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Synopsis 
Captive breeding programs are a vital component of the conservation strategies for felids, but these 

programs are often hindered by poor reproductive performance. Knowledge of reproductive biology is 

crucial to improving in situ and ex situ felid breeding programs. This thesis provided the first 

comprehensive systematic review of the literature available on the reproductive biology of the extant 

felid species. It was concluded that the high prevalence of teratospermia and highly variable oestrous 

cycles in felids contribute towards their poor reproductive performance in captivity. The captive 

environment has been linked to reduced ejaculate quality and ovarian quiescence in felids, but it is 

difficult to elucidate whether this is due to captivity-related stress (i.e., elevated glucocorticoid (GC) 

concentrations) or other factors associated with captivity. This thesis aimed to determine whether a 

simulated endocrine stress response (GC treatment) altered the testicular and ovarian function of 

felids using the domestic cat as a model species. While epididymal sperm motility was unaffected by 

GC treatments, the percentage of morphological abnormal sperm was higher in GC-treated cats than 

in control cats. This would likely have an adverse effect on fertility as morphologically abnormal 

sperm are rarely involved in the fertilisation process. Glucocorticoid treatments did not affect the 

ovarian response of cats in which follicular growth and development was stimulated by exogenous 

gonadotrophins. However, ooplasm and zona pellucida morphology was graded poorer in GC-treated 

animals than control animals. Whether this corresponds to a reduction in fertility is unclear as the 

fertilisation capabilities of oocytes were not assessed. It would be worth investigating whether GC 

administration affects the natural oestrous cycles of cats, as elevated GC concentrations associated 

with captivity have been linked to ovarian quiescence. However, this would require an accurate and 

minimally invasive (i.e., low stress) method for monitoring the ovarian cycles of domestic cats. Thus, 

this thesis investigated whether accelerometry and infrared thermography could be used to monitor 

the ovarian function of cats. It was found that accelerometry could be used to detect an increase in 

activity of cats following the induction of follicular growth with equine chorionic gonadotrophin 

(eCG). Infrared thermography also identified changes in perivulvar temperature (PVT) driven by 

follicular development and ovulation, with PVT increasing as follicular growth occurred and 

decreasing following ovulation. Both methods show promise; however, further investigation into the 

use of accelerometry and IR thermography for monitoring ovarian function is needed. In conclusion, 

the results of thesis indicate that GC have adverse effects on the testicular and ovarian function of 

domestic cats. Thus, there is an urgent need to further investigate the effects of captivity-related stress 

on the reproductive performance of non-domestic felids. Furthermore, this thesis assessed two 

promising non-invasive methods for monitoring the ovarian activity of cats, with the findings being 

highly applicable for the management and breeding of non-domestic felids in captivity. 
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luteinising hormone (pLH), transcervical (TC), vaginal (V).  

Table 2.1 Progressive motility scores and their characteristics (Howard, 1993). 

Table 2.2 Types of morphological sperm abnormalities categorised as either primary or secondary 

abnormalities (Morato et al., 2001; Morais et al., 2002b; Crosier et al., 2007). 

Table 2.3 Weighed means of the percentages of morphologically abnormal sperm in the ejaculates of 

species from each felid lineage. Values calculated from data in Appendix 1c. Abbreviation: no data 

(ND). 

Table 2.4 The weighted means of ejaculate characteristics of captive and wild pumas, cheetahs, 

Iberian lynxes, jaguars, and lions Values calculated from data in Appendix 1c. Sperm motility 

index (SMI; %) = (% motile sperm + (20* progressive motility))/2. ‘n’ represents the number of 

ejaculates. Abbreviation: no data (ND). 



 

xvi 

Table 2.5 A summary of the serum/plasma oestradiol (pg/mL) and faecal oestradiol metabolite (FEM; 

ng/g faeces) concentrations during anoestrus/interoestrus (basal) and oestrus in the eight felid 

lineages. Basal and luteal (i.e., peak) concentrations of serum/plasma progesterone (ng/mL) and 

faecal progesterone metabolites (FPM; µg/g faeces) are also shown. Values are presented as mean 

and range. Values <10 are presented with one decimal place. No data = ND. All data have been 

derived from Appendix 2b. 

Table 2.6 Weighted means (in days) of female reproductive parameters of the eight felid lineages. 

The values presented have been calculated from Appendix 1b. *Excludes the lynx lineage. 

Abbreviations: non-pregnant luteal phase (NPLP), no data (ND). 

Table 2.7 Evaluation of the methods used to monitor follicular growth and/or detect oestrus in felids. 

For each method, the parameters are marked as either ‘✓’ meets parameter, ‘X’ does not meet 

parameter, ‘ND’ no data for felids. An ideal method would meet all the hypothetical parameters. 

Abbreviations: faecal oestradiol metabolites (FEM), faecal progesterone metabolites (FPM), 

infrared (IR), oestradiol (E2). 

Table 2.8 Some examples of reactive and anticipatory stressors and the signals pathways via which 

they stressors stimulate the HPA axis. 

Table 3.1 Mean (± SEM) serum cortisol, glucose, prednisolone, prednisone, and testosterone 

concentrations in untreated control cats (n=7) and treatment cats (n=8), given 1 mg/kg 

prednisolone for 50 Days. All cats were neutered on Day 50. Baseline samples were taken 

immediately before the first prednisolone treatment on Day 0. Treatment samples were taken from 

Day 2-50. ND = not detectable. NS = non-significant (P>0.10). 

Table 3.2 Sperm traits for the caput and cauda epididymal regions of untreated control cats (n=7) and 

cats that received 1 mg/kg prednisolone daily for 50 days (n=8). Values presented as mean ± SEM. 

Statistical comparisons were made between the control and treatment cats in the caput and cauda 

regions independently. †P<0.10, * P<0.05, ** P<0.01, ***P<0.001.  

Table 3.3 Testis histomorphometric data from cats in the control (n=7) and cats treated with 1 mg/kg 

prednisolone for 50 days (n=8). Seminiferous tubule length was calculated as: total seminiferous 

tubule length = (seminiferous tubule absolute volume [µL])/π(seminiferous tubule radius [µm]2). 

Gonadosomatic index (GSI) was calculated as: GSI [%] = testicular mass [g]/bodyweight 

[g])*100. Statistical significance was P<0.05 and a trend defined as P<0.10. Non-significant (NS) 

is used for P>0.10.  



 

xvii 

Table 3.4 Sertoli and germ cell type (spermatogonia, spermatocytes, round spermatids, and elongate 

spermatids) parameters from the cats in the control (n=7) and cats treated with 1 mg/kg 

prednisolone for 50 days (n=8) groups. Non-significant (NS) is used for P>0.10. 

Table 4.1 Parameters and criteria for grading cat oocytes. Note that the definitions of each grade for 

oocyte size and zona pellucida (ZP) characteristics were derived from the mean (± Stdev) of the 

oocyte diameter and ZP thickness for the oocytes collected in the present study. 

Table 4.2 The percentage of poor, moderate, and good quality oocytes retrieved from untreated 

control cats (n=6 cats and n=28 oocytes) and cats treated with 1 mg/kg prednisolone for 45 days 

(n=6 cats and n=30 oocytes). All cats were exposed to an exogenous ovarian control regime 

consisting of 0.088 mg/kg/day progesterone (Day 0 – 37), 75 IU eCG (Day 40) to stimulate 

follicular growth, and 50 IU hCG (Day 44) to induce ovulation. Oocytes were graded on four 

parameters (morphology, size, ooplasm, and ZP), with each parameter being graded from 0 – 2 

(2=best). The total oocyte score (TOS) was the sum of the grades for the four oocyte parameters. 

P>0.10 reported as non-significant (NS). 

Table 5.1 Correlations between the Heyrex® and observed time spent exhibiting sleeping, resting, 

scratching, walking, and running behaviour per five minutes over a 24-hour period. Spearman 

correlation coefficients were defined as strong (rho>0.60), moderate (rho = 0.30-0.60), weak 

(rho<0.30), or very weak (rho<0.10). Very weak and negative correlation coefficients are no 

shown. Behaviours that were exhibited by the cats but were not among the behaviours assessed by 

the Heyrex® devices were defined as ‘observed (other)’. Grey cells indicate target correlations. Red 

and orange cells indicate unexpected strong or moderate positive correlations, respectively.   
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ABP Androgen-binding protein  

AC Adenylate cyclase  
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AES Abiotic environmental stressors 

AI Artificial insemination 

ALT Altrenogest  

APCI Atmospheric pressure chemical ionisation  
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Chapter 1: General introduction and thesis aims 

1.1 The felid family: Felidae  

Felidae is a diverse family consisting of 38 extant species (Figure 1.1), with native representatives on 

all continents except Australia and Antarctica (Johnson and O’Brien, 1997; Slattery and O'Brien, 

1998; Johnson et al., 2006). Johnson et al. (2006) conducted an extensive genetic-based study into the 

origins and phylogeny of felids. The study confirmed earlier research suggesting eight distinct felid 

lineages (Domestic cat lineage, Leopard cat lineage, Puma lineage, Lynx lineage, Ocelot lineage, 

Caracal lineage, Bay cat lineage, and Panthera lineage), and placed several previously wrongly 

classified species (marbled cats (Pardofelis mamorata), servals (Caracal serval), Pallas’ cats 

(Otocolobus manul), and rusty spotted cats (Prionailurus rubiginosus)) into their appropriate lineages 

(Johnson and O’Brien, 1997; Slattery and O'Brien, 1998; Johnson et al., 2006). For the purpose of this 

thesis, the felid species and linages discussed are those described by Johnson et al. (2006; Figure 1.1). 

 

Figure 1.1 The phylogenetic and geographic origins of the extant felid species (Johnson et al., 2006). This 

phylogeny has been used to define the Felidae family and species throughout this thesis.  
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1.2 Conservation status of felids  

Felidae is one of the most widely threatened and endangered animal families, with many species 

requiring extensive conservation management (Nowell and Jackson, 1996). According to the 

International Union for Conservation of Nature (IUCN) Red List of Threatened species (IUCN, 2020), 

25 of the 37 non-domestic felids are endangered or threatened in at least part of their natural home 

range (Nowell and Jackson, 1996; Nowell, 2002; Swanson, 2003). Furthermore, all 37 non-domestic 

species are listed in either appendix one or two of the Convention on International Trade in 

Endangered Species (CITES) treaty (Table 1.1), which was developed to regulate and restrict the 

trade of endangered species (CITES, 2017).  

Table 1.1 Description of the three Convention on International Trade in Endangered Species (CITES) 

appendices (CITES, 2020). 

Appendix 

number 

Description  

Appendix 1 Species threatened with extinction and CITES prohibits international trade in specimens of these species 

except when the purpose of the import is not commercial (see Article III), for instance for scientific 

research. 

Appendix 2 Lists species that are not necessarily threatened now with extinction but that may become so unless trade is 

closely controlled. International trade in specimens of Appendix-II species may be authorized by the 

granting of an export permit or re-export certificate. No import permit is necessary for these species under 

CITES (although a permit is needed in some countries that have taken stricter measures than CITES 

requires). 

 Appendix 3 A list of species included at the request of a Party that already regulates trade in the species and that needs 

the cooperation of other countries to prevent unsustainable or illegal exploitation. International trade in 

specimens of species listed in this Appendix is allowed only on presentation of the appropriate permits or 

certificates. 

 

Nowell and Jackson (1996) developed a system to rank felid species according to their vulnerability to 

extinction (i.e., vulnerability assessment; Table 1.2). The assessment assumes that the number of 

habitats, geographic range, and body size of a species are all linked to the vulnerability to extinction. 

Species that are restricted to one or two habitat types (e.g., black-footed cats (Felis nirgripes), sand 

cat (Felis margarita), or Iberian lynx (Lynx pardinus)), are far more vulnerable to habitat loss and 

fragmentation than species that can inhabit a wide range of environments (e.g., leopard cat 

(Prionailurus bengalensis), bobcats (Lynx rufus), or puma (Puma concolor)). A species that exhibits a 

smaller geographic range is also more vulnerable to habitat destruction (Nowell and Jackson, 1996). 

Interestingly, body size appears to be positively correlated with vulnerability to extinction in felids 

(Nowell and Jackson, 1996), perhaps due to the increased human-animal conflict with larger felid 

species or the larger home ranges and territories of these species (Nowell and Jackson, 1996). 

The vulnerability scores and rankings, population trends, IUCN status, and CITES information for 

each of the 37 non-domestic felid species are summarised in Table 1.3. Black-footed cats and Iberian 

lynx are the most vulnerable species, with an extreme risk of extinction and a vulnerability ranking of 

one. Chinese mountain cats (Felis bieti), fishing cats (Prionailurus viverrinus), flat-headed cats 

http://www.cites.org/eng/disc/text.php#III
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(Prionailurus planiceps), cheetah (Acinonyx jubatus), kodkod/güiña (Leopardus guigna), African 

golden cats (Caracal aurata), bay cats (Pardofelis badia), tigers (Panthera tigris), and snow leopards 

(Panthera uncia) are of particular risk of extinction (vulnerability ranking of 2). It is alarming that 17 

felid species are classed as threatened across their entire range, and 28 of the 37 non-domestic species 

are exhibiting global population decline (IUCN, 2020). The aetiology of the declining population 

trends of most felids is highly variable, although habitat loss/fragmentation, decreased prey densities, 

human-animal conflict and illegal trade appear to be particularly problematic. 

Table 1.2 Vulnerability assessments for felids (Nowell and Jackson, 1996). Felid species are given a score 

between -2 and +1 for habitat association (number of habitat types inhabited), geographic range, and body size 

(left side of the Table). These scores are summed to provide the total vulnerability score, which is used to 

determine the species vulnerability ranking/risk of extinction (right side of the Table). Vulnerability scores 

range from 0 (most vulnerable) to 5c (least vulnerable).  

 

1.3 Major threats to felids  

1.3.1 Habitat loss and fragmentation 
Anthropogenic habitat degradation is one of the most significant threats currently facing felids 

(Fergus, 1991; Mizutani, 1999; Seidensticker et al., 1999; Kramer‐Schadt et al., 2004; Ray et al., 

2005; Michalski et al., 2006; Swanepoel et al., 2013; Wolf and Ripple, 2017). More than 60% of non-

domestic felids have experienced high to severe habitat loss (Table 1.3). The current geographic 

ranges of cheetah, lions (Panthera leo), leopards (Panthera pardus), tigers, snow leopards and 

clouded leopards (Neofelis nebulosa) are substantially smaller that their historic ranges (only 8.5%, 

6.3%, 20.6%, 4.7%, 22.4% and 36.3% of their historic range, respectively; Wolf and Ripple, 2017).  

Many felids can inhabit a range of different habitat types, but there are some habitat specialists (e.g., 

sand cat, black-footed cat, Pallas’ cat, fishing cat, Flat-headed cat, Leopardis spp., Andean mountain 

cat (Leopardis jacobita), and marbled cat; Table 1.3). It is generally these habitat specialists that have 

suffered most severely from habitat loss (Nowell and Jackson, 1996). Indeed, seven of the eight 

species listed above are severely threatened by habitat loss and fragmentation (Table 1.3). However, 

the effects of habitat loss have also become a severe problem for many species with a broad range of 

habitat associations (Table 1.3). 

Vulnerability 

Score 

-2 -1 0 +1  Total 

Vulnerability 

Score 

Vulnerability 

Ranking 

Habitat association 

(# habitats types) 

- Narrow  

(2-6) 

Intermediate  

(7-9) 

Broad  

(10+) 

-4 

-3 

-2 

-1 

0 

+1 

+2 

+3 

0 

1 

2 

3 

4 

5a 

5b 

5c 

Geographic range  

(x106 km2) 

Restricted  

(<1.5) 

Small  

(1.6-4.0) 

Medium  

(5.0-9.0) 

Wide  

(10.0-35.0) 

Body size 

(kg) 

- Large  

(35-135) 

Medium  

(7-20) 

Small  

(<6.5) 



 

 

 

Table 1.3 Vulnerability assessments (described in table 1.2), CITES appendices (described in table 1.1), and threats faced for each of the 38 felid species (Nowell and 

Jackson, 1996; Hunter and Barrett, 2011; CITES, 2020; IUCN, 2020). The International Union for Conservation of Nature (IUCN) statuses herein are as follows: data 

deficient (DD), least concern (LC), near threatened (NT), vulnerable (VU), endangered (EN). Other abbreviations: fragmentation (frag.), genetic diversity (GD) previously 

(prev.). 

L
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g
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Common Name 

(Scientific name) 

Vulnerability assessment    Threats    

Population 

trend 

IUCN 

Status 
CITES 

Habitat 

variability  

(No. main 

habitats [Total 

No. Hábitats]) 

Geographic 

Range 

 (x 106 km) 

Body 

weight 

(kg) 

Vulner-

ability 

Ranking 

Habitat 

loss and/or 

frag. 

Decreased 

prey 

density 

Persecuted 

for human-

animal 

conflict 

Illegal & 

commercial 

trade or 

hunting 

Other 

D
o

m
es

ti
c 

ca
t 

Domestic cat  

(Felis catus) 
 

- - - - - - - - - - - - 

European wild cat 

(Felis silvestris) 

 

Broad 

8 [12] 

Wide 

34.17 

Small 

3.5 

5c Low Moderate Low Low Hybridisation  

Road mortality 

Decrease LC A2 

African wild cat 

(Felis libyca) 

 

Intermediate 

6 [8] 

Wide 

16.80 

Small 

- 

5b DD DD Low DD Hybridisation DD DD A2 

Chinese mountain cat 

(Felis bieti) 

 

Narrow 

2 [5] 

Restricted 

0.29 

Small 

6.0 

2 DD High No conflict Low - Decrease VU  

 

A2 

Desert/Sand cat 

(Felis margarita) 

 

Narrow 

2 [3] 

Medium 

5.40 

Small 

2.5 

4 Moderate Moderate Low Low Diseases from cats 

and dogs 

DD LC A2 

Black-footed cat 

(Felis nigripes) 

 

Narrow 

3 [3] 

Restricted 

0.95 

Small 

1.2 

1 High DD No conflict DD By-kill from poison. Decrease VU  

 

A1 

Jungle cat 

(Felis chaus) 

 

Broad 

8 [13] 

Medium  

8.49 

Small 

5.4 

5b Moderate Low Low Low - Decrease LC A2 

L
eo

p
a

rd
 c

a
t 

Pallas’ cat 

(Otocolobus manul) 

 

Narrow 

4 [6] 

Medium 

5.08 

Small 

3.0 

4 High Severe No conflict Moderate - Decrease LC A2 

Rusty spotted cat 

(Prionailurus rubiginosus) 

 

Intermediate 

7 [7] 

Restricted 

0.78 

Small 

1.5 

3 High -  Low Low - Decrease VU  A1/A2 

Asian spotted/leopard cat 

(Prionailurus bengalensis) 

 

Broad 

7 [12] 

Medium 

8.66 

Small 

2.4 

5b Moderate - Moderate High Hybridisation (low) Stable LC A1/A2 

Fishing cat 

(Prionailurus viverrinus) 

 

Narrow 

5 [6] 

Small 

2.33 

Medium 

6.8 

2 Severe High Low Moderate Water pollution/prey 

contamination 

Decrease VU  

 

A2 

Flat-headed cat  

(Prionailurus planiceps) 

 

Narrow 

3 [3] 

Restricted 

1.18 

Small 

1.9 

2 High Moderate No conflict Moderate Water pollution/prey 

contamination 

Decrease EN 

 

A1 
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Common Name 

(Scientific name) 

Vulnerability assessment  Threats 

Population 

trend 
IUCN 

Status 
CITES 

Habitat 

variability  

(No. main 

habitats [Total 

No. Hábitats]) 

Geographic 

Range 

 (x 106 km) 

Body 

weight 

(kg) 

Vulner-

ability 

Ranking 

Habitat 

loss and/or 

frag. 

Decreased 

prey 

density 

Persecuted 

for human-

animal 

conflict 

Illegal & 

commercial 

trade or 

hunting 

Other 

P
u

m
a

 

Puma/mountain lion 

(Puma concolor) 

 

Broad 

8 [15] 

Wide 

17.12 

Large 

41.0 

5a High Moderate High Moderate Road mortality Decrease LC A1/A2 

Jaguarondi 

(Puma yagouaroundi) 

 

Broad 

6 [10] 

Wide 

13.54 

Small 

4.4 

5c High - Moderate Low - Decrease LC A1/A2 

Cheetah 

(Acinonyx jubatus) 

 

Intermediate 

4 [8] 

Medium  

7.35 

Large 

43.0 

2 High High Moderate Moderate Genetic 

homogeneity 

Decrease VU 

 

A1 

L
y

n
x
 

Iberian lynx 

(Lynx pardinus) 

Narrow 

3 [3] 

Restricted 

0.08 

Medium 

9.3 

1 Severe Severe Low Moderate Road mortality 

Genetic drift due to 

frag. 

Increase EN A1 

Eurasian lynx 

(Lynx lynx) 

 

Broad 

6 [12] 

Wide 

13.56 

Medium 

17.0 

5b Moderate Moderate High High Road mortality Stable LC A2 

Canadian lynx  

(Lynx canadensis) 

 

Intermediate 

4 [8] 

Medium 

5.06 

Medium 

8.5 

4 Moderate Moderate No Moderate Competition with 

coyote 

Stable LC A2 

Bobcat 

(Lynx rufus) 

Broad 

7 [11] 

Medium 

7.24 

Medium 

7.5 

5a Moderate  

(frag.) 

- Low High Road  mortality Stable LC A2 

O
ce

lo
t 

Ocelot 

(Leopardus pardalis) 

 

Intermediate 

5 [9] 

Wide 

12.45 

Medium 

8.8 

5a Moderate - Low Moderate Road mortality  Decrease LC A1 

Margay 

(Leopardus wiedii) 

 

Narrow 

2 [5] 

Medium 

6.06 

Small 

3.2 

4 Severe - Moderate High (prev. 

severe) 

Road mortality Decrease NT A1 

Andean mountain cat 

(Leopardus jacobita) 

 

Narrow 

2 [2] 

Restricted 

0.62 

Small 

4.0 

2 Low High Low Severe - Decrease EN 

 

A1 

Pampas cat 

(Leopardus 

pajeros/colocolo) 

Broad 

4 [10] 

Small 

3.86 

Small 

3.4 

5a High - Moderate low By-kill from poisons  

High road mortality 

Decrease NT A2 

Geoffroy’s cat  

(Oncifelis geoffroyi) 

 

Intermediate 

6 [7] 

Small 

2.80 

Small 

4.2 

4 Moderate - Moderate Low  

(prev. high) 

- Stable LC A1 

Güiña/Kodkod 

(Leopardus guigna) 

Narrow 

2 [4] 

Restricted 

0.16 

Small 

2.2 

2 Severe - Moderate to 

high 

- - Decrease VU 

 

A2 

Tigrina/Oncilla 

(Leopardus tigrinus) 

 

Narrow 

3 [4] 

Small 

2.90 

Small 

2.0 

3 Severe - Low Low  

(prev. high) 

Road mortality Decrease VU  A1 
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Common Name 

(Scientific name) 

Vulnerability assessment Threats 

Population 

trend 
IUCN 

Status 
CITES 

Habitat 

variability  

(No. main 

habitats [Total 

No. Hábitats]) 

Geographic 

Range 

 (x 106 km) 

Body 

weight 

(kg) 

Vulner-

ability 

Ranking 

Habitat 

loss and/or 

frag. 

Decreased 

prey 

density 

Persecuted 

for human-

animal 

conflict 

Illegal & 

commercial 

trade or 

hunting 

Other 

C
a

ra
ca

l 

Caracal  

(Caracal caracal) 

 

Intermediate 

6 [10] 

Wide 

18.99 

Medium 

10.0 

5b (A) High - Moderate - - DD LC A1 

African golden cat 

(Profelis/Caracal aurata) 

 

Narrow 

2 [5] 

Small 

2.46 

Medium 

10.0 

2 (A) Severe Moderate Low Low - Decrease VU 

 

A2 

Serval 

(Leptailurus/Caracal 

serval) 

 

Intermediate 

7 [9] 

Medium 

8.18 

Medium 

10.0 

3 High Moderate Low Moderate - Stable LC A2 

B
a

y
 c

a
t 

Bay cat 

(Pardofelis badia) 

 

Narrow 

2 [2] 

Restricted 

0.05 

Small 

2.4 

2 Severe DD DD Low - Decrease EN 

 

A2 

Timminck’s/Asiatic 

golden cat 

(Pardofelis temminckii) 

 

Intermediate 

5 [8] 

Small 

2.66 

Medium 

10.0 

3 High Low Low Moderate - Decrease NT A1 

Marbled cat 

(Pardofelis marmorata) 

 

Narrow 

3 [4] 

Small 

2.42 

Small 

3.5 

3 Severe - Low High - Decrease NT 

 

A1 

P
a

n
th

er
a

 

Lion  

(Panthera leo) 

 

Intermediate 

5 [7] 

Medium 

7.18 

Large 

126.0 

3 (A) Moderate 

(frag.) 

High Severe High Low GD in some 

populations 

Decrease VU 

 

A1/A2 

Jaguar  

(Panthera onca) 

 

Intermediate 

4 [7] 

Medium 

8.91 

Large 

56.0 

3 (A) High High High Moderate - Decrease NT A1 

Leopard  

(Panthera pardus) 

 

Broad 

5 [15] 

Wide 

23.14 

Large 

40.0 

4 (A) Moderate High Severe High - Decrease VU A1 

Tigers 

(Panthera tigris) 

 

Intermediate 

6 [9] 

Small 

1.99 

Large 

136.0 

2 (A) Severe High Severe Severe Reduced GD due to 

habitat frag. 

Decrease EN 

 

A1 

Snow leopard 

(Panthera uncial) 

 

Intermediate 

1 [7] 

Small 

2.39 

Large 

37.5 

2 (A) Moderate High High High - Decrease VU 

 

A1 

Clouded leopards  

(Neofelis nebulosa) 

 

Intermediate 

4 [8] 

Small 

2.79 

Medium 

20.0 

3 (A?) Severe High High High - Decrease VU 

 

A1 
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The adverse effects of habitat loss and fragmentation on felids are exacerbated by the naturally large 

home ranges and territories of most species. Some of larger felids such as puma, cheetah, Eurasian 

lynx, and snow leopards have enormous home ranges (25-1000 km2, 185-1850 km2, 98-1850 km2, and 

58-4500 km2, respectively; Sunquist and Sunquist, 2002; Kramer‐Schadt et al., 2004). Even many of 

the small and medium sized felids exhibit natural home ranges of 20-100 km2 (Sunquist and Sunquist, 

2002). These large natural home ranges are likely dictated by naturally low prey densities (Litvaitis et 

al., 1986; Herfindal et al., 2005; Schmidt, 2008; Loveridge et al., 2009; Wolf and Ripple, 2016). 

Regardless of the causes, large home ranges ultimately mean that remnants of appropriate habitats are 

often too small to maintain effective population sizes of these species. Moreover, they are often too 

sparsely located to allow for regular dispersal and thus gene flow between populations (Palomares et 

al., 2000; Kramer‐Schadt et al., 2004; Wilting et al., 2006). 

1.3.2 Poaching – legal and illegal hunting 
Felids are frequently hunted for ingredients for traditional medicines, the pet trade, meat, pelts or 

other ornaments, and in retaliation for human-animal conflict (Nowell and Jackson, 1996; Hunter and 

Barrett, 2011). Despite numerous legislations restricting the hunting and trade of felids (Inskip and 

Zimmermann, 2009; CITES, 2020), hunting and trapping (both legal and illegal) remain a substantial 

threat to the existence of many species (Table 1.3; Nowell and Jackson, 1996). Furthermore, there is a 

strong association between risk of extinction and poaching intensity (Ferreras et al., 1992; Kenney et 

al., 1995; Palazy et al., 2011; Li and Lu, 2014). The poaching of many felids has intensified over the 

past 30 years and is one of the main anthropogenic causes of mortality (Ferreras et al., 1992; Kenney 

et al., 1995; Haines et al., 2005; Palazy et al., 2011; Li and Lu, 2014). This is likely related to the 

increased threat status and reduced population numbers, since rarer species are of greater economic 

value as trophies (Palazy et al., 2011). Palazy et al. (2011) called the positive association between 

threat status and poaching intensity the “cat dilemma”, emphasising the significance of this 

association for felid conservation. 

1.3.3 Decreased prey densities  
The prey species of many felids have also been severely depleted due to anthropogenic habitat 

destruction, competition from domestic livestock, and hunting for resources (Nowell and Jackson, 

1996; Damania et al., 2003; Schmidt, 2008; Jumabay-Uulu et al., 2014; Wolf and Ripple, 2016). 

More than a third of all felids have been at least moderately affected by reduced prey densities (Table 

1.3), with low prey density being associated with starvation, high levels of intra-and inter-specific 

competition, and reduced reproductive performance (Nowell and Jackson, 1996; Wolf and Ripple, 

2016). Most carnivores respond to decreasing prey density by increasing their home range (Wolf and 

Ripple, 2016). A negative correlation between home range size and prey density has been documented 

in felids, although the association is often weak as the home ranges of felids are highly variable and 

affected by various factors such as topography, sex, reproductive state, temporal or spatial variations 
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in prey density, and the amount of inter-intra-specific competition (Litvaitis et al., 1986; Herfindal et 

al., 2005; Schmidt, 2008; Loveridge et al., 2009; Jumabay-Uulu et al., 2014). Despite this, many 

felids have been shown to increase their natural home range in response to decreasing prey densities 

(Schmidt, 2008). Unfortunately, the destruction and fragmentation of suitable habitats has decreased 

the ability of felids to respond to reductions in prey density and forced many species to target 

alternative prey species (e.g., domestic animals). 

1.3.4 Persecution due to human-animal conflict  
Felids, especially larger species such as puma, Eurasian lynx (Lynx lynx), and Panthera spp., are often 

persecuted and killed by humans for preying on livestock or pets (Table 1.3). Felids have been 

reported to have killed a range of domestic animals (Patterson et al., 2004; Bagchi and Mishra, 2006; 

Michalski et al., 2006; Sangay and Vernes, 2008; Johansson et al., 2015; Jędrzejewski et al., 2017), 

but predation of livestock by lions, jaguars, leopards, tigers and snow leopards is of greatest economic 

consequence (Patterson et al., 2004; Sangay and Vernes, 2008). The losses of livestock due to 

predation (by felids or other carnivores) imposes a significant financial burden on ranch owners 

(annual financial losses can be >20%; Inskip and Zimmermann, 2009). As a result, retaliation killing 

of felids by ranch owners is common, with many farmers believing that lethal control of felids is 

required regardless of their threat status or any financial compensation schemes (Bagchi and Mishra, 

2006; Inskip and Zimmermann, 2009). 

The attitude of people towards many Panthera spp. is worsened by the potential threat of these 

species to humans, since human attacks/killings by tigers, lions, leopards, and jaguars are also 

common (Inskip and Zimmermann, 2009). Tigers are responsible for more attacks on humans than all 

of the other Panthera spp. combined (Inskip and Zimmermann, 2009), but there are also reports of 

frequent attacks on humans by lions and leopards. Unsurprisingly, lions, leopards, and tigers 

inhabiting areas bordering human civilisation are frequently persecuted and killed due to the threat 

they pose to human lives, or in response to attacks. 

1.3.5 Road mortality  
Felid populations have been further fragmented by large road/highway networks, with many busy 

highways acting as barriers to migration and causes of mortality (Cain et al., 2003; Kramer‐Schadt et 

al., 2004; Poessel et al., 2014; Litvaitis et al., 2015). High levels of road mortality have been reported 

for European wildcats, puma, and species within the lynx and ocelot lineages (Table 1.3). These 

species are possibly most prone to road mortality because their geographic range (i.e., part or all of 

their range in Europe or North America), is bisected by dense road networks and high traffic rates. 

The fragmentation of felid populations by roads is also problematic as it can lead to inbreeding, and 

thus reduced fertility (Obrien et al., 1985; Menotti-Raymond and O'Brien, 1993; Pukazhenthi et al., 

2006b). In fact, extensive road networks have been a major contributor to the severe fragmentation of 

many felid species (Ferreras et al., 1992; Ferreras, 2001). Felids generally have an aversion towards 
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open areas and prefer to construct territories in areas with low road densities, but habitat loss and 

reduced prey densities have forced many species to cross large roads and establish territories in areas 

with higher road densities (Maehr et al., 1991; Taylor et al., 2002; Cain et al., 2003; Riley et al., 

2003; Haines et al., 2005; Poessel et al., 2014; Litvaitis et al., 2015). 

1.4 The importance of captive breeding programs for felid conservation 

The major threats (e.g., habitat loss and poaching) faced by many felids have made in situ 

conservation programs extremely difficult. Even though translocation (to maintain genetic diversity in 

fragmented populations) and other conservation efforts (e.g., habitat protection and reconstruction) 

have been successful, they are often hindered by high non-natural mortality rates (poaching or road 

mortality; Nowell and Jackson, 1996; Inskip and Zimmermann, 2009; Palazy et al., 2011; Poessel et 

al., 2014; Wolf and Ripple, 2016; 2017). Captive breeding programs have thus become pivotal to the 

conservation of many felid species. However, the conservation value of captive breeding programs for 

aiding the recovery of felids is questionable, since captive animals are rarely released into the wild, 

and even if this occurs, post-release survival rates are low due to a number of factors including poor 

hunting success (Jule et al., 2008). 

The maintenance of felids in captivity does, however, provide an opportunity for researchers to 

investigate felid behaviour and physiology, the findings of which can be applied to improve both ex 

situ and in situ conservation efforts. For example, over the past decade there has been an increase in 

research effort towards the use of assisted reproductive technologies (ART) for felid conservation 

(Rodrigues da Paz et al., 2005; Swanson, 2006; Rodrigues da Paz, 2012). This has largely been driven 

by the need to maintain or increase the genetic diversity of wild felid populations, although virtually 

all studies attempting artificial insemination (AI) on felids have been conducted on captive animals. 

Successful AI protocols would enable the transfer of genes between captive institutions or fragmented 

wild populations without the need for translocating animals, which is not only logistically 

challenging, but stressful for the animals. This would greatly enhance the conservation value of 

captive breeding programs for felids, and many other endangered species. At present, however, the 

use of ART in non-domestic felids has been limited by low success rates (Table 1.4; Barone et al., 

1994a; Howard et al., 1996; Howard et al., 1997; Roth et al., 1997a; Pelican et al., 2006; 

Thongphakdee et al., 2020). In fact, even the ‘natural breeding’ of captive felids is often hindered by 

poor reproductive success, which suggests that captivity adversely affects felid reproduction (Mellen, 

1991; Moreira et al., 2007; Fanson et al., 2010; Brown, 2011). 
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Table 1.4 Pregnancy rates of several felids following the artificial insemination (AI) with fresh or frozen sperm 

following natural or induced oestrus and induced ovulation. Table modified from Thongphakdee et al. (2020). 

Abbreviations: equine chorionic gonadotrophin (eCG), gonadotrophin-releasing hormone (GnRH), human 

chorionic gonadotrophin (hCG), laparoscopic uterine (LU), laparoscopic oviductal (LO), porcine follicle 

stimulating hormone (pFSH), porcine luteinising hormone (pLH), transcervical (TC), vaginal (V).  

Species 

Oestrus/ovulation 

induction 

Sperm type AI sperm 

deposition 

site 

Pregnancy 

success (%) 

Reference 

Pallas cat eCG/pLH Fresh LO 1 pregnant (Swanson, 2012) 

Leopard cat eCG/hCG 

eCG/hCG 

Fresh/frozen 

Fresh 

LU 

LU 

  25 (1/4) 

  50 (1/2) 

(Wildt et al., 1992) 

(Tajima et al., 2016) 

Puma eCG/hCG Fresh LU   13 (1/8) (Barone et al., 1994b) 

Cheetah pFSH/hCG 

eCG/hCG 

eCG/hCG 

Fresh/frozen 

Fresh 

Fresh 

TC 

LU 

LU 

      0 (0/23) 

    46 (6/13) 

    27 (3/11) 

(Wildt et al., 1986) 

(Howard et al., 1997) 

(Howard et al., 1997; Howard et al., 2002) 

Ocelot  

 

eCG/hCG 

eCG/hCG 

eCG/pLH 

Fresh 

Frozen 

Fresh 

LU 

LU 

LO 

  25 (1/4) 

  25 (1/4) 

1 pregnant 

(Moraes et al., 1997) 

(Moraes et al., 1997) 

(Swanson, 2012) 

Tigrina eCG/hCG Fresh LU   25 (1/4) (Moraes et al., 1997) 

Lion Natural/GnRH Fresh V/TC   29 (4/14)  (Callealta et al., 2019) 

Leopard Natural/hCG Fresh TC 100 (1/1) (Dresser et al., 1982) 

Snow leopard eCG/hCG Fresh LU       7 (1/15)  (Roth et al., 1997b) 

Clouded leopard  

 

eCG/hCG 

eCG/pLH 

eCG/pLH 

Fresh 

Fresh 

Frozen 

LU 

LO 

LO 

     5 (1/20) 

  25 (1/4) 

20 (1/5)  

(Howard et al., 1997; Howard et al., 2002) 

(Tipkantha et al., 2017) 

(Howard et al., 1996) 

 

 

Unsurprisingly, the poor reproductive performance of many felids in captivity has been detrimental to 

their ex situ conservation. Captive populations of some felids, such as the cheetah, are not self-

sustaining, with the annual death rates exceeding birth rates (Marker, 2012). Furthermore, only a 

small subset of captive felid populations are typically involved in captive breeding programs, greatly 

limiting the potential for maintaining and improving genetic diversity. As of 2013, only 20% of 

captive cheetahs in North America have reproduced (Grisham et al., 2013). Breeding a greater 

number of captive individuals is often restricted by the need for transporting animals, and associated 

risks with intra-specific aggression and mate incompatibility (Foreman, 1997; Wielebnowski and 

Brown, 1998; Moreira et al., 2001; Brown et al., 2002; Wielebnowski et al., 2002a; Henriksen et al., 

2005; DeCaluwe et al., 2013; Thongphakdee et al., 2018; Andrews et al., 2020; Thongphakdee et al., 

2020). While the natural breeding is optimal for sustaining captive populations of felids, the 

aforementioned challenges, along with the poor fertility of many individuals, make this difficult 

(Thongphakdee et al., 2018; Thongphakdee et al., 2020). Consequently, improving the success of 

ART for felids is likely pivotal to the ex situ of felids (Thongphakdee et al., 2018; Thongphakdee et 

al., 2020). The exact aetiology of the poor reproductive success and low pregnancy rates following 

ART procedures is unclear and likely to be multifactorial, but research into different aspects of the 

problem is important to improve the success of felid captive breeding programs.  
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1.5 Thesis aims 

The ultimate aim of this thesis was to identify and assess some key factors that influence the 

reproductive performance of felids in captivity. This first required a detailed understanding of the 

normal reproductive biology of felids and how their reproductive performances differ between the 

wild and captivity. At the outset of this thesis, no comprehensive review of felid reproduction existed, 

so rectifying this became the first objective (Chapter 2). All other objectives were then derived from 

the detailed review (Chapter 2) and are thus presented at the end of Chapter 2 (section 2.8).  

 



 

14 

 

 

 

 



 

 

 

 

 

 

Chapter 2 

Literature review and thesis objectives 
 

 

Drawing by Farran McLean 

 

Parts of this chapter have been published as: 

Andrews C.J., Thomas D.G., Yapura J., Potter M.A. (2019). Reproductive biology of the 38 extant 

felid species: a review. Mammal Review 49, 16-30. A published version of this paper is available 

in Appendix 1. 

Andrews, C.J., Thomas, D.G., Welch, M.V., Yapura, J., Potter, M.A., 2020. Monitoring ovarian 

function and detecting pregnancy in felids: a review. Theriogenology 157, 245-253. A published 

version of this paper is available in Appendix 2.  
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Chapter 2: Literature review and thesis aims 

2.1 Introduction 

Felidae consists of 38 extant species that inhabit a wide variety of environments (Nowell and Jackson, 

1996; Johnson et al., 2006; IUCN, 2020). Twenty-five species are considered endangered or 

threatened in at least part of their natural geographic range, and all 37 non-domestic species are listed 

in the Convention on International Trade in Endangered Species (CITES) treaty (Chapter 1; Nowell 

and Jackson, 1996; Nowell, 2002; Swanson, 2003; Johnson et al., 2006; CITES, 2020). Poaching 

(either directly or of prey species), culling, and habitat destruction or fragmentation are the main 

reasons cited for the high proportion of threatened species within Felidae (See Table 1.3). The impacts 

of these factors are so severe that in situ conservation efforts are not sufficient to ensure the 

persistence of many species.  

Captive breeding programs have become an important component of the conservation strategies for 

many felid species, although the conservation value of such programmes is often questioned. Captive 

carnivores are rarely released into the wild, and, even if they are released, post-release survival rates 

are low due to a number of factors including poor hunting success (Jule et al., 2008). However, the 

maintenance of felids in captivity does provide opportunities for investigation of the behaviour and 

physiology, and findings can be applied to improve both ex situ and in situ conservation efforts. In 

fact, the vast majority of the published literature on the reproductive biology and physiology of felids 

has been conducted on captive animals. A major problem with captive breeding programmes has been 

the poor reproductive performance of many species in captivity (Mellen, 1991; Terio et al., 2004; 

Brown, 2006; Moreira et al., 2007; Fanson et al., 2010; Brown, 2011). Factors leading to poor 

reproductive success, and whether wild populations are also affected by such factors, can only be 

determined by having a thorough understanding of the reproductive biology of felids (Brown, 2006; 

Thongphakdee et al., 2018). Until now, however, there has been no comprehensive review of their 

reproductive biology. 

This review summarises literature on the reproductive biology of all extant felid species and identifies 

knowledge gaps. The methods used to monitor the ovarian and testicular function of felids are 

reviewed, with an emphasis on the advantages and limitations of each technique. The major factors 

that appear to affect the reproductive biology and fertility of felids are identified, and the implications 

of these for captive management are discussed. This thesis primarily focuses on the effects of stress 

on the reproductive performance of felids. Thus, a comprehensive review of the hypothalamic-

pituitary-adrenal (HPA) axis and the effects of stress on the mammalian hypothalamic-pituitary-

gonadal (HPG) axis is also included.  
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2.2 The hypothalamic-pituitary-gonadal axis  

While there are more upstream regulators of the HPG axis (e.g., gonadotrophin inhibitory hormone 

(GnIH) and kisspeptin (kiSS), gonadotrophin-releasing hormone (GnRH) is released from neurons 

within the hypothalamus and is thought to be the master regulator of the HPG axis, and hence, 

gonadal function and activity (Merchenthaler et al., 1984). Most vertebrates express multiple variants 

of GnRH, although GnRH1 is the most important regulator of the HPG axis in mammals (Naor, 

2009). The perikarya of GnRH1 neurons are primarily located in the preoptic area (POA), medial 

septum, suprachiasmatic nucleus and arcuate nucleus (ARC) of the hypothalamus, and these neurons 

project into the median eminence (ME) and secrete GnRH1 into the hypophyseal-portal blood 

(Merchenthaler et al., 1984).  

There are three key GnRH receptors, but GnRH receptor type 1 (GnRH-R1) has been recognised as 

the most important for the HPG axis as it is highly expressed on gonadotroph cells of the anterior 

pituitary (Naor, 2009). Gonadotrophin-releasing hormone receptor type 1 is a Gq/11 protein coupled 

receptor that has an intracellular signalling pathway that involves phospholipase C (PLC; Naor, 2009). 

The adenylate cyclase (AC)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) 

pathway is also triggered directly by the binding of GnRH to GnRH-R1, since GnRH-R1 is also 

coupled to a Gα protein (Naor, 2009). Both the PLC and AC-cAMP-PKA pathways act to upregulate 

the synthesis and secretion of LH and FSH (Naor, 2009; Tsutsui et al., 2010).  

In males, LH binds to the LH-receptor (LH-R) to activate the AC-cAMP-PKA signalling pathway that 

ultimately results in the synthesis of the steroidogenic enzymes involved in testosterone production 

(Whirledge and Cidlowski, 2010). A similar response to LH is observed in the thecal cells of the 

ovary, where LH signalling promotes the production of androstenedione (from cholesterol), which is 

the precursor for oestradiol (Hillier et al., 1994). Luteinising hormone has an additional role in the 

female, with the preovulatory LH surge inducing ovulation and promoting the formation of the corpus 

luteum (CL), and hence progesterone production; although, a number of other signalling molecules 

such as insulin-like growth factor 1 and transforming growth factor-β are also required (Richards et 

al., 2002). The control of ovulation is outside of the scope of this thesis and will not be covered 

further in this chapter, suffice to say that high concentrations of LH are required for ovulation.  

In the female, FSH binds to its Gs-coupled receptor (FSH-R) on the granulosa cells of the ovary to 

trigger AC, resulting in the production of cAMP and in turn, activation of PKA (Hillier et al., 1994). 

PKA up-regulates the expression of LH-R, promotes follicular development and activates P450 

aromatase, the enzyme required to convert thecal androstenedione/testosterone to oestrogens (Hillier 

et al., 1994; Richards et al., 2002). In the testis FSH stimulates Sertoli cells to promote 

spermatogenesis (Whirledge and Cidlowski, 2010). Ultimately, the gonadotrophins, LH and FSH, 
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stimulate steroidogenesis and gametogenesis in the male and female. A summary of the HPG axis and 

associated feedback loops can be seen diagrammatically in Figure 2.1.  

 

Figure 2.1 The hypothalamic-pituitary-gonadal (HPG) axis of male and female (red) animals with positive 

(solid green lines) and negative (dashed red lines) feedback loops. Note that the upstream regulators of 

gonadotrophin-releasing hormone (GnRH) such as gonadotrophin-inhibitor hormone (GnIH) and kisspeptin 

(kiSS) are not shown. Abbreviations: follicle stimulating hormone (FSH), gonadotrophin-releasing hormone 

(GnRH), luteinising hormone (LH), preoptic area (POA).  

 

2.3 A review of the reproductive biology of felids 

2.3.1 Methods used in literature selection  

2.3.1.1 Literature review 

Peer-reviewed literature and secondary papers (e.g., book chapters) on the reproductive biology of 

felids were reviewed for the period from 1941 to February 2021. Searches were conducted in both 

Web of Science and Google Scholar using the following terms:  

Female felids - “Common name” OR “scientific name” OR “alternative name” AND breed* OR cycl* 

OR cytology OR estradiol OR estrogens OR estrous OR estrus OR felid* OR laparo* OR luteal OR 

ovar* OR pregnan* OR progest* OR prostagland* OR pseudopreg* OR reproduct* OR relaxin OR 

ultraso*. 
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Male felids - “Common name” OR “scientific name” OR “alternative name” AND andro* OR 

ejaculat* OR breed* OR electroejaculat* OR motil* OR morpholog* OR pleiomorphic OR 

reproduct* OR sperm* OR teratosperm* OR testosterone OR “uret* catheteri$ation”. 

The citation lists of all publications were checked for additional publications until no new relevant 

literature was discovered. 

2.3.1.2 Summary statistics  

The values reported are weighted means of the values presented in Appendix 1b and Appendix 1c, 

with ‘nE’ representing the number of reproductive events [entire oestrous cycles, oestrus, interoestrus, 

non-pregnant luteal phases (NPLP; often referred to as pseudopregnancy), or ejaculates] and ‘n’ being 

the number of individuals. Appendix 1b summaries the data available the oestrous cycle each of the 

extant felid species, all values were calculated as weighted means of the values reported in each of the 

publications cited, and are presented with a mean, range, and sample size (n, nE). The ejaculate 

assessments from individual publications are presented in Appendix 1c, with values presented as 

means ± standard errors. The data from some publications in Appendix 1c were categorised according 

to collection method, sperm quality (teratospermic vs. normospermic males), season, habitat status 

(wild, captive on exhibit, or captive off exhibit), or genetic diversity (GD; i.e., males from populations 

with high or low GD), in order to determine whether and how these factors affect sperm quality in 

felids. 

Statistical analyses were conducted using RStudio version 1.0.143 (R Foundation for Statistical 

Computing, Vienna, Austria) and a significance level of P<0.05. Normality was tested using a 

Shapiro-Wilk test. Parametric data were analysed using either a two-sample t-test or an analysis of 

variance and Tukey’s post-hoc test. A Kruskal-Wallis test or pairwise Wilcoxon rank sum test was 

used to analyse non-parametric data.  

2.3.2 Literature analysis  
A total of 223 papers on felids were used for section 2.3; 173 of these focussed on the reproductive 

biology of felids. The literature was heavily biased towards the domestic cat (Felis catus), cheetah, 

and the panthera lineage (Figure 2.2). Research on the reproductive biology of non-domestic felids in 

the bay cat, caracal and domestic cat lineages was restricted to a few studies (Figure 2.2), many of 

which had very small sample sizes. The small amount of literature on caracals (Caracal caracal) and 

servals (Caracal serval) was surprising (only six and three publications, respectively) given the 

numbers of both these species in captivity.  

 



 

 

 

 

Figure 2.2 Numbers of publications on the reproductive biology of each of the 38 felid species, based on the publications listed in Appendix 1b and Appendix 1c. The total 

numbers of publications for each lineage (abbreviated as L.) do not necessarily equal the sum of the numbers of publications, because many publications included species 

from multiple lineages and/or information on the reproductive biology of both male and female felids. For the same reason, the total number of publications, number of 

female-focussed (♀) publications, and number of male-focussed (♂) publications for all species does not equal the sum of these values across lineages. 
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2.3.3 Reproductive biology of male felids 

2.3.3.1 Methods used for semen collection  

2.3.3.1.1 Electroejaculation  

Electroejaculation (EE) was first used to collect ejaculates from domestic cats in the 1970s and has 

now become the most common method for sperm collection in felids (Platz and Seager, 1978; Wildt 

et al., 1983; Wildt et al., 1988; Morais et al., 2002). The process of EE requires sedation and appears 

to have no detrimental effects on ejaculate quality, even if repeated more than once on a single animal 

(Platz and Seager, 1978). Electroejaculation requires a rectal probe (diameter ranging from 0.6 to 3.7 

cm) with three longitudinal electrodes and an electrostimulator (Platz and Seager, 1978; Shivaji et al., 

1998; Pukazhenthi et al., 2000; Crosier et al., 2009; Erofeeva et al., 2014). The probe is inserted into 

the rectum and the longitudinal electrodes positioned ventrally against the accessory sex organs 

(Shivaji et al., 1998; Erofeeva et al., 2014). The electrostimulator then sends a series of short (2-3 

second) low voltage pulses to stimulate the nerves innervating the reproductive organs (Brown et al., 

1989; Shivaji et al., 1998; Pukazhenthi et al., 2000; Axnér and Linde-Forsberg, 2002). Semen is 

collected by placing the glans penis inside a pre-warmed Eppendorf tube (Axnér and Linde-Forsberg, 

2002). 

2.3.3.1.2 Artificial vagina  

Ejaculates have also been collected from domestic cats using an artificial vagina (Sojka et al., 1970; 

Axnér and Linde-Forsberg, 2002; Lambo et al., 2012). The male is exposed to a “teaser female” (i.e., 

a female in oestrus) and allowed to mount without intromission (Sojka et al., 1970; Lambo et al., 

2012). A rubber artificial vagina is placed over the glans penis and sperm is collected (Sojka et al., 

1970; Axnér and Linde-Forsberg, 2002; Lambo et al., 2012). However, this method requires the male 

to be trained, and is only successful about 60% to 70% of the time (Platz et al., 1978). Even in trained 

males, this technique is unlikely to be successful if the male is in unfamiliar surroundings, thus 

limiting the practical application of the technique (Axnér and Linde-Forsberg, 2002). 

2.3.3.1.3 Urethral catheterisation  

Semen has been collected successfully from domestic cats, jungle cats (Felis chaus), leopard cats 

(Prionailurus bengalensis), and lions (Panthera leo) using urethral catheterisation (UC; Lueders et 

al., 2012; Lueders et al., 2014; Cunto et al., 2015; Kheirkhah et al., 2017). The technique requires 

pharmacological induction to trigger the release of sperm into the urethra, which is most commonly 

achieved via an intramuscular injection of medetomidine (approximately 130 – 140 µg/kg of 

bodyweight; Zambelli et al., 2008; Lueders et al., 2012; Lueders et al., 2014; Cunto et al., 2015; 

Kheirkhah et al., 2017). Ejaculates are collected via capilliary action into a catheter and pre-warmed 

Eppendorf tubes 20 – 40 minutes after pharmacological induction, depending on when 
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pharmacological effects are observed (Zambelli et al., 2008; Lueders et al., 2012; Lueders et al., 

2014; Cunto et al., 2015; Kheirkhah et al., 2017). 

2.3.3.1.4 Epididymal sperm collection  

Sperm have also been collected from the epididymis of domestic cats following castration or post-

mortem (Neubauer et al., 2004; Gañán et al., 2009; Müller et al., 2012; Gutiérrez-Reinoso and 

García-Herreros, 2016). The cauda epididymis is separated from the testis and immersed in a buffer 

medium (e.g., Hams 10 or phosphate buffered saline (PBS) buffer supplemented with pyruvate and/or 

foetal calf serum and an antibiotic), that has been warmed and maintained at 37ºC (Neubauer et al., 

2004; Müller et al., 2012; Gutiérrez-Reinoso and García-Herreros, 2016). While immersed, the cauda 

epididymis is minced with a blade to release the sperm into the medium to create a “sperm 

suspension” that can be fixed for assessment or cryopreserved (Neubauer et al., 2004; Gañán et al., 

2009; Müller et al., 2012).  

2.3.3.2 Assessment of felid sperm 

2.3.3.2.1 Volume and concentration 

The concentration of sperm within an ejaculate is evaluated using a haemocytometer/Neubauer 

chamber at 400 X magnification (Graham, 2001; Morato et al., 2001; Pukazhenthi et al., 2006a; 

Rodrigues da Paz, 2012). The overall concentration of sperm provides limited information about 

ejaculate quality, but it is needed to estimate the total number of viable, motile, and morphologically 

normal sperm. Both volume and concentration are greatly affected by the collection method used and 

are important consideration when extending and storing sperm for ART (e.g., dilution rates). 

2.3.3.2.2 pH 

The optimal ejaculate pH for felids appears to be between 6.5 and 9.0, though this differs slightly 

across species (Roth et al., 1996; Axnér and Linde-Forsberg, 2002; Bertschinger et al., 2008; Gañán 

et al., 2010; Herrick et al., 2010). An abnormally low pH indicates urine contamination, while a pH 

higher than the normal range suggests possible bacterial contamination (Rodrigues da Paz, 2012). A 

pH outside the physiologically ‘normal’ range can damage sperm cell integrity and decrease their 

motility, thus reducing the fertility of collected ejaculates (Roth et al., 1996). 

