tracking those allocations required additional in-

strumentation to enrich the CCT with additional information in the form of ver-

tex labels. Figure 6.7 illustrates our approach used here, using the code snippet

from Listing 6.11. Objects returned by dynamic allocation are hashed by the method

java.lang.System#identityHashCode(foo) and the observer (presented in Section

6.2.4.3) uses the method addAllocationHash(123) to log these in a hash table. When-

ever a method is pushed to the method stack, we hash the receiver (foo at line 3 in

Listing 6.11) to see whether it points to the object returned by Class#newinstance().

m1:1 m2:2

main:0

m3:3

m5:6foo::bar:5

Class::newInstance():4 
returns foo

#Class.newInstance

false 
negative

Figure 6.7: CCT cause analysis for dynamic allocations

This tagging process can be considered as a form of lightweight dynamic taint anal-

ysis [146], whereby objects are considered tainted when they are dynamically allocated.

Note that we tracked the last dynamically allocated object. In particular, this mat-

ters when considering that Class#newInstance() calls Constructor#newInstance().

If an object has been created by Class#newInstance(), it is already marked as being

created by Constructor#newInstance(). Therefore, when we tag an invocation with

Constructor.newinstance(), this means that the application has created the object

by invoking Constructor#newInstance() directly, not indirectly via the intermediate

Class#newInstance().

A situation similar to dynamic allocation arises when an object is accessed via

re�ection or similar means, such as a re�ective heap access via Field#get(). We refer

to this pattern as dynamic access (DACC), and model it like dynamic allocation by

tracking objects returned by the invocations of these methods. We also track objects
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returned by native methods. They are also included in the DALL category, however, we

do not track whether the objects returned are actually newly allocated objects, or are

already known objects. So, there could be some cases of dynamic access in this category.

The next pattern we have encountered are false negatives caused by invocations

without matching call sites in the program. There are methods that are only invoked

by the JVM, in particular life cycle-related methods such as ClassLoader#loadClass().

For each invocation, we check whether there is a call site for this method in the parent

method (i.e., the method of the parent vertex in the CCT) and if this is not the case,

we tag the method with nocallsite. Note that tagging nocallsite is a post analy-

sis which occurs after processing the CCTs (labelled as �add tags to CCTs� in Figure

6.5). Other tags are created during the program exercising phase. Closely related to

nocallsite are methods that are called from system threads calling back into appli-

cation code. Examples are invocations of Object#finalize() and user interface event

handlers. There are a number of system threads that can be recognised by name. We

use a special tag systemthread to tag the roots of the CCTs generated for these threads.

We track the following threads: Signal Dispatcher, AWT-EventQueue-0, Reference

Handler, AWT-Shutdown, Finalizer and DestroyJavaVM. Note that the naming of these

system threads depends on the particular JVM implementation used in the experiments

as it is not de�ned by the JVM speci�cation. We categorise the invocations tagged with

either nocallsite or systemthread as system (SYS). Table 6.6 lists the tagged invo-

cation patterns and their respective categories.

Table 6.6: Dynamic invocation, allocation and access patterns used for tagging

invocation pattern tag category

java.lang.re�ect.Method#invoke method.invoke DI

*lambda$* lambda DI

java.lang.re�ect.InvocationHandler#invoke dynproxy.invoke DI

java.lang.invoke.MethodHandle#invoke* handler.invoke DI

java.lang.Class#newInstance class.newinstance DALL

java.lang.re�ect.Constructor#newInstance constructor.newinstance DALL

java.io.ObjectInputStream#readObject deserialize DALL

sun.misc.Unsafe#getObject unsafe.getobject DALL

objects returned by native methods nativeallocation DALL

java.lang.re�ect.Field#get �eld.get DACC

invocations without call sites in program nocallsite SYS

roots of system threads systemthread SYS

Note that there might be multiple possible causes for a method not to be reachable

in the SCG. If an invocation corresponds to a static analysis false negative, there might

be multiple tagged invocations on the path connecting it to the root, o�ering multiple

explanations as to why the respective method is unreachable. In fact, this does not
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necessarily indicate that this classi�cation yields falsely reported vertices as there might

actually be multiple root causes that prevent the static analysis from computing a

method as reachable.

6.3 Results

The main goal of the experiments conducted, that we present in this chapter, is to

provide a quantitative measure of the recall of various SCG construction techniques

with respect to di�erent oracles. This led to a combinatorial explosion in the number

of possible experiments: we have three types of static analyses con�gured in Doop

(context-insensitive, context-insensitive with re�ection support, and context-sensitive),

three possible oracles (constructed based on built-in, generated, and combined test

cases) and the additional parameter of whether to run the analysis in library or whole

program (super jar) mode (see Section 6.2.4.5). This implies that 18 computationally

expensive experiments had to be conducted and reported for each of the 31 programs,

making both the execution and reporting challenging. To deal with this, we prioritise

experiments as follows:

� Measure the recall of the baseline context-insensitive (base) analysis with respect

to the oracles provided by built-in, generated and combined test cases, for both

the library and the super jar con�guration. The results reveal the recall with

respect to di�erent oracles and are reported in Section 6.3.2.

� The impacts of context sensitivity and re�ection support were then assessed and

are reported on in Sections 6.3.3 and 6.3.4.

� False negatives are further investigated in detail in Section 6.3.5.

� We restricted the experiments to always use the combined set of generated and

built-in tests, and the library analysis mode.

6.3.1 Time and Resources

For all experiments, we used Java 1.8.0_144-b01 (Java HotSpot(TM) 64-Bit Server VM,

build 25.144-b01, mixed mode), running on a Ubuntu 18.04. The heap size of the JVM

was set to 16GB for the CCT recording, 256GB for the CCT reduction and 384GB for

the static analyses. We report the running times of the respective experiments in Table

6.4. Full running time information for each program is provided in Appendix A.2. While

the analysis of performance was not our main goal, performance is an important part of

the trade-o� that is being made when choosing a static analysis framework. Performance

also did have an impact on our methodology with regards to measuring the recall. Note
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the high cost of running the instrumented tests (not taking into account the already

very high cost of generating tests, reported in [61]), and of running the static analysis

with re�ection support, with only 20 programs avoiding time outs (set to 6 hours). The

timeout of 6 hours chosen is at the upper end of the time outs used in related work:

[157, 121] � 90 mins, [124, 172, 122] - 3 hours, [73, 85] � 4 hours, [86] � 6 hours, [87] � 7

hours. The programs that did not time out with re�ection support are shown in Table

6.7.

Table 6.7: Programs that did not time out with re�ection support

program version

checkstyle 5.1

commons-collections 3.2.1

�ndbugs 1.3.9

�tjava 1.1

informa 0.7.0-alpha2

javacc 5.0

jena 2.6.3

jFin_DateMath R1.0.1

jfreechart 1.0.13

jgrapht -0.8.1

jrat 0.6

jrefactory 2.9.19

marauroa 3.8.1

nekohtml 1.9.14

openjms 0.7.7-beta-1

oscache 2.4.1

pmd 4.2.5

quartz 1.8.3

trove 2.1.0

velocity 1.6.4

6.3.2 The Recall of Static Program Analysis

We measured recall for context-insensitive analysis. The recall values for this analysis

are depicted in the violin plot in Figure 6.8. While in general the recall values (combined

tests, the static analysis uses the lib setup) were high with a median of 0.884, the

�unsoundness� gaps were still signi�cant, indicating that the static analysis typically

misses around 11% of the known reachable methods in regards to the 31 programs
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analysed. We also computed the recall with respect to the oracles obtained by the

built-in and generated tests separately. The recall with respect to the oracle obtained

with built-in tests was signi�cantly lower (median 0.859) than the recall obtained using

the generated test oracle (median 0.904). This suggests an interesting characteristic

of built-in tests - they are potentially better at penetrating code that uses dynamic

language features than the generated tests. Note that this result was obtained with

tests generated with one particular test generation framework - Evosuite. The likely

explanation is that test case generators (in the case of Evosuite) are less likely to exercise

dynamic language features, therefore the recall can be higher than built-in tests.

Figure 6.8: Recall of the base static analysis with respect to di�erent oracles and con-

�gurations

Figure 6.8 also indicates that there is no signi�cant di�erence between the library

and the super jar analysis mode. This indicates that dynamic language features are

not used at component boundaries where methods could �ow from the program to the

library through a dynamic invocation. The use of a plugin-like model in JDBC 4 with

service locators is an example of such a model [30, Section 9.2.1]. We note however that

there are programming patterns that do exactly this, but none of the programs in our

dataset use these.

We also investigated whether the false negatives are due to methods declared in core

Java (methods that are declared in classes within java.* packages), extended Java

(other o�cial packages that are part of the Java Runtime Library, such as javax.*,
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org.omg.*), Java private (sun.*, com.sun.*, com.oracle.net) or application-de�ned

(everything else, including application and third-party library packages). The average

percentages of false negatives in the respective categories are as follows: 22.25% Java

core, 10.51% Java extended, 46.50% Java private and 21.47% application. The high

number of methods de�ned in Java-private classes stands out. This is consistent with

the results of the cause analysis discussed in Section 6.3.5.

