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Abstract 

Cadmium (Cd) is a non-essential trace element that is extensively distributed in the 

environment. Cadmium is effectively absorbed by plant roots and transported to its aerial 

parts and plants growing in soils with high Cd concentration can accumulate Cd in their 

roots and shoots to levels which can threaten human and animal health. Elevated Cd 

concentrations in New Zealand agricultural soils are a function of the country’s long-term 

history of using Cd-contaminated phosphate fertiliser. Recent studies have identified that 

two forage species chicory (Cichorium intybus L.) and plantain (Plantago lanceolata L.), 

which are increasingly used in New Zealand agriculture, accumulate a significantly 

higher shoot Cd concentration than traditional pasture species. The variation in Cd 

accumulation between forage species suggests that different plants have different abilities 

to absorb Cd in roots and translocate this trace element from roots to shoots. Thus, Cd 

uptake and the potential translocation of Cd to aerial tissues deserves more research, 

particularly for forage species of economic importance to countries such as New Zealand, 

where agriculture is dependent on pastoral grazing systems. Information from such 

studies will be useful in mitigating the continuing risk of Cd transfer into the food chain. 

The overall aim of this thesis is to better understand Cd uptake and translocation 

mechanisms in chicory and plantain. 

Cadmium uptake by plant roots is a function of rhizosphere soil chemistry and the 

interaction between plant roots and soil solution. Plants exude Low Molecular Weight 

Organic Acids (LMWOA) into soil solution and these play a key role in regulating Cd 

bioavailability. A pot trial was conducted to evaluate the influence of increasing soil Cd 

concentration on the secretion of LMWOAs by chicory and plantain roots and to analyse 

their impact on plant Cd uptake. Chicory and plantain were grown under increasing Cd 
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levels and showed variable secretion of oxalic, fumaric, malic and acetic acids as a 

function of Cd treatment. Results revealed that the primary cause for the significant 

increase of shoot and root Cd concentration in both chicory and plantain, as a function of 

treatment level, is the significantly greater bioavailable Cd concentration in soil solution 

with increasing Cd treatment level. The significantly higher shoot Cd accumulation in 

chicory (18.63 mg Cd/kg DW) than plantain (4.22 mg Cd/kg DW) at the highest tested 

soil Cd concentration (1.6 mg Cd/kg) can be explained by increased acetic acid and 

reduced fumaric acid excretion from chicory relative to plantain. 

Increased understanding of Cd translocation mechanisms in plants requires knowledge of 

the free Cd2+ ion concentration in xylem saps. However, the determination of low 

concentrations of free Cd2+ ions in a low volume of xylem sap poses an analytical 

challenge. To overcome this limitation, a thiosalicylic-acid-modified carbon-paste 

electrode was developed as an alternative and reliable measurement tool for the detection 

of free Cd2+ ions in environmental samples, including xylem saps. Compared to other 

Cd2+ ion ligands used to develop Cd2+-ion-specific electrodes in literature, thiosalicylic 

acid is a readily available solid, which is stable to air, making it a conveniently handled 

ligand. The developed electrode showed a lower detection limit of 11 µg Cd/L (0.1               

× 10-6 mol Cd/L) with a linear range from 20 to 100 µg Cd/L (0.18 × 10-6 to 0.88 × 10-6 

mol Cd/L). To the best of my knowledge, this is the first time a Cd2+ ion-specific electrode 

was developed to determine free Cd2+ ion concentration in plant xylem sap. The modified 

electrode has the ability to distinguish between total Cd and free Cd2+ in solution and 

measure only the free Cd2+ ions in environmental samples, including xylem sap, with high 

precision (RSD<5%). 
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Subsequent analysis using the thiosalicylic acid modified electrode showed that Cd is 

mainly in a complex form in chicory and plantain xylem sap. Therefore, a glasshouse 

experiment was set up with six increasing Cd concentrations in hydroponic solution to 

assess the impact of LMWOA on xylem sap Cd translocation and shoot accumulation in 

chicory and plantain. Results revealed that both chicory and plantain showed variable 

production of oxalic, fumaric, citric, malic and acetic acids with increasing Cd 

concentration in the hydroponic media. The higher shoot Cd accumulation (by 28-208%) 

in chicory compared to plantain can be explained in terms of variations in LMWOA 

production between chicory and plantain. Functional relationship analysis showed that 

the primary cause for higher shoot Cd concentration in chicory relative to plantain is 

fumaric acid production in chicory xylem sap which may bind with Cd in chicory and 

translocate the metal towards shoots.  

To explore the specific role of fumaric and acetic acids on Cd uptake and translocation in 

chicory, a glasshouse experiment was conducted with the external addition of fumaric 

and acetic acid into the hydroponic solution. Increasing fumaric acid concentration in the 

hydroponic solution showed the ability to reduce Cd uptake and translocation in chicory 

with a maximum reduction achieved at 10 mg/L and 50 mg/L fumaric acid treatment for 

root and shoot Cd accumulation, (respectively) for a solution concentration of 1 mg/L Cd. 

The shoot Cd concentration significantly increased at lower acetic acid treatment levels 

(1 mg/L) and reduced with increasing acetic acid concentrations from 10 mg/L to 50 mg/L 

in the presence of 1 mg Cd/L solution concentration. However, the root Cd accumulation 

increased as a function of acetic acid concentration in the hydroponic solution up to 50 

mg/L acetic acid treatment. The root: shoot Cd concentration ratio showed a significant 

positive correlation (R=0.729 P<0.05) with acetic acid treatments (up to 50 mg/L 

treatment). Chicory biomass significantly reduced at all LMWOA treatments compared 
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to the control treatment in the presence of 1 mg Cd/L Cd level, showing that there was a 

limited potential ameliorative effect of LMWOA on Cd toxicity at any concentration for 

the experimental conditions used in this study. 

This study highlights that variations in plant root LMWOA secretion and xylem sap 

LMWOA production between chicory and plantain can explain the different shoot Cd 

accumulation characteristics of these two forage species. This work shows that fumaric 

acid plays a fundamental role in both Cd uptake and translocation in chicory, while such 

a role is not clear for plantain. Low secretion of fumaric acid by roots and production of 

fumaric acid in chicory xylem sap aid to increase shoot Cd accumulation in chicory 

compared to plantain while low acetic acid secretion by chicory roots supports the high 

shoot Cd accumulation in chicory compared to plantain.  

Future work is recommended to develop a new cultivar of chicory which express traits of 

variations in fumaric acid production and acetic acid production. Such work may yield 

new cultivars of chicory which restrict the translocation of Cd from roots to shoots in this 

important forage species. The future application of this work is to help develop strategies 

which could assist in mitigating high Cd accumulation in offal to maintain the standards 

of New Zealand’s food production. 
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Introduction 

New Zealand’s economy is heavily dependent on exports, and agriculture is a major 

contributor, with the country exporting agricultural products to more than 100 countries 

throughout the world. In 2018, around $31 billion in revenue was earned from dairy, meat 

and horticultural exports (Ministry of Primary Industries, 2019). These agricultural 

exports are increasingly marketed as high-quality products free from contamination 

(McLaughlin et al., 2000). However, to sustain production, New Zealand food production 

is highly dependent on soil fertility and soil management practices which have been 

shown to induce soil contamination. Therefore, the risk of contamination must be well 

managed (Loganathan et al., 2008; Schipper et al., 2011).  

In New Zealand, cadmium (Cd) is a key environmental contaminant associated with the 

long-term high-rate application of phosphate (P) fertilizer, particularly on soils used for 

dairying and horticulture (Loganathan et al., 2003; Abraham, 2018). Even though the Cd 

concentration in P fertilisers used in New Zealand has been reduced to less than 280 mg 

Cd/kg P since 1997 (Salmanzadeh et al., 2016), many agricultural soils have been 

reported with elevated levels of soil Cd. For example, a soil survey conducted by Taylor 

(2007) reported that the mean soil Cd concentration of New Zealand agricultural soils 

(0.43 mg Cd/kg, n=825) is more than double that of non-agricultural soils (0.16 mg Cd/kg, 

n=372). Abraham (2018) conducted another soil survey and reported that the Waikato 

region, a major dairy and horticultural farming region, showed the highest mean total Cd 

concentration (0.85 mg Cd/kg). 

Despite being a non-essential trace element, Cd can be absorbed by plant roots and 

transported to its aerial parts. Therefore, Cd contamination of New Zealand’s most 
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versatile soils threatens to limit their use for high-value pasture and horticultural crops 

due to the risk of high Cd accumulation in plant tissues and subsequent trophic transfer 

along the food chain (Reiser et al., 2014). Cadmium mainly accumulates in animal’s body 

tissues particularly in their kidneys and livers, and therefore, the New Zealand meat 

industry prevents the use of kidneys and livers from animals aged 30 months or older 

from human consumption, to minimize the risk of food standard maximum limit 

exceedances (Lee et al., 1994; Lee et al., 1996). However, studies have statistically 

modelled that animals younger than 30 months old grazing on Cd-enriched plants can 

accumulate Cd in kidneys and livers to above the maximum guideline levels of 2.5 

(kidney) and 1.25 (liver) mg Cd/kg FW for human consumption (Reiser et al., 2014).  

In 1990 new forage species were introduced to New Zealand’s livestock grazing systems 

due to their high drought tolerance, nutrient content and environmental benefits. For 

example, chicory (Cichorium intybus L.) and plantain are (Plantago lanceolata L.) deeper 

rooting plants than perennial ryegrasses and could be useful in reducing nitrate-N 

leaching losses from ruminant grazed pasture systems (Li and Kemp, 2005; Woods et al., 

2018). However, a study conducted by Stafford et al. (2016) showed that chicory and 

plantain can accumulate significantly higher Cd concentrations, from even low Cd soils, 

than grasses and legumes, which have traditionally been used in New Zealand. Studies 

suggest that different plant species have different abilities to absorb Cd from soils and 

translocate this element from root to shoot (Fu et al., 2018; Li et al., 2019b).  

Many studies have shown that interactions between plant roots and soil in the rhizosphere, 

as a consequence of root-mediated changes in soil chemistry, can influence Cd 

bioavailability and that this plays a key role in Cd uptake by plant roots                            

(Mench et al., 1991; Hinsinger et al., 2006). The rhizosphere is defined as the few 
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millimetres of soil surrounding the plant roots where numerous interactive processes 

occur, including root growth, respiration and nutrient uptake (Lux et al., 2010). Plant roots 

secrete many chemical compounds to the plant root-soil interface, and these can modify 

the physical and chemical characteristics of the rhizosphere and influence the chemical 

forms of contaminants in the soil such as Cd (Hill et al., 2002; Hinsinger et al., 2006). 

Many researchers have suggested that the rhizosphere soil receives Low Molecular 

Weight Organic Acid root exudates (LMWOA, e.g. malic, oxalic, acetic, fumaric and 

citric acids). These are negatively charged ions capable of complexing with bioavailable 

Cd2+ and modify plant Cd uptake (Han et al., 2006; Zhu et al., 2011).  

Some root-to-shoot translocation studies that have investigated metal speciation in the 

xylem have indicated that metal translocation in xylem sap is mainly associated with 

LMWOAs (Senden and Wolterbeek, 1990; Cheng et al., 2016). However, other studies 

are in complete contrast, where they reported that Cd is mainly translocated as free Cd2+ 

ions in plant xylem sap without complexing with LMWOAs (Ueno et al., 2008; Hazama 

et al., 2015). Therefore, a better understanding of the mechanisms of Cd translocation for 

plant species important to agriculture, such as chicory and plantain, will be supported by 

knowledge of the forms of free and complexed Cd2+ ion concentration in xylem saps.  

The identification and quantification of the LMWOAs in the xylem sap can be achieved 

using advanced separation techniques, such as gel exclusion and high-performance liquid 

chromatography. However, the quantification of low concentrations of free Cd2+ ions in 

a low volume of xylem sap poses a major analytical challenge. In recent years 

electrochemical methods such as stripping voltammetry (SV), which use selective 

working electrodes, have become promising tools to measure free metal ions (Ismail et 

al., 2019). Traditionally, the mercury hanging drop electrode has been used, however, its 
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application is now excluded from routine environmental analysis due to the toxic risk of 

mercury. In recent decades chemically modified carbon paste electrodes have attracted 

significant attention for trace metal analysis and further work to apply such electrodes to 

the environmental chemistry of Cd is an opportunity for novel research. Therefore, the 

development of a chemically modified carbon-paste working electrode to quantify free 

Cd2+ ions in the plant xylem sap has attracted much attention due to the scope for 

innovation.  

Overall, the impact of elevated levels of Cd in New Zealand agricultural soil on Cd uptake 

and the potential translocation of Cd into important forage species such as chicory and 

plantain deserves more research. Thus, the rationale for this thesis research is to better 

understand the mechanisms of Cd uptake and translocation associated with LMWOAs in 

Cd-accumulating forage species, as such information will be useful in mitigating the 

continuing risk of Cd transfer into the food chain. The work in this PhD thesis is designed 

to help develop the data sets necessary to fill these existing knowledge gaps. 

1.1 Research focus 

• To determine the effect of Cd concentration in growth media on the type and 

quantity of LMWOA secretion by chicory and plantain roots and their influence 

on plant Cd uptake. 

• To develop a Cd2+ ion-specific electrode to quantify low concentrations of free 

Cd2+ ions in xylem saps.  

• To determine the variations in composition and concentration of LMWOA 

production in chicory and plantain xylem sap as a function of Cd concentration in 

the growth media and their influence on Cd translocation.  

• To investigate the effect of exogenous LMWOA on the shoot and root Cd 

variations in chicory. 
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1.2  Thesis Structure 

This thesis is organised into seven chapters. Chapter 1 introduces the topic of interest, 

focusing on the overall context of plant Cd uptake by roots and xylem sap translocation 

to shoots. Chapter 2 reviews the knowledge relating to soil and plant factors affecting the 

Cd bioavailability in soil and the general mechanisms involved in plant Cd uptake and 

translocation by different plants. In addition, Chapter 2 presents detailed information on 

the analytical methods used to detect different Cd species in xylem saps as well as the 

current state of knowledge with regard to Cd in New Zealand agriculture. Chapter 3 

describes the effect of soil Cd on LMWOA secretion by plant roots and the influence on 

plant Cd uptake by chicory and plantain. Chapter 4 describes the development of a Cd 

ion-specific electrode modified with thiosalicylic acid to determine the free Cd2+ ion 

concentration in soil solutions and xylem saps. Chapter 5 explains the consequence of Cd 

in growth media on LMWOA production in the xylem sap of chicory and plantain. 

Further, Chapter 5 analyses the influence of produced LMWOAs on Cd translocation via 

xylem sap in chicory and plantain. Chapter 6 describes the effect of several exogenous 

LMOWOAs (which were identified from the previous chapters) on Cd uptake by chicory. 

Chapter 7 summarises the key findings from the research chapters and explains the 

application of the knowledge developed in this thesis to develop strategies which could 

assist in avoiding high Cd accumulation in offal to maintain the standards of New 

Zealand’s food production.
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Literature Review 

 

2.1 Introduction 

Cadmium (Cd) is a key environmental contaminant associated with long-term high 

application rates of superphosphate fertiliser to soils used for dairying and horticulture. 

Although Cd is considered to be a non-essential element for plants, it is effectively taken 

up by the root systems of many plant species and can be subsequently transported 

throughout the plant. Recent studies indicate that elevated levels of Cd in New Zealand 

soils can lead to a Cd concentration in forage species such as chicory (Cichorium intybus 

L.) and plantain (Plantago lanceolata L.) that is orders of magnitude higher than in 

ryegrass or clover. Results of such studies suggest the different abilities of pastoral 

species used in New Zealand to both absorb Cd from soils and to translocate the metal 

from roots to shoots. However, there have been no studies published on the Cd uptake 

mechanisms of common forage species used in New Zealand agriculture and it is within 

the context of this knowledge gap that the research described in this doctoral thesis has 

been undertaken. This literature presents a summary of the current state of knowledge 

with regard to Cd in New Zealand agriculture and general mechanisms involved in plant 

Cd uptake and translocation by different plants. 

2.2 Cadmium: origin and toxicity 

Trace elements (TE) are naturally present throughout the environment (Kabata-Pendias 

and Pendias, 1992) and can be either essential for plant and human growth such as iron, 

zinc, copper, manganese, and cobalt, or non-essential such as cadmium and lead (Hooda, 
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2010). Cadmium naturally occurs with a background concentration of about 0.1 mg/kg in 

the earth’s crust (Tchounwou et al., 2012) although anthropogenic activities such as 

mining, fossil fuel combustion, sewage sludge disposal and the addition of phosphate (P) 

fertiliser to agricultural land have elevated the Cd concentrations in soil (Alloway and 

Steinnes, 1999). Despite being a non-essential trace element, Cd can be taken up by plant 

roots, translocated to aerial parts, accumulated in shoot tissues, and can present an 

ingestion risk for both animals and people (Ubeynarayana et al., 2021) (Figure 2.1).  

 

Figure 2.1. The Cd input-output balance in agricultural soils and the risk of contamination through 

the food chain (redrawn and adapted from (Smolders, 2013)). 

Cadmium uptake by plants is affected by a number of factors related to changes in key 

soil properties (soil particle size, pH, temperature, cation exchange capacity), particularly 

in the soil attached to roots (rhizosphere), and plant physiology characteristics (root 

surface area, root exudation) (Lux et al., 2010). Cadmium accumulation in plant tissues 

and subsequent trophic transfer along the food chain presents a risk to the environment, 

food quality, and human health (Smolders, 2013) (Figure 2.1). Retention of Cd in human 
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or animal bodies for many years may lead to cancer, bone lesions, lung insufficiency, 

teratogenic effects, renal disturbances, anaemia, hypertension and weight loss. It is 

therefore classified as a potential human carcinogen (group 2B) by the US Environmental 

Protection Agency (EPA), and a human carcinogen (group 1) by the International Agency 

for Research on Cancer (IARC) of the World Health Organization (WHO) (Godt et al., 

2006). 

2.3 Cadmium sources and levels in the soil 

Cadmium accumulation in the soil can occur due to both natural and human-derived 

sources. Cadmium is a naturally occurring contaminant in the phosphate rocks used to 

manufacture phosphate fertiliser, thus, soil Cd concentrations largely depend on parent 

rock material (Roberts et al., 1994). Cadmium in sedimentary phosphate rocks is present 

at a higher concentration and is more reactive than Cd present in igneous rocks (Table 

2.1). The lowest soil Cd concentration (0.1 to 0.3 mg Cd/kg) has been recorded in soil 

derived from igneous rock, while the highest soil Cd concentration (0.3 to 11 mg Cd/kg 

soil) has been reported in soils derived from sedimentary rocks (McLaughlin and Singh, 

1999).  

Table 2.1. Average Cd concentration in different phosphate rocks (PR) (McLaughlin and Singh, 

1999; Loganathan et al., 2003). 

Sedimentary PR Cd (mg/kg) Igneous PR Cd (mg/kg) 

Gasfa 38 Kola 0.2 

Morocco (Boucraa) 38 Chatham Rise 2 

North Carolina 41 North Florida 3 

Christmas Island 43 Phalaborwa 4 

Toga 51 Jordan 5 

Ocean Island 99 Sechura 11 

Nauru 100 Arad 12 
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Human activities such as mining, fossil fuel combustion, sewage sludge disposal and the 

addition of phosphate (P) fertiliser to soil elevate the Cd concentration in soil (Schipper 

et al., 2011). As a result, land use category can be considered as a key driver for topsoil 

Cd accumulation; a summary of previous studies conducted for Cd accumulation in 

various agricultural land uses in different countries are listed in Table 2.2. Generally, 

pasture and horticulture land-uses show higher Cd concentrations in soil than                     

non-cultivated soil. The reason for this is likely to be the long-term application of 

phosphate fertiliser in most pastoral and horticultural soils (Taylor, 2007; Yan et al., 

2015). In Australia, Jinadasa et al. (1997) reported that the mean Cd concentration for 29 

agricultural topsoil samples (0-150 mm) ranged from 0.11 to 6.37 mg Cd/kg (mean Cd 

concentration 1.33 mg Cd/kg), while the mean Cd concentration in topsoil collected from 

an uncropped area was 0.36 mg Cd/kg. A soil survey using data collected from 486 studies 

into the Cd concentration in Chinese arable soil showed that the average soil Cd 

concentration in arable land of China was 0.27 mg Cd/kg (Zhang et al., 2015). A study 

done by Sanderson et al. (2019) found that the soil Cd concentration in potato cultivating 

farms (20 farms) in Jamaica ranged between 0.1-62.3 mg Cd/kg.  

Table 2.2. Studies on mean soil Cd concentration as a function of land use in different countries.  

Country Land use type Mean Cd concentration        

(mg Cd/kg) 

Reference 

Australia Agricultural 1.33 Jinadasa et al. (1997) 

Netherlands Horticulture /Agriculture 0.50 Wiersma et al. (1986)  

Canada Orchards 0.56  Frank et al. (1976)  

United States Agricultural 0.13 Holmgren et al. (1993) 

New Zealand Pasture 0.44 Roberts et al. (1994) 

China Arable soil 0.27 Zhang et al. (2015) 

Spain Agricultural 0.30 Pérez-Sirvent et al. (2009) 
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2.4 Cd accumulation in New Zealand agricultural soils 

Several studies have conducted research on the natural background Cd concentration in 

New Zealand and reported this as 0.20 mg Cd/kg (Roberts et al., 1994), 0.16 mg Cd/ kg 

(Taylor, 2007) and 0.20 mg Cd/kg (Longhurst et al., 2004), with elevated levels of Cd, 

measured in New Zealand agricultural soils consistently associated with the long-term 

application of phosphate fertiliser (Loganathan et al., 2003; Abraham, 2018). Historically, 

the primary source of New Zealand’s phosphate fertiliser was phosphate rock imported 

from the Pacific Island of Nauru (Table 2.1). The superphosphate fertilizers produced 

from Nauru rock-phosphate is now known to be the most Cd contaminated (450 mg Cd/kg 

P) in the world. In recognition of this issue, and the realisation that Cd in fertiliser was 

leading to elevated soil Cd concentrations in agricultural and horticultural lands, the New 

Zealand fertilizer industry voluntarily limited the Cd concentration in New Zealand P 

fertiliser to 280 mg Cd/kg P from 1997 (Abraham, 2018).  