2.3.3.2.3 Sperm vitality/membrane integrity  

The proportion of living sperm in an ejaculate is indicative of sperm quality and male fertility, since 

sperm must be alive to be fertile. Sperm vitality is generally determined through the use of two stains; 

a membrane permeable stain that stains living cells, and a non-permeable stain that only stains cells 

with compromised membrane integrity (i.e., dead cells). Staining combinations such as eosin/nigrosin 

or aniline blue and eosin/fast green FCF have been widely used to assess sperm vitality in felids via 

phase-contrast microscopy (van Dorsser and Strick, 2005; Thuwanut et al., 2011). However, 
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fluorescent stains such as SYBR-14 and propidium iodide are often preferred as they provide 

improved contrast between living and dead sperm (Garner and Johnson, 1995; Graham, 2001). Flow 

cytometry can be used to automatically assess sperm vitality of ejaculate samples stained with 

fluorescent markers (Garner and Johnson, 1995; Graham, 2001), thus providing a more accurate and 

less labour-intensive assessment of sperm vitality.  

2.3.3.2.4 Sperm motility  

Sperm must also be motile in order to successfully locate and fertilise an oocyte (Graham, 2001). 

Sperm motility is generally determined by examining semen samples under a phase-contrast 

microscope and determining the percentage of motile sperm (Graham, 2001; Morais et al., 2002). The 

percentage of motile sperm alone, however, provides limited information because it does not account 

for the type of movement exhibited by the sperm cells, which is a major factor influencing sperm 

transport. The type of movement exhibited by sperm can be assessed by subjectively scoring the 

sperm within a given sample according to a standardised progressive motility score (zero to five scale; 

Table 2.1; Howard, 1993; Morais et al., 2002; Rodrigues da Paz, 2012). Together, the percentage of 

motile sperm and progressive sperm motility provide a good indicator of functional sperm motility in 

a given ejaculate. These two assessments are often combined to provide a standard sperm motility 

index (SMI) value, which is calculated as: SMI = (% motile sperm + (20* progressive motility))/2 

(Morato et al., 2001; Crosier et al., 2009; Ganan et al., 2009; Gañán et al., 2010). 

Table 2.1 Progressive motility scores and their characteristics (Howard, 1993). 

Progressive 

motility 

score 

Movement 

0  No movement 

1 Poor lateral movement with minimal linear movement 

2 Moderate lateral movement with occasional linear movement 

3 Slow linear movement 

4 Linear movement 

5 Rapid linear movement  

 

2.3.3.2.5 Acrosome integrity  

An intact acrosome is essential for the successful penetration of the zona pellucida (ZP) surrounding 

the oocyte by the sperm (Pukazhenthi et al., 2006a). Various stains (e.g., Coomassie blue or 

fluorescently labelled plant lectins) can be used to assess acrosome integrity visually under a 

microscope, enabling researchers to classify sperm as having either a (1) normal intact, (2) abnormal 

intact, (3) normal non-intact or (4) abnormal non-intact acrosome (Gillan et al., 2005; Pukazhenthi et 

al., 2006a). In most studies, between 100 and 200 sperm cells are assessed to provide an estimate of 

the percentage of sperm with intact acrosomes within a given ejaculate sample (Crosier et al., 2007; 

Pukazhenthi et al., 2006a).  
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2.3.3.2.6 Sperm morphology 

Morphologically abnormal sperm exhibit compromised acrosome reactions, impaired ZP binding, 

reduced metabolic activity (e.g., decreased lactate production), and reduced motility and are much less 

fertile than normal sperm (Howard, 1993; Pukazhenthi et al., 2006b; Terrell et al., 2010). 

Morphologically abnormal sperm are rarely involved in the process of fertilisation (Howard et al., 

1990; Howard, 1993; Long et al., 1996; Pukazhenthi et al., 2006b), and can even impair the function 

of morphologically normal sperm by compromising the tyrosine-kinase phosphorylation of proteins 

involved in the acrosome reaction and ZP binding (Howard, 1993; Long et al., 1996; Pukazhenthi et 

al., 1996; 1998).  

Sperm morphology is generally assessed visually using light microscopy (1000 X magnification) with 

stains such as haematoxylin/eosin (Wildt et al., 1988; Crosier et al., 2007; Ganan et al., 2009). An 

ejaculate sample is smeared on a slide and a defined number of sperm (normally between 100 to 300) 

are assessed (Wildt et al., 1988; van Dorsser and Strick, 2005; Crosier et al., 2007; Ganan et al., 

2009). A wide range of morphological abnormalities have been observed in felid ejaculates, and these 

abnormalities can be categorised as either primary or secondary in nature (Table 2.2; Wildt et al., 

1987b; Howard et al., 1990; Crosier et al., 2007). 

Table 2.2 Types of morphological sperm abnormalities categorised as either primary or secondary abnormalities 

(Morato et al., 2001; Morais et al., 2002b; Crosier et al., 2007). 

Primary abnormalities  Secondary abnormalities 

Macrocephalic 

Microcephalic 

Polycephalic 

Detached head  

Detached flagellum  

Bent mid-piece with cytoplasmic droplet 

Acrosomal defects  Bent mid-piece without cytoplasmic droplet 

Abnormal mid-piece  Bent flagellum  

Biflagellate Proximal droplet 

Tightly coiled flagellum  Distal droplet  

Mitochondrial sheath aplasia  Spermatid  

 

Primary abnormalities occur during spermatogenesis and are normally of genetic origin, either 

directly (e.g., impaired Sertoli cell function or number), or indirectly through genetically-linked 

andrological conditions (i.e., conditions resulting in abnormal testosterone concentrations; 

Pukazhenthi et al., 2001; Chemes and Rawe, 2003; Pukazhenthi et al., 2006b; Crosier et al., 2009; 

Müller et al., 2012; Jewgenow et al., 2014). Secondary abnormalities are a consequence of abnormal 

conditions during sperm maturation and occur in the epididymis or ductus deferens. While secondary 

abnormalities are considered less severe than primary abnormalities, their aetiology is much more 

variable and difficult to identify (Pukazhenthi et al., 2001; Morais et al., 2002; Pukazhenthi et al., 

2006b). It is evident that secondary abnormalities are a consequence of the internal environmental 

conditions in which the sperm develop (e.g., hormone concentrations, seminal plasma composition 

and pH), but the factors that alter this internal environment can range anywhere from captivity-related 
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stress (stress induced decreased in testosterone concentrations) to dietary phytoestrogens (Setchell et 

al., 1987). 

2.3.3.3 Reproductive biology and ejaculate quality of male felids 

Literature on ejaculate quality is available for 28 of the 38 felid species (Appendix 1c). No published 

research found on the ejaculate traits of European wild cats (Felis silvestris), African wild cats (Felis 

lybica), Chinese mountain cats, rusty-spotted cats, Andean mountain cats, kodkods, African golden 

cats, bay cats, or marbled cats. The methods used to collect ejaculates or spermatozoa from domestic 

cats have a considerable effect on sample volume (P<0.05) and sperm concentration (P<0.05; Figure 

2.3). Methods other than EE have been used in only a few felid species (Appendix 1c), and 

comparable data are available only for domestic cats and lions. In the domestic cat, EE and 

epididymal sperm collections result in similar concentrations of sperm, while AV and UC provide 

lower sample volumes but substantially higher sperm concentrations (Figure 2.3). This is also 

apparent in the lion, where UC results in ‘ejaculate’ samples that are almost 80 times more 

concentrated than those obtained using EE [1940.0 x 106 sperm/mL (nE=7) vs. 24.4 x 106 sperm/mL 

(nE=48), respectively]. The significantly higher spermatozoa concentrations observed in ‘ejaculates’ 

collected by UC could be partly associated with the considerably smaller sample volumes obtained 

using this technique (Figure 2.3; Appendix 1c). The method of collection does not appear to have a 

significant effect on the number of abnormal sperm or on sperm motility, at least in the two species 

studied (i.e., lion and domestic cat). 

 

Figure 2.3 (a) Volume (grey) and sperm concentration (white) of ejaculates collected from domestic cats using 

four techniques: electroejaculation (EE), post-mortem epididymal sperm collection (EP), urethral catheterisation 

(UC), and artificial vagina (AV). Different letters indicate statistical significance (P<0.05), both within and 

between each variable. Sample sizes (i.e., number of ‘ejaculates’) are indicated as a number above each bar. 

Data on sample volume were not reported for epididymal collections. (b) Percentage of motile sperm (black), 

sperm motility index (SMI; grey) and percentage of morphologically abnormal sperm (white) in the ejaculates 

of domestic cats collected using EE, EP, UC, and AV. Sample sizes (i.e., number of ejaculates) are indicated as 

a number above each bar. Data on the percentage of abnormal sperm in samples collected using UC were not 

reported. The percentage of motile sperm, SMI, and percentage of morphologically abnormal sperm were 

similar between collection methods (P>0.05). 
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While SMI values differed between species (P<0.01), a Tukey’s post hoc test revealed that pumas and 

tigers were the only species to have significantly different SMI values (lowest and highest mean SMI 

values of all species, respectively). In general, sperm motility is relatively high among felids 

(Appendix 1c), with a mean SMI across species of 69% (range: 26-90%, nE=2104).  

Sperm vitality (69%, range: 49-87%, nE=443) and acrosome intactness (84%, range: 20-100%, 

nE=1763) also appeared to be high in fresh ejaculates of most felids, although only 13 of the 92 

studies that investigated felid ejaculate quality reported sperm vitality. In contrast, the percentage of 

morphologically abnormal sperm in felid ejaculates seemed high (61%, range: 3-98%, nE=2882; Table 

2.3), although there was considerable variation between the different felid lineages (P<0.001) and 

species (P<0.001). In fact, all publications from the puma and lynx lineages reported teratospermia 

(Appendix 1c; Table 2.3). 

Table 2.3 Weighed means of the percentages of morphologically abnormal sperm in the ejaculates of species 

from each felid lineage. Values calculated from data in Appendix 1c. Abbreviation: no data (ND). 

Lineage 
n 

(ejaculates) 

Total morphological abnormal sperm (%) Primary  

abnormalities 

(%) 

Secondary 

abnormalities 

(%) 
Weighted 

mean 
Minimum Maximum 

Domestic cat    473 53.0 23.8 90.7    7.7 (nE=150)   30.1 (nE=150) 

Leopard cat    130 43.9   3.2 80.4  20.3 (nE=40)   28.4 (nE=40) 

Puma        1055 75.6 63.2 93.5  34.5 (nE=543)   44.6 (nE=543) 

Lynx      84 78.8 63.2 98.2 ND ND 

Ocelot    312 41.9 17.6 71.0    9.2 (nE=157)   24.5 (nE=157) 

Caracal       7 29.4 12.0 36.4 ND ND 

Bay cat       1 61.0 ND ND ND ND 

Panthera    830 54.0   8.8 84.7  26.7 (nE=506)   22.3 (nE=506) 

Overall mean  2882 60.6   3.2 98.2  25.5 (nE=1396)   32.3 (nE=1396) 

 

Teratospermia is probably the most significant factor affecting the fertility of male felids and has been 

described multiple times in all felid lineages except for the caracal lineage, for which only two 

publications are available (Appendix 1c; Table 2.3). This is problematic given that morphologically 

abnormal sperm are rarely involved in the fertilisation process (Howard et al., 1990; Long et al., 

1996; Pukazhenthi et al., 2001; Pukazhenthi et al., 2006b). However, it is difficult to elucidate the 

aetiology of teratospermia in felids, since both primary (26%, range: 3-63%, nE=1396) and secondary 

(32%, range: 3-54%, nE=1396) sperm abnormalities are highly prevalent (Table 2.3). While secondary 

abnormalities are more prevalent (P=0.028), there is considerable variability between species. It is 

possible that the high incidence of teratospermia is due, in part, to poor GD, as species with poor GD 

(e.g., cheetah and puma) exhibit much higher percentages of morphologically abnormal sperm 

(Appendix 1c; Table 2.3). Furthermore, lions from populations with low GD produce ejaculates with 

much higher (approximately double) percentages of abnormal sperm than individuals from 

populations with greater genetic variance (Wildt et al., 1987b, Brown et al., 1991).  
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An alternative cause for the high proportions of abnormal sperm in felid ejaculates is the captive 

environment itself (e.g., captivity-related stress or diet). The ejaculate traits of captive and wild 

individuals have only been compared in puma, cheetah, Iberian lynx, lions, and jaguars (Panthera 

onca; Table 2.4). Captive jaguars and lions appear to produce ejaculates with higher percentages of 

morphologically abnormal sperm than their wild counterparts, while the ejaculate quality of captive 

pumas, cheetah, and Iberian lynx do not appear to differ greatly from that of their wild conspecifics 

(Table 2.4). This inconsistency is possibly related to the small number of ejaculates that have been 

collected and assessed from wild felids. Alternatively, it also possible that captive populations exhibit 

poorer GD than wild populations, which in turn, could contribute to reduced sperm quality; however, 

further research is required.   

Table 2.4 The weighted means of ejaculate characteristics of captive and wild pumas, cheetahs, Iberian lynxes, 

jaguars, and lions. Values calculated from data in Appendix 1c. Sperm motility index (SMI; %) = (% motile 

sperm + (20* progressive motility))/2. ‘n’ represents the number of ejaculates. Abbreviation: no data (ND).  

Species Lifestyle n 
Volume  

(mL) 

Concentration 

(x 106/mL) 

SMI 

(%) 

Morphologically 

abnormal (%) 

Puma Captive      40 2.9 23.9 61.2 82.5 

 Wild      47 2.7 12.8 56.5 80.9 

Cheetah Captive    831 1.5 30.3 51.1 74.0 

 Wild      62 ND 26.7 68.2 80.3 

Iberian lynx Captive      20 0.4 15.4 70.2 73.0 

 Wild        4 0.5 10.1 55.8 74.1 

Jaguar Captive    178 6.6   9.7 58.3 52.0 

 Wild        7 4.1 35.0 72.0 26.5 

Lion Captive      32 2.3 14.7 61.0 56.6 

 Wild      33 7.0 21.2 82.4 40.4 

Totals Captive 1110 2.4 26.0 53.4 70.0 

 Wild   156 2.6 11.8 67.3 69.5 

 

2.3.4 Reproductive biology of female felids 

2.3.4.1 The generalised feline oestrous cycle  

A detailed summary of the literature (84 publications) on the basic female reproductive biology and 

oestrous cycles of all 38 felid species is provided in Appendix 1b. The oestrous cycle of female felids 

consists of four phases: anoestrus, follicular phase (pro-oestrus and oestrus), interoestrus (while 

technically part of follicular phase, interoestrus has been considered separately within this review), 

and luteal phase/dioestrus (Figure 2.4; Brown, 2011). 

2.3.4.1.1 The follicular phase: pro-oestrus and oestrus 

The follicular phase of the oestrous cycle, which includes both pro-oestrus and oestrus, is defined by 

the presence of developing ovarian follicles (Chatdarong, 2003; Bristol-Gould and Woodruff, 2006). 

Pro-oestrus is relatively short in most felids (less than 24 h), and is marked by the presence of small, 

developing, primary or secondary follicles (Bristol-Gould and Woodruff, 2006; Brown, 2011). 

Developing follicles secrete oestradiol at an increasing rate, so pro-oestrus is also accompanied by a 

gradual rise in plasma oestradiol concentrations (Griffin, 2001; Chatdarong, 2003; Bristol-Gould and 
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Woodruff, 2006; Malandain et al., 2011). The indirect positive feedback of oestradiol on 

hypothalamic GnRH neurons via hypothalamic kisspeptin neurons up-regulates the activity of the 

HPG axis to further stimulate ovarian folliculogenesis and steroidogenesis (Kauffman et al., 2007; 

Smith et al., 2007; Popa et al., 2008). This positive feedback loop is responsible for the continued 

growth and development of follicles during the follicular phase.  

 

Figure 2.4 The generalised polyoestrous cycle of non-seasonal felids. 

 

Endocrine oestrus is defined by the presence of one or more mature tertiary or dominant follicles, and 

peak oestradiol concentrations (Bristol-Gould and Woodruff, 2006; Brown, 2011; Malandain et al., 

2011). Oestradiol is the primary stimulant of reproductive behaviours in domestic cats, with 

exogenous oestradiol treatments triggering the expression of oestrous behaviours in ovariectomised 

domestic cats (Michael and Scott, 1964; Whalen and Hardy, 1970). In contrast to the need for 

progesterone priming in spontaneous ovulators, oestradiol appears to be the only reproductive 

hormone required to stimulate the expression of oestrous behaviours in induced ovulators such as 

felids (Michael and Scott, 1964; Whalen and Hardy, 1970; Bakker and Baum, 2000). Oestrous 

behaviours are relatively consistent among felid taxa, with most species exhibiting an increase in the 
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frequency of grooming, allogrooming, rubbing, rolling, scent-marking, locomotor activity, 

vocalisation or calling, and lordosis (Blomqvist and Sten, 1982; Mellen, 1993; Umapathy et al., 2007; 

Kinoshita et al., 2009; Brown, 2011). The intensity of behavioural oestrus, however, differs 

considerably within and between felid species, and oestrus signs range from overt and easily 

detectable to hidden and undetectable (Blomqvist and Sten, 1982; Asa et al., 1992; Mellen, 1993; 

Foreman, 1997; Wielebnowski and Brown, 1998; Morato et al., 2001; Brown et al., 2002; Henriksen 

et al., 2005; van Dorsser et al., 2007; Kinoshita et al., 2009; Siemieniuch et al., 2012; Putman et al., 

2015). Felids are primarily induced or reflex ovulators, with coital stimuli required for the induction 

of ovulation. Coitus activates tactile neurons in the vagina and cervix, initiating an afferent signalling 

pathway that leads to the stimulation of hypothalamic GnRH neurons, and thus the pre-ovulatory 

GnRH/LH surge (Bakker and Baum, 2000; Richards et al., 2002). In felids, the magnitude and 

duration of the pre-ovulatory GnRH/LH surge is dependent on the number and frequency of 

copulations, and multiple matings are typically required to induce ovulation (Concannon et al., 1980; 

Shille et al., 1983; Glover et al., 1985; Schramm et al., 1994; Foreman, 1997; Bakker and Baum, 

2000). 

2.3.4.1.2 Interoestrus  

Most felids are polyoestrous, exhibiting multiple oestrous events throughout the year or breeding 

season (Graham et al., 1995; Brown, 2011). If ovulation does not occur during oestrus, then there is a 

period of ovarian quiescence before another oestrous event. The period between consecutive oestrous 

events is referred to as interoestrus and is associated with basal oestradiol concentrations.  

2.3.4.1.3 The luteal phase: dioestrus 

If ovulation occurs, the remaining theca and granulosa cells of the ruptured follicles are transformed 

into CL, a process called luteinisation (Richards et al., 2002; Feldman and Nelson, 2004). This phase 

of the oestrous cycle is referred to as dioestrus and is associated with a rise in plasma progesterone 

concentrations. Elevated progesterone concentrations have an important role in the maintenance of 

pregnancy in most species (Senger, 1997; Griffin, 2001).  

If conception occurs following ovulation, then dioestrus will consist of a pregnant luteal phase (PLP). 

Progesterone concentrations generally remain elevated throughout gestation; however, temporary 

mid-gestational decreases in plasma progesterone concentrations have been observed in felids 

(Czekala et al., 1994; Brown et al., 1995; Graham et al., 1995; van Dorsser et al., 2007; Malandain et 

al., 2011). The physiological significance of this drop in progesterone is not entirely clear, but it may 

reflect a switch from luteal to placental progesterone production (Briggs et al., 1990; Brown et al., 

1995; Feldman and Nelson, 2004; van Dorsser et al., 2007). Indeed, placental progesterone alone 

appears sufficient for the maintenance of pregnancy during late gestation, since a mid-gestational 

ovariectomy does not terminate pregnancy in domestic cats (Malassiné and Ferré, 1979; Brown et al., 
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1995). Regardless of the source, progesterone concentrations recover quickly from any mid-

gestational decreases and remain elevated through to parturition, returning to baseline levels just after 

birth (Czekala et al., 1994; Graham et al., 1995).  

Felids also exhibit prolonged non-pregnant luteal phases (NPLP), which occur following spontaneous 

ovulations or sterile coitus-induced ovulations (Feldman & Nelson 2004, Brown 2011, Malandain et 

al., 2011). Plasma progesterone concentrations observed during PLP and NPLP are similar, although 

NPLPs are shorter in duration (Appendix 1b; Brown et al., 1995; Graham et al., 1995; Dehnhard et 

al., 2012).  

2.3.4.1.4 Anoestrus 

Anoestrus is a prolonged phase of reproductive acyclicity that is normally associated with the non-

breeding season. Felids also exhibit a long period of reproductive inactivity following parturition and 

while young are suckling, referred to as lactational anoestrus (Feldman and Nelson, 2004; Brown, 

2011).  

2.3.4.2 Methods for monitoring the ovarian function of felids 

Five main methods have been used to monitor the reproductive state of felids: behavioural-based 

assessments, endocrine (oestradiol and progesterone) monitoring, vaginal cytology, ultrasonography, 

and laparoscopy (Figure 2.5). Endocrine-based monitoring of reproductive state was the most 

commonly used method (110 publications across 26 species), followed by laparoscopy (70 

publications across 19 species), and behavioural-based assessments (61 publications across 24 

species; Figure 2.5). However, laparoscopy was predominantly used to determine the ovarian 

response to exogenous gonadotrophin treatments and to guide assisted reproductive techniques 

(ART). Vaginal cytology and ultrasonography were used relatively infrequently (7% and 13% of 

publications, respectively; Figure 2.5). 

2.3.4.2.1 Behaviour 

In many animals, oestrus can be detected by observing overt behavioural changes, although this 

requires a thorough understanding of the behaviour of each species. The behavioural changes 

associated with oestrus can also differ considerably between individuals of the same species or even 

within a single individual (Silva et al., 2017). In addition, high levels of captivity-related stress can 

mask or inhibit behavioural changes that are normally linked to oestrus (Silva et al., 2017).  

In some felids, oestrus is associated with an expression of specific ‘reproductive behaviours’ (e.g., 

lordosis or calling/prusten; Blomqvist and Sten, 1982; Mellen, 1993; Graham et al., 1995; Foreman, 

1997; Umapathy et al., 2007; Kinoshita et al., 2009; Brown, 2011). For many species such as the 

domestic cat, clouded leopard, lion, snow leopard, and leopard, these ‘oestrous’ behaviours are overt 

and can often be used to indicate oestrus, although behaviourally silent oestrus events are also 
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commonly reported in many of these species (Blomqvist and Sten, 1982; van Dorsser et al., 2007; 

Kinoshita et al., 2009; Brown, 2011; Putman et al., 2015). However, many other felids lack overt 

behavioural indicators of oestrus, for example, cheetah (Wildt et al., 1981b; Asa et al., 1992; 

Wielebnowski and Brown, 1998), Leopardis spp. (Moreira et al., 2001), Eurasian lynx (Henriksen et 

al., 2005), Pallas’ cat (Brown et al., 2002), and Geoffroy’s cat (Leopardus geoffroyi; Foreman, 1997). 

Consequently, alternative methods for detecting oestrus in felids are required. 

 

Figure 2.5 Number of publications that have used, or investigated the use of, various methods for monitoring 

ovarian activity of species within the eight felid lineages. Five main methods were used: behavioural-based 

assessments (behaviour), oestradiol and progesterone monitoring (endocrinology), laparoscopy, 

ultrasonography, and vaginal cytology. Note that some publications used these methods on multiple species, so 

are counted more than once. 

 

2.3.4.2.2 Endocrine monitoring 

Traditionally, blood hormone analyses are used to accurately monitor the reproductive state of 

animals, with elevated oestradiol concentrations being indicative of oestrus (i.e., follicular growth), 

and elevated progesterone concentrations associated with dioestrus (i.e., the presence of active 

corpora lutea and suppressed follicular growth; Bristol-Gould and Woodruff, 2006; Malandain et al., 

2011). Longitudinal assessment of circulating oestradiol and progesterone concentrations can thus be 

used to accurately monitor ovarian activity. Circulating oestradiol concentrations have been used to 

assess the ovarian activity of various felids, with oestrus being marked by oestradiol concentrations 

that are approximately 11 times higher than baseline (i.e., during anoestrus or interoestrus; Table 2.5; 

Appendix 2b; Andrews et al., 2020). 
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However, the use of a single blood sample to determine reproductive state is not reliable, as 

reproductive steroid concentrations tend to be highly variable over time (Brown and Wildt, 1997). In 

addition, blood samples are normally collected using jugular venepuncture, an invasive and stressful 

procedure. While domestic cats can be conditioned to accept serial or repeated blood sampling, non-

domestic felids often need to be anesthetised to obtain a blood sample. In the domestic cat, 

anaesthesia and/or stress have been found to alter the concentrations of reproductive hormones, 

disrupt ovarian cyclicity, impair sperm transport, and interfere with or even prevent ovulation 

(Howard et al., 1992b; Brown and Wildt, 1997; Jurke et al., 1997; Moreira et al., 2007). Furthermore, 

anaesthesia can also increase the risk of foetal mortality (Howard et al., 1992a; Wielebnowski and 

Watters, 2007; Braun et al., 2009; Dehnhard et al., 2012). Consequently, blood-based oestradiol 

analyses are rarely used to assess the ovarian activity of non-domestic felids, with >65% of studies 

using non-invasive faecal or urinary steroid metabolite assessments instead (Appendix 2b).  

Table 2.5 A summary of the serum/plasma oestradiol (pg/mL) and faecal oestradiol metabolite (FEM; ng/g 

faeces) concentrations during anoestrus/interoestrus (basal) and oestrus in the eight felid lineages. Basal and 

luteal (i.e., peak) concentrations of serum/plasma progesterone (ng/mL) and faecal progesterone metabolites 

(FPM; µg/g faeces) are also shown. Values are presented as mean and range. Values <10 are presented with one 

decimal place. No data = ND. All data have been derived from Appendix 2b. 

Lineage 

Serum or plasma  Faecal metabolites 

Oestradiol (pg/mL)  Progesterone (ng/mL)  FEM (ng/g)  FPM (µg/g) 

Basal Oestrus  Basal Luteal  Basal Oestrus  Basal Luteal 

Domestic cat  11 (1.1-20)    67 (21-160)  0.7 (<0.1-3.1)   40 (2.1-187)    592 (26-2617) 1524 (70-4279)  3.6 (0.1-11)   40 (5.0-135) 

Leopard cat ND ND  ND ND    174 (28-1335)   605 (149-910)  3.0 (1.0-16)   59 (13-141) 

Puma 5.0 (1.0-30)  278 (30-430)  2.6 (<0.1-6.2) ~13       98 (2.3-86)   826 (27-1900)  0.2 (<0.1-8.0)   84 (3.4-1364) 
Lynx 2.3 (<0.1-10) ND  4.1 (0.9-7.2)   24 (0.8-168)    354 (282-446)   690 (542-878)  ND  8.2 (4.9-18) 

Ocelot   10 (<0.1-32)  350 (74-586)  1.5 (0.5-2.9)   19 (8.9-12)      95 (10-200) 2175 (2500-8800)  8.9 (<0.1-30) 296 (35-1600) 

Caracal ND ND  ND ND    ~10      24 (17-33)  0.3  2.5 (0.9-3.9) 
Bay cat ND ND  ND ND  ~250  1800 (1200-2400)  ND ND 

Panthera  6.2 (0.2-23)    79 (19-440)  6.0 (<0.1-13)   44 (9.9-282)    268 (0.8-1400) 1060 (28-15980)  2.6 (0.3-25)   46 (0.5-585) 

Average   8.7 (<0.1-32)    93 (19-586)  1.7 (<0.1-13)   38 (1.0-282)    260 (0.8-2617) 1042 (17-15980)  2.6 (<0.1-30)   55 (0.9-1600) 

Fold increase 

from basal 

- 11x  - 22x  - 4x  - 21x 

 

In felids, oestradiol and progesterone metabolites are almost exclusively excreted through faeces 

(Shille et al., 1984; Brown and Wildt, 1997). Faecal oestradiol-17β metabolites (FEM) and faecal 

progesterone metabolites (FPM) provide an alternative, indirect and non-invasive means of 

monitoring blood concentrations of these hormones (Brown and Wildt, 1997). In addition, faecal 

oestrogens and progestins tend to fluctuate less than circulating oestradiol and progesterone (Brown 

and Wildt, 1997).  

Several techniques (e.g., radioimmunoassay, enzyme-linked immunosorbent assay, high-pressure 

liquid chromatography (HPLC), gas chromatography/mass spectrometry, and radiolabelling studies) 

have been validated and used to assess FEM and FPM concentrations, and thus monitor the 

reproductive status, of approximately 20 of the 38 felid species (Andrews et al., 2020). There is 

considerable variation in the FEM and FPM concentrations of different felid species throughout the 
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oestrous cycle, even within a lineage (Table 2.5) or species (Andrews et al., 2020). Overall, FEM 

concentrations are approximately four times higher during oestrus than at baseline (interoestrus or 

anoestrus; Table 2.5; Andrews et al., 2020). It is interesting to note that the basal and peak FEM and 

FPM concentrations of various species differed considerably between publications (Appendix 2b), 

perhaps due to the different analytical methods or antibodies used. This large variation resulted in an 

overlap in the overall (across all publications) means and ranges of the basal and peak FEM and FPM 

concentrations (Table 2.5; Andrews et al., 2020). Given the level of variability observed, it is unlikely 

that one-off FEM or FPM analyses could be used to confirm oestrus or dioestrus respectively. Instead, 

for each analysis method, and potentially each animal, a baseline comparison will be needed to 

identify oestrus or dioestrus using circulating steroid or faecal steroid metabolite analyses. 

The accuracy and reliability of faecal steroid metabolite assays are also affected by several other 

variables including the amount of time faecal samples are left exposed before collection and bacterial 

enzymes, both of which can influence the concentrations of immunoreactive steroids (Touma & 

Palme, 2005). It is likely that these factors, together with the uneven dispersal of faecal steroids within 

the faeces, could contribute to the highly variable FEM and FPM concentrations observed among 

felids (Brown et al., 1994; Wielebnowski and Watters, 2007). Care is therefore needed when 

collecting, processing, and preserving faecal samples in order minimise variation associated with 

collection. 

The practical application of FEM for real-time detection of oestrus is limited. The highly digestible 

diet of felids means that faecal output is small and often produced intermittently. In addition, group 

housing makes is difficult to identify which samples came from which animal, although felids are 

usually separated for feeding so labelling of diets (e.g., use of glitter or food dyes) is possible. The 

most significant limitation of FEM monitoring for real-time detection of oestrus is time, as there is a 

24 h lag between a rise in circulating oestradiol concentrations and the corresponding increase in FEM 

concentrations (Brown et al., 1994; Graham et al., 1995; Brown and Wildt, 1997). A further delay 

occurs due to the time taken to prepare and dry the faecal sample, and to subsequently extract and 

analyse the FEM concentrations (Brown et al., 1994; Brown and Wildt, 1997). The duration of oestrus 

is short in many felids (less than a few days; Appendix 1b; Andrews et al., 2019), thus oestrus may 

have ended before any associated rise in circulating oestradiol concentrations is detected via FEM.  

2.3.4.2.3 Vaginal cytology  

The elevated oestradiol concentrations associated with oestrus are known to cause morphological 

changes to vaginal epithelial cells (Olğaç et al., 2017). The histological analysis of vaginal smears 

(i.e., vaginal cytology), has been used for decades to successfully monitor the reproductive cyclicity 

of domestic cats, with the proportions of exfoliated epithelial cells (e.g., parabasal, intermediate and 

superficial), and the amount of cellular debris present in the smear differing according to reproductive 
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stage (Michael and Scott, 1964; Mills et al., 1979; Asa et al., 1992; Zambelli and Cunto, 2005; 

Chatdarong et al., 2006; Durrant et al., 2006; Malandain et al., 2011; Kanca et al., 2014). In the 

domestic cat, pro-oestrus smears are characterised by numerous intermediate cells, some nucleated 

superficial cells, and low levels of non-cellular debris (Mills et al., 1979; Malandain et al., 2011; 

Kanca et al., 2014). Highly cellular smears with a predominance of nucleated and anucleated 

superficial epithelial cells (>80%), and absence of non-cellular debris are indicative of oestrus (Mills 

et al., 1979; Malandain et al., 2011; Kanca et al., 2014). In contrast, smears taken during anoestrus 

contain comparatively few cells, and those that are present are medium-sized intermediate epithelial 

cells with a high level of non-cellular debris (Mills et al., 1979; Malandain et al., 2011; Kanca et al., 

2014). 

Vaginal cytology has been used to monitor the reproductive state of some non-domestic felids (24% 

of felid species), including the Eurasian lynx (Goeritz et al., 2009; Painer et al., 2014), Iberian lynx 

(Goeritz et al., 2009), lion (Schmidt et al., 1979), puma (Bonney et al., 1981), cheetah (Asa et al., 

1992), and ocelot (Leopardis pardalis; Rodrigues da Paz et al., 2005). It is difficult, however, to 

obtain vaginal smears frequently enough to accurately assess the ovarian activity of these species 

without compromising the animal’s health, wellbeing, and reproductive performance; largely due to 

the need for restraint or sedation (Schmidt et al., 1979; Asa et al., 1992). Thus, the application of 

vaginal histology for monitoring ovarian activity in non-domestic felids is limited. 

2.3.4.2.4 Laparoscopic examinations 

Laparoscopy (the insertion of a fibre-optic camera into the abdomen) has been used to monitor 

ovarian activity in domestic cats and various non-domestic felids. It offers an accurate and detailed 

assessment of ovarian structures, follicular growth and development, ovulation, and CL formation, but 

requires anaesthetisation and minor surgery (i.e., making a puncture incision into the abdominal 

cavity; Bonney et al., 1981). Thus, the use of laparoscopy for regularly monitoring of ovarian activity 

is impractical. However, laparoscopy has been used to determine the ovarian response to exogenous 

gonadotrophins and aid ART in a range of felids including, but not limited to, the domestic cat 

(Howard et al., 1992b; Roth et al., 1997b; Tsutsui, 2006), Pallas’ cat (Swanson, 2006), leopard cat 

(Tajima et al., 2016), puma (Barone et al., 1994b), cheetah (Howard et al., 1992a; Howard et al., 

1997), ocelot (Swanson et al., 1996a), tiger (Donoghue et al., 1996), snow leopard (Roth et al., 

1997a), and clouded leopard (Howard et al., 1996; Howard et al., 1997). The use of laparoscopy to 

guide artificial insemination (AI) procedures has been shown to greatly improve the success of AI 

(Conforti et al., 2013). 

2.3.4.2.5 Transabdominal ultrasonography 

Transabdominal ultrasonography is a less invasive method than laparoscopy for assessing the 

morphology of the ovary, although the sensitivity of the method is highly dependent on the resolution 
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power of the equipment and technical expertise (Silva et al., 2017). Follicular activity and growth 

have been assessed accurately in the domestic cat using transabdominal ultrasonography, with 

ultrasound imagery used for detailed measurements of follicular growth (e.g., information on the 

number and size of developing ovarian follicles; Malandain et al., 2011; Painer et al., 2014). 

However, the use of ultrasonography for non-domestic species is limited as it generally requires 

anaesthesia. Despite this, ultrasonography has been used to monitor the ovarian function of four non-

domestic felid species: cheetah (Schulman et al., 2015), Eurasian lynx (Goeritz et al., 2009; Painer et 

al., 2014), Iberian lynx (Goeritz et al., 2009), and lion (Kirberger et al., 2011; Callealta et al., 2019).  

Ultrasound imaging has also been used to evaluate the effectiveness of exogenous hormone treatments 

for controlling ovarian activity (Painer et al., 2014). Painer et al. (2014) used ultrasound examinations 

to determine if exogenous prostaglandin treatments could cause luteolysis in the seasonally 

monoestric (i.e., one oestrus event per breeding season) Lynx spp., with the aim of inducing a second 

oestrus event during the breeding season. Ultrasonography has also been used to confirm ovulation 

following exogenous induction of oestrus and ovulation, and to guide ART such as AI and embryo 

collection (Silva et al., 2004; Göritz et al., 2012; Callealta et al., 2019).  

2.3.4.3 A species-specific account of felid oestrous cycles  
The oestrous cycle has been described for only 24 of the 38 felid species, although for many species, 

information is available on the duration of oestrus only. Furthermore, many studies on the oestrous 

cyclicity of felids have been conducted on small sample sizes (either in terms of numbers of animals 

or numbers of events).  

The duration of oestrus does not differ significantly among felid lineages (P=0.08) or species 

(P=0.11), but the addition of more accurate data (e.g., endocrine assessment only) on the oestrous 

cycles of many felids may yield different results. While there is some intra- and inter-species 

variation, the duration of oestrus generally ranges from two to 10 days (Table 2.6). Longer periods of 

oestrus have been observed in some species, such as domestic cats (weighted mean, range, sample 

size: 7.3 days, range: 1-118, nE=438), sand cats (Felis margarita; 2.9 days, range: 1-11, nE=109), 

rusty-spotted cats (5.6 days, range: 1-11, nE=50), jaguars (6.5 days, <15, nE=201), snow leopards (4.3 

days, range: 1-19, nE=145) and clouded leopards (5.2 days, range: 1-17, nE=237), but the mean 

durations of oestrus for these species still fall within a two to 10-day range.  

Despite this, considerable inter- and intra-specific variation in the oestrous cycles of felids is evident, 

so extrapolation of knowledge across even closely related species is not recommended. Given that the 

duration of oestrus appears to be relatively consistent, it seems that most of the inter- and intra-

specific variation in oestrous cycle length of felids is associated with the highly variable interoestrus 

intervals. While the mean duration of interoestrus did not differ significantly between lineages 

(P=0.31) or species (P=0.45), a high degree of variability has been reported for each lineage (Table 
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2.6) and species. Furthermore, the variability reported for the oestrous cycle length of many felids is 

likely to be underestimated, as variability appears to increase as more females and cycles are 

observed, with greater oestrous cycle length variation reported for well-studied species such as the 

domestic cat and Panther spp. In fact, the oestrous cycles of only 15 of the 38 species have been 

described from sample sizes of five or more animals, even when sample sizes are combined across all 

relevant publications. This suggests that large sample sizes are critical in describing the reproductive 

biology of female felids, to ensure that the extreme variability of most feline oestrous cycles is 

captured.  

Table 2.6 Weighted means (in days) of female reproductive parameters of the eight felid lineages. The values 

presented have been calculated from Appendix 1b. *Excludes the lynx lineage. Abbreviations: non-pregnant 

luteal phase (NPLP), no data (ND). 

Lineage 

Mean length of 

anovulatory 

oestrous cycle, 

in days (range) 

Mean duration 

of oestrus, in 

days (range) 

Range of  

inter-oestrus 

interval, in 

days 

Mean duration 

of NPLP, in 

days (range) 

Mean duration of 

gestation, in days 

(range) 

NPLP as 

% 

duration 

of 

gestation 

Domestic cat 14.5 (2 – 69)  5.8 (1 – 118)      2 – 65 32.2 (12 – 55)   65.7 (60 – 71)       48.7 

Leopard cat 20.4 (7 – 43)  6.0 (1 – 11)      1 – 39 34.8 (18 – 60)   68.9 (56 – 76)       50.2 

Puma 14.2 (3 – 55)  4.1 (1 – 9)      3 – 50 51.7 (38 – 62)   92.8 (72 – 98)       55.9 

Lynx Monoestric  5.0 (1 – 10) Monoestric >2.0 years   65.7 (60 – 72) >1111.0 

Ocelot 18.7 (1 – 52)  3.2 (1 – 6)      6 – 60 35.6 (28 – 60)   72.2 (66 – 83)       44.6 

Caracal 18.3 (4 – 54)  4.5 (3 – 6)    13 – 51 47.5 (47 – 48)   78.2 (75 – 81)       60.3 

Bay cat 39.0  6.0                                     ~33 ND   79.0 (74 – 84 )       ND 

Panthera 21.4 (5 – 148)  5.0 (1 – 19)      1 – 145 43.8 (11 – 72) 101.8 (50 – 127)       44.1 

Overall mean 17.7 (1 – 148)  5.2 (1 – 118)      1 – 145 40.9 (11 – 62)*   78.0 (50 – 127)       47.6* 

 

Spontaneous ovulations have been observed in all felid lineages (except the caracal and bay cat 

lineages, for which there is a general paucity of published research on reproductive biology). The 

frequency of spontaneous ovulations appears to differ considerably between felid species. Non-

pregnant luteal phases have been described for 19 of the 38 felid species. The duration of NPLP has 

typically been reported to be about one-third that of gestation (Brown, 2011); however, our more 

comprehensive literature analysis indicates that the duration of NPLP typically persists for about half 

the duration of PLP (48%, range: 22-71%, nE=256; Appendix 1c). The exception is the Lynx spp. 

which exhibit prolonged NPLP, with CL and elevated progesterone concentrations persisting for two 

years or more (Goeritz et al., 2009; Jewgenow et al., 2014; Painer et al., 2014). Female Lynx spp. can 

re-enter oestrus during subsequent breeding seasons since old CL are structurally present, but 

functionally suppressed, until after the breeding season (Jewgenow et al., 2014; Painer et al., 2014). 

Pregnant luteal phases are also prolonged (for two years or more) in this lineage, despite a gestation 

length of 60 to 70 days (Jewgenow et al., 2014; Painer et al., 2014). 

The duration of gestation differs considerably within Felidae (P<0.001), but is generally similar 

within each lineage (P=0.2; Table 2.6). Nowell and Jackson (1996) categorised felids according to 

body type into small (<6.5 kg), medium (7-20 kg), and large (35-135 kg) species. Weighted means of 
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the gestation periods of these groups support the hypothesis that larger cats have longer gestation 

periods (P<0.001), with small, medium, and large cats exhibiting different (P<0.05) mean gestation 

lengths of 67.8 days (range: 60-84, nE = 79), 79.4 days (range: 60-121, nE = 138), and 98.3 days 

(range: 50-127, nE = 504), respectively.  

Factors that appear to drive variation in felid oestrous cycle length include the captive environment 

(enclosure size or level of enrichment), time spent with keepers, number of veterinary treatments, 

body weight, age, diet, and season (Setchell et al., 1987; Mellen, 1991; Swanson et al., 1996b; Brown 

et al., 2002; Rodrigues da Paz et al., 2006; Fanson et al., 2010; Balme et al., 2013). Many felid 

species are highly seasonal with respect to the frequency of oestrus (i.e., the length of interoestrus; 

Foreman, 1997; Moreira et al., 2001; Brown et al., 2002; Kinoshita et al., 2009). Most studies have 

been conducted on captive animals, but the captive environment has been shown to affect 

reproductive seasonality (Swanson et al., 1996b; Foreman, 1997; Brown et al., 2002). For example, 

Geoffroy’s cats are thought to be seasonal, monoestrous breeders in the wild, but have been found to 

cycle all year round in captivity (although the frequency of oestrus still peaks between February and 

August in the northern hemisphere; Foreman, 1997). The increased ovarian cyclicity of Geoffroy’s 

cats in captivity is thought to be associated with a more consistent food supply (Foreman, 1997). 

Many wild felids live at high altitudes or latitudes, where prey densities fluctuate seasonally (Johnston 

et al., 1994; Swanson et al., 1996b; Brown et al., 2002; Newell-Fugate et al., 2007; Göritz et al., 

2009), but this is seldom mirrored in feeding regimes for captive-held felids. However, if food 

availability or body weight were the only factors regulating seasonal reproduction in felids, then all 

felid species would be expected to breed all year round in captivity (as their diet is consistent), but this 

is not the case (Schmidt et al., 1993; Swanson et al., 1996b; Brown et al., 2002; Göritz et al., 2009). 

There is considerable evidence for photoperiod-regulated reproduction in felids (Shille et al., 1979; 

Michel, 1993; Brown et al., 2002; Graham et al., 2004; Gimenez et al., 2009). Artificial lighting has 

been shown to stimulate follicular development in Pallas’ cats temporarily, during the non-breeding 

season (Swanson et al., 1996b; Brown et al., 2002). Both artificial lighting and exogenous melatonin 

treatment can influence the frequency of oestrus in domestic cats (Michel, 1993; Graham et al., 2004; 

Tsutsui et al., 2004; Gimenez et al., 2009). While this seemingly provides putative support for the 

photoperiodic control of seasonal reproduction in felids, factors such as body weight, temperature, 

prey availability, and social stimuli have also been associated with seasonal reproduction and cannot 

be ignored (Michel, 1993; Swanson et al., 1996b; Foreman, 1997; Brown et al., 2002; Jansen and 

Jenks, 2012). Regardless of these other factors, it is clear that seasonality may contribute towards the 

highly variable oestrous cycles described in many felids by altering the frequency of oestrus (i.e., 

duration of interoestrus). 
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2.3.3 Factors affecting the reproductive performance of felids 

2.3.3.1 A lack of knowledge about the reproductive biology 
In general, reproduction-focussed literature is limited for smaller felids, with data showing a strong 

positive correlation between body size and research effort (Brodie 2009, Brooke et al., 2014). This 

may be because larger cats are more commonly held in captivity, and thus are more accessible for 

researchers (Brodie 2009, Inskip & Zimmermann 2009, Brooke et al., 2014). Indeed, the species for 

which reproductive biology literature are limited are rarely held in captivity, are restricted to low-

density populations in the wild, and are generally cryptic and difficult to study (Nowell and Jackson, 

1996; Sunquist and Sunquist, 2002; Brodie, 2009; Brooke et al., 2014; IUCN, 2020). However, peer-

reviewed literature on caracals and servals is also lacking, despite an abundance of these species in 

captivity, so it may be more accurate to state that research is focussed on the more popular and iconic 

species (e.g., Panthera spp. and cheetah; Figure 2.2).  

It is evident that further research into the reproductive biology of many felid species is required to 

optimise the success of both captive breeding programs and in situ conservation strategies. 

Furthermore, studies investigating the reproductive biology of felids should be conducted on larger 

sample sizes to capture the high degree of variability in the oestrous cycles and ejaculate 

characteristics of felids.  

2.3.3.2 Loss of genetic diversity   
The progressive loss of GD has been identified as one of the major challenges for felid conservation 

(Obrien et al., 1985; Facemire et al., 1995; Nowell and Jackson, 1996). The effects of low GD on 

fertility have been studied more in male felids than in females (Wildt et al., 1987a; Barone et al., 

1994a). Cheetahs, for example, experienced a major genetic bottleneck approximately 10,000 years 

ago and are now almost genetically monomorphic (Obrien et al., 1985; Menotti-Raymond and 

O'Brien, 1993; Pukazhenthi et al., 2006b). The high prevalence of teratospermia in this species may 

be linked to low GD, but a causal link is difficult to prove due to a lack of more genetically diverse 

populations for comparison. However, data from other species support a causal relationship (Brown et 

al., 1991; Pukazhenthi et al., 2006b). For instance, lions from populations with poor GD produce 

ejaculates with a higher proportion of pleiomorphic sperm than lions from populations with better GD 

(Wildt et al., 1987a; Brown et al., 1991). Interestingly, a single generation of inbreeding is sufficient 

to decrease semen quality in dogs (Canis familiaris; Wildt et al., 1982). If this is similar for felids, it 

is particularly concerning as it suggests that the negative effects of inbreeding can occur rapidly and is 

especially problematic given the severity of felid habitat loss and fragmentation (Nowell and Jackson, 

1996; Wolf and Ripple, 2017). It is unlikely, however, that poor GD is the only cause of the high 

prevalence of teratospermia within Felidae, since some species (e.g., Canadian lynx (Lynx 

Canadensis), Eurasian lynx, and domestic cats) produce teratospermic ejaculates despite reasonably 

high GD (Schwartz et al., 2003; Swanson, 2003; Pukazhenthi et al., 2006b; Schmidt et al., 2011).  
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2.3.3.3 Challenges with the detection of oestrus  
As outline earlier, the accurate and reliable detection of oestrus has been difficult to achieve in a 

number of species due to a lack of overt behavioural indicators of oestrus (Foreman, 1997; 

Wielebnowski and Brown, 1998; Moreira et al., 2001; Brown et al., 2002; Henriksen et al., 2005). 

There is currently no single non-invasive ‘best method’ for detecting oestrus in felids (Table 2.7), and 

it is likely that best practice would involve a combination of existing methods. The combined use of 

transabdominal ultrasonography, serum progesterone monitoring, and vaginal cytology has been 

proposed as a “reasonably accurate” means of monitoring ovarian cyclicity of captive cheetah 

(Schulman et al., 2015) and lions (Kirberger et al., 2011), but this requires sedation/anaesthetisation. 

Consequently, non-invasive techniques such as FEM and FPM monitoring remain the most 

convenient sampling options, although the time-lag between sampling and results limits their 

relevance for management decisions. Researchers still urgently require a non-invasive (i.e., low 

stress) method that can be used for the real-time detection of oestrus (Table 2.7). 

Table 2.7 Evaluation of the methods used to monitor follicular growth and/or detect oestrus in felids. For each 

method, the parameters are marked as either ‘✓’ meets parameter, ‘X’ does not meet parameter, ‘ND’ no data 

for felids. An ideal method would meet all the hypothetical parameters. Abbreviations: faecal oestradiol 

metabolites (FEM), faecal progesterone metabolites (FPM), infrared (IR), oestradiol (E2). 

Method 

Parameters of an ideal method 

Notes Works for 

all or most 

felid species 

Accurate 

and 

reliable 

Quick 

assessment 
Non-invasive 

Ovarian function      

 Behaviour      

  Observed X X ✓ ✓ Silent oestrus common.   

  Accelerometry ND ND ✓ ✓ Effective in non-felid species 

 Endocrinology      

  Blood E2 ✓ ✓ ✓ X - 

  FEM/FPM ✓ ✓ X ✓ Retrospective monitoring 

 IR thermography ND ND ✓ ✓ Effective in non-felid species 

 Laparoscopy ✓ ✓ ✓ X - 

 Ultrasonography ✓ ✓ ✓ X - 

 Vaginal cytology ✓ ✓ ✓ X - 

 

While the visual detection of oestrus is challenging in many felid species due to a lack of overt 

behaviour indicators of oestrus, it does not necessarily mean that oestrus is silent (with no behavioural 

changes) in these species (Asa et al., 1992; Graham et al., 1995; Foreman, 1997; Wielebnowski and 

Brown, 1998; Moreira et al., 2001; Brown et al., 2002). Instead, oestrus is likely to be associated with 

subtle increases in behaviours such as locomotion, rubbing, rolling, sniffing, vocalisation, grooming 

and scent-marking (Asa et al., 1992; Graham et al., 1995; Foreman, 1997; Wielebnowski and Brown, 

1998; Moreira et al., 2001; Brown et al., 2002). These subtle changes are unlikely to be detected 

without detailed and labour-intensive behavioural assessment, which is further complicated by the 

cryptic and crepuscular/nocturnal nature of most felids. However, this may mean that there is an 

opportunity to develop technologies that can automatically and continuously monitor the behaviour of 
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felids (e.g., accelerometry), and thus be used to monitoring the reproductive state of felids (see section 

2.7).  

2.3.3.4 Highly variable oestrous cycles  
The high degree of variability of natural felid oestrous cyclicity further complicates monitoring the 

ovarian cycles of felids and provides support for the use of exogenous gonadotrophins to stimulate 

follicular growth (e.g., equine chorionic gonadotrophin) and trigger ovulation (e.g., human chorionic 

gonadotrophin), especially for the purpose of ART (Thongphakdee et al., 2018; Thongphakdee et al., 

2020). However, the responses of felids to exogenous gonadotrophin treatment also appear to be 

highly variable (Thongphakdee et al., 2018). Thongphakdee et al. (2018) stated that the highly 

variable ovarian response of felids to exogenous gonadotrophins is a “major restriction” for ART. Pre-

treatment with a follicular inhibitor (e.g., levonorgestrel or altrenogest) has been shown to result in a 

more consistent ovarian response (i.e., greater follicular development) to exogenous gonadotrophins 

(Pelican et al., 2003; Pelican et al., 2006; Pelican et al., 2008; Pelican et al., 2010; Stewart et al., 

2012). A more consistent ovarian response could also be achieved by stimulating follicular growth 

during the non-breeding season, when all follicles are undeveloped, although this remains to be tested 

in felids.  

The effect of seasonality on reproductive activity should also be considered when breeding felids in 

captivity, since season can affect ovarian cyclicity and responsiveness to exogenous gonadotrophins 

(Thongphakdee et al., 2018). It is important in the context of captive management and breeding that 

felids are exposed to a photoperiod that they would experience in their natural geographic range, since 

moving felids outside their natural latitudinal range (i.e., seasonal photoperiod) may affect their 

seasonality and thus reproductive performance.  

2.3.3.5 Method used for sperm collection  
The method used to collect ejaculates/sperm samples is also important. Electroejaculation is by far the 

most commonly used method to collect sperm from felids, but UC with pharmacological induction 

(i.e., intramuscular injection of medetomidine) yields much higher sperm concentrations (Figure 2.3). 

The natural compensatory mechanism for teratospermia appears to be the production of an ejaculate 

with higher concentrations (and a higher total number) of sperm (Müller et al., 2012), thus UC may be 

a better method for collecting sperm from felids. To date, UC has been used to collect sperm from 

only four felid species. Further investigation into the use of this method as an alternative to EE is 

required. Irrespective of collection method or seasonality, teratospermia is likely to remain a 

significant problem for many felid species. Since low GD is likely to be a major cause of 

teratospermia in felids, it is important that efforts to reduce further losses of GD are prioritised, 

especially for species facing severe habitat fragmentation and thus the formation of genetically 

isolated subpopulations. A long-term management goal for both in situ and ex situ conservation 

efforts for felids must be to maintain and enhance GD. 
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2.3.3.6 Captivity-related stress  
Felids appear to be particularly sensitive to captivity-related stress (Swanson, 2003). Captive clouded 

leopards, tigers, cheetah, fishing cats, and lions all display higher frequencies of stress-related 

behaviours (e.g., stereotypies, excessive sleep, aggression, hiding, reduced exploration, reduced 

appetitive behaviour and self-mutilation) than their wild counterparts (Wielebnowski et al., 2002a; 

Bashaw et al., 2003; Terio et al., 2004; Szokalski et al., 2012). A more quantitative means of 

assessing stress is to analyse basal circulating glucocorticoids (GC) concentrations, as GC are 

synthesised and secreted in response to stress. Interestingly, captive felids have been found to exhibit 

higher basal glucocorticoid (GC) concentrations than their wild conspecifics, with faecal GC 

metabolite (FGM) concentrations being ~2.5 times higher in captive cheetah, Canadian lynx, and 

clouded leopards than in their wild conspecifics (Wielebnowski et al., 2002a; Terio et al., 2004; 

Fanson et al., 2010). 