6.3.3 The Impact of Context-Sensitivity

We measured recall with respect to the oracles created by executing all tests for both

the base (context-insensitive) analysis and a context-sensitive analysis as described in

Section 6.2.4.5. The results are depicted in the second column of Figure 6.9, the numbers

in brackets indicate the size of the dataset used, the base analysis data are provided for

both the full dataset (column 1) and the reduced dataset (column 3). The median recall

is 0.880. It turns out that gaining precision has very little impact on recall. To be more

speci�c, eliminating edges that are falsely reported by static analysis (false positives)

does not contribute much to the recall level. There were very few false negatives that

were covered by the false positives of the less precise context-insensitive analysis.

Figure 6.9: Recall of base vs context-sensitive analysis and re�ection analysis
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6.3.4 The E�ectiveness of Dynamic Language Feature Support in

Static Analysis

We compared the recall obtained by the base analysis with the recall obtained by anal-

yses with re�ection support being enabled. This allowed us to measure the e�ectiveness

of state-of-the-art support for re�ection and similar dynamic language features. Unfor-

tunately, the additional reasoning Doop has to perform is resource-intensive and timed

out for several programs, as detailed in Table 6.4. Therefore, the results summarised in

columns 3 and 4 in Figure 6.9 were obtained with a smaller dataset consisting of only

20 programs13. In general, the re�ection support in Doop is very e�ective - the median

recall increases signi�cantly from 0.884 to 0.935.

6.3.5 Quantifying the Causes of Unsoundness

Tagged vertices are removed from the CCTs to measure the percentage of false negatives

(with respect to a given analysis) still reachable. The method has been described in

Section 6.2.4.6. Table 6.8 shows the detailed classi�cation of the false negatives left

when running the static analysis with base and re�ection support. Note that only 20

programs are under analysis due to time out in re�ection support in others. The detail

of each category is presented in Table 6.6.

Table 6.8: Detailed classi�cation of FNs for the base analysis of the full dataset

category (tag)
base (31) base (20) re�ection

avg stdev No.P avg stdev No.P avg stdev No.P

method#invoke 8.08 8.88 29 7.14 8.44 18 4.22 4.53 16

lambda 0.10 0.16 16 0.10 0.18 10 0.01 0.04 1

handler#invoke 1.45 1.98 24 1.73 2.42 14 2.98 4.13 14

dynproxy#invoke 0.42 0.80 14 0.21 0.56 5 0.26 0.81 2

class#newinstance 21.36 14.31 29 19.62 14.12 18 20.64 17.03 18

constr#newinstance 5.97 6.41 28 4.76 5.53 17 5.61 6.82 17

deserialize 0.01 0.06 3 0.02 0.08 2 0 0 0

unsafe#getobject 0.15 0.30 9 0.18 0.35 6 0.27 0.52 6

nativeallocation 40.00 12.67 31 41.81 12.7 20 36.24 14.41 20

�eld#get 0.08 0.40 2 0 0 0 0 0 0

nocallsite 52 22.51 31 47.27 19.34 20 52.49 20.57 20

systemthread 2.57 3.25 31 3.41 3.8 20 4.82 4.88 20

other 17.94 11.39 31 17.96 11.14 20 13.83 10.74 20

The results for the base analysis are presented in Figure 6.10. The �gure uses the

13checkstyle-5.1, commons-collections-3.2.1, informa-0.7.0-alpha2, �ndbugs-1.3.9, �tjava-1.1, javacc-
5.0, jena-2.6.3, jFin_DateMath-R1.0.1, jfreechart-1.0.13, jgrapht-0.8.1, jrat-0.6, jrefactory-2.9.19,
marauroa-3.8.1, nekohtml-1.9.14, openjms-0.7.7-beta-1, oscache-2.4.1, pmd-4.2.5, quartz-1.8.3, trove-
2.1.0, velocity-1.6.4
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aggregated as well as detailed categories, also showing statistical variation. It sum-

marises the percentages of false negatives that can be explained by the presence of the

respective classes of language features across the dataset. It turns out that dynamic

invocations are only a minor source of false negatives. In particular, the presence of

Method#invoke can only explain less than 10% of the false negative cases. However,

invocations triggered by methods invoked by the JVM and di�erent types of dynamic

allocations can explain the majority of false negatives. Note that the dataset consists

of programs that were released before lambda support was provided for Java, and the

lambda feature is likely to be under-represented (Table 6.1 contains an overview of

the language features used by the XCorpus programs). The only programs where we

found false negatives caused by dynamic access are wct-1.5.2 and guava-21.0. Other

categories that have overall little impact are allocations when objects are deserialised

(0.01%), dynamic proxies (0.42%), and Unsafe#getObject (0.15%). However, there are

14 programs that use dynamic proxies and 9 programs that use Unsafe#getObject.

More generally, we detected at least some usage of each of the features/patterns inves-

tigated when executing the programs in the dataset.
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Figure 6.10: Cause of FNs in the static analysis with base support

The base analysis for the reduced dataset (20 programs that did not time out with

re�ection support) is also included in order to make the base and the re�ection data

comparable. Figure 6.11 shows the variation of recall values across the dataset. We

observed that re�ection support for the context-insensitive analysis addresses a signi�-

cant share of false negatives caused by Method#invoke. It addresses all false negatives

caused by dynamic proxies (invocation handlers) in 3/5 programs, and all false nega-

tives caused by allocation via deserialisation (although only two programs quartz-1.8.3

and trove-2.1.0 are in this category). For the system category, the percentage increases,

indicating that Doop re�ection support is relatively ine�ective for these categories.
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Figure 6.11: Cause of FNs in the static analysis with re�ection support

We analysed the percentage of false negatives left after all tagged vertices were

removed from the CCTs � this is the number of uncategorised false negatives in the

Other category in both Figure 6.10 and 6.11. A cross-validation was carried out by two

other researchers. We cross-validated false negatives in the Other category. We have

randomly selected 373 vertexes for the base and 344 vertexes for the re�ection analysis

(the sample size is determined by a con�dence level of 95% and a con�dence interval of

5%, of the total number of false negatives from the Other category). We then extracted

the respective number of CCT paths from the respective CCT root to an uncategorised

false negative. It turns out that these are dominated by a single pattern we refer to

as double-re�ective factory, which we discuss in some more detail below This pattern
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accounted for 54.4% of the uncategorised false negatives in the base analysis and 51.5%

of the uncategorised false negatives in the analysis with re�ection support. The following

paragraph describes the pattern that we detected.

The double-re�ective factory is a particular use of the factory design pattern [79] in

conjunction with re�ection, used to manage character sets. To illustrate this, consider

the stack trace caused by an invocation of System.out.println() in Listing 6.12. Using

both the base and the re�ection analysis, encodeLoop is unreachable in the statically

computed call graph. The encoder is created by the Charset (sun.nio.cs.UTF) which is

created via re�ection (Class#forName and Class#newInstance) by a CharsetProvider

(sun.nio.cs.FastCharsetProvider) which is in fact itself also created using re�ection

by a service loader from jar manifest meta data. This is a triple factory, with two of the

factories using re�ective allocation. This is a good example of the framework complexity

Java is known for. While our analysis tags the factories as dynamically allocated, it

does not do this to the objects created in those factories using plain object allocation

with new.

Listing 6.12: Stacktrace created by the invocation of PrintStream#println()

1 sun . n io . c s .UTF_8$Encoder : : encodeLoop ( Ljava/ nio /CharBuffer ; Ljava/ nio /

ByteBuffer ; ) Ljava/ nio / cha r s e t /CoderResult

2 java . n io . cha r s e t . CharsetEncoder : : encode ( Ljava/ nio /CharBuffer ; Ljava/ nio /

ByteBuffer ; Z) Ljava/ nio / cha r s e t /CoderResult

3 sun . n io . c s . StreamEncoder : : implWrite ( [ CII )V

4 sun . n io . c s . StreamEncoder : : wr i t e

5 java . i o . OutputStreamWriter#wr i t e ( [ CII )V

6 java . i o . Buf feredWriter#f l u s hBu f f e r ( )V

7 java . i o . PrintStream : : newLine ( )V

8 java . i o . PrintStream : : p r i n t l n ( Ljava/ lang / St r ing ; )V

9 net . s ou r c e f o r g e .pmd. u t i l . d e s i gne r . MyPrintStream : : p r i n t l n ( Ljava/ lang / St r ing

; )V

As for the nocallsite and systemthread categories, we focus on false negatives de-

�ned in applications or third-party libraries. It turns out that for the base analysis,

9/31 programs have such false negatives in the systemthread category, and 28/31 pro-

grams have such false negatives in the nocallsite category. Using the same sampling

procedure as described above, we found that 86% of the application false negatives in

the nocallsite category are caused by static initialisers (<clinit> methods) invoked

by the JVM. Another example are invocations of Runnable#run methods through

native dispatch from java.security.AccessController#doPrivileged. Re�ective

method invocations are also classi�ed in this category due to the native dispatch in

sun.reflect.NativeMethodAccessorImpl#invoke0. In the sampling set, this accounted

for 4.8% of cases. Sampling application-de�ned methods classi�ed as systemthread re-

veals that all of these can be explained by invocations of finalize in application classes
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in the Finalizer thread.

6.4 Threats to Validity

There are still a number of validity threats to the results. We discuss them in the

following paragraphs.