Cadmium accumulation in New Zealand agricultural soils varies from region to region 

based on the phosphate fertiliser use history and land use type (Taylor, 2007; Stafford et 

al., 2018). Table 2.3 summarises the findings of recent studies which provide an overview 

of the range and variability in national soil Cd concentrations based on land use, region 

and different phosphate fertiliser history. Cavanagh (2014b) reported that the highest 

median Cd concentrations were observed in Waikato, Taranaki and Bay of Plenty regions 

(0.74, 0.71 and 0.54 mg Cd/kg, respectively) which are major dairy and horticultural 

farming regions. This is in agreement with the early findings of Taylor (2007) who 

assessed the soil Cd concentration in soils from different New Zealand regions and 

showed that the highest concentrations of Cd were in Taranaki (0.66 mg Cd/kg) followed 

by Waikato (0.60 mg Cd/kg) and Bay of Plenty (0.52 mg Cd/ kg) (Figure 2.2). The 
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productive soils in these areas are developed from volcanic materials, where allophane, 

an Al-rich mineral showing large surface area and pH-dependent charge characteristics, 

is present and contributes to increased P sorption and subsequent Cd accumulation 

(Taylor, 2007).  

 

Figure 2.2. Cd accumulation in New Zealand based on regions (Taylor, 2007). 

 

Roberts et al. (1994) carried out a national survey on Cd accumulation in 312 pastoral 

sites in New Zealand and reported that the mean Cd concentration for pastoral soil             

(0-75mm depth) was 0.4 mg Cd/kg. McDowell et al. (2013) surveyed 939 agricultural 

soil samples and 289 non-agricultural soil samples at 0-100 mm depth across New 

Zealand. They reported the mean Cd concentration in agricultural soil as 0.32 mg Cd/kg 



13 
 

while for non-agricultural soil the value was 0.14 mg Cd/kg (Table 2.3). Martin et al. 

(2017) analysed the trace metal and metalloid (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) 

concentrations in 284 topsoil (0-300 mm) samples from agriculture and non-agriculture 

soils in southern New Zealand. They found that the topsoil Cd concentration for pasture 

lands ranged from 0.01 to 1.31 mg Cd/kg, while the average Cd concentration for natural 

background soil ranged from 0.01 to 0.24 mg Cd/kg. Wakelin et al. (2016) collected soil 

samples from 26 pasture sites (0-75 mm depth) and showed the mean soil Cd 

concentration to be 0.23 mg Cd/kg. Longhurst et al. (2004) conducted a survey on a total 

of 398 sites covering both farmed pastoral and non-farmed sites in the major provinces in 

New Zealand and found that the mean Cd concentration in farmed soil was 0.44 mg Cd/kg 

and the mean Cd concentration in non-farmed soil was 0.20 mg Cd/kg. Stafford et al. 

(2018) analysed the soil Cd concentration in two long-term dairy farms with different 

phosphorus fertiliser application histories in the Waikato and Canterbury regions. They 

observed a higher soil Cd concentration (0-150 mm depth) in the Waikato (Allophanic 

soil) farm (mean: 1.04 mg Cd/kg, range: 0.48-1.64 mg Cd/kg) than the Canterbury (Gley 

soil) farm (mean: 0.34 mg Cd/kg, range: 0.15-0.64 mg Cd/kg). Cavanagh (2014b) found 

that land use has an effect on the Cd concentration of soil as a function of differential 

rates of fertiliser. They found that the mean soil Cd concentration by land use decreased 

in order of; dairying (0.59 mg Cd/ kg)> orchard (0.55 mg Cd/ kg)> dry stock (0.33 mg 

Cd/kg)> arable (0.28 mg Cd/kg)> non-agricultural (0.13 mg Cd/kg).  
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Table 2.3. Summary of studies investigating Cd concentrations in New Zealand soils. 

Details Findings Reference 

Cd concentration measured in 

soil samples from pasture sites 

including high-intensity dairy 

production units to low-

intensity hill country grazing 

units. 

• The background soil Cd concentration ranged 

from 0.06-0.85 mg Cd/kg with a mean of 0.23 

mg Cd/kg soil. 

Wakelin et al. 

(2016) 

A survey conducted to 

evaluate the soil Cd 

concentration in agricultural 

and non-agricultural soil. 

• The mean Cd concentration in agricultural 

soil was 0.32 mg Cd/kg. 

• The mean Cd concentration in non-

agricultural soil was 0.14 mg Cd/kg. 

McDowell et al. 

(2013) 

A survey conducted in 312 

pastoral farming sites to 

compare the Cd concentration 

in native and pastoral soil. 

• The mean Cd concentration in native soil was 

0.20 mg Cd/kg. 

• The mean Cd concentration in pastoral soil 

was 0.44 mg Cd/kg. 

(Roberts et al., 

1994) 

A survey conducted on soil Cd 

variations in farmed and non-

farmed sites in major 

provinces in New Zealand. 

• The mean Cd concentration in farmed soil 

was 0.44 mg Cd/kg.  

• The mean Cd concentration in non-farmed 

soil was 0.20 mg Cd/kg. 

Longhurst et al. 

(2004) 

Cd concentration measured in 

241 pasture soil and 43 natural 

background from southern 

New Zealand. 

• The soil Cd concentration in the pasture was 

ranged from 0.005 to 1.31 mg Cd/kg. 

• The soil Cd concentration natural background 

soil was ranged from 0.005 to 0.24 mg Cd/kg. 

 

Martin et al. 

(2017) 

Assessed the soil Cd 

concentration from different 

regions and land use 

categories throughout the New 

Zealand. 

• Taranaki region showed the highest total soil 

Cd concentration (0.66 mg Cd/kg) followed 

by Waikato (0.60 mg Cd/kg) and Bay of 

plenty (0.52 mg Cd/kg) regions. 

• The dairying land use category showed the 

highest national average for Cd concentration 

(0.73 mg Cd/kg).  

• Sheep land use category showed the lowest 

national average for Cd concentration (0.33 

mg Cd/kg). 

Taylor (2007) 

Assessed the soil Cd 

concentrations in different 

regions in New Zealand. 

• Waikato showed the highest median Cd 

concentration of 0.74 mg Cd/kg followed by 

Taranaki (0.71 mg Cd/kg) and Bay of Plenty 

(0.54 mg Cd/kg) areas. 

Cavanagh et al. 

(2014b) 

A soil survey conducted to 

assess the soil Cd 

concentration from different 

regions and land use 

categories in New Zealand. 

• Waikato region showed the highest total soil 

Cd concentration (0.85 mg Cd/kg) in the 

country. 

• Otago had the lowest soil Cd concentration 

(0.2 mg Cd/kg) in the country. 

• Dairy was the land use with the highest Cd 

concentration (0.6 mg Cd/kg) followed by 

sheep (0.4 mg Cd/kg) and beef, and cropping 

(0.35 mg Cd/kg). 

Abraham (2018) 

Two long term dairy farms in 

Waikato (Allophanic) and 

Canterbury (Gley) regions 

used to determine the 

variations in soil Cd. 

• The mean Cd concentration in Waikato farm 

was 1.04 mg Cd/kg. 

• The mean Cd concentration in Canterbury 

farm was 0.34 mg Cd/kg. 

Stafford et al. 

(2018) 

Assessed the variation in Cd 

concentration between 

different soil types mainly 

collected from pasture sites. 

• The total Cd concentration in orthic 

Allophanic soil showed the highest Cd 

concentration (1.34 mg Cd/kg). 

• Orthic brown soil showed the lowest Cd 

concentration 0.04 mg Cd/kg. 

Gray et al. (2000) 
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Taylor (2007) also reported that dairying has the highest national average for Cd 

concentration for grazing land (0.73 mg Cd/kg) followed by deer (0.68 mg Cd/kg), horse 

(0.53 mg Cd/kg), beef (0.42 mg Cd/kg) and sheep (0.33 mg Cd/kg). Abraham (2018) 

analysed the soil Cd data collected by the fertiliser industry and regional councils in New 

Zealand between the years 2006 to 2015. The author reported that that dairy was the land 

use with the highest Cd concentration (0.6 mg Cd/kg) followed by sheep (0.4 mg Cd/kg) 

and beef and cropping (0.35 mg Cd/kg). 

2.5 Cd accumulation in forage and food species 

Variations of Cd absorption and accumulation across plants depends on the physiological 

characters of species and cultivar (Bingham et al., 1975). Generally, species within the 

Solanaceae (e.g.potato), Asteraceae (e.g. lettuce, chicory) and Brassicaceae (e.g. turnip, 

kale, swede) families accumulate a higher Cd concentration than the Gramineae (e.g. 

ryegrass, wheat) and Leguminosae (e.g. white clover) families (Kuboi et al., 1986). The 

uptake of Cd across economically important species in New Zealand was shown to 

decrease in the order of leafy vegetables> root vegetables> grain crops> fruit (Gray et al., 

1999). Gray et al. (1999) found that plant Cd concentrations decreased in the order lettuce 

(Lactuca sativa)> carrot tops (Daucus carota subsp. Sativus)> carrot root> lucerne 

(Medicago sativa)> cabbage (Brassica oleracea var. capitata)> wheat (Triticum)> maize 

(Zea mays)> ryegrass (Lolium)> clover (Trifolium)> barley (Hordeum vulgare). In a 

study, the Cd uptake by cultivars of wheat, potatoes (Solanum tuberosum), onions (Allium 

cepa), leafy green vegetables, and important pasture and forage species were assessed at 

twenty commercial field locations. The results showed that tissue Cd accumulation was 

highly dependent on the cultivar (Cavanagh et al., 2016).  
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To minimise potential risks associated with excessive Cd intake via consumption of food 

crops, maximum permissible limits (MPL) of Cd in edible plant parts have been 

established by the Codex Alimentarius Commission of the Food and Agriculture 

Organization (FAO), and Australia and New Zealand Food Regulation Authority 

(ANZFA) (FSANZ, 2013; CODEX, 2018) (Table 2.4). However, the ANZFA guidelines 

are stricter for some food crops compared to Codex guidelines which support maintaining 

high food standards. 

Table 2.4. MPL values for Cd in edible plant parts (FSANZ, 2013; CODEX, 2018). 

Edible plant tissue CODEX level for Cd (mg/kg 

Fresh Weight (FW)) 

ANZFA level for Cd (mg/kg 

Fresh Weight (FW)) (After 

2002) 

Brassica vegetables 0.05  

Fruiting vegetables 0.05  

Leafy vegetables 0.2 0.1 

Legume, cereals, potato 0.1 0.1 

Root and tuber vegetables 0.1 0.1 

Wheat 0.2 0.1 

Rice 0.4  

Table 2.5 shows a summary of recent studies conducted on variations of Cd accumulation 

in different food crops grown in New Zealand. Roberts et al. (1995) reported tissue Cd 

concentrations of 0.07, 0.04, 0.02 and 0.02 mg Cd/kg FW in wheat grain, lettuce, potato, 

and onion, respectively. While the mean Cd concentration in wheat grain was lower than 

the MPL of Australia and New Zealand Food Authority (ANZFA), the grain Cd 

concentration ranged from 0.02 to 0.19 mg Cd/kg; some reported concentrations were 

higher than MPL for some locations. Gray et al. (2019b) conducted a survey to determine 

the grain Cd concentration in wheat grown across 34 sites in New Zealand including sites 

in both the North (6 sites) and South (28 sites) islands in 2016-2017. They reported that 

the overall mean concentration in wheat grain (0.07 mg Cd/kg FW) was below the MPL 

of 0.1 mg Cd/kg FW, but 7% of grain samples exceeded the MPL (Table 2.5). Cavanagh 
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et al. (2019) conducted a field survey on the variations of Cd concentration of onion, 

lettuce and spinach grown in several fields across New Zealand in the years 2016 and 

2017. They found that the mean Cd concentration of onion and spinach was 0.02 and 0.06 

mg Cd/kg, respectively. However, the authors found that the mean concentration in 

spinach at several sites exceeded the ANZFA MPL for Cd in leafy greens of 0.1 mg 

Cd/kg. 

Table 2.5. Summary of relevant studies investigating Cd accumulation in food crops grown in 

New Zealand. 

Details Findings Reference 

A survey conducted to determine the Cd 

concentration in wheat cultivars across 

seven sites in New Zealand, between 

2016-2017. 

• The wheat Cd concentration ranged 

from 0.01-0.21 mg Cd/kg FW with a 

mean Cd concentration of 0.07 mg 

Cd/kg FW. 

• Only 7% of wheat grain samples exceed 

the MPL value of 0.1 mg Cd/kg FW. 

Gray et al. (2019b) 

Cd concentration measured in ten 

potato cultivars grown in three field 

sites in New Zealand. 

• The overall Cd concentration in all 

potato cultivars ranged from 0.04 to 

0.28 mg Cd/kg DW with a mean Cd 

concentration of 0.12 mg Cd/kg DW. 

Gray et al. (2019a) 

Cd concentration measured in spinach, 

onion, potato and wheat which collected 

from 48 sites across New Zealand. 

• Spinach (Spinacia oleracea) showed 

the highest Cd concentration (1.00 mg 

Cd/kg) followed by onion (0.20 mg 

Cd/kg), potato (0.19 mg Cd/kg) and 

wheat (0.10 mg Cd/kg). 

Yi et al. (2020) 

A field survey conducted to determine 

the variations in Cd concentration of 

onion, and spinach in the years 2016 

and 2017. 

• The mean Cd concentration of onion 

was 0.02 mg Cd/kg (range: 0.01-0.05 

mg Cd/kg). 

• The mean Cd concentration of spinach 

was 0.06 mg Cd/kg (range: 0.01-0.10 

mg Cd/kg). 

Cavanagh et al. 

(2019) 

A survey conducted to evaluate the Cd 

accumulation in different food plant 

species grown in Auckland market 

gardens and Canterbury wheat farms. 

• Wheat showed the highest tissue Cd 

concentration (mean: 0.07 mg Cd/kg 

FW, range: 0.02-0.19 mg Cd/kg FW). 

• Onion showed the lowest Cd 

concentration (mean: 0.02 mg Cd/kg 

FW, range: 0.01-0.11 mg Cd/kg FW). 

Roberts et al. 

(1995) 

2.5.1 Cadmium uptake variations in New Zealand livestock grazing forage plants 

Since the 1990s, a variety of new forage species have been introduced to New Zealand 

livestock grazing systems due to their high drought tolerance and high nutrient quality. 
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For example, summer- and winter-grazed forage brassicas are introduced as a source of 

high-quality feed for livestock when pasture feed quality is poor. In addition, chicory 

(Cichorium intybus L.) and plantain (Plantago lanceolata L.) are increasingly being sown 

as monoculture stands or in combination with red or white clover, due to their high 

nutrient quality, growth rate and persistence over the hot summer period. Further, they 

are deeper rooting plants than perennial ryegrasses, which could be useful to reduce 

nitrate-N leaching losses from grazed pasture systems (Li and Kemp, 2005; Woods et al., 

2018). 

Little data exists on Cd accumulation in forage species. Parker et al. (2008) reported that 

the pasture Cd concentration was 4-5 times higher in a plantain/ chicory/ red clover/ white 

clover forage stand (0.36-0.75 mg Cd/kg DM) than ryegrass/ white clover pasture stand 

(0.11-0.22 mg Cd/kg DM). Stafford et al. (2016) conducted a greenhouse trial involving 

12 forage species and showed that the mean tissue Cd concentration decreased in the 

order of chicory> plantain> turnip (Brassica rapa subsp. rapa)> lucerne> sheep’s burnet> 

strawberry clover> kale (Brassica oleracea)> perennial ryegrass (Lolium)> hares foot 

trefoil> red clover> crimson clover> white clover. Chicory and plantain had significantly 

greater mean tissue Cd concentrations (1.6 and 0.7 mg Cd/kg DM, respectively) than all 

other species (Figure 2.3). This observation built on an earlier field study by Martin et al. 

(1996) who reported that even at extremely low soil total Cd concentrations (0.004-0.020 

mg Cd/kg) chicory was able to accumulate high leaf Cd concentrations (1.6-2.4 mg Cd/kg 

DM). Crush et al. (2019) reported that the mean foliar Cd concentration in high Cd uptake 

cultivars and low Cd cultivars of chicory was 15.1 mg Cd/kg and 8.1 mg Cd/kg, 

respectively, when grown on in Horotiu silt loam soil with a total soil concentration of 

1.2 mg Cd/kg.  
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Figure 2.3. Mean tissue Cd concentration of various forage species used in New Zealand farming 

systems (redrawn and adapted from Stafford et al. (2016)). 

2.6 Cadmium accumulation in grazing animals 

The amount of Cd taken up by grazing animals will primarily depend on the level of Cd 

they are exposed to through the pasture (Roberts et al., 1994). Cadmium can accumulate 

in an animal’s body tissues, particularly in their kidney and liver as animals produce a 

metal-binding protein called metallothionein (Lee et al., 1996). Since the Cd is 

accumulated throughout the animal life, kidneys and livers will show higher Cd 

concentrations depending on the age of the animal. Therefore, the New Zealand meat 

industry began to discard kidneys and livers from animals aged 30 months or older, to 

minimise the risk of food standard maximum limit exceedances (Lee et al., 1994). Prior 

to 2003, the Maximum Residue Level (MRL) for the Cd content of meat and offal for 

human consumption was 1mg Cd/kg FW (Roberts et al., 1994). Roberts et al. (1994) 

found that about 22-28% of sheep and 14-20% of cattle kidney’s in New Zealand 
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exceeded the MRL from 1989-1991. Solly et al. (1981) observed that the Cd 

concentration in the kidney exceeded the MRL in about 5% of sheep, cattle and pig. Even 

22% of young sheep (<30 months age) were reported by Lee et al. (1994) to have a kidney 

Cd concentration that exceeded the 1 mg Cd/kg limit (Table 2.6). Strategies to minimise 

animal grazing on Cd-rich forages which can manage Cd accumulation in grazing 

livestock are, therefore, of critical importance to the ongoing sustainability of New 

Zealand pastoral farming systems (Lee et al., 1994; Lee et al., 1996; Stafford et al., 2016). 

The maximum Cd residue level in New Zealand meat changed in December 2002 with 

the permissible level increasing for kidney and liver but decreasing for meat flesh (Table 

2.6). These changes in MRL were implemented as ‘The Australia and New Zealand Food 

Authority (ANZFA)’ formed as a new joint organisation. A study by Reiser et al. (2014) 

showed that 2.9% of cows’ kidney, and 1.4% and 2.9% of sheep’s kidneys and livers, had 

a Cd concentration which exceeded the maximum permitted value. A study by Stafford 

et al. (2016) statistically modelled a lamb feed intake of 1 kg DM of chicory (1.64 mg 

Cd/kg DM) per day for 60 days and predicted a kidney Cd concentration of 1.45 mg Cd/kg 

FW. This author reported that even though the predicted kidney Cd concentration for 

lambs grazing a pure chicory stand did not exceed the current New Zealand MPL 

(FSANZ, 2013), it exceeded the current European Commission (EC) food standard MPL 

of 1.0 mg C/kg FW (EC, 2014). 

Table 2.6. The maximum residue level of Cd in New Zealand meat food (Loganathan et al., 2008; 

EC,2014: CODEX, 2018). 

Organ ANZFA  

Before Dec. 2002 

(mg Cd/kg FW) 

ANZFA 

After Dec. 2002 

(mg Cd/kg FW) 

EC 

(mg Cd/kg 

FW) 

CODEX 

(mg Cd/kg 

FW) 

Kidneys 1.0 2.50 1.0 0.2 

Liver 1.0 1.25 1.0 0.2 

Meat Flesh 1.0 0.05 - 0.1 
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2.7 The Fate of Cd in soil 

The source of Cd added to New Zealand pastoral soils is new Cd added through 

fertilisation (Figure 2.1, Table 2.3), or recycled Cd returned to soil with animal excrement 

or plant residues. Once Cd is added to the topsoil, the element will undergo a series of 

reactions, such as direct sorption to soil colloids, reaction with inorganic and organic 

ligands and subsequent adsorption of the ligand complexes to soil colloids, or 

precipitation as a compound with varying solubility. A small fraction of Cd in soil remains 

as the free Cd2+ ion (Figure 2.4) (Loganathan, 2012). 

 

Figure 2.4. The inputs outputs and dynamics of Cd in soil (redrawn and adapted from Loganathan 

(2012)).  

  



22 
 

In order to estimate the ecological risk associated with Cd contamination in soil, it is 

necessary to understand the bioavailability of Cd in the soil. The bioavailability of soil 

elements can be defined as the potential soil fraction of an element that can be transferred 

from soil to living organisms (Jeyakumar et al., 2010). Romić et al. (2014) defined the 

soil exchangeable and water-soluble fractions of trace metals as bioavailable fractions. 