It is likely that the elevated GC concentrations observed in captive felids adversely affects their 

reproductive performance. Many felids have certainly been found to reproduce less successfully in 

captivity (Swanson, 2003; Terio et al., 2004; Fanson et al., 2010). For example, the captive cheetah 

population is not self-sustaining, with only a small proportion (~20%) of the captive population 

having ever bred successfully (Marker, 2012; Grisham et al., 2013). Jurke et al. (1997) found that 

non-cycling female cheetah display significantly higher FGM concentrations than cycling cheetah; 

moreover, it was found that non-cycling cheetah would commence cycling if they experienced a 

period of lowered GC concentrations following enclosure enrichment. Captive margays (Leopardus 

weidii) and tigrinas (Leopardis tigrinus) housed in small, barren (i.e., no enrichment) enclosures 

exhibit elevated FGM concentrations and poor ovarian cyclicity; interestingly, the movement of these 

margay and tigrinas to larger, more enriched enclosures lead to a decrease in FGM concentrations and 

the recommencement of normal ovarian cyclicity (Moreira et al., 2007). Similarly, captive female 

bobcats failed to breed in enclosures lacking enrichment (Mollá et al., 2011).  

Captivity has also been linked to reduced testicular function in felids, with captive cheetah exhibiting 

markedly (~ four times) lower testosterone concentrations than their wild conspecifics (Table 2.4; 

Andrews et al., 2019). Reduced testosterone concentrations are likely to adversely affect the ejaculate 

quality of felids. However, there may also be other pathways involved, as cheetahs on public display 

or with more than three carers produce ejaculates that have lower sperm motility than those off public 

display with fewer carers, but had comparable testosterone concentrations (Koester et al., 2015).  

It seems evident that captivity adversely affects both the ovarian and testicular function of felids, and 

also leads to an increase in basal circulating GC concentrations. Glucocorticoids are thought to be the 

main link between the HPA and HPG axes, although several other neurological links exist (Tellam et 

al., 2000; Gore et al., 2006). It has been shown that GC act on all levels of the HPG axis to suppress 
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ovarian and testicular function in mammals (Hsueh and Erickson, 1978; Bambino and Hsueh, 1981; 

Welsh et al., 1982; Orr and Mann, 1992; Sharpe et al., 1992; Tetsuka et al., 1999; Yang et al., 1999; 

Gore et al., 2006; Van Merris et al., 2007; Kirby et al., 2009). However, there has been no direct 

research to determine if the elevated GC associated with captivity-related stress are the cause for the 

reduced reproductive performance of felids in captivity.  

2.4 Stress and reproduction  

2.4.1 Defining stress and stressors  
For the purpose of this thesis, stress is defined as the activation of the HPA axis in response to any 

predicted threat or physical challenge to homeostasis (Miller and O'Callaghan, 2002). In a 

physiological context, stressful stimuli, or stressors, can be considered as either (1) reactive/physical 

or (2) anticipatory/emotional (Table 2.8; Herman et al., 2003). Reactive stressors stimulate the HPA 

axis in response to a homeostatic challenge, while anticipatory or emotional stressors have no 

immediate reactive effect on the animals, but activate the HPA axis in the anticipation of a 

homeostatic challenge (Herman et al., 2003). The anticipatory stress response is dependent on the 

learned (e.g., past experiences, memory, social learning, conditioning etc.) or innate awareness of the 

potentially disruptive effects of a given stimulus on homeostasis (Table 2.8; Herman et al., 2003). 

Most stressors associated with captivity-related stress are anticipatory stress and can be categorised as 

either abiotic environmental stressors (AES) or confinement-specific stressors (CSS; Morgan and 

Tromborg, 2007). 

Table 2.8 Some examples of reactive and anticipatory stressors and the signals pathways via which they 

stressors stimulate the HPA axis. 

Type of stressor Stressors 
Examples of signals and stimuli 

perception 

Reactive or  

physical stressors 

 

 

 

 

 

 

 

Pain (somatic or visceral) Somatic or visceral nociceptors 

Cardiovascular tone  Baroreceptors 

Respiratory distress  Chemoreceptors 

Obesity/starvation 

 

Plasma glucose, leptin and/or insulin 

concentrations  

Water balance  Osmoreceptors  

Hormones (ADH, ANP, renin-angiotensin) 

Disease and illness Immune signals (cytokine like interleukins 

and chemokine factors)  

Hypo- or hyperthermia Thermoreceptors 

Anticipatory 

stressors   

Innate  Presence of a predator  Somatic sensory stimuli 

Novel situations or objects Somatic sensory stimuli  

Social challenges  Somatic sensory stimuli 

Memory Past experiences  Somatic sensory stimuli  

Conditioned stimuli Somatic Sensory stimuli  

Negative reinforcement training Somatic Sensory stimuli  
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2.4.2 The hypothalamic-pituitary-adrenal or stress axis 
Both AES and CSS culminate in the activation of the HPA axis, which is widely regarded as the 

central stress response system. The complex neurological pathways by which stress up-regulates the 

activity of corticotrophin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN) of 

the hypothalamus, and thus the HPA axis, are considered in Appendix 3 (Aguilera, 1998; Miller and 

O'Callaghan, 2002). Approximately 50 to 90% of CRH neurons in the PVN project into the medial 

eminence (ME) and secrete CRH into the hypophyseal-portal blood, with CRH subsequently acting 

on corticotroph cells in the anterior pituitary via corticotrophin-release hormone receptor 1 (CRH-R1; 

Owens and Nemeroff, 1991; Aguilera, 1998; Miller and O'Callaghan, 2002). The binding of CRH to 

CRH-R1 activates an AC and PKA signalling pathway that ultimately upregulates the synthesis of 

proopiomelanocortin (POMC), which is a pro-hormone that is cleaved to form a number of hormones 

including adrenocorticotrophic-releasing hormone (ACTH; Bonfiglio et al., 2011). 

Adrenocorticotrophic-releasing hormone is the main product of corticotroph cells and acts via the 

melanocortin 2 receptor to stimulate the synthesis and secretion of GC from cells in the zona 

fasciculata of the cortex of the adrenal gland (Miller and O'Callaghan, 2002; Gallo-Payet and Payet, 

2003). The binding of ACTH to melanocortin 2 receptor and activates the Gs-protein that triggers AC 

to produce cAMP and, in turn, stimulate a PKA signalling pathway (Gallo-Payet and Payet, 2003). 

Protein kinase A acts directly and indirectly (via a rise in intracellular Ca2+) to promote the synthesis 

and secretion of GC (Gallo-Payet & Payet, 2003).  

Glucocorticoids (e.g., cortisol and corticosterone) are the ‘end products’ of the HPA axis. As with 

other steroid hormones, GC are membrane permeable and act via intracellular receptors (Lowe et al., 

2008b). Inactive glucocorticoid receptors (GR) are bound to chaperone proteins that prevent the 

receptor from entering the nucleus (Lowe et al., 2008b). The binding of GC to GR leads to a 

conformational change that releases the chaperone proteins and enables the GR-GC complex to cross 

the nuclear membrane (Lowe et al., 2008b). Once in the nucleus, GR-GC complexes form 

homodimers (i.e., two GR-GC complexes combined) and bind to glucocorticoid response element 

regions of DNA to promote or inhibit transcription (Lowe et al., 2008b). The pathways by which GC 

exert non-genomic effects on cells are less clear, but are likely mediated by the direct effects of GC in 

the cytosol, cytosolic GC-GR complexes, GR chaperone proteins, and/or membrane-bound GRs 

(Lowe et al., 2008b). 

2.4.3 The effects of stress and the activated HPA axis on the HPG axis 
The main pathways by which the HPA axis acts to suppress the HPG axis are summarised in Figure 

2.6. For a comprehensive diagram illustrating all of the pathways, as well as the intracellular 

mechanism by which the HPA axis supresses the HPG axis, see Appendix 4.  
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2.4.3.1 At the level of the hypothalamus  
Gonadotrophin-releasing hormone neurons in the POA of the rat (Rattus novegicus) hypothalamus 

express functional type two GR, and corticosterone implants have been found to greatly decrease 

GnRH mRNA expression in the rat (Gore et al., 2006). However, GC administration does not appear 

to decrease GnRH concentrations in the hypophyseal-portal blood of rats and ewes (Breen and 

Karsch, 2006; Kirby et al., 2009). Perhaps the response of GnRH neurons to GC is species-specific, 

although contradictory results have been reported within a single species, the rat (Gore et al., 2006; 

Kirby et al., 2009).  

It is possible that the effects of stress on hypothalamic GnRH neurons are not mediated by GC. The 

POA and suprachiasmatic nucleus regions, rich in GnRH neuronal perikarya, express both CRH-R1 

and corticotrophin-release hormone receptor 2α (Cummings et al., 1983; Merchenthaler et al., 1984; 

Palchaudhuri et al., 1998; Palchaudhuri et al., 1999; Chen et al., 2000). Thus, the effects of stress on 

hypothalamic GnRH neurons may be mediated via CRH neurons rather than GC (Figure 2.6). Indeed, 

CRH-containing nerve terminals synapse directly with GnRH neurons within the POA of the rat 

hypothalamus (Maclusky et al., 1988). Both CRH and CRH-R are also highly expressed within the 

ME, thus CRH may also acts on the GnRH nerve terminals located there (Palchaudhuri et al., 1998; 

Palchaudhuri et al., 1999; Chen et al., 2000). An infusion of CRH into the third ventricle of the brain 

leads to a substantial decrease in GnRH expression within the ME of reproductively active (in 

follicular phase) ewes (Ciechanowska et al., 2011). An infusion of CRH directly into the POA of rats 

also results in a significant decrease in the amount of GnRH released into the ME (Rivier and Rivest, 

1991). Corticotrophin-releasing hormone also inhibits the release of GnRH from rat hypothalamus 

cells in vitro, although it is unclear whether this is due to the direct effects of CRH on GnRH neurons 

or if intermediate neurons are involved (Gambacciani et al., 1986; Nikolarakis et al., 1986).  

The effects of both CRH and GC on hypothalamic GnRH neurons may also be mediated through 

intermediate neurons such as kiSS and/or GnIH neurons (Figure 2.6). Kisspeptin is a potent stimulator 

of hypothalamic GnRH neurons, acting via the G-protein-coupled receptor-54 (GPR-54) to stimulate 

both the synthesis and secretion of GnRH (Colledge, 2009). The perikarya of kiSS neurons are 

primarily located in the ARC and anteroventral periventricular nucleus (AVPV) of the hypothalamus 

(Greives et al., 2007; Takumi et al., 2012). Corticotrophin-releasing hormone neurons and fibres have 

been identified in the ARC, and to a lesser extent, the AVPV (Cummings et al., 1983). Furthermore, 

99% of the kiSS neurons in the ARC of the rat hypothalamus express CRH-Rs and are inhibited by 

CRH (Takumi et al., 2012). Kisspeptin is required to maintain a functional HPG axis, since mice 

(Mus musculus) lacking kiSS or GPR-54 (gene knockout mice) exhibit hypotrophic hypogonadism 

(Lapatto et al., 2007; Roseweir and Millar, 2009). As such, the suppression of kiSS neurons by CRH 

would be expected to greatly affect the function of the HPG axis. 
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Gonadotrophin-inhibitory hormone neurons in the dorsomedial nucleus of the hypothalamus also 

appear to be particularly important in mediating the effects of GC on GnRH neurons (Figure 2.6; 

Ducret et al., 2009; Kirby et al., 2009). Approximately 50% and 10% of the GnIH neurons express 

GR and CRH-R1 respectively; moreover, the majority of these GnIH neurons project into the POA 

and ME to strongly inhibit GnRH neurons (Ducret et al., 2009; Kirby et al., 2009). Interestingly, 

chronic stress has been found to greatly increase GnIH mRNA expression within the rat 

hypothalamus, and even increase the number of GnIH neurons (Kirby et al., 2009). A similar response 

is observed in rats exposed to acute stress, although the effects are more short-lived (Kirby et al., 

2009). However, there is evidence to suggest that the effects of GnIH upregulation on the HPG axis 

are more likely mediated at the level of the anterior pituitary (Clarke et al., 2008; Smith and Clarke, 

2010). 

2.4.3.2 At the level of the pituitary  
Hypothalamic GnIH neurons, which are up-regulated by GC and CRH, release GnIH into the 

hypophyseal-portal system (Smith and Clarke, 2010). Thus, it is likey that GnIH also acts directly on 

pituitary gonadotroph cells to suppress the HPG axis. Gonadotroph cells certainly express the G-

protein-coupled receptor 147 (GPR-147), which is the only receptor for GnIH (Bentley et al., 2009). 

Clarke et al. (2008) demonstrated that GnIH dose-dependently inhibits the GnRH-induced production 

of LH, and to a lesser extent FSH, by ovine gonadotroph cells in vitro. However, the effect of GnIH 

on gonadotroph cells is more difficult to demonstrate in vivo, since GnIH also acts on GnRH neurons 

to suppress the HPG axis. A similar challenge arises when investigating the direct effects of GC on 

pituitary cells.  

Breen and Karsch (2004; 2006) suggested that cortisol/GC act primarily at the level of the anterior 

pituitary to inhibit the secretion of gonadotrophins. Gonadotroph cells express type two GR and are 

suppressed by GC in vitro, although GC only appear to directly affect the synthesis and secretion of 

LH (Kononen et al., 1993; Breen and Karsch, 2004; Gore et al., 2006; Whirledge and Cidlowski, 

2010). Nonetheless, exogenous GC have been found to decrease plasma LH and FSH concentrations 

if administered to female rats during the pre-ovulatory GnRH/LH surge (Gore et al., 2006). It is 

possible that FSH concentrations are affected by pathways other than the direct effects of GC on 

gonadotrophin cells (e.g., decreased GnRH or kiSS activity and/or increased GnIH activity), although 

more research is needed to confirm this.  

 

 



 

 

 

 

Figure 2.6 The main pathways by which the hypothalamic-pituitary-adrenal (HPA; blue) axis suppresses the hypothalamic-pituitary-gonadal (HPG; grey) axis in mammals. 

Green lines with arrow ends indicate a stimulatory pathway, red lines with bar ends indicate an inhibitory pathway, and red lines with arrow ends indicate a negative feedback 

loop. The thickness of the lines provides a relative indication of the importance of each pathway. A question mark indicates a proposed (uncertain) pathway or effect of 

elevated HPA function on the HPG axis. For a detailed diagram of these pathways and the associated intracellular signalling pathways, please see Appendix 4. Abbreviations: 

adrenocorticotropic hormone (ACTH) anteroventral periventricular nucleus of the hypothalamus (AVPV), arcuate nucleus of the hypothalamus (ARC), corticotrophin 

releasing hormone (CRH), direct effect (D), dorsomedial nucleus of the hypothalamus (DMN), follicle stimulating hormone (FSH), gonadotrophin-inhibitor hormone (GnIH), 

gonadotrophin releasing hormone (GnRH), indirect effect (I), kisspeptin (kiSS), luteinising hormone (LH), luteinising hormone receptor (LH-R), preoptic area of the 

hypothalamus (POA), paraventricular nucleus of the hypothalamus (PVN).  
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2.4.3.3 At the level of the gonads  
Gonadal functions are predominantly under the control of LH and FSH, thus stress-induced changes 

in plasma gonadotrophin concentrations will affect gonadal activity (Whirledge and Cidlowski, 2010). 

In fact, most of the inhibitory effects of stress on ovarian and testicular function appear to be mediated 

at the level of the hypothalamus and pituitary; although, both the ovaries and testes of rats have been 

shown to express GR, so the direct effects of GC on the gonads must also be considered (Schreiber et 

al., 1982; Schultz et al., 1993). 

2.4.3.3.1 The testis  

In the male rat, the GR appears to be highly expressed by Leydig cells, but not Sertoli cells (Levy et 

al., 1989; Schultz et al., 1993). The location of GR within the testis suggests that GC act to suppress 

testosterone production, as that is the main role of Leydig cells. Both dexamethasone and 

corticosterone dose-dependently inhibit the LH-stimulated secretion of testosterone by the testicular 

interstitial cells of rats in vitro (Bambino and Hsueh, 1981; Welsh et al., 1982; Orr and Mann, 1992). 

Welsh et al. (1982) found that GC suppress Leydig cell functions by inhibiting AC. Given that LH 

predominantly acts via a AC-cAMP signalling pathway, it is not surprising to find that GC inhibit the 

LH-induced synthesis of the steroidogenic enzymes (e.g., 17α-hyroxylase, 17-20-lyase, and 17β-

hydroxy steroid dehydrogenase) responsible for testosterone production, as GC inhibit this pathway 

(Welsh et al., 1982; Whirledge and Cidlowski, 2010). Glucocorticoids seem to further decrease the 

responsiveness of Leydig cells to LH by down-regulating the expression of the LH-receptor by 

Leydig cells (Bambino and Hsueh, 1981).  

While GC have been shown to decrease circulating LH concentrations in male rats, FSH 

concentrations appear to be unaffected (Gore et al., 2006). As such, any effects of GC administration 

on spermatogenesis are likely to be partly-mediated by the direct effects of GC on the testis. The 

decreased testosterone concentrations associated with high GC concentrations would adversely affect 

certain stages of spermatogenesis, since testosterone has an important regulation role in late 

spermatogenesis (Welsh et al., 1982; Orr and Mann, 1992; Sharpe et al., 1992). Yazawa et al. (2000) 

found that rats treated with dexamethasone exhibit a noteworthy increase in the apoptosis of primary 

spermatocytes and spermatids. This is possibly due to the decreased testosterone concentrations 

associated with the administration of exogenous GC. The treatment of rats with ethane di-methane 

sulphonate, a compound that destroys Leydig cells and, as a result, testosterone production, leads to 

increased germ cell degeneration during late spermatogenesis (Sharpe et al., 1992). Furthermore, the 

effects of ethane di-methane sulphonate can be prevented through testosterone supplementation 

(Sharpe et al., 1992).  

Long-term suppression of testosterone is required to disrupt spermatogenesis, with the effects of GC 

on Leydig cells being quickly reversible (Welsh et al., 1982; Sharpe et al., 1992; Yazawa et al., 
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2000). In this context, only chronic stress would be likely to affect spermatogenesis. Even in the case 

of chronic stress, only a relatively small proportion of germ cells are significantly impacted by the low 

serum testosterone concentrations (Welsh et al., 1982; Sharpe et al., 1992; Yazawa et al., 2000). 

Thus, the physiological significance of GC-induced germ cell apoptosis, either directly on 

spermatocytes (which also express GR) or via decrease testosterone concentrations, is unclear. 

Abnormal testosterone concentrations can lead to an increase in primary sperm abnormalities, as 

testosterone is required for germ cell-Sertoli cell adhesion (Mruk and Cheng, 2004; Wang et al., 

2006). Androgen receptor (AR)-knockout mice only exhibit one of the eight proteins involved in the 

desmosome junction between germ cells and Sertoli cells; these incomplete desmosome junctions 

have been linked to impaired Sertoli cell function, incomplete sperm development and, in turn, a high 

proportion of morphologically abnormal sperm (Mruk and Cheng, 2004; Wang et al., 2006). Primary 

sperm abnormalities are often due to impaired Sertoli cell function and/or high Sertoli cell loads (i.e., 

too many germ cells per Sertoli cell; Mruk and Cheng, 2004; Pukazhenthi et al., 2006b). Testosterone 

is also required for the process of spermiation, the release of spermatozoa into the lumen of the 

seminiferous tubule from Sertoli cells, with an absence of testosterone preventing the process 

occurring and the unreleased spermatozoa being phagocytised by the Sertoli cells to which they are 

bound (Walker, 2010). Secondary sperm abnormalities, which occur after spermiation, are also more 

prevalent when androgen concentrations are abnormal (Meistrich et al., 1975). In rats, a lack of 

testosterone greatly increases the speed at which spermatozoa move through the epididymis (as 

testosterone slows sperm transport to enable maturation), which leads to an increase in the proportion 

of morphologically abnormal sperm (Meistrich et al., 1975). Thus, GC-induced hypoandrogenism 

can adversely affect sperm production and maturation. 

2.4.3.3.2 The ovary 

The ovarian granulosa cells of rats have been found to express GR throughout the oestrous cycle; 

moreover, these GR have a high affinity for GC (Hsueh and Erickson, 1978; Schreiber et al., 1982; 

Tetsuka et al., 1999). Van Merris et al. (2007) observed a reduction in the concentration of 

androstenedione in the culture medium of mouse ovarian cells treated with dexamethasone. This is 

interesting given that the thecal cells, which are not known to express GR, are responsible for 

producing androstenedione (Hsueh and Erickson, 1978; Tetsuka et al., 1999; Van Merris et al., 2007; 

Kirby et al., 2009). Nonetheless, reductions in androstenedione production would be expected to 

correlate with decreased oestradiol concentrations, but this may only be relevant during periods of 

chronic stress as sufficient androstenedione molecules would be present to maintain oestradiol 

production for a time. 

Glucocorticoids dose-dependently inhibit the production of oestradiol from bovine and rat granulosa 

cells treated with FSH and androstenedione in vitro, which suggests a direct pathway for the 



Chapter 2 – Literature review & thesis objectives 

 

50 

suppression of oestradiol production (Hsueh and Erickson, 1978; Kawate et al., 1993). It is likely that 

GC decrease oestradiol production by suppressing the activity and/or production of aromatase, the 

enzyme responsible for catalysing the conversion of androstenedione to oestradiol (Hsueh and 

Erickson, 1978). However, GC treatments do not appear to inhibit oestradiol production in rat 

granulosa cells that already exhibit high levels of aromatase activity (Hsueh and Erickson, 1978), 

indicating that GC likely act to disrupt the FSH-induced aromatase activity rather than directly 

suppressing aromatase enzymes (Hsueh and Erickson, 1978). Regardless of the pathway (direct or via 

decreased LH concentrations), it is clear that stress and the associated rise in GC concentrations have 

been linked to a decrease in the production of oestradiol.  

Glucocorticoids have also been shown to dose-dependently inhibit the expression of LH-R within 

cultured bovine granulosa cells (Kawate et al., 1993). The up-regulation of LH-R expression in 

ovarian granulosa cells is vital to priming the cells for the LH surge (Kawate et al., 1993), thus the 

down-regulation of LH-R expression by GC would likely impede ovulation. An abundance of LH-R 

within granulosa cells is irrelevant if the pre-ovulatory LH surge is absent, thus in terms of ovulation, 

the effects of inhibitory GC on the pre-ovulatory LH surge are probably of greater significance. 

Despite this, reduced LH-R expression may disrupt ovulation by decreasing the responsiveness to LH 

surge.  

Oocytes are kept in a state of meiotic arrest until the pre-ovulatory LH surge occurs, which enables 

meiosis to recommence (Yang et al., 1999; Whirledge and Cidlowski, 2010). Yang et al. (1999) found 

that both dexamethasone and cortisol disrupt and delay the meiotic, but not cytosolic, maturation of 

cumulus enclosed pig oocytes in vitro. Glucocorticoids have been shown to reduce the activity of 

mitogen activated protein kinases (MAPK), which have an important role in the regulation of meiotic 

arrest and resumption of meiotic development following the LH surge or exogenous hormone 

treatments (Liang et al., 2007; González et al., 2010; Cui et al., 2012). Low levels of MAPK activity 

have been shown to cause degeneration of the spindle assembly in rat oocytes in vitro, causing 

chromosomes to be dispersed around the ooplasm (Cui et al., 2012). While the effect of GC on 

MAPK activity in oocytes is difficult to study directly in vivo, it is likely that high GC concentrations 

affect the nuclear and/or cytoplasmic maturation of oocytes via the inhibition of MAPK.  

2.5 Domestic cats as a model for non-domestic felids 

As mentioned in Chapter 1, most felids are considered threatened or endangered in part, if not all, of 

their natural home range. Consequently, studies involving the manipulation of these species need to 

be carefully designed to ensure that the welfare or conservation value of study animals is not 

adversely affected. The domestic cats has frequently been used as a model to develop and validate 

research methods prior to conducting research in non-domestic felids.  
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The reproductive physiology (e.g., oestrous and spermatogenic cycles) of domestic cats is comparable 

to that of non-domestic felids (Andrews et al., 2019). In fact, reproductive physiology is fairly similar 

across Felidae, with the only exception being the prolonged NPLP of the Lynx spp. (Andrews et al., 

2019). In the context of reproductive biology, the domestic cat is widely considered to be a model 

species that is representative of Felidae. Indeed, the domestic cat has served as a starting point for 

much of the reproductive-based research on non-domestic felids, with numerous topics including the 

reproductive endocrinology, exogenous control of ovarian function, sperm collection, and 

ARTstudied in the domestic cats before being implemented or researched in non-domestic felids 

(Sojka et al., 1970; Platz et al., 1978; Shille et al., 1983; Shille et al., 1984; Goodrowe et al., 1988a; 

Goodrowe et al., 1988b; Howard et al., 1990; Donoghue et al., 1992; Howard et al., 1992b; Pope et 

al., 1993; Pelican et al., 2003; Neubauer et al., 2004).   

The ability to use domestic cats as a model species has enabled researchers to conduct studies that 

would likely be deemed inappropriate in endangered felids. For example, it is difficult to study 

testicular or ovarian histology in living endangered felids as it requires gonadectomy and thus the loss 

of the animal for breeding purposes. As the breeding value of endangered felids is often too high to 

justify de-sexing, studies assessing testicular or ovarian histology (e.g., histomorphology, receptor 

expression, spermatogenic cycle, and apoptosis rates) are typically limited to the domestic cat model 

(Neubauer et al., 2004; Müller et al., 2012).  

Another major challenge for research in non-domestic felids is animal availability and limited sample 

sizes. Research on non-domestic felids is often limited to small sample sizes (i.e., less than five 

individuals) or requires the use of animals from different conservation or research institutes (Roth et 

al., 1994; Swanson et al., 1996a; Moreira et al., 2001; Newell-Fugate et al., 2007; Gañán et al., 2010; 

Lueders et al., 2014). This approach can introduce error or variation due to confounding factors such 

as differences in management practices, diet, climate, or photoperiod. Domestic cat colonies allow 

researchers to use (a) larger sample sizes and (b) minimise variation in the environment and 

management of different animals. 

2.6 Simulating the endocrine stress response in domestic cats  

Glucocorticoids appear to be one of the main pathways by which stress suppresses the HPG axis in 

mammals (Figure 2.6; Appendix 4), thus it may be possible to study the effects of captivity-related 

stress on the ovarian and testicular function of felids by mimicking the elevated circulating GC 

concentrations observed in captive animals. As mentioned previously, captive cheetah, clouded 

leopards, and Canadian lynx have had faecal GC concentrations measured that are 2.5 times higher 

than their wild conspecifics (Wielebnowski et al., 2002a; Terio et al., 2004; Fanson et al., 2012). An 

exogenous GC treatment (e.g., prednisolone or hydrocortisone) could be used induce a similar 

increase in circulating GC concentrations. Indeed, GC treatments have been used to study stress 
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physiology in other species such as mice and rats (Bambino and Hseuh, 1981; Orr and Mann, 1992; 

Chen et al., 2012). 

In domestic cats, basal serum cortisol concentrations range from 1.8 ng/mL to 58 ng/mL (Peterson et 

al., 1994; Feldman and Nelson, 2004), and based on the upper limit of this range, serum GC 

concentrations of approximately 150 ng/mL would be equivalent to the increases observed in captive 

non-domestic felids. So theoretically, artificially maintaining serum GC concentrations at ~150 ng/mL 

in domestic cats using exogenous GC would simulate the elevated GC concentrations observed in 

captive non-domestic felids. 

Prednisone is the main exogenous GC treatment used in small animal veterinary practice (Behrend 

and Kemppainen, 1997). Prednisone is biologically inactive and is activated through the conversion to 

prednisolone by 11β-hydroxysteroid dehydrogenase in the liver (Jenkins and Sampson, 1967). 

However, the conversion of prednisone to prednisolone is inefficient in domestic cats, with only 21% 

of oral prednisone being converted to prednisolone (Graham-Mize et al., 2005). Consequently, oral 

prednisolone is the main exogenous GC treatment for cats.  

In cats, prednisolone is given orally and typically used to treat and range of conditions including skin 

irritations, inflammation associated with joint disease (e.g., arthritis), some autoimmune conditions, 

and Addison’s disease/hypoadrenocorticism. Prednisolone is thought to be an intermediate-acting GC, 

with a reported half-life of 12-36 hours (Behrend and Kemppainen, 1997; Feldman and Nelson, 

2004). The physiological replacement dose (i.e., the dose required to replace cortisol concentrations in 

hypoadrenocorticism) of prednisolone in cats is estimated to be 0.44 mg/kg/day (Behrend and 

Kemppainen, 1997). The doses of prednisolone are divided into two categories: anti-inflammatory (1-

2 mg/kg bodyweight per day) and immunosuppressant (2.2-8.8 mg kg bodyweight per day; Behrend 

and Kemppainen, 1997). Prednisolone acts via the same glucocorticoid receptors as endogenous 

cortisol, so the biological effects of prednisolone are similar to that of cortisol (Behrend and 

Kemppainen, 1997). However, prednisolone has a four to five times higher GC potency than 

endogenous cortisol or exogenous hydrocortisone (i.e., synthetic cortisol; Behrend and Kemppainen, 

1997; Lowe et al., 2008a). 

While GC are used to treat a range of conditions, there are possible side effects of GC therapy, 

particularly with long-term administration in many species. Cats appear to tolerate GC treatments 

quite well, with reports of adverse side effects of GC therapy being relatively uncommon (Lowe et al., 

2008a). Indeed, a study on 15 cats found that the administration of prednisolone or dexamethasone at 

immunosuppressive doses for two months resulted in no clinical side effects except for mild polyuria 

and polydipsia (Lowe et al., 2008a). However, the long-term administration of GC leads to the 

suppression of the endogenous HPA axis (since GC negatively feedback on all levels of the HPA 
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axis), which can be problematic following the cessation of the treatment, with cats displaying 

hypoadrenacorticism due to suppressed HPA activity (Middleton et al., 1987). Therefore, it is 

important to taper cats off GC treatments rather than abruptly stopping the treatment. This allows the 

activity of the HPA axis to gradually increase prior to the complete removal of the treatment 

2.7 Alternative methods for monitoring the ovarian function of felids 

2.7.1 Accelerometry  
As mentioned previously, the accurate and reliable monitoring of ovarian function is challenging for 

many felids due to a lack of overt oestrous behaviours (Asa et al., 1992; Graham et al., 1995; 

Foreman, 1997; Wielebnowski and Brown, 1998; Moreira et al., 2001; Brown et al., 2002). However, 

it is unlikely that oestrus is truly silent, but rather it is associated with subtle behavioural changes that 

are challenging to identify without extensive behavioural monitoring (Asa et al., 1992; Graham et al., 

1995; Foreman, 1997; Wielebnowski and Brown, 1998; Moreira et al., 2001; Brown et al., 2002). 

Interestingly, many of the behaviours that felids express more frequency during oestrus appear to 

correlate with an increase in overall physical activity (OPA), so oestrus might be detectable by close 

monitoring of an animal’s activity levels (Asa et al., 1992; Graham et al., 1995; Foreman, 1997; 

Wielebnowski and Brown, 1998; Moreira et al., 2001; Brown et al., 2002).  

Accelerometry may offer a means of indirectly monitoring the activity and behaviour of felids. 

Indeed, Actical® ‘Minimitter’ Accelerometers have been attached to collars of domestic cats and 

validated as an accurate and automated means of assessing OPA, thus removing the need for 

continuous, time-consuming, and potentially intrusive direct behavioural observations (Lascelles et 

al., 2008; Andrews et al., 2015). The Actical® devices contain a single omnidirectional accelerometer; 

(Lascelles et al., 2008). Andrews et al. (2015) validated Actical® accelerometers for cats by 

comparing observed activity and Actical® counts. While there was a strong correlation between the 

observed activity and Actical® counts of individual cats (mean ± SEM, r2=0.94 ± 0.03), there was 

considerable variation in the activity of different cats and the linear regression between the observed 

activity and Actical® counts of different cats (Andrews, 2015). 

Preliminary research suggests that accelerometry could be used to detect a measurable increase in 

OPA during behavioural oestrus in cats (Andrews, 2015). Accelerometry has been used to detect an 

increase in OPA with oestrus/follicular growth in a range of species including dairy cattle (Bos taurus; 

At-Taras and Spahr, 2001; McGowan et al., 2007), mice (Mus musculus; Kopp et al., 2006), rats 

(Rattus norvegicus; Gerall et al., 1973), and pigs (Sus scrofa; Cornou, 2006). In dairy cattle, 

accelerometry was able to accurately to detect more than 90% of real oestrus events (At-Taras and 

Spahr, 2001; McGowan et al., 2007). Thus, accelerometry may also offer a minimally invasive 

technique for monitoring the ovarian function of felids in felids, pending the automated analysis and 

interpretation of the activity data.  
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Heyrex® activity monitors contain a triaxial accelerometer and have been developed to provide an 

automated analysis of accelerometry data, with the devices providing information on the total amount 

of time spent active (i.e., OPA) and the amount of time spent exhibiting of a range of behaviours 

(sleeping, resting, walking, running; Edwards and Gibson, 2012; Mejia et al., 2019). Furthermore, the 

Heyrex® devices may have advantages over similar devices and be more practical in captive 

management context as data can be wirelessly upload data onto an online server that can be accessed 

anywhere in the world (c.f., the Actical® accelerometers require removal and manual downloads of 

the data). The Heyrex® devices were designed for dogs and have not yet been validated in domestic 

cats. However, the modification and validation of the Heyrex® devices for monitoring the activity and 

behaviour of cats would be valuable.  

2.7.2 Infrared thermography  
An alternative method for monitoring reproductive state is infrared thermography. The elevated 

oestradiol concentrations associated with oestrus have been linked to increased blood flow to the 

vulvar, which, in turn, increases the superficial temperature of the perivulvar area (Simões et al., 

2014; Talukder et al., 2014). In cattle, pigs and horses, infrared thermography has been used to 

accurately detect both follicular growth and ovulation based on changes in the perivulvar skin 

temperature, with the vulva temperature rising during proestrus and oestrus, then decreasing 

considerably at the time of ovulation (Stelletta et al., 2013; Redaelli et al., 2014; Simões et al., 2014; 

Talukder et al., 2014; Sakatani et al., 2016; Radigonda et al., 2017). A similar trend has been reported 

for dogs (Canis familiaris), although the differences in vulvar temperature changes were not 

statistically significant due to large standard errors, possibly related to the confounding factors (e.g., 

climatic conditions and physical activity) or a high degree of inter-individual variation (Olğaç et al., 

2017). The use of thermal imaging to assess reproductive status in felids has not yet been investigated, 

but is warranted given that, if successful, it would offer a non-invasive method for rapidly detecting 

oestrus. 

However, a major limitation of thermography is that it is highly affected by a range of factors such as 

temperature, humidity, sunlight, wind, focal distance, and fur density (Kastberger and Stachl, 2003; 

Cilulko et al., 2013; Rekant et al., 2016; Silva et al., 2017). The amount of physical activity of the 

subject prior to taking a thermographic image can also cause variation in the recorded temperatures 

(Simões et al., 2014; Silva et al., 2017). Thus, the use of set reference points (e.g. on gluteal or 

perianal temperature) is essential to account for some of the variation caused by environmental 

factors, with researchers monitoring the relative temperature of the perivulvar area and the reference 

point (Simões et al., 2014). It is also important to minimise confounding variables by controlling the 

environment (particularly ambient temperature and humidity) in which the IR images are taken. 

Ultimately, careful experimental design is needed when using IR thermography for research.  
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2.8 Thesis aims and objectives 

As indicated in Chapter 1, the overall aim of this thesis was to identify and evaluate some of the 

factors that influence the reproductive performance of felids in captivity, and the first objective was to 

conduct the comprehensive review of felid reproduction and is presented here in Chapter 2. Following 

the review of the literature, the following additional objectives were identified:  

1. To determine the effects of GC administration (i.e., a simulated endocrine stress response) on 

the testicular functions of felids (Chapter 3), and on the ovarian response of domestic cats to 

exogenous gonadotrophin (Chapter 4), using the domestic cat as a model species. This is a 

priority because it directly tests the hypothesis that physiological stress can affect 

reproductive performance in felids.   

2. To develop and validate Heyrex® accelerometers (designed for dogs) for monitoring the 

activity and behaviour cats (Chapter 5). This is important because the validation of these 

devices will provide a minimally-invasive and low-stress means of continuously monitoring 

the activity and behaviour of cats without the need for extensive and time consuming 

observational assessments.   

3. To evaluate whether accelerometry (activity monitoring) and/or IR thermography (PVT 

monitoring) could be used to monitor the ovarian function of domestic cats, as a model for 

endangered felids (Chapter 6). Development of a reliable and low-stress (i.e., non-invasive or 

minimally invasive) method for monitoring the ovarian function of felids could potentially 

improve the captive management (e.g., determine when to combine breeding pairs), and thus, 

the success of captive felid breeding programs.  

4. An overall synthesis of the thesis is presented in Chapter 7. This Chapter identifies key 

findings and presents recommendations for future research.  

 

 



 

56 

 

 

 

 



 

 

 

 

 

Chapter 3 
 

The effects of a simulated endocrine stress 

response on testicular function of domestic cats 

(Felis catus)  

 

 
Photo of normal feline spermatozoa (1000 X magnification), by Chris Andrews. 

 

 

 

 

 

 

 

10 µm 



  

 

 

 



 

59 

Chapter 3: The effects of a simulated endocrine stress response on 

testicular function of domestic cats (Felis catus) 

3.0 Abstract  

Elevated glucocorticoid (GC) concentrations associated with captivity-related stress have been linked 

to impaired testicular function and sperm quality in felids, but putative physiological evidence is 

lacking. This study aimed to determine the effects of artificially elevated glucocorticoid 

concentrations on testicular function and sperm quality of felids using the domestic cat (Felis catus) 

as a model species. Sixteen intact male domestic cats aged from 1 – 13 years (2.43 ± 0.78 years) were 

randomly divided into treatment (n=8) and control (n=8) groups. Cats in the treatment group were 

given 1 mg/kg/day oral prednisolone (Redipred) for 50 days which encompassed an entire sperm 

cycle. Blood samples were taken on days 0, 2, 4, 7, 10, 20, 30, 40, 50 (prior to neutering) and 60 of 

the trial. All cats were orchiectomised on day 50, after which epididymal sperm samples were 

assessed and the testes fixed for histological assessment. Cortisol concentrations were lower in 

treatment cats (5.2 ± 0.9 ng/mL; mean ± SEM) than in control cats (15.1 ± 1.1 ng/mL, P<0.001). 

Testosterone concentrations did not differ between the two groups. While sperm motility was similar 

between the treatment and control groups, cats given prednisolone had a higher proportion of 

morphologically abnormal sperm in both the caput (72.5% vs. 59.6%, P<0.001) and cauda (56.7% vs. 

35.8%, P<0.001) epididymis. Testicular histomorphometric data were similar between the control and 

treatment groups. The total number of germs cells per seminiferous tubule cross section did not differ 

between the two groups, nor did the relative abundance of spermatogonia, spermatocytes, and 

spermatids. Cats given prednisolone had fewer Sertoli cells per tubule cross-section than those in the 

control group (17.1±0.9 vs. 19.7±0.8, P=0.04). This was likely related to the greater number of 

apoptotic Sertoli cells per tubule cross-section in treatment vs. control cats (0.25 ± 0.02 vs. 0.10 ± 

0.02 apoptotic Sertoli cells, P<0.001). Furthermore, Sertoli cell load (number of germ cells per Sertoli 

cell) was also higher in the treatment group (11.5 ± 0.8 vs. 9.4 ± 1.2, P<0.001) and was positively 

correlated with the percentage of morphologically abnormal sperm in the epididymis (r2 = 0.78, 

P<0.001). In conclusion, the prednisolone treatment resulted in an increase in the proportion of 

morphologically abnormal sperm in the epididymis, and this may be related to an increase in Sertoli 

cell load. These findings provide quantitative evidence to support the previously untested hypothesis 

that elevated GC concentrations, such as those resulting from captivity-related stress, have the 

potential to impair testicular function and sperm quality in felids. 

3.1 Introduction  

Captive breeding programs are a vital component of conservation strategies for felids, but these 

programs are often hindered by poor reproductive performance (Mellen, 1991; Terio et al., 2004; 
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Brown, 2006; Moreira et al., 2007; Fanson et al., 2010; Brown, 2011). A recent review on the 

reproductive biology of felids highlighted the high incidence of teratospermia (>60% morphologically 

abnormal sperm) as a major factor contributing to poor success of both natural and assisted breeding 

programs (Chapter 2; Andrews et al., 2019). 

Low levels of genetic diversity have been linked to teratospermia in felids (Wildt et al., 1987a; Brown 

et al., 1991; Pukazhenthi et al., 2006b; Andrews et al., 2019), although teratospermia is also prevalent 

in several species that exhibit reasonably high genetic diversity (Schwartz et al., 2003; Swanson, 

2003; Pukazhenthi et al., 2006b; Schmidt et al., 2011; Andrews et al., 2019). Captivity-related stress 

(i.e., the activation of the hypothalamic-pituitary-adrenal axis in response to factors associated with 

the captive environment) may also contribute towards the high incidence of teratospermia in felids 

(Chapter 2). Several felid species including Canadian lynx (Lynx Canadensis), cheetah (Acinonyx 

jubatus), and clouded leopards (Neofelis nebulosa) have been found to exhibit higher basal faecal 

glucocorticoid (GC) concentrations (a physiological indicator of stress) in captivity than in the wild 

(Wielebnowski et al., 2002a; Terio et al., 2004; Fanson et al., 2012).   

Glucocorticoids act on all levels of the hypothalamic-pituitary-gonadal axis to supress testicular 

steroidogenesis and spermatogenesis (Orr and Mann, 1992; Sharpe et al., 1992; Yazawa et al., 2000; 

Gore et al., 2006; Kirby et al., 2009). Exogenous GC have been found to indirectly (via decreased 

gonadotrophin-releasing hormone or luteinising hormone (LH) production) and directly inhibit the 

production and secretion of testosterone in rats (Bambino and Hsueh, 1981; Welsh et al., 1982; 

Whirledge and Cidlowski, 2010). The elevated GC concentrations observed in captive male felids 

have also been linked to decreased plasma testosterone concentrations (Terio et al., 2004; Fanson et 

al., 2012). Abnormally low testosterone concentrations have been found to disrupt late 

spermatogenesis, lead to poor germ cell-Sertoli cell adhesion, increase germ cell degeneration, and 

result in a higher proportion of morphologically abnormal sperm (Meistrich et al., 1975b; Sharpe et 

al., 1992; Walker, 2003; Mruk and Cheng, 2004).  

The captive environment also appears to affect sperm quality or concentration in the ejaculates of 

some male felids including jaguars (Panthera onca), cheetah, and lions (Panther leo; Koester et al., 

2015; Andrews et al., 2019). However, the ejaculates of captive and wild individuals have only be 

compared for five felid species (Chapter 2; Andrews et al., 2019), and it is unclear whether any 

differences in the ejaculate traits are due to captivity-related stress or other factors associated with 

captivity (e.g., diet). Koester et al. (2015) found that the cheetah produce ejaculates with a higher 

concentration of motile sperm when held off-exhibit than when on-exhibit. Given that the daily 

management and diets of cheetah on and off exhibit were similar, it would suggest that the stress 

associated with public exhibition adversely affected sperm output in this species (Koester et al., 



Chapter 3 – Effect of GC treatment on the testicular function of cats 

61 

2015). To date, however, no study has directly examined the underlying hypothesis that elevated GC 

levels, as might derive from captivity-related stress, actually impact negatively on male felid fertility. 

Thus, this study aims to determine the effects of a simulated endocrine stress response (i.e., 

exogenous GC treatment) on testicular function and spermatogenesis of felids using the domestic cat 

(Felis catus) as an animal model.  

3.2 Materials and methods  

3.2.1 Animals  
Sixteen healthy, intact male domestic cats that aged 2.43 ± 0.78 (range: 1.37 – 14.02) years and 

weighed 4.18 ± 0.12 (range: 3.24 – 4.67) kg were used for this trial. The cats were housed in a 

purpose-built colony cage at the Centre for Feline Nutrition, Massey University, Palmerston North, 

New Zealand (175◦3’E, latitude 40◦22’S, longitude) in groups of eight. The cats were fed a complete 

and balanced (AAFCO, 2020) commercial moist (canned) feline diet (Kraft Heinz Wattie’s Ltd., 

Hastings, New Zealand) with ad libitum access to water. The husbandry of the cats complied with the 

Animal Welfare (Cats) Code of Welfare (Anonymous, 2007) and all research was conducted in 

accordance with MUAEC protocol number 19/09.  

3.2.2 Experimental design  
The cats were allocated randomly (using www.randomizer.org) into a treatment group (n=8) and a 

control group (n=8). For logistic reasons, the trial was conducted in two replicates, with four control 

and four treatment cats per replicate. Cats in the treatment group were given 1 mg/kg oral 

prednisolone (Redipred: Aspen Pharmacare Australia Pty. Ltd., Saint Leonards, NSW, Australia) 

daily for 50 days. The 50-day treatment period was selected to encompass the entire spermatogenic 

cycle of cats, which takes approximately 47 days (França and Godinho, 2003). In cats, the effective 

cortisol replacement dose using prednisolone has been estimated to be 0.44 mg/kg/day (França and 

Godinho, 2003). The administration of 1 mg/kg/day prednisolone was selected as it would be 

comparable to the elevated cortisol concentrations associated with captivity-related stress, estimated 

to be 2.0 – 2.5 times higher than basal concentrations (Wielebnowski et al., 2002a; Terio et al., 2004; 

Fanson et al., 2010). 

Jugular venepuncture was used to collect 2 mL blood samples from all cats on Days 0 (immediately 

before first GC treatment), 2, 4, 7, 10, 20, 30, 40, and 50 (prior to neutering) of the trial. Local 

anaesthetic (Emla cream, 5% lignocaine; Aspen Pharmacare Australia Pty Ltd., Saint Leonards, NSW, 

Australia) was applied to the skin of the neck 15-30 min prior to blood collection. Blood samples 

were collected into vacuum tubes (Becton and Dickinson Co., Franklin Lakes, NJ, USA), left for 2-3 

hours at room temperature, and then centrifuged at 2500 rpm for 10 minutes and the serum extracted. 

Serum samples were stored at -80ºC until assayed. 

http://www.randomizer.org/
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On Day 50, all cats were given a single intramuscular injection of 0.05 mg/kg medetomidine 

(Dexdomitor: Zoetis Ltd., Auckland, New Zealand). After 10 minutes, an intramuscular injection of 

5.0 mg/kg ketamine (Phoenix Pharm Distributors Ltd., Auckland, New Zealand) was administered. 

Once anaesthetised, the cats were castrated and both testes collected. Following orchiectomy, the cats 

were given an intramuscular injection of 0.2 mg/kg butorphanol (Butorgesic; Indivior Pty. Ltd., 

Macquarie Park, NSW, Australia), and a subcutaneous injection of 0.1 mg/kg meloxicam (Metacam: 

Boehringer Ingelheim, Auckland, New Zealand) for post-surgical analgesia. Lastly, the cats were 

given 0.025 mg/kg atipamezole for medetomidine reversal (Atipam: Jurox Pty Ltd., Rutherford, 

NSW, Australia) and monitored closely during recovery from anaesthesia. The cats were then 

administered 0.5 mg/mL meloxicam orally once a day for two to three days following castration. The 

cats in the treatment group were gradually tapered off the oral prednisolone, initially receiving a 

reduced dose of 0.5 mg/kg daily for six days following castration (Day 51-57), then 0.5 mg/kg every 

second day for a further six days (Days 58-64). 

3.2.4 Epididymal sperm recovery and assessment 
Immediately after orchiectomy, each testis was placed in 37ºC phosphate buffered saline (PBS; 72 

mOsm and pH 7.2) with 5% foetal bovine serum (FBS; Life Sciences NZ Ltd, Auckland, New 

Zealand) and the epididymis was carefully dissected from the testis. The caput and cauda regions of 

the epididymis were then separated, and each placed into 300 µL of 37ºC PBS containing 5% FBS 

and macerated using a scalpel blade. The macerated epididymal sections were placed in a 37ºC 

incubator for 20 minutes. For each region, a 10 µL aliquot of the sperm suspension was used to assess 

the percentage of motile sperm and progressive motility graded in a scale of 0 - 5 (where 0 = no 

forward progression, and 5 = rapid forward progression) as previously described (Neubauer et al., 

2004; Müller et al., 2012). The sperm motility index (SMI) was then calculated using the following 

equation: SMI = (% motile sperm + (20*progressive motility))/2 (Morato et al., 2001; Crosier et al., 

2009; Gañán et al., 2010). For each region, a 30 µL aliquot of the sperm suspension was stained with 

10 µL Eosin-Nigrosin (Minitüb GmbH, Tiefenbach, Germany) and compound microscopy (1000 X 

magnification) used to assess the morphology of 100 sperms as described previously (Müller et al., 

2012).  

3.2.5 Testis tissue processing 
Testes were weighed (gross testicular weight) immediately after removal of the epididymides 

(Neubauer et al., 2004; Müller et al., 2012). The density of cat testicular tissue is 1.02 (França and 

Godinho, 2003), thus testicular volume was considered to be equal to testis weight. Net testicular 

weight was calculated by subtracting 19% of gross testicular weight to account for the weight of the 

tunica albuginea (França and Godinho, 2003). The gross weights of the two testes for each cat were 

combined and the gonadosomatic index (GSI; %) calculated as: (testicular mass [g]/bodyweight 

[g])*100 (Müller et al., 2012). Testes were placed in 4% paraformaldehyde in PBS for 24 hours, cut 
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in half transversely and returned to the formalin solution for one week, then embedded in paraffin 

wax.  

3.2.6 Histomorphology 
Sections of testicular tissue were cut at 4 µm thickness, placed on slides, and dried at room 

temperature. The slides were deparaffinised by immersion in xylene for 5 minutes, washed in 100% 

ethanol for 5 minutes, rehydrated by sequential immersion in ethanol (95%, 85%, 70%, and 50%), and 

stained with haematoxylin and eosin using a Leica autostainer XL (Leica Biosystems, Wetzlar, 

Germany). The slides were permanently mounted using the Leica CV5030 (Leica Biosystems, 

Wetzlar, Germany) coverslipper using Entellan (Merck Group, Darmstadt, Germany) as the mounting 

medium. Images of 100 seminiferous tubules were taken from each testis using an Olympus BX 51 

microscope, Olympus SC100 camera, and the Olympus CellSens imaging software (Olympus 

Corporation, Tokyo, Japan). 

3.6.1 Volume densities  
The volume densities (%) of the various tubular and inter-tubular components of the testis were 

determined using point-counting (França and Godinho, 2003; Neubauer et al., 2004; Müller et al., 

2012). Point-counting was conducted using a 450-intersection grid, which was superimposed on 

images taken at 400 X magnification using ImageJ Version 1.52a (National Institutes of Health, 

Bethesda, MD, USA). Ten images were assessed per cat (five images per testis), thus 4500 

intersection points were assessed per animal. Intersection points were classified as follows: 

seminiferous tubule components - tunica propria, seminiferous epithelium, or lumen; inter-tubular 

components - Leydig cells, connective tissue, blood vessels or lymphatic tissue (França and Godinho, 

2003). The absolute volume densities (µL) of each of the testicular components were estimated using 

the following equation: absolute volume of testicular component [µL] = volume density of the 

testicular component [%]*net testicular weight [mg] (França and Godinho, 2003; Müller et al., 2012).   

3.2.6.2 Seminiferous tubule morphometrics  
For each testis, the morphology of 50 circular seminiferous tubules was assessed using a light 

microscope (200-400 X magnification). The tubular diameter (average of two perpendicular 

measurements) and epithelial height (average of four measurements from the basement membrane to 

the lumen) were measured for each tubule cross-section (Figure 3.1). The total seminiferous tubule 

length per testis was determined as previously described by Müller et al. (2012), with total 

seminiferous tubule length [µm] = seminiferous tubule absolute volume [µm3]/π(seminiferous tubule 

radius [µm]2). 

3.2.6.3 Sertoli and germ cell assessments 
The total number of Sertoli cells, spermatogonia, spermatocytes, round spermatids, and elongate 

spermatids were determined for a total of 25 seminiferous tubule cross-sections per testis (Figure 3.1; 

França and Godinho, 2003; Müller et al., 2012). The relative percentages of the different germs cell 
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types were calculated for each testis. The number of Sertoli cells per testis and per gram of testis were 

calculated from the number of Sertoli cell counts per tubule cross-section and the total seminiferous 

tubule length (França and Godinho, 2003; Müller et al., 2012). The total counts of Sertoli cells, 

spermatogonia, spermatocytes, round spermatids, and elongate spermatids (for all 25 tubules) were 

used to calculate the total number of germ cells per Sertoli cell (i.e., Sertoli cell load) and the number 

of spermatids per Sertoli cell for each testis. 

 

 

Figure 3.1 Seminiferous tubule of the domestic cat showing the different cell types present and the 

measurements carried out. Tubule diameter (average of TD1 and TD2) and seminiferous tubule height (average 

of TH1, TH2, TH3, and TH4), Leydig cells (grey), Sertoli cells (red), spermatogonia (green), spermatocytes 

(brown), round spermatids (blue), and elongate spermatids (yellow).  

 

3.2.7 Determination of Apoptosis using TUNEL assay  
The detection of apoptotic cells (i.e., those with fragmented DNA) in testicular sections was 

performed using the DeadEndTM Colorimetric TUNEL system (Promega Corporation, Madison, WI, 

USA) according to the manufacturer’s instructions.  
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Fifteen of the 30 collected testes (i.e., one testis per cat) were sectioned and assessed for apoptosis. 

Small intestine tissue from chicken was used as a positive control. For an additional positive control, a 

sections of cat testes and chicken small intestine were treated with 100 µL of 1 mg/mL bovine 

pancreatic deoxyribonuclease I recombinant (DNase; Roche Holding AG, Basel, Switzerland) in 

DNase buffer (40 mM Tris-HCl with pH 7.9, 10mM NaCl, 6mM MgCl2, and 10mM CaCl2) for 10 

minutes to induce DNA fragmentation. Another section of cat testis and chicken small intestine tissue 

were used as a negative control, in which the recombinant terminal deoxynucleotidyl transferase 

(rTdT) enzyme was omitted from the TUNEL assay protocol below.   