The test unre�ection process described in Section 6.2.4.2 has limitations, since Junit

features, such as tests with rules and custom runners, were ignored, i.e., not unre�ected.

This has reduced the coverage of the oracle.

Test �akiness [131] is a known issue that a�ects test outcomes. It will a�ect the

replication of results in the sense that, in some cases, slightly di�erent results will be

obtained. We have mitigated this by using docker, to provide an environment as close as

possible to the one used to conduct the original experiments. We expect the variations in

the number of reachable methods to be less than 1%. We found such non-deterministic

coverage in 14 of the 31 programs between executions. They are: ApacheJMeter_core-

3.1, jena-2.6.3, marauroa-3.8.1, guava-21.0, quartz-1.8.3, jrefactory-2.9.19, jfreechart-

1.0.13, tomcat-7.0.2, drools-7.0.0.Beta6, �tjava-1.1, log4j-1.2.16, oscache-2.4.1, weka-

3-7-9 and htmlunit-2.8. Figure 6.2 uses averages from �ve runs, the oracle used was

generated by a single run. The reason for this decision is the high cost of oracle gener-

ation (see Table 6.4). In some cases, a slightly larger oracle could have been obtained

by running the instrumented tests multiple times and merging the constructed CCTs.

The tagging of lambdas relies on naming patterns used by the OpenJDK compiler.

There is a possibility that some of the library code within the analysis scope was com-

piled with a di�erent compiler using a di�erent convention, such as Oracle JDK or IBM

JDK. This would have resulted in more false negatives that are not classi�ed.

Tagging with nocallsite relied on a static pre-analysis to collect the call sites in

methods. For libraries, this depends on the library version used. There is a chance

that in some cases programs use custom class loaders, choosing a di�erent version of

the class. This would have resulted in methods being incorrectly tagged as nocallsite,

and in an over-reporting of false negatives in this category.

6.5 Summary and Conclusion

The main contribution of this study is to provide quantitative evidence for better un-

derstanding the unsoundness of static program analysis, especially in relation to real-

world programs. The experiments consist of two parts in general: dynamic analysis

and static analysis. For the dynamic analysis part, we adopt an approach to model

program behaviours during execution to gain insight into program behaviours. For
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the static analysis part, we chose a modern framework Doop to build static mod-

els. The level of recall is computed based on respective static analyses. The re-

sults answer RQ4: What is the level of recall achieved by state-of-the-art

static analysis tools? � around 11% of program models are not reported by static

analysis. The gaps in static analysis are still signi�cant as many methods that are

known to be reachable are missed. While state-of-the-art analysis with re�ection sup-

port can signi�cantly improve recall, its high cost renders it impractical for many

practical applications. The results further indicate that some language features sus-

pected of being a major cause of unsoundness (in particular the usage of re�ection:

Method#invoke) play only a minor role. The classi�cation of static analysis false neg-

atives answers RQ5: Which particular language features cause unsoundness

in real-world programs? This classi�cation is also useful for static analysis tool

builders to guide them where to best focus e�orts to improve the recall for their anal-

ysis: to include the analysis of native methods and the JVM itself. We note that

Doop models some native methods, including Object#clone() and some methods in

java.lang.System, sun.misc.Unsafe,java.io.UnixFilesystem, java.lang.Thread,

java.lang.ref.Finalizer, and java.security.AccessController. However, these

models are still unsound and, as Grech et al. noted, such manual modelling �... is hard.

Extra native operations get added in every release of the JDK and analysis authors

typically do not keep up with them� [83].

The fact that dynamic analysis reveals a signi�cant number of false negatives in the

static analysis also indicates that hybrid techniques can be very e�ective. In particular,

generated tests can be used to discover program behaviour that is out of reach of static

analysis. However, there are limitations: like static re�ection analysis, test generation is

expensive [61], and our study has demonstrated that it is not as e�ective in discovering

dynamic program behaviour as manually written tests.



Chapter 7

Conclusions

7.1 Introduction

This thesis has investigated the unsoundness of static program analysis in Java. Since

static analysis always over-approximates program behaviours, it is expected, in theory,

to be sound (all program behaviours will be predicted and considered). However, there

are some program behaviours that may be neglected due the use of dynamic language

features, such as re�ection, serialisation, dynamic class loading, invokedynamic, dynamic

proxy and the use of native libraries.

This thesis has made following key contributions to discover this unsoundness in

static program analysis:

� A benchmark of dynamic language features in Java, with multiple usage patterns

that can be used to assess static analysers' ability in modelling particular dynamic

features.

� An investigation into the usefulness of generating oracles from mined stack traces.

� An empirical assessment of recall, conducted on real-world programs, which indi-

cates an average of 11% of program behaviours are missed by a state-of-the-art

static analysis tool.

7.2 Conclusion Remarks

We designed a series of experiments to explore the unsoundness of static program anal-

ysis. Firstly, we provided a categorisation of dynamic language features. They are

re�ection, serialisation, dynamic class loading, invokedynamic, dynamic proxy and the

use of native libraries. This categorisation answers RQ1: What are the sources of

unsoundness in static analysis?. To answer RQ2: Are state-of-the-art static

112
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analysis tools able to successfully model dynamic language features in Java?

we then constructed a micro-benchmark which consists of a number of usage patterns

for each of these categories. An evaluation was performed against well-known static

analysis tools, i.e., Soot, Wala and Doop, to examine how soundly they can handle

those categories. The results suggest that none of the tools can soundly model the

benchmark, even where it is claimed that some dynamic features are being handled.

For instance, all three tools support re�ection analysis, but none of them can fully

model all twelve re�ection usage patterns that we created in the benchmark. In fact,

static analysis tools may consider a particular usage of a feature (i.e., a plain re�ection

as shown in Listing 4.3), but often overlook how it has been used in di�erent contexts

(i.e., an interprocedural re�ection as shown in Listing 4.5). We note that our bench-

mark includes an interesting case where we observed inconsistent program behaviour

across the Java platform, which raises a question: �If the actual program behaviours

are indeterminate, how can static analysis model them soundly?�

Secondly, we constructed program oracles from real-world programs to further assess

static analysis tools. Oracles are constructed by means of program execution. They

re�ect the actual program behaviours. We have proposed an unconventional way to

obtain such oracles � stack traces, which are produced by the program when unexpected

behaviour occurs. This gives us an insight into how dynamic language features are

applied when abnormal program behaviour occurs. Stack traces are mined from on-line

resources such as GitHub and Stack Over�ow. The results show that Doop misses a

high proportion of edges in the call graphs that it creates (11 out of 15 call edges). This

experiment has shown that it is possible to use stack traces to assess the soundness of

static analysis and answered RQ3: Can information obtained from stack traces

improve the soundness of static analysis?

Lastly, to further explore and quantify the impact of dynamic language features,

we conducted a large empirical study on real-world programs. Unlike the stack trace

study, we used tests to drive the programs to obtain program oracles. The novelty of

this study is we have considered multiple dimensions under analyses: two analysis set-

tings (libraries versus super jar), various static analysis techniques (context-sensitive,

context-insensitive, full re�ection, light re�ection support) and two di�erent program

oracles (built-in versus generated tests). We used quantitative measurements in di�er-

ent combinations with the above analyses to quantify missing program behaviours. The

results indicate the gap between dynamically generated oracles and statically generated

program models is substantial, an average of 11% of program behaviours are overlooked,

which answers RQ4: What is the level of recall achieved by state-of-the-art

static analysis tools? In addition, we provided a classi�cation of such missed pro-

gram behaviours, which answers RQ5: Which particular language features cause
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unsoundness in real-world programs? � Most of them are related to native code.

The recent work on Doop of Fourtounis et al. [75] has improved the tool so that it can

better handle native code, under the guideline of our classi�cation.

In conclusion, state-of-the-art static analysis frameworks generally lack support for

dynamic language features. The classi�cation we created for dynamic language features

will help researchers using static analysis to quickly navigate through the causes of

unsound analyses. This thesis also addressed di�erent aspects of static analysis tools and

brought clearer meaning to the term unsoundness, by looking into sensitivity settings

and the choice of program oracles. Dynamic analysis techniques such as testing and

hybrid analysis [41, 84] can potentially mitigate some of the limitations of static analysis,

but cannot solve the unsoundness issue entirely � the main challenge is to create drivers

(harnesses) that exercise the unsound parts of a program. The use of test case generation

for this purpose is promising.

7.3 Future Work

There are a number of possible avenues for future work. An extended study with a

larger dataset is an interesting topic for future research. One particularly interesting

line of work would be the study of call graphs that cover multiple projects and libraries,

including frameworks known for their heavy use of re�ection (plugin-based systems,

dependency injection) and the Java core libraries. We have noticed a large number of

re�ective invocations where call sites and targets were each located in separate libraries.

The experiment described in Chapter 6 is based on Java byte code. Other non-Java

programs that compile into JVM byte code (e.g., Scala, Kotlin etc) could also be con-

sidered for future study. Of course, studying unsoundness of static analysis for other

program languages is important.

As we mentioned in Section 6.3.1, the amount of time and resources we invested into

this experiment means that the analysis is not practical for industry needs. So the po-

tential problem here is that it is still challenging to build comprehensive and su�ciently

precise static models for real-world programs, to be embedded into the development

process. Moreover, this thesis focuses on analysing open-source programs, and com-

mercial programs have more demands on bug and vulnerability detection. Future work

involves developing a plugin for known bug detection tools that targets a particular

dynamic language feature. Our benchmark can then help with assessing its soundness.