However, the most bioavailable soil Cd species to plants is free Cd2+ ions in soil solution 

(Geebelen et al., 2003). The speciation of Cd in the soil can be operationally described 

by the distribution of Cd among defined chemical species within the soil system (Yang et 

al., 2019). The chemical species in the soil solid- and solution-phase can be categorised 

as follows (Hooda, 2010); 

• Exchangeable/ water-soluble fraction (bioavailable fraction) 

• Acid soluble fraction (carbonates) 

• Adsorbed or occluded in hydrated oxides of iron and manganese (reducible) 

• Complexed or occluded within organic matter (oxidizable) 

• Residual fraction  

Many studies have been conducted to determine Cd speciation in soil and land use types 

(Gray et al., 2000; Renella et al., 2004; Xin et al., 2015). For example, Gray et al. (2000) 

analysed the forms of soil Cd in 12 different New Zealand pasture topsoil using a 

sequential fractionation procedure. They observed that there was a wide range in the 

concentration of Cd associated with individual soil fractions and large variations between 

soils. However, on average for all soils, they observed that the smallest proportion of Cd 

was in the exchangeable form (3%), and the greatest proportion of Cd was associated with 

the organic fraction (34%). Similarly, Krishnamurti et al. (1996) determined the 

speciation of soil Cd in two contrasting soil types (typic boroll and udic boroll), under 

two different wheat cultivars (Arcola and Kyle) in Saskatchewan. They found that Cd 
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was dominated by association with organic matter in the typic boroll rhizosphere soil 

under both Arcola (0.12 mg Cd/kg) and Kyle (0.07 mg Cd/kg) cultivars. They suggested 

that the secretion of LMWOAs into the rhizosphere soil increased the organically bound 

fraction of Cd in the rhizosphere soil of both plants. In another study, Cd speciation in 

sandy loam soil collected from vegetable fields decreased in the order residual (44.5%)> 

acid extractable (27.96%)> reducible (Fe/Mn oxide) (23.09%)> oxidizable (organically 

bound) (4.5 %) (Wang et al., 2018). Jingchun et al. (2008) reported that the exchangeable 

Cd fraction in the rhizosphere soil of a mangrove forest soil was greater than the other 

fractions. However, they reported that the exchangeable Cd percentage in the rhizosphere 

was significantly lower than the exchangeable Cd percentage in the bulk soil. They 

attributed this discrepancy to plant uptake, and the complexing and chelating of Cd by 

soluble exudates of roots. Ru et al. (2006) reported that at soil Cd concentrations of 60 

mg Cd/kg, the exchangeable Cd concentration (DTPA-extractable Cd) in the rhizosphere 

soil (31.45 mg Cd/kg) was significantly (P<0.05) lower than that in the non-rhizosphere 

soil (38.5 mg Cd/kg) for Indian mustard (Brassica juncea). These authors suggested that 

this species may take up more Cd from near the root and that removed Cd cannot be 

quickly replenished from soil further away from the roots. 

2.8 Soil factors affecting Cd bioavailability in soil 

Many soil factors are known to influence the bioavailability of Cd and other metals in the 

soil. Soil pH and soil organic matter (SOM) are the dominating soil factors widely 

reported to influence Cd bioavailability (Table 2.7) (McLaughlin and Singh, 1999). 
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2.8.1 Soil pH 

The bioavailability of cationic trace metals is negatively correlated with soil pH 

(Loganathan et al., 2008; Shahid et al., 2016) (Table 2.7). Many studies have indicated 

that pH is the dominant soil factor that determines Cd bioavailability in soil (Meng et al., 

2018). Xian and Shokohifard (1989) observed a decrease in the concentration of Cd 

associated with soil carbonates (from 1.41 to 0.58 mg Cd/kg) when soil pH was reduced 

from 7.0 to 4.6, and this increased the concentration of exchangeable soil Cd from 5.9 to 

7.4 mg Cd/kg, subsequently increasing the bioavailability of Cd in loam soil. Loganathan 

(2012) showed that Cd sorption onto metal oxides increased when the soil pH increased 

from 4 to 8 and attributed this to the ‘sorption edge’. Naidu et al. (1994) investigated the 

effect of pH on the sorption of Cd in four soil types (Xeralf, Andep, Oxisol (Malanda), 

Oxisol (Mena)) from Australia and New Zealand. They observed greater (approximately 

100%) Cd sorption in all four soil types at high soil pH (>7) (Figure 2.5). They explained 

that at higher pH the stable species of Cd (CdOH+) has increased sorption to soil surfaces. 

 

Figure 2.5. Effect of pH on the proportion of Cd2+ and CdOH+ species in solution (redrawn and 

adapted from Naidu et al. (1994)). 
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Similarly, a study conducted by Tahervand and Jalali (2016) on Cd sorption and 

desorption in four calcareous soils in Iran reported that the proportion of soil Cd as the 

free Cd2+ species decreased with increasing soil pH from 2 to 8. They also reported that 

CdOH+ was present as the predominant species when pH was greater than 8. Christensen 

(1984) observed that Cd sorption by sandy and loamy soils increased by a factor of 3 for 

every pH unit increase between 4 and 7.7. In addition, Appel and Ma (2002) reported that 

a unit increase in pH of oxisol soil in Puerto Rico resulted in a 36% increase in Cd 

sorption. A study by Gray et al. (1998) using Te Kowhai silt loam and Waiotira silt loam 

(pH 4.8-6.2) in New Zealand found that an increase in soil pH from 5.1 to 6.1 resulted in 

an increase in Cd sorption to the soil by up to 48% and 26%, respectively. However, 

Naidu and Harter (1998) showed that there was no significant change in exchangeable Cd 

concentration when pH was increased above 5.5. They also reported that there was a 

significant increase in the concentration of organic matter extractable Cd which suggests 

that more Cd is sorbed into the soil by complexation with organic ligands at high pH. 

They suggested that above a soil pH of 5.5, competition for complexation between the 

metal ion and organic ligand anion is greater than the affinity of the metal ion on the soil 

surface. Meng et al. (2018) conducted a field experiment to evaluate the effects of alkaline 

amendments on soil bioavailability of Cd in rice grown in a Cd-contaminated clay loam 

soil. They suggested that an increase in soil pH can directly transform the bioavailable 

Cd fraction to a more stable fraction by Cd immobilisation in soils. 
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Table 2.7. Major factors affecting the Cd bioavailability in soil. 

Factor Cd bioavailability in soil Reference 

pH Negative correlation between soil pH and Cd 

bioavailability in soil. 

Low soil pH (<6), Cd in soil solution is 

predominately present in the free Cd2+ form as 

greater H+ concentration competes with Cd2+ for 

sorption sites. 

High soil pH (>6) neutralises H+ ions on the surface 

-OH groups associated with organic matter and clay 

minerals, creating a larger specific-sorption sink for 

Cd. 

Williams and David (1973)  

Tsadilas (2000) 

Xian and Shokohifard 

(1989) 

Loganathan et al. (2008) 

Shahid et al. (2016) 

Soil Organic 

Matter (SOM) 

Humic substances, the largest constituent of soil 

organic matter, contributes to the majority of cation 

binding properties. 

Ionic interactions exist between Cd2+ and the 

overall net negative charge of humus, reducing Cd 

bioavailability. 

Surface OH groups associated with phenolic groups 

in humus provide strong specific sorption by 

forming multidentate bonds with Cd2+. 

Gray et al. (1998) 

Loganathan et al. (2008) 

Shahid et al. (2016) 

 

 

Clay 

mineralogy, Fe 

and Mn oxide/ 

hydrous oxide 

The affinity between Cd and O is strong to remove 

H+ ions from metal -OH groups, resulting in a 

strong covalent bond between Cd2+ and the exposed 

metal oxide. 

 

Backes et al. (1995) 

Essington (2004) 

 

 

2.8.2 Soil organic matter 

The amount and characteristics of SOM is also a critical factor influencing Cd 

bioavailability (Loganathan, 2012); negatively charged functional groups in SOM (e.g. 

carboxylic and phenolic hydroxyl groups) may form complexes with Cd and reduce Cd 

bioavailability (Zaho et al., 2014) (Table 2.7). Gray et al. (1998) reported that the soil 

organic C percentage in different types of soil collected from agricultural lands in New 

Zealand decreased in the order Allophanic soil (te kuiti silt loam-11.5%)> Melanic soil 

(waiareka clay loam-6.9%)> Gley soil (temuka clay loam-5.9%)> Pallic soil (takahe silt 

loam-2.6%), where the highest total Cd concentration was observed in Allophanic soil 

(0.48 mg Cd/kg) followed by Melanic soil (0.35 mg Cd/kg), Gley soil (0.12 mg Cd/kg) 

and Pallic soil (0.10 mg Cd/kg). Zanders et al. (1999) reported that the total Cd 
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concentration decreased from 0.64 to 0.12 mg Cd/kg when soil organic carbon decreased 

from 16.8 to 6.7% across a soil depth from 0-300 mm in a well fertilised, hill-country 

Allophanic soil under long-term pastoral land use in New Zealand. Zhao et al. (2014) 

reported that the chemical removal of soil organic matter from acidic purple paddy soil 

(APPS) (13.92 g/kg soil organic matter) and calcareous purple paddy soil (CPPS) (29.87 

g/kg soil organic matter) significantly decreased the amount of Cd2+ adsorbed on APPS 

and CPPS by 4.32-15.78% and 9.05-19.02%, respectively. They suggested that the 

organic matter was beneficial to the immobilisation of Cd in soils through the adsorption 

process; however, its contribution varied depending on soil type as the Cd desorption 

percentage was much greater on CPPS than on APPS. Yu et al. (2016) suggested that the 

bioavailability of trace metals could be decreased through the adsorption or the formation 

of stable complexes with functional groups in SOM. However, the authors did not observe 

a correlation between SOM and metal availability due to low SOM content (varied only 

from 0.92% to 3.9%) of the soils used in this study. Recently Stafford (2017) used 

Allophanic and Gley soil to examine the relationship between soil C and total soil Cd 

concentration. They reported that total soil C was significantly (P<0.001) correlated    

(R2=0.87 (Allophanic) and R2=0.83 (Gley)) with soil total Cd concentration and 

accounted for a large proportion (83-90%) of the variability in soil total Cd 

concentrations. 

2.9 Influence of rhizosphere functions on Cd availability and plant Cd 

uptake 

The rhizosphere is the volume of soil around living plant roots that is influenced by root 

activity (Hinsinger, 1998; Lux et al., 2010). Generally, Cd bioavailability depends on the 

physical, chemical and biological processes operating in the rhizosphere (McLaughlin 
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and Singh, 1999). These processes are related to many factors such as; changes in 

rhizosphere pH, the activity of plant root-associated microorganisms, and the secretion of 

organic compounds from plant roots to the rhizosphere such as siderophores, high 

molecular weight compounds, and low molecular weight organic acids (Jeyakumar et al., 

2010; Lux et al., 2010).  

2.9.1 Rhizosphere pH 

The rhizosphere soil solution pH differs by up to 2.5 pH-units from that of the bulk soil 

solution, depending on the plant species and the buffering capacity of the bulk soil 

(Youssef and Chino, 1989). This difference can be attributed to a combination of 

mechanisms, including (i) cation exchange capacity (ii) root exudation and respiration 

(iii) redox-coupled processes involving changes in the oxidation state of Fe and Mn 

(Hinsinger et al., 2006). Shuman and Wang (1997) conducted a study on the effect of soil 

pH on Cd bioavailability in the rhizosphere and bulk soil under paddy rice (Oryza sativa). 

They found that the mean rhizosphere soil pH (5.11) was less than the bulk soil pH (5.20) 

and the mean exchangeable Cd concentration of the rhizosphere soil (2.5 mg Cd/kg) was 

higher than the bulk soil (2.0 mg Cd/kg). Krishnamurti et al. (1996) also observed lower 

rhizosphere pH (7.75) than bulk pH (7.95) in a typic boroll soil under wheat cultivars and 

found the corresponding Cd concentration was higher in rhizosphere soil than bulk soil. 

Jingchun et al. (2008) observed a significantly reduced pH (5.94) in the rhizosphere for 

mangrove plants grown in sediment soil with a Cd concentration of 10 mg Cd/kg relative 

to bulk soil (pH 6.40). However, they found that the percentage of the Cd concentration 

in the exchangeable fraction of the rhizosphere soil was 20% while that for bulk soil was 

a 25% percentage. They suggested that this discrepancy may be due to the increased plant 
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Cd uptake from the rhizosphere soil compared to the bulk soil (Ru et al., 2006; Jingchun 

et al., 2008). 

2.9.2 Rhizosphere Microorganisms 

Rhizosphere microorganisms are symbiotically associated with the roots of most plant 

species. Microorganisms obtain food from the rhizosphere, and in return, they regulate 

the uptake of plant nutrients and trace elements (Jones, 1998). Rhizosphere 

microorganisms can have either a positive or negative correlation with plant Cd 

bioavailability in soil depending on microorganism and plant species interactions. The 

uptake of Cd by plants is associated with the presence of microbially-derived 

siderophores and ligands which influence the chemistry of Cd in the rhizosphere soil 

(Jones, 1998); such molecules may reduce soil pH facilitating an enhancement of Cd 

bioavailability (Wang et al., 2009). A study conducted by Chauhan and Rai (2009) found 

a 2.5 and 1.8-fold increase in Cd uptake by Indian mustard plants in the presence of 

Pseudomonas fluorescens and Trichoderma harzianum, respectively. Guo et al. (1996) 

reported that soil micohorrizal fungus (Glomus mosseae) increased the uptake of Cd by 

up to 37% and 41% in beans (Phaseolus vulgaris) and maize, respectively. Chen et al. 

(2017) reported that the endophytic bacterium Pseudomonas fluorescens significantly 

increased the Cd accumulation in S.alfredii root and shoot by 46% and 60%, respectively 

at 1.2 g/L Cd concentration in hydroponic solution. These studies provide strong evidence 

that the secretion of exudates to the soil solution by microorganisms increases Cd 

bioavailability (Li et al., 2007; Chauhan and Rai, 2009). 

There is, however, contrasting evidence of the microbiological effect on Cd uptake. Dary 

et al. (2010) reported Bradyrhizobium sp. 750 + Ochrobactrum sp. Azn6.2 + 

Pseudomonas in soil decreased the uptake of Cd in yellow lupin (Lupinus) (from a plant 



30 
 

concentration of 4.00 to 0.25 mg Cd/kg). They concluded that these bacterial species 

secrete mammalian metallothioneins, which Cd can bind to the cell surface and reduce 

Cd uptake by plants. Similarly, Tripathi et al. (2005) reported that Pseudomonas putida 

decreased the Cd concentration in roots of mung bean plants (Vigna radiata) from 24 to 

12 mg Cd/kg. They observed that these bacteria secrete the compound pyoverdine, which 

binds with Cd to reduce Cd bioavailability.  

2.9.3 Presence of competing metal ions in the soil 

Cadmium uptake can be influenced by interactions with other cations such as Ca2+
, Fe2+, 

Zn2+, Se2+ in the rhizosphere soil solution (Lux et al., 2010). These cations can cause an 

impact on Cd uptake due to the competition for cation transport-specific channels or 

carriers with Cd (Shahid et al., 2016). Li et al. (2012) showed that application of the Ca2+ 

channel blocker ‘verapamil’, significantly reduced Cd2+ influx into seepweed (Suaeda) 

roots by 52%, in an agar medium. In another example, Hu et al. (2014) reported a decrease 

in rice grain Cd concentration by 44% through increasing the Se concentration in paddy 

soil from 0-5 mg Se/kg in soil.  

Cadmium and Zn have similar chemical characteristics and behave alike in the                 

soil- water- plant system (Mengel et al., 2001). The similarities of chemical behaviour 

between these two metals result in a protective effect of Zn against Cd uptake. As a 

consequence, plants absorb more Cd when the soil solution is Zn deficient (Mengel et al., 

2001). For example, Zhao et al. (2006), in the analysis of Cd and Zn interactions in 

rockcress (Arabidopsis Halleri), found that increasing the amount of Zn in a hydroponic 

culture from 0 to 65 mg Zn/L resulted in decreased Cd accumulation by 38% and 81%, 

in the root and shoot, respectively. Similarly, Han et al. (2006) reported that Cd 

accumulation in maize roots increased 3-fold under Zn deficiency in hydroponic culture, 
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whereas there was an 87% reduction in total root Cd when the Zn concentration increased 

from 0 to 0.16 mg Zn/L.  

Iron is another antagonistic micronutrient that competes with Cd for uptake in plants when 

they co-occur in soil solutions (McLaughlin and Singh, 1999). Ueno et al. (2008) reported 

that the introduction of 2.8 mg Fe/L to hydroponic culture reduced the Cd concentration 

in rockcress by 3.6-fold.  

2.9.4 Rhizosphere root exudates 

Root secreted Cd complexing ligands (root exudates) can be categorised into either; 

organic or inorganic ligands (Bali et al., 2020) (Figure 2.6). Organic ligands from root 

exudates can be categorized as either high molecular weight or low molecular weight 

materials (Luo et al., 2014). The Low Molecular Weight Organic Acids (hereafter Low 

Molecular Weight Organic Acids described as LMWOAs) such as malic, oxalic, acetic, 

fumaric and citric acids are negatively charged anions that are capable of forming stable 

complexes with bioavailable Cd2+ in soil and influence Cd uptake by plants (Han et al., 

2006; Zhu et al., 2011). The composition of organic acids released from roots is highly 

variable and depends on plant species and cultivars (Bao et al., 2011).  

A study conducted by Javed et al. (2017) reported that enhancement of oxalic and acetic 

acid secretion by 111% and 631%, respectively, increased the root Cd concentration from 

0.01 to 0.07 mg Cd/kg, while shoot Cd concentration increased from 0.01 to 0.03 mg 

Cd/kg in maize (3062 cultivar) (Table 2.8). Fu et al. (2018) reported that high                     

Cd-accumulating rice plants exude more total LMWOAs than low-Cd accumulating rice 

plants and that this influences plant Cd uptake (Table 2.8). They observed that the total 
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LMWOA concentration secreted by a high Cd uptake rice cultivar was 136% higher than 

for a low-Cd accumulating cultivar at a 5 mg Cd/L treatment in a hydroponic experiment.  

In contrast, Zhu et al. (2011) found 3.5 times higher root secretion of oxalic acid in a     

low-Cd accumulating tomato cultivar than a high-Cd accumulating tomato (Solanum 

lycopersicum) cultivar. The low-Cd accumulator had a 75% (P<0.05) reduced shoot Cd 

concentration for a 1 mg Cd/L hydroponic treatment. They suggested that root-secreted 

oxalate for the low Cd accumulating tomato cultivar plays an important role in reducing 

Cd toxicity in tomato by excluding the entry of Cd into the root cell membrane. 

Furthermore, Oloumi et al. (2011) reported that the addition of fumaric acid (5 mg/L) to 

the growth media significantly (P<0.05) reduced the total Cd concentration in canola 

seedlings (Brassica napus) by 98% compared to the control treatment in the presence of 

1 mg Cd/L in the growing media.
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Table 2.8. Findings of previous studies on the effect of LMWOAs on metal uptake by different plant species. 
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2.10 Plant Cd uptake, distribution and translocation 

2.10.1 Cadmium complex with organic acids in root exudates 

The secretion of anionic LMWOAs to the rhizosphere soil leads to a cation-anion 

imbalance inside the plant cytosol. To balance this, plants efflux H+ ions from plant cells 

(plant cytosol) into the rhizosphere soil from the proton pump (Luo et al., 2015; Tanwir 

et al., 2015) and any decrease in the rhizosphere pH due to this function will increase Cd 

bioavailability which in turn influences Cd uptake by plants. Studies have suggested that 

Cd chelation with LMWOAs may create an important pathway to mitigate the toxicity of 

free reactive metal ions inside the plant (Pence et al., 2000; Wei et al., 2007). Researchers 

have reported several mechanisms which describe how Cd-LMWOA complexes enhance 

Cd uptake by plants, and these are described below:  

(i) Cadmium can complex with organic acids to produce mobile and soluble organically 

bound Cd complexes, which can penetrate the lipid membrane of root cells. For example, 

Xin et al. (2015) reported that high Cd accumulating hot pepper roots (cultivar JFZ) 

secrete elevated levels of oxalic and tartaric acids to the rhizosphere soil. Both oxalic and 

tartaric acid have di- and tri- carboxylic acid functionality and high formation constants 

with Cd (Oxalic pKa-3.71, tartaric pKa-2.98) which can form complexes with free Cd2+ 

ions in the soil solution and increase Cd uptake via root membranes (Table 2.8). 

Krishnamurti et al. (1997) reported that the addition of citric (1.92 mg/kg) and oxalic acid 

(0.90 mg/kg) significantly increased Cd bioavailability in soil by 125% and 75%, 

respectively within 8 hrs. They explained that increased Cd bioavailability in the presence 

of LMWOAs is mainly due to the formation of Cd-organic acid complexes in the soil. 
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(ii) Cadmium-organic acid complexes might enter plants by breaking the endodermis and 

Casparian strips of the root cells (Li et al.,2014) (Table 2.8).   

(iii) Organometallic complexes in the soil solution can act as a carrier for Cd2+ ions 

towards the root surface and these complexes can disassociate into free Cd2+ at the root 

surface which can be absorbed by root membranes. For example, Han et al. (2006) 

suggested that acetic acid, which has a lower formation constant with Cd (pKa=1.50), can 

act as a carrier for Cd2+ ions towards maize roots and lead to the disassociation of              

Cd-acetic complexes into free Cd2+ ions at the root surface which can be absorbed by the 

maize root membrane (Table 2.8). 

In contrast, the secretion of LMWOAs into the rhizosphere can also contribute to ex 

planta Cd detoxification mechanisms by inducing the formation of metal-organic acid 

complexes in the rhizosphere soil which immobilize contaminants before they enter the 

root membrane. For example, Oloumi et al. (2011) reported that the formation of       

 Cd-fumaric complexes reduces Cd bioavailability in nutrient solution and thereby 

reduces Cd uptake by canola seedlings due to the formation of immobile ternary surface 

complexes in the media. Similarly, Kazemi Movahed (2020) reported that secretion of 

fumaric acid reduced the solubility and bioavailability of Cd for uptake by the soybean 

plant (Glycine max), through the formation of Cd-organic acid complexes in the soil. 

These authors suggested that steric factors associated with complexes that are too large 

to cross root membranes easily prevent Cd influx into the root cells. 
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Figure 2.6. Pathway of root exudates inside the root (redrawn and adapted from Akter (2016)). 

2.10.2 Cd transport through the root membrane 

The root epidermal layer in plants acts as a barrier for diffusing Cd from soil to plant. 

Cadmium ions (Cd2+) combine with specific and non-specific transporters such as ZIP, 

OsIRT, Yellow-Stripe 1-Like protein, and Low-affinity Cation Transporter (LCT1) of 

essential elements (Fe2+, Ca2+ and Zn2+) (Llugany et al., 2012). In doing so, Cd can pass 

through the corresponding ion channels of these molecules and subsequently enter 

through the root epidermis layer (Roth et al., 2006; Mendoza-Cózatl et al., 2011). Various 

transcriptional and post-transcriptional genes are responsible for encoding specific and 

non-specific transporters for the uptake of essential elements such as Zn2+ and Fe2+ (Roth 

et al., 2006). It was reported that the ZIP family transporters which are responsible for 

Fe2+ and Zn2+ uptake also mediate Cd uptake by plant roots (Mendoza-Cózatl et al., 2011). 