All tissue processing hereafter was conducted at room temperature unless otherwise stated. The slides 

were deparaffinised by immersion in xylene for 5 minutes and rehydrated by sequential (three minutes 

per concentration) immersion in ethanol (95%, 85%, 70%, and 50%). The slides were then washed in 

0.85% NaCl in deionised water for 5 minutes and then PBS for 5 minutes. The slides were re-fixed in 

10% buffered formalin in PBS for 15 minutes and subsequently washed twice with PBS (5 minutes 

per time). Excess liquid was removed and tissue on each slide was covered with 100 µL of 20 µg/mL 

proteinase K solution in proteinase K buffer (100 mM Tris-HCl and 50 mM 

ethylenediaminetetraacetic acid; pH 8.0) for 20 minutes to permeabilise the tissue. Sections were then 

washed in PBS for 5 minutes, re-fixed in 10% buffered formalin for 5 minutes, and rinsed in PBS two 

times (5 minutes per time). 

Sections were incubated for 10 minutes with 100 µL of equilibration buffer (provided in the kit). 

Excess equilibration buffer was blotted off and the tissue sections were covered with 100 µL of the 

rTdT reaction mix (98 µL equilibration buffer, 1 µL biotinylated nucleotide mix, and 1 µL rTdT), 

before a plastic cover slip was placed on each slide and the sections incubated for 60 minutes at 37ºC 

in a humidified chamber. During incubation with the rTdT reaction mix, the biotinylate nucleotides 

were incorporated into the 3’-OH DNA ends of apoptotic cells by the rTdT enzyme. After incubation 

with the rTdT reaction mix, the plastic cover slips were removed, and the end-labelling reaction 

stopped by rinsing the sections in a Coplin jar containing saline sodium citrate buffer (SSC) for 15 

minutes. Sections were then washed in PBS three times (5 minutes per time) to remove excess 

biotinylated nucleotides. 

Endogenous peroxidases were blocked by immersing the sections in 0.3% hydrogen peroxide in PBS 

for 5 minutes, and then washed three times in PBS (5 minutes per time). Subsequently, sections were 

immersed in 100 µL of 1 µg/mL streptavidin – horseradish peroxidase in PBS for 15 minutes to allow 

streptavidin to bind to the biotin of the biotinylated nucleotides. The sections were then washed in 

PBS three times (5 minutes per time) and then covered with Betazoid 3,3′-Diaminobenzidine (DAB) 

Chromogen solution (Biocare Ltd., Concord, CA, USA) for 10 minutes. The horseradish peroxidase 

bound to the streptavidin-biotinylated nucleotide complexes catalysed the oxidation of DAB by 
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hydrogen peroxide, thus forming a brown precipitate/stain that could be observed using light 

microscopy. Lastly, the DAB solution was rinsed off with deionised water and the slides 

counterstained with haematoxylin and permanently mounted using Entellan as the mounting medium.  

TUNEL-labelled tissue sections were examined at 400 X magnification. At total of 100 round 

seminiferous tubule cross-sections were assessed per testis and the number of TUNEL-labelled Sertoli 

cells, spermatogonia, spermatocyte, and round spermatids per cross-section were recorded. The first 

three testis slides were assessed twice to ensure consistency. Note that elongate spermatids were not 

assessed as the DAB staining was difficult to interpret in these cells.  

3.2.8 Endocrine assays  

3.2.8.1 Cortisol 
Serum cortisol concentrations were analysed commercially by IDEXX Laboratories (Palmerston 

North, New Zealand). Cortisol concentrations were analysed using the Immulite® 1000 cortisol 

immunoassay. Cross-reactivity of the assay was reported as 100.0% for cortisol, 49.0% for 

prednisolone, 21.0% for methylprednisolone, 8.6% for corticosterone, 5.9% prednisone, and <1.0% 

for all other tested steroids (n=21). The analytical range was 2.0 – 500.0 ng/mL, and all samples and 

standards were run in duplicate. The mean intra-assay and inter-assay coefficients of variance (CV) 

were 7.13 ± 0.45% and 7.88 ± 0.51%, respectively. 

3.2.8.2 Glucose  
Glucose concentrations were used as an indicator for the efficacy of the prednisolone treatment and 

were analysed commercially by IDEXX Laboratories (Palmerston North, New Zealand). Serum 

glucose concentrations were determined using an enzymatic ultraviolet test (Beckman Coulter inc., 

Brea, CA, USA) and an AU680 clinical chemistry analyser (Beckman Coulter inc., Brea, CA, USA). 

The analytical range was 10.0 – 800.0 mg/dL. The mean intra-assay and inter-assay CV were 0.58 ± 

0.06% and 1.11 ± 0.08%, respectively.  

3.2.8.3 Prednisolone  
Prednisolone, prednisone, cortisone, and cortisol were measured in the serum samples collected on 

Days 0, 10, 30, and 50 using ultra-high performance liquid chromatography (UHPLC) with mass 

spectrometry. The internal standard was cortisol-d4 (60 ng/mL), with 100 µL of the internal standard 

(in water) being added to 200 µL of blank plasma, standard (standards were 0.25, 0.63, 2.50, 7.50, 

25.00, 75.00, 250.0, and 500.0 ng/mL for each steroid), quality control (QC), and collected serum 

samples.   

Steroids were extracted by adding 1 mL of ethyl acetate (Merck KGaA, Darnstadt, Germany) to each 

tube and vortexing for 20 seconds followed by centrifugation (~2000 rpm for 5 minutes). The organic 

layer was removed to a new tube and dried. The residue was then resuspended in 60 µL of 35% 

methanol (Merck KGaA, Darnstadt, Germany) and 65% water and transferred to HPLC injector vials. 
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Ten µL was injected into a UHPLC mass spectrometer system consisting of an Accela MS pump and 

autosampler followed by an Ion Max APCI source on a Finnigan TSQ Quantum Ultra AM triple 

quadrupole mass spectrometer all controlled by Finnigan Xcalibur software (Thermo Electron 

Corporation, San Jose, CA, USA). 

Steroid separation was achieved during a 14 minute run using a gradient of increasing methanol 

concentrations in water from 35 to 90% (gradient profile – 0.0 minutes = water 65%: methanol 35%, 

5.0 minutes = 65%: 35%, 8.0 minutes = 10%:90%, 9.9 minutes = 10%:90%, 10.0 minutes = 

65%:35%, and 14.0 minutes = 65%:35%), flowing at 400 µL/minute through a Kinetex F5 2.6 µm 

C18 100A 100 x 2.1 mm column (Phenomenex, Auckland, New Zealand) at 40ºC. Retention times 

were: prednisone 4.40 minutes, cortisone 4.75 minutes, cortisol 5.32 minutes, prednisolone 5.26 

minutes, and cortisol-d4 5.28 minutes (Figure 3.2). Ionization was in positive mode, Q2 had 1.2 

mTorr of argon for all steroids with the collision cell voltage between 22 and 28 volts. The mass 

transitions followed were: prednisone (359.2 → 237.1), cortisone (361.1 → 163.1), cortisol (363.2 → 

122.2), prednisolone (361.2→147.2) and cortisol d4 (367.2 →121.2). 

Analysis was carried out using XcaliburTM software (Thermo Electron Corporation, San Jose, CA, 

USA). Steroid concentrations were calculated from the peak area ratio steroid/internal standard 

compared with standard curves dissolved in charcoal stripped human plasma (standards were 0.25, 

0.63, 2.50, 7.50, 25.00, 75.00, 250.0, and 500.0 ng/mL for each steroid and generated from pure 

compounds). 

3.2.8.4 Testosterone 
Serum testosterone concentrations were measured using the Cobas® e601 analyser (Hitachi Ltd., 

Tokyo, Japan) and a commercially available electrochemiluminescence immunoassay (ECLIA), 

Elecsys Testosterone II Cobas® (Roche Diagnostics New Zealand, Auckland, New Zealand). Cross-

reactivity was reported to be ≤18.0% for 11-β-Hydroxy-testosterone, ≤6.0% for 19-Northisterone, 

≤3.2% for 11-Keto-testosterone, ≤2.5% for androstenedione, ≤2.4% testosterone proprionate, ≤2.4% 

ethisterone, ≤2.1% 5-α-Androstane-3β,17β-diol, and ≤1.0% for all other tested steroids (n=14).The 

detection range was 0.03 – 15.00 ng/mL. Values below the detection threshold were considered to be 

0.0 ng/mL. The mean intra-assay CV for quality controls was 2.6%.  
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Figure 3.2 Chromatograms showing the retention times for prednisone, cortisone, prednisolone, cortisol, and 

cortisol d4 (i.e., the internal standard) as determined using ultra-high performance liquid chromatography with 

mass spectrometry. Abbreviations: atmospheric pressure chemical ionisation (APCI), mass spectrometry (MS), 

normalisation level (NL), selected reaction monitoring (SRM), tandem mass spectrometry (ms2), total ion 

chromatogram (TIC).  
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3.2.9 Statistical Analysis  
RStudio version 1.0.143 (R Foundation for Statistical Computing, Vienna, Austria) and a significance 

level of P<0.05 was used for all statistical assessments. A trend or tendency was defined as P<0.1. 

Shapiro-Wilk normality test was used to assess the normality of all data. An effect of cohort was 

checked for all statistical comparisons between the control and treatment cats. When an effect of 

cohort was observed, a general linear model (GLM) was used to assess the effect of both treatment 

and cohort. The effects of epididymal region and treatment on sperm morphology were examined 

using multiple two-way ANOVA and Tukey’s post hoc tests. The motility and morphology data of 

control and treatment cats were analysed using a Mann-Whitney-Wilcox test or Welch’s t-test, 

depending on the normality of the data. The histomorphometric data of the control and treatments 

groups were compared using either a Mann-Whitney-Wilcox test or Welch’s t-test. Mixed linear 

models were used to examine the effect of treatment and time (day of trial) on parametric endocrine 

data. When required, a power transformation (using the ‘transformTukey’ function in ‘rcompanion’) 

was used to normalise non-parametric data for the two-way ANOVA or mixed linear models. 

Correlations were assessed using either a Pearson’s correlation coefficient (parametric) or Spearman 

ranked correlation coefficient (non-parametric).  

3.3 Results  

The mean body weight did not differ between the control (4.08 ± 0.18 kg) and treatment (4.14 ± 0.21 

kg) groups (P=0.85). The bodyweights of the cats did not change significantly over the trial (mean 

change in bodyweight of -0.03 ± 0.04 kg). No adverse effects of the prednisolone treatment were 

observed in the treatment cats. However, one cat in the control group was diagnosed with feline 

infectious peritonitis and had to be euthanised prior to completion of this study, so all data from this 

cat were excluded from analysis. 

3.3.1 Endocrine profiles 
Pre-treatment (Day 0) serum cortisol, glucose, and testosterone concentrations did not differ between 

control and treatment groups; however, mean cortisol concentration from Day 2 – Day 50 differed 

significantly between groups (Table 3.1). When analysed overtime, by Day 2 cortisol concentrations 

were lower in the treatment group (P=0.03) and remained lower (P<0.05) on Days 4, 7, 10, 20, and 

30 of the study (Figure 3.3). Cortisol concentrations decreased in the control group by Day 40, thus 

cortisol concentrations were not different between control and treatment cats, and they did not differ 

thereafter (Figure 3.3). On Day 60 (10 days after orchiectomy), cortisol concentrations were 

comparable to pre-treatment (Day 0) levels (Figure 3.3). Prednisolone and prednisone were 

undetectable in all serum samples.   
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Table 3.1 Mean (± SEM) serum cortisol, glucose, prednisolone, prednisone, and testosterone concentrations 

in untreated control cats (n=7) and treatment cats (n=8), given 1 mg/kg prednisolone for 50 Days. All cats were 

neutered on Day 50. Baseline samples were taken immediately before the first prednisolone treatment on Day 0. 

Treatment samples were taken from Day 2-50. ND = not detectable. NS = non-significant (P>0.10). 

  Control  Treatment  P-Value 

Baseline (Day 0)    

 Cortisol (ng/mL) 18.2 ± 2.6 23.1 ± 6.6 NS 

 Prednisolone ND ND - 

 Prednisone ND ND - 

 Glucose (mg/dL) 73.6 ± 2.6 81.3 ± 3.3  0.09 

 Testosterone (ng/mL) 1.4 ± 0.6   2.1 ± 0.4  NS 

Treatment (Mean of Day 2 – 50)    

 Cortisol (ng/mL) 15.1 ± 1.1   5.2 ± 0.9  <0.001 

 Prednisolone ND ND - 

 Prednisone ND ND - 

 Glucose (mg/dL) 79.0 ± 1.8 85.2 ± 1.1    0.003 

 Testosterone (ng/mL)   2.3 ± 0.3   2.6 ± 0.2  NS 

 

Glucose concentrations did not differ significantly over time (Figure 3.3). The mean glucose 

concentrations from Day 2 to 50 appeared to be higher in the treatment group than in the control 

group (P=0.003; Table 3.1), but glucose concentrations were not significantly different between the 

treatment groups on any given day (Figure 3.3).  

Mean testosterone concentrations (2.3 ± 0.2 ng/mL, range: 0.0 – 7.5 ng/mL) did not differ between the 

control and treatment groups throughout the study (Table 3.1; Figure 3.3), thus they were combined 

for further assessment. Testosterone concentrations did not differ significantly over time, with the 

exception of Day 60 (Figure 3.3). Testosterone concentrations fell sharply after orchiectomy and were 

undetectable on Day 60 (i.e., 10 days after orchiectomy; Figure 3.3).  
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Figure 3.3 Mean (± SEM) serum cortisol (a), glucose (b), and testosterone (c) concentrations of untreated 

control cats (grey line; n=7) and treatment cats (black lines; n=8), which were given 1 mg/kg prednisolone for 

50 days. All cats were neutered on Day 50. Cortisol concentrations differed between the control and treatment 

cats (P<0.001), and also differ significantly over time (excluding day 60) within group. There was no treatment 

by time effect for either glucose or testosterone, thus treatment and control groups were also compared for each 

day. *P<0.05 and **P<0.01.  

 

 

0

5

10

15

20

25

30

35

-5 0 5 10 15 20 25 30 35 40 45 50 55 60

C
o

rt
is

o
l 

(n
g
/m

L
)

50

60

70

80

90

100

-5 0 5 10 15 20 25 30 35 40 45 50 55 60

G
lu

co
se

 (
m

g
/d

L
)

0

1

2

3

4

5

-5 0 5 10 15 20 25 30 35 40 45 50 55 60

T
es

to
st

er
o

n
e 

(n
g
/m

L
)

Day of trial 

** 

** 

** 

* * 

* 

 



Chapter 3 – Effect of GC treatment on the testicular function of cats 

72 

3.2.2 Epididymal sperm assessment  
Sperm motility, progressive motility, and SMI did not differ between the control and treatment 

groups, even when the caput and cauda regions were assessed independently. When considered 

independently of treatment group, the percentage of motile sperm and SMI values increased from the 

caput compared to the cauda epididymis (P<0.001 and P<0.001, respectively; Figure 3.4). Progressive 

motility was also lower in the caput than cauda epididymis (P<0.001). 

 

 

Figure 3.4 Mean (± SEM) sperm motility and sperm motility index (SMI) of sperm collected from the caput 

(white bars; n=15) and cauda (grey bars; n=15) epididymides of all cats (note: sperm motility and SMI did not 

differ between the control and prednisolone-treated cats). ***P<0.001. 

 

The main sperm morphologies identified in this study are depicted in Figure 3.5. The percentage of 

morphologically abnormal sperm was higher in the treatment group than the control group (P<0.001), 

as was the percentage of both primary and secondary abnormalities (P<0.001 and P=0.01, 

respectively; Figure 3.6; Table 3.2). Total morphological abnormalities and primary abnormalities 

were significantly higher in the treatment group than the control group in both the caput and cauda 

epididymis (Figure 3.6; Table 3.2). Secondary abnormalities were also more prevalent in the caput 

(P<0.02) and cauda (P<0.001) epididymis of cats given prednisolone (Figure 3.6; Table 3.2). 
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Figure 3.5 A summary of the sperm morphologies observed in epididymis of the domestic cat (1000 X 

magnification). (A) Normal morphology, (B) polycephalic, (C) polyflagellate, (D) coiled tail, (E) 

macrocephalic, (F) microcephalic (head indicated by arrow), (G) mid-piece aplasia, (H) bent mid-piece with 

cytoplasmic droplet, (I) bent mid-piece, (J) bent tail with cytoplasmic droplet, (K) bent tail, (L) proximal 

cytoplasmic droplet.   

10 µm 
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Figure 3.6 Mean (± SEM) percentage of all morphological abnormalities, primary abnormalities, and secondary 

abnormalities in the caput and cauda regions of the epididymides of untreated control (white bars; n=7) cats and 

cats treated with prednisolone (1 mg/kg) daily for 50 days (treatment, n=8, grey bars). Statistical comparisons 

(between treatment group and region) were done independently for all abnormalities, primary abnormalities, and 

secondary abnormalities using Tukey’s Post hoc tests (parametric: morphological assessments). Statistical 

significance (P<0.05) is indicated by differing letters.   

 

Table 3.2 Sperm traits for the caput and cauda epididymal regions of untreated control cats (n=7) and cats that 

received 1 mg/kg prednisolone daily for 50 days (n=8). Values presented as mean ± SEM. Statistical 

comparisons were made between the control and treatment cats in the caput and cauda regions independently. 
†P<0.10, * P<0.05, ** P<0.01, ***P<0.001.  

 Caput  Cauda 

 Control  Treatment  Control Treatment 

Percentage motile (%)  22.5 ± 2.6 19.5 ± 2.4  76.7 ± 3.4 77.8 ± 2.5 

Progressive motility (1-5)    2.5 ± 0.1   2.1 ± 0.2    4.4 ± 0.1   4.2 ± 0.1 

Sperm motility index (%) 36.6 ± 2.1 31.0 ± 2.7    79.8 ± 2.9 80.8 ± 2.2 

Abnormal sperm (%)  59.6 ± 2.3 72.5 ± 2.3***  35.8 ± 1.5 56.7 ± 1.5*** 

  Primary sperm defects (%)   6.4 ± 0.3 11.8 ± 0.6***    8.3 ± 1.2 18.1 ± 1.8*** 

      Acrosome defects   0.9 ± 0.5   1.7 ± 0.3*    0.5 ± 0.2   1.9 ± 0.3*** 

      Head defects (Inc. Micro/macrocephalic)   3.0 ± 0.5   5.6 ± 0.9*    0.7 ± 0.2   2.9 ± 0.8* 

      Midpiece defects   1.8 ± 0.4   5.6 ± 0.9***    2.4 ± 0.4   7.8 ± 1.2*** 

      Polycephalic   0.7 ± 0.2   1.0 ± 0.4    0.7 ± 0.3   1.9 ± 0.6† 

      Polyflagellate   0.1 ± 0.1   0.4 ± 0.2    0.4 ± 0.3   0.4 ± 0.2 

      Tightly coiled flagellum    2.3 ± 0.5   3.2 ± 0.6    7.0 ± 1.6 15.1 ± 2.2** 

  Secondary sperm defects (%)  53.1 ± 2.2 60.7 ± 2.3*  27.6 ± 1.0 38.6 ± 1.7*** 

      Bent midpiece with droplet   1.7 ± 0.4   3.1 ± 0.6†    2.9 ± 0.8   5.2 ± 0.6** 

      Bent midpiece without droplet   2.1 ± 0.4   3.4 ± 0.5    3.4 ± 0.7   7.3 ± 1.1 

      Bent flagellum with droplet   0.6 ± 0.2   0.8 ± 0.3    1.7 ± 0.4   2.1 ± 0.6 

      Bent flagellum without droplet   0.8 ± 0.2   1.6 ± 0.6    2.9 ± 0.6   4.8 ± 1.0 

      Detached head   2.6 ± 0.7   4.5 ± 1.0†    4.4 ± 1.1   7.8 ± 1.0* 

      Distal cytoplasmic droplet   4.6 ± 0.9 10.1 ± 2.1**  12.5 ± 1.0 14.1 ± 2.6 

      Proximal cytoplasmic droplet  59.8 ± 3.4 64.2 ± 5.5*  11.3 ± 1.1 24.4 ± 3.2** 

      Spermatid   0.4 ± 0.2   0.9 ± 0.3    0.1 ± 0.1    1.1 ± 0.3*** 
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3.2.3 Testicular histomorphometric parameters  
The average testicular weight was 1.66 ± 0.08 g (range: 1.23 – 2.85 g), and there were no differences 

between left and right testis within cat. As such, data from the two testes of each cat were combined 

for further analysis. Body weights and combined testes weight were not correlated (P=0.21). While 

the average body weight and testicular weights of the cats did not differ significantly between the 

control and treatment groups, there was a tendency (P=0.08) for testis weight to be higher in the 

treatment group (Table 3.3). The GSI also did not differ between the treatment groups (Table 3.3). 

Table 3.3 Testis histomorphometric data from cats in the control (n=7) and cats treated with 1 mg/kg 

prednisolone for 50 days (n=8). Seminiferous tubule length was calculated as: total seminiferous tubule length = 

(seminiferous tubule absolute volume [µL])/π(seminiferous tubule radius [µm]2). Gonadosomatic index (GSI) 

was calculated as: GSI [%] = testicular mass [g]/bodyweight [g])*100. Statistical significance was P<0.05 and a 

trend defined as P<0.10. Non-significant (NS) is used for P>0.10.  

 Control Treatment P-Value 

Mean bodyweight (g)   4082.7 ± 180.2   4137.0 ± 210.4  NS 

Gross Testis weight (mg) 1476.8 ± 88.7   1820.7 ± 179.2 0.08 

Net Testis weight (mg) 1196.2 ± 71.8   1474.8 ± 145.2 0.08 

Gonadosomatic index (%)      0.07 ± 0.00     0.09 ± 0.01 NS 

Tubule diameter (µm)  227.9 ± 4.4 230.8 ± 5.2 NS 

Seminiferous epithelium height (µm)   65.4 ± 1.2   69.7 ± 1.7 0.06 

Total tubular length per testis (m)    24.3 ± 2.5   29.1 ± 2.0 NS 

Total testis parenchyma volume (µL) 1196.2 ± 71.8   1474.8 ± 145.2 0.08 

Testis parenchyma volume density (%)    

     Seminiferous tubule   81.4 ± 2.8   83.7 ± 1.4 NS 

          Tunica propria     2.4 ± 0.2     1.8 ± 0.2 0.06 

          Seminiferous epithelium    67.6 ± 1.9   71.9 ± 1.0 0.07 

          Lumen    11.4 ± 2.3   10.0 ± 1.3 NS 

     Inter-tubular compartment   18.6 ±2.8  16.3 ±1.4 NS 

          Leydig cells   10.2 ± 2.1     7.0 ± 0.9 NS 

          Connective tissue     4.8 ± 1.0     6.2 ± 1.3 NS 

          Blood vessels     1.2 ± 0.3     1.2 ± 0.3 NS 

          Lymphatic vessels     2.4 ± 0.4     1.9 ± 0.4 NS 

 

The mean (± SEM) seminiferous tubule diameter and epithelium height was 229.5 ± 2.4 µm (range: 

208.4 – 265.6 µm) and 67.7 ± 0.9 µm (range: 57.6 – 77.7 µm), respectively. The mean (± SEM) 

seminiferous tubule length per testis was 26.8 ± 1.2 m (range: 14.4 – 39.6 m). Seminiferous tubule 

length was similar between the treatment and control groups (Table 3.3). While testis weight and 

seminiferous tubule length were positively correlated (r2 = 0.81, P<0.001), seminiferous tubule 

diameter and testis weight were not (r2 = 0.23, P=0.22). Seminiferous tubule diameter, epithelium 

height, and total length did not differ between the control and treatment groups (Table 3.3), although 

there was a trend for the seminiferous tubule epithelium height to be higher in the treatment group. 

Testis parenchyma comprised mostly of seminiferous tubules (82.6 ± 1.3%, range: 66.2 – 91.9%) and 

Leydig cells (8.5 ± 0.9%, range: 3.1 – 22.0%), with Leydig cells occupying ~49% of the inter-tubular 

compartment. Testicular parenchyma volume densities did not differ between the control and 

treatment groups (Table 3.3). However, the volumes and densities of seminiferous epithelium and 

tunica propria in the treatment group tended to be higher and lower than the control group, 

respectively (Table 3.3).   
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3.2.4 Sertoli and germ cell assessments 
The mean (± SEM) number of Sertoli cells per seminiferous tubule cross section was 18.3 ± 0.5 

(range: 13.2 – 23.9). Cats in the treatment group had fewer Sertoli cells per seminiferous tubule cross 

section than those in the control group (P=0.04; Table 3.4). On average, there were approximately 

123.3 x 106 Sertoli cells per testis and 91.7 x 106 Sertoli cells per gram of testis. The number of Sertoli 

cells per cross-section (P=0.04) and the number of Sertoli cells per gram of testis was lower in the 

treatment group (P<0.001; Table 3.4). 

Table 3.4 Sertoli and germ cell type (spermatogonia, spermatocytes, round spermatids, and elongate spermatids) 

parameters from the cats in the control (n=7) and cats treated with 1 mg/kg prednisolone for 50 days (n=8) 

groups. Non-significant (NS) is used for P>0.10. 

Cell type Control  Treatment  P-Value 

Sertoli cells     

 Per tubule cross section   19.7 ± 0.8   17.1 ± 0.9  0.04 

 Per testis (x106)    119.1 ± 10.9 127.3 ± 8.4 NS 

 Per gram of testis (x106)   98.7 ± 2.9   85.6 ± 4.2 <0.001 

Germ cells    

 Number of germ cells/tubule cross section 185.3 ± 9.4   196.5 ± 10.8 NS 

 Number of spermatids/tubule cross section 110.6 ± 7.1 122.9 ± 6.8 NS 

 Relative germ cell abundance (%)    

  Spermatogonia      9.4 ± 0.5     9.5 ± 0.4 NS 

  Spermatocytes    31.0 ± 1.3   27.9 ± 0.6 0.06 

  Round Spermatids    31.1 ± 1.5   34.7 ± 1.0 0.08 

  Elongate Spermatids    28.4 ± 1.4   27.9 ± 0.9 NS 

Sertoli cell load    

 Number of germ cells/Sertoli cell      9.4 ± 1.2   11.5 ± 0.8   <0.001 

 Number of spermatids/Sertoli cell     5.6 ± 0.1     7.2 ± 0.1   <0.001 

 

The mean (± SEM) number of germ cells per seminiferous tubule cross section was 191.3 ± 5.1 

(range: 140.2 – 251.2), with 117.2 ± 3.7 (range: 76.4 – 160.0) spermatids per tubule cross section. 

Both the total number of germ cells and spermatids per tubule cross section did not differ between the 

control and treatment group. The total number of germ cells per tubule cross section was correlated 

with tubule diameter (r2 = 0.64, P<0.001), as was the number of spermatids per tubule cross section 

(r2 = 0.51, P = 0.004). Round spermatids were the most abundant germ cell (33.0%), followed by 

spermatocytes (29.4%) and elongate spermatids (28.1%), with spermatogonia being present in much 

lower proportion (9.5%). The relative abundances of the different germ cell types did not differ 

significantly between the treatment and control groups (Table 3.4), but there was a tendency for 

spermatocytes and round spermatids to have a higher relative abundance in the treatment group. 

There were an estimated 10.5 ± 1.3 (mean ± SEM, range: 6.6 – 12.1) germ cells (spermatogonia, 

spermatocytes, and spermatids) per Sertoli cell and 6.4 ± 1.0 (mean ± SEM, range: 3.9 – 7.6) 

spermatids per Sertoli cell. The number of Sertoli cells per gram of testis was negatively correlated 

with both the number of germ cells (r2 = -0.69, P<0.001) and spermatids (r2= -0.53, P<0.002) per 

Sertoli cell. Sertoli cell load (i.e., number of total germ cells per Sertoli cell) was higher in the 

treatment group than the control group (P<0.001; Figure 3.7; Table 3.4). Sertoli cell load was 
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positively correlated with the mean percentage of morphologically abnormal sperm (rho = 0.67, 

P<0.001), as well as the percentage of morphologically abnormal sperm in the caput (rho = 0.58, 

P<0.001) and cauda (rho = 0.69, P<0.001) regions of the epididymis. The number of spermatids per 

Sertoli cell was also positively correlated with the percentage of abnormal sperm in both the caput 

(rho = 0.62, P<0.001) and cauda (rho = 0.78, P<0.001) regions of the epididymis.  

 

Figure 3.7 The mean (± SEM) number of germ cells (spermatogonia, spermatocytes, round spermatids, and 

elongate spermatids) and spermatids per Sertoli cell in the untreated control cats (white bars; n=7) and cats 

treated with 1 mg/kg prednisolone for 50 days (grey bars; n=8). ***P<0.001. 

 

3.2.5 Sertoli and germ cell apoptosis: TUNEL assay 
The TUNEL assay stained apoptotic cells in both the cat testis and chicken small intestine (control; 

Figure 3.8). While there was no staining in the negative controls (rTdT omitted from assay), DNase-

treated tissues (positive controls) showed intense staining (Figure 3.8). The total number of apoptotic 

cells per tubule cross-section was similar between prednisolone-treated (0.97 ± 0.12 apoptotic cells) 

and control (1.16 ± 0.05 apoptotic cells) cats. However, Sertoli cell apoptosis was higher in the 

treatment group (P<0.001; Figure 3.9). There were fewer apoptotic germ cells per tubule cross-section 

in the prednisolone-treated cats (P=0.03) than control cats, although only the number of apoptotic 

spermatocytes differed between the two groups of cats (P=0.04; Figure 3.9).  
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Figure 3.8 TUNEL apoptosis assay of (a) small intestine of chicken with recombinant terminal 

deoxynucleotidyl transferase (rTdT) omitted (i.e., negative control), (b) DNase-treated small intestine of chicken 

(i.e., positive control), (c) cat testis with rTdT omitted (i.e., negative control), (d) DNase-treated cat testis (i.e., 

positive control), (e) seminiferous tubule cross-section with apoptotic germ cells, and (f) seminiferous tubule 

cross-section with cytoplasmic Sertoli cell staining (non-apoptotic). Apoptotic cells are stained brown.  
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Figure 3.9 Mean (± SEM) number of apoptotic (as identified using a TUNEL assay) Sertoli and germ cells 

(spermatogonia, spermatocytes, and round spermatids) per seminiferous tubule cross-section (C.S.) in cat testes 

of untreated control cats (white bars; n=7) and cats treated with 1 mg/kg prednisolone for 50 days (grey bars; 

n=8). Note that elongate spermatids were not included, as TUNEL staining was difficult to accurately quantify 

in these cells. *P<0.05, **P<0.001. 

 

3.4 Discussion  

This is the first study to examine the effects of a simulated endocrine stress response (GC treatment) 

on testicular function in domestic male cats. The hypothesis that elevated GC (as may derive from 

captivity-related stress) have a detrimental effect on testicular function in domestic cat was supported. 

While sperm motility was similar between the treatment and control groups, cats given prednisolone 

exhibited a higher proportion of primary and secondary sperm abnormalities in both the caput and 

cauda epididymis (Figure 3.6). The prednisolone treatment did not significantly alter testicular 

histomorphometric parameters and volumetrics (Table 3.3). However, cats in the treatment group had 

fewer Sertoli cells per seminiferous tubule cross section and a higher Sertoli cell load (i.e., number of 

germ cells per Sertoli cell). Interestingly, a higher Sertoli cell load was positively correlated with the 

percentage of morphologically abnormal sperm in the epididymis.  

Over the treatment period (i.e., 50 days), glucose concentrations were higher in prednisolone-treated 

cats than in control cats. This was not surprising given that GC administration is well known to 

increase blood glucose concentrations via several pathways including promoting gluconeogenesis in 

the liver, inhibiting glucose uptake by skeletal muscle and adipose tissue, and suppressing insulin 

secretion pancreatic β cells (Kuo et al., 2015). Prednisolone-treated cats had lower serum cortisol 

concentrations, which agrees with past literature suggesting the exogenous GC decrease endogenous 

cortisol concentrations (Middleton et al., 1987). Prednisolone and prednisone were undetectable in the 
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serum of both prednisolone-treated and control animals. There is conflicting data on the half-life of 

prednisolone, with veterinary textbooks reporting a 12-36 hour half-life (Behrend and Kemppainen, 

1997; Feldman and Nelson, 2004) and human pharmacokinetic study reporting 2-3 hour half-life 

(Rose et al., 1981). Blood samples were taken 22-24 hours after the prednisolone treatment was 

administered. If the prednisolone half-life is in fact 2-3 hours, then it is likely that circulating 

prednisolone concentrations were below the limit of quantification (i.e., <0.25 ng/mL) by the time 

sampling occurred.  

Testosterone concentrations did not differ between control and treatment animals. It was possible that 

testosterone concentrations changed as prednisolone concentrations declined after administration. For 

future studies, it would be advisable to collect blood samples within 2-4 hours of GC administration to 

determine whether the lack of effect on testosterone concentration is real or an artefact of our 

experimental design. Despite no change in serum testosterone or prednisolone concentrations between 

prednisolone-treated and control cats, other effects of the treatment were observed on parameters such 

as sperm abnormalities, Sertoli cell numbers, and Sertoli cell load.  

The percentage of morphologically abnormal sperm was significantly higher in the epididymides of 

cats given prednisolone. In fact, both primary and secondary abnormalities were more prevalent in the 

treatment cats, thus implying that the GC treatment adversely affected both spermatogenesis and 

sperm maturation, respectively (Pukazhenthi et al., 2001; Pukazhenthi et al., 2006b; Crosier et al., 

2009; Müller et al., 2012). Primary sperm abnormalities, which were significantly increased in the 

prednisolone-treated cats, are often due to impaired Sertoli cell function and/or high Sertoli cell loads 

(i.e., too many germ cells per Sertoli cell; Mruk and Cheng, 2004; Pukazhenthi et al., 2006b). Sertoli 

cell load was positively correlated with the percentage of abnormal sperm in the epididymis of the 

cats in the present study. Abnormal testosterone concentrations can lead to an increase in primary 

sperm abnormalities, as testosterone is required for germ cell-Sertoli cell adhesion (Mruk and Cheng, 

2004; Wang et al., 2006). For example, AR-knockout mice only exhibit one of the eight proteins 

involved in the desmosome junction between germ cells and Sertoli cells (Wang et al., 2006). 

Incomplete desmosome junctions have been linked to impaired Sertoli cell function, incomplete 

sperm development, and thus a high proportion of morphologically abnormal sperm (Mruk and 

Cheng, 2004; Wang et al., 2006). Secondary abnormalities are typically a consequence of abnormal 

developmental conditions during sperm passage through the epididymis (e.g., hormone 

concentrations, seminal plasma composition and pH; Pukazhenthi et al., 2001; Pukazhenthi et al., 

2006b). Testosterone slows the transport of sperm through the epididymis, so it is not surprising that 

abnormally low testosterone concentrations have been linked to an increase in the proportion of 

secondary abnormalities such as proximal cytoplasmic droplets of mice (Meistrich et al., 1975). 

While cats given prednisolone exhibited a higher percentage of primary and secondary sperm 

abnormalities in this study, testosterone concentrations were similar between the control and treatment 
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cats. The increased proportions of morphologically abnormal sperm may adversely affect the fertility 

of the cats, as abnormal sperm are rarely involved in the fertilisation process and can even disrupt the 

function of structurally normal sperm (Howard et al., 1990; Long et al., 1996; Pukazhenthi et al., 

2006b).  

Atypically low testosterone concentrations have been linked to an increased prevalence of sperm 

abnormalities (Meistrich et al., 1975; Müller et al., 2012). As discussed above for prednisolone, it is 

possible that differences in the testosterone concentrations of control and treatment animals were 

missed due to sampling interval. It is also conceivable that GC did not affect testosterone 

concentration, but altered the concentrations of testicular androgen receptors and/or androgen-binding 

protein (ABP) instead. Androgen binding protein has an important role of regulating testicular 

androgen concentrations and concentrating testosterone in the testis and the epididymis (Munell et al., 

2002). Interestingly, abnormally low testicular ABP concentrations have been linked to impaired or 

overwhelmed (too many germ cells) Sertoli cells (Mruk and Cheng, 2004; Johnson et al., 2008).  

Sertoli cells perform a wide variety of functions including the formation and regulation of the blood-

testis barrier, germ cells support (nutritional, hormonal, and structural), production of ABP, regulation 

of the translocation of germ cells across the seminiferous epithelium, spermiation, and phagocytosis 

of apoptotic germ cells (Mruk and Cheng, 2004; Johnson et al., 2008). Overexerted Sertoli cells (i.e., 

those with too many germ cells) cannot perform these functions as efficiently and thus germ cell 

development is impaired (Mruk and Cheng, 2004; Johnson et al., 2008). In the current study, both the 

mean number of germ cells (9.4 ± 1.2) and the mean number of spermatids (5.6 ± 0.1) per Sertoli cell 

in control animals were comparable to past studies: 9.8 ± 0.8 total germ cells and 5.1 ± 0.6 spermatids 

per Sertoli cell (França and Godinho, 2003), and 5.2 ± 0.3 spermatids per Sertoli cell (Müller et al., 

2012). However, cats treated with prednisolone had a higher Sertoli cell load which may in part 

explain the sperm morphological abnormalities detected in these animals, independently of 

testosterone concentrations.  

The increase in Sertoli cell load could be caused by one of two things: either an increased number of 

germ cells or a reduction in Sertoli cell number. The total number of germ cells per seminiferous 

tubule cross-section, as well as the relative abundance of the different germ cells (spermatogonia, 

spermatocytes, round spermatids, and elongate spermatids), were similar between treatment and 

control cats. Interestingly, germ cell apoptosis was lower in prednisolone-treated cats, specifically the 

number of apoptotic spermatocytes per tubule cross-section. Jewgenow et al. (2009) reported reduced 

spermatocyte apoptosis in teratospermic domestic cats, with the authors suggesting that the high 

incidence of abnormal sperm observed in the ejaculates of these cats may be due, in part, to the 

reduced elimination of morphologically abnormal sperm via apoptosis. Reduced germ cell apoptosis 
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may also explain the higher proportion of abnormal sperm in the epididymides of prednisolone-treated 

cats.  

Regarding reductions in the number of Sertoli cells as a leading cause of increase cell load, the 

present study showed that cats given prednisolone exhibited fewer Sertoli cells per tubule cross-

section and per gram of testicular tissue. This may be at least partly explained by the higher number of 

apoptotic Sertoli cells per tubule cross-section present in the testis of prednisolone-treated cats. The 

difference in the number of Sertoli cells per tube cross-section of control and treatment cats was 

surprising, given that Sertoli cell numbers are considered to be stable in adult mammals (Johnson et 

al., 2008). It is typically thought that Sertoli cells do not proliferate in adult mammals, although there 

is some evidence to indicate that Sertoli cell proliferation may occur under certain circumstances 

(Johnson et al., 2008). Taken altogether, the potential GC-induced reduction in Sertoli cell numbers 

would be particularly concerning as it suggests that prolonged periods of elevated GC concentrations 

could have a permanent or prolonged effect on testicular function.  

It is worth noting that caution is needed when considering the estimated total number of Sertoli cell 

per testis or gram of testis, since these estimates are likely to be imprecise as it is difficult to 

accurately correct for the inconsistent size and/or shape of Sertoli cells. Indeed, the total number of 

Sertoli cells per testis or gram of testis has varied considerably across different publications studies: 

31.6 ± 6.4 x 106 Sertoli cells per g of testis (França and Godinho, 2003), 54.7 ± 5.5 x 106 Sertoli cells 

per g of testis (Müller et al., 2012), and 92.2 ± 2.8 x 106 Sertoli cells per g of testis (present study). 

Thus, it would be recommended to focus primarily on a more accurate or relative measurement of 

Sertoli cell number, such as the number of Sertoli cells per tubule cross section 

3.5 Conclusions 

Prednisolone treatment adversely affected sperm quality in cats independently of testosterone 

concentration, with treatment cats exhibiting a higher proportion of morphologically abnormal sperm 

in the epididymides. Both primary and secondary sperm abnormalities were higher in the 

prednisolone-treated cats, suggesting that spermatogenesis and sperm maturation were affected by the 

treatment. The prednisolone treatment did not appear to alter total number and relative abundance of 

spermatogonia, spermatocytes, or spermatids. However, cats given prednisolone had fewer Sertoli 

cells per tubule cross-section and a higher Sertoli cell load (number of germ cells per Sertoli cell), 

which could have contributed towards to increased proportion of morphologically abnormal sperm in 

the prednisolone-treated cats. Testicular tissue was retained to examine any effects of the 

prednisolone treatment on gonadotrophin receptor and ABP expression, as this may provide further 

insight into pathways by which GC adversely affect testicular functions.   
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Chapter 4: The effects of a simulated endocrine stress response on the 

ovarian function of cats (Felis catus) undergoing exogenous gonadotrophin 

treatments 

4.0 Abstract  

This study examined the effects of a simulated endocrine stress response (i.e., glucocorticoid (GC) 

treatments) on the ovarian function and oocyte quality of domestic cats undergoing ovarian 

stimulation treatment. It was hypothesised that the number of ovulations following exogenous 

gonadotrophin treatments and/or oocyte quality will be impaired in cats given a GC treatment. Entire 

female cats were divided into treatment (n=6) and control (n=6) groups. Cats in the treatment group 

were given 1 mg/kg/day prednisolone orally for 45 days. All cats were given 0.088 mg/kg/day 

progesterone orally from Day 0 (first day of prednisolone treatment) to Day 37 of the study to 

suppress follicular growth. On Day 40, the cats were intramuscularly treated with 75 IU equine 

chorionic gonadotrophin (eCG) to induce follicular growth, followed by 50 IU human chorionic 

gonadotrophin (hCG) 80 hours later to induce ovulation. Cats were ovariohysterectomised 30 hours 

after the hCG treatment and the uteri and ovaries collected. The ovarian responses were graded from 

1-4 (1 (excellent) = multiple corpora haemorrhagica (CH)/fresh corpora lutea (CL), 2 (good) = 

multiple CH/fresh CL with large (≥2 mm) follicles, 3 (fair) = mix of CH/fresh CL and aged CL, or 4 

(poor) = no ovulatory response). Ovaries were fixed in 4% paraformaldehyde and embedded in 

paraffin. Oocytes were recovered by retrograde flushing of the uterine tubes using 37℃ phosphate 

buffered saline with 5% foetal bovine serum. Oocyte diameter and zona pellucida (ZP) thickness were 

measured using light microscopy. Each oocyte was given a total oocyte score (TOS: 0-8, 8=best) 

based on four parameters: oocyte morphology, size, ooplasm uniformity and granularity, and ZP 

thickness and thickness variation. Blood samples were collected on Days 0, 10, 30, and 40, prior to 

the hCG treatment, and at the time of ovariohysterectomy. Serum oestradiol, progesterone, cortisol, 

glucose, and prednisolone concentrations were assessed. The induction of follicular growth and 

ovulation was confirmed in all cats by oestradiol concentrations and morphological assessment of the 

ovaries, with a mean of 10.5 ± 1.1 ovulations per cat. Body weight, ovarian weight and volume, 

graded ovarian response, number of ovulations, and oocyte recovery did not differ between the two 

groups of cats. Oocyte diameter was comparable between the two groups, but the ZP was thinner in 

the treatment group (3.1 ± 0.3 μm vs. 4.1 ± 0.3 μm, P=0.03). While the TOS was similar between 

treatment and control cats, the ooplasm grade was lower in the treatment group (1.5 ± 0.1 vs. 1.9 ± 

0.1, P=0.01). There was also a tendency for ZP grade to be poorer in the treatment group (0.8 ± 0.1 

vs. 1.2 ± 0.2; P=0.08). However, it is unclear whether these morphological changes would affect 

fertility. In the future, in vitro fertilisation rates and embryo formation need to be assessed to confirm 

that GC treatment impairs fertility in female cats. 
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4.1 Introduction  

Captive breeding programs are a vital component in the conservation strategies for felids, but these 

programs are often hindered by poor reproductive performance (Mellen, 1991; Terio et al., 2004; 

Brown, 2006; Moreira et al., 2007; Fanson et al., 2010; Brown, 2011). Natural breeding is often 

limited due to mate incompatibility and the logistic challenges of moving breeding animals between 

captive breeding institutes (Howard and Wildt, 2009). Assisted reproductive technologies (ART) offer 

a means of improving the efficiency of captive breeding programs and transferring genetic material 

between in situ felid populations, and perhaps between in situ and ex situ populations (Howard and 

Wildt, 2009). Unfortunately, ART have generally had poor success rates in felids, even when ovarian 

function is controlled using exogenous progestins and gonadotrophins (Swanson et al., 1997; Pelican 

et al., 2006; Pelican et al., 2008; Howard and Wildt, 2009; Pelican et al., 2010; Stewart et al., 2012).  

A major factor hindering the success of both natural breeding and ART in felids is the effect of 

captivity-related stress on the reproductive function of female felids. Captive felids exhibit basal 

glucocorticoid (GC) concentrations that are more than two times higher than their wild conspecifics, 

which indicates that the captive environment is stressful (Wielebnowski et al., 2002; Terio et al., 

2004; Fanson et al., 2012). Public exhibition has been found to increase the basal GC concentrations 

of cheetahs (Acinonyx jubatus) and clouded leopards (Neofelis nebulosa; Wielebnowski et al., 2002b; 

Koester et al., 2015).  

The high levels of GC observed in captive felids have been linked to ovarian quiescence and 

decreased oestradiol production (Jurke et al., 1997; Moreira et al., 2007). It has been shown that 

moving acyclic females (with high basal GC concentrations) into more enriched enclosures, or taking 

them off public exhibition, decreased faecal GC concentrations and, more importantly, lead to the 

resumption of ovarian cyclicity (Jurke et al., 1997; Moreira et al., 2007). It is likely that the high basal 

GC observed in captive felids would also adversely affect follicular growth and oocyte quality (i.e., 

fertility). In other mammalian species (e.g., rats (Rattus norvegicus) and mice (Mus musculus)), GC 

have been shown to act on all levels of the hypothalamic-pituitary-gonadal axis to supress ovarian 

steroidogenesis and gametogenesis, disrupt ovulation, and delay the onset of meiotic maturation of 

oocytes in response to the pre-ovulatory luteinising hormone surge (Hsueh and Erickson, 1978; 

Kawate et al., 1993; Tetsuka et al., 1999; Yang et al., 1999; Gore et al., 2006; Van Merris et al., 

2007; Kirby et al., 2009; Whirledge and Cidlowski, 2010). While there would be clear value in 

understanding these processes, no research has yet been conducted on the physiological effects of 

high basal GC concentrations on fertility of female felids.  

This study aims to determine the effects of a simulated endocrine stress response (i.e., exogenous GC 

treatment) on the ovarian function and oocyte quality of female domestic cats undergoing a typical 
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exogenous gonadotrophin treatment regime for ovarian stimulation. The focus of this study was to use 

the domestic cat as a model for examining the effects of elevated GC on ovarian function and fertility 

of female non-domestic felids. It is hypothesised that the number of ovulations following exogenous 

gonadotrophin treatments and/or oocyte quality will be reduced in cats given a GC treatment.   

4.2 Materials and methods  

4.2.1 Animals  
Twelve healthy, intact female domestic cats that aged 2.50 ± 0.22 (1.54 – 3.96) years and weighed 

(3.12 ± 0.12 kg (range: 2.57 – 3.87 kg) were used for this trial. The cats were housed in mixed-sex 

groups of eight in a purpose-built colony cage at the Centre for Feline Nutrition, Massey University, 

Palmerston North, New Zealand (175◦3’E, lat. 40◦22’S, long.). The cats were fed a complete and 

balanced (AAFCO, 2020) commercial moist (canned) feline diet (Kraft Heinz Wattie’s Ltd., Hastings, 

New Zealand) and had ad libitum access to water. The husbandry of the cats complied with the 

Animal Welfare (Cats) Code of Welfare (Anonymous, 2007) and all research was conducted in 

accordance with Massey University Animal Ethics Committee protocol number 19/10.  

4.2.2 Experimental design  
The cats were allocated randomly (using www.randomizer.org) into either the treatment group (n=6) 

and control group (n=6). Cats in the treatment group were given 1 mg/kg oral prednisolone (Redipred: 

Aspen Pharmacare Australia Pty. Ltd., Saint Leonards, NSW, Australia) daily for 45 days. The 

duration of prednisolone treatment was determined by the hormonal regime used to control ovarian 

functions (Stewart et al., 2012). The effective cortisol replacement dose using prednisolone is 

estimated to be 0.44 mg/kg/day in cats (França and Godinho, 2003), thus 1 mg/kg/day prednisolone 

was selected as it would be comparable to the elevated cortisol concentrations associated captivity-

related stress in endangered felids (2 – 2.5 times above basal concentrations; Jurke et al., 1997; 

Wielebnowski et al., 2002a; Moreira et al., 2007). 

All cats (n=12) were exposed to an ovarian stimulation regime previously described (Stewart et al., 

2012), with slight modifications to the gonadotrophin doses administered. Cats were treated orally 

with 0.088 mg/kg/day altrenogest (Altreno Oral: Caledonia Holdings Ltd, Auckland, New Zealand), 

an oral progestin, from Day 0 to 36 of the trial to suppress ovarian activity. Altrenogest treatment was 

stopped three days prior to exogenous gonadotrophin treatments. On Day 40, the cats were given an 

intramuscular (i.m.) injection of 75 IU of equine chorionic gonadotrophin (eCG; Novormon: Syntex, 

Palo Alto, CA, USA) to promote follicular growth, followed by 50 IU human chorionic 

gonadotrophin (hCG; Chorulon: Merck Animal Health, Madison, NJ, USA) i.m. 80 hours later, to 

induce ovulation.  

http://www.randomizer.org/
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The cats were ovariohysterectomised 30-31 hours after the hCG treatment. The cats were pre-

medicated with a single i.m. injection of 0.05 mg/kg dexmedetomidine (Dexdomitor: Zoetis Ltd., 

Auckland, New Zealand), 3.0 mg/kg ketamine (Phoenix Pharm Distributors Ltd., Auckland, New 

Zealand) and 0.3 mg/kg morphine (DBLTM, Pfizer Inc., New York, NY, USA). Anaesthesia was 

induced using 4.0 mg/kg propofol and maintained using isoflurane (Bayer New Zealand Ltd., 

Auckland, New Zealand). Once anaesthetised, the cats were ovariohysterectomised and the uteri and 

ovaries collected. Following ovariohysterectomy, the cats were given an i.m. injection of 0.025 mg/kg 

atipamezole (Atipam: Jurox Pty Ltd., Rutherford, NSW, Australia; medetomidine reversal agent). All 

cats were given a subcutaneous injection of 0.3 mg/kg morphine for post-operative analgesia. Lastly, 

cats in the control group were given 0.5 mg/kg/day meloxicam orally (Metacam: Boehringer 

Ingelheim, Auckland, New Zealand) for three days after ovariohysterectomy. It is unsafe to 

administer non-steroidal anti-inflammatory drugs to cats treated with prednisolone, thus cats in the 

treatment group were given 0.03 mg/kg buprenorphine (Temgesic; Indivior Pty. Ltd., Macquarie Park, 

Australia) sublingually twice a day for two days following ovariohysterectomy. The cats in the 

treatment group were gradually tapered off the oral prednisolone, initially receiving a reduced dose of 

0.5 mg/kg daily for six days following castration (Day 45-51), then 0.5 mg/kg every second day for a 

further six days (Days 52-58). 

4.2.3 Ovarian collection and histological assessment  
The collected ovaries were separated from the adjacent tissue and the response of each ovary to the 

exogenous gonadotrophin regime graded according to Stewart et al. (2012). Grade 1 (excellent) was 

characterised by ovarian responses which exhibited multiple corpora haemorrhagica (CH)/fresh 

corpora lutea (CL) and no large follicles (>2 mm). Grade 2 (good) responses that had a mix of 

CH/fresh CL and large follicles. Grade 3 (fair) responses had a mixed cohort of aged and fresh CL 

with or without large follicles. Grade 4 (poor) responses that did not show signs of ovulation. Each 

ovary was weighed, had its dimensions measured, and volume calculated (volume [mm3] = length 

[mm]*width [mm]2*0.524). Gross ovary weights were combined and the gonadosomatic index (GSI) 

was calculated as: GSI (%) = total ovarian mass [g]/bodyweight [g])*100. Ovarian tissue was then 

fixed in 4% paraformaldehyde in phosphate buffered saline (PBS) for 48 hours and subsequently 

embedded in paraffin wax. 

4.2.4 Oocyte collection and fixation  
Each oviduct was flushed within 5 minutes of retrieval with 37ºC PBS (720 mOsm and pH 7.2) 

containing 5% foetal bovine serum (Life Sciences NZ Ltd, Auckland, New Zealand) and the oocytes 

were collected in a petri dish. Oocytes were examined at 400 X magnification and imaged using an 

Olympus BX 51 microscope, Olympus SC100 camera, and the Olympus CellSens imaging software 

(Olympus Corporation, Tokyo, Japan). The oocyte recovery rate was determined for each cat as the 

number of oocytes retrieved devided by the total number of CH/CL on the ovaries. The oocyte 
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diameter (average of two perpendicular measurements) and zona pellucida (ZP) thickness (average of 

four measurements) was recorded (Figure 4.1). The ZP thickness variation (ZPTV) was also 

calculated for each oocyte: ZPTV = (ZP max thickness [μm] – ZP mean thickness [μm])/ZP mean 

thickness [μm]*100%.  

  

Figure 4.1 Measurements of oocyte diameter (OD1 and OD2) and zona pellucida thickness (ZP1, ZP2, ZP3, 

and ZP4) in a cat oocyte, which were averaged to provide a single measure of oocyte diameter and zona 

pellucida thickness. 

The oocytes were graded using a modified version of a method described previously for humans 

(Lazzaroni-Tealdi et al., 2015). Oocytes were evaluated using four parameters: oocyte morphology, 

oocyte size, ooplasm characteristics, and ZP morphology (Table 4.1). Each parameter was graded as 

poor (0), moderate (1), or good (2; Table 4.1). The grades for each of the parameter were then 

summed to provide the total oocyte score (TOS), which ranged from 0 (poor) – 8 (good)). Good 

quality oocytes were defined by a TOS of 7-8. Moderate quality oocytes had a TOS of 4-6, while poor 

quality oocytes had a TOS of 0-3. Figure 4.2 provides examples of good, moderate, and poor quality 

oocytes.  

Table 4.1 Parameters and criteria for grading cat oocytes. Note that the definitions of each grade for oocyte size 

and zona pellucida (ZP) characteristics were derived from the mean (± Stdev) of the oocyte diameter and ZP 

thickness for the oocytes collected in the present study. 