Relying on naming patterns when tagging invocations (discussed in Section 6.2.4.6)

is not a scalable approach as some of the names can be compiler dependent. For instance,

we followed the OpenJDK naming convention for detecting lambda expressions. An

improvement can be made to trace the invokedynamic instruction in the constant pool

and to retrieve the relevant index to extract arguments used by the lambda method
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factory.

Test �akiness [131] (i.e., tests with non-deterministic outcomes) is a known issue that

a�ects test outcomes (discussed in Section 6.4). We have observed non-deterministic

behaviours, in terms of di�erent branch coverages and test outcomes in 14 of the 31

programs, across di�erent executions. There is an increasing research interest in test

�akiness [131, 113, 23, 66]. Potential future research directions in this space include: 1)

study language features and patterns that cause tests to be �aky, 2) explore the rela-

tionship between coverage strategies and �aky tests and how synthesised tests perform

with regards to �akiness compared with automated tests.

Another potential approach is to study the relationship between branch coverage

and recall level. There is an hypothesis that the relationship is positive: as the branch

coverage goes up, the recall level rises. However, there is currently no empirical evidence

to back up this hypothesis.



References

[1] Airbus issues software bug alert after fatal plane crash.

https://www.theguardian.com/technology/2015/may/20/

airbus-issues-alert-software-bug-fatal-plane-crash. Accessed: 10-

08-2017.

[2] Apache maven project standard directory layout. https://maven.apache.org/

guides/introduction/introduction-to-the-standard-directory-layout.

html, accessed 20 July 2020.

[3] Common Vulnerabilities and Exposures the standard for information security

vulnerability names. https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=

java. Accessed: 19-04-2020.

[4] CVE-2003-1564 billion laughs. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2003-1564. Accessed: 19-04-2020.

[5] Invokedynamic recti�er / project serializer. http://www.opal-project.de/

DeveloperTools.html, accessed 14 Jan 2019.

[6] Java class identity. https://www.jacoco.org/jacoco/trunk/doc/

implementation.html. Accessed: 23-06-2020.

[7] Java programming language agents api. https://docs.oracle.com/javase/

6/docs/api/java/lang/instrument/package-summary.html. Accessed: 05-08-

2017.

[8] java-vulnerabilities repository. https://bitbucket.org/Li_Sui/

java-vulnerabilities/, accessed 15 July 2020.

[9] Novopay botch-ups cost 45m to �x. http://www.stuff.co.nz/national/

education/66349800/Novopay-botch-ups-cost-45m-to-fix. Accessed: 10-08-

2017.

[10] Novopay wikipedia. https://en.wikipedia.org/wiki/Novopay. Accessed: 10-

08-2017.

116

https://www.theguardian.com/technology/2015/may/20/airbus-issues-alert-software-bug-fatal-plane-crash
https://www.theguardian.com/technology/2015/may/20/airbus-issues-alert-software-bug-fatal-plane-crash
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=java
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=java
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1564
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1564
http://www.opal-project.de/DeveloperTools.html
http://www.opal-project.de/DeveloperTools.html
https://www.jacoco.org/jacoco/trunk/doc/implementation.html
https://www.jacoco.org/jacoco/trunk/doc/implementation.html
https://docs.oracle.com/javase/6/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/6/docs/api/java/lang/instrument/package-summary.html
https://bitbucket.org/Li_Sui/java-vulnerabilities/
https://bitbucket.org/Li_Sui/java-vulnerabilities/
http://www.stuff.co.nz/national/education/66349800/Novopay-botch-ups-cost-45m-to-fix
http://www.stuff.co.nz/national/education/66349800/Novopay-botch-ups-cost-45m-to-fix
https://en.wikipedia.org/wiki/Novopay


REFERENCES 117

[11] org.objectweb.asm.classvisitor api. https://asm.ow2.io/javadoc/

org/objectweb/asm/ClassVisitor.html#visitMethod-int-java.lang.

String-java.lang.String-java.lang.String-java.lang.String:A-, ac-

cessed 12 July 2020.

[12] stack over�ow developer survey 2016. https://

insights.stackoverflow.com/survey/2016#technology-_

-programming-scripting-and-markup-languages. Accessed: 6-08-2020.

[13] stack over�ow developer survey 2018. https://

insights.stackoverflow.com/survey/2018#technology-_

-programming-scripting-and-markup-languages. Accessed: 6-08-2020.

[14] stack over�ow developer survey 2019. https://

insights.stackoverflow.com/survey/2019#technology-_

-programming-scripting-and-markup-languages. Accessed: 6-08-2020.

[15] Tiobe index for august 2020. https://www.tiobe.com/tiobe-index/. Accessed:

6-08-2020.

[16] Understanding sun.misc.unsafe. http://www.javaworld.com/article/2952869/

java-platform/understanding-sun-misc-unsafe.html. Accessed: 13-08-2017.

[17] WALA watson libraries for analyses. http://wala.sourceforge.net/wiki/

index.php/UserGuide:PointerAnalysis. Accessed: 31-07-2017.

[18] ysoserial a proof-of-concept tool for generating payloads that exploit unsafe java

object deserialization. https://github.com/frohoff/ysoserial/blob/master/

src/main/java/ysoserial/payloads/CommonsCollections6.java. Accessed:

12-07-2017.

[19] Ghtorrent services, 2020. https://ghtorrent.org/services.html [accessed 12

March 2020].

[20] Wilhelm Ackermann. Zum hilbertschen aufbau der reellen zahlen. Mathematische

Annalen, 99(1):118�133, 1928.

[21] Ole Agesen. The cartesian product algorithm. In European Conference on Object-

Oriented Programming, pages 2�26. Springer, 1995.

[22] Hiralal Agrawal, Joseph Robert Horgan, Edward W Krauser, and Saul A London.

Incremental regression testing. In 1993 Conference on Software Maintenance,

pages 348�357. IEEE, 1993.

https://asm.ow2.io/javadoc/org/objectweb/asm/ClassVisitor.html#visitMethod-int-java.lang.String-java.lang.String-java.lang.String-java.lang.String:A-
https://asm.ow2.io/javadoc/org/objectweb/asm/ClassVisitor.html#visitMethod-int-java.lang.String-java.lang.String-java.lang.String-java.lang.String:A-
https://asm.ow2.io/javadoc/org/objectweb/asm/ClassVisitor.html#visitMethod-int-java.lang.String-java.lang.String-java.lang.String-java.lang.String:A-
https://insights.stackoverflow.com/survey/2016#technology-_-programming-scripting-and-markup-languages
https://insights.stackoverflow.com/survey/2016#technology-_-programming-scripting-and-markup-languages
https://insights.stackoverflow.com/survey/2016#technology-_-programming-scripting-and-markup-languages
https://insights.stackoverflow.com/survey/2018#technology-_-programming-scripting-and-markup-languages
https://insights.stackoverflow.com/survey/2018#technology-_-programming-scripting-and-markup-languages
https://insights.stackoverflow.com/survey/2018#technology-_-programming-scripting-and-markup-languages
https://insights.stackoverflow.com/survey/2019#technology-_-programming-scripting-and-markup-languages
https://insights.stackoverflow.com/survey/2019#technology-_-programming-scripting-and-markup-languages
https://insights.stackoverflow.com/survey/2019#technology-_-programming-scripting-and-markup-languages
https://www.tiobe.com/tiobe-index/
http://www.javaworld.com/article/2952869/java-platform/understanding-sun-misc-unsafe.html
http://www.javaworld.com/article/2952869/java-platform/understanding-sun-misc-unsafe.html
http://wala.sourceforge.net/wiki/index.php/UserGuide:PointerAnalysis
http://wala.sourceforge.net/wiki/index.php/UserGuide:PointerAnalysis
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsCollections6.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsCollections6.java
https://ghtorrent.org/services.html


REFERENCES 118

[23] Azeem Ahmad, Ola Lei�er, and Kristian Sandahl. Empirical analysis of fac-

tors and their e�ect on test �akiness-practitioners' perceptions. arXiv preprint

arXiv:1906.00673, 2019.

[24] Karim Ali and Ond°ej Lhoták. Application-only call graph construction. In Proc.

ECOOP'13. Springer, 2013.

[25] Karim Ali and Ond°ej Lhoták. Averroes: Whole-program analysis without the

whole program. In Proc. ECOOP'13. Springer, 2013.

[26] Frances E Allen. Control �ow analysis. ACM Sigplan Notices, 5(7):1�19, 1970.

[27] Frances E. Allen and John Cocke. A program data �ow analysis procedure. Com-

munications of the ACM, 19(3):137, 1976.

[28] Nicholas Allen, Padmanabhan Krishnan, and Bernhard Scholz. Combining type-

analysis with points-to analysis for analyzing java library source-code. In Proc.

SOAP'15, pages 13�18. ACM, 2015.

[29] Glenn Ammons, Thomas Ball, and James R Larus. Exploiting hardware perfor-

mance counters with �ow and context sensitive pro�ling. ACM Sigplan Notices,

32(5):85�96, 1997.