Han et al. (2006) reported that the Zn membrane transporter ZIP enhanced Cd uptake       

3-fold in maize when there is a Zn deficiency in the soil. The OsIRTs transporter, which 
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is considered as a transporter for Fe2+ uptake, is also suggested to contribute to Cd uptake 

by plants (Nakanishi et al., 2006; Lee and An, 2009). For example, Lombi et al. (2002) 

reported that OsIRT enhanced Cd uptake in alpine pennycress (Thlaspi caerulescens) by 

3-fold in a Fe deficient hydroponic culture relative to a Fe sufficient hydroponic culture. 

Cohen et al. (1998) reported that Fe deficiency in pea (Pisum sativum) induced the 

expression of Fe transmembrane carriers (IRT1) and found that Cd uptake was 7-fold 

higher when the hydroponic culture had no Fe in comparison to a solution with a Fe value 

of 0.5 mg Fe/L.  

2.10.3 Subcellular distribution of Cd in plant root 

Despite no known essential role for plant growth, Cd can be absorbed by plant roots and 

accumulated in different plant tissues (Senden and Wolterbeek, 1990) (Figure 2.7). 

Subcellular accumulation of Cd in plants varies greatly depending on plant species and 

cultivar (Huang et al., 2019). Studies have reported that for most plants, Cd tends to 

accumulate in the roots, with only a small portion being translocated to aerial parts where 

roots act as an effective barrier to Cd translocation to shoots (Li et al., 2019a).  

 

Figure 2.7. Movement of Cd plants apoplastic and symplastic pathways of root (redrawn and 

adapted from Song et al. (2017)). 
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Movement of Cd through root cells can either be passive via diffusion and convection 

through the apoplast (apoplastic pathway) or active and selective transport from cell to 

cell via the symplast (symplastic pathway) (Figure 2.7) towards xylem vessels (Song et 

al., 2017). However, when Cd2+ is moving via the apoplast pathway of root cells it is 

adsorbed into negatively charged sites present in the root cell wall (Senden and 

Wolterbeek, 1990; Conn and Gilliham, 2010). Table 2.9 summarises studies that have 

been conducted to determine the subcellular distribution of Cd in different plant species. 

Zhou et al. (2015) reported that 60-90% of absorbed Cd was accumulated in the roots of 

32 hybrid rice cultivars (Table 2.9). Lozano-Rodriguez et al. (1997) observed that Cd 

accumulation in plant roots varies with plant type and they observed that more Cd 

accumulates in the cell-wall fraction of roots of corn (40%) than pea (20%). Wu et al. 

(2005) showed that 51% of Cd existed as a soluble form and 36% was bound in the cell 

walls of barley roots. Yu et al. (2021) reported that Cd was mainly distributed in the 

soluble fraction (vacuoles) (47%-48%) and cell wall fraction (42%-45%) in the roots of 

rice (Lu527-8). Similarly, Isaure et al. (2006) observed that Cd was mainly (75%) bound 

to O/N groups in the root cell wall of thale cress (Arabidopsis thaliana) with a small 

proportion (about 25%) of Cd bound to S-containing ligands in the root cell wall. Li et al. 

(2019a) suggested that Cd in the soluble fraction of water thyme (Hydrilla verticillate) 

was mainly accumulated in cell vacuoles which is a dynamic organelle that occupies as 

much as 90% of the total cell volume in some cell types. Furthermore, they reported that 

vacuoles contain various organo-ligands, such as sulfur-rich peptides and organic acids 

to bind with free Cd2+ ions. In sweet potato (Ipomoea batatas) plants, the cell wall has 

many negatively charged sites on the surface of cellulose, hemicellulose, pectin, and 

protein components, which can bind Cd ions and restrict their transport across the 

membrane (Huang et al., 2019) (Table 2.9). 
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Table 2.9.Previous studies conducted on the subcellular distribution of Cd in different plant 

species. 

Details Findings Reference 

Maize and pea plants were grown in 

nutrient solution with 1 and 5 mgCd/L 

concentrations for 11 days. 

• Both plants showed high Cd 

accumulation in roots compared to 

shoots. 

• The root Cd accumulation increased 

by 49%, and 84% in maize and pea, 

respectively when the nutrient Cd 

concentration increased from 1 to 5 

mg Cd/L. 

• More root Cd accumulates in the 

cell-wall fraction of roots of corn 

(40%) than pea (20%). 

Lozano-

Rodriguez et al. 

(1997) 

A hydroponic experiment conducted to 

asses the subcellular distribution of Cd 

in barely roots under 0.05 µg Cd/L and 

5.00 µg Cd/L Cd treatments. 

• Mainly Cd existed as a soluble form 

(51% ) in barley roots 

• There was 36% of Cd were bound in 

cell walls in barley roots and 3% 

were bound to chloroplast 

/trophoplast. 

Wu et al. (2005) 

The subcellular distribution of Cd in 

plant tissue investigated in (raddish 

Raphanus sativus) (Cd sensitive 

cultivar) under different Cd 

concentrations in soil; 0,1.0, and 5 mg 

Cd/kg 

• Cd accumulation in roots of Cd 

sensitive cultivar was mainly 

associated with cell walls (46-49%) 

and followed by the soluble fraction 

(36–38%) organelles (15%). 

Xin et al. (2017b) 

A hydroponic experiment conducted to 

understand the characteristic 

mechanism of high Cd accumulation in 

rice roots (variety Lu527-8) under 

increasing Cd concentration from 0 to 5 

mg Cd/L. 

• Cd was mainly bound in the soluble 

fraction (47%-48%) and cell wall 

fraction (42%-45%).  

Yu et al. (2021) 

A field experiment conducted to 

determine the variations of plant tissue 

Cd accumulation in 32 hybrid rice 

cultivars in China. 

• Cd mainly accumulates in rice roots 

(60%). 

 

Zhou et al. (2015) 

2.10.4 Xylem loading of Cd 

Xylem loading is the process where plant absorbed Cd is diffused to the stem xylem from 

root cells (Figure 2.8) (Clemens et al., 2002). This plays an important role in Cd 

accumulation within aerial plant parts (Mori et al., 2009). Many studies have identified a 

number of important membrane transporters such as ATP Binding Cassette (ABC) 

superfamily, HMA (Heavy Metal ATPase), ZIP (ZRT, IRT-like protein) and YSL 

(Yellow-Stripe-Like Transporter) which may be involved in Cd loading into the xylem 
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sap for internal plant transport (Hasanuzzaman et al., 2018; Shahid et al., 2016; Song et 

al., 2017).  

 

Figure 2.8. Cd translocation pathway through plant species (redrawn and adapted from (Song et 

al. (2017)). 

Several studies have found that P1B-ATPase and ZIP family transporters are also 

involved in Cd transfer across the plasma membrane into shoots (Hanikenne et al., 2008; 

Wong and Cobbett, 2009). Over-expression of OsHMA3 has been found to improve Cd 

tolerance and reduce accumulation in rice. Sasaki et al. (2014) reported that                     

over-expression of OsHMA3 improved plant tolerance to Cd in brown rice and decreased 

Cd accumulation by about 81% compared with wild-type plants. However, stem xylem 
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loading is a tightly regulated process mediated through mostly unidentified membrane 

transport proteins which are specific for plant species and cultivars. 

2.10.5 Cadmium translocation through xylem 

Cadmium can translocate from roots to other tissues via transpiration-driven xylem 

loading, via symplast and apoplast pathways (Figure 2.8) (Shahid et al., 2016). Many 

studies have highlighted the influence of type and concentration of LMWOAs in xylem 

sap on Cd translocation in different plants (Table 2.10).  

Cadmium mainly binds with negatively charged sites present in the xylem cell wall during 

the translocation of Cd2+ to shoots via the xylem vessels (Senden and Wolterbeek, 1990). 

Xylem sap contains amino acids, proteins and LMWOA such as citric, maleic, oxalic 

which can form complexes with Cd2+ (Ueno et al., 2005). The formation of Cd complexes 

in xylem sap prevents Cd2+ adsorption to cell walls and hence, facilitates the movement 

of Cd complexes with xylem sap to upper plant tissues (Álvarez-Fernández et al., 2014) 

(Figure 2.8). These LMWOA-Cd complexes may be involved in the metal detoxification 

process leading to a reduction of the free ionic forms of metal inside the plant (Pence et 

al., 2000). Senden et al. (1995) reported that citric acid was the major ligand for Cd 

transport in tomato plants, where >50% of Cd is transported as a Cd-citric acid complex. 

Li et al. (2019b) reported that citric (R=0.90), tartaric (R=0.73) and oxalic acid (R=0.90) 

concentrations in the xylem sap of the Luhui17 rice cultivar were significantly and 

positively correlated with xylem sap Cd concentration. Fu et al. (2019) found that the 

concentration of citric and tartaric acids in rice (Lu.527-8) xylem sap was positively 

correlated with the total xylem sap Cd concentration when the soil Cd concentration 

increased from control (0.31 mg Cd/kg) to 5 mg Cd/kg soil (R=0.82 and R=0.97, 

respectively) (Table 2.10).  
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Table 2.10. Summary of previous studies conducted on the effect of trace metals on plant xylem sap LMWOAs concentration. 

Plant specie Metal 

concentration 

in the media 

Type of 

LMWOA 

produced in the 

xylem 

Summary of the study References 

Rice  

•LU527-8 (high Cd 

accumulating 

Cultivar) 

•LU527-4 (low Cd 

accumulating 

cultivar) 

Cd (0-10 mg 

Cd/kg) 

 

Malic 

Tartaric 

Citric 

oxalic 

• LU527-8 has high LMWOAs concentration compared to 

LU527-4 xylem sap at different Cd concentrations ranged 

from (0-10 mg Cd/kg). 

• The citric acid (R=0.82) and tartaric (R=0.97) acid 

concentration significantly and positively correlated with 

xylem sap Cd concentration of LU527-8. 

Fu et al. (2019) 

Rice  

•A low Cd-

accumulating rice 

line D62B 

•A common rice 

line Luhui17 

Cd (0-2.0 mg 

Cd/L) 

 

Malic 

Citric 

Tartaric 

Oxalic 

 

 

• The tartaric (R=0.88), malic (R=0.77) and citric acid 

(R=0.89) concentrations were significantly and positively 

correlated with Cd concentration in xylem sap of D62B. 

• Citric (R=0.90), tartaric (R=0.73) and oxalic acid (R=0.90) 

concentrations significantly and positively correlated with 

the xylem sap Cd concentration of Luhui17. 

• Citric acid formed more stable octahedral complexes with 

metal cations in xylem sap and increased the Cd 

translocation. 

Li et al. (2019b) 

Castor beans  Cd (0-1mg/L) Citric • Less than 10% of Cd bind with citric and glutathione and 

translocate in the xylem. 

• More than 90% translocate as free Cd2+ ions in xylem sap. 

Hazama et al. 

(2015) 

Rock cress Cd (3.9 mg/L) Malic 

Citric 
• Malic or citric did not participate in Cd translocation in 

xylem sap while Cd mainly translocated as free Cd2+ ions 

(86%) in the xylem sap. 

Ueno et al. (2008) 
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However, Hazama et al. (2015) observed that Cd in castor beans (Ricinus communis) is 

mainly translocated as free Cd2+ ions (>90%) rather than as a complex with organic acids. 

Similarly, Ueno et al. (2008) reported that there was a higher percentage (85.7%) of free 

Cd2+ concentration in the xylem sap of rockcress compared to citric (3.2%) and malic 

(0.4%) acids when exposed to a Cd solution concentration of 1 mg Cd/L. They concluded 

that Cd translocation in rockcress is an energy-dependent process and that free Cd2+ does 

not need to be complexed to organic acids for translocation. 

2.11 Analytical methods to measure LMWOAs and Cd species in plant 

saps 

A number of advanced analytical techniques can be used to quantify the form and amount 

of LMWOA and Cd species in plant saps, including High-Performance Liquid 

Chromatography (HPLC) and 113Cd-Nuclear Magnetic Resonance Spectroscopy            

(113Cd-NMR). Table 2.11 shows the various methodologies that have been used to 

measure the form of Cd in different xylem saps. 

2.11.1 High-Performance Liquid Chromatography (HPLC) 

High-Performance Liquid Chromatography (HPLC) can be used to identify organic 

compounds in xylem saps (Fu et al., 2019) and root exudates (Cawthray, 2003). HPLC 

separates organic compounds using a reverse-phase column according to their polarity 

(Arnetoli et al., 2008). In the reverse phase column, organic compounds are partitioned 

leading to differential migration through the column. As a result, organic compounds 

elute from the column at different times enabling them to be identified depending on the 

retention time (Collins, 2004). However, this method has a major limitation for Cd 
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analysis as it is unable to differentiate between Cd bound to organic complexes and Cd 

as free Cd2+. This is because organic complexes tend to denature during the analysis 

(Strobel, 2001). Some studies have used ‘Size Exclusion Chromatography (SEC)’ to 

overcome this limitation through modification of the HPLC technique to separate 

molecules by size or based on hydrodynamic volume (Wei et al., 2007; Kato et al., 2010). 

Wei et al. (2007) used SEC to analyse the form of Cd in long-distance transport in xylem 

sap of Indian mustard and they observed that 35% of Cd is transported as organic acid-

Cd complexes, and 1% is transported as a Phytochelain-Cd complex. 

2.11.2 113Cd-Nuclear Magnetic Resonance Spectroscopy (113Cd-NMR) 

The form of Cd in plant saps can be identified using 113Cd-Nuclear Magnetic Resonance 

Spectroscopy (Cd-NMR) (Grassi and Mingazzini, 2001). This analysis is carried out by 

combining the ligand with a stable isotope of Cd (113Cd). When the metal is coordinated 

with various chelating ligands, the chemical shift of 113Cd differs according to the polarity 

of the complexed ligand (Larive et al., 1996). Therefore, the 113Cd-NMR technique can 

differentiate free ionic Cd from complexed Cd in plant saps based on their chemical shifts 

(ppm). Ueno et al. (2008) reported that Cd is transported as free Cd2+ in rockcress xylem 

sap and they observed a 113Cd-NMR peak corresponding to Cd2+ at a chemical shift of 

0.27 ppm (Table 2.11). Similarly, Ueno et al. (2005) found that Cd complexed with malate 

in the leaf sap of alpine pennycress was defined by a 113Cd-NMR peak at a chemical shift 

of 16.9 ppm. This method has been widely recognised for its high performance in 

selectivity, reproducibility and sample recovery. However, low sensitivity and high 

maintenance costs have been noted as key limitations (Emwas, 2015). 
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Table 2.11. Summary of various methodologies used to measure forms and amount of Cd in different plant species. 

Plant species Methodology Summary of findings References 

rock cress Xylem sap was collected from plants exposed to 

3.9 mg Cd/L for 9.5 hours. 

Cd concentration in xylem sap was analysed using 

Graphite Furnace Atomic Absorption 

Spectroscopy. 

The form of Cd in the xylem sap was identified by 

using the 113Cd-NMR technique.  

• Cd occurred mainly in the free ionic form (85 

%) in the xylem sap and the concentration of 

Cd in the xylem sap increased linearly with 

increasing Cd concentration in the external 

solution from 0.05-1.12 mg Cd/kg. 

 

 

Ueno et al. (2008) 

oil seed rape Xylem sap was collected after plants were exposed 

to Cd treatment solutions of 2.11 mg Cd/L and 

10.57 mg Cd/L for 10 hours. 

Size exclusion and high-performance liquid 

chromatography was used to investigate the Cd 

associated chelates in the xylem sap. 

• Cd translocated as Cd maleic complex in 

xylem sap. 

• Cd concentration in xylem sap linearly 

increased with xylem sap maleic 

concentration. 

Nakamura and 

Akiyama (2008) 

alpine 

pennycress 

Plants were grown hydroponically in a highly 

enriched 113Cd stable isotope (10.57 mg Cd/L). 
113Cd-NMR spectroscopy combined with a stable 

isotope (113Cd) labelling technique was used to 

identify the form of Cd in the leaves of alpine 

pennycress. 

• Cd was coordinated mainly with malate-83% 

in the leaves of alpine pennycress.  

• Cd-NMR with leaf sap showed a signal at the 

chemical shift of around 16.9 ppm. 

 

Ueno et al. (2005) 

rock cress Leaf sap was collected after the plants were 

exposed to Cd treatment solutions of 5.28 mg Cd/L 

and 21.14 mg Cd/L for 9 weeks. 

X-ray Absorption Spectroscopy was used to 

investigate the Cd associated chelates in the xylem 

sap. 

• Cd (80 %) was coordinated with O atom 

containing ligand and 20% of Cd coordinated 

with S atom containing ligand in leaf sap. 

Huguet et al. 

(2012) 
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2.11.3 Cadmium ion analysis using electrochemical methods: Development of 

chemically modified carbon paste electrode   

Electrochemical methods have become promising tools for Cd analysis due to their speed, 

low-cost, simplicity and high sensitivity for small size samples. Stripping voltammetry 

(SV) is a very sensitive and selective electrochemical method to determine the 

concertation of metal ions in biological samples (Kounaves, 1997). Stripping 

voltammetry consists of a three-electrode system: a working electrode, a reference 

electrode and a counter electrode (Figure 2.9) (Pramanik et al., 2013).  

 

 

 

 

 

Mercury electrode has been widely used for electrochemical Cd analysis as the working 

electrode with Ag/AgCl as the reference electrode and a platinum counter electrode 

(Shams and Torabi, 2006). However, the toxicity of mercury today excludes its 

application as the working electrode in stripping analysis and attempts have been made 

to introduce modified carbon-paste electrodes in stripping analysis of metal ions 

(Afkhami et al., 2013). Afkhami et al. (2012) reported that phosphorusylide N-BDMP is 

a suitable modifier for constructing a chemically modified carbon electrode. With this 

Figure 2.9. Electrode system for Cd measurement (redrawn from Pramanik et al. (2013)). 
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combination, they successfully measured Cd2+ with a lower detection limit of 6.6 µg/L in 

biological samples (Table 2.12). A diacetyldioxime modified carbon paste electrode was 

developed by Hu et al. (2003) which showed a 101% Cd2+ recovery in water samples. 

Marinho et al. (2013) developed (BiO)2CO3 and Bi2O3 nanostructure incorporated 

graphite composite electrodes for the determination of Cd2+ using square wave anodic 

stripping voltammetry. This electrode showed a lower detection limit of 0.65 µg/L for 

(BiO)2CO3 modifier and 0.26 µg/L for the Bi2O3 modifier. Leoncini et al. (2019) 

developed a Gold nanoparticle (AuNP) modified graphene carbon paste electrode with a 

lower detection limit of 267 µg Cd/L to determine Cd2+ ions in environmental samples 

(Table 2.12). Table 2.12 provides an overview of different studies on the development of 

Cd2+ ion-specific electrodes using different modifiers and methods.  

Table 2.12. Summary of different Cd2+ ion electrodes prepared in different studies. 

Modifier Method Lower detection 

limit (µg Cd/L) 

Linear range 

(µg Cd/L) 

Reference 

Nano-porous pseudo-carbon 

paste electrode 

DPSV 8.7 21-634 Liu et al. (2019) 

 

Spent coffee grounds ASV 18 × 103 - Estrada-Aldrete et al. 

(2020) 

Gold nanoparticles (AuNP) 

modified graphene  

CV 267 

 

750-1000 Leoncini et al. (2019) 

Lanthanum  SQWAV 0.12 

 

5-500 Ismail et al. (2019) 

Zeolite antimony oxide  LSASV 11.23 

 

80-150 Le Hai et al. (2020) 

Antimony film modified 

sodium montmorillonite 

SQWAV 0.25 4-150 Chen et al. (2016) 

Phosphorous ylide nitro 

benzoyl di phenyl methylene 

phosphorane  

CV 6.6 10-2000 Afkhami et al. (2012) 

N-P chloro phenyl cinnamon 

hydrxamic acid 

CV 1.1 4-7. Fanta and 

Chandravanshi 

(2001) 

 
Note: DPSV-Differential Pulse Stripping Voltammetry; ASV-Anodic Stripping Voltammetry; CV; Cyclic Voltammetry; SQWAV; Square Wave 

Anodic Stripping Voltammetry; LSASV-Linear Square Wave Anodic Stripping Voltammetry. 
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2.12 Summary and knowledge gaps 

The application of phosphate fertiliser to New Zealand agricultural lands has played a key 

role in the addition of higher amounts of Cd to the soil. Even though Cd is a non-essential 

element for plants, studies have found that it is effectively taken up by the root systems 

of many plant species and is translocated throughout the plant. However, different plants 

have different mechanisms to uptake Cd from the soil and translocate the metal from roots 

to shoots. Stafford et al. (2016) recently showed that forage species such as chicory and 

plantain can accumulate significantly higher Cd concentrations, from even low Cd soils, 

when compared to grasses and legumes. Furthermore, literature has identified that Cd 

accumulation in the liver and kidney of grazing lambs is strongly related to daily dietary 

Cd intake. These studies suggest that a change in pastoral species composition away from 

ryegrass and clover to forage crops has the potential to increase Cd intake by grazing 

animals. Therefore, it is important to investigate the mechanisms underpinning Cd uptake 

and translocation in chicory and plantain to better manage the risk of high Cd 

accumulation in the offal. There have been no studies published on the Cd uptake 

mechanisms of common forage species used in New Zealand agriculture. 

Available literature suggested that interactions between plant species and chemical 

changes in the rhizosphere soil play a key role in Cd uptake mechanisms. A clear message 

from the literature is that the type and concentration of LMWOAs secreted by plant roots 

vary as a function of plant species and soil Cd concentration. LMWOAs secreted by plant 

roots may influence plant Cd uptake through forming stable complexes with bioavailable 

soil Cd2+ and could be an in planta or ex planta Cd detoxification mechanism to alleviate 

the toxicity of free Cd2+ ions via organic complexation. This literature review has 

identified the need to investigate changes in rhizosphere chemistry which may be 
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associated with LMWOA secretion by chicory and plantain to better understand plant 

root Cd uptake mechanisms of these two forage crops. 