Parameter Grade 

0 (poor) 1 (moderate) 2 (good) 

Oocyte morphology  Very ovoid or completely 

misshapen  

Slightly ovoid  Round  

Oocyte size (diameter) <45 μm OR >65 μm  45<50 μm OR 60>65 μm 50<60 μm  

Ooplasm characteristics Very granular or 

vacuolated or several 

inclusions. 

Slightly granular or vacuolated 

or few inclusions 

Absence of granularity or 

inclusions 

ZP characteristics 1) If very thin <1.5 μm or 

thick >6.0 μm 

2) Very -inconsistent 

shape around oocyte 

(stdev) across four ZP 

measurements of >2.0 

μm). 

3) abnormal appearance.    

1) Slightly thin (1.5<2.0 μm) or 

thick (5.0<6.0 μm) 

2) Slightly inconsistent shape 

around oocyte (Stdev across 

four ZP measurements of 

1.0<2.0 μm 

3) Slightly abnormal 

appearance 

1) Normal thickness (2.0<5.0 

μm) 

2) Consistent shape around 

oocyte (Stdev across four ZP 

measurements <1.0 μm).   

3) Normal appearance.  
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Figure 4.2 Oocytes collected from cats following the exogenous stimulation of follicular growth and ovulation 

(400 X magnification). Oocytes were graded on four parameters (morphology, size, ooplasm, and ZP), with 

each parameter being graded from 0 – 2 (2=best). The total oocyte score (TOS) was the sum of the grades for 

the four oocyte parameters. (a,b,c) Good quality oocytes (TOS of 7 or 8), (d,e,f) moderate quality oocytes (TOS 

of 4 - 6), and (g,h,i) poor quality oocytes (TOS 0-3).  

 

4.2.7 Endocrine assessment  
Jugular venepuncture was used to collect 2 mL blood samples from all cats on Days 0 (immediately 

before first GC treatment), 10, 30 and 40 (immediately before the eCG treatment), and then 80 hours 

after eCG treatment, and while the cats were under anaesthesia for ovariohysterectomy (Day 45 of the 

trial).). Local anaesthetic (2% xylocaine gel, Aspen Pharmacare Australia Pty Ltd., Saint Leonards, 

NSW, Australia) was applied to the neck of the cats prior to blood collection. Blood samples were 

collected into vacuum tubes (Becton and Dickinson Co., Franklin Lakes, NJ, USA), left for 2-3 hours 

at room temperature then centrifuged at 2000 rpm for 15 minutes and serum extracted. Serum samples 

were stored at -80ºC until assessment. Day 30 was considered as baseline for all endocrine 

assessments as this allowed sufficient time (Day 0-30) for complete ovarian suppression (i.e., no 

follicular or luteal activity 
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4.2.7.1 Cortisol  
Serum cortisol concentrations were analysed commercially by IDEXX Laboratories (Palmerston 

North, New Zealand). Cortisol concentrations were analysed using the Immulite® 1000 cortisol 

immunoassay. Cross-reactivity of the assay was reported as 100% for cortisol, 49% for prednisolone, 

21% for methyl-prednisolone, 8.6% for corticosterone, 5.9% prednisone, and <1.0% for all other 

tested steroids (n=21). The analytical range was 2.0 – 500.0 ng/mL and all samples and standards 

were run in duplicate. The mean intra-assay and inter-assay coefficients of variance (CV) were 7.13 ± 

0.45% and 7.88 ± 0.51%, respectively. 

4.2.7.2 Glucose 
Glucose concentrations were used as an indicator for the efficacy of the prednisolone treatment and 

were analysed commercially by IDEXX Laboratories (Palmerston North, New Zealand). Serum 

glucose concentrations were determined using an enzymatic ultraviolet test (Beckman Coulter inc., 

Brea, CA, USA) and an AU680 clinical chemistry analyser (Beckman Coulter inc., Brea, CA, USA). 

The analytical range was 10.0 – 800.0 mg/dL. The mean intra-assay and inter-assay CV were 0.58 ± 

0.06% and 1.11 ± 0.08%, respectively.  

3.2.7.3 Prednisolone 
Prednisolone, prednisone, cortisone, and cortisol were measured in the serum samples collected on 

Days 0, 10, 30, and 45 using ultra-high performance liquid chromatography (UHPLC) with mass 

spectrometry. The internal standard was cortisol-d4 (60 ng/mL), with 100 µL of the internal standard 

(in water) being added to 200 µL of blank plasma, standard (standards were 0.25, 0.63, 2.5, 7.5, 25.0, 

75.0, 250.0, and 500.0 ng/mL for each steroid), quality control (QC), and collected serum samples. 

For complete methodology, see Chapter 3.  

4.2.7.4 Oestradiol  
Serum 17β-oestradiol concentrations were measured using the Cobas® e601 analyser (Hitachi Ltd., 

Tokyo, Japan) and a commercially available electrochemiluminescence immunoassay (ECLIA), 

Cobas® Estradiol III (Roche Diagnostics New Zealand, Auckland, New Zealand). Cross-reactivity was 

reported to be <1.0% for all tested steroids (n=35) except for 6-α-hydroxy-oestradiol, which had a 

cross reactivity of 74.1%. The detection range was 5.0 – 3000.0 pg/mL. Values below the detection 

threshold were considered to be 0 pg/mL. The mean intra-assay coefficient of variance (CV) for 

quality controls was 3.2%.  

4.2.7.5 Progesterone 
Serum progesterone concentrations were measured using the Cobas® e601 analyser (Hitachi Ltd., 

Tokyo, Japan) and a commercially available ECLIA, Cobas® Progesterone III (Roche Diagnostics 

New Zealand, Auckland, New Zealand). Cross-reactivity was reported to be <1.0% for all tested 

steroids (n=27) except for 11-deoxycorticosterone, which had a cross reactivity of 3.9%. The 
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detection range was 0.05 – 60.0 ng/mL. Values below the detection threshold were considered to be 

0.0 ng/mL. The mean intra-assay CV for the quality controls was 2.7%.  

4.2.6 Statistical analysis  
RStudio version 1.0.143 (R Foundation for Statistical Computing, Vienna, Austria) and a significance 

level of P<0.05 was used for all statistical assessments. A trend or tendency was defined as P<0.1. 

Shapiro-Wilk normality tests were used to assess the normality of all data. Due to large standard 

deviations, Chauvenet’s criterion was used to remove outliers from the endocrine data. The effect of 

treatment with respect to Day of trial on cortisol, glucose, oestradiol, and progesterone concentrations 

was examined using linear mixed models, but cortisol, oestradiol, and progesterone data were 

exponentially transformed using the function ‘transformTukey’ to meet the test requirements (i.e., 

normality). The bodyweight, ovarian weight, ovarian volume, ovarian response (grade), ovulation 

rate, oocyte recovery, and oocyte parameters of the control and treatment cats were compared using 

either a Welch’s T-test or Mann-Whitney-Wilcox test depending on normality. The percentage of 

oocytes in each TOS score of control and treatment cats was compared using a Chi-squared test. All 

data are presented as mean ± SEM unless stated otherwise. For correlation analyses, Pearson or 

Spearman correlation coefficients were used depending on the normality of the data.  

4.3 Results 

The mean bodyweight of the cats was 3.12 ± 0.12 kg (range: 2.57 – 3.87 kg), and bodyweight did not 

differ between the control (3.12 ± 0.17 kg) and treatment (3.09 ± 0.19 kg) groups. The bodyweights of 

the cats did not change significantly over the trial, with a mean change in bodyweight of 0.20 ± 0.05 

kg (range: -0.01 – 0.43 kg). No adverse side effects of the prednisolone treatment were observed in 

the treatment cats. Ovarian weight and volume were similar between the control and treatment groups, 

with a mean ovarian weight and volume of 0.3 ± 0.02 g (range: 0.2 – 0.4 g) and 40.0 ± 2.0 mm3 

(range: 28.6 – 53.7 mm3), respectively. The GSI did not differ significantly between the treatment and 

control cats, mean GSI of 0.022 ± 0.002%. Bodyweight was not correlated with either ovarian weight 

or volume, but there was a strong positive correlation between ovarian weight and volume (r2=0.87, 

P<0.001).   

4.3.1 Endocrinology 
The mean serum cortisol concentration throughout the study for both treatment groups combined was 

17.8 ± 1.7 ng/mL. Baseline (Day 0) cortisol concentrations were similar between the control and 

treatment cats, with a mean Day 0 concentration of 19.3 ± 4.6 ng/mL. The mean cortisol 

concentrations from Day 10-45 were lower in the treatment group than in the control group (13.7 ± 

2.7 ng/mL and 21.1 ± 2.5 ng/mL, respectively; P=0.02). However, there was neither a time nor 

treatment by time interaction on cortisol concentrations (Figure 4.3). Prednisolone and prednisone 

were undetectable in all serum samples.   
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Mean blood glucose concentrations were higher in the treatment group than in the control group (79.1 

± 1.4 mg/dL vs. 73.9 ± 1.6 mg/dL respectively; P=0.02), although glucose concentrations only 

differed significantly between the groups on Day 44 (Figure 4.3). However, there was no treatment by 

time interaction for glucose concentrations (P=0.31).  

 

Figure 4.3 Mean (± SEM) serum cortisol (a) and blood glucose (b) concentrations of untreated control cats 

(grey line; n=6) and the treatment cats (black lines; n=6), which were given 1 mg/kg prednisolone from Day 0-

45. Cats were treated with 0.088 mg/kg/day oral progesterone from Day 0-37. On Day 40, the cats were given 

75 IU equine chorionic gonadotrophin (eCG) to induced follicular growth, followed by 50 IU human chorionic 

gonadotrophin (hCG) to induce ovulation 80 hours later. The cats were ovariohysterectomised 24 hours after the 

hCG treatment (i.e., Day 45). Note that glucose was not analysed on Day 45. Linear mixed models indicated that 

there was no treatment by time interaction for either cortisol or glucose concentrations, thus treatment and 

control groups were compared for each day. †P<0.10, *P<0.05.    
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Serum oestradiol concentrations did not differ between the treatment and control groups, even when 

time effect was accounted for (Figure 4.4); thus, values from each treatment group were combined for 

further analysis. The mean oestradiol concentration on Day 0 was 17.8 ± 3.4 pg/ml, which has 

previously been correlated to a lack of active ovarian follicles (Shille et al., 1979). After 30 days of 

follicular suppression by the altrenogest treatment, the mean baseline oestradiol concentration (Day 

30) was 40.7 ± 5.1 pg/mL. Oestradiol concentrations changed over time (P<0.001), but post-hoc 

analysis indicated that only Day 44 values differed significantly from the other time points. Mean 

oestradiol concentration on Day 44 was 85.6 ± 14.3 pg/mL, which was 2.3-fold higher than mean 

baseline (Day 30) concentrations. Blood sample collection of Day 44 of the trial was unable to be 

collected from one cat; thus, it was not possible to document a peak in serum oestradiol 

concentrations following the eCG treatment in that female. 

Three of the cats in the treatment group had elevated progesterone concentrations (35.3 ± 6.3 ng/ml) 

on Day 0, suggesting the presence of functional CL (i.e., dioestrus); two of these cats still had 

elevated progesterone concentrations (12.6 ng/ml and 36.7 ng/ml) on Day 10. Baseline (Day 30) 

progesterone concentrations were similar between the treatment and control groups (0.38 ± 0.12 

ng/mL vs. 0.64 ± 0.09 ng/mL, respectively; P=0.61). Progesterone concentrations did not vary 

significantly over time in either the treatment or control groups. Mean progesterone concentrations 

(Day 30-45) were lower in the prednisolone-treated cats than control cats (0.57 ± 0.13 ng/mL vs. 1.01 

± 0.12 ng/mL, respectively; P=0.004; Figure 4.4). However, progesterone concentration were only 

significantly lower in the treatment cats than control cats on Day 44 (P=0.02), although progesterone 

concentrations also tended to be lower in the treatment group on Day 40 (P=0.09; Figure 4.4). 
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Figure 4.4 Mean (± SEM) serum oestradiol (a) and progesterone (b) concentrations of untreated control cats 

(grey line; n=6) and treatment cats (black lines; n=6), which were given 1 mg/kg prednisolone from Day 0-45. 

All cats were exposed to an exogenous ovarian control regime consisting of 0.088 mg/kg/day progesterone (Day 

0 – 37), 75 IU eCG (Day 40) to stimulate follicular growth, and 50 IU hCG (Day 44) to induce ovulation. The 

cats were ovariohysterectomised on Day 45. Day 30 values were considered baseline as this allowed sufficient 

time (Days 0-30) for existing (i.e., Day 0) luteal phases to have ceased and the progesterone treatment to 

completely suppress follicular growth. Linear mixed models indicated that there was no treatment by time 

interaction for either oestradiol or progesterone concentrations, thus treatment and control groups were 

compared for each day. †P<0.10, *P<0.05. 

 

4.3.2 Ovarian and oocyte assessments 
The effect of exogenous gonadotropin stimulation on ovarian morphology, follicular stimulation, and 

ovulation did not differ between treatment and control animals, thus data were combined for further 

analysis. The gonadotrophin treatments successfully stimulated follicular growth and ovulation in all 

12 cats, with a mean number of ovulations (determined from number of CH/CL) of 10.5 ± 1.1 (range: 

0

20

40

60

80

100

120

140

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

O
es

tr
ad

io
l 

(p
g
/m

l)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

P
ro

g
es

te
ro

n
e 

(n
g
/m

l)

Day

†

*



Chapter 4 – Effects of GC treatment on the ovarian function of cats 

96 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

TOS

T
o

ta
l 

o
o

cy
te

 s
co

re
 (

T
O

S
)

6 – 22). The mean number of large follicles (>2 mm) present per cat was 0.8 ± 0.3. Follicles, CH 

and/or CL were present on both ovaries of all cats except for Kanuka, in which ovarian structures 

developed in only one ovary. Kanuka also appeared to have ovulated earlier than the other cats, as 

indicated by the presence of mature CL at ovariectomy (c.f., only CH in other cats). The number of 

ovulations per ovary was positively correlated with ovary weight (rho=0.71, P<0.001) and volume 

(rho=0.69, P<0.001). 

The mean ovarian response grade to the gonadotrophin treatments was 1.5 ± 0.4. The oocyte recovery 

rate was 47.6 ± 9.7 % and oocytes were not recovered from two of the 12 cats (one treatment cat and 

one control cat). Ocyte recovery rates did not differ between control and treatment animals. A total of 

28 and 30 oocytes were collected from the control and treatment cats, respectively. 

The oocyte diameter was not influenced by treatment, with a mean oocyte diameter of 54.4 ± 0.8 μm 

(range: 42.4 – 73.8 μm). The ZP was thinner in the treatment cats (3.1 ± 0.3 μm) than the control (4.1 

± 0.3 μm) cats (P=0.03). Zona pellucida thickness variation was similar between the treatment (46.3 ± 

6.1%) and control (39.4 ± 4.2%) groups. The TOS, oocyte morphology grade, and oocyte size grades 

did not differ between treatments (Figure 4.5). However, there was a tendency for the ZP grade to be 

lower in the cats receiving prednisolone (P=0.08; Figure 4.5). The ooplasm grade was lower in 

treatment cats (P=0.01; Figure 4.5).  

 

  

Figure 4.5 (a) Mean (±SEM) oocyte morphology, oocyte size, ooplasm, and ZP grades (0 – 2, 2=best) of 

oocytes the control (white bars; n=28) and treatment cats (grey bars; n=30) oocytes, with treatment cats given 1 

mg/kg/day prednisolone for 45 days. These grades were summed to provide the total oocyte score (b; TOS; 0-8, 

8=best). All cats were exposed to an exogenous ovarian control regime consisting of 0.088 mg/kg/day 

progesterone (Day 0 – 37), 75 IU eCG (Day 40) to stimulate follicular growth, and 50 IU hCG (Day 44) to 

induce ovulation. †P<0.10, *P<0.05.  
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A higher proportion of poor quality (TOS=0-3) oocytes was retrieved from treatment cats compared 

to control animals (P=0.04; Table 4.2). Treatment cats also had lower proportion of good quality 

(TOS=7-8) oocytes (Table 4.2), although this difference was not significant. The proportion of 

moderate (TOS=4-6) oocytes was similar between the treatment and control groups (Table 4.2). There 

were fewer poor-quality oocytes than both moderate and good quality oocytes for both the treatment 

and control cats (P<0.05; Table 4.2). The number of moderate and good quality oocytes did not differ 

between the treatment and control cats.  

Table 4.2 The percentage of poor, moderate, and good quality oocytes retrieved from untreated control cats 

(n=6 cats and n=28 oocytes) and cats treated with 1 mg/kg prednisolone for 45 days (n=6 cats and n=30 

oocytes). All cats were exposed to an exogenous ovarian control regime consisting of 0.088 mg/kg/day 

progesterone (Day 0 – 37), 75 IU eCG (Day 40) to stimulate follicular growth, and 50 IU hCG (Day 44) to 

induce ovulation. Oocytes were graded on four parameters (morphology, size, ooplasm, and ZP), with each 

parameter being graded from 0 – 2 (2=best). The total oocyte score (TOS) was the sum of the grades for the four 

oocyte parameters. P>0.10 reported as non-significant (NS). 

Oocyte quality (TOS) 
Percentage of oocytes 

P-value 
Control Treatment 

Poor (0-3) 13.6  26.7 0.04 

Moderate (4-6) 40.9  40.0 NS 

Good (6-8) 45.5  33.3 NS 

 

 

4.4 Discussion  

This is the first study to examine the effects of exogenous GC treatment (i.e., a simulated endocrine 

stress response) on the ovarian response of domestic cats to the exogenous stimulation of follicular 

growth and ovulation. The hypothesis that GC treatment would have a negative impact on ovarian 

stimulation, ovulatory response, and oocyte quality was partially supported. The exogenous 

gonadotrophin treatments successfully induced follicular growth and ovulation in all cats. Body 

weight, ovarian weight and volume, ovarian response grade, number of ovulations, and oocyte 

recovery did not differ between prednisolone-treated and control cats. While oocyte diameter was 

comparable between the treatment and control cats, the ZP was thinner in cats given prednisolone. 

Oocyte recovery was <50% for both groups and the TOS did not differ between the two groups of 

cats, but ooplasm grade was lower in the treatment group. There was also a higher proportion of poor-

quality oocytes recovered from cats in the treatment group. 

Prednisolone treatment did not appear to affect the circulating cortisol and glucose concentrations of 

female cats undergoing exogenous gonadotropin treatment. This was surprising given that exogenous 

GC treatments are known to decrease endogenous cortisol concentration and increase glucose 

concentrations (Middleton et al., 1987; Kuo et al., 2015). Prednisolone and prednisone were 

undetectable in the serum of both prednisolone-treated and control animals. As mentioned in Chapter 

3, there is conflicting data on the half-life of prednisolone, with veterinary textbooks reporting a 12-36 
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hour half-life (Behrend and Kemppainen, 1997; Feldman and Nelson, 2004) and a human 

pharmacokinetic study reporting a 2-3 hour half-life (Rose et al., 1981). If the prednisolone half-life is 

in fact 2-3 hours, then it is likely that circulating prednisolone concentrations were below the limit of 

quantification (i.e., <0.25 ng/mL) by the time sampling occurred, which was 22-24 hours after the 

prednisolone treatment. 

The progesterone concentrations measured herein were similar to those reported in past studies, which 

reported baseline and luteal (i.e., dioestrus) progesterone concentrations of 0.7 ng/mL (range: <0.1-3.1 

ng/mL) and 39.1 ng/mL (2.1-187 ng/mL), respectively (Paape et al., 1975; Verhage et al., 1976; 

Shille et al., 1979; Shille and Stabenfeldt, 1979; Schmidt et al., 1983; Goodrowe et al., 1988b; 

Chatdarong et al., 2006; Chatdarong et al., 2007). While progesterone concentrations were lower in 

prednisolone-treated cats than control cats one day after the hCG treatment (i.e., Day 44), the 

physiological significance of this unclear. Baseline serum oestradiol concentrations measured in the 

present study were higher than previously described in cats (Verhage et al., 1976; Shille et al., 1979; 

Donoghue et al., 1992; Swanson et al., 1997). It has been reported that baseline serum or plasma 

oestradiol concentrations are ~11 pg/mL (range: 1.1-20; Verhage et al., 1976; Shille et al., 1979; 

Donoghue et al., 1992; Swanson et al., 1997), but in the present study baseline oestradiol 

concentrations were 40.7 ± 5.1 pg/mL. These past studies examining serum oestradiol concentrations 

in cats are now >20 years old (Verhage et al., 1976; Shille et al., 1979; Donoghue et al., 1992; 

Swanson et al., 1997), thus it is possible that assay specificity and oestradiol recovery has been 

improved in modern assays. Regardless, the discrepancy between the oestradiol concentrations 

observed in this study and reported in past literature reinforces the need for baseline and peak 

oestradiol comparison for each study and perhaps each animal, as one cat had substantially higher 

oestradiol concentrations than the others (baseline = 83 pg/mL and peak = 327 pg/mL) in the present 

study.  

The exogenous progestin treatment successfully suppressed ovarian function of all cats. Stewart et al. 

(2010) found that 0.088 mg/kg/day altrenogest was optimal for follicular suppression in cats, which 

was supported by the results of this study. It has been suggested that the duration of progesterone 

treatment needs to encompass an entire non-pregnant luteal phase, which is 40 (range: 26-55) days 

(Pelican et al., 2008; Andrews et al., 2019). As reported previously, the progesterone treatment does 

not affect the duration or amplitude of existing luteal phases and cannot override existing follicular 

waves (Pelican et al., 2005; Pelican et al., 2010; Stewart et al., 2010), thus the treatment period needs 

to be longer than a potential follicular and/or luteal phases. In the present study, 30 days was 

sufficient for all luteal phases (n=2) to have concluded and all follicular development to be 

suppressed. Thus, the present study and past literature indicates that 37-38 days is a sufficient duration 

of progesterone treatment to cause complete ovarian quiescence (Pelican et al., 2008; Stewart et al., 

2010; Stewart et al., 2012).   
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Progesterone priming has been found to enable the cat ovary to respond consistently to relatively low 

concentrations of eCG and hCG, which is important as high gonadotrophin doses have been shown to 

adversely affect luteal function (i.e., abnormally high progesterone concentrations) and 

oocyte/embryo quality in cats (Roth et al., 1997b; Graham et al., 2004; Pelican et al., 2006; Stewart et 

al., 2010; Stewart et al., 2012). Stewart et al. (2012) found that the optimal doses of eCG and hCG in 

cats following progestin pre-treatment were 50 IU eCG and 37.5 IU hCG, respectively. However, in 

one study that used this regime, two out of eight cats failed to ovulate (Stewart et al., 2015). In the 

present study, the slightly higher doses of 75 IU eCG and 50 IU hCG were sufficient to induced 

follicular growth and development in all 12 cats; thus, these doses may be more appropriate. 

The prednisolone treatment did not appear to affect the number of ovulations per cat. The number of 

ovulations observed in this study (10.5 ± 1.1 ovulations per cat, range: 6 – 22) is comparable to other 

studies that have induced follicular growth and ovulation using exogenous gonadotrophins (mean of 

9-15 ovulations per cat), but was higher than reported for natural oestrus and ovulation (~5.0 

ovulations per cat; Wildt et al., 1981b; Goodrowe et al., 1988b; Donoghue et al., 1993; Swanson et 

al., 1997; Stewart et al., 2012).  

Oocyte recovery was 47.6%. It is unclear how effective the oocyte retrieval method used here was 

because to my knowledge there are no comparative data available on oviductal oocyte recovery rates 

in cats. The majority of studies have aspirated oocytes from ovarian follicles in vivo or following 

ovariohysterectomy (Goodrowe et al., 1988b; Roth et al., 1994; Wood and Wildt, 1997; Comizzoli et 

al., 2003; Pelican et al., 2006; Pope et al., 2006; Pelican et al., 2010; Pope et al., 2012; Pope, 2014). 

To the best of my knowledge, the most comparable study in cats was Graham et al. (2000), in which 

oocytes/embryos were retrieved 160 hours after an hCG-induced ovulation and a 52.5% embryo 

recovery rate (based on the number of corpora lutea) reported. Oocyte or embryo retrieval following 

uterine flushing has resulted in similar recovery rates to the present study in other species such as 

dogs (Canis familiari; 62.5% embryo recovery; Jeong et al., 2016), goats (Capra aegagrus; 43.0% 

embryo recover; Suyadi and Holtz, 2000), and sheep (Ovis aries; 50.0% oocyte recovery; Flohr et al., 

1999). Thus, while the oocyte recovery rate appeared to be low in the present study, it was 

comparable to past studies. Furthermore, there was no evidence that the prednisolone treatment 

affected oocyte recovery rates.  

The GC treatment did not reduce the TOS of feline oocytes, but there was higher proportion of poor-

quality oocytes recovered from cats given prednisolone. In addition, ZP was thinner and there was a 

tendency for ZP graded to be lower in prednisolone-treated cats than control cats. The literature 

suggests that ZPTV is more important than ZP thickness in the context of in vitro fertilisation success, 

at least in humans (Palmstierna et al., 1998; Gabrielsen et al., 2001; Sun et al., 2005). The 

prednisolone treatment administered herein did not appear to affect the ZPTV, but the ooplasm grade 
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was slightly lower for treated cats. Oocytes that have a darkened or granulated cytoplasm have been 

found to have reduced developmental competence in humans (Veeck, 1988; Serhal et al., 1997; 

Kahraman et al., 2000). Granularity is normally considered indicative of cytoplasmic immaturity; 

thus, it is possible the GC treatment affected oocyte maturation. Indeed, corticosterone has been 

shown to adversely affect both the cytoplasmic and nuclear maturation of mouse oocytes in vitro 

(González et al., 2010). The impaired oocyte maturation following GC treatment has been linked to 

reduced activity of mitogen activated protein kinases (MAPK) in mouse oocytes in vitro (González et 

al., 2010).  

Corticotrophin-releasing hormone and GC appear to impair cytoplasmic maturation and increase 

apoptosis in cumulus cells and mural granulosa cells in vitro (Liang et al., 2013; Yuan et al., 2020). 

The administration of a physiological dose of exogenous cortisol (i.e., to simulate the increase in 

cortisol concentrations associated with restraint stress) has been found to reduce oocyte quality and to 

induce apoptosis in ovarian cells in mice (Yuan et al., 2016; Yuan et al., 2020). The pathways by 

which GC induce apoptosis in the ovary are not clear, but have been linked to an increase in both 

tumour necrosis factor α (TNF-α) and Fas/FasL expression (Yuan et al., 2016; Yuan et al., 2020). 

Irrespective of the pathways involved, the concept that the amount of apoptotic cumulus and mural 

granulosa cells is negatively correlated with the developmental competence of the oocyte is fairly well 

supported (Lee et al., 2001; Wang and Sun, 2006; Liang et al., 2013; Yuan et al., 2020). It would be 

interesting to determine whether prednisolone treatment increased the apoptosis of cells within the cat 

ovary in the present study, since ovarian tissue was collected. 

The effects of elevated GC on oocyte development and ovarian function of cats could be minimised 

through exogenous stimulation of follicular growth and ovulation. This is promising in the context of 

ART for captive non-domestic felids, as increases in GC concentrations associated with captivity-

related stress would likely have a minimal effect on ovulation rates and oocyte quality following 

eCG/hCG administration. In the future, it would be worthwhile examining whether GC administration 

affects ovarian function and oocyte quality during a natural oestrous cycle in cats. As mentioned 

previously, elevated GC concentrations associated with captivity have been associated with ovarian 

quiescence in cheetah (Jurke et al., 1997), margay (Leopardus weidii), and trigrina (Leopardis 

tigrinus; Moreira et al., 2007). However, there has been no direct physiological link between elevated 

GC and reduced oestrous cyclicity in felids. A study that monitored the natural ovarian cyclicity of 

cats treated with GC would be valuable, and it would also be interesting to collect ovaries and oocytes 

from naturally mated cats given exogenous GC.  

4.5 Conclusions 

In conclusion, progestin-mediated follicular suppression followed by eCG and hCG stimulation 

resulted in follicular growth and ovulation in all cats. A prednisolone treatment intended to simulate 
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an endocrine stress response had little effect on the response of felid ovaries to exogenous 

gonadotrophin treatments, with number of ovulations being similar between treatment and control 

cats. The prednisolone treatment did not appear to affect the TOS, but cats given prednisolone had a 

higher proportion of poor quality oocytes and lower ooplasm and ZP scores. Whether this affects 

fertility remains to be determined. In the future, it would be worth investigating whether GC 

treatments alter the fertilisation capabilities of cat oocytes. It is possible that the stimulation of 

follicular growth and ovulation with exogenous gonadotrophins mitigated the effects of prednisolone. 

Thus, it would be also be valuable to assess the effects of GC administration on the natural oestrous 

cyclicity of domestic cats. 
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Heyrex® activity monitor. Image taken from www.heyex.com.  
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Chapter 5: Validation of Heyrex® accelerometers for monitoring the 

activity and behaviour of domestic cats (Felis catus)  

5.0 Abstract 

Accelerometry allows quantification of the activity and behaviour of animals without time-consuming 

behavioural observations. Heyrex® devices wirelessly upload data onto a server that can be accessed 

remotely, thus enabling the real-time monitoring of behaviour. This study aimed to develop and 

validate Heyrex® devices (designed for dogs) for remotely assessing the behaviour of domestic cats 

(Felis catus). Heyrex® devices were fitted to the existing collars of five cats. Heyrex® and observed 

behavioural data were collected concurrently for 24 hours and compared. Observed and Heyrex® 

overall activity counts were highly correlated for all five cats (mean ± SEM: rho 0.94 ± 2.2; 

P<0.001). Based on observed data, the cats spent 47.9 ± 5.6% (mean ± SEM) of their time sleeping, 

37.7 ± 5.3% resting, 6.9 ± 1.9% walking, 4.5 ± 2.0% grooming, 1.7 ± 0.3% eating, 1.1 ± 0.5% 

drinking, and 0.1 ± 0.05% running. The categorisation of walking behaviour by the Heyrex® devices 

was inconsistent, with the observed time spent walking being positively correlated with Heyrex®-

recorded time spent walking (rho = 0.90; P<0.001), resting (rho = 0.81; P<0.001), and running (rho = 

0.60; P<0.001). The Heyrex® devices possibly miscategorised walking behaviour, because the canine-

designed algorithms were not sensitive enough for the more subtle walking movements of cats. 

Scratching behaviour was also poorly categorised by the Heyrex® devices. The observed time spent 

scratching was positively correlated with the Heyrex®-recorded time spent resting (rho = 0.42; 

P<0.001), scratching (rho = 0.44; P<0.001), and walking (rho = 0.47; P<0.001). Observed eating, 

grooming, and drinking were moderately correlated (P<0.001) with both the time spent resting (rho = 

0.37, 0.55, 0.33, respectively) and walking (rho = 0.50, 0.48, 0.45, respectively), as recorded by the 

Heyrex®. Cats spent a noteworthy amount of time grooming, thus the incorporation of grooming into 

the Heyrex® behavioural algorithms is advisable. Compared to other accelerometer-based devices 

used on cats, there appeared to be much less variation in the relationship between the Heyrex® and 

observed overall activity counts of different cats. Other modification (e.g., size or shape) of the 

devices may also be required to optimise their use for domestic cats.  

5.1 Introduction  

Accelerometry offers a means of remotely quantifying the activity and behaviour of animals without 

the need for direct and often time-consuming behavioural observations. To date, accelerometers have 

been used to accurately monitor the activity of a wide variety of animals including cattle (Bos Taurus; 

McGowan et al., 2007), cheetah (Acinonyx jubatus; Watanabe et al., 2005; Grünewälder et al., 2012), 

koala (Phascolarctos cinereus; Takahashi et al., 2009), badgers (Meles meles; McClune et al., 2014), 

elephants (Rothwell et al., 2011), rhesus monkeys (Macaca mulatta; et al., 2007; Papailiou et al., 

2008), humans (Homo sapiens; Trost et al., 2000; Hartel et al., 2011), dogs (Canis familiaris; Brown 
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et al., 2010), and cats (Felis catus; Watanabe et al., 2005; Lascelles et al., 2007; Andrews, 2015; 

Andrews et al., 2015). In companion animals such as cats and dogs, accelerometry has mainly been 

used for the identification and monitoring of conditions such as osteoarthritis (Lascelles et al., 2007; 

Brown et al., 2010).   

Actical® (MiniMitter, Bend, OR, USA) accelerometers were used initially to assess the efficacy of 

non-steroidal anti-inflammatory drugs for treating joint diseases in cats and dogs, eliminating the need 

for unreliable owner-based assessments (Lascelles et al., 2001; Lascelles et al., 2007; Brown et al., 

2010). As the most common recommendation for animals with joint disease is weight loss (Crane, 

1991; Lascelles, 2010), accelerometry has also been used to investigate various feeding regimes that 

could be used to combat obesity in companion animals (Alexander et al., 2014; Deng et al., 2014). 

Accelerometers have also been investigated for assessing other conditions such as reproductive state 

(Andrews, 2015), identification of stress behaviour in kennels/catteries (Jones et al., 2014), and 

monitoring the effects of various medical treatments and post-operative recovery (Delgado et al., 

2014; Helm et al., 2016; Little et al., 2016). 

Despite the numerous applications of accelerometry, most accelerometer-based devices have 

limitations, the most concerning being the considerable amount of inter-individual variation between 

accelerometer outputs and observed activity or behaviour (Lascelles et al., 2008; Andrews et al., 

2015). In addition, most commercially available accelerometer-based devices for animals only 

provide information on overall activity and lack algorithms for identifying the expression of specific 

behaviours. Lastly, most devices need to be removed to extract their data, which is limiting in a 

clinical context as it requires the owner to bring the device or animal into the clinic.   

Heyrex® activity monitors (Heyrex® Ltd., Wellington, New Zealand) wirelessly upload data onto an 

online server that can be accessed remotely, and they offer the longest battery-life (~2 years) of all 

commercially available accelerometers for animals to date. Heyrex® activity monitors have been 

specifically developed for dogs, with the devices accurately determining the overall physical activity 

(OPA) and the expression of a range of behaviours (e.g., sleeping, resting, walking, running; Edwards 

and Gibson, 2012; Mejia et al., 2019). Given the advantages offered by the Heyrex® monitors, the 

adaptation of these devices for use on domestic cats would provide an accurate and reliable tool for 

monitoring the activity and behaviour of cats. This study therefore aims to validate Heyrex® activity 

monitors for remotely assessing the activity and behaviour of domestic cats. The specific objective 

was to compare and correlate the activity and behaviour data provided by the Heyrex® monitors 

against that obtained by visual observation of the cats.  

 

 



Chapter 5 – Validation of Heyrex® accelerometers for cats 

 

107 

5.2 Materials and methods  

5.2.1 Animals  
Five healthy, de-sexed domestic cats (three female and two male) in the Massey University Centre for 

Feline Nutrition were used for this study. The cats ranged in age from two to eight years (mean ± SD, 

6.50 ± 1.03 years) and were housed in a mixed-sex group of eight. The cats had ad libitum access to 

water and were fed a complete and balanced commercial wet food diet (Kraft-Heinz Wattie’s Ltd, 

Hastings, New Zealand; AAFCO, 2020). All research was conducted in accordance with Massey 

University Animal Ethics Committee protocol number 18/07.  

5.2.2 Experimental design  
Heyrex® devices (Heyrex Ltd., Wellington, New Zealand) were attached to the existing collars of the 

cats (Figure 5.1). The devices measured approximately 65 mm x 25 mm x 10 mm and weighed 20 g. 

The cats were given one week to acclimitise to the devices before data collection. The cats were 

housed in their normal pens, which were under continuous video surveillance using a TechView 

H.264 digital video security camera system (Tech Brands: Electus Distribution, Auckland, New 

Zealand). Video footage and Heyrex® data were collected concurrently for 24 hours. 

 

 

Figure 5.1 Cat wearing Heyrex® activity monitor. 
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 5.2.3 Assessment of activity and behaviour  
The observed behaviour of the cats was assessed retrospectively from video footage. Continuous 

duration sampling was used to determine the amount of time each cat spent sleeping, resting, 

grooming, eating, drinking, scratching, walking, and running over a 24-hour period (assessed at 5 

minute intervals). Observed OPA was determined by categorising behaviours as either active 

(walking, running, scratching, playing, climbing, and grooming) or inactive (eating, drinking, 

sleeping, and resting).   

The Heyrex® devices use tri-axial accelerometry (i.e., measurement of acceleration along three 

independent axes: forward-backwards, left-right, and up-down) to quantify activity as the change in 

acceleration from gravity (9.8m/s2; ΔG). A canine-based behavioural algorithm (Canine V1) was used 

to determine the duration and frequency of walking, running, scratching, sleeping, and resting. The 

activity monitors recorded the ΔG (a single measure of intensity, frequency, and duration) and amount 

of time (seconds) that the cats spent displaying walking, running, scratching, sleeping, and resting 

behaviours at 5-minute intervals (or epochs). Overall physical activity was calculated as the sum of 

the ΔG values for each behaviour, defined as total ΔG (TΔG).  

5.2.4 Statistics  
Accelerometry activity and behaviour data (5-minute epochs) were summed to provide the TΔG for 

each behaviour and time spent exhibiting each behaviour per hour. Concurrent observed activity and 

behaviour data were also summed to provide hourly totals. A Shapiro-Wilk test was used to determine 

the normality of the data. The data were non-parametric, thus Spearman-rank correlation tests were 

used to determine the relationship between the observed and Heyrex® data for each cat, and for all cats 

combined. Correlation coefficients for individual behaviours were categorised as very weak (rho 

<0.10), weak (rho 0.10<0.30, moderate (rho 0.30<0.60) or strong (rho >0.60). All analyses were 

conducted using RStudio 1.0.143 (R Foundation for Statistical Computing, Vienna, Austria) with a 

significance level of P<0.05. Values are presented as mean ± SEM unless otherwise indicated.  

5.2 Results  

A total of 120 hours of concurrent Heyrex® and observed activity/behaviour data were collected from 

the five cats. The average percentage of time that the cats were observed to be active (excluding 

grooming) over the 24 hour period was 7.1 ± 1.9% (range; 2.2-13.9%). 

The TΔG outputs from the Heyrex® devices accurately represented the observed OPA of the cats at 

five-minute intervals over 24 hours (rho=0.82, P<0.001). However, increasing the sampling interval 

to one hour increased the strength of the correlation between TΔG and the observed activity counts of 

the cats (rho = 0.94, P<0.001). Thus, all OPA assessments hereafter were conducted using the one-

hour epoch data. The TΔG and observed activity counts of individual cats were highly correlated (rho 

= 0.94 ± 0.02, P<0.001). The relationships between TΔG and observed activity were similar among 
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cats, except for one cat (Coby; Figure 5.2). This animal spent more time grooming (12.5% of the 

time) than the other cats (2.5±0.5%, range: 1.3-3.5%), and the incorporation of grooming into the 

observed activity counts of Coby resulted in the regression changing considerably with respect to the 

other cats (Figure 5.2).  

 

 

Figure 5.2 The regression analyses between the total Heyrex® activity counts (TΔG) and observed activity of 

the cats (a) excluding grooming and (b) including grooming. Note the effect of adding grooming behaviour to 

the correlation between Total ΔG and observed activity for Coby. 

 

Based on observed data, the cats spent on average 47.9 ± 5.6% (range: 28.1-61.2%) of the time 

sleeping, 37.7 ± 5.3% (range: 30.3-58.7) resting, 6.9 ± 1.9% (range: 2.0-13.7%) walking, 4.5 ± 2.0% 

(range: 1.3-12.3%) grooming, 1.7 ± 0.3% (range: 0.8-2.8%) eating, 1.1 ± 0.5% (range: 0.3-2.6%) 

drinking, and 0.1 ± 0.05% (range: 0.03-0.3%) running. The behavioural outputs (sleeping, resting, 

scratching, walking, and running) from the Heyrex® devices were significantly correlated with 
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observed behaviours (P<0.001 for all behaviours). Increasing the sampling interval (5 minutes vs 1 

hour) increased the correlation coefficients between Heyrex® and observed behavioural assessments 

for all behaviours but was only significant for walking behaviour (Figure 5.3). The mean spearman 

correlation coefficients between observed behaviour and the Heyrex® outputs (1 hour epoch) were: 

sleeping (rho = 0.93 ± 0.03; P<0.001), resting (rho = 0.86 ± 0.05; P<0.001), scratching (rho = 0.36 ± 

0.11; P<0.001), walking (rho = 0.92 ± 0.36; P<0.001), and running (rho = 0.55 ± 0.08 P<0.001). 

Spearman correlation coefficients were lower for running and scratching behaviours (Figure 5.3), with 

the correlation between the Heyrex® and observed assessments of running and scratching being only 

significant for one and two cats, respectively. The relationship between Heyrex® and observed 

behaviour were highly similar for sleeping and resting behaviour, but varied considerably between 

cats for walking and running behaviour (Figure 5.4).  

 

 

Figure 5.3 Spearman correlation coefficients between the Heyrex and observed behavioural assessments of five 

cats at five minute (grey) and 1 hour (black) intervals over 24 hours. Note that data on scratching behaviour 

were only available for four cats as one cat did not exhibit this beahviour. *P<0.05.  
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Figure 5.4 The regression analyses between Heyrex® and observed time (seconds) spent exhibiting sleeping, 

resting, walking, and running behaviour per hour over a 24 hour period for the five cats. 
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There was cross-correlation among the different behaviours (Table 5.1). While Heyrex®-recorded 

time spent resting per hour had a strong positive correlated with observed time spent resting (rho = 

0.87; P<0.001), it was also positively correlated with observed time spent scratching (rho = 0.42; 

P<0.001), walking (rho = 0.81; P<0.001), running (rho = 0.59; P<0.001), grooming (rho = 0.55; 

P<0.001), eating (rho = 0.37; P<0.001), and drinking (rho = 0.33; P<0.001; Table 5.1). The 

categorisation of walking behaviour by the Heyrex® devices was inconsistent, with the observed time 

spent walking having a strong positive correlation with not only Heyrex®-recorded time spent walking 

(rho = 0.90; P<0.001), but also time spent resting (rho = 0.81; P<0.001) and running (rho = 0.60; 

P<0.001; Table 5.1). Observed time spent scratching was positively correlated with Heyrex®-recorded 

resting (rho = 0.42; P<0.001), scratching (rho = 0.44; P<0.001), and walking (rho = 0.47; P<0.001) 

behaviours (Table 5.1). Furthermore, observed time spent eating, grooming, and drinking were 

moderately correlated (P<0.001 for all comparisons) with both the time spent resting (rho = 0.55, 

0.37, 0.33, respectively) and walking (rho = 0.48, 050, 0.45, respectively), as recorded by the Heyrex® 

(Table 5.1).  

Table 5.1 Correlations between the Heyrex® and observed time spent exhibiting sleeping, resting, scratching, 

walking, and running behaviour per five minutes over a 24-hour period. Spearman correlation coefficients were 

defined as strong (rho>0.60), moderate (rho = 0.30-0.60), weak (rho<0.30), or very weak (rho<0.10). Very weak 

and negative correlation coefficients are no shown. Behaviours that were exhibited by the cats but were not 

among the behaviours assessed by the Heyrex® devices were defined as ‘observed (other)’. Grey cells indicate 

target correlations. Red and orange cells indicate unexpected strong or moderate positive correlations, 

respectively.   

   Observed  Observed (other) 

Sleep Rest Scratch Walk Run  Groom  Eat  Drink 

Heyrex % time 

exhibiting 

behaviour/24h 

47.92 37.74 0.10 

 

6.91 0.13  4.49 1.67 1.08 

 

Sleep 45.50 Strong         

Rest 51.92  Strong Moderate Strong Moderate  Moderate Moderate Moderate 

 Scratch   0.01   Moderate Weak Weak  Weak Weak  

Walk   2.52  Moderate Moderate Strong Strong  Moderate Moderate Moderate 

Run   0.01  Weak Weak Strong Moderate   Weak Weak 

 

5.3 Discussion  

The present study investigated whether Heyrex® devices could accurately quantify the overall activity 

and specific behaviours of the cats as compared to visual observation and quantification. Heyrex® and 

observed activity counts were highly correlated. Furthermore, the relationships between the Heyrex® 

and observed activity counts of different cats were consistent. The Heyrex® devices also provided an 

accurate representation of sleeping and resting behaviour, with little inter-cat variation. However, the 

devices were less consistent among cats in distinguishing walking and running behaviour. In fact, 

there was considerable variation in the relationships between the Heyrex® and observed time spent 

walking and running for different cats.  
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The between the Heyrex® and observed activity total counts in cats are similar to those reported for 

other accelerometer devices such as Actical® accelerometers (Lascelles et al., 2007; Andrews et al., 

2015). Previous studies have indicated that caution is needed when interpreting accelerometer-based 

data for research in cats due to high inter-cat variation (Lascelles et al., 2007; Andrews et al., 2015). 

In fact, it has been stated that the inter-cat variation is so significant, that each animal should be 

considered to be its own control and the activity data of different animals should not be compared 

(Andrews et al., 2015). Interestingly, the regression lines between the Heyrex and observed activity 

data of different cats were similar (excluding coby; Figure 5.2), suggesting that the devices were more 

consistent among cats. However, there was considerable variation among cats for specific behaviours.  

The Heyrex® devices frequently miscategorised resting, scratching, walking, and running behaviour 

(Table 5.1). The inaccuracy of the behavioural assessments of the Heyrex® devices likely rest on the 

behavioural algorithms used, which were developed for canine behaviour. The movement and 

behaviour of dogs is more linear and less complex than cats (Gahery et al., 1980; O'Farrell, 1992; 

Bradshaw, 2012). For example, cats exhibit vertical climbing behaviour while dogs do not, and cats 

also exhibit considerably more grooming behaviour than dogs (O'Farrell, 1992; Bradshaw, 2012). 

Furthermore, during locomotion the cat’s head is very stable and exhibits very little vertical or 

horizontal movement. This may be why the collar-attached Heyrex®
 activity monitors struggled to 

distinguish between resting and low intensity locomotor behaviour: walking and running were 

identified by Heyrex® behavioural algorithms as resting, and Heyrex®-assessments of resting 

behaviour were positively correlated with both the observed time spent walking and running. 

Consequently, it seems that the existing algorithms used by the Heyrex® devices to assess walking and 

running behaviour need to be modified to increase sensitivity for cats.  

Grooming behaviour adversely affected the accuracy of the Heyrex® devices for detecting other 

behaviours, since these behaviours were associated with increases in the Heyrex®
 counts for resting, 

walking, and running behaviour. The effect of grooming has been previously shown to adversely 

affect the accuracy of accelerometer devices (Andrews et al., 2015). Grooming behaviour is often 

vigorous and requires considerable movement and stretching, and cats spend a considerable 

proportion of their time grooming (~8%; Eckstein and Hart, 2000b), although lower levels than this 

were observed in the present study in all but one cat (~4.5%). The incorporation of grooming 

behaviour into the assessments of Heyrex® devices would be beneficial for various applications such 

as to study the efficacy of NSAIDs for the treatment of joint disease (Lascelles et al., 2007; Lascelles, 

2010), since grooming may be indicative of effective pain therapy (Hardie, 1997; Lascelles, 2010). 

Furthermore, excessively grooming can be indicative of stress (van den Bos, 1998), oestrus (grooming 

and allogrooming is increased during oestrus), and fleas or other skin irritations (Eckstein and Hart, 

2000a; b). Conversely, low levels of grooming results in poorer coat condition and may be associated 

with illness or high levels of stress (Odendaal, 1997; Tanaka et al., 2012; Uetake et al., 2013).  
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When using other devices (e.g., Actical® accelerometers), it has been suggested that inter-cat variation 

is due to differences in behaviour (e.g., more grooming) or differing collar tightness affecting the 

residual movement of the devices (Andrews et al., 2015). The Heyrex® devices are larger (65 mm x 

25 mm x 10 mm) and attach more tightly to the cats’ collar than Actical® accelerometers (28 mm × 27 

mm × 10 mm), which could reduce the residual movement of the devices in response to various 

behaviours (e.g., walking, running, grooming and scratching). The current Heyrex® devices appeared 

large on domestic cats, especially smaller cats (i.e., less than 3 kg.). While it may seem appealing to 

reduce the size of the devices to better suit cats, it is possible that doing this may increase inter-cat 

variation due to greater residual movement of the devices (as seen with Actical® accelerometers; 

Andrews et al., 2015). According to Coughlin and van Heezik (2015), cats should not have devices 

that weigh greater than 2% of their body weight attached to their collars. Heyrex® accelerometers are 

well below this weight (e.g., less than 1% of the bodyweight of cats that are greater than 2 kg) despite 

being large in terms of dimensions. It would be worthwhile comparing the accuracy of the existing 

and smaller devices for monitoring the behaviour of cats, although the algorithms should be modified 

for cats before doing this.   

This study was conceived as part of an on-going association with Heyrex Ltd. to adapt and develop 

the Heyrex® devices for monitoring the activity and behaviour of cats. This included hardware and 

algorithm modifications, and validation based on detailed observational data. Unfortunately, the 

developmental phase of this study could not be continued as Heyrex Ltd. ceased commercial activities 

in 2019. Furthermore, when Heyrex® Ltd. closed down their online servers stopped working, thus, 

activity data can no longer be collected from the Heyrex® devices.   

5.4 Conclusions 

Heyrex® activity monitors designed for dogs provided an accurate assessment of the overall activity of 

domestic cats. Furthermore, there was little variation in the relationship (regression lines) between the 

Heyrex® and observed activity counts of different cats when compared to other devices such as 

Actical® accelerometers. The behavioural assessments of the Heyrex® devices, however, were less 

accurate. The devices accurately assessed sleep and resting behaviour, but the assessment of walking, 

running, and scratching behaviour was erratic. The existing algorithms for these active behaviours 

would need to be modified for use in cats. It is recommended that grooming is considered in the 

behaviour assessment of the Heyrex®, as grooming is a common behaviour in cats and currently 

appears to impair the accuracy of the Heyrex® devices for other behaviours. Unfortunately, the 

development of the Heyrex® devices for cats could not be pursue as Heyrex Ltd ceased activities, but 

the continuation of this line of research could be of interest for many other companies in the small 

animal activity monitoring business.   
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Chapter 6: Accelerometry and infrared thermography show potential for 

monitoring ovarian function in domestic cats (Felis catus) 

6.0 Abstract 

Accurate and reliable monitoring of ovarian function is challenging in many felids as current methods 

are either invasive or not amenable to real-time assessments. This study assessed whether 

accelerometry and IR thermography can be used to address these limitations. Intact female domestic 

cats (n=12) were given 0.088 mg/kg oral progestin (altrenogest) daily from Day 0 to 37 of the study to 

suppress follicular growth. On Day 40, cats were given 75 IU equine chorionic gonadotrophin (eCG) 

to induce follicular growth and 50 IU human chorionic gonadotrophin (hCG) 80 hours later to induce 

ovulation. Cats were ovariohysterectomised 30-31 hours after the hCG treatment. Cats were fitted 

with Actical® accelerometers and activity monitored continuously from Day 0 until 

ovariohysterectomy. Infrared (IR) images of the perivulvar and gluteal area were taken of each cat on 

study Day 30 and from Days 36 to 45. Perivulvar temperature (PVT), PVT relative to gluteal 

temperatures (PVT-GT), and PVT relative to perianal temperature (PVT-PAT) were recorded for each 

image. Blood samples were collected on study Days 0, 10, 30, and 40, prior to the hCG treatment, and 

at the time of ovariohysterectomy. Changes in serum oestradiol concentrations indicated successful 

follicular suppression by progestin treatment and, together with morphological assessment of the 

ovaries, confirmed the induction of follicular growth and ovulation. Daily activity counts differed 

among cats (P<0.001), thus the daily activity counts of each cat were converted to a proportion of the 

average daily activity count (proportional daily activity). Proportional daily activity counts were 

higher than baseline (Days 30-39) on Days 40 (1.52 ± 0.10 fold increase; P<0.001), 42 (1.66 ± 0.24 

fold increase; P=0.02), 43 (2.03 ± 0.29 fold increase; 0.006), and 44 (1.93 ± 0.19 fold increase; 

P<0.001). Perivulvar temperature, PVT-GT, and PVT-PAT were significantly lower than baseline on 

Days 41 (1.02 ± 0.37℃, 1.22 ± 0.30℃, and 1.12 ± 0.34℃ lower, respectively) and 45 (1.08 ± 0.19℃, 

0.51 ± 0.22℃, and 0.76 ± 0.16℃ lower, respectively). The measurement which showed the greatest 

sensitivity to detect subtle changes in body temperature was PVT-GT. Perivulvar temperature relative 

to gluteal temperature increased 1.96 ± 0.33℃ from Day 41 to 43 (P<0.001), corresponding to the 

period of greatest follicular growth. Both PVT and PVT-GT decreased significantly from Day 43 (i.e., 

peak follicular activity) to Day 45 (i.e., post-ovulation), which was likely a physiological response to 

ovulation. In conclusion, both accelerometry and IR thermography shows potential as non-invasive, 

real-time methods for assessing ovarian activity of cats. However, further investigation into both 

methods is required.  

6.1 Introduction  

Accurate monitoring of ovarian cyclicity is important for improving artificial and natural breeding of 

captive felids (Thongphakdee et al., 2018; Andrews et al., 2019). While a range of methods have been 
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used to monitor the reproductive state of female felids, many are invasive or not practicable for real-

time detection of follicular growth and development (Chapter 1; Andrews et al., 2020). Monitoring 

the reproductive state of female felids is also often challenging due to high variability in oestrous 

cycles and, for many species, a lack of overt oestrous behaviours (Foreman, 1997; Wielebnowski and 

Brown, 1998; Moreira et al., 2001; Brown et al., 2002; Henriksen et al., 2005; Thongphakdee et al., 

2018; Andrews et al., 2020).  

While there are no clear oestrus-specific behaviours in some felids, oestrus may be associated with 

subtle increases in the frequencies of locomotion, rubbing, rolling, sniffing, vocalisation, grooming 

and scent-marking behaviours (Asa et al., 1992; Graham et al., 1995; Wielebnowski and Brown, 

1998). These subtle behavioural changes are unlikely to be detected without detailed and labour-

intensive behavioural assessment, further complicated by the crepuscular or nocturnal activity of most 

felids. However, many of the behaviours that felids express more frequently during oestrus appear to 

correlate with an increase in overall physical activity (OPA; Foreman, 1997; Wielebnowski and 

Brown, 1998; Moreira et al., 2001; Brown et al., 2002; Andrews et al., 2020). Thus, it may be 

possible that detecting changes in OPA could improve the accuracy of oestrus detection in felids. 