[30] Lance Andersen. Jdbc�4.0 speci�cation. JSR, 221:1�126, 2006.

[31] Lars Ole Andersen. Program analysis and specialization for the C programming

language. PhD thesis, University of Cophenhagen, 1994.

[32] Esben Sparre Andreasen, Anders Møller, and Benjamin Barslev Nielsen. System-

atic approaches for increasing soundness and precision of static analyzers. In Proc.

SOAP'17. ACM, 2017.

[33] James H Andrews, Lionel C Briand, and Yvan Labiche. Is mutation an appropriate

tool for testing experiments? In Proceedings of the 27th international conference

on Software engineering, pages 402�411. ACM, 2005.

[34] Ken Arnold, James Gosling, David Holmes, and David Holmes. The Java pro-

gramming language, volume 2. Addison-wesley Reading, 2000.

[35] David F Bacon and Peter F Sweeney. Fast static analysis of c++ virtual function

calls. ACM Sigplan Notices, 31(10):324�341, 1996.

[36] Thirumalesh Bhat and Nachiappan Nagappan. Evaluating the e�cacy of

test-driven development: industrial case studies. In Proceedings of the 2006

ACM/IEEE international symposium on Empirical software engineering, pages

356�363, 2006.



REFERENCES 119

[37] Tegawendé F Bissyandé, Ferdian Thung, David Lo, Lingxiao Jiang, and Laurent

Réveillère. Popularity, interoperability, and impact of programming languages in

100,000 open source projects. In 2013 IEEE 37th annual computer software and

applications conference, pages 303�312. IEEE, 2013.

[38] Stephen M Blackburn, Robin Garner, Chris Ho�mann, Asjad M Khang,

Kathryn S McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel

Frampton, Samuel Z Guyer, et al. The dacapo benchmarks: Java benchmarking

development and analysis. In ACM Sigplan Notices, volume 41, pages 169�190.

ACM, 2006.

[39] Eric Bodden. Invokedynamic support in soot. In Proc. SOAP'12. ACM, 2012.

[40] Eric Bodden, Laurie Hendren, and Ond°ej Lhoták. A staged static program anal-

ysis to improve the performance of runtime monitoring. In European Conference

on Object-Oriented Programming, pages 525�549. Springer, 2007.

[41] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. Tam-

ing re�ection: Aiding static analysis in the presence of re�ection and custom

class loaders. In Proceedings of the 33rd International Conference on Software

Engineering, pages 241�250. ACM, 2011.

[42] Pierre Bourque, Richard E Fairley, et al. Guide to the software engineering body

of knowledge (SWEBOK (R)): Version 3.0. IEEE Computer Society Press, 2014.

[43] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: Auto-

mated testing based on java predicates. In ACM SIGSOFT Software Engineering

Notes, volume 27, pages 123�133. ACM, 2002.

[44] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative speci�cation

of sophisticated points-to analyses. In Proceedings of the 24th ACM SIGPLAN

conference on Object oriented programming systems languages and applications,

pages 243�262, 2009.

[45] Brendon Cahoon and Kathryn S McKinley. Data �ow analysis for software

prefetching linked data structures in java. In Proceedings 2001 International

Conference on Parallel Architectures and Compilation Techniques, pages 280�291.

IEEE, 2001.

[46] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter

Hooimeijer, Martino Luca, Peter O'Hearn, Irene Papakonstantinou, Jim Purbrick,

and Dulma Rodriguez. Moving fast with software veri�cation. In NASA Formal

Methods Symposium, pages 3�11. Springer, 2015.



REFERENCES 120

[47] Gerardo Canfora, Aniello Cimitile, and Andrea De Lucia. Conditioned program

slicing. Information and Software Technology, 40(11-12):595�607, 1998.

[48] Gerardo Canfora, Aniello Cimitile, Felix Garcia, Mario Piattini, and Cor-

rado Aaron Visaggio. Evaluating advantages of test driven development: a con-

trolled experiment with professionals. In Proceedings of the 2006 ACM/IEEE

international symposium on Empirical software engineering, pages 364�371, 2006.

[49] Ramkrishna Chatterjee, Barbara G Ryder, and William A Landi. Relevant con-

text inference. In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, pages 133�146. ACM, 1999.

[50] Brian Chess and Gary McGraw. Static analysis for security. IEEE security &

privacy, 2(6):76�79, 2004.

[51] Brian Chess and Jacob West. Secure programming with static analysis. Pearson

Education, 2007.

[52] Shigeru Chiba. Load-time structural re�ection in java. In European Conference

on Object-Oriented Programming, pages 313�336. Springer, 2000.

[53] Cristina Cifuentes, Andrew Gross, and Nathan Keynes. Understanding caller-

sensitive method vulnerabilities: A class of access control vulnerabilities in the

java platform. In Proceedings of the 4th ACM SIGPLAN International Workshop

on State of the Art in Program Analysis, pages 7�12, 2015.

[54] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random

testing of haskell programs. Acm sigplan notices, 46(4):53�64, 2011.

[55] Lori A. Clarke. A system to generate test data and symbolically execute programs.

IEEE Transactions on software engineering, (3):215�222, 1976.

[56] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Ken-

neth Zadeck. E�ciently computing static single assignment form and the control

dependence graph. ACM Transactions on Programming Languages and Systems

(TOPLAS), 13(4):451�490, 1991.

[57] Anusha Damodaran, Fabio Di Troia, Corrado Aaron Visaggio, Thomas H Austin,

and Mark Stamp. A comparison of static, dynamic, and hybrid analysis for mal-

ware detection. Journal of Computer Virology and Hacking Techniques, 13(1):1�

12, 2017.

[58] Je�rey Dean, David Grove, and Craig Chambers. Optimization of object-oriented

programs using static class hierarchy analysis. In European Conference on Object-

Oriented Programming, pages 77�101. Springer, 1995.



REFERENCES 121

[59] Jens Dietrich, Nicholas Hollingum, and Bernhard Scholz. Giga-scale exhaustive

points-to analysis for java in under a minute. In ACM SIGPLAN Notices, vol-

ume 50, pages 535�551. ACM, 2015.

[60] Jens Dietrich, Kamil Jezek, Shawn Rasheed, Amjed Tahir, and Alex Potanin.

Evil pickles: Dos attacks based on object-graph engineering. In 31st European

Conference on Object-Oriented Programming (ECOOP 2017). Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik, 2017.

[61] Jens Dietrich, Henrik Schole, Li Sui, and Ewan Tempero. Xcorpus�an executable

corpus of java programs. JOT, 16(4):1:1�24, 2017.

[62] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W O'Hearn.

Scaling static analyses at facebook. Communications of the ACM, 62(8):62�70,

2019.

[63] Thomas J. Watson IBM Research Center. Research Division and FE Allen. In-

terprocedural data �ow analysis. 1973.

[64] Bruno Dufour, Karel Driesen, Laurie Hendren, and Clark Verbrugge. Dynamic

metrics for java. In Proceedings of the 18th annual ACM SIGPLAN conference on

Object-oriented programing, systems, languages, and applications, pages 149�168,

2003.

[65] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian.

Selecting empirical methods for software engineering research. In Guide to ad-

vanced empirical software engineering, pages 285�311. Springer, 2008.

[66] Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. Under-

standing �aky tests: the developer's perspective. In Proceedings of the 2019 27th

ACM Joint Meeting on European Software Engineering Conference and Sympo-

sium on the Foundations of Software Engineering, pages 830�840, 2019.

[67] Michael Eichberg and Ben Hermann. A software product line for static analyses:

the opal framework. In Proceedings of the 3rd ACM SIGPLAN International

Workshop on the State of the Art in Java Program Analysis, pages 1�6. ACM,

2014.

[68] Maryam Emami, Rakesh Ghiya, and Laurie J Hendren. Context-sensitive inter-

procedural points-to analysis in the presence of function pointers. ACM SIGPLAN

Notices, 29(6):242�256, 1994.

[69] Michael D Ernst. Static and dynamic analysis: Synergy and duality. In WODA

2003: ICSE Workshop on Dynamic Analysis, pages 24�27, 2003.



REFERENCES 122

[70] Norman E Fenton and Martin Neil. Software metrics: successes, failures and new

directions. Journal of Systems and Software, 47(2-3):149�157, 1999.

[71] Brian Foote and Ralph E Johnson. Re�ective facilities in smalltalk-80. In Proc.

OOPSLA'89. ACM, 1989.

[72] Ira R Forman, Nate Forman, and John Vlissides Ibm. Java re�ection in action.

2004.

[73] George Fourtounis, George Kastrinis, and Yannis Smaragdakis. Static analysis of

java dynamic proxies. In Proc. ISSTA'18. ACM, 2018.

[74] George Fourtounis and Yannis Smaragdakis. Deep static modeling of invokedy-

namic. In Proc. ECOOP'19, 2020.

[75] George Fourtounis, Leonidas Triantafyllou, and Yannis Smaragdakis. Identifying

java calls in native code via binary scanning. In Proceedings of the 29th ACM

SIGSOFT International Symposium on Software Testing and Analysis, pages 388�

400, 2020.

[76] Martin Fowler. Refactoring: improving the design of existing code. Addison-

Wesley Professional, 2018.