 

Root to shoot Cd translocation via the xylem is the main process accounting for Cd 

accumulation in the aerial parts of plants. Available literature suggests that Cd which 

enters the root membrane can be translocated as free Cd2+ ions via xylem sap towards 

aerial parts of the plant. The review of literature has emphasised the importance of 

determining the free Cd2+ ion concentration in chicory and plantain xylem sap to better 

understand the mechanism of Cd translocation in these two forages. Previous literature 

has indicated that chemically-modified carbon-paste electrodes can be used to determine 

free Cd2+ ion concentrations during environmental sample analysis. However, there are 

no studies published on the application of chemically modified electrodes to determine 

the free Cd2+ ion concentration in plant/ xylem saps. There is, therefore, good potential to 

develop a novel electrode to quantify free Cd2+ ions in plant xylem sap. Such an electrode 

could allow direct measurement of low concentrations of free Cd2+ ions in low volume 

solutions that are characteristic of biological samples. 

 

Literature also shows that different soil Cd levels can affect the production of LMWOAs 

in xylem sap and these produced organic acids can act as potential chelators to facilitate 

trace metal transport in the xylem sap of plant species. Available literature suggests that 

the formation of organic metal complexes is an internal detoxification mechanism for Cd. 

It is therefore important to assess the relative production and translocation of LMWOA 

in the xylem of chicory and plantain in response to Cd in the growing media. 
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2.13 Research questions 

This literature review has revealed key knowledge gaps that constrain understanding of 

Cd uptake and translocation mechanisms in chicory and plantain. The overall aim of the 

research described in this thesis is to determine the plant Cd uptake mechanism in chicory 

and plantain and this research has been designed to address three knowledge gaps. 

The first knowledge gap is the need to understand the effect of increasing Cd levels in 

growing media on LMWOA secretion by chicory and plantain roots. Specifically, the 

following research questions have been identified: 

• How does the type and concentration of LMWOA secreted by plant roots vary 

with increasing Cd concentration in the growth media of both plants? 

• Is there any difference in LMWOA secretion between chicory and plantain? 

• How does root secrete LMWOA impact plant Cd uptake by both plants? 

• How do the variations in LMWOA production in both plants explain the 

differences in plant Cd uptake by chicory and plantain? 

 

Second is the need for knowledge of the chemical speciation of Cd in xylem sap, 

particularly the free Cd2+ ion concentration, as well as quantitative data on the 

concentration of LMWOA-complexed Cd in chicory and plantain xylem saps. However, 

quantification of very low free Cd2+ concentrations in plant sap is a significant analytical 

challenge due to the lack of any reliable analytical tools for micro or nano level Cd2+ ion 

measurement.  
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To satisfy the above objective the following research questions have been identified: 

• Can a simple ion-specific electrode quantify low concentrations of free Cd2+ 

ions species in the xylem sap be developed? 

• In which chemical form is Cd mainly translocated inside the xylem sap of 

both plants? 

• How does the composition and quantity of LMWOA in the xylem sap vary 

with increasing Cd concentration in the growth media of both plants? 

• Is there any difference in xylem sap LMWOA production between chicory 

and plantain? 

• How does the xylem sap LMWOA impact on shoot Cd concentration of both 

plants? 

• How does the LMWOA production in xylem sap alleviate the Cd toxicity in 

both plants? 

The third knowledge gap relates to how the external application of LMWOA influences 

the uptake of Cd by chicory. Specifically, the following research questions have been 

identified: 

• Does the external application of different LMWOA impact plant Cd uptake 

and translocation? 

• What is the specific active range of LMWOA concentration responsible for 

influencing Cd uptake and translocation? 

• Does the external application of LMWOA alleviate Cd toxicity in plants? 

 

The research described in this thesis has been designed and conducted to explore and 

(where possible) answer these research questions.
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Effect of soil Cd on root organic acid secretion by forage crops 

This chapter was published in the Environmental Pollution journal in 2021. Citation:  

• Ubeynarayana, N., Jeyakumar, P., Bishop, P., Pereira, R. C., Anderson, C. W. N., 2021. 

Effect of soil cadmium on root organic acid secretion by forage crops. Environmental 

Pollution 268, 115839: https://doi.org/10.1016/j.envpol.2020.115839. 

3.1 Graphical Abstract 
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3.2 Abstract 

Two forage species used in New Zealand pastoral agricultural systems, chicory 

(Cichorium intybus L.) and plantain (Plantago lanceolata L.), show differential ability to 

absorb and translocate Cd from roots to shoots. Chicory can accumulate Cd from even 

low Cd soils to levels that might exceed regulatory guidelines for Cd in fodder crops and 

food. Plant uptake of Cd is dependent on interactions between the rhizosphere soil-plant 

root interface. Plants roots secrete LMWOAs into the rhizosphere soil, which can 

influence Cd uptake. A glasshouse experiment was conducted to evaluate the influence 

of increasing Cd concentrations on the secretion of LMWOAs by chicory and plantain 

roots. Chicory and plantain were grown in soil-filled rhizocolumns under increasing Cd 

levels (0 (Control), 0.4, 0.8 and 1.6 mg Cd/kg soil) for 60 days and showed variable 

secretion of oxalic, fumaric, malic and acetic acids as a function of Cd treatment. Chicory 

showed significantly (P<0.05) lower secretion of fumaric acid and higher secretion of 

acetic acid than plantain at all Cd treatments. There was no clear trend of oxalic and malic 

acid secretion as a function of soil Cd concentration between these two plants. Chicory 

showed significantly higher (P<0.05) shoot Cd concentration compared to plantain at high 

Cd treatments (i.e. 1.6 mg Cd/kg). Thus, this study suggests that the greater shoot Cd 

concentration in chicory relative to plantain can be explained by increased acetic acid and 

reduced fumaric acid secretion in chicory compared to plantain. 

3.3 Introduction 

Chicory and plantain can accumulate significantly higher Cd concentrations, from even 

low Cd soils, when compared to grasses and legumes which have traditionally been used 

in New Zealand agriculture (Stafford et al., 2016). Grazing Cd-rich forage has the 
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modelled potential to cause an exceedance of the maximum guideline level for Cd in the 

kidneys and livers of livestock (Lee et al., 1996), although the relative risks of such 

exceedance between forage crops are poorly understood. Many studies have suggested 

that interactions between different plant species and chemical changes in their vicinity of 

plant roots (in the rhizosphere soil) play a key role in Cd uptake mechanisms by plants 

(Mench et al., 1991; Hinsinger et al., 2006). There is good evidence that plant roots 

secrete many compounds to the plant root-soil interface, which can modify the physical 

and chemical characteristics of the rhizosphere zone and influence Cd bioavailability 

(Hill et al., 2002; Hinsinger et al., 2006). Compounds in root exudates can be categorized 

as either high molecular weight or low molecular weight materials (Luo et al., 2014). 

Among these, LMWOAs such as malic, oxalic, acetic, fumaric and citric acids are 

negatively charged anions that are capable of forming stable complexes with bioavailable 

Cd2+ to influence plant Cd uptake (Han et al., 2006; Zhu et al., 2011). Previous studies on 

the effect of these LMOWAs in root exudates on bioavailable Cd in soil were discussed 

in the review literature in Chapter 2. For example, Fu et al. (2018) reported significant 

(P<0.05) positive correlations between oxalic (R=0.93) and malic (R=0.92) acids and the 

total tissue Cd concentration for rice cultivar (Lu527-8) grown in hydroponic solutions 

across a Cd concentration range of 0-5 mg/L. The secretion of LMWOAs by plant roots 

could be an in-planta detoxification mechanism to alleviate the toxicity of free Cd2+ions 

via organic complexation (Pence et al., 2000; Wei et al., 2007). Several studies have 

suggested that the secretion of LMWOAs into the rhizosphere can also contribute to         

ex-planta Cd detoxification mechanisms by inducing the formation of metal-organic acid 

complexes in the rhizosphere soil which immobilize contaminants before they enter the 

root membrane (Pinto et al., 2008; Zhu et al., 2011). For example, Zhu et al. (2011) found 
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that root-secreted oxalate plays an important role in reducing the Cd toxicity in tomato 

by excluding the entry of Cd into the root cell membrane.  

The impact of root exudates on Cd uptake by roots deserves more research, particularly 

for forage species of economic importance to countries such as New Zealand where 

agriculture is dependent on pastoral grazing systems. Therefore, the objective of the 

current study was to assess Cd uptake in two forage species (chicory and plantain) as a 

function of rhizosphere soil chemistry and to compare their physiological response of 

these forage species to different levels of Cd in soil.  

3.4 Materials and methods 

3.4.1 Outline of the experiment 

The forage species chicory (Cichorium intybus L.) and plantain (Plantago lanceolata L.) 

were grown in replicate rhizocolumns containing field soil spiked with three different Cd 

concentrations representative of the range of Cd concentrations expected in New Zealand 

pastoral soils. The study was conducted under greenhouse conditions. Plant Cd, 

LMWOAs concentrations and related parameters were analysed after 60 days of plant 

growth. 

3.4.2 Pot experiment 

The pot experiment was set up in a greenhouse at the Massey University Plant Growth 

Unit with a day/night temperature of 17/20 ℃. A bulk sample of Manawatu recent soil 

(Dystric Fluventic Eutrudept in the US Soil Taxonomy Classification as reported by 

Hewitt (2010)) was collected from the top 15 cm of the soil profile at the dairy No 1 farm, 
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Massey University, Palmerston North (400 22’ 55. 56’’ S 1750 36’ 21. 37’’ E) 

(Jeyakumar et al., 2010). The Manawatu recent soil had a background Cd concentration 

of 0.21 mg/kg and was selected for this study due to the low organic carbon content 

relative to productive New Zealand soils (Table 3.1 and Appendix 1). The collected soil 

was air-dried at 30 ℃ for 5 days, sieved through a <4 mm sieve. The soils were (1.5 kg 

each) spiked with a calculated amount of CdCl2 at the rates of (0 (control), 0.4, 0.8 and 

1.6 mg Cd/kg) separately to form four different treatments. A bulk sub-soil sample was 

further sieved through a <2 mm stainless steel sieve and stored for soil characteristic 

analysis (Table 3.1). Twenty-four pots (2L) were filled with the soil providing 6 pots per 

treatment and all pots were incubated for one month to equilibrate Cd within the soil 

matrix. Incubated soil (700 g) was then transferred to a rhizocolumn (Figure 3.1). The 

rhizocolumn is a polyvinyl tube to support plant growth based on the design concepts of 

a rhizo-box explained by Wang et al. (2002). The rhizocolumn had two sections, each of 

each 50 mm height, separated by a nylon mesh (20 microns). The nylon mesh vertically 

separated the rhizosphere soil from the rest of the soil during the plant growth period. The 

radius of the top and bottom sections were 40 mm and 50 mm, respectively (Figure 3.1). 

One viable and healthy seedling of each plant was planted in the middle of the upper 

section of each column. Chicory and plantain were planted in the four different Cd 

treatments and replicated three times. The greenhouse experimental set-up was arranged 

in a Complete Randomised Design (CRD) and maintained at a pot-field capacity of 70% 

for 60 days in a greenhouse; on average, day/night temperature ranged between 17 and 

20 ℃. 
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Table 3.1. Chemical properties of the Manawatu Recent soil used in this study. 

 

 

 

 

3.4.3 Plant harvest and soil sampling  

Sixty days after transplanting, plants were carefully removed from the top section of each 

rhizocolumn. Soil from the top section was collected as two portions: (1) the rhizosphere 

soil (R) which was soil adhered to roots and which was collected by gently scraping the 

soil by hand, and (2) the bulk soil (B) which was soil attached loosely to the roots and 

which was collected by shaking the roots carefully (Figure 3.1) (Jeyakumar et al., 2014; 

Xin et al., 2015). The bottom section soil was cut into 3 layers starting from the top of the 

section using a knife (from next to mesh), as shown in Figure 3.1. The first, second and 

third layers were labelled as 1 mm near rhizosphere (S1), 2 mm near rhizosphere (S2) and 

3 mm near rhizosphere (S3), respectively (Figure 3.1). All soil samples were air-dried 

and ground to pass through a 2 mm sieve and stored in sealed plastic bags at room 

temperature until analysis. 

Soil parameter Values 

pH 5.95 

TOC (g/kg) 27.7 

OM (g/kg) 55.4 

Total Cd (mg Cd/kg) 0.21  

CEC (meq/100g) 15.85 

Sodium extractable Fe (%) 2.61 

Sodium extractable Al (%) 0.79 

Acid oxalate extractable Fe (%) 1.63 

Acid oxalate extractable Al (%) 0.45 
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Figure 3.1. Rhizocolumn used in the greenhouse experiment (Diagram not to scale). Soil adhered 

to the root and the soil loosely bound to root in the top section was defined as the rhizosphere and 

bulk soil, respectively. The soil under the nylon mesh in the bottom section was defined as near 

rhizosphere soil. 

3.4.4 Collection of root exudates from plantain and chicory 

Plant root exudates were collected immediately after harvest using the procedure 

explained by Bao et al. (2011). After the bulk and rhizosphere soil was removed, the 

uprooted plant roots were carefully washed with de-ionized water and transferred to 

Erlenmeyer flasks containing 200 mL de-ionized water. The flasks were covered with 

aluminium foil and the root exudate was collected under greenhouse conditions 

(day/night temperature of 17/20 ℃) with the solution aerated using aquarium pumps to 

maintain aerobic conditions. The solutions obtained during the first hour of the collection 

were not used for analysis and were discarded to remove exudates from possibly injured 
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root cells during harvest and washing. The plants were then again allowed to secret into 

fresh de-ionized water for 4 hrs following the same procedure. The solution was filtered 

through a 0.45 µm filter and freeze-dried for LMWOA analysis. 

3.4.5 Plant analysis 

 Plant biomass 

Plant shoots and roots were separated at harvest and dried at 60 ℃ to constant weight. 

The total dry weight of each plant portion was recorded. Dry shoot and root biomass were 

finely ground using a Cyclotech mill and stored for further chemical analysis. 

 Plant tissue total Cd concentration 

For each shoot and root plant biomass sample, 0.1 g of dried and ground material was 

digested with conc HNO3 (10 mL) and diluted to 25 mL with de-ionized water. The total 

Cd concentration in the digest solutions was quantified using graphite furnace atomic 

absorption spectrometry (GFAAS) (Perkin Elmer 900z, Germany). The shoot to root 

translocation factor (TF=shoot Cd concentration: root Cd concentration) was calculated 

for each Cd treatment of both plants (Jeyakumar et al., 2014). 

 HPLC analysis for LMWOAs in root exudates 

The composition and concentration of LMWOAs in root exudates were analysed by    

High-Performance Liquid Chromatography HPLC (Dionex, Thermo Fisher Scientific, 

Australia) as described by Cawthray (2003) with minor modifications. The freeze-dried 

exudate samples were dissolved with 4 mL of the HPLC mobile phase solution 25 mM 

KH2PO4. The mixtures were filtered through 0.22 μm filters to remove suspended 
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material prior to injection into the HPLC. The separation was conducted on a 250 × 4.6 

mm (5 µm particle size) C18 reverse-phase column. The sample solutions (100 μL) were 

injected into the column with a flow rate of 1.0 mL/min at 25°C and UV detection at 210 

nm. Potassium dihydrogen phosphate (25 mM) solutions were used for isocratic elution. 

Identification of organic acids was performed by comparing retention times in root 

exudate samples with those retention times obtained by analysing a standard mixture 

including seven organic acids (i.e. acetic, citric, fumaric, malic, oxalic, succinic, and 

tartaric), which are common in root exudates (Cawthray, 2003). Standard mixture 

solutions of increasing concentration (i.e. 20, 40, 60, 80, 100, 120, 140, 180, 200 mg/L) 

of the same seven LMWOAs were prepared to determine the concentration of organic 

acids in the root exudate samples. Data are presented as mg LMWOA/kg plant root dry 

weight (DW). 

3.4.6 Soil analysis 

The pH of soil samples collected at harvest was measured (1: 2.5 w/w soil: water ratio) 

using a Eutech Instruments Cyber Scan pH 310. Briefly, 5 g of soil was weighed into the 

pH cup and 12.5 mL of deionised water was added. Samples were stirred vigorously for 

at least one minute, before being left to stand overnight. On the following day, the pH of 

the soil samples was quantified. For bioavailable soil Cd concentration, (rhizosphere, bulk 

soil and near rhizosphere zone) 8 mL MgCl2 (1 M, pH 7) was added to 1 g of soil in a 

centrifuge tube and shaken in an end-over-end shaker for 1 hour at room temperature. 

The solution was centrifuged at 13,000 g for 30 min and filtered through Whatman 42 

filter paper. The filtered solution was then analysed using GFAAS (Perkin Elmer 900z, 

Germany).  
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3.4.7 Quality control measures 

All chemicals used in the experiments were of analytical grade. The limit of detection for 

Cd in this work was 0.002 mg Cd/L. The accuracy of the measurements was assessed by 

analysing certified reference materials in parallel with unknown samples. For total Cd 

concentration, CRM 051-050 clay 2 sample, a soil from western USA (total Cd 42.2 mg 

Cd/kg), was used as the certified reference material. The mean Cd concentration of the 

CRM 051-050 was obtained as 43.7±3 mg Cd/kg, which is 96-110% of the expected 

value. For plant total tissue Cd analysis, NIST 1573a (National institute of standards and 

technology, tomato leaves-1.52 mg Cd/kg) was used as certified reference material and 

found to be within 94-108% of the expected mean value. 

3.4.8  Statistical analysis 

Statistical analysis was conducted with Minitab 18 and OriginPro 9 (OriginLab, USA) 

statistical software. The effect of Cd treatments on different plant and soil variables was 

statistically analysed using a one-way ANOVA test; if a significant (P<0.05) main effect 

was detected, the difference between treatment means was tested using a Tukey HSD 

posthoc test. The significant differences of each LMWOA concentration between chicory 

and plantain were tested using an unpaired t-test. 
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3.5 Results and discussion 

3.5.1 Soil pH 

Many studies have reported pH variations between the rhizosphere and bulk soil when 

different plant species are exposed to potentially toxic elements such as Cd (Stoltz and 

Greger, 2002; Blossfeld et al., 2010; Tanwir et al., 2015). In the present study, the pH of 

the rhizosphere soil was significantly lower than the bulk soil for all treatments except 

the 1.6 mg Cd/kg soil treatment for plantain with the difference in the range of 0.3-0.5 

pH units (Table 3.2). This result was similar to a significantly reduced pH (5.94) in the 

rhizosphere relative to the bulk soil (pH 6.4) reported for mangrove plants grown in 

sediment with a Cd concentration range from 5-50 mg Cd/kg (Jingchun et al., 2008). 

Séguin et al. (2004) proposed that increased LMWOAs secretion into the rhizosphere soil 

due to Cd-induced plant stress may reduce rhizosphere pH compared to the bulk soil pH. 

LMWOAs are mainly in a dissociated form in the plant cytosol and play a key role in 

buffering the cytosolic pH. They are predominantly secreted as anions to rhizosphere soil, 

leading to a cation-anion imbalance inside the plant cytosol. To balance this, plants efflux 

H+ ions from plant cells (plant cytosol) into the rhizosphere soil from the proton pump, 

and this contributes to a decrease of rhizosphere pH (Tanwir et al., 2015; Luo et al., 2018). 

For the current study, the rhizosphere and bulk pH values for chicory and plantain were 

independent of the added soil Cd concentration. The discrepancy between literature 

reported trends and the observations of the current study may be due to the relatively low 

soil Cd concentrations used in the study. Zeng et al. (2008) also observed a                        

non-significant difference of pH at relatively low Cr levels (<2.5 mg Cr/L) in a                

rice-growing nutrient solution.  
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Table 3.2. pH of the rhizosphere and bulk soils of chicory and plantain at harvest. 

 

Added soil Cd 

concentration 

(mg Cd/kg) 

 

Soil pH 

Chicory Plantain 

Rhizosphere Bulk Rhizosphere Bulk 

Control (0) 5.63±0.05b 5.90±0.05a 5.70±0.06b 5.92±0.04a 

0.4 5.35±0.03b 5.73±0.05a 5.61±0.04b 6.05±0.02a 

0.8 5.61±0.07b 5.91±0.02a 5.53±0.09b 5.73±0.01a 

1.6 5.37±0.04b 5.89±0.04a 5.75±0.09a 5.84±0.02a 

Data are means±standard errors of three replicates. Values in each line, followed by the same letter within a row for each plant are not significantly 

different at P<0.05 (n=3). 

3.5.2 The bioavailable Cd concentration in soil  

The concentration of bioavailable Cd in the rhizosphere (R) and bulk (B) soil (top section 

soil) and from all intervals of the near rhizosphere soil (S1, S2 and S3), increased with 

increasing Cd treatment level for both plants (Table 3.3). A difference in bioavailable Cd 

concentration between the rhizosphere and near-rhizosphere compartments was observed 

for three treatments (1.6 mg Cd/kg treatment for both plants and the 0.4 mg Cd/kg 

treatment for plantain) although this variation was insufficient to define an overall 

significant difference in bioavailable Cd concentration between the rhizosphere and near 

rhizosphere soil with increasing soil Cd concentration (Table 3.3). Further analysis was 

therefore not conducted of the near rhizosphere soil layers. The bioavailable Cd 

concentration was significantly (P<0.05) lower in the rhizosphere soil than in the bulk 

soil for both plants and all Cd treatments (Table 3.3). Previous studies have shown that 

the bioavailable Cd concentration of soil will increase as a function of changes in soil pH, 

with the rhizosphere exhibiting reduced pH due to the secretion of LMWOAs (Haoliang 

et al., 2007; Chen et al., 2011). However, in the present study, despite the significantly 

lower pH observed in the rhizosphere soil compared to the bulk soil (Table 3.2), the 

bioavailable Cd concentration was significantly lower in the rhizosphere soil than the 

bulk soil for all Cd treatments in both plants (Table 3.3). This discrepancy might be 

explained through higher plant uptake of Cd from the rhizosphere soil than the bulk soil. 
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Ru et al. (2006) reported that at a soil Cd concentration of 60 mg Cd/kg, the exchangeable 

Cd concentration (DTPA-extractable Cd) in the rhizosphere soil (31.5 mg Cd/kg) was 

significantly (P<0.05) lower than that in non-rhizosphere soil (38.5 mg Cd/kg) for Indian 

mustard. These authors suggested that plants may take up more Cd from near the root and 

that removed Cd is not quickly replenished from soil further away from the roots. 