Accelerometry has been validated as an accurate and automated means of assessing OPA of domestic 

cats (Felis catus; Lascelles et al., 2008; Andrews et al., 2015). Accelerometry has been used to detect 

an increase in OPA associated with oestrus in a range of species including cows (Bos taurus; At-Taras 

and Spahr, 2001; McGowan et al., 2007), mice (Mus musculus; Kopp et al., 2006), rats (Rattus 

norvegicus; Gerall et al., 1973), and pigs (Sus scrofa; Cornou, 2006). In dairy cattle, accelerometry 

can accurately detect more than 90% of oestrus events (At-Taras and Spahr, 2001; McGowan et al., 

2007). Depending on the magnitude of the change in OPA and the sensitivity of accelerometers to 

detect such changes, accelerometry may also offer a minimally invasive method for monitoring the 

ovarian function of in domestic cats. 

Another non-invasive method for monitoring ovarian function is infrared (IR) thermography, which 

has be used to monitor perivulvar temperature (PVT) changes associated with follicular growth and 

ovulation in cows (Talukder et al., 2014; Radigonda et al., 2017), pigs (Sykes et al., 2012; Simões et 

al., 2014), horses (Equus caballus; Redaelli et al., 2014), and dogs albeit less successfully (Olğaç et 

al., 2017). Elevated oestradiol concentrations associated with follicular growth have been linked to 

increased blood flow to the vulva and increased superficial temperature of the perivulvar area (Simões 

et al., 2014; Talukder et al., 2014). The use of thermographic imaging to monitor the ovarian activity 

of domestic cats has not yet been investigated.  

This study assesses whether accelerometry (monitoring OPA) or IR thermography (monitoring PVT) 

show potential as non-invasive, real-time methods to monitor ovarian activity in domestic cats.  
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6.2 Methods 

6.2.1 Animals  
Twelve healthy, intact female domestic cats aged 2.50 ± 0.22 (1.54 – 3.96) years and weighed 3.12 ± 

0.12 kg (mean ± SEM; 2.57 – 3.87 kg) were used for this study. The cats were housed in a purpose-

built colony cage at the Centre for Feline Nutrition, Massey University, Palmerston North, New 

Zealand (175◦3’E, lat. 40◦22’S, long.) and fed a complete and balanced (AAFCO, 2020) commercial 

moist (canned) feline diet (Kraft Heinz Wattie’s Ltd., Hastings, New Zealand) with ad libitum access 

to water. The husbandry of the cats complied with the Animal Welfare (Cats) Code of Welfare 

(Anonymous, 2007) and Massey University Animal Ethics Committee (MUAEC) protocol number 

19/10. 

6.2.2 Experimental design 
The data included in this study were collected during the experiment described in Chapter 4 in which 

half of the cats (n=6) were given 1 mg/kg/day prednisolone (Redipred: Aspen Pharmacare Australia 

Pty. Ltd., Saint Leonards, NSW, Australia) orally for 45 days. All cats (n=12) underwent a 

standardised ovarian stimulation protocol. Cats were treated with 0.088 mg/kg per day altrenogest 

(Altreno Oral: Caledonia Holdings Ltd, Auckland, New Zealand), an oral progestin treatment, for 37 

days to inhibit follicular growth. On Day 40, the cats were given an intramuscular injection of 75 IU 

of equine chorionic gonadotrophin (eCG; Novormon: Syntex, Palo Alto, California, USA) to promote 

follicular growth, with Days 41-44 were defined as a period of ‘follicular stimulation’. Eighty hours 

after the eCG treatment, the cats were treated with an intramuscular injection of 50 IU human 

chorionic gonadotrophin (hCG; Chorulon: Merck Animal Health, Madison, NJ, USA) to induce 

ovulation. The cats were anaesthetised and ovariohysterectomised 30-31 hours after the hCG 

treatment. Ovulation was confirmed by the presence of corpora haemorrhagica or corpora lutea on the 

ovaries.  

Serum oestradiol-17β and progesterone concentrations were analysed to monitor ovarian function at 

regular intervals throughout the study. Jugular venepuncture was used to collect 2 mL blood samples 

from each cat on Days 0, 10, 30, and 40 of the trial, as well as 80 hours after eCG treatment, and then 

30-31 hours after the hCG treatment (i.e., at the time of ovariohysterectomy). Local anaesthetic (5% 

lidocaine gel, Emla Cream, AstraZeneca, Cambridge, UK), was applied to the neck of the cats prior to 

blood collection via jugular venepuncture. Blood samples were centrifuged at 2000 rpm for 10 

minutes and serum extracted. Serum samples were stored at -80ºC until assayed. Day 30 was 

considered as baseline for all assessments as this allowed sufficient time for the regression of any 

existing luteal tissue (i.e., present at Day 0 and/or 10) and for the progestin treatment to completely 

suppress follicular growth. 

 



Chapter 6 – Accelerometry & thermography for monitoring ovarian function 

 

120 

6.2.3 Hormone assessments  

6.2.3.1 Serum oestradiol-17β  
Serum 17β-oestradiol concentrations were measured using the Cobas® e601 analyser (Hitachi Ltd., 

Tokyo, Japan) and a commercially available electrochemiluminescence immunoassay, Cobas® 

Estradiol III (Roche Diagnostics New Zealand, Auckland, New Zealand). Cross-reactivity was <1.0% 

for all other steroids tested (n=35) except for 6-α-hydroxy-oestradiol, which had a cross reactivity of 

74.1%. The detection range was 5.0 – 3000.0 pg/mL. Values below the detection threshold were 

considered 0.0 pg/mL. The mean intra-assay coefficient of variance (CV) was 7.6%.  

6.2.3.2 Serum progesterone concentrations 
Serum progesterone concentrations were measured using the Cobas® e601 analyser (Hitachi Ltd., 

Tokyo, Japan) and a commercially available electrochemiluminescence immunoassay, Cobas® 

Progesterone III (Roche Diagnostics New Zealand, Auckland, New Zealand). Cross-reactivity was 

<1.0% for all other steroids tested (n=27) except for 11-deoxycorticosterone, which had a cross 

reactivity of 3.9%. The detection range was 0.05 – 60.0 ng/mL. Values below the detection threshold 

were considered 0.0 ng/mL. The mean intra-assay CV for the quality controls was 2.7%.  

6.2.4 Accelerometry  
Activity was assessed using Actical® Minimitter accelerometers (MMA; MiniMitter, Bend, Oregon, 

USA). The MMA measure 28 mm x 27 mm x 10 mm and weigh 17 g. The devices use an 

omnidirectional accelerometer to detect movement in three planes (craniocaudal, mediolateral and 

vertical). Actical® accelerometers have been validated for monitoring the activity of domestic cats 

(Lascelles et al., 2008; Andrews et al., 2015). Actical® accelerometers were attached to the collars of 

the cats and positioned ventrally (Figure 6.1) one week prior to the beginning of the study, to allow 

the cats to become accustomed to the devices. Activity data were collected continuously at 1-minute 

intervals (epochs) throughout the study. No activity data were collected on the last day of the study 

(Day 45) as the cats were kept in individual cages before and after ovariohysterectomy.  

 

Figure 6.1 Actical® accelerometer fitted to the collar of a cat. 
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The raw activity data were downloaded from the MMAs using an Actireader® device (MiniMitter, 

Bend, OR, USA), and activity data (total MMA counts/1 minute) summed to provide a daily (i.e., 

from 00:00 to 23:59) activity count. Previous research suggests that there is considerable inter-cat 

variability in average daily MMA counts and the association between MMA activity counts and 

observed OPA, indicating that care needs to be taken when comparing the activity of cats or assessing 

the activity data of several cats as a combined data-set (Andrews et al., 2015). To overcome this 

source of variability, the daily MMA activity counts of each cat were standardised by converting them 

to a proportion of the average daily activity (i.e., average of the daily activity counts for each cat over 

the entire study). This was defined as ‘proportional daily MMA activity count’ and calculated for each 

cat using the following equation: 

Proportional daily MMA activity count =
Daily MMA activity count

Average daily MMA activity count
 

 

6.2.5 Infrared thermography  
Infrared thermographic images were taken of each cat on Days 30, 36, 37, 38, 39, 40 (eCG treatment 

day), 41, 42, 43, 44 (hCG treatment), and 45 (ovariohysterectomy). All images were taken using a Flir 

E60 IR thermographic camera (FLIR Systems, Wilsonville, Oregon, USA) and assessed using the 

software program Flir Tools (Version 5.13.18031.2002; FLIR Systems, Wilsonville, Oregon, USA). 

Images were taken 1 m away from the cat in a room with a stable ambient temperature (room 

thermostat set to 22ºC) after a 15 minute acclimitisation period, although humidity could not be 

controlled. Two images were taken from each cat on each day (less than 1 minute between images) 

and results averaged to minimise variability introduced by camera angles or distances on the recorded 

temperatures. For each image, the average, minimum, and maximum perivulvar temperatures (PVT) 

were recorded (Figure 6.2). The average left and right gluteal temperatures, as well as the perianal 

temperature (PAT), were also recorded (Figure 6.2). The PVT relative to the gluteal temperature 

(PVT-GT) and the PVT relative to the PAT (PVT-PAT) were calculated using the following 

equations respectively:  

1) PVT − FT =
(average PVT−average left GT)+(average PVT−average right GT)

2
 

2) PVT − PAT =
(average PVT−average PAT)

2
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Figure 6.2 Thermographic image of a female cat showing the perivulvar area (PV), perianal area (PA), and the 

left and right gluteal regions 

 

6.2.6 Statistical analysis  
All statistical analyses were conducted using RStudio version 1.0.143 (R Foundation for Statistical 

Computing, Vienna, Austria) and significance was set as P<0.05. A trend or tendency was defined as 

P<0.10 Shapiro-Wilk normality tests were used to assess the normality of the data. Prednisolone 

treatment administered to six of 12 cats did not significantly affect accelerometer-based activity 

counts or IR temperature data, thus control and treatment groups as described in Chapter 4 were 

combined for the purpose of this study. Endocrine data were evaluated for each cat to determine their 

reproductive state. Chauvenet’s criterion was used to remove outlying data points from combined 

oestradiol data, since one cat had very high baseline and peak oestradiol concentrations. ANOVA and 

Tukey’s post hoc tests were used to assess the endocrine data. The mean daily activity counts on days 

40-44 were compared against baseline data (Days 30-39) and were parametric and thus compared 

using paired T-tests. Proportional daily MMA activity data were also parametric and analysed using 

paired T-tests. Coefficients of variance were used to examine the amount of variance between the two 

images captured (less than 1 minute between the images) for each cat daily. PVT, PVT-GT, and PVT-

PAT data were parametric and analysed using paired T-tests. Values are presented as mean ± SEM 

unless otherwise stated.  

6.3 Results  

6.3.1 Endocrine assessments 
The mean oestradiol concentration on Day 0 was 17.8 ± 3.4 pg/ml, which has previously been 

correlated to a lack of active ovarian follicles (Shille et al., 1979). Oestradiol concentrations spiked 
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significantly after the eCG treatment on Day 40, being 2.1 ± 0.3 (range: 1.1 - 3.8) fold higher on Day 

44 than Day 40 (85.6 ± 14.2 pg/mL vs. 41.8 ± 7.7 pg/mL, respectively; P=0.002; Figure 6.3). 

Oestradiol concentrations decreased from Day 44 to Day 45 (85.6 ± 14.2 ng/mL vs. 49.5 ± 11.4 

ng/mL, respectively; P=0.006), reaching concentration that were comparable to Day 40 (i.e., baseline; 

P=0.28; Figure 6.3). The stimulation of follicular growth and ovulation was confirmed in all cats by 

morphological assessment of the ovaries, with an average number of ovulations (i.e., number of 

corpora haemorrhagica or lutea) of 10.5 ± 1.1 (range: 6 – 22). 

 

Figure 6.3 Mean (± SEM) serum oestradiol (a) and progesterone (b) concentrations of the cats (n=12) from Day 

30-45 of the study. Cats were exposed to an exogenous ovarian control regime consisting of 0.088 mg/kg/day 

altrenogest (Days 0 – 37), 75 IU equine chorionic gonadotrophin (eCG; Day 40) to stimulate follicular growth, 

and 50 IU human chorionic gonadotrophin (hCG; Day 44) to induce ovulation. The cats were 

ovariohysterectomised on Day 45. Day 30 was considered as baseline to allow sufficient time (Days 0-30) for 

existing (i.e., Day 0) luteal phases to have ceased and the altrenogest treatment to completely suppress follicular 

growth. Statistical difference (P<0.05) over time is indicated by differing letters.  

 

Three cats had elevated progesterone concentrations at Day 0 (35.3 ± 6.3 ng/ml), two of which also 

had elevated progesterone (12.6 ng/ml and 36.7 ng/ml) at Day 10, suggesting presence of luteal tissue 

(i.e. dioestrus). By Day 30, all cats had baseline progesterone concentrations (0.6 ± 0.1 ng/ml), and 

progesterone concentrations remained low until day 44 (0.9 ± 0.2 ng/ml). However, progesterone 
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concentrations were higher (2.2 ± 0.6 fold) than baseline on Day 45 (0.5 ± 0.1 ng/mL vs. 1.2 ± 0.2 

ng/mL, respectively; P=0.004; Figure 6.3).  

6.3.2 Accelerometry 
Two MMA malfunctioned; thus, complete activity data were collected from 10 of the 12 cats. On 

average, there was a 2.2 ± 0.3 fold increase in the daily MMA activity count from baseline (85,477 ± 

13,202) to peak (161,895 ± 20,449) levels, with peaks (>1.4 fold increase) in activity being observed 

on either Day 43 or 44 in all but one cat. However, daily activity counts also differed between cats 

(14,885 - 307,772 MMA counts/day; P<0.001), with this difference apparent during follicular 

suppression (14,885 - 197,055 MMA counts/day; P<0.001) and follicular stimulation (22,794 - 

307,772 MMA counts/day; P<0.001). The individual variability in daily activity counts was corrected 

by using proportional daily MMA activity counts. Proportional daily MMA activity counts were 

higher than baseline (Day 30-39) on Days 40 (1.52 ± 0.10 fold increase; P<0.001), 42 (1.66 ± 0.24 

fold increase; P=0.02), 43 (2.03 ± 0.29 fold increase; 0.006), and 44 (1.93 ± 0.19 fold increase; 

P<0.001; Figure 6.4). Activity levels on day 41 were not different from baseline. Peak activity levels 

occurred on day 43 (Figure 6.4).  

 

 

Figure 6.4 Mean proportional daily MMA activity counts of the 10 cats over time. The dotted line represents 

the overall average proportional daily MMA. Cats were treated with 0.088 mg/kg/day altrenogest (ALT) orally 

from Days 0 – 37. On day 40, the cats were given 75 IU equine chorionic gonadotrophin (eCG) to induce 

follicular growth, followed by 50 IU human chorionic gonadotrophin (hCG) to induce ovulation 80 hours later. 

The cats were ovariohysterectomised 24 hours after the hCG treatment (i.e., Day 45). The proportional mean 

MMA activity counts on Days 40, 41, 42, 43, and 44 were each compared against baseline levels (Days 30-39; 

indicated by the dotted line) using paired T-tests. *P<0.05, **P<0.01, ***P<0.001. 
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6.3.3 Infrared thermography  
There was little variation in the PVT and PVT-GT recordings between the two images per cat each 

day, with mean CV of 0.88 ± 0.08% and 3.02 ± 0.21%, respectively. However, PVT-PAT differed 

considerably between two daily images per cat (CV of 34.75 ± 5.60%). 

The mean baseline (Days 30-39) PVT was 36.59 ± 0.45℃. Mean PVT were lower than baseline on 

Days 40 (0.75 ± 0.21℃ lower; P=0.006), 41 (1.02 ± 0.37℃ lower; P=0.02), 44 (0.65 ± 0.23℃ lower; 

P=0.03), and 45 (1.08 ± 0.19℃ lower; P<0.001; Figure 6.5). However, PVT was similar to baseline 

on Days 42 (P=0.12) and 43 (P=0.44; Figure 6.5). While PVT appeared to increase from Days 41 to 

43 (Figure 6.5), this was not significant (P=0.15). Interestingly, PVT decreased (0.89 ± 0.28℃) from 

Days 43 (peak follicular stimulation) to 45 (P=0.008; Figure 6.5), which corresponded with the post-

ovulatory period.   

Perivulvar temperature relative to mean gluteal temperature followed a similar pattern to PVT (Figure 

6.5). The mean baseline PVT-GT was 12.24 ± 0.56℃. PVT-GT differed from baseline on Days 41 

(1.22 ± 0.30℃ lower; P=0.002), 43 (0.74 ± 0.29℃; P=0.03), and 45 (0.51 ± 0.22℃ lower; P<0.001). 

There was a 0.97 ± 0.38℃ decrease in PVT-GT from Days 40 to 41 (P=0.03; Figure 6.5), and a 

significant increase from Days 41 to 43 (1.96 ± 0.33℃). As with PVT, PVT-GT decreased 1.24 ± 

0.41℃ from Days 43 to 45 (P=0.01). 

The stimulation of follicular growth and ovulation with gonadotrophins appeared to have a similar 

effect on PVT-PAT. The mean baseline PVT-PAT was -0.78 ± 0.51℃. As with PVT and PVT-GT, 

PVT-PAT decreased after the stimulation of follicular growth and ovulation with gonadotrophins 

(Figure 6.5). PVT-PAT was lower than baseline on Days 40 (0.66 ± 0.17℃ lower; P=0.002), 41 (1.12 

± 0.34℃ lower; P=0.007), and 45 (0.76 ± 0.16℃ lower; P<0.001; Figure 6.5). PVT-PAT appeared to 

increase from Days 41 to 43, although this was not significant. There was a decrease in PVT-PAT 

from Days 43 to 45 (Figure 6.5), but unlike for PVT and PVT-GT, this difference was not significant.  
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Figure 6.5 (a) Perivulvar temperature (PVT), (b) PVT relative to gluteal temperature (PVT-GT), and (c) PVT 

relative to perianal temperature (PVT-PAT) of the cats (n=12) over time. Cats were treated with 0.088 

mg/kg/day altrenogest (ALT) orally from Days 0 – 37. Complete ovarian suppression was achieved in all cats 

by Day 30. On Day 40, the cats were given 75 IU equine chorionic gonadotrophin (eCG) to induce follicular 

growth, followed by 50 IU human chorionic gonadotrophin (hCG) to induce ovulation 80 hours later. The mean 

PVT, PVT-GT, and PVT-PAT on Days 40, 41, 42, 43, and 44 were each compared against baseline levels (Days 

30-39; indicated by the dotted line) using paired T-tests. *P<0.05, **P<0.01, ***P<0.001. 
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6.4 Discussion  

This study investigated whether accelerometry and IR thermography could be used as tools for 

monitoring the ovarian function of domestic cats. Accelerometry data indicated that the OPA of cats 

increased significantly following the induction of follicular growth with eCG. In this study, a peak in 

activity following the stimulation of follicular growth with eCG was observed in 90% of the cats, 

suggesting that accelerometry could be used as a tool to aid in the detection of oestrus in this species. 

Similarly, IR thermography was successful in identifying significant differences in the PVT and PVT-

GT of cats based on whether they were undergoing ovarian suppression (baseline), peak follicular 

activity (Day 43), and post-ovulation (Day 45). 

The present study demonstrates that accelerometry could be used to detect the behavioural changes 

(increased OPA) associated with follicular growth without the need for extensive observation 

monitoring. The OPA of the cats increased progressively after the induction of follicular growth, 

reaching peak activity levels three days after the eCG treatment. It has been well documented that 

eCG treatment in domestic cats triggers the development of pre-ovulatory follicles within two to three 

days, hence hCG is given to induce ovulation ~80 hours (i.e., 3.33 days) after the eCG treatment 

(Swanson et al., 1997; Stewart et al., 2012). Oestradiol concentrations increase gradually with 

follicular growth and peak in the presence of pre-ovulatory follicles (Griffin, 2001; Chatdarong, 2003; 

Bristol-Gould and Woodruff, 2006; Malandain et al., 2011). Furthermore, the behavioural changes 

associated with oestrus in domestic cats have been directly linked to elevated oestradiol 

concentrations (Michael and Scott, 1964; Shille et al., 1979; Wildt et al., 1981a; Schmidt et al., 1983). 

In this study, the increases in the OPA of the cats in this study following the eCG treatment paralleled 

that of serum oestradiol concentrations.  

Induction of follicular growth using eCG is known to induce the development of more pre-ovulatory 

follicles than in natural follicular waves (Goodrowe et al., 1988b; Donoghue et al., 1993; Roth et al., 

1997). Whether the OPA levels of domestic cats also increases during periods of natural oestrus 

remains to be confirmed. The number of ovulations observed here (10.5 ± 1.1 ovulations per cat, 

range: 6 - 22) is comparable to other studies that have induced oestrus and ovulation using exogenous 

gonadotrophins (9-15 ovulations per cat), but was higher than reported for natural oestrus and 

ovulation (~5.0 ovulations per cat; Wildt et al., 1981a; Goodrowe et al., 1988b; Donoghue et al., 

1993; Swanson et al., 1997; Stewart et al., 2012). It would have been interesting to investigate activity 

changes in response to ovulation and monitor physical activity at the time of ovulation, but this could 

not be accurately assessed as the cats used here were housed in individual cages (restricted areas) the 

night prior to ovariohysterectomy. Nonetheless, the findings of the present study justify further 

research into the use of accelerometry (i.e., OPA monitoring) for detecting oestrus in domestic cats, 

and more importantly, non-domestic felids that typically lack overt behavioural indicators of oestrus.  
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Infrared thermography was successful in identifying the transitions between different ovarian statuses 

within cats, from ovarian inactivity (i.e., baseline or Days 30-39), to peak ovarian follicle activity and 

oestradiol concentrations (Days 43 and 44), and lastly to the post-ovulatory stage (Day 45; Figure 

6.5). The decrease in temperature registered by IR thermography on day 41 was consistent, although 

the physiological cause and biological significance of this remains unclear. Finally, from all of the 

parameters that were derived from IR thermography (PVT, PVT-GT, and PVT-PAT), PVT-GT 

provided the best sensitivity to detect subtle changes in body temperature. In addition, there was little 

variation in PVT and PVT-GT determined from the two images captured (less than 1 minute between 

the images) for each cat daily (0.88% and 3.02% variation, respectively), suggesting that there is no 

need for capturing multiple images of each animal at any given time point. However, there was some 

inter-individual variation in the PVT, PVT-GT, and PVT-PAT changes associated with the 

gonadotrophin treatments, emphasising the requirement for baseline comparisons for each animal.   

Many studies that have used IR thermography to monitor reproductive state have reported or shown a 

high degree of variability in the temperatures obtained (Sykes et al., 2012; Simões et al., 2014; 

Talukder et al., 2014; Olğaç et al., 2017; Radigonda et al., 2017). Some authors have attributed this 

variability to a range of external variables (e.g., ambient temperature, humidity, air movement, focal 

distance, physical activity of subject, and fur density and coverage) that have been shown to affect 

body temperature and IR thermography data (Kastberger and Stachl, 2003; Cilulko et al., 2013; 

Rekant et al., 2016; Olğaç et al., 2017). In the present study, all thermographic images were taken 

indoors under stable environmental conditions, so the variability observed in cats was unlikely due to 

environmental factors. The amount of physical activity of the subject prior to taking a thermographic 

image has been found to cause variation in the recorded temperatures (Simões et al., 2014; Silva et 

al., 2017). In the present study, there was an increase in physical activity following the eCG 

treatment, with both follicular growth and OPA levels increasing progressively from Day 41 to Day 

43. It is possible that the increase in PVT from Days 41 to 43 was due, in part to the increase in OPA. 

However, the use of relative temperature measures (PVT-GT and PVT-PAT) should have accounted 

for temperature changes that may originate from different activity levels. Additionally, given that the 

increases in activity were associated with follicular growth, activity-induced changes in PVT in the 

context of monitoring ovarian activity are probably of minimal significance. The results presented 

herein show that PVT-GT, and to a lesser extent PVT-PAT, increased from Days 41 to 43 as did PVT, 

suggesting that this increase represents a true physiological response (i.e., due to increases in 

follicular activity and/or oestradiol concentrations) and not a consequence of increased OPA.   

The experimental design of this study highlighted important considerations for future studies. First, IR 

images were only collected once per day. More frequent collection of images might enable more 

accurate identification of the timing of peak follicular growth and ovulation. Second, IR images were 

taken at a fixed time each day rather than relative to when the eCG and hCG treatments were 
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administered, so the timing of the IR images varied from nine to 15 hours after eCG treatment. This 

variation almost certainly caused inconsistencies in the stage of follicular growth or ovulation as 

determined from the infrared images. Nevertheless, the results of this study are encouraging and 

provide impetus for further investigation into the use of IR thermography for monitoring ovarian 

function in cats.    

6.5 Conclusion 

In conclusion, this study shows the potential for accelerometry and IR thermography to be used as a 

minimally-invasive method for monitoring the ovarian activity of cats, and perhaps other felid 

species. The OPA increased after the induction of follicular development with eCG, but the Actical® 

activity counts differed considerably among cats. In terms of detecting follicular growth or ovulation 

in cats, this means that comparative baseline (i.e., no follicular activity) activity levels are required for 

each animal. Future research into whether OPA also increases during periods of natural oestrus would 

be worthwhile, as the induction of follicular growth with eCG results in a stronger ovarian response 

than observed during natural oestrus. Infrared thermography also identified PVT changes driven by 

follicular development and ovulation, with PVT-GT providing the most sensitive method for detecting 

the subtle PVT changes associated with gonadotrophin-induced follicular growth and ovulation. Thus, 

the findings of the present study indicated that both accelerometry) and IR thermography show 

promising for monitoring the ovarian activity of cats. 
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Chapter 7: General discussion and future research 

7.1 General discussion 

The major threats (e.g., habitat loss/fragmentation, reductions in prey numbers, and poaching) faced 

by many felids have made in situ conservation programs extremely difficult (Nowell and Jackson, 

1996; Inskip and Zimmermann, 2009; Palazy et al., 2011; Poessel et al., 2014; Wolf and Ripple, 

2016; 2017). Consequently, captive breeding programs have become pivotal to conservation strategies 

for non-domestic felids. While natural breeding is optimal for sustaining captive felid populations, it 

is often challenging due to the need for animal transportation, intra-specific aggression, mate 

incompatibility, and difficulties in oestrus detection (Foreman, 1997; Wielebnowski and Brown, 

1998; Moreira et al., 2001; Brown et al., 2002; Wielebnowski et al., 2002a; Henriksen et al., 2005; 

DeCaluwe et al., 2013; Thongphakdee et al., 2018; Andrews et al., 2019; Andrews et al., 2020; 

Thongphakdee et al., 2020). Assisted reproductive technologies (ART) provide methods for 

transferring genes between ex situ organisations, and perhaps from ex situ to in situ populations, but 

have generally had low success rates in felids (Howard and Wildt, 2009; Thongphakdee et al., 2020). 

This thesis aimed to identify and examine factors that influence the reproductive performance of 

felids in captivity. This first required a detailed understanding of the general reductive biology of 

felids.  

Chapter 2 provided the first comprehensive systematic review of the literature available on the 

reproductive biology of all extant felid species (Andrews et al., 2019; Andrews et al., 2020). The 

review highlighted that teratospermia appeared to be the most significant factor affecting the fertility 

of male felids (Howard et al., 1990; Long et al., 1996; Pukazhenthi et al., 2006b; Andrews et al., 

2019). In females, highly variable oestrous cycles and difficulties in detecting oestrus complicate 

captive breeding programs (Foreman, 1997; Wielebnowski and Brown, 1998; Brown et al., 2002; 

Henriksen et al., 2005; Moreira et al., 2007; Thongphakdee et al., 2018; Andrews et al., 2019; 

Andrews et al., 2020). 

Captivity has been found to affect both the testicular and ovarian function of felids (Jurke et al., 1997; 

Wielebnowski et al., 2002b; Moreira et al., 2007; Koester et al., 2015; Andrews et al., 2019). 

However, it is difficult to elucidate whether differences in the ejaculate characteristics or ovarian 

cyclicity between captive and wild felids are due to captivity-related stress (i.e., elevated 

glucocorticoid (GC) concentrations) or other factors associated with captivity (e.g., diet). While a 

number of captive felid species have been found to exhibit higher (~2.5 fold) basal faecal 

glucocorticoid (GC) concentrations than their wild conspecifics (Wielebnowski et al., 2002a; 

Wielebnowski et al., 2002b; Terio et al., 2004; Fanson et al., 2010; Fanson et al., 2012), there is a 

lack of evidence for a direct effect of stress (i.e., increased hypothalamic-pituitary-adrenal activity) on 
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felid reproduction (Andrews et al., 2019). Furthermore, to the best of my knowledge, no study to date 

has examined the effects of elevated GC on the follicular growth, ovulation rate, or oocyte quality of 

felids following exogenous stimulation of ovarian activity.  

Chapters 3 and 4 examined the effects of a simulated endocrine stress response (i.e., administration of 

a physiologically relevant dose of prednisolone) on the testicular and ovarian function of domestic 

cats (Felis catus), respectively. While prednisolone was administered to the treatment cats at 1 

mg/kg/day, prednisolone was not detectable in the serum any of the animals (treatment or control). 

This was likely because blood samples were taken ~22-24 hours after the prednisolone treatment was 

administered. Initial investigations suggested that prednisolone was an intermediate-acting GC, with a 

half-life of 12-36 hours reported in companion animals (Behrend and Kemppainen, 1997; Lowe et al., 

2008a). However, further retrospective investigation into the half-life of prednisolone in humans 

indicated that it has a much shorter life of 2-3 hour (Rose et al., 1981). This shorter half-life would 

likely have meant that complete drug clearance occurred within 22 hours. Despite no detectable 

differences in the serum prednisolone concentrations between the control and treatment cats, 

physiological effects of the prednisolone treatment on the testicular and ovarian function of the cats 

were apparent.  

Higher proportions of morphological abnormal sperm were observed in the epididymides of 

prednisolone-treated cats than control cats (Chapter 3). The mechanism of this was unclear as both 

primary (associated with spermatogenesis) and secondary (associated with maturation) abnormalities 

were more prevalent in cats given prednisolone (Pukazhenthi et al., 2001; Pukazhenthi et al., 2006b; 

Crosier et al., 2009; Müller et al., 2012). Reductions in Sertoli cell number (via increased Sertoli call 

apoptosis) and an increased Sertoli cell load (i.e., germ cells per Sertoli cell) may have contributed 

towards the higher proportion of abnormal sperm in prednisolone-treated cats (Mruk and Cheng, 

2004; Wang et al., 2006; Johnson et al., 2008). Regardless of the aetiology, this would likely have a 

detrimental effect on fertility, since morphologically abnormal sperm are rarely involved in the 

fertilisation process and can even disrupt the functioning of structurally normal sperm (Howard et al., 

1990; Long et al., 1996; Pukazhenthi et al., 1996; Pukazhenthl et al., 1998; Terrell et al., 2010).   

The effects of the prednisolone treatment on ovarian function and oocyte quality of cats following 

exogenous simulation of follicular growth and ovulation appeared to be minimal (Chapter 4). Oocytes 

collected from prednisolone-treated cats had less uniform ooplasms and poorer zona pellucida quality 

than those collected from control cats (Chapter 4). However, it is unclear whether the reduced 

ooplasm and zona pellucida scores of prednisolone-treated cats would correspond to a reduction in 

fertility, as the fertilisation capability of oocytes was not assessed.  

The results of Chapters 3 and 4 suggest that a simulated endocrine stress response has a greater effect 

on the testicular function of toms than the ovarian function of queens, at least when ovarian function 
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is controlled using exogenous gonadotrophins. This suggests that careful management (low stress) of 

male cats should be prioritised, especially for the 50 days (the duration of spermatogenic cycle is 

approximately 47 days) prior to breeding or ejaculate collection for ART, since follicular growth and 

ovulation is almost always stimulated with exogenous gonadotrophins for ART.  

The hyperstimulation of follicular growth and ovulation with pharmacological doses of exogenous 

gonadotrophins likely compensated for any effects of the prednisolone treatment on the ovarian 

function of the cats (Goodrowe et al., 1988b; Donoghue et al., 1993). The simulation of follicular 

growth and ovulation in cats using exogenous gonadotrophins has been shown to result in a higher 

number of ovulations per cat than natural oestrus and ovulation (either induced or from natural 

mating; Wildt et al., 1981a; Goodrowe et al., 1988b; Donoghue et al., 1993; Swanson et al., 1997; 

Stewart et al., 2012). Future research should focus on the effects of GC administration on the natural 

oestrous cycles of cats, as elevated GC concentrations have been associated with ovarian quiescence 

in cheetah (Acinonyx jubatus; Jurke et al., 1997), margay (Leopardus weidii), and trigrina (Leopardis 

tigrinus; Moreira et al., 2007). However, this requires an accurate, reliable, and minimally invasive 

(i.e., low stress) method for monitoring ovarian cycles of domestic cats. Thus, Chapter 6 evaluated 

whether accelerometry (activity monitoring) and/or infrared (IR) thermography (perivulvar 

temperature (PVT) monitoring) could be used to monitor the ovarian function of domestic cats, as a 

model for endangered felids.  

Actical® (MiniMitter, Bend, OR, USA) accelerometers have been validated for monitoring overall 

physical activity (OPA) of domestic cats (Andrews et al., 2015). However, these devices are 

monoaxial and can only monitor OPA (Lascelles et al., 2008; Andrews et al., 2015). Chapter 5 

therefore aimed to validate and develop Heyrex® activity monitors, as these triaxial accelerometers 

were capable of monitoring both the activity and behaviour (e.g., sleeping, alert, scratching, walking, 

and running) of cats. Furthermore, Heyrex® activity monitors also have a long battery-life (~2 years) 

and wirelessly upload data onto a server that can be accessed anywhere in the world, thus enabling 

real-time monitoring.  

The results of Chapter 5 indicated that the Heyrex® devices provided an accurate representation of 

OPA of cats; moreover, the regression lines between observed and Heyrex® activity counts were more 

similar among cats than for previously tested accelerometers (Andrews et al., 2015). However, 

refinement of the behaviour algorithms is required, with the devices frequently miscategorising 

scratching and walking behaviour. In addition, it was concluded that grooming behaviour needs to be 

incorporated into the behavioural algorithms, as cats spent a considerable amount time grooming and 

this affected the categorisation of behaviours by the Heyrex® devices. Unfortunately, algorithm and 

device modification for cats was not possible as Heyrex® Ltd. closed down; moreover, the online 
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servers were suspended, which meant that activity data could no longer be collected from the Heyrex® 

devices. Consequently, Actical® accelerometers were used in Chapter 6.  

Chapter 6 demonstrated potential for both accelerometry and IR thermography to be used to monitor 

the ovarian function of cats. The OPA of the cats peaked three days after the equine chorionic 

gonadotrophin (eCG) treatment, which corresponded to peak follicular activity and oestradiol 

concentrations. Past literature has also shown that pre-ovulatory follicles are present within two to 

three days of stimulating follicular growth with exogenous gonadotrophins (Swanson et al., 1997; 

Stewart et al., 2012). Furthermore, there is direct evidence in cats that behavioural changes during 

oestrus are directly due to the elevated oestradiol concentrations associated with follicular growth 

(Michael and Scott, 1964; Shille et al., 1979; Wildt et al., 1981a; Schmidt et al., 1983). Thus, elevated 

oestradiol concentrations are the most likely cause for the increased OPA of cats following the eCG 

treatment.  

In cows (Bos taurus) and pigs (Sus scrofa), elevated oestradiol concentrations associated with 

follicular growth have also been linked to increased blood flow to the perivulvar area and, in turn, 

increased superficial temperature of the perivulvar area (Simões et al., 2014; Talukder et al., 2014). In 

Chapter 6, the PVT (determined using IR thermography) of cats changed following exogenous 

gonadotrophin stimulation of follicular growth and ovulation. Perivulvar temperature relative to 

gluteal temperature (PVT-GT) had the greatest sensitivity for detecting subtle changes in PVT. There 

was a decrease in PVT-GT within one day of eCG-induced follicular growth, which likely 

corresponded to early follicular growth (Goodrowe and Wildt, 1987; Swanson et al., 1997; Stewart et 

al., 2012). Interestingly, PVT-GT increased as follicles developed and reached peak levels three days 

after the eCG treatment, which was also when follicular activity and OPA peaked. Both PVT and 

PVT-GT decreased following induction of ovulation with human chorionic gonadotrophin (hCG). 

This suggests that PVT monitoring has potential to be used to identify ovulation in cats, as in some 

non-felid species (Sykes et al., 2012; Redaelli et al., 2014; Simões et al., 2014; Talukder et al., 2014; 

Radigonda et al., 2017). 

Considerable inter-individual variation existed in the OPA (accelerometer) and PVT (IR 

thermography) data. A high degree of inter-cat variation in accelerometry data has been reported 

previously (Andrews et al., 2015). In terms of detecting follicular growth or ovulation in cats, this 

means that an activity profile is required for each animal. This is also applicable for PVT data, as 

numerous external variables (e.g., ambient temperature, humidity, air movement, focal distance, 

physical activity of subject, and fur density) can affect body temperatures and, thus, IR thermography 

data (Kastberger and Stachl, 2003; Cilulko et al., 2013; Rekant et al., 2016). Nevertheless, the results 

of Chapter 6 are encouraging and provide impetus for further investigation into the use of both 
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accelerometry and IR thermography for monitoring ovarian function of cats and, perhaps, non-

domestic felids. 

 

7.2 Future directions 

• In Chapter 3, secondary sperm abnormalities (particular proximal cytoplasmic droplets) were 

higher in prednisolone-treated cats than control cats. Secondary abnormalities occur during 

maturation. Testosterone has an important role in regulating epididymal sperm transport and 

maturation, with low testosterone concentrations being linked to an increase in the proportion 

of morphologically abnormal sperm in mice (Meistrich et al., 1975). Serum testosterone 

concentrations were comparable between prednisolone-treated and control cats. However, 

androgen binding protein also has an important role on regulating testicular androgen 

concentrations and concentrating testosterone in the epididymis (Munell et al., 2002). Thus, it 

would be worth investigating whether androgen binding protein concentrations differed in the 

testes of the treatment and control cats in Chapter 3.  

• Glucocorticoids have been found to decrease luteinising hormone (LH) receptor expression in 

both testicular and ovarian tissue in vitro (Bambino & Hsueh, 1981; Kawate et al., 1993). 

Glucocorticoids also dose-dependently inhibit the production of oestradiol from follicle-

stimulating hormone (FSH)-treated and androstenedione-treated bovine and rat granulosa 

cells in vitro, with research suggesting that GC act to disrupt the FSH-induced increases in 

P450 aromatase activity (Hsueh & Erickson, 1978; Kawate et al., 1993). It would be valuable 

to examine whether the prednisolone treatment altered LH receptor and FSH receptor 

expression in the testicular and ovarian tissues collected in Chapters 3 and 4, respectively. 

Determining whether gonadotrophin receptor expression differs between treatment and 

control cats may shed light on the physiological pathways by which the GC treatment affected 

the testicular and ovarian functions.  

• In Chapter 4, it was likely that the hyper-stimulation of follicular growth and ovulation with 

exogenous gonadotrophins mitigated the effects of GC on ovarian functions. While elevated 

GC concentrations associated with captivity have been associated with ovarian quiescence in 

felids (Jurke et al., 1997; Moreira et al., 2007), no direct physiological link has been reported 

between elevated GC and reduced oestrous cyclicity in felids. Therefore, a study that 

evaluated the effect of GC treatments on natural ovarian cyclicity would be valuable. 

• This thesis found that GC treatments resulted changes morphological characteristics of both 

the sperm and oocytes of cats. However, whether these morpholigcal changes affect the 

fertility of cats remains to be determined. In the future, it would be worthwhile examining 
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whether GC treatments affect factors such as functional indicators of fertilisastion ability such 

as sperm binding to the ZP, in vitro fertilisation rats, and embryo formation.     

• Chapter 6 also showed that cats exhibit an increase in OPA following induction of follicular 

growth with eCG, indicating that that accelerometry could be used as a non-invasive (low 

stress) method for monitoring ovarian activity. The ability to accurately monitoring the 

reproductive state of female cats would likely facilitate natural breeding of felids in captivity. 

Thus, future research into whether the OPA also increases during periods of natural (i.e., 

unstimulated) oestrus would be valuable. In Chapter 6, it was not possible to study the effects 

of ovulation on OPA, because the cats were kept in smaller individual cages after the hCG 

treatment in accordance with pre-anaesthesia protocols. The effects of ovulation on OPA is 

worth investigating, especially given the potential benefits for ART of being able to detect 

ovulation in other felids. 

• Chapter 6 indicated that IR thermography can possibly be used as a non-invasive method or 

monitoring the ovarian activity of cats, with PVT changing through periods of follicular 

growth and ovulation. However, a limitation of the research in Chapter 6 was that IR images 

were taken at a fixed time each day rather than relative to when the eCG and hCG treatments 

were administered. While this was a consequence of the research in Chapter 4 and 6 being 

conducted simultaneously in the same cohort of cats, it almost certainly resulted in the images 

being taken at slightly different stage of follicular development. Future research should 

consider synchronising the time of IR imaging with exogenous gonadotrophin treatments, 

with IR images being taken more frequently (e.g., three times daily) than in Chapter 6. 

• The results of this thesis indicate that GC have adverse effects on the testicular and ovarian 

function of domestic cats. There is an urgent need to further investigate the effects of 

captivity-related stress on non-domestic felids, particularly in male felids. Furthermore, the 

non-invasive approaches used for monitoring ovarian activity in this thesis are highly 

applicable for the management and breeding of non-domestic felids in captivity.  
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Appendix 1 – Andrews et al. (2019) 

 

Appendix 1b: Andrews et al. (2019) Supplement 2 (S2) – Data on the oestrous cycles of felids 

A summary of the existing literature (84 publications) on the female reproductive biology of the 38 extant felid species. The felid lineages and associated species are based on Johnson et al. (2006). All values are presented as weighted 

meanµ (range; n = number of females, nE = number of events (oestrous cycle length, oestrus, interoestrus, non-pregnant luteal phases (often referred to as pseudopregnancy), and pregnancy)), or as otherwise stated. Many of the values for 

the duration of interoestrus were calculated from the mean durations and ranges of oestrus and the full oestrus cycle. Calculated values are represented by ‡. The type of data provided by each reference is indicated by the following key: 

behavioural (B), endocrine (E), histological (H), laparoscopic (L), observational (O), review article (R), transabdominal ultrasonography (U) or vaginal cytology (V). Values reported in the review article by Rodrigues da Paz (2012), 

indicated in the table as “RdP 2012”, were excluded from all calculations as sample sizes were unknown. Similarly, values marked with an * are from Hunter and Barrett (2011) and have been used when primarily literature is lacking or 

limited; these values have also been excluded from all analyses. Values marked with † refers to the persistent nature of corporal lutea (CL) in the Lynx spp., with luteal phases in these species being found to persist for as long two years 

(Jewgenow et al. 2014, Painer et al. 2014). Progesterone concentrations remain elevated throughout this time, although remaining CL are functionally supressed during the next breeding season to enable follicular development to occur 

and thus the onset of oestrus (Jewgenow et al. 2014, Painer et al. 2014). Other abbreviations: northern hemisphere (NH), southern hemisphere (SH), non-seasonal (NS), inter-quartile range (IQ). 

L
in

ea
g

e 

Species 

Age of female 

sexual 

maturity 

(Months) 

BWT of 

adult female 

(kg) 

Cyclicity 

(poly/mo

no-

oestric) 

Breeding season 

Length of 

anovulatory oestrous 

cycle 

(Days) 

Duration of oestrus 

(Days) 

Interoestrus 

interval  

(Days) 

Occurrence 

of 

spontaneous 

ovulation 

 

Dioestrus 

Litter size 

(range) 

References 

 

Non-pregnant luteal 

phase 

(Days) 

 

Pregnant luteal 

phase/Gestation  

(Days) 

D
o

m
es

ti
c 

C
a

t 

Domestic cat 

(Felis catus) 

4.0 – 12.0 2.0 – 5.0 

 

 

Poly 
 

Feb - Sept 

(NH) 

18.9 µ (1.5 – 68.5) 

(n = 38, nE = 213)  

7.3µ  (0.5 – 118) 

(n = 129, nE = 454) 

9.9µ (1.5 – 64.5) 

(n = 45, nE = 173) 

Regular 40.3µ (26 – 55) 

(n = 28, nE = 61) 
66.9 (62 – 71) 

(n = 14, nE = 15) 

1 – 5  

(n = 15) 

Paape et al. 1975E, Verhage et al. 1976E, Shille et al., 1979B,E,V, 

Shille & Stabenfeldt 1979E, Wildt et al. 1981B,E, Tsutsui & 
Stabenfeldt 1992, Root et al. 1994E, Chatdarong et al. 2006E,V, 

da Silva et al. 2006B, Stewart et al. 2010E 

European/Scottish wildcat 

(Felis silvestris) 
9.0 – 12.0* 2.0 – 5.8* Poly Oct - Feb - - - - - 56.0 – 68.0* 4.3 (3 – 6) 

(n = 9) 
Matthews 1941H, Daniels et al. 2002H 

African wildcat 

(Felis libyca) 

9.0 – 12.0* 2.0 – 7.7* Poly - - - - - - 67.0 

(n = 1, nE = 1) 

1 – 6* Dehnhard et al. 2012E 

Chinese mountain cat 

(Felis bieti) 
- 6.5 – 9* - - - - - - - - -  

Desert/Sand cat 

(Felis margarita) 

9.0 – 14.0* 1.4 – 3.1* Poly NS 11.1 (5 – 28) 

(n = 6, nE = 109) 

2.9 (1 – 11) 

(n = 6, nE = 109) 
9.0 (4 – 27) ‡ Rare - 64.2 (61 – 67) 

(n = 5, nE = 5) 

2 – 5, usually 

2* 

Mellen 1993B,O, Herrick et al. 2010E, Dehnhard et al. 2012E 

Black-footed cat 

(Felis nigripes) 
~7.0* 1 – 1.6* Poly NS 11.9 (5 – 29) 

(n = 7, nE = 98) 
2.2 (1 – 9) 

(n =7, nE = 98) 
9.9 (4 – 28)‡ Regular 13.2±1.1 

(n = 5, nE = 26) 

61.0 (60 – 62) 
(n = 2, nE = 2) 

Usually 2* Herrick et al. 2010E 

Jungle cat 

(Felis chaus) 

~11.0* 2.6 – 9* Poly - - - - - - 65.3 (63 – 66) 

(n = 4, nE =6) 

2.7 (1 – 6) 

(n = 30) 

Mellen 1993B,O, Stehlik 2003 

L
eo

p
a

rd
 C

a
t 

Pallas’ cat 

(Otocolobus manul) 
9.0 – 10.0* 2.5 – 5.0* Poly Jan - April 

(NH) 

14.3 (7 – 21) 

(n = 6, nE = 20) 

? (1 – 12)  

(n = 6, nE = 20) 

1.0 – 17.0  

(Follicular waves 

may overlap) 

(n = 6, nE = 20) 

Occasional 49.8 (30 – 60) 

(n = 4, nE = 7) 

 

70.0 (69 – 71)  

(n = 2, nE = 2) 

80.0 – 85.0 

 

3.5 (3 – 4) 

(n = 2) 

 

Mellen 1993B,O, Brown et al. 2002E,O 

Rusty-spotted cat 

(Prionailurus rubiginosus) 

~12.0 1.0 – 1.1* Poly NS - 5.6 µ (1 – 11)  

(n = ?, nE = 50) 

- - - 68.8 µ  (64 – 71) 

(n = ?, nE = 26) 

1 – 2  

(n = 58) 

Mellen 1993B,O, Dmoch 1997R 

Asian spotted/leopard cat 

(Prionailurus bengalensis) 
8 – 12* 0.6 – 4.5* - All year round but 

peak Feb - April 
- - - - - 71.5 (70 – 73) 

(n = 3, nE = 5) 
1 – 2 

(n = 41) 
Brown et al. 1994E, Okamura et al. 2000O, Adachi et al. 2010E, 
Dehnhard et al. 2012E 

Fishing cat 

(Prionailurus viverrinus) 

15.0 

(n = 1) 

5.1 – 6.8* Poly NS 21.3µ (12 – 43)  

(n = 18, nE = 144) 

6.1 µ (4 – 8)  

(n = 19, nE = 175) 
15.2 (8 – 39) ‡ Regular 30.8µ (18 – 41) 

(n = 15, nE = 41) 

69.1 (65 – 76)  

(n = 6, nE = 7) 

1 - 4* Mellen 1993B,O, Santymire et al. 2011E, Dehnhard et al. 2012E, 

Fazio 2016E 

Flat-headed cat  

(Prionailurus planiceps) 
- 1.5 – 1.9* - - - - - - - ~56.0* 1 – 2* 

(n = 3) 
 

P
u

m
a

 

Puma/mountain lion 

(Puma concolor) 

~18.0* 22.7 – 57.0* Poly NS 19.8 (17 - 25) 

(n = 3, nE = 6) 

~23.0(RdP 2012) 

~8.0(RdP 2012) 

1.0 – 16.0* 

 

11.8 (9 – 17) ‡ - ? (45 – 50) 

(n = 2, nE = 3) 

89.3 (81 – 95)  

(n = 3, nE = 3) 

84.0 – 98.0(RdP 2012) 

1 – 6* Bonney et al. 1981E,L, Dehnhard et al. 2012E 

Jaguarondi/Eyra cat 

(Puma yagouaroundi) 

17.0 – 26.0* 3.5 – 7.0* Poly - 53.6 ± 2.4 

(n = ?, nE = 8) 

3.2 ±0.8  

(n = ?, nE = 6) 

50.4 ‡ - - 72.0 – 75.0(RdP 2012) 1 – 4* Mellen 1993B,O 

Cheetah 

(Acinonyx jubatus) 
21.0 – 24.0* 21.0 – 51.0* 

 
Poly NS 13.2µ (3 – 30) 

(n = 28, nE = 359) 
4.1µ (1 – 9) 

(n = 21, nE = 239) 
9.8 (3 – 29) ‡ Rare 52.4µ (38 – 62) 

(n = 18,nE = 18) 
~93.0 (90 – 98) 

(n = ?, nE = 260) 
3.2 (1 – 8) 
(n = 93) 

Asa et al. 1992B,V, Laurenson et al. 1992O, Brown et al. 1994W, 
Graham et al. 1995E, Brown et al. 1996E, Marker & Dickman 

2003O, Terio et al. 2003E, Borque et al. 2005E, Augustus et al. 

2006O, Bertschinger et al. 2008E,O, Adachi et al. 2011E, 
Kinoshita et al. 2011bE 

L
y

n
x
 

Iberian lynx 

(Lynx pardinus) 

24.0 – 36.0* 8.7 – 10.0* Mono Jan – Feb - 2.0 – 5.0  

(n = ?, nE = ?) 

- Occasional >2 years† 

(n = ?, nE = ?) 

~ 66.0† 

(n = 5, nE = 5) 

3.0 (2 – 4) 

(n = 16) 

Palomares et al. 2005O, Göritz et al. 2009E,U, Jewgenow et al. 

2009E, Dehnhard et al. 2012E, Jewgenow et al. 2014R 

Eurasian lynx 

(Lynx lynx) 

22.0 – 24.0* 13.0 – 21.0* Mono 

 

Jan - April - 2.0 – 10.0 

(n > 4, nE > 4) 

- Occasional >2 years† 

(n = 11, nE = 11) 

70.0 (66 – 72)† 

(n = 6, nE = 6) 

2.0 (1 – 4) 

(n = 150) 

Kvam 1991H, Henriksen et al. 2005O, Göritz et al. 2009 E,U, 

Dehnhard et al. 2012E, Jewgenow et al. 2014R, Painer et al. 

2014E,U 

Canadian lynx  

(Lynx canadensis) 
10.0 - 23.0* 5.0 – 11.8* Mono Jan – Feb - - - Occasional >2 years† 

(n = 10, nE = 10) 

(60 – 65)† 

(n = 10, nE = 10) 

1 – 8, usually 
4 - 5* 

Göritz et al. 2009 E,U, Fanson et al. 2010E, Jewgenow et al. 
2014R 

Bobcat 

(Lynx rufus) 

9.0 – 12.0* 3.6 – 15.7* Poly Jan - June ~ 44.0 

(n = ?, nE = ?) 

2.0 

(n = ?, nE = ?) 
~ 42.0 ‡ Occasional - 65.8 (62 – 70)  

(n = 36, nE = 36) 

2.5µ (1 – 7) 

(n = 185) 

Crowe 1975H, Fritts & Sealander 1978H, Parker & Smith  

1983H, Stys & Leopold 1993O, Göritz et al. 2009 E,U, Jewgenow 
et al. 2014R 
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Species 

Age of female 

sexual 

maturity 

(Months) 

BWT of 

adult female 

(kg) 

Cyclicity 

(poly/mo

no-

oestric) 

Breeding season 
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anovulatory oestrous 

cycle 

(Days) 

Duration of oestrus 

(Days) 

Interoestrus 

interval  

(Days) 

Occurrence 

of 

spontaneous 

ovulation 

 

Dioestrus 

Litter size 

(range) 
References 

 

Non-pregnant luteal 

phase 

(Days) 

 

Pregnant luteal 

phase/Gestation  

(Days) 

O
ce

lo
t 

Ocelot 

(Leopardus pardalis) 
- 6.6 – 11.3* Poly NS 

21.9µ (7 – 52)  
(n = 6, nE = 108) 

 

4.6 (1 – 6)  
(n = 7, nE = 81) 

4.6 ± 0.6(RdP 2012) 
17.3 (6 – 51) ‡ Rare 

? (28 – 40) 
(n = 2, nE = 7) 

79 (75 – 83) 
(n = 2, nE = 2) 

70.0 – 85.0(RdP 2012) 

1.2 (1 – 2) 
(n = 13)  

Moreira et al. 2001B,L,V, Laack et al. 2005O, Putranto et al. 
2006E, Dehnhard et al. 2012E 

Margay 

(Leopardus wiedii) 
- 2.3 – 3.5* Poly NS 17.6µ (11 – 25)  

(n = 2, nE = 32) 
? (1 – 6) 

(n = 2, nE = 32) 

4.0 – 10.0(RdP 2012)  

(10 – 24) ‡ Occasional 35.7µ (30 – 60)  
(n = 2, nE = 9) 

83.0 
(n = 1, nE =1) 

81.0 – 84.0(RdP 2012)  

Usually 1, 
rarely 2* 

Moreira et al. 2001 B,L,V, Dehnhard et al. 2012E, Moreira et al. 
2007E, 

Andean mountain cat 

(Leopardus jacobita) 

- 3.0 – 7.0* 

 

- - - - - - - - 1- 2*  

Pampas cat/Colocolo/Pantanal 

cat 

(Leopardus colocolo) 

- 1.7 – 3.7* - - - - - - - 80.0 – 85.0* 1 – 3*  

Geoffroy’s cat  

(Leopardus/Oncifelis geoffroyi) 
18.0 – 22.0  

(n = 3) 
2.6 – 4.9* Poly NS 5.8 (1 – 12) 

(n=11, nE=18) 

~20.0(RdP 2012) 

2.5 ± 0.5 
(n = 2, nE = 2) 

2.5±0.5(RdP 2012) 

3 mean durations  
10, 34, 60  

(n=10, nE=15) 

- - 66.0 – 72.0  
(n = 7, nE = 7) 

72.0 - 76.0(RdP 2012)  

1 – 4 
(n = 5) 

Mellen 1993B,O, Foreman 1997B Dehnhard et al. 2012E 

Güiña/Kodkod 

(Leopardus guigna) 

? 1.3 – 2.1* - - - - - - - 72.0 – 78.0* 1 – 3*  

Tigrina/Oncilla 

(Leopardus tigrinus) 

? 1.5 – 3.2* Poly NS 16.7µ (11 – 27) 

(n = 5, nE = 44) 
 

2.5 (1 – 6) 

(n = 2, nE = 23) 
3.0 - 9.0(RdP 2012) 

14.2 (10 – 26) ‡ Rare 40.5 (40 – 41) 

(n = 2, nE = 2) 

71.0 

(n = 2, nE = 2) 
73.0 – 78.0(RdP 2012) 

1 – 2* Moreira et al. 2001 B,L,V, Moreira et al. 2007E, Dehnhard et al. 