[77] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for

object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium

and the 13th European conference on Foundations of software engineering, pages

416�419. ACM, 2011.

[78] Erich Gamma. Design patterns: elements of reusable object-oriented software.

Pearson Education India, 1995.

[79] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-

terns: Abstraction and reuse of object-oriented design. In Proc. ECOOP'93.

Springer, 1993.

[80] Brian Goetz. Translation of lambda expressions, 2012. http://cr.openjdk.

java.net/~briangoetz/lambda/lambda-translation.html.

[81] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The java

language speci�cation: Java se 8 edition. oracle america. Inc., Redwood City,

California, USA, 2015.

[82] Susan L Graham and Mark Wegman. A fast and usually linear algorithm for

global �ow analysis. Journal of the ACM (JACM), 23(1):172�202, 1976.

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-translation.html
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-translation.html


REFERENCES 123

[83] Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis.

Heaps don't lie: Countering unsoundness with heap snapshots. In Proc. OOP-

SLA'17. ACM, 2017.

[84] Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis.

Heaps don't lie: Countering unsoundness with heap snapshots. In Proceedings

OOPSLA'17. ACM, 2017.

[85] Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis.

Shooting from the heap: Ultra-scalable static analysis with heap snapshots. In

Proc. ISSTA'18. ACM, 2018.

[86] Neville Grech, George Kastrinis, and Yannis Smaragdakis. E�cient re�ection

string analysis via graph coloring. In Proc. ECOOP'18. Schloss Dagstuhl-Leibniz-

Zentrum für Informatik, 2018.

[87] Neville Grech and Yannis Smaragdakis. P/taint: uni�ed points-to and taint anal-

ysis. In Proc. OOPSLA'17. ACM, 2017.

[88] David Grove, Greg DeFouw, Je�rey Dean, and Craig Chambers. Call graph

construction in object-oriented languages. ACM SIGPLAN Notices, 32(10):108�

124, 1997.

[89] Rajiv Gupta, DA Benson, and Jesse Zhixi Fang. Path pro�le guided partial dead

code elimination using predication. In Proceedings 1997 International Conference

on Parallel Architectures and Compilation Techniques, pages 102�113. IEEE, 1997.

[90] Rajiv Gupta and Mary Lou So�a. Hybrid slicing: An approach for re�ning static

slices using dynamic information. ACM SIGSOFT Software Engineering Notes,

20(4):29�40, 1995.

[91] Robert J Hall. Automatic extraction of executable program subsets by simul-

taneous dynamic program slicing. Automated Software Engineering, 2(1):33�53,

1995.

[92] Ben Hardekopf and Calvin Lin. The ant and the grasshopper: fast and accurate

pointer analysis for millions of lines of code. In Proceedings of the 28th ACM

SIGPLAN Conference on Programming Language Design and Implementation,

pages 290�299, 2007.

[93] Matthew S Hecht. Flow analysis of computer programs. Elsevier Science Inc.,

1977.



REFERENCES 124

[94] Michael Hind, Michael Burke, Paul Carini, and Jong-Deok Choi. Interprocedural

pointer alias analysis. ACM Transactions on Programming Languages and Systems

(TOPLAS), 21(4):848�894, 1999.

[95] Martin Hirzel, Amer Diwan, and Michael Hind. Pointer analysis in the presence

of dynamic class loading. ECOOP 2004�Object-Oriented Programming, pages 96�

122, 2004.

[96] Marc R Ho�mann et al. Jacoco java code coverage library, 2014.

[97] Philipp Holzinger, Stefan Triller, Alexandre Bartel, and Eric Bodden. An in-depth

study of more than ten years of java exploitation. In Proc. CCS'16. ACM, 2016.

[98] David Hovemeyer and William Pugh. Finding more null pointer bugs, but not too

many. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program

analysis for software tools and engineering, pages 9�14, 2007.

[99] David Janzen and Hossein Saiedian. Does test-driven development really improve

software design quality? Ieee Software, 25(2):77�84, 2008.

[100] Kamil Jezek and Jens Dietrich. Magic with dynamo��exible cross-component

linking for java with invokedynamic. In LIPIcs-Leibniz International Proceedings

in Informatics, volume 56. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,

2016.

[101] Capers Jones. Software metrics: good, bad and missing. Computer, 27(9):98�100,

1994.

[102] Joel Jones. Abstract syntax tree implementation idioms. In Proceedings of the

10th conference on pattern languages of programs (plop2003), page 26, 2003.

[103] Herbert Jordan, Bernhard Scholz, and Pavle Suboti¢. Sou�é: On synthesis of

program analyzers. In International Conference on Computer Aided Veri�cation,

pages 422�430. Springer, 2016.

[104] Ken Kennedy. A global �ow analysis algorithm. International Journal of Com-

puter Mathematics, 3(1-4):5�15, 1972.

[105] Uday Khedker, Amitabha Sanyal, and Bageshri Sathe. Data �ow analysis: theory

and practice. CRC Press, 2017.

[106] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina

Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In

European conference on object-oriented programming, pages 220�242. Springer,

1997.



REFERENCES 125

[107] Gary A Kildall. A uni�ed approach to global program optimization. In Pro-

ceedings of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles of

programming languages, pages 194�206, 1973.

[108] James C King. Symbolic execution and program testing. Communications of the

ACM, 19(7):385�394, 1976.

[109] Barbara A Kitchenham, Shari Lawrence P�eeger, Lesley M Pickard, Peter W

Jones, David C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg. Preliminary

guidelines for empirical research in software engineering. IEEE Transactions on

software engineering, 28(8):721�734, 2002.

[110] Jens Knoop, Oliver Rüthing, and Bernhard Ste�en. Partial dead code elimination.

ACM SIGPLAN Notices, 29(6):147�158, 1994.

[111] Bogdan Korel and Janusz Laski. Dynamic program slicing. Information processing

letters, 29(3):155�163, 1988.

[112] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. The soot frame-

work for java program analysis: a retrospective. In Cetus Users and Compiler

Infastructure Workshop (CETUS 2011), volume 15, page 35, 2011.

[113] Wing Lam, Patrice Godefroid, Suman Nath, Anirudh Santhiar, and Suresh Thum-

malapenta. Root causing �aky tests in a large-scale industrial setting. In Proceed-

ings of the 28th ACM SIGSOFT International Symposium on Software Testing

and Analysis, pages 101�111, 2019.

[114] Davy Landman, Alexander Serebrenik, and Jurgen J Vinju. Challenges for

static analysis of java re�ection-literature review and empirical study. In 2017

IEEE/ACM 39th International Conference on Software Engineering (ICSE),

pages 507�518. IEEE, 2017.

[115] Frank Law, KP Chow, and YH Mai. Understanding computer forensics require-

ments in china via the" panda burning incense" virus case. The Journal of Digital

Forensics, Security and Law: JDFSL, 9(2):51, 2014.

[116] Sungho Lee, Julian Dolby, and Sukyoung Ryu. Hybridroid: Static analysis frame-

work for android hybrid applications. In Automated Software Engineering (ASE),

2016 31st IEEE/ACM International Conference on, pages 250�261. IEEE, 2016.

[117] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for �nding domina-

tors in a �owgraph. ACM Transactions on Programming Languages and Systems

(TOPLAS), 1(1):121�141, 1979.



REFERENCES 126

[118] Ond Lhoták et al. Comparing call graphs. In Proceedings of the 7th ACM

SIGPLAN-SIGSOFT workshop on Program analysis for software tools and en-

gineering, pages 37�42. ACM, 2007.

[119] Ond°ej Lhoták and Laurie Hendren. Scaling java points-to analysis using spark.

In International Conference on Compiler Construction, pages 153�169. Springer,

2003.

[120] Ond°ej Lhoták and Laurie Hendren. Evaluating the bene�ts of context-sensitive

points-to analysis using a bdd-based implementation. ACM Transactions on Soft-

ware Engineering and Methodology (TOSEM), 18(1):3, 2008.

[121] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. Precision-guided

context sensitivity for pointer analysis. In Proc. OOPSLA'18. ACM, 2018.

[122] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. Scalability-�rst

pointer analysis with self-tuning context-sensitivity. In Proc. ESEC/FSE'18.

ACM, 2018.

[123] Yue Li, Tian Tan, Yulei Sui, and Jingling Xue. Self-inferencing re�ection resolu-

tion for java. In Proc. ECOOP'14. Springer, 2014.

[124] Yue Li, Tian Tan, and Jingling Xue. Understanding and analyzing java re�ection.

ACM Transactions on Software Engineering and Methodology (TOSEM), 28(2):7,

2019.

[125] Sheng Liang. The Java Native Interface: Programmer's Guide and Speci�cation.

Addison-Wesley Professional, 1999.

[126] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The java virtual

machine speci�cation: Java se 8 edition, 2015. 2015. https://docs.oracle.com/

javase/specs/jvms/se8/html/index.html.

[127] Jie Liu, Yue Li, Tian Tan, and Jingling Xue. Re�ection analysis for java: Uncov-

ering more re�ective targets precisely. In Proc. ISSRE'17. IEEE, 2017.

[128] Yi Liu, Zhengqiu Yang, Jiapeng Xiu, and Chen Liu. Research on an anti-crawling

mechanism and key algorithm based on sliding time window. In 2016 4th Inter-

national Conference on Cloud Computing and Intelligence Systems (CCIS), pages

220�223. IEEE, 2016.