Table 3.3. Bioavailable Cd concentration of rhizosphere, bulk and near rhizosphere soil layers for 

chicory and plantain. 

 

Soil Layer 

Bioavailable Cd concentration (mg Cd/kg) 

Control 0.4 mg Cd/kg 0.8 mg Cd/kg 1.6 mg Cd/kg 

Chicory 

Rhizosphere 0.084±0.005b 0.272±0.011b 0.556±0.027b 1.060±0.025c 

S1 0.117±0.001a 0.339±0.016ab 0.686±0.051ab 1.280±0.038ab 

S2 0.101±0.003ab 0.335±0.018ab 0.642±0.010ab 1.324±0.003a 

S3 0.102±0.001ab 0.353±0.020b 0.649±0.004ab 1.292±0.020a 

Bulk 0.131±0.002a 0.344±0.006ab 0.759±0.056a 1.178±0.007b 

Plantain 

Rhizosphere 0.086±0.006b 0.360±0.032c 0.671±0.003ab 1.024±0.039c 

S1 0.146±0.023ab 0.451±0.016b 0.635±0.014b 1.240±0.017b 

S2 0.155±0.011ab 0.440±0.003bc 0.663±0.012ab 1.424±0.025a 

S3 0.180±0.001a 0.585±0.003a 0.677±0.011ab 1.447±0.017a 

Bulk 0.155±0.028ab 0.414±0.013bc 0.702±0.013a 1.438±0.019a 

Data are mean±standard error of three replicates. Values in each line, followed by different alphabetic letters within a column, for each plant, are 

significantly different at P<0.05 (n=3). Results are reported to three decimal points based on the limit of detection for the GFAAS of 0.002 mg Cd/L. 

3.5.3 Composition and concentration of LMWOAs in root exudates 

The primary route of LMWOA production is inside cell mitochondria as an intermediate 

step of photosynthesis through a plant’s tricarboxylic acid cycle (TCA) (Igamberdiev and 

Eprintsev, 2016). LMWOAs are directly and indirectly involved with many metabolic 

processes such as the regulation of cytosolic pH and the balancing of charges during 

excess cation uptake (Hinsinger et al., 2003). Fu et al. (2018) suggested that trace metal 

stress, such as that induced by Cd in the soil, can destabilize the plant cytosolic pH and 

activate various enzymes in the plant TCA cycle to increase LMWOA production and 

root secretion (Rengel, 2002). Haoliang et al. (2007) suggested that increasing levels of 
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trace metal in the soil can cause oxidative stress in plants by depleting antioxidative 

systems and activating various enzymes in the plant TCA cycle, which also increase 

LMWOA production in cells. Studies have shown variations of LMWOA secretion by 

plant roots as a function of soil Cd concentration (Bao et al., 2011; Li et al., 2014; Xin et 

al., 2015; Montiel-Rozas et al., 2016). For example, Xin et al. (2015) reported that the 

secretion of oxalic and succinic acids in hot pepper (variety JFZ) increased by around 100 

and 33%, respectively, when the Cd concentration in hydroponic solution increased from 

0 (control) to 0.2 mg Cd/L. In the current study, the composition and quantity of 

LMWOAs secreted by chicory and plantain varied as a function of the added soil Cd 

concentration (Table 3.4). Oxalic, fumaric, malic and acetic acids secreted by chicory, 

and oxalic, fumaric and malic acids secreted by plantain, were the major LMWOAs 

analysed for all Cd treatments. 

The concentration of oxalic acid secreted by chicory and plantain did not significantly 

(P>0.05) change with increasing soil Cd levels, although there was a nominal increase by 

6% and 24%, respectively, at the 1.6 mg Cd/kg soil level compared to the control (Table 

3.4). The concentration of acetic acid secreted by chicory showed a nominal decrease of 

50% with increasing soil Cd concentration (Table 3.4). The concentration of malic and 

fumaric acids secreted by chicory did not significantly differ between the control, 0.4 and 

0.8 mg Cd/kg treatments, but significantly increased (P<0.05) by 76% and 140%, 

respectively, at the 1.6 mg Cd/kg treatment relative to the control (Table 3.4). For 

plantain, the concentration of fumaric acid (80.3-242.4 mg/kg root DW) and malic acid 

(73.1-302.7 mg/kg root DW) did not show any trend with the increasing concentration of 

Cd in the soil (Table 3.4). Many studies have shown the formation of Cd-LMWOA 

complexes enhance Cd uptake by plants (Chen et al., 2003; Hawrylak-Nowak et al., 2015; 

Mnasri et al., 2015) and such studies suggest that Cd chelation with LMWOAs may create 
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an important pathway to mitigate the toxicity of free reactive metal ions inside the plant 

(Pence et al., 2000; Wei et al., 2007). Han et al. (2006) reported that Cd can complex with 

organic acids to produce mobile and soluble organically bound Cd complexes, which can 

penetrate the lipid membrane of root cells and act as a major contributor for Cd uptake 

by maize (Adeleke et al., 2017). Li et al. (2014) suggested that Cd-organic acid complexes 

might enter plants through breaking the endodermis and Casparian strips of the root cells. 

Ehsan et al. (2014) reported that organometallic complexes in the soil solution can act as 

a carrier for Cd2+ ions towards the root surface and that these complexes can disassociate 

into free Cd2+ at the root surface which can be absorbed by the root membrane. 

Table 3.4. The concentration of LMWOAs (mg acid/kg root DW) secreted from the roots of 

chicory and plantain growing under increasing soil Cd concentrations. 

Plant species Added soil Cd Concentration 

0 (control) 0.4 mg Cd/kg 0.8 mg Cd/kg 1.6 mg Cd/kg 

 Oxalic acid 

Chicory 201.9±27.8aA 169.8±14.1aA 159.9±30.1aA 214.5±4.2aA 

Plantain 192.3±28.2aA 152.8±15.1aA 131.5±35.1aA 238.8±21.4aA 

 Malic acid 

Chicory 165.7±21.5aB 272.2±18.6aAB 264.7±28.7aAB 291.2±30.3aA 

Plantain 256.7±43.2aA 73.1±14.7bB 302.7±35.9aA 110.1±22.9bB 

 Fumaric acid 

Chicory 5.2±0.2bB 4.7±0.1bB 3.6±0.3bB 12.5±1.9bA 

Plantain 162.4±25.0aAB 92.9±16.2aB 242.4±28.4aA 80.3±10.6aB 

 Acetic acid 

Chicory 150.1±41.4A 114.3±13.8A 107.2±18.5A 100.1±0.9A 

Plantain ND ND ND ND 

 

 

Data are mean±standard error of three replicates. Values followed by different small alphabetic letters within a column for each LMWOA are significantly 

different between the two plants at P<0.05 (n=3). Values followed by different CAPITAL alphabetic letters within a row for each LMWOA are significantly 

different among Cd treatments in a plant at P<0.05 (n=3). Note: ND-Not Detected. 
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3.5.4 Biomass dry matter content and translocation of Cd in plant tissues 

There was no significant effect (P>0.05) of increasing soil Cd concentration on the shoot 

biomass of chicory and plantain, or the root biomass of plantain. There was a significant 

(P<0.05) effect of Cd on the root biomass of chicory, which increased for all Cd 

treatments relative to the control (Table 3.5). This observation is in agreement with 

previous studies where, for some plants, low concentrations of soil contaminants can 

stimulate the activity of RNA and protein synthases, which promote plant growth (Chi et 

al., 2019; Kazemi Movahed, 2020).  

Table 3.5. Root and shoot dry weights of chicory and plantain. 

Added soil Cd 

concentration 

(mg Cd/kg) 

Plant dry weight (DW) (g) 

 Chicory Plantain 

 Root Shoot Root Shoot 

Control (0) 0.14±0.01b 0.25±0.04a 0.33±0.03a 0.28±0.01a 

0.4 0.29±0.01a 0.31±0.02a 0.30±0.03a 0.32±0.01a 

0.8 0.26±0.03a 0.29±0.02a 0.28±0.01a 0.29±0.03a 

1.6 0.33±0.03a 0.33±0.01a 0.25±0.01a 0.33±0.02a 

Data are mean±standard error of three replicates. Values in each line, followed by different alphabetic letters within a column for each 

plant are significantly different at P<0.05 (n=3). 

There was a significant increase (P<0.05) in the Cd concentration of roots and shoots of 

both plant species as a function of the soil Cd concentration (Figure 3.2). The chicory 

shoot Cd concentration increased from 1.5 to 18.6 mg Cd/kg DW and the root Cd 

concentration increased from 1.5 to 4.2 mg Cd/kg DW as the soil treatment concentration 

increased from 0 to 1.6 mg/kg. For plantain, the shoot Cd concentration increased from 

1.6 to 4.2 mg Cd/kg DW and the root Cd concentration increased 0.9 to 10.8 mg Cd/kg 

DW for the same increase in soil Cd (Figure 3.2). This increase may be due to the 

significant increase of bioavailable Cd concentration in the rhizosphere soil (Table 3.3) 

which was significantly (P<0.001) and positively correlated with the shoot and root Cd 
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concentration of both chicory (R=0.989 and R=0.917, respectively) and plantain 

(R=0.925 and R=0.882, respectively). Although the shoot Cd concentration increased as 

a function of soil Cd levels for both plants, the shoot Cd concentration of chicory was a 

factor of 3.4 greater than plantain at the 1.6 mg Cd/kg treatment. This is in agreement 

with Abe et al. (2008) who investigated Cd uptake of 93 plants, including chicory and 

plantain, grown in sandy loam soil (3 mg Cd/kg soil) and who recorded the highest shoot 

Cd concentration (77 mg Cd/kg DW) in chicory. Stafford et al. (2016) found that chicory 

had the highest mean tissue Cd concentration of all tested forage species used in New 

Zealand livestock grazing systems.  

The Cd translocation factor (TF) for chicory and plantain, defined as the ratio of the Cd 

concentration in shoots to roots, was calculated to better explain the relative ability of 

these plants to translocate Cd from roots to shoots (Mattina et al., 2003). The Cd 

concentration in chicory shoots for all treatments was higher than in the roots, and the TF 

increased from 1.0 to 4.4 as soil Cd increased. However, this increase was significant 

only when the soil Cd concentration increased from 0.4 to 0.8 mg Cd/kg soil (Figure 

3.2a). Plantain had a higher Cd concentration in the roots (except for control) than in the 

shoots and the translocation factor for plantain decreased from 1.9 to 0.4 as the soil Cd 

concentration increased. This decrease was significant when the soil Cd concentration 

increased from control to 0.4 mg Cd/kg soil (Figure 3.2b). These results are in agreement 

with a field study conducted by Sekara et al. (2005) who reported chicory to have the 

third-highest TF (1.43) of nine plant species grown in a sandy loam soil with a Cd 

concentration of 1.81 mg Cd/kg soil.
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Figure 3.2. Tissue Cd concentration and TF of (a) chicory (b) plantain grown in different soil Cd treatments. Vertical error bars represent ±SE (n = 3). Significant 

differences between root and shoot tissue Cd concentrations between Cd treatments are represented by Small and CAPITAL alphabet letters, respectively. 

Values in TF lines followed by different alphabet letters (K and L) are significantly different at P<0.05. 
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3.5.5 Relationship between LMWOAs concentration and tissue Cd concentration 

Experimental growth conditions can influence the development and size of roots, which 

can then affect the excretion of organic acids (Montiel-Rozas et al., 2016). The significant 

increase of malic and fumaric acid concentration secreted by chicory at the 1.6 mg Cd/kg 

treatment relative to the control can be an effect of the significantly greater root biomass 

at this treatment.  

The data of this study suggest that the primary cause for the significant increase of shoot 

and root Cd concentration in both plants, as a function of treatment level, is the 

significantly greater bioavailable Cd concentration in rhizosphere soil at the higher soil 

Cd treatment levels. However, the results of this study propose that the significantly 

higher shoot Cd concentration in chicory relative to plantain can be explained in terms of 

variations of LMWOA secretion in chicory. The results of this experiment show 

significantly less fumaric acid secretion by chicory relative to plantain for all Cd 

treatments. Fumaric acid is a dicarboxylic acid and has the greatest affinity towards Cd2+ 

ions (fumaric acid-pKa1=3.02, pKa2=4.44) (Adeniji et al., 2010). Several studies have 

reported that the secretion of fumaric acid by roots significantly reduces plant Cd uptake. 

For example, Fan et al. (2016) suggested that a significant (P<0.05) increase of fumaric 

acid secretion (by 60%) in rice (cultivar Hua-Hang-Si-Miao) exposed to a Cd+Si (5 mg 

Cd/L+42 mg Si/L) treatment influenced the chelation of Cd2+ ions and reduced plant Cd 

uptake relative to the control. Kazemi Movahed (2020) found that greater secretion of 

LMWOAs including fumaric acid (11-fold increase) by soya bean (cultivar AC Hime) at 

a treatment concentration of 3.3 mg Cd/L reduced Cd bioavailability and uptake by plants 

relative to the control through the formation of Cd-organic acid complexes in soil. 
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In this work, secretion of acetic acid was only recorded for chicory at all Cd treatments. 

Several studies have reported a relationship between acetic acid secreted by roots and 

plant Cd uptake. For example, Han et al. (2006) showed that Cd uptake by maize plants 

increased by 110% when the acetic acid concentration in the hydroponic solution 

increased from 0-15 mg/L (Cd solution concentration 0.56 mg/L). They proposed that 

mobile and soluble organically bound Cd complexes (acetic-Cd) can easily penetrate cell 

membranes to increase Cd uptake. Cieśliński et al. (1998) reported that the significant 

increase (P<0.05) of acetic acid secretion (163%) from a high Cd accumulating wheat 

cultivar (Kyle) relative to a low Cd accumulating wheat cultivar (Arcola) could explain 

33% greater Cd uptake in Kyle than Arcola from Sutherland sandy loam soil with a total 

Cd concentration of 0.41 mg/kg. 

This study proposes that the differential response of Cd uptake between chicory and 

plantain can be explained in terms of specifically fumaric and acetic acid secretion. There 

was no clear trend of oxalic and malic acid secretion as a function of soil Cd concentration 

between these two plants the data and cannot implicate these LMWOAs in accounting for 

differences in Cd uptake between the two species. The data supports that the greater Cd 

concentration in chicory relative to plantain can be explained by increased acetic acid and 

reduced fumaric acid excretion. This study proposes that acetic acid in the rhizosphere 

promotes Cd uptake, while fumaric acid complexes with free Cd2+ ions in the soil solution 

and reduced the potential for uptake. It was concluded that further experiments are 

essential to substantiate this explained mechanism, and therefore, the experiments were 

performed with the exogenous application of different LMWOA concentrations and 

discussed in Chapter 6. 
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However, management of the risk of high Cd accumulation by chicory and plantain are 

underpinned by an understanding of the mechanisms of Cd uptake by roots as well as Cd 

translocation via xylem sap. Therefore, the next chapter will evaluate the mechanism of 

Cd translocation.  

3.6 Summary 

The results of this experiment showed that the composition and concentration of 

LMWOA in root exudates of chicory and plantain varies as a function of Cd treatment in 

the soil. There was a significantly (P<0.05) higher shoot Cd concentration observed in 

chicory than plantain at higher Cd treatments (i.e. 1.6 mg Cd/kg). Chicory secreted 

significantly lower fumaric acid concentration and higher acetic acid concentration than 

plantain. Oxalic and malic acid secretion did not show a clear trend as a function of soil 

Cd concentration between these two plants suggesting that oxalic and malic acid secretion 

may not support to explain the differences in Cd uptake between the two species. 

Therefore, the key finding of this experiment is that the greater Cd uptake in chicory 

relative to plantain can be explained by increased acetic acid and reduced fumaric acid 

secretion in chicory compared to plantain. These findings will be further discussed and 

confirmed in Chapter 6.
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Development of a thiosalicylic acid-modified ion-specific 

electrode to explore plant cadmium processes 

Part of the results of this chapter was presented at the 15th International Conference on 

the Biogeochemistry of Trace Elements (ICOBTE) in China. Citation: 

 

• Ubeynarayana, N., Jeyakumar, P., Bishop, P., Pereira, R. C., Anderson, C.W.N., 2019 

Development of a thiosalicylic acid-modified ion-specific electrode to explore plant 

cadmium processes, in “International Conference on the Biogeochemistry of Trace 

Elements ICOBTE 2019” conference held in Nanjing, China 5-9 May 2019. 

 
 

 

4.1 Graphical Abstract 
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4.2 Abstract 

Understanding the mechanisms of Cd uptake and translocation by plant species requires 

knowledge of the free Cd2+ ion concentration in xylem saps. However, the determination 

of low concentrations of free Cd2+ ions in the low volume of xylem saps poses an 

analytical challenge. In this work, we describe the development and testing of an  

ion-selective electrode that can measure a low concentration of free Cd2+ ions in xylem 

sap. A modified carbon-paste electrode using thiosalicylic acid (15% w/w) as the modifier 

is shown to have a detection limit of 11 µg Cd/L (0.1 × 10-6 mol Cd/L) with a high ability 

to distinguish between total Cd and free Cd2+ in samples. The modified electrode 

measured the free Cd2+ ion concentrations in a range of environmental media, including 

xylem saps with a high precision (RSD<5%).  

4.3 Introduction 

Efforts to manage the risk of high Cd accumulation by chicory and plantain are 

underpinned by an understanding of the mechanisms of Cd uptake by roots as well as Cd 

translocation via xylem sap. Increased understanding of the Cd translocation mechanisms 

in plants requires knowledge of the chemical speciation of Cd in xylem saps. Research 

has shown that Cd exists in xylem saps as the free Cd2+ ion or Cd complexed with various 

organic and inorganic compounds (Ueno et al., 2008; Fu et al., 2019). Complexed Cd 

species can be isolated from xylem saps using advanced separation techniques such as 

gel exclusion and high-performance liquid chromatography (Kato et al., 2010). However, 

quantification of very low free Cd2+ concentrations in xylem sap is a significant analytical 

challenge due to the lack of reliable analytical tools for micro or nano level Cd2+ ion 

measurement. Cadmium ion analysis can be carried out with various methods such as 
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atomic absorption spectrometry (AAS), inductively coupled plasma atomic emission 

spectrometry (ICP-AES) and microwave plasma atomic emission spectrometry            

(MP-AES) (Baffi et al., 2002) and even though these methods provide accurate and 

precise results, they don’t have the ability to distinguish between total Cd and free Cd2+ 

in the solution. Instead, these techniques measure total Cd concentration in samples (Hu 

et al., 2003). Research has established that electrochemical stripping voltammetry 

techniques such as square wave anodic stripping voltammetry (SWASV), cyclic 

voltammetry (CV), and linear sweep anodic stripping voltammetry (LSASV) can analyse 

free Cd2+ ions in solution (Ping et al., 2011; Shan et al., 2015). Traditionally, the mercury 

hanging drop electrode has been used to determine Cd2+ ions by such techniques due to 

the proven reproducibility of analysis which is a function of the purity of the electrode 

surface (Tanaka et al., 1956). However, the toxicity of mercury and international efforts 

to ban its use through the Minamata Convention on Mercury has forced researchers to 

look for alternative options to this electrode. Recently, chemically modified carbon-paste 

electrodes have found application in metal ion detection, including Cd2+ ions in solutions 

(Ping et al., 2011). A chemically modified carbon paste electrode can be defined as an 

electrode which is made from a mixture of conducting graphite powder and a modifier 

(chelator) which has a specific affinity towards a target metal ion (Ping et al., 2011; Chen 

et al., 2016). Such electrodes have important qualities such as easy fabrication and 

renewal, low cost, and low background current (Švancara et al., 2009). However, 

obtaining micro-level detection limits remains a key limitation, especially for Cd2+ ions 

in xylem sap and soil solution. 

Simple carbon paste electrodes do not have an affinity towards Cd2+; however, the 

detection limit of a plain carbon electrode for Cd2+ ions can be lowered through 

modification with specific chelates with a high affinity towards Cd2+ ions (Roa et al., 
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2003). Le Hai et al. (2020) constructed a chemically modified carbon paste electrode with 

antimony oxide and determined a Cd detection limit to 11.2 µg Cd/L (0.1 × 10-6 mol 

Cd/L). A Gold nanoparticle-modified carbon-paste electrode developed by Leoncini et 

al. (2019) showed a lower detection limit of 267 µg Cd/L (2.4 × 10-6 mol Cd/L); however, 

the calibration curve was linear only from 750 to 1000 µg Cd/L (6.7-8.9 × 10-6 mol Cd/L).  

Several authors have reported that thiosalicylic acid has shown a particularly high affinity 

towards metal ions, including Cd2+ ions (Gismera et al., 2003; Bhowon et al., 2017). 

Thiosalicylic acid is a readily available commercial off-white solid, which is stable to air, 

making it a conveniently handled ligand (Wehr-Candler and Henderson, 2016) and it, 

therefore, may be a potential candidate to develop a Cd2+ ion-specific electrode with a 

lower detection limit compared to previously reported studies. 

This chapter reports the development and evaluation of a novel carbon paste electrode 

modified with thiosalicylic acid which can be used for reliable measurement of free Cd2+ 

ions in xylem saps and soil solutions. The hypothesis of the study is that modification of 

carbon paste with thiosalicylic acid will yield an electrode with a sufficiently low 

detection limit to be used in analysing Cd in environmental media. The specific objectives 

of the study were to (a) define the best experimental conditions for quantification of free 

Cd2+ ions using the developed electrode, and (b) evaluate the technical performance of 

the developed electrode for assessing free Cd2+ ions in environmental solutions.  
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4.4 Materials and methods 

4.4.1 Reagents and solutions 

All reagents used were of analytical grade. Thiosalicylic acid (97%) and spectrographic 

graphite (<20 µm) were obtained from Sigma (USA). Thiosalicylic acid was 

characterised by Fourier transform infrared spectroscopy (FTIR) technique using a 

Fourier transform infrared spectrophotometer (Thermo Scientific, Model Nicolet iS5, 

USA), operating in the region from 4000 to 500 cm−1. Cadmium nitrate and other metal 

nitrates and reagents were AAS grade. The water used in all experiments was ultrapure 

with resistivity not less than 18.2 M.cm generated using a Millipore Milli-Q system. 