2012E 

C
a

ra
ca

l 

Caracal  

(Caracal caracal) 

7 – 10 6.2 – 15.9* Poly NS but peak 

season is 
Aug - Jan 

(SH) 

18.9µ (~10 – 54) 

(n =18, nE = 24) 

4.5µ (3 – 6) 

(n = 21, nE = 21) 
15.3 (~13 – 51) ‡ - 47.5 (47 – 48)  

(n = ?, nE = 2) 

78.8µ (78 – 81) 

(n = 6, nE =6) 

2.2 (1 – 4) 

(n =15) 

Bernard & Stuart 1987B,H,O, Mellen 1993B,O, Graham et al. 

1995E, Dehnhard et al. 2012E 

African golden cat 

(Profelis/Caracal aurata) 

~11* 5.3 – 8.2* - 

 

- 

 

- - - - - 75.0 

(n = 1, nE =1) 

1 – 2* Bahaa‐el‐din et al. 2015R 

Serval 

(Leptailurus/Caracal serval) 

15 – 16 6.0 – 12.5* - - - 4.0  

(n = 1, nE = 1) 

- - - 78.0  

(n = 1, nE = 1) 

65.0 – 75.0* 

2.5 (1 – 6)* Mellen 1993B,O, Dehnhard et al. 2012E 

B
a

y
 C

a
t 

Bay cat 

(Pardofelis/Catopuma badia) 
- ~2.0* - - - - - - - - -  

Timminck’s/Asiatic golden cat 

(Pardofelis temminckii) 

18.0 – 24.0* ~8.5* Poly NS 39.0 

(n = 1, nE = 1) 

6.0 

(n = 1, nE = 2) 
33.0‡ - - 84.0 

(n = 1, nE = 1) 
78.0 – 80* 

1 – 3* Mellen 1993B,O, Lueders et al. 2014E 

Marbled cat 

(Pardofelis marmorata) 
21.0 -22.0* 2.5 – 5.0* - - - - - - - 66.0 – 82.0* 2.0 (1-3)* 

(n = 3) 
 

P
a

n
th

er
a
 

Lion  

(Panthera leo) 

30.0 – 36.0* 110.0 – 

168.0* 

Poly NS 17.9µ (8 – 56)  

(n = 27, nE = 76) 

 

3.2 µ (1 – 9) 

(n = 46, nE >167) 
14.7 (7 – 55) ‡ 

 

Occasional 46.3µ (14 – 55) 

(n = 16, nE =33) 

 

112.7µ (102 – 120) 

(n = 17, nE = 31) 

 

1.6 (1 – 4) 

(n = 20) 

Schmidt et al. 1979E,V, Schramm et al. 1994E, Graham et al. 

1995E, Tefera 2003B,O, Haas et al. 2005R, Umapathy et al. 

2007E, Putman et al. 2015E 

Jaguar  

(Panthera onca) 

24.0 – 30.0* 36.0 – 100.0* Poly April – Sept. 

(Eq.)  

Though oestrus 
observed year-

round 

55.9 µ (31 – 76)  

(n = 2, nE = 11) 

47.2 ± 5.4(RdP 2012) 
 

6.5 ± 0.3 

(n = 7, nE =194) 

12.0 (7 – 15) 
(n = 1, nE = 7) 

12.0 ± 1.0(RdP 2012) 

43.9 (24 – 69) ‡ Occasional 29.6 (14-67)(spontaneous) 

(n = 5 , nE = 8) 

24.4 (20-33)(induced) 

(n = 2 , nE = 3) 

98.0 ± 0.0 

(n = 2, nE = 2) 

90.0 – 111.0(RdP 2012) 

2.0 (1 – 4)* Wildt et al. 1979B,L, Putranto et al. 2006E, Barnes et al. 2016E, 

Gonzalez et al. 2017E 

 

Leopard  

(Panthera pardus) 

24.0 – 28.0* 17.0 – 42.0* 

 

Poly NS 23.8 (7 – 42)  

(n = 3, nE = 33) 

5.0 (4 – 7IQ)  

(n = 7, nE = 156) 

20 (11 – 30) 

(n = 7, nE = 110) 

Occasional 42.6µ (~34 – 56) 

(n = 6, nE = 10) 

96.9µ (95 – 105IQ) 

(n = 4, nE = 8) 

1.9µ (1 – 3)    

(n = 145) 

Schmidt et al. 1988E, van Dorsser et al. 2007E, Dehnhard et al. 

2012E, Balme et al. 2013R 

Tigers 

(Panthera tigris) 

~36.0* 75.0 – 177.0* Poly Feb - June 

(NH) 

24.5µ (6 – 148) 

(n = 31, nE = 98) 

4.3µ (2.5 – 10) 

(n = 18 , nE = 33) 
17.5 (1 – 145) ‡ 

 

Rare 34.5 ±0.57 

(n = 4, nE = 4) 

108.1 (98 – ~112) 

(n = 75, nE = 133) 

2.6 (1 – 5) 

(n = 751) 

Seal et al. 1985E, Kerley et al. 2003O, Graham et al. 2006E,L, 

Putranto et al. 2006E, Putranto et al. 2007E, Dehnhard et al. 

2012E, Groot 2013, Singh et al. 2013O, Saunders et al. 2014, 
Singh et al. 2014O, Gu et al. 2016O 

Snow leopard 

(Panthera uncia) 

25.0 – 96.0 

(n = 41) 

21.0 – 53.0* Poly Dec - April 

(NH) 

14.3µ (5 – 42) 

(n = 15, nE = 159) 

4.3 (1 – 19)  

(n = 11, nE = 145) 
19.2 (6 – 41) ‡ Rare 47.8 (11 – 72)  

(n = 12, nE = 16) 

93.4 (50 – 127) 

(n = ?, nE = 67) 

 

1 – 4  

(n = 203) 

Blomqvist & Sten 1982O, Schmidt et al. 1993B,E, Brown et al. 

1994E, Graham et al. 1995E, Kinoshita et al. 2011aE, Reichert-

Stewart et al. 2014B,E 

Clouded leopards  

(Neofelis nebulosa) 

21.8 (17 – 28)  

(n = 28) 

10.0 – 11.5* Poly Nov - July 

(Eq.) 

28.0 (10 – 55) 

(n = 42, nE = 107) 

5.2 (1 – 17) 

(n = 42, nE = 237) 
22.8 (1 – 54) ‡ Regular 47.5 (35 – 58) 

(n = ? , nE = 21) 

93.0 (85 – 121) 

(n = 23, nE = 63) 

2.5 (1 – 5)* Yamada & Durrant 1989O, Brown et al. 1994E, Brown et al. 

1995E 
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Appendix 1c: Andrews et al. (2019) Supplement 3 (S3) – Data on the ejaculate characteristics of felids  

 A summary of the existing literature (93 publications) on the ejaculate traits of the 38 extant felid species. The felid lineages and associated species are based on Johnson et al. (2006). All values are presented as a mean ± SEM unless 

indicated as a weighted mean (µ), average of mean values (AV.µ), mean and range (MR), or median and interquartile range (MIQ). The male felids used in each of the studies cited are described as either captive (C), wild (W), wild bred 

but captive (WB,C), or privately owned (P). Males are also categorised according to sperm quality (normospermic (N) or teratospermic (T)), genetic diversity (low genetic diversity (LGD) or high genetic diversity (HGD)), or based on 

age. The majority of ejaculates were collected by electroejaculation, with artificial vagina (AV), epididymal sperm from castrated testis (EP), urethral catheterisation (UC) also used. These methods are described in detail in Appendix S4, 

which also describes the assessment of ejaculate and sperm characteristics. A progressive motility (PM) is a measure of the type of movement exhibited by spermatozoa: (0) no movement, (1) poor lateral movement with minimal linear 

movement, (2) moderate lateral movement with occasional linear movement, (3) slow linear movement, (4) linear movement, and (5) rapid linear movement. The percentage of motile sperm and PM was used to calculate the sperm 

motility index (SMI): B SMI = (% motile sperm + (20* progressive motility))/2. Many publications did not report a SMI, thus many of SMIs reported in the table were calculated from reported mean percentage of motile sperm and PM 

score. Calculated SMI’s are indicated by †. Similarly, some of the sperm concentrations in the table below have been calculated from mean total number of sperm in the ejaculates assessed and the ejaculate volume; these values are 

indicated by ‡. Primary morphological abnormalities (1º abnorm.) included abnormal mid-piece, acrosomal defects, macro- or micro-cephalic, mitochondrial sheath aplasia, polycephalic, polyflagellate, and tightly coiled flagellum. 

Secondary morphological abnormalities (2º abnorm.) included bent mid-piece with or without cytoplasmic droplet, bent flagellum with proximal and distal cytoplasmic droplets, bent flagellum without cytoplasmic droplet, detached head, 

detached flagellum, and spermatids. Other abbreviations used include breeding season (BS), review article (R) and testosterone (T). 
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- 

- 
- 

- 

- 

- 

- 

- 
- 

- 

- 
- 

~4.0 

- 
- 

- 

- 
9.1 

21.0 

- 
6.7 ± 0.9 

13.5 ± 1.8 

- 
- 

- 

- 

- 
23.3 

25.9 

57.2 
- 

- 

- 
- 

- 

- 
- 

- 

- 

- 

- 

- 
- 

- 

- 
- 

~30.1 

- 
- 

- 

- 
28.0 

52.0 

- 
19.0 ± 1.8 

43.4 ± 2.4 

- 
- 

- 

- 

Sojka et al. 1970 
Wildt et al. 1983 

Howard et al. 1990  

Howard et al. 1990 
Goodrowe & Hay 1993 

Long et al. 1996 

Long et al. 1996 
Axnér & Linde-Forsberg 2002R 

Axnér & Linde-Forsberg 2002R 

Pukazhenthi et al. 2000bR 

Pukazhenthi et al. 2000bR 

Pukazhenthi et al. 2000a 

Pukazhenthi et al. 2000a 

Pukazhenthi et al. 2002 

Pukazhenthi et al. 2002 

Penfold et al. 2003 
Penfold et al. 2003 

Neubauer et al. 2004 

Neubauer et al. 2004 
Neubauer et al. 2004 

Axner & Linde Forsberg 2007 

Chatdarong et al. 2007 
Zambelli et al. 2008 

Zambelli et al. 2008 

Gañán et al. 2009a 
Terrell et al. 2010 

Terrell et al. 2010 

Lambo et al. 2012 
Müller et al. 2012 

Müller et al. 2012 

Vick et al. 2012 
Cunto et al. 2015 

Gutiérrez-Reinoso & García-Herreros 2016  

Gutiérrez-Reinoso & García-Herreros 2016 

European wild cat 

(Felis silvestris) 

- - - - - - - - - - - - - - - - 

 

African wild cat 

(Felis libyca) 

- - - - - - - - - - - - - - - - 

Chinese mountain cat 

(Felis bieti) 

- - - - - - - - - - - - - - - - 

Desert/Sand cat 

(Felis margarita) 
8C 

5C 

23 

18 

NS 
- 

8.8 ± 0.04 
- 

1.6 ± 0.1 
- 

0.20 ± 0.02 
- 

209.8 ± 38.3 
- 

- 
- 

78.3 ± 1.3 
78.6 ± 1.6 

3.4 ± 0.1 
3.4 ± 0.1 

72.8 ± 1.2 
73.5 ± 1.5 

92.9 ± 1.0 
94.0 ± 1.0 

59.6 ± 3.1 
60.0 ± 3.3 

- 
- 

- 
- 

Herrick et al. 2010a 
Herrick et al. 2010b 

Black-footed cat 

(Felis nigripes) 

5C 

3C 

18 

12 

NS 

- 

8.8 ± 0.06 

- 

1.8 ± 0.1 

- 

0.25 ± 0.01 

- 

130.4 ± 23.6 

- 

- 

- 

82.5 ± 1.9 

85.0 ± 1.2 

3.6 ± 0.1 

3.8 ± 0.1 

77.6 ± 2.0 

80.4 ± 1.0 

90.5 ± 1.9 

94.0 ± 0.8 

53.3 ± 3.0 

52.8 ± 4.4 

- 

- 

- 

- 

Herrick et al. 2010a 

Herrick et al. 2010b 

Jungle cat 

(Felis chaus) 
5C 5UC - 7.1 ± 0.05 - 0.07 ± 0.01 75.1 ± 7.6 60.7 ± 2.3 77.1 ± 6.3 3.08 ± 0.3 69.4 † - 26.2 ± 2.7 

  
- - Kheirkhah et al. 2017 
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L
in

ea
g

e 

Species 
No. 

males 

No. 

ejacul-

ates 

Season/time 

of year 
pH 

Testicular 

volume 

(cm3) 

Ejaculate 

volume (ml) 

Sperm 

concentration 

(x 106/ml) 

Vitality Or 

membrane 

integrity 

(%) 

Sperm motility Acrosome 

intactness  

(%) 

Morphologically abnormal sperm 

Reference 
% of motile 

sperm 

PM scoreA  

(0 – 5) 
SMIB Total (%) 

1º  abnorm 

(%) 

2º  abnorm 

(%) 

L
eo

p
a
r
d

 C
a

t 

Pallas’ cat 

(Otocolobus manul) 

1C 

1C 
4C 

3C 

4C 

3C 

4C 

5 

5 

16 

3 

4 

3 

4 

Dec-April(BS) 

June-Oct 
- 

Dec 

Feb (^[T]) 
April 

June  

- 

- 
- 

- 

- 
- 

- 

2.0 ± 0.2 

1.6 ± 0.1 
- 

2.0  ± 0.2 

2.0 ± 0.1 
2.5 ± 0.3 

2.5 ± 0.3 

0.2 ± 0.01 

0.2 ± 0.01 
0.07 ± 0.02 

0.05 ± 0.02 

0.10 ± 0.02 
0.16 ± 0.04 

0.07 ± 0.01 

123.0 ± 16.7 

3.8 ± 1.8 
4.0 ‡  

2.3 ± 2.3 

29.0 ± 18.3 
51.3 ± 35.5 

1.5 ± 0.6 

- 

- 
- 

- 

- 
- 

- 

- 

- 
- 

- 

- 
- 

- 

- 

- 
- 

- 

- 
- 

- 

78.5 ± 2.7 

64.0 ± 1.9 
71.6 ± 1.4 

- 

  64.2 ± 12.7 
70.8 ± 3.2 

57.5 ± 1.8 

- 

- 
94.8 ± 1.0 

- 

- 
- 

- 

36.6 ± 2.0 

73.4 ± 4.9 
- 

68.7 ± 6.8 

52.3 ± 8.6 
48.0 ± 9.5 

75.2 ± 4.3 

- 

- 
- 

- 

- 
- 

- 

- 

- 
- 

- 

- 
- 

- 

Swanson et al. 1996b 

Swanson et al. 1996b 
Swanson et al. 2006 

Newell-Fugate et al. 2007 

Newell-Fugate et al. 2007 
Newell-Fugate et al. 2007 

Newell-Fugate et al. 2007 

Rusty-spotted cat 

(Prionailurus rubiginosus) 
- - - - - - - - - - - - - - - - 

Asian spotted/leopard cat 

(Prionailurus bengalensis) 

4C 

? 

4C 

12C 

2C 

24 

43 

4 
12 

2 

- 

- 

- 
- 

Nov-Jan 

- 

- 

- 
- 

- 

- 

- 

- 
1.9 ± 0.6 

- 

0.15 ± 0.02 

0.29 ± 0.1 

0.5 ± 0.1 
0.13 ± 0.02 

- 

37.0 ± 5.4 

55.6 ± 7.7 

53.0 ± 5.8  
151.9 ± 34.4 

- 

- 

- 

- 
70.0 ± 3.5 

72.1 ± 2.1 

73.8 ± 2.6 

68.4 ± 2.9 

77.5 ± 2.1 
73.3 ± 4.7 

50.0 ± 15.0 

3.5 ± 0.1 

3.6 ± 0.1 

- 
- 

- 

72.3 ± 2.4 

70.2 † 

- 
- 

- 

- 

95.7 ± 0.8 

- 
- 

- 

34.6 ± 2.0 

31.2 ± 4.1 

23.6 ± 2.1 
~80.4 ± 3.3 

3.2(n = 1) 

4.2 

- 

- 
- 

- 

30.4 

- 

- 
- 

- 

Howard & Wildt 1990 

Pukazhenthi et al. 2000bR 

Pukazhenthi et al. 2000a 
Thongphakdee et al. 2011 

Tajima et al. 2016 

Fishing cat 

(Prionailurus viverrinus) 
8C 

5C 

8 

5 

- 
- 

8.5 ± 0.2 
- 

5.5 ± 0.5 
- 

0.5 ± 0.1 
- 

108.0 ± 29.0 
- 

- 
- 

73.0 ± 3.0 
90.0 ± 2.7 

4.0 ± 0.2 
- 

77.0 ± 3.0 
- 

90.0 ± 2.0 
- 

66.5 ± 6.8 
10.4 ± 2.7 

~41.9 
- 

~24.8 
- 

Thiangtum et al. 2006 
Pinyopummin et al. 2011 

Flat-headed cat  

(Prionailurus planiceps) 

4C 8 - 8.0 - 0.1 ± 0.02 56.7 ± 6.6 48.7 ± 5.4 56.3 ± 6.7 3.1 ± 0.1 59.2 † 30.5 ± 2.5 >60 ~47.1 ~26.2 Thuwanut et al. 2011 

P
u

m
a
 

Puma/mountain lion 

(Puma concolor) 

7C 

3C 
- 

30C 

31W 

16W (LGD) 

?C 

?(LGD) 

7 

3 

12 

30 

31 

16 

9 

39 

- 

- 
- 

- 

- 
- 

- 

- 

- 

- 
- 

- 

- 
- 

- 

- 

19.0 ± 0.8 

- 
- 

~21.3µ 

- 
9.6 ± 1.2 

- 

- 

3.4 ± 0.6 

1.1 ± 0.4 
2.8 ± 0.5 

2.9 ± 0.3 

~2.5µ 
0.7 ± 0.1 

3.3 ± 0.6 

1.6 ± 0.2 

22.0 ± 7.3 

10.8 ± 8.2 
20.2 ± 4.7 

21.5 ± 3.2 

~17.7µ 
4.8 ± 1.4 

37.9 ± 10.4 

9.3 ± 1.9 

- 

- 
- 

- 

- 
- 

- 

- 

64.3 ± 6.6 

43.3 ± 3.3 
52.0 ± 8.0 

53.0 ± 3.7 

~66.8µ 
38.2 ± 6.7 

65.5 ± 2.9 

50.3 ± 4.0 

3.6 ± 0.2 

2.7 ± 0.2 
3.5 ± 0.2 

3.2 ± 0.1 

~3.2µ 
2.3 ± 0.3 

3.6 ± 0.2 

2.7 ± 0.2 

68.2 † 

48.7 † 
61.0 † 

58.5 † 

65.4 † 
42.1 † 

68.8 † 

52.2 † 

98.6 ± 1.2 

~ 96.0 
- 

- 

- 
- 

- 

63.5 ± 2.2 

73.5 ± 4.9 

93.0 ± 5.5 
76.6 ± 3.7 

83.5 ± 1.9 

~73.2 
93.5 ± 0.7 

- 

91.4 ± 1.1 

21.7 

63.2 
- 

- 

- 
- 

- 

- 

51.8 

30.7 
- 

- 

- 
- 

- 

- 

Wildt et al. 1988 

Miller et al. 1990 
Howard 1993 

Barone et al. 1994a 

Barone et al. 1994a 
Barone et al. 1994a 

Barone et al. 1994b 

Pukazhenthi et al. 2000bR 

Jaguarondi 

(Puma yagouaroundi) 
- 
- 

3 

21 

   0.1 ± 0.1 
0.08 ± 0.02 

12.5 ± 9.4 
7.2 ± 4.0 

- 
- 

50.0 ± 9.9 
57.8 ± 2.5 

3.5 ± 0.4 
- 

60.0 † 
- 

- 
- 

64.6 ± 14.3 
74.3 ± 4.6 

- 
- 

- 
- 

Howard 1993 
Morais 2001R 

Cheetah 

(Acinonyx jubatus) 

18C 

20C 

8W 

11C 

9C 

5C 

12C 

60C 

13WB,C 

97 WB,C 

?C 

8WB,C 

22C 

?C(on exhibit) 

?C(off exhibit) 

43C 

54W 

40 

29 

8 

15 

9 

5 

22 

60 

23 

200 

160 

21 

22 

124 

58 

43 

54 

- 

- 

- 
- 

- 
- 

- 

- 
- 

NS 

- 
- 

- 

NS 
NS 

- 

- 

- 

- 

- 
- 

- 
- 

- 

- 
- 

- 

6.4 - 8.0 
- 

- 

- 
- 

- 

- 

- 

- 

- 
- 

- 
- 

- 

13.9 ± 0.4 
9.2 ± 0.4 

10.2 ± 0.3 

- 
11.1 ± 0.7 

- 

13.4µ 
13.1µ 

12.5 ±  0.4 

13.4 ± 0.5 

~1.8(n = 15) 

1.8 ± 0.3 

- 
1.8 ± 0.3 

1.1 ± 0.2 
1.6 ± 0.3 

- 

1.5 ± 0.1 
3.7 ± 0.4 

2.1 ± 0.1 

0.7 ± 0.04 
3.3 ± 0.2 

2.0 ± 0.1 

1.5µ 
1.4µ 

- 

- 

14.5 ± 1.8 

27.3 ± 8.6 

26.7 ± 5.8 
27.3 ± 8.6 

40.6 ± 21.1 
13.5 ± 2.5 

11.0 ± 2.2 

29.3 ± 5.3 
20.4 ± 3.1 

21.9 ± 1.7 

32.7 ± 2.9 
36.0 ± 4.9 

50.0 ± 34.0 

63.8 ± 16.2(n = 8) 

19.3 ± 7.6(n = 15) 

- 

- 

- 

- 

- 
- 

- 
- 

 

- 
- 

- 

65.2 ± 1.5 
- 

- 

- 
- 

- 

- 

54.0 ± 3.0 

70.7 ± 3.5 

63.1 ± 3.9 
69.0 ± 5.8 

74.4 ± 3.6 
75.0 ± 2.6 

42.7 ± 6.7 

67.0 ± 2.0 
78.0 ± 1.4 

69.0 ± 1.1 

58.1 ± 1.5 
70.7 ± 1.4 

- 

66.8µ 
69.8µ 

- 

- 

- 

3.6 ± 0.1 

3.8 ± 0.2 
3.7 ± 0.2 

3.8 ± 0.2 
4.0 ± 0.1 

2.4 ± 0.3(n =21) 

3.6 ± 0.1 
3.7 ± 0.1 

3.3 ± 0.1 

- 
3.4 ± 0.1 

- 

3.2 ± 0.1 
3.2 ± 0.1 

- 

- 

- 

71.4 † 

69.6 † 
71.5 † 

75.1 ± 3.7 
77.5 † 

45.4 † 

69.5 † 
76.0 †  

67.5 † 

- 
70.7 ± 1.4 

69.0 ± 1.0 

65.4 † 
66.9 † 

67.0 ± 1.3 

68.0 ± 1.2 

- 

96.3 ± 1.0 

98.3 ± 0.5 
98.4 ± 0.5 

97.0 ± 0.8  
94.5 ± 1.5 

- 

- 
86.3 ± 1.6 

73.9 ± 1.4 

- 
86.6 ± 1.3 

92.0 ± 2.0 

79.2 ± 4.0(n = 8) 

81.7 ± 2.4(n = 15) 

- 

- 

71.0 ± 3.7 

70.6 ± 3.3 

75.9 ± 4.4 
64.6 ± 4.9 

71.6 ± 4.9 
74.8 ± 3.9 

66.8 ± 3.7(n =18) 

78.7 ± 2.0 
78.3 ± 2.4 

81.6 ± 0.8 

59.7 ± 1.4 
80.1 ± 2.1 

76.0 ± 3.0 

79.1µ 
75.8µ 

75.0 ± 2.0 

81.0 ± 1.0 

~27.4 

33.2 

39.0 
27.5 

24.1 ± 4.1 
30.5 ± 5.8 

- 

- 
27.5 

38.0 

- 
- 

~26.4 

~34.8(n = 8) 

~36.3(n = 15) 

- 

- 

~43.6 

37.3 

37.0 
~ 36.6 

47.5 ± 2.9 
46.0 ± 6.5 

- 

- 
50.0 

~ 53.8 

- 
- 

~42.1 

~33.1(n = 8) 
~43.1(n = 15) 

- 

- 

Wildt et al. 1983 

Wildt et al. 1987b 

Wildt et al. 1987b  
Widlt et al. 1988  

Donoghue et al. 1992b 
Howard et al. 1992 

Lindburg et al. 1993 

Wildt et al. 1993 
Crosier et al. 2006 

Crosier et al. 2007 

Bertschinger et al. 2008  
Crosier et al. 2009 

Terrell et al. 2010 

Koester et al. 2015 
Koester et al. 2015 

Terrell et al. 2016 

Terrell et al. 2016 

L
y

n
x
 

Iberian lynx 

(Lynx pardinus) 
5C 

4W 

9C 

3C 

3C 

5 

4 

9 

3 

3 

Nov-Dec 
Nov-Dec 

Nov-Dec 

Nov-Dec 
Feb–April(BS)  

8.0 ± 0.01 
7.4 ± 0.26 

7.8 ± 0.12 

8.0 ± 0.15 
7.7 ± 0.21 

- 
- 

- 

- 
- 

0.48 ± 0.06 
0.47 ± 0.08 

0.34 ± 0.04 

0.45 ± 0.07 
0.66 ± 0.18  

7.6 ± 2.2 
10.1 ± 4.1 

20.5 ± 6.0 

8.1 ± 3.9 
20.7 ± 7.4 

- 
- 

- 

- 
- 

73.5 ± 4.6 
58.3 ± 6.3 

85.6 ± 2.3 

76.7 ± 6.7 
62.1 ± 14.3 

3.1 ± 0.1 
2.7 ± 0.32 

3.3 ± 0.11 

3.1 ± 0.11 
2.8 ± 0.12 

67.3 ± 2.7 
55.8 ± 5.8 

75.7 ± 2.0 

69.1 ± 4.4 
59.4 ± 8.2 

40.7 ± 2.3 
49.9 ± 9.5 

68.8 ± 4.4 

40.1 ± 3.5 
33.1 ± 1.2 

76.3 ± 4.0 
74.1 ± 6.0 

67.0 ± 4.3 

78.3 ± 3.3  
79.9 ± 1.8 

- 
- 

- 

- 
- 

- 
- 

- 

- 
- 

Gañán et al. 2009b 
Gañán et al. 2010 

Gañán et al. 2010 

Gañán et al. 2010 
Gañán et al. 2010 

 

Eurasian lynx 

(Lynx lynx) 

4C 

3C 

4C 

3C 

3C 

3C 

3C 

3C 

3C 

3C 

4 

3 

4 

3 

6 

3 

6 

6 

6 

6 

March (BS) 

June 
November 

March (BS) 

April – June 

November 

Feb–April(BS) 

May-July 
Aug-Oct 

Nov-Jan 

- 

- 
- 

- 

- 

- 

- 

- 
- 

- 

3.0 ± 0.8 

2.3 ± 0.7 
2.6 ± 0.6 

2.8  ± 0.8 

- 

1.5 ± 0.2 

6.2 ± 0.1 

5.4 ± 0.09 
4.5 ± 0.09 

6.3 ± 0.2 

0.28 ± 0.07 

0.02 ± 0.01 
0.06 ± 0.03 

0.30 ± 0.05 

0.02 ± 0.01 

0.13 ± 0.02 

0.04 ± 0.01 

0.01 ± 0.001 
0.02 ± 0.002 

0.06 ± 0.002 

7.6 ± 3.6 

217.8 ±  164.0 
33.8 ± 16.8 

8.7 ± 4.8 

45.4 ± 19.5 

37.5 ± 27.5 

40.2 ± 19.1(mln/ml) 

490.8 ± 177.7(mln/ml) 

- 

- 

- 

- 
- 

- 

- 

- 

- 

- 
- 

- 

57.5 ± 21.4 

50.0 ± 10.0 
30.0 ± 25.0 

60.0 ± 30.0 

36.3 ± 11.4 

30.0 ± 25.0 

29.1 ± 3.0 

11.9 ± 2.7 
3.8 ± 1.0 

21.0 ± 1.1  

- 

- 
- 

- 

- 

- 

- 

- 
- 

- 

- 

- 
- 

- 

- 

- 

- 

- 
- 

- 

- 

- 
- 

- 

- 

- 

- 

- 
- 

- 

74.2 ± 10.3 

98.2 ± 0.3  
94.3 ± 3.7 

83.2 ± 7.2 

95.6 ± 1.8 

92.5 ± 5.5 

63.2 ± 1.1 

68.4 ± 1.4 
76.7 ± 1.3 

72.0 ± 0.6 

- 

- 
- 

- 

- 

- 

- 

- 
- 

- 

- 

- 
- 

- 

- 

- 

- 

- 
- 

- 

Jewgenow et al. 2006  

Jewgenow et al. 2006  
Jewgenow et al. 2006  

Göritz et al. 2006 

Göritz et al. 2006  

Göritz et al. 2006 

Erofeeva et al. 2014 

Erofeeva et al. 2014 
Erofeeva et al. 2014 

Erofeeva et al. 2014 

Canadian lynx  

(Lynx canadensis) 
- - -  - - - - - - - - - - - - 

Bobcat 

(Lynx rufus) 

4C 

4C 

4 

9 

April(BS) 

November 

8.0 ± 0.2 

7.7  ± 0.1 

- 

- 

0.35 ± 0.08 

0.36 ± 0.3 

60.6 ± 12.4 

10.8 ± 2.9 

- 

- 

67.9 ± 14.1 

50.5 ± 5.3 

3.3 ± 0.5 

2.5 ± 0.2 

67.0 ± 10.5 

49.8 ± 4.4 

33.6 ± 4.2 

48.0 ± 4.2 

78.2 ± 1.6 

88.4 ± 1.9 

- 

- 

- 

- 

Gañán et al. 2009c  

 Gañán et al. 2009c 
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L
in

ea
g

e 

Species 
No. 

males 

No. 

ejacul-

ates 

Season/time 

of year 
pH 

Testicular 

volume 

(cm3) 

Ejaculate 

volume (ml) 

Sperm 

concentration 

(x 106/ml) 

Vitality Or 

membrane 

integrity 

(%) 

Sperm motility Acrosome 

intactness  

(%) 

Morphologically abnormal sperm 

Reference 
% of motile 

sperm 

PM scoreA  

(0 – 5) 
SMIB Total (%) 

1º  abnorm 

(%) 

2º  abnorm 

(%) 

O
ce

lo
t 

Ocelot 

(Leopardus pardalis) 

? 

2C 

- 

3C 

3C 

10C 

3C 

5 

3 

42 

42 

7 

10 

8 

- 

- 
- 

- 

- 
- 

- 

- 

- 
 

7.5 ± 0.1 

- 
7.9µ  

- 

- 

- 
 

32.0 ± 1.3 

- 
55.6µ 

- 

0.3 ± 0.1 

1.8 ± 1.5 
0.6 ± 0.1 

1.4 ± 0.1 

0.7 ± 0.1 
1.0µ 

- 

28.0 ± 17.0 

187.0 ± 143.5 
53.8 ± 17.8 

101.2 ± 10.6 

190.2 ± 73.2 
129.4µ 

- 

- 

- 
- 

- 

- 
- 

48.9 ± 5.5 

72.0 ± 12.5 

85.0 ± 2.9 
70.4 ± 2.3 

81.4 ± 1.2 

81.0 ± 3.2 
77.1µ 

85.0 ± 2.3 

4.0 ± 0.5 

4.0 ± 2.9 
- 

3.7 ± 0.1 

3.7 ± 0.2 
3.1µ 

4.3 ± 0.1 

76.0 † 

82.5 † 
- 

77.5 ± 1.3 

76.0 ± 8.5 
69.6 † 

85.5 † 

- 

- 
- 

99.2 ± 0.2 

94.0 ± 0.7 
- 

99.4 

19.2 ± 0.9 

32.3 ± 8.8 
41.6 ± 5.8 

17.6 ± 1.2 

22.0 ± 02.7 
32.9µ 

52.5 ± 4.9 

- 

- 
- 

4.0 ± 0.4 

4.3 ± 0.7 
- 

14.4 ± 2.4 

- 

- 
- 

12.7 ± 1.1 

18.7 ± 0.7 
- 

38.1 ± 3.0 

Howard 1993 R 

Swanson et al. 1996a 
Morais 2001R 

Morais et al. 2002 

Baudi et al. 2008 
Stoops et al. 2007 

de Araujo et al. 2015 

Margay 

(Leopardus wiedii) 
- 
- 

3C 

11 

27 

41 

- 
- 

- 

- 
- 

8.3 ± 0.1 

- 
- 

6.2 ± 0.2 

0.2 ± 0.1 
0.3 ± 0.05 

0.5 ± 0.01 

79.9 ± 28.1 
14.2 ± 5.3 

75.6 ± 11.0 

- 
- 

- 

86.0 ± 3.3 
62.8 ± 5.3 

73.5 ± 1.3 

4.6 ± 0.2 
- 

3.4 ± 0.1 

89.0 
- 

70.5 ± 1.3 

- 
- 

95.0 ± 0.9 

51.5 ± 6.0 
60.5 ± 4.6 

42.6 ± 2.8 

- 
- 

15.8 ± 1.5 

- 
- 

26.8 ± 2.0 

Howard 1993 R 
Morais 2001R 

Morais et al. 2002 R 

Andean mountain cat 

(Leopardus jacobita) 

- - -  - - - - - - - - - - - - 

Pampas cat/ 

Colocolo/Pantanal cat 

(Leopardus colocolo) 

- 
- 

5 

2 

- 
- 

- 
- 

- 
- 

0.3 ± 0.1 
0.08 ± 0.01 

10.8 ± 5.7 
364.0 ± 326.0 

- 
- 

36.7 ± 6.6 
81.3 ± 6.3 

2.8 ± 0.2 
- 

26.4 † 
- 

- 
- 

34.1 ± 23.8 
43.5 ± 0.5 

- 
- 

- 
- 

Howard 1993 R 
Morais 2001R 

Geoffroy’s cat  

(Leopardus/Oncifelis 

geoffroyi) 

- 

- 

8 

24 

- 

- 

- 

- 

- 

- 

0.2 ± 0.1 

0.2 ± 0.03 

300.0 ± 233.2 

66.5 ± 24.4 

- 

- 

73.0 ± 4.4 

64.0 ± 4.7 

4.0 ± 0.3 

- 

76.5 † 

- 

- 

- 

71.0 ± 11.5 

53.1 ± 5.0 

- 

- 

- 

- 

Howard 1993R 

Morais 2001R 

Güiña/Kodkod 

(Leopardus guigna) 
- - -  - - - - - - - - - - - - 

Tigrina/Oncilla 

(Leopardus tigrinus) 

- 

4C 

4C 

1C 

18 

52 

4 

3 

- 

- 

- 
- 

- 

7.6 ± 0.1 

- 
- 

- 

4.2 ± 0.2 

- 
- 

0.1 ± 0.02 

0.3 ± 0.1 

0.4 ± 0.1 
- 

78.5 ± 33.8 

411.9 ± 46.3 

242.8 ± 85.2 
- 

- 

- 

- 
71.7 ± 4.2 

62.1 ± 5.7 

71.4 ± 2.3 

78.9 ± 1.5 
80.0 ± 0.0 

- 

3.8 ± 0.1 

3.9 ± 0.1 
4.3 ± 0.3 

- 

74.1 ± 1.8 

80.0 ± 2.0 
83.0 †  

- 

97.5 ± 0.3 

91.0 ± 5.0 
93.4 

64.4 ± 6.0 

40.8 ± 3.5 

23.2 ± 0.9 
19.0 ± 1.5 

- 

8.6 ± 1.6 

5.9 ± 0.7 
5.6 ± 1.8 

- 

32.2 ± 2.9 

17.3 ± 6.5 
13.3 ±  1.4 

Morais 2001 

Morais et al. 2002 

Baudi et al. 2008 
de Araujo et al. 2015 

C
a

ra
ca

l 

Caracal  

(Caracal caracal) 

2C 2 - - - 0.24 ± 0.04 122.0 ± 114.0 85.5 ± 2.5  - - - - 12.0 ± 7.0 - - De Schepper 2016 

African golden cat 

(Profelis/Caracal aurata) 
- - -  - - - - - - - - - - - - 

Serval 

(Leptailurus/Caracal 

serval) 

5C 5 - - - 0.43 ± 0.1 236.0 ± 55.0 - 73.0 ± 1.8 3.7 ± 0.2 73.5 †  93.6 ± 1.4 36.4 ± 1.4 - - Pukazhenthi et al. 2002 

B
a
y

 C
a

t 

Bay cat 

(Pardofelis/Catopuma 

badia) 

- - - - - - - - - - - - - - - - 

Timminck’s/Asiatic 

golden cat 

(Pardofelis temminckii) 

1C 1UC - - - 0.096 88.4 - 70.0 - - - 62.0 - - Lueders et al. 2014 

Marbled cat 

(Pardofelis marmorata) 
- - - - - - - - - - - - - - - - 

P
a

n
th

e
ra

  

Lion  

(Panthera leo) 

8C (LGD) 

8W (HGD) 

9W (LGD) 

10W (HGD) 

6W (LGD) 

7C 

7C 

16C 

8 

8 

9 

10 

6 

7 

7UC 

17 

- 

- 

- 
- 

- 

- 
- 

- 

- 

- 

- 
- 

- 

7.9 ± 0.3  
7.2 ± 0.17(n =3) 

- 

- 

- 

- 
87.8 ± 6.4  

69.8 ± 14.9 

- 
- 

- 

5.9 ± 0.7 

9.4 ± 1.4 

8.5 ± 0.8 
6.0 ± 0.9 

3.4 ± 1.2 

3.9 ± 2.4 
0.42 ± 0.11 

- 

13.3 ± 2.8 

34.4 ± 12.8 

25.8 ± 11.0 
12.3 ± 3.8 

11.8 ± 9.0 

52.1 ± 9.5 
1940.0 ± 610.9 

- 

- 

- 

- 
- 

- 

- 
66.3 ± 5.8 

- 

61.0 ± 3.7 

91.0 ± 4.2 

83.0 ± 4.6 
89.0 ± 2.1 

59.0 ± 8.0 

63.1 ± 3.8 
84.1 ± 7.7 

60.0(20-95)MR 

- 

- 

- 
4.1 ± 0.3 

2.9 ± 0.4 

- 
3.5 ± 0.4(n =3) 

1.1(0.3 – 3)MR 

- 

- 

- 
85.5 † 

58.5 † 

- 
77.1 † 

41.0 † 

96.4 ± 0.7 

98.9 ± 0.3 

90.1 ± 0.1 
99.2 ± 0.4 

97.3 ± 0.7 

- 
- 

- 

66.2 ± 3.6 

24.8 ± 4.0 

50.5 ± 6.8 
28.5 ± 4.8 

66.1 ± 7.8 

22.9 ± 3.9 
54.0 ± 17.4 

66.0 (36-89)MR 

~25.0 

~6.3 

~14.4 
~9.0 

~23.1 

~15.7 
- 

- 

~41.2 

~18.5 

~36.1 
~19.6 

~42.6 

~ 6.9 
- 

- 

Wildt et al. 1987a 

Wildt et al. 1987a 

Wildt et al. 1987a 
Brown et al. 1991 

Brown et al. 1991 

Shivaji et al. 1998 
Lueders et al. 2012 

Luther et al. 2017 

Jaguar  

(Panthera onca) 
?C 

10C 

4C 

?C 

8C 

6W 

10C 

8C 

5 

10 

28 

38 

47 

7 

10 

40 

- 
- 

NS 

- 
- 

- 

- 

- 

- 
- 

- 

- 
- 

- 

- 

- 

- 
- 

40.4µ(30-61) 

- 
41.6 ± 0.6 

52.4 ± 3.4 

44.4 ± 2.0 

51.4 ± 2.4 

2.7 ± 0.6 
7.4 ± 3.7 

8.6 ± 1.3 

5.7 ± 1.7 
8.3 ± 0.7 

4.1 ± 0.7 

6.6 ± 1.9 

5.3 ± 0.6 

12.0 ± 1.9 
6.2 ± 3.0 

3.9 ± 0.7 

13.2 ± 10.8 
8.0 ± 1.7 

35.0 ± 21.3 

6.3 ± 2.4 

13.8 ± 4.2 

- 
- 

- 

- 
- 

- 

- 

- 

82.0 ± 5.8 
 62.6 ± 11.0 

50.6 ± 5.8 

56.9 ± 9.4 
64.0 ± 2.4 

73.0 ± 6.1 

57.0 ± 4.5 

60.0 ± 7.1  

4.1 ± 0.3 
2.7 ± 0.5 

2.2 ± 0.3 

3.0 ± 0.8 
2.8 ± 0.1 

3.5 ± 0.2 

2.8 ± 0.2 

3.0 ± 0.1 

82.0 † 
58.4 † 

47.3 † 

58.5 † 
61.0 ± 2.2 

72.0 ± 5.0 

56.5 ± 4.5 

60.0 † 

- 
96.4 ± 2.0 

96.2 

- 
95.5 ± 0.4 

98.9 ± 0.4 

- 

- 

41.8 ± 11.1 
53.3 ± 5.8 

51.0 

34.3 ± 6.7 
50.0 ± 1.1 

26.5 ± 3.9 

39.2 ± 3.1 

~76.3 

- 
~35.1 

~33.3 

- 
30.0 ± 09 

10.0 ± 2.6 

- 

53.0 ± 5.1 

- 
~18.2 

~17.7 

- 
20.1 ± 0.9 

16.0 ± 2.6 

- 

23.3 ± 8.9 

Howard 1993 R 
Morato et al. 1998 

Morato et al. 1999 

Rodrigues da Paz, 2000 
Morato et al. 2001  

Morato et al. 2001 

Morato et al. 2004 

Rodrigues da Paz et al. 2006 

Leopard  

(Panthera pardus) 

4C 

8C 

?C 

8C 

8C 

?(Aged 2) 

?(Aged 3-7) 

?(Aged 8-16) 

1C 

6C 

14 

8 

11 

37 

16 

5 

29 

19 

1UC 

6EE 

- 

- 

- 
Dec-Feb 

July-Sep 

- 
- 

- 

- 
- 

- 

- 

7.4 ± 0.07 
- 

- 

- 
- 

- 

8.0 
7.7 ± 0.1 

- 

- 

- 
- 

- 

- 
- 

- 

15.9 
- 

5.1 ± 0.6 

- 

1.6 ± 1.3 

0.3 (0.2-0.5)MIQ 

0.6 (0.3-0.8)MIQ 

0.3 (0.2-0.6)MIQ 

0.4 (0.3-0.6)MIQ 

0.3 (0.1-0.6)MIQ 

0.55 
2.0 ± 0.5 

46.2 ± 9.8 

12.2µ  

55.8 ± 38.7 
81.3 (30-237)MIQ 

12.0 (2-67)MIQ 

2.1 (0.9-8.7)MIQ 

90.8 (41-237)MIQ 

33.6 (7-87)MIQ 

48.5 
84.7 ± 22.0 

- 

- 

- 
77.0 (72-89)MIQ 

69.0 (50-83)MIQ 

75.0 (55-77)MIQ 

76.0 (69-90)MIQ 

74.0 (63-80)MIQ 

- 
52.2 ± 3.8 

43.8 ± 5.7 

54.4µ 

57.1 ± 17.0 
64.0 (50-71)MIQ 

44.0 (18-58)MIQ 

50.0 (22-56)MIQ 

62.0 (47-69)MIQ 

67.0 (20-77)MIQ 

70 
61.0 ± 5.8 

3.0 ± 0.3 

3.2µ 

- 
- 

- 

- 
- 

- 

3.3 
- 

51.9 † 

59.2 † 

- 
- 

- 

- 
- 

- 

67.5 
- 

94.5 ± 2.1 

87.6 

- 
87.0 (75-91)MIQ 

72.0 (30-88)MIQ 

74.0 (30-84)MIQ 

88.0 (76-90)MIQ 

76.0 (58-89)MIQ 

- 
65.1 ± 5.8 

79.5 ± 2.0 

80.0µ 

28.1 ± 15.3 
41.0 (33-56)MIQ 

71.5  (42-83)MIQ 

71.0(56-82)MIQ 

42.0 (24-58)MIQ 

59.0 (23-68)MIQ 

32.8 
33.4 – 53.2   

~43.6 

~40.2µ 

~18.2 
~19.0 

~48.0 

~61.0 
~18.0 

~33.5 

20.8 
- 

~35.6 

~38.5µ 

~7.6 
~19.5 

~27.8 

~28.0 
~25.0 

~18.0 

12.0 
- 

Wildt et al. 1988 

Brown et al. 1989 

Jayaprakash et al. 2001 
van Dorsser & Strick 2005  

van Dorsser & Strick 2005 

van Dorsser & Strick 2005 
van Dorsser & Strick 2005  

van Dorsser & Strick 2005 

Baqir et al. 2015 
Thuwanut et al. 2017 
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L
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ea
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Species 
No. 

males 

No. 

ejacul-

ates 

Season/time 

of year 
pH 

Testicular 

volume 

(cm3) 

Ejaculate 

volume (ml) 

Sperm 

concentration 

(x 106/ml) 

Vitality Or 

membrane 

integrity 

(%) 

Sperm motility Acrosome 

intactness  

(%) 

Morphologically abnormal sperm 

Reference 
% of motile 

sperm 

PM scoreA  

(0 – 5) 
SMIB Total (%) 

1º abnorm 

(%) 

2º abnorm 

(%) 

P
a

n
th

e
ra

 

         
        

Tigers 

(Panthera tigris) 

11C 

7C 

5C 

4C 

16C 

? 
1C 

5C 

13 

11 

- 
4 

16 

32 

17 

5 

- 

- 

- 
- 

- 

- 
- 

- 

- 

- 

- 
- 

7.7 ± 0.02 

- 
7.5 ± 0.05 

- 

- 

- 

- 
- 

- 

- 
- 

- 

7.0 ± 1.3 

7.5 ± 0.8 

10.3 ± 0.6(n = 46) 

5.8 ± 0.7 

1.4 ± 0.2 

6.5 ± 0.4 
- 

1.5 ± 0.4 

31.9 ± 8.6 

17.3 ± 3.9 

57.0 ± 7.8(n = 49) 

112.0 ± 22.5 

41.1 ± 5.1 

38.8 ± 6.7 
~50.7‡ 

11.4 ± 45.3 

- 

- 

57.4 ± 2.3(n =40) 

- 

- 

- 
86.3 ± 2.7 

86.9 ± 4.1 

81.5 ± 3.7 

85.5 ± 2.1 

59.3 ± 2.3(n = 45) 

87.5 ± 1.4 

46.9 ± 3.7  

70.8 ± 3.1 
82.4 ± 2.8 

72.5 ± 1.6 

4.0 ± 0.2 

- 

- 
4.6 ± 0.1 

- 

3.5 ± 0.6 
- 

- 

80.8 † 

- 

- 
89.5 ± 1.9 

- 

70.4 † 
- 

- 

96.9 ± 1.8 

- 

- 
- 

- 

93.8 ± 0.1 
- 

- 

37.5 ± 6.9 

18.6 ± 2.0 

21.7 ± 1.7(n = 38) 

13.7 ± 3.1 

25.2 ± 2.9 

37.9 ± 2.1 
8.8 ± 0.8 

- 

~11.0 

- 

~18.2 
- 

~19.0 

- 
- 

- 

~26.8 

- 

~3.7 
- 

~3.1 

- 
- 

- 

Wildt et al. 1988 

Donoghue et al. 1990 

Byers et al. 1990 
Donoghue et al. 1992a 

Shivaji et al. 1998 

Pukazhenthi et al. 2000bR 

Fukui et al. 2013 

Kurniani Karja et al. 2016 

Snow leopard 

(Panthera uncia) 

3C 

3C 

3C 

3C 

8C 

14C 

?C 

9 

9 

9 

9 

8 

17 

? 

Dec – Feb(BS) 

Mar-May 
Jun-Aug 

Sep-Nov 

- 
- 

- 

- 

- 
- 

- 

8.6 ± 0.1 
8.4 ± 0.1 

- 

11.4 ± 1.1 

9.5 ± 0.5 
8.9 ± 0.5 

8.8 ± 0.6 

- 
- 

- 

1.8 ± 0.5 

2.0 ± 0.2 
1.3 ± 0.1 

1.3 ± 0.1 

2.6 ± 0.3 
2.7 ± 0.2 

1.4 - 5.0 

36.3 ± 7.7 

38.7 ± 5.3 
14.2 ± 3.1 

6.9 ± 1.3 

106.7‡ 

12.2 - 138.1‡ 

  4.4 - 132.1‡  

- 

- 
- 

- 

- 
- 

- 

- 

- 
- 

- 

78.1 ± 2.1 
76.3 ± 2.1 

70.0 - 90.0 

- 

- 
- 

- 

4.3 ± 0.1 
3.8 ± 0.1 

- 

77.5 ± 5.5 

86.9 ± 1.1 
69.2 ± 0.3 

72.2 ± 0.2 

81.6 ± 1.9 
76.2 † 

- 

89.1 ± 1.5 

91.7 ± 0.9 
89.7 ± 1.2 

90.9 ± 1.3 

94.3 ± 2.5 
- 

- 

58.7 ± 4.8 

60.6 ± 2.6 
73.6 ± 2.3 

67.1 ± 2.4 

76.3 ± 0.3 
43.3 ± 2.8 

49.0 - 67.0 

~24.3 

~21.2 
~32.2 

~30.1 

~10.8 
- 

- 

~26.8 

~33.4 
~38.2 

~34.7 

~26.8 
- 

- 

Johnston et al. 1994 

Johnston et al. 1994 
Johnston et al. 1994 

Johnston et al. 1994 

Roth et al. 1994 
Roth et al. 1996 

Roth et al. 1997 

Clouded leopards  

(Neofelis nebulosa) 

4C 

5C 

? 
4C 

4C 

5C 

11C 

48 

5 

147 

4 

4 

5 

22 

- 

- 

- 
- 

- 

NS 
- 

- 

- 

- 
- 

- 

- 
7.6 ± 0.1 

- 

- 

- 
- 

- 

- 
20.8 ± 0.7 

0.64 ± 0.03 

1.2 ± 0.07 

1.0 ± 0.1 
1.5 ± 0.8 

1.05 ± 0.3  

1.02 ± 0.1 
0.4 ± 0.05 

27.5 ± 2.3 

43.8 ± 16.7 

37.6 ± 3.3 
58.3 ± 9.3 

59.4 ± 2.7 

43.0 ± 2.1 
178.8 ± 35.5 

- 

- 

- 
- 

- 

- 
82.5 ± 1.5 

71.0 ± 2.1 

72.0 ± 3.4 

66.1 ± 1.4 
74.3 ± 2.2 

71.7 ± 6.0 

73.2 ± 4.0 
76.8 ± 2.0 

3.9 ± 0.1 

3.9 ± 0.3 

3.4 ± 0.1 
- 

3.3 ± 0.2 

- 
3.4 ± 0.1 

74.5 † 

75.0 † 

67.1 † 
- 

69.5 † 

- 
72.5 ± 1.7 

99.5 ± 0.4 

81.4 ± 3.5 

63.3 ± 2.3 
- 

59.9 ± 3.2 

31.3 ± 2.7 
41.9 ± 2.3  

38.9 ± 1.7 

84.6 ± 4.5 

84.1 ± 1.3 
84.7 ± 2.3 

79.7 ± 3.2  

81.5 ± 2.3 
63.9 ± 2.0 

~14.1 

42.7 ± 3.8 

- 
- 

- 

- 
32.8 

~25.1 

37.8 ± 5.4 

- 
- 

- 

- 
31.2 

Wildt et al. 1986 

Howard et al. 1996 

Pukazhenthi et al. 2000bR 

Pukazhenthi et al. 2000a 

Pukazhenthi et al. 2002 

Pukazhenthi et al. 2006 
Tipkantha et al. 2016 
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Appendix 2b: Andrews et al. (2020) Appendix 1 – Lists of publications that have used various method for monitoring the reproductive sate of female felids 

A list of the publications that have used, or investigated the use of, various methods for monitoring the reproductive state of felids. Note that while effort has been made to make this list as comprehensive as possible, some publications 

may have been missed during the literature search and are thus not included. Hormones were quantified in serum or plasma (B), faeces (F), or urine (U) samples; luteal progesterone (L) and placenta prostaglandin F2α (P) had also been 

assessed. Abbreviations: assisted reproductive technologies (ART), oestradiol (E2), faecal oestrogen metabolites (FEM), faecal progestin metabolites (FPM), progesterone (P4), prostaglandin F2α (PGF2α). 