[129] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ond°ej Lhoták, J Nel-

son Amaral, Bor-Yuh Evan Chang, Samuel Z Guyer, Uday P Khedker, Anders

Møller, and Dimitrios Vardoulakis. In defense of soundiness: A manifesto. Com-

munications of the ACM, 58(2):44�46, 2015.

https://docs.oracle.com/javase/specs/jvms/se8/html/index.html
https://docs.oracle.com/javase/specs/jvms/se8/html/index.html


REFERENCES 127

[130] Benjamin Livshits, John Whaley, and Monica S Lam. Re�ection analysis for

java. In Proceedings of the Third Asian conference on Programming Languages

and Systems, pages 139�160. Springer-Verlag, 2005.

[131] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. An empirical

analysis of �aky tests. In Proceedings of the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering, pages 643�653, 2014.

[132] Luká² Marek, Alex Villazón, Yudi Zheng, Danilo Ansaloni, Walter Binder, and

Zhengwei Qi. Disl: a domain-speci�c language for bytecode instrumentation. In

Proceedings of the 11th annual international conference on Aspect-oriented Soft-

ware Development, pages 239�250, 2012.

[133] Luis Mastrangelo, Luca Ponzanelli, Andrea Mocci, Michele Lanza, Matthias

Hauswirth, and Nathaniel Nystrom. Use at your own risk: the java unsafe api in

the wild. In Proc. OOPSLA'15. ACM, 2015.

[134] E Michael Maximilien and Laurie Williams. Assessing test-driven development at

ibm. In 25th International Conference on Software Engineering, 2003. Proceed-

ings., pages 564�569. IEEE, 2003.

[135] Thomas J McCabe. A complexity measure. IEEE Transactions on software En-

gineering, (4):308�320, 1976.

[136] Gary McGraw. Software security. IEEE Security & Privacy, 2(2):80�83, 2004.

[137] Matthew Might, Yannis Smaragdakis, and David Van Horn. Resolving and ex-

ploiting the k-cfa paradox: illuminating functional vs. object-oriented program

analysis. In ACM Sigplan Notices, volume 45, pages 305�315. ACM, 2010.

[138] Ana Milanova, Atanas Rountev, and Barbara G Ryder. Parameterized object

sensitivity for points-to and side-e�ect analyses for java. In ACM SIGSOFT

Software Engineering Notes, volume 27, pages 1�11. ACM, 2002.

[139] Ana Milanova, Atanas Rountev, and Barbara G Ryder. Parameterized object sen-

sitivity for points-to analysis for java. ACM Transactions on Software Engineering

and Methodology (TOSEM), 14(1):1�41, 2005.

[140] Joan C Miller and Cli�ord J Maloney. Systematic mistake analysis of digital

computer programs. Communications of the ACM, 6(2):58�63, 1963.

[141] Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static analysis

for malware detection. In Twenty-Third Annual Computer Security Applications

Conference (ACSAC 2007), pages 421�430. IEEE, 2007.



REFERENCES 128

[142] Gail C Murphy, David Notkin, William G Griswold, and Erica S Lan. An empirical

study of static call graph extractors. ACM TOSEM, 7(2):158�191, 1998.

[143] Glenford J Myers, Tom Badgett, Todd M Thomas, and Corey Sandler. The art

of software testing, volume 2. Wiley Online Library, 2004.

[144] George C Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley

Weimer. Ccured: Type-safe retro�tting of legacy software. ACM Transactions on

Programming Languages and Systems (TOPLAS), 27(3):477�526, 2005.

[145] Sun Developer Network. The java hotspot performance engine architecture. Sun

Microsystem, 2007.

[146] James Newsome and Dawn Xiaodong Song. Dynamic taint analysis for automatic

detection, analysis, and signature generation of exploits on commodity software.

In Proc. NDSS'05. Internet Society, 2005.

[147] Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of program

analysis. Springer, 2015.

[148] Akira Nishimatsu, Minoru Jihira, Shinji Kusumoto, and Katsuro Inoue. Call-

mark slicing: an e�cient and economical way of reducing slice. In Proceedings

of the 1999 International Conference on Software Engineering (IEEE Cat. No.

99CB37002), pages 422�431. IEEE, 1999.

[149] David L Olson and Dursun Delen. Advanced data mining techniques. Springer

Science & Business Media, 2008.

[150] Carlos Pacheco and Michael D Ernst. Eclat: Automatic generation and classi�-

cation of test inputs. In Proceedings of the 19th European conference on Object-

Oriented Programming, pages 504�527. Springer-Verlag, 2005.

[151] Carlos Pacheco and Michael D Ernst. Randoop: feedback-directed random testing

for java. In Companion to the 22nd ACM SIGPLAN conference on Object-oriented

programming systems and applications companion, pages 815�816. ACM, 2007.

[152] Matthew M Papi, Mahmood Ali, Telmo Luis Correa Jr, Je� H Perkins, and

Michael D Ernst. Practical pluggable types for java. In Proceedings of the 2008

international symposium on Software testing and analysis, pages 201�212, 2008.

[153] Linda Dailey Paulson. Developers shift to dynamic programming languages. Com-

puter, 40(2):12�15, 2007.



REFERENCES 129

[154] David J Pearce, Paul HJ Kelly, and Chris Hankin. E�cient �eld-sensitive

pointer analysis of c. ACM Transactions on Programming Languages and Sys-

tems (TOPLAS), 30(1):4�es, 2007.

[155] Shawn Rasheed, Jens Dietrich, and Amjed Tahir. Laughter in the wild: A study

into dos vulnerabilities in yaml libraries. In 2019 18th IEEE International Confer-

ence On Trust, Security And Privacy In Computing And Communications/13th

IEEE International Conference On Big Data Science And Engineering (Trust-

Com/BigDataSE), pages 342�349. IEEE, 2019.

[156] Michael Reif, Michael Eichberg, Ben Hermann, Johannes Lerch, and Mira Mezini.

Call graph construction for java libraries. In Proc. FSE'16, pages 474�486. ACM,

2016.

[157] Michael Reif, Florian Kübler, Michael Eichberg, Dominik Helm, and Mira Mezini.

Judge: Identifying, understanding, and evaluating sources of unsoundness in call

graphs. In Proc. ISSTA'19. ACM, 2019.

[158] Michael Reif, Florian Kübler, Michael Eichberg, and Mira Mezini. Systematic

evaluation of the unsoundness of call graph construction algorithms for java. In

Proc. SOAP'18. ACM, 2018.

[159] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural data�ow

analysis via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pages 49�61, 1995.

[160] Henry Gordon Rice. Classes of recursively enumerable sets and their decision

problems. Transactions of the American Mathematical Society, 74(2):358�366,

1953.

[161] José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and Andrea

Arcuri. Combining multiple coverage criteria in search-based unit test generation.

In Proceedings SSBSE'15. Springer, 2015.

[162] Kevin A Roundy and Barton P Miller. Hybrid analysis and control of malware.

In International Workshop on Recent Advances in Intrusion Detection, pages 317�

338. Springer, 2010.

[163] Atanas Rountev, Ana Milanova, and Barbara G Ryder. Points-to analysis for java

using annotated constraints. ACM SIGPLAN Notices, 36(11):43�55, 2001.

[164] Barbara G Ryder. Constructing the call graph of a program. IEEE Transactions

on Software Engineering, (3):216�226, 1979.



REFERENCES 130

[165] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, LiamMiller-Cushon, and Ciera

Jaspan. Lessons from building static analysis tools at google. Communications of

the ACM, 61(4):58�66, 2018.

[166] Micha Sharir and Amir Pnueli. Two approaches to interprocedural data �ow

analysis. 1978.

[167] August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Marinov, and Owolabi Le-

gunsen. Re�ection-aware static regression test selection. In Proc. OOPSLA'19.

ACM, 2019.

[168] Kumar Shiv, Kingsum Chow, Yanping Wang, and Dmitry Petrochenko.

Specjvm2008 performance characterization. In David Kaeli and Kai Sachs, edi-

tors, SPEC Benchmark Workshop. Springer, 2009.

[169] Olin Shivers. Control-�ow analysis of higher-order languages. PhD thesis, PhD

thesis, Carnegie Mellon University, 1991.

[170] Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Braven-

boer. More sound static handling of java re�ection. In Asian Symposium on

Programming Languages and Systems, pages 485�503. Springer, 2015.

[171] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your contexts

well: understanding object-sensitivity. In Proceedings of the 38th annual ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, pages

17�30, 2011.

[172] Yannis Smaragdakis and George Kastrinis. Defensive points-to analysis: E�ective

soundness via laziness. In Proc. ECOOP'18. Schloss Dagstuhl-Leibniz-Zentrum

für Informatik, 2018.

[173] Brian Cantwell Smith. Re�ection and semantics in lisp. In Proc. POPL'84. ACM,

1984.

[174] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings

of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, pages 32�41. ACM, 1996.

[175] Vijay Sundaresan, Laurie Hendren, Chrislain Raza�mahefa, Raja Vallée-Rai,

Patrick Lam, Etienne Gagnon, and Charles Godin. Practical virtual method call

resolution for Java, volume 35. ACM, 2000.