Sodium Acetate (0.1 mol/L CH3COONa) buffer was made by dissolving 0.82 g of sodium 

acetate (BDH chemicals) and 0.57 mL of glacial acetic acid in 100 mL of Milli-Q water. 

4.4.2 Preparation of the modified carbon paste electrode  

Voltammetric measurements were performed with a three-electrode system, comprised 

of a working electrode of thiosalicylic acid modified carbon paste (TSA-CP), a counter 

electrode of the platinum plate, and a reference electrode of Ag/AgCl (saturated KCl). 

The modified electrode was prepared by mixing thiosalicylic acid, high-quality graphite 

powder, and paraffin oil. The mixture was manually homogenised for 20 min using a 

mortar and pestle, then packed into a PTFE tube (outer diameter: 8 mm; inner diameter: 

6 mm) with a stainless-steel rod to make the modified carbon paste electrode (modified 

electrode). Graphical details of the electrode preparation are presented in Appendix 2. 
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Voltammetric measurements were carried out using a Shield VO.1 R2 potentiostat 

attached to a personal computer and controlled by Rodeostat Web-App software. All 

measurements were carried out in a glass cell (25 mL) at constant room temperature. 

4.4.3 Voltammetry responses of TSA-CP electrode - Preliminary Study 

Preliminary experiments were carried out to characterise the behaviour of Cd2+ ions on 

the carbon paste electrode modified with thiosalicylic acid (10%, w/w). A carbon paste 

(CP) electrode (before modification) was used as a reference working electrode, and the 

voltammogram for 50 µg Cd/L Cd2+ ion solution was compared with the modified 

electrode. Measurement was conducted in 0.1 mol/L CH3COONa as the supporting 

electrolyte (pH 4.5), with a pre-concentration time of 600 s and 5 Hz sample rate.                   

A well-defined and strong anodic current peak was observed for a Cd2+ ion concentration 

of 50 µg Cd/L and therefore this Cd2+ ion concentration was used for optimisation and 

quantitative analysis of the environmental samples in this study using the modified 

electrode.  

4.4.4 Optimisation of the TSA-CP electrode  

Cadmium ion determination with the modified electrode was evaluated using square wave 

anodic stripping voltammetry with the following parameters optimised:  

 percentage of thiosalicylic acid in carbon paste 

Voltammetry responses to a 50 µg Cd/L Cd2+ solution were studied using electrodes 

prepared separately with different percentage combinations of thiosalicylic acid (5, 10, 

15, 20, 25% w/w), a constant amount of paraffin oil at 24% (w/w), and topped up with 
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graphite powder. Measurement was conducted in CH3COONa supporting electrolyte at 

pH 4.5, with a pre-concentration time of 500 s and 5 Hz sample rate. 

 Supporting electrolyte  

The effect of supporting electrolyte on the anodic peak current of the modified electrode 

was evaluated for Cd2+ ion solution concentration of 50 µg Cd/L. The following 

supporting electrolytes (0.1 mol/L) were used: Hydrochloric acid (HCl), Sodium Chloride 

(NaCl), Sodium Nitrate (NaNO3) and Sodium Acetate (CH3COONa). Measurement was 

conducted using a 15% (w/w) thiosalicylic acid modified electrode, with a                           

pre-concentration time of 500 s and 5 Hz sample rate. 

The effect of supporting electrolyte pH on voltammetry responses using the modified 

electrode was determined in the range of pH 1.5-7.5. The pH of the supporting electrolyte 

was adjusted by adding HNO3 (10%) or NaOH (10%) to the supporting electrolyte 

solution. Measurement was conducted using a 15% (w/w) thiosalicylic acid modified 

electrode, 0.1 mol/L CH3COONa supporting electrolyte, with a pre-concentration time of 

500 s and 5 Hz sample rate. 

 pre-concentration time  

The optimum pre-concentration period was determined by incubating the modified 

electrode in 50 µg Cd/L Cd2+ ion solution for different time periods between 100 and 700 

s. The voltammetry response was then measured using a 15% (w/w) thiosalicylic acid 

modified electrode, 0.1 mol/L CH3COONa supporting electrolyte, pH 4.5, and 5 Hz 

sample rate. 
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4.4.5 Quantitative analysis 

 Linear calibration range of the TSA-CP electrode 

A linear calibration range for the modified electrode was determined for Cd2+ ion 

concentrations in the range from 10 to 1000 µg Cd/L. The detection limit was calculated 

by multiplying the standard deviation of peak current for six determinations of the lowest 

Cd2+ concentration of the linear calibration range by three times (Refera et al., 1998; Fanta 

and Chandravanshi, 2001). 

 Repeatability and reproducibility of TSA-CP electrode 

The repeatability of measurement using the modified electrode was quantified by 

performing six Cd2+ ion determinations for 50, 60 and 80 µg Cd/L Cd2+ solutions without 

renewing the electrode surface. The reproducibility of the modified electrode was 

performed by conducting six Cd2+ ion determinations of 50, 60 and 80 µg Cd/L Cd2+ ion 

solution with renewing the electrode surface (considered as a new electrode each time) 

after every measurement. The electrode surface was renewed (cleaned) by scraping the 

electrode on a clean piece of paper to obtain a new electrode surface at each time. 

4.4.6 Cation interference ions on Cd2+ determination by TSA-CP electrode 

Environmental samples may consist of other cations. The potential interfering effect of 

these cations on the performance of the modified electrode was studied by mixing the 

Cd2+ solution (50 µg Cd/L) with specific interfering cations (Cu2+, Zn2+, Mn2+, Ni2+, Pb2+, 

Fe2+, Mg2+, Ca2+, Al3+ and K+) at a 1: 2 molar ratio (Cd: other metal cation).  
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4.4.7 The selectivity of TSA-CP electrode towards free Cd2+ ions  

Ethylenediaminetetraacetate (EDTA) is a hexadentate ligand which forms stable 

complexes with free Cd2+ and reduces the free Cd2+ ion concentration in solution. The 

selectivity of the modified electrode towards free Cd2+ ions was determined by measuring 

the voltammetry responses of the modified electrode for a mixture of Cd2+ ion solution 

(100 µg Cd/L) and Ethylenediaminetetraacetate (EDTA) at 1:1 and 1:2 (Cd: EDTA) 

molar ratio.  

4.4.8 Application of TSA-CP electrode to the analysis Environmental sample 

 Water sample analysis 

Industrial wastewater, tap water, and farm drainage water were collected and analysed 

with the modified electrode to calculate the recovery of Cd2+ ions in environmental 

samples. Samples were separately spiked with 40 and 80 µg Cd/L Cd2+ prepared in 

CH3COONa (0.1 mol/L). The recovery percentages were tested at spiking ratios of 9:1 

(40 µg Cd/L solution: water sample) and 7:3 (80 µg Cd/L solution: water sample) to make 

the final concentration 36 and 56 µg Cd/L, respectively. A 25 mL aliquot was transferred 

into a glass cell for pre-concentration and subsequent voltammetric measurement using 

the modified electrode. 

 Free Cd2+ ions in soil solution  

Two soil samples (soil A and soil B), each with a different total Cd concentration were 

collected from a previous pot trial (Chapter 3), were used to test the potential of the 

modified electrode to quantify the free Cd2+ ion concentration in soil solution and to 

calculate the relative standard deviation (RSD) between measurements. Two replicates 
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from each soil sample were collected and Cd was extracted from 5 g of soil in 30 mL of 

0.1 mol/L CH3COONa by shaking for 2 hr using an end-over-end shaker. The extracted 

solutions were filtered and diluted in a 1:1 (v/v) ratio with 0.1 mol/L CH3COONa 

solution. A calibration curve for the modified electrode was prepared using five Cd2+ ion 

concentrations (20, 40, 60, 80, 100 µg Cd/L) and this curve was used to quantify the Cd2+ 

ion concentration of both soil samples. 

4.4.9 Statistical analysis 

Statistical analysis was conducted with Minitab 18 and OriginPro 9 (OriginLab, USA) 

statistical software. The effect of different levels of thiosalicylic acid, supporting 

electrolyte pH and pre-concentration time on anodic current peak signal was statistically 

analysed using a one-way ANOVA test. Where a significant (P<0.05) main effect was 

detected, the difference between treatment means was tested using a Tukey HSD posthoc 

test. 

4.5 Results and discussion 

4.5.1 FTIR characterisation of thiosalicylic acid 

The FTIR spectrum of thiosalicylic acid from 4000 to 500 cm-1 showed two characteristic 

peaks at 1685 and 2565 cm-1 which can be attributed to the -COOH and -SH groups, 

respectively (Figure 4.1) (Zhou et al., 2011; Yin et al., 2017). The broad peak at              

3246 cm-1 can be attributed to -OH groups of surface adsorbed water molecules or the 

OH group in the thiosalicylic acid (Wehr-Candler and Henderson, 2016). 
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Figure 4.1. FTIR spectrum of thiosalicylic acid from 4000 to 500 cm-1 to identify the specific 

functional groups which can bind with Cd2+ ions. 

4.5.2 Preliminary voltammetry for Cd2+ on TSA-CP electrode 

A single high intensity anodic current peak for Cd2+ ions was observed for the modified 

electrode at around -0.8 V potential (Figure 4.2) and can be attributed to Cd accumulation 

on the modified electrode surface through a mechanism of complex formation between 

Cd2+ and thiosalicylic acid (Gismera et al., 2006). Wehr-Candler and Henderson (2016) 

reported that the thiol (SH-) and carboxyl (COO-) functional groups in thiosalicylic acid 

can bind with metal ions through four binding modes (i) S atoms coordinate leaving the 

carboxylic acid free (ii) carboxylate anion binds in a monodentate fashion together with 

sulphur coordination (iii) both S and O atoms coordinate and (iv) carboxylate anion binds 

in a bidentate manner with or without S coordination. 
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The results of the preliminary study confirmed that thiosalicylic acid can be used as a 

modifier of carbon paste to enable the determination of Cd2+ ions in solutions using square 

wave anodic stripping voltammetry. In subsequent work, optimisation and further 

development of the modified electrode were carried out to improve the voltammetry 

response of the modified electrode towards Cd2+ ions. 

 

Figure 4.2. Square wave anodic stripping voltammograms of TSA-CP electrode and CP electrode 

obtained for 50 µg Cd/L Cd2+ ion solution. Experimental conditions: 0.1 mol/L CH3COONa 

supporting electrolyte (pH 4.5) pre-concentration time; 600 s and sample rate; 5Hz. 

4.5.3 Optimisation of the TSA-CP electrode 

The optimisation of the modified electrode was quantified through maximising the 

current peak height at -0.8V and resolving the current signal at -0.8V. 
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 Carbon paste composition 

Anodic peak current showed a nominal variation across the thiosalicylic acid electrode 

composition. There was a significant decrease by around 21% in current peak height for 

the highest percentage of thiosalicylic acid relative to a composition percentage of 15% 

(w/w) (Figure 4.3). 

 

Figure 4.3. Square wave anodic stripping peak current as a function of the amount of thiosalicylic 

acid in the carbon paste electrode. Experimental conditions: 50 µg Cd/L Cd2+ ion solution; 0.1 

mol/L CH3COONa supporting electrolyte (pH 4.5) pre-concentration time; 500s and sample rate; 

5 Hz. 

Even though the peak current showed nominal variation across the thiosalicylic acid 

range, the modified electrode recorded a maximum peak current at 15% (w/w). Variations 

in peak current as a function of thiosalicylic acid in the paste may be due to the rate of 

Cd2+ complex formation with thiosalicylic acid modifier in the electrode surface which 
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reached a maximum at 15% (w/w) thiosalicylic acid. A reduction of conductive area at 

the electrode surface may be the reason for the significant (P<0.05) decrease of peak 

current at 25% compared to 15% (w/w) thiosalicylic acid. Studies have reported that other 

modifiers such as diacetyldioxim and silica used to develop modified carbon electrodes 

have shown a similar pattern for the current response to Cd2+ ions (Hu et al., 2003; Shams 

and Torabi, 2006). Based on the results, the present study adopted a modified electrode 

with a composition of 15% (w/w) thiosalicylic acid, 61% (w/w) graphite powder and 24% 

(w/w) paraffin oil as the optimal combination for subsequent free Cd2+ ion measurement. 

For the current study, 15% (w/w) thiosalicylic acid percentage was selected as the carbon 

paste thiosalicylic acid composition for ongoing measurement. 

 The type and the pH of the supporting electrolyte 

A strong well defined anodic peak current signal (with less background noise) for the 

modified electrode was obtained using 0.1 mol/L CH3COONa. A well-defined anodic 

peak current signal was not recorded for the other electrolytes (NaNO3, NaOH and HCl) 

(Figure 4.4).  
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Figure 4.4. Square wave anodic stripping voltammograms as a function of the supporting 

electrolyte. Experimental conditions: 50 µg Cd/L Cd2+ ion solution; preconcentration time; 500s 

and sample rate; 5 Hz.  

The pH of the electrolyte is an important factor for the pre-concentration step due to the 

effect of pH on thiosalicylic acid Cd2+ complexation equilibrium. There was no current 

observed at pH 1.5 with the peak current significantly increasing (P<0.05) as the pH 

increased from pH 2.5 to 4.5. Maximum peak current was recorded at pH 4.5. Peak 

current decreased to zero as pH increased from 4.5 to 7.5 (Figure 4.5).  
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Figure 4.5. Square wave anodic stripping peak current as a function of the pH of the CH3COONa 

supporting electrolyte. Experimental conditions; 50 µg Cd/L Cd2+ ion solution in 0.1 mol/L 

CH3COONa; pre-concentration time; 500s and sample rate; 5 Hz. 

The low current signal under highly acidic pH (pH=1.5) may be due to protonation of the 

ligand whereas precipitation of Cd2+ ions in solution (formation of cadmium hydroxide) 

may explain decreasing current signal electrode at higher pH (pH>4.5)                

(Abbastabar-Ahangar et al., 2009). Thiosalicylic acid is a diprotic acid with pKa values 

of 4.92 and 9.96 for the first and second proton dissociations, respectively. Thiosalicylic 

acid is therefore poorly soluble at lower pH, and readily soluble at higher pH                

(Wehr-Candler and Henderson, 2016). Rowland et al. (2011) observed 50% oxidation of 

thiosalicylic acid to the corresponding disulphide (HOOCC6H4SSC6H4COOH) as the pH 

of the electrolyte increased to 6. Thiosalicylic acid in the carbon paste may, therefore, 

have limited availability to complex with Cd2+ ions at higher pH levels. Available 

literature reports that other modifiers such as diacetyldioxim and nitro benzoyl diphenyl 
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methylenphosphorane (N-BDMP) in modified carbon paste electrodes also show a similar 

pH dependency on the measurement of Cd2+ ions in solution (Hu et al., 2003; Afkhami et 

al., 2012). For the current study, 0.1 mol/L CH3COONa at pH 4.5 was selected as the 

supporting electrolyte for ongoing measurement. 

 Pre-concentration time  

There was a significant (P<0.05) increase in the anodic peak current up to 500 s of             

pre-concentration time with no further significant change to 700 s, indicating a saturation 

or equilibrium surface coverage of the electrode surface at 500 s (Figure 4.6). Five 

hundred seconds was therefore selected as the optimal pre-concentration time for 

measuring free Cd2+ ion using the modified electrode. Fanta and Chandravanshi (2001) 

suggested that a pre-concentration time greater than 120 s should be used to optimise the 

detection limit for low Cd2+ ions in solution. For the current study, 500 s was selected as 

the pre concentration-time for ongoing measurement. 
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Figure 4.6. Square wave anodic stripping peak current as a function of the pre-concentration time. 

Experimental conditions; 50 µg Cd/L Cd2+ ion solution 0.1 mol/L CH3COONa supporting 

electrolyte (pH 4.5) and sample rate; 5 Hz. 

 TSA-CP electrode optimum experimental conditions for Cd2+ ion detection 

Table 4.1 presents a summary of the optimised values of electrode composition, type and 

pH of the supporting electrolyte and pre-concentration for the modified electrode 

fabricated in the current study for free Cd2+ ion detection in solution. 

Table 4.1. Optimized parameters for Cd2+ ion detection using modified electrode. 

Parameter Optimised value 

Electrode composition 15% (w/w) Thiosalicylic acid, 24% (w/w) 

paraffin oil, 61% (w/w) graphite powder 

Supporting electrolyte 0.1 mol/L CH3COONa buffer 

the pH of the supporting electrolyte pH 4.5 

Pre-concentration time 500 s  

Sample rate 5 Hz 

Pulse amplitude 0.05 V 
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4.5.4 Performance of the optimised electrode 

 Calibration linear range and detection limit of the TSA-CP electrode 

The linear range of a calibration curve is the range of concentrations where the signals 

are directly proportional to the concentration of the analyte in the sample. Understanding 

the linear range is important for the accurate detection of samples and the interpretation 

of results. The linear range of the modified electrode was observed, for a concentration 

from 20 to 100 µg Cd/L (Figure 4.7). The detection limit, defined as three times the 

standard deviation of peak current for six determinations of the lowest Cd2+ concentration 

of the linear calibration range (20 µg Cd/L) was calculated as 11 µg Cd/L for the modified 

electrode. 

 

Figure 4.7. Square wave anodic stripping voltammograms obtained using the TSA-CP electrode 

for different Cd2+ ion concentrations; Experimental conditions: 0.1 mol/L CH3COONa (pH 4.5) 

pre-concentration time; 500s and sample rate; 5 Hz. 
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 Repeatability and reproducibility of the TSA-CP electrode 

The repeatability of Cd measurement, assessed by performing six determinations with the 

same standard concentration of three different Cd2+ ions concentrations (50, 60 and 80 µg 

Cd/L) without renewing the electrode surface, resulted in an RSD of 6.8%, 7.5% and 

13.9%, respectively. The reproducibility of the electrode response, assessed by using six 

different modified electrodes in the presence of 50, 60 and 80 µg Cd/L Cd2+ ion solutions, 

showed an RSD of 2.1%, 3.5% and 1.5%, respectively. To perform reproducibility 

measurements, a new electrode was made for each measurement by cleaning (scraping) 

the previous electrode surface against a clean paper to remove surface residues from the 

previous analysis. The RSD for electrode response measured without renewing the 

electrode surface was higher than for the electrode response measured with renewing the 

electrode surface. These results support renewing the electrode surface by scraping 

against a clean paper prior to each Cd2+ ion measurement performed by the modified 

electrode. 

4.5.5 Interference studies 

High selectivity is an important characteristic of any carbon paste electrode developed to 

measure trace metal concentrations in solution. In the context of the current study, other 

cations in solution could potentially compete with Cd2+ ions for thiosalicylic acid binding 

sites on the electrode surface and interfere with peak signal (Fanta and Chandravanshi, 

2001). Possible interferences by Ni2+, Zn2+, Mn2+, Fe2+, Pb2+, Cu2+, Mg2+, Ca2+, K+ and 

Al3+ with the anodic stripping voltammetry of Cd2+ ions were therefore investigated. At a 
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free Cd2+ concentration of 50 µg Cd/L, the metal interference of each metal ion was less 

than 21% except for Pb2+, Cu2+ and Fe2+ (Table 4.2). 

Table 4.2. The interference effect of solution cations at a concentration of 100 µg Cd/L 

concentration on the anodic peak current for a Cd2+ concentration of 50 µg Cd/L quantified using 

the modified electrode. 

Cation Ni2+ Zn2+ Mn2+ Fe2+ Pb2+ Cu2+ Mg2+ Ca2+ K+ Al3+ 

Change in the peak 

current (%) 

-20 -8.3 18.8 38 65 55 -8.6 -21.3 -7.4 -2.7 

Note: Change in the peak current refers to the percentage variation of the square wave anodic peak current corresponding to the 50 µg Cd/L Cd
2+

 ion in 

the presence of other cations at 100 µg Cd/L concentration. 

The variable interference shown by the tested metal cations may be due to variability in 

the binding affinity of the cations with thiosalicylic acid (Perrin, 1958). Gismera et al., 

2003) and Gismera et al. (2006) reported that thiosalicylic acid shows a great affinity for 

soft trace metal ions such as Pb2+ and Cu2+ and reported the detection limit of thiosalicylic 

acid-modified electrodes for Pb2+ and Cu2+ ions as 828 × 10-14 µg Pb/L (4 × 10-8 mol 

Pb/L) and 63.5 × 10-12.3 µg Cu/L (1 × 10-6.3 mol Cu/L), respectively which are lower than 

the detection limit for Cd2+ in the current study. Perrin (1958) reported that the                    

Cu-thiosalicylic acid (pK1-10.60) and Fe-thiosalicylic acid (pK1-16.35) complexes have 

higher stability constants than Cd-thiosalicylic acid (pK1-5.55) complexes. Fanta and 

Chandravanshi (2001) observed Cu2+ and Pb2+ ions can significantly interfere to suppress 

the Cd2+ signal of a N-P-Chlorophenyl-cinnamohydroxamic acid (CPCHA) modified 

electrode, as these cations can form complexes with CPCHA and prevent the 

accumulation of Cd at the electrode surface. Chamjangali et al. (2015) reported that a 

bismuth film/crown ether/Nafion modified screen-printed carbon electrode showed a 1:1 

tolerance limit for Cu2+ ions when detecting Cd2+ ions in solutions due to the deposition 

of intermetallic Cu-Cd compounds on the electrode surface. Evidence from literature and 
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the current study suggest that thiosalicylic acid used for the modified electrode has a 

greater affinity towards Cu2+ and Pb2+ ions and substantiates the potential for high 

interference of these ions on the detection of Cd2+ in solution. However, studies have 

reported that interference of Cu2+ ions could be easily eliminated by adding ferrocyanides 

into the electrolyte solution to produce an insoluble and stable copper ferrocyanide 

complex (Hao et al., 2016; Zhao et al., 2016). 