L
in

ea
g

e 

Species 

Monitoring ovarian activity Pregnancy detection 

Behaviour 

E2/FEM and/or 

P4/FPM 

(serum, faeces or urine) 

 

Vaginal Cytology Ultrasound 

Laparoscopy 

(including confirming 

ovulation and guiding 

ART) 

Hormone monitoring (serum, faecal or urine assays) 

Vaginal Cytology 

Faecal 

proteins  

(e.g. IGJ) 

Ultrasound Laparoscopy P4/FPM  

(serum, faeces or 

urine) 

PGF2∝ 

(serum, faeces or 

urine) 

Relaxin 

(serum, faeces or 

urine) 

D
o

m
es

ti
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C
a

t 

Domestic cat 

(Felis catus) 

(Michael, 1961) 

(Sojka et al., 1970) 

(Paape et al., 1975) 

(Platz et al., 1978) 

(Wildt et al., 1978) 

(Shille et al., 1979) 

(Wildt et al., 1979a) 

(Wildt et al., 1981a) 
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(Glover et al., 1985) 
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(Gimenez et al., 2009) 

(Villaverde et al., 2009) 

(Malandain et al., 2011) 

(Santana et al., 2012) 

(Mitacek et al., 2015) 
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(Zambelli et al., 2015) 

 

 

(Paape et al., 1975)B 

(Verhage et al., 1976)B 

(Shille et al., 1979) B 

(Shille and Stabenfeldt, 
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(Wildt et al., 1981a)B 

(Chan et al., 1982)B 

(Schmidt et al., 1983)B 

(Shille et al., 1983)B 

(Glover et al., 1985)B 

(Goodrowe et al., 1988a)B 

(Goodrowe et al., 1988b)B 

(Concannon et al., 1980)B 

(Donoghue et al., 1992a)B 

(Orosz et al., 1992)B 

(Graham et al., 1993)F 

(Root et al., 1994) 

(Graham et al., 1995)F 

(Swanson et al., 1995)B 

(Roth et al., 1997b)B 

(Swanson et al., 1997)B 

(Graham et al., 2000)F 
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(Graham et al., 2004)F 
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(Chatdarong et al., 2006)B 

(Chatdarong et al., 2007)B 

(Genaro et al., 2007)B 

(Pelican et al., 2008)F 

(Villaverde et al., 2009)B 

(Stewart et al., 2010)F 

(Malandain et al., 2011)B 

(Stewart et al., 2012)F 

(Kanca et al., 2014)B 
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(Swanson et al., 1997) 

(Graham et al., 2000) 

(Graham et al., 2004) 

(Pope et al., 2006) 

(Villaverde et al., 2009) 

(Pelican et al., 2010) 

(Lambo et al., 2012) 

(Pope et al., 2012a) 

(Santana et al., 2012) 

(Stewart et al., 2012) 

(Conforti et al., 2013) 

(Swanson et al., 2014) 

(Stewart et al., 2015) 

(Verhage et al., 1976)B 

(Concannon et al., 

1980)B 

(Chan et al., 1982)B 

(Schmidt et al., 1983) B 

(Glover et al., 1985) B 

(Hammer and Howland, 

1991)B 

(Graham et al., 1993) F 

(Chatdarong et al., 

2007)B 

 

 

(Siemieniuch et al., 

2014)B,P 

(Stewart and Stabenfeldt, 

1985)B 

(Addiego et al., 1987)B 

(Harris et al., 2008)B,U 

(van Dorsser et al., 

2006)B,U 

(van Dorsser et al., 

2007a)B,U 

(DiGangi et al., 2010)B 

(Braun et al., 2012)N/A 

 

- - (Davidson et al., 1986) 

(Beck et al., 1990) 

(Pope et al., 1994) 

(Tsutsui et al., 2000a) 

(Tsutsui et al., 2000b) 

(Aiudi et al., 2001) 

(Zambelli et al., 2002) 

(Tsutsui et al., 2003) 

(Tsutsui et al., 2004a) 

(Zambelli et al., 2004b) 

(van Dorsser et al., 2006) 

(Zambelli and Prati, 2006) 

(Harris et al., 2008) 

(Hildebrandt et al., 2009) 

(Pope et al., 2012b) 

(Santana et al., 2012) 

(Conforti et al., 2013) 

(Monteiro et al., 2013) 

(Swanson et al., 2014) 

(Gatel et al., 2015) 

(Illanes et al., 2015) 

(Mitacek et al., 2015) 

(Topie et al., 2015a) 

(Topie et al., 2015b) 

(Zambelli et al., 2015) 

(Chan et al., 1982) 

European/Scottish 

wildcat 

(Felis silvestris) 

- - - - - - - - - - - - 

African wildcat 

(Felis libyca) 

- - - - - - (Dehnhard et al., 2012)F - - - - - 

Chinese mountain cat 

(Felis bieti) 

- - - - - - - - - - - - 

Desert/Sand cat 

(Felis margarita) 

(Mellen, 1993) 

 

(Herrick et al., 2010a)F - - (Herrick et al., 2010a) 

(Herrick et al., 2010b) 

(Herrick et al., 2010a)F (Dehnhard et al., 2012)F (Harris et al., 2008)B,U - - - - 

Black-footed cat 

(Felis nigripes) 

- 

 

(Herrick et al., 2010a)F 

(Metrione et al., 2019)F 

- - (Herrick et al., 2010a) 

(Herrick et al., 2010b)  

(Pope et al., 2012a) 

(Herrick et al., 2010a)F 

(Metrione et al., 2019)F 

(Metrione et al., 2019)F - - - (Metrione et al., 2019) - 

Jungle cat 

(Felis chaus) 

 

(Mellen, 1993) 

 

- - - - - - - - - - - 

L
eo

p
a

rd
 c

a
t 

Pallas’ cat 

(Otocolobus manul) 

 

(Mellen, 1993) 

 

(Brown et al., 2002)F - - (Brown et al., 2002) 

(Swanson et al., 2016) 

(Brown et al., 2002)F - (Harris et al., 2008)B,U - - - - 

Rusty-spotted cat 

(Prionailurus 

rubiginosus) 

(Mellen, 1993) - - - - - (Dehnhard and 

Jewgenow, 2013)F 

 

- - - - - 

Asian spotted/leopard 

cat 

(Prionailurus 

bengalensis) 

- (Brown et al., 1994)F 

(Adachi et al., 2010)F 

(Tajima et al., 2016)F,B 

(Tajima et al., 2016) - (Goodrowe et al., 1989) (Brown et al., 1994)F 

(Adachi et al., 2010)F 

(Tajima et al., 2016)F,B 

(Dehnhard et al., 2012)F 

(Dehnhard et al., 2017)F,U 

- - - (Tajima et al., 2016) - 

Fishing cat 

(Prionailurus 

viverrinus) 

(Mellen, 1993) 

(Fazio, 2016) 

 

(Putranto et al., 2006)F 

(Santymire et al., 2011) B 

(Fazio, 2016)F 

- - (Pope et al., 2006) (Santymire et al., 

2011)F 

(Fazio, 2016)F 

(Dehnhard et al., 2012) F - - - - - 

Flat-headed cat  

(Prionailurus 

planiceps) 

- - - - 

 

 

(Thongphakdee et al., 2010) - - - - - - 

 

 

- 
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L
in

ea
g

e 

Species 

Monitoring ovarian activity Pregnancy detection 

Behaviour 

E2/FEM and/or 

P4/FPM 

(serum, faeces or urine) 
 

 

Vaginal Cytology Ultrasound 

Laparoscopy 

(including confirming 

ovulation and guiding 

ART) 

Hormone monitoring (serum, faecal or urine assays) 

Vaginal Cytology 

Faecal 

proteins  

(e.g. IGJ) 

Ultrasound Laparoscopy P4/FPM  

(serum, faeces or 

urine) 

PGF2∝ 

(serum, faeces or 

urine) 

Relaxin 

(serum, faeces or 

urine) 

P
u

m
a

 

Puma/mountain lion 

(Puma concolor) 

 

- (Bonney et al., 1981)B 

(Genaro et al., 2007)B 

 

(Bonney et al., 1981) 

 

- (Bonney et al., 1981) 

(Miller et al., 1990) 

(Barone et al., 1994) 

 

(Bonney et al., 1981)B (Dehnhard et al., 2012)F - - - (Barone et al., 1994) - 

Jaguarundi/Eyra cat 

(Puma yagouaroundi) 

 

(Mellen, 1993) (Genaro et al., 2007)B 

 

- - - - - - - - - - 

Cheetah 

(Acinonyx jubatus) 

(Asa et al., 1992) 

(Graham et al., 1995) 

(Wielebnowski and Brown, 

1998) 

(Wielebnowski et al., 2002) 

(Kinoshita et al., 2009) 

 

(Asa et al., 1992)B 

(Howard et al., 1992a)B 

(Graham et al., 1993)F 

(Brown et al., 1994)F 

(Czekala et al., 1994)F 

(Doi et al., 1995)B 

(Graham et al., 1995)F 

(Brown et al., 1996)F 

(Howard et al., 1997)B 

(Wielebnowski and Brown, 

1998)F 

(Doi et al., 2001)B 

(Wielebnowski et al., 2002) F 

(Terio et al., 2003)F 

(Borque et al., 2005)F 

(Bertschinger et al., 2008)B 

(Kinoshita et al., 2009)F 

(Crosier et al., 2011)F 

(Kinoshita et al., 2011b)F 

(Schulman et al., 2015)B 

(Crosier et al., 2017)F 

(Koester et al., 2017a)F 

(Koester et al., 2017b)F 

(Vernocchi et al., 2018)F 

(Thuwanut et al., 2019)F 

(Asa et al., 1992) 

(Schulman et al., 2015) 

(Crosier et al., 2011) 

(Schulman et al., 2015) 

(Wildt et al., 1981b) 

(Goodrowe et al., 1991) 

(Donoghue et al., 1992b) 

(Howard et al., 1992a) 

(Brown et al., 1996) 

(Howard et al., 1997) 

(Doi et al., 2001) 

(Bertschinger et al., 2008) 

(Crosier et al., 2011) 

(Schulman et al., 2015) 

(Crosier et al., 2017) 

(Thuwanut et al., 2019) 

 

(Brown et al., 1994)F 

(Czekala et al., 1994)F 

(Doi et al., 1995)B 

(Graham et al., 1995)F 

(Brown et al., 1996)F 

(Borque et al., 2005)F 

(Adachi et al., 2011)F 

(Koester et al., 2017b)F 

 

 

(Dehnhard et al., 2012)F (Harris et al., 2008)B,U (Asa et al., 1992) (Koester et al., 

2017b) 

(Borque et al., 2005) 

 

- 

L
y

n
x
 

Iberian lynx 

(Lynx pardinus) 

- (Braun et al., 2009)U 

(Göritz et al., 2009)B 

(Jewgenow et al., 2009)U 

(Painer et al., 2014a)B 

(Pelican et al., 2009)F 

 

- (Göritz et al., 2009) 

(Painer et al., 2014a) 

- (Braun et al., 2009)B, U 

(Jewgenow et al., 

2009)U 

(Finkenwirth et al., 2010)F 

(Dehnhard et al., 2012)F 

(Dehnhard and 

Jewgenow, 2013)F 

(Braun et al., 2009)B, U 

(Braun et al., 2012)N/A 

- - - - 

Eurasian lynx 

(Lynx lynx) 

(Kachamakova and 

Zlatanova, 2014) 

(Dehnhard et al., 2008)F 

(Göritz et al., 2009)B 

(Carnaby et al., 2012)L 

(Painer et al., 2014a)B 

(Painer et al., 2014b)B 

(Painer et al., 2014b) (Göritz et al., 2009) 

(Painer et al., 2014a) 

(Painer et al., 2014b) 

 

- (Dehnhard et al., 2008)F 

(Painer et al., 2014b)B 

 

(Dehnhard et al., 2012)F 

(Painer et al., 2014b)B 

(Dehnhard et al., 2017)F,U 

- 

 

- - - - 

Canadian lynx  

(Lynx canadensis) 

 

- (Fanson et al., 2010)F - - - (Fanson et al., 2010)F - - - - - - 

Bobcat 

(Lynx rufus) 

(Stys and Leopold, 1993) (Shille et al., 1991) F 

(Woshner et al., 2001)L 

(Göritz et al., 2009) B 

- - - - - - - - - - 

O
ce

lo
t 

Ocelot 

(Leopardus pardalis) 

(Swanson et al., 1996) 

(Moreira et al., 2001) 

(Swanson et al., 1996)B 

(Moreira et al., 2001)F 

(Putranto et al., 2006)F 

(Genaro et al., 2007) B 

(Paz et al., 2009)B 

(Lambo et al., 2014)F 

(Moreira et al., 2001) 

(Paz et al., 2010) 

- (Swanson et al., 1996) 

(Moreira et al., 2001) 

(Rodrigues da Paz et al., 

2005) 

(Paz et al., 2010) 

(Lambo et al., 2014) 

- (Dehnhard et al., 2012)F - - - - - 

Margay 

(Leopardus wiedii) 

(Mellen, 1993) 

(Moreira et al., 2001) 

(Moreira et al., 2007) 

 

(Moreira et al., 2001)F 

(Genaro et al., 2007)B 

(Moreira et al., 2007)F 

(Moreira et al., 2001) - (Moreira et al., 2001) - - - - - - - 

Andean mountain cat 

(Leopardus jacobita) 

- - - - - - - - - - - - 

Pampas 

cat/Colocolo/Pantanal 

cat 

(Leopardus colocolo) 

(Callahan and Dulaney, 

1997) 

- - - - - - - - - - - 

Geoffroy’s cat  

(Leopardus/Oncifelis 
geoffroyi) 

(Mellen, 1993) 

(Foreman, 1997) 

(Genaro et al., 2007)B 

 

- - - - (Dehnhard et al., 2012)F - - - - - 

Güiña/Kodkod 

(Leopardus guigna) 

- - - - - - - - - - - - 

Tigrina/Oncilla 

(Leopardus tigrinus) 

 

(Moreira et al., 2001) 

(Moreira et al., 2007) 

(Moreira et al., 2001)F 

(Genaro et al., 2007)B 

(Moreira et al., 2007)F 

(Paz et al., 2009)B 

(Micheletti et al., 2015)F 

(Moreira et al., 2001) - (Moreira et al., 2001) 

(Rodrigues da Paz et al., 

2005) 

- (Dehnhard et al., 2012)F 

(Dehnhard and 

Jewgenow, 2013)F 

- - - - - 
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L
in

ea
g

e 

Species 

Monitoring ovarian activity Pregnancy detection 

Behaviour 

E2/FEM and/or 

P4/FPM 

(serum, faeces or urine) 

 

Vaginal Cytology Ultrasound 

Laparoscopy 

(including confirming 

ovulation and guiding 

ART) 

Hormone monitoring (serum, faecal or urine assays) 

Vaginal Cytology 

Faecal 

proteins  

(e.g. IGJ) 

Ultrasound Laparoscopy P4/FPM  

(serum, faeces or 

urine) 

PGF2∝ 

(serum, faeces or 

urine) 

Relaxin 

(serum, faeces or 

urine) 

C
a

ra
ca

l 

Caracal  

(Caracal caracal) 

(Bernard and Stuart, 1987) 

(Goodrowe et al., 1991) 

(Graham et al., 1995) 

(Graham et al., 1993)F 

(Graham et al., 1995)F 

 

- - (Goodrowe et al., 1991) 

(Pope et al., 2006) 

 

(Graham et al., 1993)F (Dehnhard et al., 2012)F - - - - - 

African golden cat 

(Profelis/Caracal 
aurata) 

 

- - - - - - - - - - - - 

Serval 

(Leptailurus/Caracal 
serval) 

 

(Mellen, 1993) (Shille et al., 1991)F - - - - (Dehnhard et al., 2012)F - - - - - 

B
a

y
 C

a
t 

Bay cat 

(Pardofelis/Catopuma 

badia) 

 

- - - - - - - - - - - - 

Timminck’s/Asiatic 

golden cat 

(Pardofelis temminckii) 
 

(Mellen, 1993) (Lueders et al., 2014)F - - - (Lueders et al., 2014)F (Lueders et al., 2014)F - - - - - 

Marbled cat 

(Pardofelis 

marmorata) 
 

- - - - (Thongphakdee et al., 2010) - - - - - - - 

P
a

n
th

er
a
 

Lion  

(Panthera leo) 

(Schmidt et al., 1979) 

(Schramm et al., 1994) 

(Graham et al., 1995) 

(Tefera, 2003) 

(Umapathy et al., 2007) 

(Callealta et al., 2019) 

(Schmidt et al., 1979)B 

(Briggs et al., 1990) 

(Brown et al., 1993)B 

(Schramm et al., 1994)B 

(Graham et al., 1995)F 

(Umapathy et al., 2007)F 

(Kirberger et al., 2011)B 

(Goeritz et al., 2012)B 

(Moresco et al., 2014)B 

(Putman et al., 2015)F 

 

 

(Schmidt et al., 1979) 

(Kirberger et al., 2011) 

(Callealta et al., 2019) 

(Kirberger et al., 2011) 

(Goeritz et al., 2012) 

(Moresco et al., 2014) 

(Callealta et al., 2019) 

(Kirberger et al., 2011) (Schmidt et al., 1979)B 

(Briggs et al., 1990) 

(Brown et al., 1993)B 

(Graham et al., 1993)F 

(Schramm et al., 1994)B 

(Graham et al., 1995)F 

(Putman et al., 2015)F 

 

(Dehnhard et al., 2015)F (Harris et al., 2008)B,U - - - - 

Jaguar  

(Panthera onca) 

(Wildt et al., 1979b) 

 

(Wildt et al., 1979b)B 

(Putranto et al., 2006)F 

(Genaro et al., 2007)B 

(Barnes et al., 2016)F 

(Gonzalez et al., 2017)F 

 

- - (Wildt et al., 1979b) 

(Barnes et al., 2016) 

(Barnes et al., 2016)F (Dehnhard et al., 2012)F 

(Dehnhard et al., 2015)F 

- - - - - 

Leopard  

(Panthera pardus) 

(Schmidt et al., 1988) 

(van Dorsser et al., 2007b) 

(Schmidt et al., 1988)B 

(van Dorsser et al., 2007b)F 

 

 

- - - (van Dorsser et al., 

2007b)F 

(Dehnhard et al., 2012)F 

(Dehnhard and 

Jewgenow, 2013)F 

(van Dorsser et al., 

2006)B,U 

- - - - 

Tigers 

(Panthera tigris) 

(Graham et al., 1995) 

(Seal et al., 1985) 

(Groot, 2013) 

(Seal et al., 1985)B 

(Graham et al., 1995)F 

(Crichton et al., 2003)B 

(Putranto et al., 2006)F 

(Graham et al., 2006)F 

(Putranto et al., 2007)F 

(Groot, 2013)F 

(Lambo et al., 2014)F 

(Saunders et al., 2014)F 

 

- - (Donoghue et al., 1990) 

(Donoghue et al., 1993a) 

(Donoghue et al., 1996) 

(Crichton et al., 2003) 

(Graham et al., 2006) 

(Lambo et al., 2014) 

 

(Graham et al., 1995)F 

(Graham et al., 2006)F 

(Putranto et al., 2007)F 

(Groot, 2013)F 

 

 

(Dehnhard et al., 2012)F 

(Dehnhard et al., 2015)F 

- - - - (Donoghue et al., 1996) 

Snow leopard 

(Panthera uncia) 

(Schmidt et al., 1993) 

(Reichert-Stewart et al., 

2014) 

(Schmidt et al., 1993)B 

(Brown et al., 1994)F 

(Graham et al., 1995)F 

(Roth et al., 1997a)B 

(Kinoshita et al., 2011a)F 

(Reichert-Stewart et al., 

2014)F 

- - (Roth et al., 1997a) (Brown et al., 1994)F 

(Kinoshita et al., 

2011a)F 

(Reichert-Stewart et al., 

2014)F 

 

- - - - (Broder et al., 2008) - 

Clouded leopards  

(Neofelis nebulosa) 

(Yamada and Durrant, 1989) 

(MacKinnon, 2008) 

(Tipkantha et al., 2017) 

 

(Brown et al., 1994)F 

(Brown et al., 1995)F 

(Howard et al., 1996)B 

(Howard et al., 1997)B 

(MacKinnon, 2008)F 

(Tipkantha et al., 2017)F 

 

- - (Brown et al., 1995) 

(Howard et al., 1996) 

(Howard et al., 1997) 

(Tipkantha et al., 2017) 

(Brown et al., 1994)F 

(Brown et al., 1995)F 

(Tipkantha et al., 

2017)F 

- - - - (Howard et al., 1992b)  
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Appendix 2c: Andrews et al. (2020) Appendix 2 – Data on the reproductive steroid concentrations of female cats.  

A summary of the serum/plasma oestradiol (pg/ml) and faecal oestradiol metabolites (FEM; ng/g) concentrations during anoestrus/interoestrus (basal) and oestrus in different felid species. The felid lineages and associated species are 

based on Johnson et al. (2006). Basal and luteal (i.e. peak) concentrations of serum/plasma progesterone (ng/ml) and faecal progesterone metabolites (FPM; µg/g) are also shown. Luteal progesterone concentrations are given for both non-

pregnant luteal phases (NPLP) and pregnant luteal phases (PLP). All values were calculated as weighted means of the values presented by each publication and are presented as mean (minimum-maximum). Note that some values were 

estimated from the graphs presented in the cited publications; these publications are indicated by ‘⸸’. For some studies, ranges were estimated from the standard deviation; these are indicated by ‘*’. Some studies listed an interquartile 

range rather than a true range; these studies are indicated by ‘IQR’. Overall sample sizes reported as ‘n=number of animals, ns=number of samples’. While we have endeavoured to incorporate all publications available in this table, some 

publications may have been missed during the literature search or may have presented values that could not easily be incorporated into this analysis; hence not all of the publications listed in Appendix 1 have been included in this table.  
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Species  

Plasma or Serum Faecal metabolites 

References  
Oestradiol (pg/ml) Progesterone (ng/ml) FEM (ng/g) FPM (µg/g) 

Basal Oestrus Basal 

Dioestrus/luteal phase 

Basal Oestrus Basal 

Dioestrus/luteal phase 

NPLP PLP NPLP PLP 

D
o

m
es

ti
c 

C
a

t 

Domestic cat 

(Felis catus) 

11 (1.1-20) 

(n=119, nS=194) 

 

67 (21-160) 

(n=55, nS=184) 

0.7 (<0.1-3.1) 

(n=108, nS=149) 

42 (2.1-187) 

(n=170, nS=238) 

25 (13-41) 

(n=29, nS=31) 

103 (26-259) 

(n=91, nS=120) 

 

207 (70-535) 

(n=103, nS=119) 

4.7 (0.1-11) 

(n=91, nS=212) 

40 (7.1-135) 

(n=40, nS=42) 

- (Paape et al., 1975); (Verhage et al., 1976)*; (Shille et al., 

1979)*; (Shille and Stabenfeldt, 1979); (Wildt et al., 1981);  

(Chan et al., 1982)*; (Schmidt et al., 1983)*; (Shille et al., 

1983)*; (Glover et al., 1985)*; (Goodrowe et al., 1988a); 

(Goodrowe et al., 1988b)*; (Donoghue et al., 1992)⸸*; 

(Graham et al., 1995)*; (Swanson et al., 1995)⸸; (Roth et al., 

1997b)*; (Swanson et al., 1997)⸸*; (Graham et al., 2000)*; 

(Graham et al., 2004)*; (Pelican et al., 2005)*; (Chatdarong 

et al., 2006)*; (Chatdarong et al., 2007)*; (Genaro et al., 

2007)*⸸; (Pelican et al., 2008)*;(Pelican et al., 2010)⸸; 

(Stewart et al., 2010)*; (Stewart et al., 2012)* 

European/Scottish wildcat 

(Felis silvestris) 

 

- - - - - - - - - - - 

 

African wildcat 

(Felis libyca) 

 

- - - - - - - - - - - 

 

Chinese mountain cat 

(Felis bieti) 

 

- - - - - - - - - - - 

Desert/Sand cat 

(Felis margarita) 

-  -  - - - 493 (264-1344) 

(n=8, nS=109) 

 

1670 (1053-3572) 

(n=8, nS=109) 

1.5 (0.3-6.0) 

(n=8, nS=109) 

- - (Herrick et al., 2010)* 

Black-footed cat 

(Felis nigripes) 

- - - - - 130 (277-2617) 

(n=8, nS=98) 

 

1646 (1317-4279) 

(n=8, nS=98) 

3.6 (0.7-8.9) 

(n=9, nS=99) 

27 (21 - 33) 

(n=5, nS=26) 

27 (5.0 - 38) 

(n=5, nS=5) 

(Herrick et al., 2010)*; (Metrione et al., 2019)* 

 

Jungle cat 

(Felis chaus) 

 

- - - - - - - - - - - 

 

L
eo

p
a

rd
 C

a
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Pallas’ cat 

(Otocolobus manul) 

- - - - - 128 (44 – 213) 

(n=6, nS=20) 

 

574 (155-456) 

(n=6, nS=20) 

1.0 (1.0-10)  

(n=3, nS=3) 

- ~65   

(n=3, nS=3) 

(Brown et al., 2002)⸸ 

Rusty-spotted cat 

(Prionailurus rubiginosus) 

 

- - - - - - - - - - - 

 

Asian spotted/leopard cat 

(Prionailurus bengalensis) 

-  -  - - - 615 (313-1100) 

(n=5, nS=7) 

~3921 

(n=3, nS=4) 

6.9 (2.3-16) 

(n=2, nS=4) 

80 (55-150) 

(n=2, nS=4) 

814 

(n=2, nS=2) 

(Brown et al., 1994); (Adachi et al., 2010); (Tajima et al., 

2016)⸸ 

 

Fishing cat 

(Prionailurus viverrinus) 

- - - - - 161 (28-1335) 

(n=18, nS=166) 

528 (149-665) 

(n=18, nS=166) 

2.7 (2.1-8.2) 

(n=17, nS=84) 

 

25 (13-61) 

(n=14, nS=41) 

 

24 (13-141) 

(n=4, nS=7) 

 

(Santymire et al., 2011)*; (Fazio, 2016)* 

Flat-headed cat  

(Prionailurus planiceps) 

- - - - - - - - - 

 

 

 

- - 
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Species  

Plasma or Serum Faecal metabolites 

References 
Oestradiol (pg/ml) Progesterone (ng/ml) FEM (ng/g) FPM (µg/g) 

Basal Oestrus Basal 

Dioestrus/luteal phase 

Basal Oestrus Basal 

Dioestrus/luteal phase 

NPLP PLP NPLP PLP 

P
u

m
a

 

Puma/mountain lion 

(Puma concolor) 

 

3.0 (0.6-30) 

(n=9, nS=9) 

? (30-375) 

(n=3, nS=3) 

3.0 (0.9-6.1) 

(n=10, nS=10) 

? (150-300) 

(n=3, nS=3) 

320 

(n=1, nS=1) 

- -  - - (Bonney et al., 1981); (Genaro et al., 2007)*⸸ 

Jaguarundi/Eyra cat 

(Puma yagouaroundi) 

 

4.0 (1.4-6.6) 

(n=3, nS=3) 

- 1.6 (0.5-2.7) 

(n=5, nS=5) 

- - - - - - - (Genaro et al., 2007)*⸸ 

Cheetah 

(Acinonyx jubatus) 

 

- 430 

(n=1, nS=1) 

0.8 (0.1-6.2) 

(n=24, nS=24) 

- - 98 (2.0-86) 

(n=62, nS=692) 

826 (27-1900) 

(n=3, nS=3) 

0.2 (0.01-8.0) 

(n=59, nS=567) 

98 (3.4-1364) 

(n=49, nS=74) 

56 (3.0-482) 

(n=27, nS=44) 

(Brown et al., 1994); (Doi et al., 1995); (Graham et al., 

1995)*; (Brown et al., 1996)*; (Wielebnowski et al., 2002);  

(Terio et al., 2003); (Borque et al., 2005); (Kinoshita et al., 

2011b); (Schulman et al., 2015); (Crosier et al., 2017)⸸*; 

(Koester et al., 2017a); (Koester et al., 2017b)⸸*; (Vernocchi 

et al., 2018)*; (Byron et al., 2019)⸸ 

 

L
y

n
x
 

Iberian lynx 

(Lynx pardinus) 

3.1 (<0.1-10) 

(n=22,  nS=22) 

- 4.0 (2.1-6.4) 

(n=32,  nS=32) 

20 (15-25) 

(n=2,  nS=2) 

17 (6.9-27) 

(n=14,  nS=14) 

 

- - - - - (Goeritz et al., 2009)*; (Painer et al., 2014a) 

Eurasian lynx 

(Lynx lynx) 

 

0.9 (0.4-1.3) 

(n=12,  nS =12) 

- 4.1 (0.9-7.2) 

(n=21,  nS =22) 

6.9 (0.8-11) 

(n=9,  nS =9) 

75 (10-168) 

(n=5,  nS =5) 

- - - - - (Goeritz et al., 2009)*; (Painer et al., 2014a);(Painer et al., 

2014b) 

Canadian lynx  

(Lynx canadensis) 

 

- - - - - 354 (282-446) 

(n=19,  nS=19) 

690 (542-878) 

(n=19, nS=19) 

- 10 (6.0-14) 

(n=3, nS=3) 

9.2 (4.9-18) 

(n=3, nS=3) 

(Fanson et al., 2010)⸸ 

Bobcat 

(Lynx rufus) 

 

- - - - - - - - - - - 

O
ce

lo
t 

Ocelot 

(Leopardus pardalis) 

 

15 (<0.1-32) 

(n=12,  nS=12) 

330 (74-586) 

(n=17,  nS=17) 

1.5 (0.5-2.9) 

(n=3,  nS=3) 

19 (8.9-12) 

(n=14,  nS=14) 

- - - - - - (Swanson et al., 1996); (Genaro et al., 2007)*⸸ 

Margay 

(Leopardus wiedii) 

 

7.5 (4.0-11) 

(n=3,  nS=3) 

~500  

(n=2,  nS =2) 

- - - - 3042 (1200-8800) 

(n=2,  nS=23) 

10 (<0.1-30) 

(n=2, nS=?) 

156 (90-340) 

(n=2,  nS=6) 

- (Genaro et al., 2007)*⸸; (Moreira et al., 2007)⸸ 

Andean mountain cat 

(Leopardus jacobita) 

 

- - - - - - - - - - - 

Pampas 

cat/Colocolo/Pantanal cat 

(Leopardus colocolo) 

 

- - - - - - - - - - - 

Geoffroy’s cat  

(Leopardus/Oncifelis 

geoffroyi) 

 

6.0 (3.2-8.8) 

(n=2,  nS=2) 

- - - - - - - - - (Genaro et al., 2007)*⸸; 

Güiña/Kodkod 

(Leopardus guigna) 

 

- - - - - - - - - - - 

Tigrina/Oncilla 

(Leopardus tigrinus) 

 

7.5 (1.9-13) 

(n=14,  nS=14) 

~250 

(n=3,  nS=3) 

- -  95 (10-200) 

(n=6,  nS=~250) 

1650 (250-5000) 

(n=9,  nS=38) 

8.9 (<0.1-30) 

(n=9,  nS=~133) 

352 (35-1600) 

(n=9,  nS=15) 

 (Genaro et al., 2007)*⸸; (Moreira et al., 2007)⸸; (Micheletti 

et al., 2015)⸸ 

C
a

ra
ca

l 

Caracal  

(Caracal caracal) 

 

- - - - - ~10 

(n=2, nS=84) 

24 (17-33) 

(n=4, nS=18) 

~0.3 

(n=2, nS=36) 

2.5 (0.9-3.9) 

(n=4, nS=19) 

2.5 (0.9-3.9) 

(n=4, nS=19) 

(Graham et al., 1993), (Graham et al., 1995)* 

African golden cat 

(Profelis/Caracal aurata) 

 

- - - - - - - - - - - 

Serval 

(Leptailurus/Caracal serval) 

 

- - - - - - - - - - - 
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L
in

ea
g

e 

Species  

Plasma or Serum Faecal metabolites 

References 
Oestradiol (pg/ml) Progesterone (ng/ml) FEM (ng/g) FPM (µg/g) 

Basal Oestrus Basal 

Dioestrus/luteal phase 

Basal Oestrus Basal 

Dioestrus/luteal phase 

NPLP PLP NPLP PLP 

B
a

y
 C

a
t 

Bay cat 

(Pardofelis/Catopuma badia) 

 

- - - - - - - - - - - 

 

Timminck’s/Asiatic golden 

cat 

(Pardofelis temminckii) 

 

- - - - - ~250  

(n=1, nS=19) 

1800 (1200-2400) 

(n=1, nS=2) 

- - - (Lueders et al., 2014)⸸ 

Marbled cat 

(Pardofelis marmorata) 

 

- - - - - - - - - - - 

P
a

n
th

er
a
 

Lion  

(Panthera leo) 

20 (17-23) 

(n=3, nS=3) 

ND (19-108) 

(n=3, nS=9) 

3.4 (0.2-13) 

(n=27, nS=40) 

33.4 (17-282) 

(n=12, nS=16) 

15 (9.9-144) 

(n=3, nS=3) 

61 (40-23) 

(n=3, nS=3) 

405 (112-1127) 

(n=29, nS=51) 

2.9 (0.3-5.2) 

(n=28, nS=2631) 

6.3 (0.5-28.2) 

(n=24, nS=46) 

9.5 (1.4-82) 

(n=11, nS=33) 

(Graham et al., 1995)*; (Schmidt et al., 1979); (Schramm et 

al., 1994)*; (Umapathy et al., 2007); (Brown et al., 1993); 

(Goeritz et al., 2012); (Moresco et al., 2014); (Putman et al., 

2015)* 

Jaguar  

(Panthera onca) 

 

3.9 (0.2-7.6) 

(n=6, nS=6) 

- 1.1 (<0.1-3.9) 

(n=5, nS=17) 

28.5 (12-68) 

(n=1, nS=4) 

- 1.3 (0.8-2.2) 

(n=3, nS=3) 

143 (28-74) 

(n=3, nS=3) 

18 (14-25) 

(n=3, nS=3) 

13.3 (2.5-109) 

(n=10, nS=25) 

14  

(n=1, nS=1) 

(Wildt et al., 1979); (Genaro et al., 2007)*⸸; (Barnes et al., 

2016); (Gonzalez et al., 2017)* 

Leopard  

(Panthera pardus) 

 

- 66 (21-131) 

(n=3, nS=19) 

1.6 (<0.1-6.2) 

(n=3, nS=131) 

68 (13-98) 

(n=2, nS=5) 

- 714 (305-938) 

(n=9, nS=234) 

1436 (1281-1604) 

(n=9, nS=156) 

- 30 (5.0-60) 

(n=9, nS=242) 

64 (26-146) 

(n=9, nS=397) 

(Schmidt et al., 1988)*; (van Dorsser et al., 2007)IQR 

Tigers 

(Panthera tigris) 

 

5.5 (0.5-15) 

(n=3, nS=98) 

48 (24-115) 

(n=3, nS=17) 

1.2 (0.2-2.8) 

(n=20, nS=163) 

- - 205 (44-1022) 

(n=26, nS=477) 

722 (71-2503) 

(n=46, nS=62) 

0.4 (0.1-2.8) 

(n=20, nS=339) 

12.4 (2.4-51) 

(n=11, nS=33) 

8.2 (2.4-29) 

(n=7, nS=29) 

(Graham et al., 1995)*; (Seal et al., 1985); (Crichton et al., 

2003)*; (Graham et al., 2006)*; (Putranto et al., 2007)* 

Snow leopard 

(Panthera uncia) 

7.6 (1.0-12) 

(n=2, nS=29) 

181 (37-440) 

(n=6, nS=17) 

~2.0 

(n=2, nS=32) 

- 39 

(n=1, nS=1) 

2133 (100-

1400) 

(n=20, nS=229) 

3349 (67-13500) 

(n=20, nS=113) 

0.6 (0.1-5.4) 

(n=17, nS=149) 

18.5 (7.8-59) 

(n=11, nS=14) 

22.4 (9.5-41) 

(n=5, nS=5) 

(Graham et al., 1995)*; (Schmidt et al., 1993)*⸸; (Brown et 

al., 1994); (Roth et al., 1997a); (Kinoshita et al., 2011a)*⸸; 

(Reichert-Stewart et al., 2014) 

Clouded leopards  

(Neofelis nebulosa) 

 

- - <1.0 

(n=?, nS=14) 

51 (32-74) 

(n=23, nS=27) 

- 49 (20-100) 

(n=26, nS=95) 

182 (98-354) 

(n=22, nS=72) 

5.0 (2.5-6.6) 

(n=26, nS=39) 

172 (67-585) 

(n=22, nS=22) 

178 (87-345) 

(n=5, nS=8) 

(Brown et al., 1994); (Brown et al., 1995)*⸸; (Howard et al., 

1997)* 
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Appendix 3: The neurological pathways by which stress activates the 

hypothalamic-pituitary-adrenal axis  

A3.1 Introduction  

Stress, defined as any predicted threat or physical challenge to homeostasis, leads to the activation of 

the hypothalamic-pituitary-adrenal (HPA) axis, which has an important role in mediating many of the 

effects of stress on the body (Miller and O'Callaghan, 2002). The HPA axis is primarily regulated by 

corticotrophin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN) of the 

hypothalamus (Miller and O'Callaghan, 2002). These neurons heavily project into the median 

eminence (ME) where they secrete CRH into the hypophyseal-portal blood (Vale et al., 1981; Miller 

and O'Callaghan, 2002). Corticotrophin-releasing hormone dose-dependently stimulates corticotroph 

cells in the anterior pituitary to synthesise and secrete adrenocorticotrophic-releasing hormone 

(ACTH), which acts on cells within the adrenal cortex to promote the production and release of 

glucocorticoids (Rivier and Plotsky, 1986; Miller and O'Callaghan, 2002). 

It has been well documented that stress leads to the activation of CRH neurons in the PVN and 

subsequently the release of CRH into the hypophyseal portal blood (Rivier and Plotsky, 1986; Miller 

and O'Callaghan, 2002). For example, there is a substantial increase in hypothalamic CRH 

concentrations in rat within 1 hour of restraint stress (Moldow et al., 1987; Kalin et al., 1994). The 

neurological pathways by which stress activates these CRH neurons are complex and differs between 

reactive (response to a homeostatic challenge) and anticipatory (perceived homeostatic challenge) 

stressors. Appendix 3 reviews the complex neurological pathways by which reactive and anticipatory 

stressors activate the CRH neurons in the PVN, and thus, the HPA axis.  

A3.2 Review  

A3.2.1 Reactive stressors 

The brainstem receives most of the visceral afferent pathways associated with homeostasis (e.g., 

baroreceptors, visceral nociceptors, thermoreceptors, satiety signals, and respiratory and 

cardiovascular function; Ter Horst et al., 1989). Thus, it not surprising that the brainstem also has a 

major role in mediating the effects of reactive stressors (i.e., disruptions in homeostasis) on the HPA 

axis (Figure A3.1).  

Numerous noradrenergic neurons in the nucleus tractus solitarius (NTS), ventrolateral medulla (VLM) 

and locus coeruleus (LC) of the lower brainstem have been found to synapse with CRH neurons in the 

PVN of the hypothalamus (Figure A3.1), suggesting a role for these regions in mediating the 

physiological stress response (Leibowitz et al., 1988; Ter Horst et al., 1989; Pacak et al., 1995; 

Herman et al., 2003). Indeed, stress responses associated with somatic pain (e.g., foot shocks), 

physical restraint, and immune responses (elevated interleukin-1β) have all been shown to activate 
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noradrenergic neurons in the brainstem (specifically the NTS) of rats, followed by the release of 

noradrenalin (NA) into the PVN (Leibowitz et al., 1988; Ter Horst et al., 1989; Pezzone et al., 1993; 

Pacak et al., 1995; Palkovits et al., 1999; Herman et al., 2003). Corticotrophin-releasing hormone 

neurons in the PVN have been found to express both α1 and β adrenergic receptors and are thus 

capable of responding to stress-induced increases in NA within the PVN (Rivier and Rivest, 1991). 

Noradrenalin appears to have a stimulatory effect on paraventricular CRH neurons (Plotsky, 1987; 

Herman et al., 2003). The intracerebroventricular administration of NA certainly leads to a substantial 

increase in the concentration of CRH in the hypophyseal-portal blood, but it was not clear whether 

this was mediated via direct or indirect pathways (Plotsky, 1987; Herman et al., 2003).  

Noradrenergic neurons from the LC and NTS have also been found to project into the median 

amygdala and raphe nuclei, respectively (Figure A3.1; Rivier and Rivest, 1991). The dorsal raphe 

nuclei of the brainstem contains a high density of serotonergic perikarya that are stimulated by 

noradrenergic neurons from the NTS (Rivier and Rivest, 1991). The majority of serotonergic fibres 

that innervate the hypothalamus originate from the dorsal raphe nuclei of the brainstem, but few 

serotonergic axons terminate in the PVN (Herman et al., 2003; Aguilera and Liu, 2012). However, 

serotonergic neurons from the raphe nuclei extensively inhibit the dense array of gamma-

aminobutyric acid (GABA) neurons in the regions surrounding the PVN; these GABA neurons project 

into the PVN and dose-dependently inhibit the CRH neurons located there, thus suppression of these 

GABA neurons by serotonin would likely increase the activity these CRH neurons (Figure A3.1; Pan 

and Gilbert, 1992; Herman et al., 2003; Cullinan et al., 2008; Lee et al., 2008; Aguilera and Liu, 

2012). Indeed, a microinjection of a serotonin receptor agonist into the PVN of rats leads to an 

increase in the activity of the CRH neurons regulating the HPA axis (Pan and Gilbert, 1992). 

Serotonergic fibres from the raphe nuclei also densely innervate the amygdala, ventral subiculum of 

the hippocampus (vSUB), prefrontal cortex (PFC), and bed nucleus of the stria terminalis (BNST; 

Figure A3.1; Lowry, 2002; Herman et al., 2003). As a result, it has been suggested that the 

serotonergic system has a role in relaying information about reactive stressors to the limbic system 

(Lowry, 2002; Herman et al., 2003).  



 

 

 

Figure A3.1 The main anatomical pathways by which reactive and anticipatory stressors activate corticotrophin-releasing hormone (CRH) neurons in the paraventricular nucleus. 

Regions are labelled according to the name of region/the main neurons within this region. Abbreviations: adrenocotricotrophin-releasing hormone (ACTH), arcuate nucleus of 

hypothalamus (ARC), bed nucleus of the stria terminalis (BNST), corticotrophin-releasing hormone neurons (CRH), central amygdala (CeA), cerebellum (CB), corpus callosum 

(CC), corticotroph cells (CT), gamma-aminobutyric acid neurons (GABA), glutamate neurons (Glut), hypothalamus (Hyp.), infralimbic PFC (IL), locus ceruleus (LC), median 

amygdala (MeA), neuropeptide Y neurons (NPY), noradrenergic neurons (NA), nucleus tractus solitaries (NTS), olfactory bulb (OB), prefrontal cortex (PFC), prelimbic PFC (PL), 

proopiomelanocortin neurons (POMC), raphe nuclei (raphe N.), serotonergic neurons (5-HT), ventral subiculum of hippocampus (vSUB), ventrolateral medulla (VLM). 
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Interestingly, reactive stressors associated with energy balance influence the activity of the HPA axis 

via a pathway that is largely independent of both the noradrenergic and serotoninergic systems 

(Figure A3.1). Instead, the arcuate nucleus (ARC) of the hypothalamus appears to have an important 

role in mediating the effects of stress associated with energy balance (e.g., malnutrition/starvation) on 

the HPA axis (Herman et al., 2003). The ARC has two neuronal populations that are involved in the 

regulation of energy balance and food intake: (1) pro-opiomelanocortin (POMC) neurons and (2) 

neuropeptide Y (NPY) neurons (Woods et al., 1998). Both POMC and NPY neurons in the ARC are 

responsive to the concentrations of insulin and leptin in the blood, which vary according to energy 

balance and body condition (Woods et al., 1998).  

Insulin and leptin stimulate POMC neurons and inhibit NPY neurons (Woods et al., 1998). Excessive 

negative energy balance (i.e., low leptin and insulin) results in an increase in the activity of NPY 

neurons in the ARC, which project into the PVN and stimulate the CRH neurons regulating the HPA 

axis (Leibowitz et al., 1988). Obesity, or an excessively positive energy balance, has also been shown 

to activate the HPA axis (Nieuwenhuizen and Rutters, 2008). This is more likely mediated by an 

increase in the activity of POMC neurons in the ARC, which heavily project into the PVN and secrete 

the neuropeptide hormone α-melanocyte stimulating hormone (α-MSH; Dhillo et al., 2002; Herman et 

al., 2003). In rats, α-MSH has been found to stimulate hypothalamic CRH production (in vitro) and 

increase the plasma ACTH concentrations in vivo (Dhillo et al., 2002). Thus, it seems that high levels 

of NPY (negative energy balance) and POMC (positive energy balance) activate the HPA axis. 

A3.2.2 Anticipatory stressors 

Anticipatory stressors require the integration of past experiences (i.e., memory) and existing somatic 

sensory information associated with a perceived threat to homeostasis (Herman et al., 2003). 

Therefore, the limbic system plays a critical role in mediating the effects of anticipatory stressors on 

the HPA axis. The thalamus has a particularly important role in the anticipatory stress response as it 

receives input from almost every visceral and somatic sensory pathway (Herman et al., 2003). 

Somatic and visceral sensory information is assessed by the thalamus and relayed, if necessary, to the 

appropriate sensory region of the cerebral cortex or non-cortical regions of the forebrain (Herman et 

al., 2003). In rats, an increase in neuronal activity in the paraventricular nucleus of that thalamus 

(PVT) has been observed in response to both anticipatory and reactive stressors (Bubser and Deutch, 

1999). Neurons in the PVT do not directly innervate hypothalamic CRH neurons, but heavily 

innervate the pre-frontal cortex (PFC) and central amygdala (CeA; Figure A3.1; Bubser and Deutch, 

1999; Herman et al., 2003).  

The amygdala is generally thought to have a stimulatory effect on the HPA axis (Herman et al., 

2003). The stimulatory effects of the amygdala on CRH neurons in the PVN are predominantly 
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mediated by the central (CeA) and medial amygdaloid nuclei (MeA), which chiefly contain CRH and 

GABA neurons, respectively (Champagne et al., 1998; Herman et al., 2004; Herman et al., 2005). 

Corticotrophin-releasing hormone neurons in the CeA receive input from the NA neurons in the 

brainstem and are strongly activated by reactive stressors (Figure A3.1; Feldman et al., 1994; Asan, 

1998; Herman et al., 2003; Ulrich-Lai and Herman, 2009). In contrast, the MeA contains many 

GABA neurons that are stimulated by thalamus (pathways unclear) in response to anticipatory 

stressors, which thus indirectly stimulate the HPA axis (Herman et al., 2003).  

Interestingly, limbic structures such as the amygdala, hippocampus, and prefrontal cortex, appear to 

have few direct connections with CRH neurons in the PVN of the hypothalamus (Prewitt and Herman, 

1998; Ulrich-Lai and Herman, 2009). Instead, the effects of these limbic regions on the HPA axis are 

largely mediated by the bed nuclei of the stria terminalis (BNST; Figure A3.1; Dong et al., 2001; 

Choi et al., 2007; Ulrich-Lai and Herman, 2009; Aguilera and Liu, 2012). Corticotrophin-releasing 

hormone neurons in the CeA have a number of projections into the dorsomedial fusiform nuclei of the 

anterior BNST, a region that is concentrated with CRH neurons that project into the PVN and 

stimulate the CRH neurons regulating the HPA axis (Figure A3.1; Cummings et al., 1983; 

Champagne et al., 1998; Prewitt and Herman, 1998; Dong et al., 2001; Choi et al., 2007). The GABA 

neurons in the MeA project into the posterior BNST and preoptic area of the hypothalamus (POA); 

both of regions contain GABA neurons that project into that PVN and suppress CRH neuronal activity 

(Figure A3.1), thus MeA appears to stimulate the HPA axis by supressing the GABAergic inhibition 

of CRH neurons in the PVN (Prewitt and Herman, 1998; Herman et al., 2003).  

Unlike the amygdala, the hippocampus primarily has an inhibitory effect on the HPA axis (Herman et 

al., 2003; Ulrich-Lai and Herman, 2009). The effects of the hippocampus on CRH neurons in the 

PVN are thought to be mediated by neurons in the ventral subiculum of hippocampus (vSUB), as 

lesions to this area increases baseline CRH mRNA expression in the PVN of rats (Herman et al., 

2003; Herman et al., 2005; Ulrich-Lai and Herman, 2009). Lesions to the vSUB of rats also prolongs 

stress-induced increases in HPA activity, suggesting that the hippocampus has a role in terminating 

the stress response (Herman et al., 2003; Herman et al., 2005; Ulrich-Lai and Herman, 2009). The 

vSUB receives input from the noradrenergic and serotonergic neurons in the brainstem that are highly 

involved in the reactive stress response (Figure A3.1; Segal and Landis, 1974; Cummings et al., 

1983). In terms of the anticipatory stress response, however, the vSUB of the hippocampus likely 

receives information directly from the sensory thalamic nuclei (Ulrich-Lai and Herman, 2009). As 

with the amygdala, the vSUB does not directly innervate the PVN, but has an extensive network of 

glutamatergic (GLUT) neurons that project into the posterior BNST and various regions of 

hypothalamus, especially the preoptic area (POA; Cullinan et al., 1993; Herman et al., 2003). As 

mentioned previously, both the posterior BNST and POA contain GABA neurons that are known to 
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inhibit on CRH neurons in the PVN (Figure A3.1; Herman et al., 2003). Given that GLUT neurons 

are generally considered to be stimulatory (Herman et al., 2003), it is likely that the hippocampus 

supresses the HPA axis up-regulating the GABA neurons that supress CRH neurons within the PVN.  

The hippocampus, most likely vSUB, also strongly innervates the prefrontal cortex (PFC; Hoover and 

Vertes, 2007). Given the known role of the hippocampus in memory, it is possible that the neurons 

from the hippocampus provide the PFC with information about past experiences (Hoover and Vertes, 

2007). The PFC also receives extensive input from the midline thalamus, which likely provides the 

PFC with current sensory information (Bubser and Deutch, 1999; Herman et al., 2003; Hoover and 

Vertes, 2007). It is well known the PFC plays an important role in integrating information about 

present and past experiences (Bubser and Deutch, 1999; Herman et al., 2003; Hoover and Vertes, 

2007), thus the PFC likely has an essential role in mediating the anticipatory stress response. The PFC 

may also contribute towards the psychological/emotional stress associated with both reactive and 

anticipatory stressors (Figure A3.1).  

The PFC also indirectly alters the activity of the HPA axis (Ulrich-Lai and Herman, 2009). The 

prelimbic region of the PFC appears to have an inhibitory effect on the HPA axis, since lesions to the 

prelimbic region of PFC augment the stress-induced increase in the activity of CRH neurons in the 

PVN (Ulrich-Lai and Herman, 2009). The prelimbic region of PLC is concentrated with GLUT 

neurons that project into regions of the hypothalamus surround the PVN and up-regulate GABA 

neurons that inhibit CRH neurons in the PVN (Figure A3.1; Hurley et al., 1991; Ulrich-Lai and 

Herman, 2009); thus, the prelimbic region of PFC inhibits the HPA axis. In contrast, the infralimbic 

region of the PFC appears to simulate the HPA axis (Herman et al., 2003). The neurons involved in 

this are not known, but the infralimbic region of PLC has dense projections into the several regions of 

the brain (e.g., dorsomedial nucleus and POA of the hypothalamus, anterior BNST, CeA, MeA, and 

NTS) that are known to regulate the CRH neurons in the PVN (Hurley et al., 1991; Herman et al., 

2005; Ulrich-Lai and Herman, 2009). 
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Figure: Pathways by which the hypothalamic-

pituitary-adrenal (HPA) axis suppresses the 

hypothalamic-pituitary-gonadal (HPG) axis. 
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Appendix 4 - Figure: Pathways by which the hypothalamic-pituitary-adrenal 

(HPA) axis suppresses the hypothalamic-pituitary-gonadal (HPG) axis. 

 

Figure A4 (on following page) summarises the pathways by which glucocorticoids (GC) and 

corticotrophin releasing hormone (CRH) neurons suppress the hypothalamic-pituitary-gonadal axis 

(HPG) axis. Red boxes indicate pathways that have a negative effect on the HPG axis. In contrast, 

green boxes are key intra-cellular signaling compounds/enzymes or receptors that have a positive 

effect on the HPG axis. Blue boxes represent cellular responses. Green lines indicate important 

pathways that have a stimulatory effect on the HPG axis, while red lines indicate key inhibitory 

pathways. Black lines indicate generally signaling pathways. Dotted lines are suggested pathways that 

have not yet been confirmed. Percentages represent the proportion of neurons that have receptors for 

that neurotransmitter or hormone. The lists below the testis and ovary boxes summarise the effects of 

GC and CRH on reproductive function of male and female mammals.   

Other abbreviations: action potential (AP), adenylate cyclase (AC), androgen receptor (AR), 

anteroventral periventricular nucleus, arcuate nucleus (ARC), cyclic adenosine monophosphate 

response element binding protein (CRE-BP), chaperone protein (Chap.), corticotrophin release 

hormone (CRH), corticotrophin release hormone receptor (CRH-R), cyclic adenosine monophosphate 

(cAMP), desmosome junction (desmosome J.), diacylglycerol (DAG), dorsomedial nucleus (DMN), 

elongate spermatocyte (E), follicle stimulating hormone (FSH), follicle stimulating hormone receptor 

(FSH-R), G-protein coupled receptor (GPR), glucocorticoid receptor (GR), gonadotrophin inhibitory 

hormone (GnIH), gonadotrophin release hormone (GnRH), G protein alpha subunit – inhibitory (Gαi), 

G protein alpha subunit – stimulatory (GαS), G protein alpha subunit q/11 – stimulatory (Gαq/11) , 

hydroxysteroid dehydrogenase (HSD), inositol trisphosphate (IP3), intracellular calcium (iCa2+ ), 

kisspeptin (KiSS), luteinizing hormone (LH), luteinizing hormone receptor (LH-R), mitogen-activated 

protein kinase (MAPK), oestradiol (E2), phospholipase C (PLC), potassium (K+), preoptic area 

(POA), primary spermatocyte (I), protein kinase A (PKA), protein kinase C (PKC), round 

spermatocyte (R), secondary spermatocyte (II), testosterone (T), transient receptor potential cation 

channel (TRPC). 
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