[176] Tomonori Takada, Fumiaki Ohata, and Katsuro Inoue. Dependence-cache slicing:

A program slicing method using lightweight dynamic information. In Proceedings



REFERENCES 131

10th International Workshop on Program Comprehension, pages 169�177. IEEE,

2002.

[177] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus Lumpe,

Hayden Melton, and James Noble. Qualitas corpus: A curated collection of java

code for empirical studies. In Proc. APSEC'10, 2010.

[178] George K Thiruvathukal. Java grande forum report: Making java work for high-

end computing. 1998.

[179] Frank Tip and Jens Palsberg. Scalable propagation-based call graph construction

algorithms. In Proc. OOPSLA'00. ACM, 2000.

[180] Fumiaki Umemori, Kenji Konda, Reishi Yokomori, and Katsuro Inoue. Design

and implementation of bytecode-based java slicing system. In Proceedings Third

IEEE International Workshop on Source Code Analysis and Manipulation, pages

108�117. IEEE, 2003.

[181] Tiejun Wang and Scott F Smith. Precise constraint-based type inference for java.

In European Conference on Object-Oriented Programming, pages 99�117. Springer,

2001.

[182] Mark Weiser. Programmers use slices when debugging. Communications of the

ACM, 25(7):446�452, 1982.

[183] Mark Weiser. Program slicing. IEEE Transactions on software engineering,

(4):352�357, 1984.

[184] John Whaley and Monica Lam. An e�cient inclusion-based points-to analysis for

strictly-typed languages. Static Analysis, pages 79�99, 2002.

[185] John Whaley and Monica S Lam. Cloning-based context-sensitive pointer alias

analysis using binary decision diagrams. In Proceedings of the ACM SIGPLAN

2004 conference on Programming language design and implementation, pages 131�

144, 2004.

[186] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and

Anders Wesslén. Experimentation in software engineering. Springer Science &

Business Media, 2012.

[187] Suan Hsi Yong, Susan Horwitz, and Thomas Reps. Pointer analysis for programs

with structures and casting. ACM SIGPLAN Notices, 34(5):91�103, 1999.



Appendices

132



133

A.1 Mined Stack Traces Results

call site: org.dacapo.harness.Eclipse#iterate

target: org.eclipse.core.runtime.adaptor.EclipseStarter#run

stacktrace: https://github.com/dvyukov/data-race-test/issues/32

call site: org.dacapo.harness.Batik#iterate

target: org.apache.batik.apps.rasterizer.Main#execute

stacktrace: https://github.com/dvyukov/data-race-test/issues/32

call site: doppio.JarLauncher#main

target: org.python.util.jython#main

stacktrace: https://github.com/plasma-umass/doppio/issues/381

call site: org.apache.hadoop.hbase.mapreduce.Driver#main

target: org.apache.hadoop.util.ProgramDriver#driver

stacktrace: http://stackoverflow.com/questions/14421493/

import-text-file-to-hbase-using-importtsv

call site: com.google.common.base.internal.Finalizer#cleanUp

target: com.google.common.collect.MapMaker$SoftEntry#finalizeReferent

stacktrace: https://github.com/icella/guava-libraries/issues/252

call site: org.apache.hadoop.hbase.protobuf.ProtobufUtil#toFilter

target: org.apache.hadoop.hbase.filter.Filter#parseFrom

stacktrace: http://stackoverflow.com/questions/23805959/

protobuf-error-with-custom-filter

call site: org.jboss.weld.injection.producer.DefaultLife-

cycleCallbackInvoker#invokeMethods

target: jersey.repackaged.com.google.common.base.Preconditions#checkState

stacktrace: https://github.com/IQSS/dataverse/issues/2628

call site: org.springframework.boot.loader.MainMethodRunner#run

target: org.springframework.boot.loader.PropertiesLauncher#getArgs

stacktrace: https://github.com/spring-projects/spring-boot/issues/1037

call site: org.springframework.boot.loader.MainMethodRunner#run

target: org.springframework.boot.loader.PropertiesLauncher#main

stacktrace: http://stackoverflow.com/questions/25428454/

what-is-wrong-when-i-get-a-unable-to-determine-code-source-archive

https://github.com/dvyukov/data-race-test/issues/32
https://github.com/dvyukov/data-race-test/issues/32
https://github.com/plasma-umass/doppio/issues/381
http://stackoverflow.com/questions/14421493/import-text-file-to-hbase-using-importtsv
http://stackoverflow.com/questions/14421493/import-text-file-to-hbase-using-importtsv
https://github.com/icella/guava-libraries/issues/252
http://stackoverflow.com/questions/23805959/protobuf-error-with-custom-filter
http://stackoverflow.com/questions/23805959/protobuf-error-with-custom-filter
https://github.com/IQSS/dataverse/issues/2628
https://github.com/spring-projects/spring-boot/issues/1037
http://stackoverflow.com/questions/25428454/what-is-wrong-when-i-get-a-unable-to-determine-code-source-archive
http://stackoverflow.com/questions/25428454/what-is-wrong-when-i-get-a-unable-to-determine-code-source-archive
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call site: org.springframework.boot.loader.MainMethodRunner#run

target: org.springframework.boot.loader.JarLauncher#main

stacktrace: https://github.com/spring-projects/spring-boot/issues/1037

call site: org.apache.logging.log4j.core.config.plugins.util.PluginBuilder#build

target: org.apache.logging.log4j.core.layout.JsonLayout#createLayout

stacktrace: https://github.com/elastic/elasticsearch/issues/22103

https://github.com/spring-projects/spring-boot/issues/1037
https://github.com/elastic/elasticsearch/issues/22103
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A.2 Performance: CCT and SCG Build Time

program builtinTest generatedTest
lucene-4.3.0 89 1,001
guava-21.0 644 96
fitjava-1.1 4 18
castor-1.3.1 220 1,944
checkstyle-5.1 1,282 212
commons-collections-3.2.1 42 57
informa-0.7.0-alpha2 92 146
javacc-5.0 4 46
jFin_DateMath-R1.0.1 41 18
jgrapht-0.8.1 66 14
jrat-0.6 32 375
log4j-1.2.16 63 239
marauroa-3.8.1 38 68
nekohtml-1.9.14 5 25
openjms-0.7.7-beta-1 2 484
oscache-2.4.1 71 49
pmd-4.2.5 256 338
quartz-1.8.3 11 223
trove-2.1.0 14 44
velocity-1.6.4 51 119
wct-1.5.2 46 622
findbugs-1.3.9 66 1,309
htmlunit-2.8 2,000 1,030
jena-2.6.3 2,279 2,285
tomcat-7.0.2 94 778
weka-3-7-9 30 3,201
jfreechart-1.0.13 1,423 1,996
mockito-core-2.7.17 500 152
drools-7.0.0.Beta6 2,245 2,318
jrefactory-2.9.19 133 2,493
ApacheJMeter_core-3.1 367 1203
total running time 12,210 22,903

Figure 1: Performance:CCT build time (in minutes)
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program base-lib callsite-lib ref-lib refLite-lib base-super callsite-super ref-super refLite-super
lucene-4.3.0 6 36 360 360 17 88 360 360
guava-21.0 19 88 360 360 21 92 360 360
fitjava-1.1 1 2 7 13 1 2 7 13
castor-1.3.1 6 27 360 360 7 28 360 360
checkstyle-5.1 2 4 24 69 2 5 328 115
commons-collections-3.2.1 4 29 176 69 4 29 176 69
informa-0.7.0-alpha2 1 2 8 22 3 3 360 55
javacc-5.0 1 3 7 17 1 3 7 17
jFin_DateMath-R1.0.1 1 2 8 16 2 2 9 21
jgrapht-0.8.1 2 4 15 35 2 4 18 34
jrat-0.6 2 4 67 47 2 4 317 49
log4j-1.2.16 2 5 360 71 2 5 360 76
marauroa-3.8.1 2 3 11 30 2 3 221 63
nekohtml-1.9.14 1 2 8 27 1 2 29 31
openjms-0.7.7-beta-1 2 6 282 120 3 6 360 225
oscache-2.4.1 2 2 9 35 3 4 360 71
pmd-4.2.5 6 21 96 150 6 22 360 190
quartz-1.8.3 2 3 17 59 2 4 360 110
trove-2.1.0 2 2 12 22 2 2 12 22
velocity-1.6.4 2 3 17 48 2 4 360 76
wct-1.5.2 4 9 360 360 14 20 360 360
findbugs-1.3.9 4 20 128 253 5 20 360 360
htmlunit-2.8 6 21 360 360 8 23 360 360
jena-2.6.3 4 15 41 189 4 16 360 240
tomcat-7.0.2 7 28 360 292 8 30 360 360
weka-3-7-9 25 130 360 360 26 129 360 360
jfreechart-1.0.13 9 35 92 233 9 35 360 256
mockito-core-2.7.17 3 8 360 94 3 8 360 112
drools-7.0.0.Beta6 31 234 360 360 39 260 360 360
jrefactory-2.9.19 13 104 342 360 13 99 360 360
ApacheJMeter_core-3.1 10 60 360 360 22 77 360 360
total running time 182 912 5,327 5151 236 1,029 8,684 5,805

Figure 2: Performance:SCG build time (in minutes)
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