4.5.6  The selectivity of the TSA-CP electrode towards free Cd2+ ions 

The purpose of using an ion-specific electrode is to quantify the free ion concentration in 

the solution. Verification of the performance of any new electrode must therefore analyze 

the performance of the electrode in discriminating between free and complexed ions. 

Ethylenediaminetetraacetate forms stable complexes with free metal ions by forming a 

ring structure with the metal ion via nitrogen and oxygen atoms in the EDTA molecule 

and can be used to quantify the selectivity of an electrode to free ions (Xie, 2009). 

Voltammograms of Cd2+ ion peak current variation in the absence of EDTA and at a Cd: 

EDTA molar ratio of 1:1 and 1:2 is shown in Figure 4.8. The peak current corresponding 

to Cd2+ reduced as the EDTA concentration in the solution increased and was not detected 

at a Cd2+: EDTA molar ratio of 1:2.  

 

Tanaka et al. (1956) also reported a reduction in peak current for free Cd2+ ions in a 1:1 

molar ratio of Cd: EDTA using a mercury hanging drop electrode as the indicator 

electrode in pH 4.2 acetate buffer. The reduction of Cd2+ current peak may be due to the 

complexation of free Cd2+ ions with EDTA in solution. This infers that the modified 

electrode has the ability to distinguish between total Cd and free Cd2+ in the solution and 

measure only the free Cd2+ ions and is evidence of a major advantage of the modified 
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electrode compared to other techniques such as AAS, ICP-AES and MP-AES (Baffi et 

al., 2002). 

 

Figure 4.8. Square wave anodic stripping voltammograms for Cd2+ ions as a function of increasing 

EDTA concentrations at (a) 1:2 Cd: EDTA (b) 1:1 Cd: EDTA (c) no EDTA. Experimental 

conditions; 100 µg Cd/L Cd2+ ion concentration in 0.1 mol/L CH3COONa (pH 4.5), 

preconcentration time; 500 s and sample rate; 5 Hz. 

4.5.7 Application to environmental samples 

To test the applicability of the optimised modified electrode to environmental samples, 

the free Cd2+ ion concentration was analysed in a range of water and soil solution 

matrices. For water analysis, water samples from three different sources; tap water, farm 

drainage water and wastewater were selected to progressively investigate the effect of 

interference ions on the determination of free Cd2+ ions. Soil solution was analysed to 
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investigate the precision of Cd2+ ion detection using the modified electrode for ‘real life’ 

samples that might be analysed in future research. 

 Water sample analysis 

To test the applicability of the modified electrode to water samples; drainage water, 

wastewater and tap water were spiked with Cd to achieve two concentrations of Cd in 

solution. The analytical recovery of added free Cd ions was 103%, 78% and 103%, for a 

spiked concentration of 40 µg Cd/L changed to 84%, 82% and 91%, for a spiked 

concentration of 80 µg Cd/L (Table 4.3). Analytical recovery at both spiked Cd 

concentrations in wastewater was lower than for drainage and tap water. Cation analysis 

of all water samples showed that wastewater contained a higher concentration of 

interfering ions when compared to drainage and tap water (Appendix 3). Therefore, it can 

be suggested that lower Cd2+ recovery percentages for the wastewater samples were due 

to the high concentration of interfering metal ions in the wastewater samples. 

Table 4.3. Analytical recovery of Cd2+ ions from water samples using the TSA-CP electrode. 

Water Sample Added [Cd2+]  

(µg Cd/L) 

Measured [Cd2+]  

(µg Cd/L) 

Analytical recovery 

(%) 

Drainage water 
36 37 103 

56 47 84 

Wastewater 
36 28 78 

56 46 82 

Tap water 
36 37 103 

56 51 91 

Data are means±standard errors of three replicates (n=3). 

 Soil solution analysis 

To accurately assess the performance of any newly developed analytical technique, it is 

important to evaluate the precision of results across different environmental matrices. To 
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investigate the precision of the modified electrode, the free Cd2+ ion concentration in soil 

solution from two soil samples was analysed and the RSD between soil replicates was 

calculated. The RSD for extractable Cd2+ ion concentration between two soil samples of 

soil A, collected from two different experimental pots with the same Cd concentration 

was, 0.7%, and that for soil B was 1.6% (Table 4.4). The low RSD between two replicates 

for each soil sample (soil A and soil B) suggest that the modified electrode shows a high 

precision in Cd2+ ion determination in environmental samples (soil solutions). 

Comparison of the results from the electrode to the total Cd concentration in soil solution 

(quantified using GFAAS) shows that 94% and 89% of total Cd was in the form of free 

Cd2+ ion for the two replicates for soil A, whereas for soil B free Cd2+ ion concentration 

was 96% and 89% of total Cd. 

 

Table 4.4. Determination of free Cd2+ ion concentration using the TSA-CP electrode and the total 

Cd2+ ion concentration using GFAAS of the soil solution. 

Sample name Measured free Cd2+ 

ion concentration 

(µg Cd/L) 

RSD (%) of free 

Cd2+ concentration 

of soil between two 

pots of each soil type 

Measured total Cd2+ 

ion concentration 

(µg Cd/L) 

Soil A (Pot 1) 191.1±4.4  

0.7 

202.3±13.4 

Soil A (Pot 2) 192.2±5.6 214.7±24.7 

Soil B (Pot 1) 174.2±1.1  

1.6 

180.9±38.2 

Soil B (Pot 2) 169.7±2.2 188.8±58.4 

Data are means±standard errors of three replicates (n=3). RSD (%) was calculated between the Cd
2+ 

ion concentration of soil collected from two pots 

of each soil sample type. 

4.5.8 Validation of TSA-CP electrode 

Understanding the mechanisms of Cd uptake and translocation by plant species requires 

knowledge of the free Cd2+ ion concentration in xylem saps. However, the determination 

of low concentrations of free Cd2+ ions in the low volume of xylem saps poses an 

analytical challenge. The modified electrode developed and verified in the current work 
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has been shown to distinguish between total Cd and free Cd2+ in the solution and measure 

only the free Cd2+ ions in environmental samples. Furthermore, the electrode exhibited a 

high precision in the measurement of low Cd2+ concentrations in a low volume of 

environmental matrices. Free Cu2+ and Pb2+ ions had considerable interference on the 

detection of free Cd2+ ions and there may be minor interference from these metal ions in 

determining free Cd2+ in xylem saps; however, it might not be a significant issue due to 

the high complexation of free Cu2+ and Pb2+ with organic anions in xylem saps (Ghnaya 

et al., 2013). The specific characteristics of the thiosalicylic acid modified electrode 

described in this work underpin its use as a reliable and promising tool to determine the 

free Cd2+ ion concentration in chicory and plantain to understand the major form of Cd 

translocation in chicory and plantain saps. Therefore, in the next chapter thiosalicylic acid 

modified electrode will be used to determine the free Cd2+ ion concentration in the chicory 

and plantain xylem sap to understand the Cd translocation. Knowledge of the free Cd2+ 

ion concentration in xylem saps will increase understanding of the Cd translocation 

mechanisms in chicory and plantain. 
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Influence of cadmium in growth media on organic acid 

production in the xylem sap of chicory and plantain 

Part of the results of this chapter was presented in the proceedings of the Farmed Landscape Research 

Workshop 2020 Citation: 

 

Ubeynarayana, N., Jeyakumar, P., Bishop, P., Calvelo Pereira, R. and Anderson, C., 2020. Complexation of 

cadmium with organic acids in xylem fluid of chicory and plantain. In: Nutrient Management in Farmed 

Landscapes. http://flrc.massey.ac.nz/publications.html. Occasional Report No. 33. Farmed Landscape 

Research Centre, Massey University. 

 

5.1 Graphical Abstract 
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5.2 Abstract 

The effect of Cd on xylem sap LMWOA production and Cd translocation was examined 

in chicory and plantain plants grown in hydroponic solution amended with six Cd levels: 

0 (Control), 0.01, 0.1, 0.5, 2.5 and 5 mg Cd/L for 90 days. Both chicory and plantain 

showed variable production of oxalic, fumaric, citric, malic and acetic acids as a function 

of Cd treatment in the xylem sap. There was a significantly higher shoot Cd concentration 

in chicory than plantain in all Cd treatments, except for the control and 0.01 mg Cd/L 

treatments. The significantly higher shoot Cd concentration in chicory can be explained 

in terms of variations of LMWOA production in both plants. LMWOA concentrations in 

chicory xylem sap showed a significant (P<0.05) and positive correlation with the shoot 

and xylem sap Cd concentration. However, there was no significant (P>0.05) correlations 

observed between LMWOA concentrations with shoot and xylem sap Cd concentration 

for plantain. Although all LMWOAs produced in chicory xylem sap significantly 

correlated with shoot Cd concentration, stepwise regression analysis showed that the 

primary cause for higher shoot Cd concentration in chicory relative to plantain is fumaric 

acid production which may bind with chicory in xylem sap and translocate the metal 

towards shoots. To evaluate the applicability of the regression model to plants grown in 

field conditions a soil experiment was conducted by growing chicory and plantain in 

Allophanic, Gley and Recent soils, separately. The derived regression model was used to 

predict the shoot Cd concentration of chicory grown in three types of New Zealand 

pastoral soil. There was a significant and positive correlation (R=0.925, P<0.001) 

between the predicted and actual shoot Cd concentration of chicory grown in each soil 

type.  
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5.3 Introduction 

Xylem-mediated root-to-shoot translocation is the main process accounting for Cd 

accumulation in the aerial parts of plants (Uraguchi et al., 2009). Analysis of metal 

speciation in xylem sap via X-ray fluorescence (Cheng et al., 2016) and X-ray absorption 

spectroscopy (Lu et al., 2013) has previously shown that metal translocation to shoots 

occurs through complexation with LMWOAs. Elevated concentrations of trace metals 

including Cd in the soil can activate various enzymes in the TCA cycle of plants which 

are responsible for the production of LMWOAs inside plant cells (Tatár et al., 1998; 

Mnasri et al., 2015). The complexation of these LMWOAs with metal ions can play an 

important role in metal translocation. For example, Senden and Wolterbeek (1990) 

reported that metal-LMWOA complexes, such as Cd-citrate, in tomato plants, could 

transport Cd efficiently from root to shoot tissues via the xylem sap. Li et al. (2019b) 

reported that the citric acid concentration in rice (variety Luhui 17) xylem sap increased 

from 0.51 to 0.60 mg/L when the Cd concentration in hydroponic media increased from 

0 to 2 mg Cd/L. In another study, the concentration of citric and tartaric acids in rice 

(Lu.527-8) xylem sap was positively correlated (R=0.82 and R=0.97, respectively) with 

total xylem sap Cd concentration, when the soil Cd concentration increased from control 

to 10 mg Cd/kg soil (Fu et al., 2019). 

The translocation of Cd as an LMWOA complex may be beneficial to plants. Many 

researchers have reported that metal detoxification inside a plant can happen as 

complexation reduces the free ionic form of metals in the xylem sap (Pence et al., 2000). 

Pence et al. (2000) reported that the pennycress synthesizes more organic acids when it 

is subjected to high Cd2+ concentrations in hydroponic solution to avoid the toxicity of 

free Cd2+ ions in xylem sap. For an increase in Cd levels from 0 to 11.2 mg Cd/L, Dresler 

et al. (2014) reported an increase in malate and citrate production by 142% and 242%, 
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respectively, in mature leaves of maize with a corresponding increase in leaf Cd 

concentration from 0-250 mg Cd/kg DW without any indication of plant stress. They 

proposed that the production of malate and citrate in the TCA cycle is involved with both 

Cd detoxification and translocation in maize.  

Literature provides evidence that Cd enhances the specific production of LMWOAs in 

xylem sap, and that the involvement of LMWOAs in xylem sap Cd translocation varies 

between plant species and cultivars (Montargès-Pelletier et al., 2008; Li et al., 2019b). 

The influence of LMWOAs on xylem sap Cd translocation mechanisms in forage species 

such as chicory and plantain remain under-studied and such information is useful for 

alleviating the risk of Cd transfer into the food chain. Advances in understanding the 

mechanism for xylem sap Cd translocation in chicory and plantain, therefore, requires 

knowledge of how soil solution Cd concentration can induce LMWOA variation in xylem 

sap. The specific objectives for this study were: (a) to determine the impact of Cd in 

hydroponic solution on xylem sap LMWOA production and investigate the influence of 

Cd-LMWOA complex on Cd translocation in chicory and plantain; and (b) to develop a 

statistical model based on hydroponic data that can be used to predict the shoot Cd 

concentration in chicory and plantain when grown in different soil types of New Zealand. 

5.4 Materials and methods  

The forage species of chicory (Cichorium intybus L.) and plantain (Plantago lanceolata 

L.) were simultaneously grown separately in hydroponic solution and soil. 
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5.4.1  Experiment one: Hydroponic experiment 

A hydroponic experiment was set up in the greenhouse at the Massey University Plant 

Growth Unit with a day/night temperature of 17/20 ℃. A modified Hoagland solution 

was used as hydroponic media and spiked with a calculated amount of CdCl2 equivalent 

to six different Cd treatments: 0 (control), 0.01, 0.1, 0.5, 2.5 and 5.0 mg Cd/L. The 

compositions of the hydroponic solution were; 1003 mg/L (5 mM) Ca(NO3)2·2H2O, 

505.5 mg/L (5 mM) KNO3, 493.2 mg/L (2 mM) MgSO4·7H2O, 136.2 mg/L (1 mM) 

KH2PO4, 3.6 mg/L (0.1 mM) EDTA-Fe, 2.8 mg/L (47 μM) H3BO3, 0.2 mg/L (1 μM) 

MnCl2·4H2O, 0.2 mg/L (1 μM) ZnSO4·7H2O, 1 µg/L (0.01 μM) H2MoO4 and (0.05 mg/L) 

0.25 μM CuSO4·5H2O (Xin et al., 2017a). Prior to the experiment chicory and plantain 

seeds were germinated on microfiber sponges in green plastic cups for 10 days on a 

germination bench at 17/20 ℃ (Figure 5.1a). After germination three healthy and uniform 

seedlings of each plant were transplanted into a container containing hydroponic solution 

(50 L), which was covered by polyvinyl plates with three smoothly round holes (Figure 

5.1b). The experiment was arranged in a completely randomized design with six 

treatments (6 containers) per plant and three replicated plants per treatment for 90 days. 

The hydroponic media was renewed every 7 days as well as half an hour before the 

collection of the xylem sap, and the pH of the solution was adjusted to 5.5-6.0 every day 

(Liao et al., 2000) by 0.1M HNO3 acid to prevent significant depletion of nutrients and 

changes in solution pH1. 

 

1 The pH of the hydroponic solution checked every day. The hydroponic solution pH was adjusted to pH 5.5-6.0 on the first day of 

the experiment and it was constant for first three days. However, it was adjusted to pH range 5.5-6.0 and maintained after third day. 
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Figure 5.1. Experimental steps of the hydroponic experiment. (a) germination of chicory and 

plantain seeds on microfiber sponges in green plastic cups (b) growth of chicory plant on 

microfiber sponge (c) Aeration of the hydroponic containers via aquarium pumps (d) 

Arrangement of the greenhouse set up. 

5.4.2  Experiment two: Pot experiment 

A parallel pot experiment was set up in the same greenhouse under the same 

environmental conditions. Bulk samples of three representatives NZ pastoral soils from 

the Allophanic, Gley and Recent soil orders (Cryands and Udands, Aquepts, and Dystric 

Fluventic Eutrudept, respectively in the US Soil Taxonomy Classification; (Hewitt, 

2010)) were collected (0-150 mm depth) from three dairy farms located in Waikato 

(37°41'52.1"S 175°37'26.9"E), Canterbury (43°39'11.6"S 172°28'11.1"E) and 

Palmerston North (400 22’ 55. 56’’ S 1750 36’ 21. 37’’ E), respectively. These three soil 

types were selected based on their different soil chemical characteristics. The soils could 

be classified by their Cd concentration as high (Allophanic-0.94 mg Cd/kg), medium 
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(Gley-0.74 mg Cd/kg) and low (Recent-0.21 mg Cd/kg) Cd soils. The collected soil was 

air-dried at 30 ℃ for 5 days, sieved through a <4 mm sieve and 18 pots (2 L) were filled 

with 1kg of the soil for an experimental set up of 2 plants (chicory and plantain) x 3 soil 

types x 3 replicates. A bulk sub-soil sample from each soil type was further sieved through 

a 2 mm stainless steel sieve and stored for soil characterisation (Table 5.1). Prior to the 

experiment chicory and plantain seeds were germinated on germination paper for 10 days 

in a germination laboratory at 17/20 ℃. After germination, one viable and healthy 

seedling of each plant was planted in the middle of the soil-filled pots. The greenhouse 

experimental setup was arranged in a Complete Randomised Design (CRD) and 

maintained at a pot-field capacity of 70% for 90 days in a greenhouse where the average 

day/night temperature ranged between 17 and 20 ℃. 

Table 5.1. Chemical properties of Allophanic, Gley and Recent soil used in the study. 

Soil type pH TOC (g/kg) OM (g/kg) Total Cd (mg 

Cd/kg) 

Allophanic 5.3 91.0 182.0 0.97 

Gley 5.5 57.0 114.0 0.74 

Recent 5.9 27.2 55.4 0.28 

5.4.3 Plant harvest and soil sampling  

Ninety days after transplanting, plant shoots and roots were removed separately from both 

pot and hydroponic experiments and xylem sap was collected as described in section 

5.4.4. Immediately after harvest roots were dipped in a cold 0.36 × 10-3 mg/L HCl solution 

to eliminate external Cd adsorbed at the root surface (Ghnaya et al., 2013).  

The rhizosphere soil (defined as soil adhered to the plant roots) from the pot experiment 

was collected by gently scraping the soil from roots by hand (Jeyakumar et al., 2014; Xin 

et al., 2015). All rhizosphere soil samples were air-dried at room temperature and ground 
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to pass through a 2 mm stainless steel sieve and stored in sealed plastic bags at room 

temperature until analysis. 

5.4.4 Xylem sap collection 

The xylem sap from all plants (from experiment 1 and experiment 2) was collected by the 

method described by Liao et al. (2000) with modifications. Briefly, the chicory and 

plantain stems were cut using a stainless-steel razor blade at about 1 cm above the media 

surface perpendicular to the stem axis. To avoid contamination of the xylem sap with cell 

sap through the cutting wound, the first drop of exudate was rejected. The xylem sap was 

collected with a micropipette. The collection time of day can cause variations in xylem 

sap Cd concentrations due to diurnal variations of plant metabolic activities (Liao et al., 

2000). Therefore, xylem sap was collected between 0800-0930 hrs (NZT) to maintain 

consistency in sap collection. Collected sap samples were immediately passed via a 

0.45µm filter and frozen at a -80 ˚C freezer until further analysis.  

5.4.5 Plant analysis 

 Plant biomass 

Plant shoots and roots were separated at harvest after collecting the xylem sap and dried 

at 60 ˚C to constant weight. The total dry weight of each plant portion was recorded. 

Dried shoot and root biomass were ground using a Cyclotech mill and stored for further 

chemical analysis. 
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 xylem sap total Cd concentration  

Xylem sap Cd concentration was determined based on the method explained by 

Nakamura and Akiyama (2008) with modifications. Briefly, 10 µL of xylem sap was 

digested with 990 µL of 2% HNO3 acid at room temperature for 1 hr, and the Cd 

concentration in the digested solution was determined by GFAAS. 

  Plant tissue total Cd concentration 

For each shoot and root biomass sample, 0.1 g of dried and ground material was digested 

with conc HNO3 (10 mL) and diluted up to 25 mL with de-ionized water. The total Cd 

concentration in the digested solutions was determined by GFAAS. The shoot to root 

translocation factor (TF) was calculated as the ratio of shoot Cd concentration to root Cd 

concentration (Jeyakumar et al., 2010). 

  Free Cd ion concentration in xylem sap 

The free Cd2+ ion concentration in chicory and plantain xylem sap was determined for the 

5 mg Cd/L and 2.5 mg Cd/L hydroponic treatments2. Briefly, the collected xylem sap was 

diluted with 0.1 mol/L sodium acetate (CH3COONa) solution at 1:20 (v/v) ratio and the 

free Cd2+ ion concentration was measured using the thiosalicylic acid modified carbon 

paste electrode developed in Chapter 4. A calibration curve was prepared using five Cd2+ 

ion concentrations prepared in 0.1 mol/L CH3COONa (20, 40, 60, 80, 100 µg Cd/L) and 

the curve was used to calculate the Cd2+ ion concentration in plant samples. 

 
2 The plants grown at 5 and 2.5 mg Cd/L treatments were selected to analyse the free Cd2+ ion concentration 

using thiosalicylic acid modified electrode due to higher xylem sap LMWOA and higher xylem Cd2+ 

concentration in plants grown at 5 and 2.5 mg Cd/L treatments. 
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 HPLC analysis for LMWOAs in xylem sap 

The composition and concentration of LMWOAs in xylem sap were analysed by         

High-Performance Liquid Chromatography HPLC (Agilent Technologies 1200 Series, 

Santa Clara, CA, USA) as described by Cawthray (2003) and Nakamura and Akiyama 

(2008) with modifications. Ten µL xylem sap extracted from plant tissues was diluted 

with 990 μL of 25 mM KH2PO4 (the HPLC mobile phase solution). Each mixture was 

subsequently filtered through a 0.22 μm filter to remove suspended material prior to 

injection into the HPLC. Separation was conducted on a 250 × 4.6 mm (5 µm particle 

size) C18 reverse-phase column. Each sample solution (100 μL) was injected into the 

column with a flow rate of 1.0 mL/min at 25°C and UV detection at 210 nm. Potassium 

dihydrogen phosphate (25 mM) solution was used for isocratic elution. Identification of 

organic acids was performed by comparing retention times in xylem sap samples with 

those retention times obtained by analysing a standard mixture including six common 

LMWOA: (i.e. acetic, citric, fumaric, malic, oxalic, and tartaric), which are usually 

present in xylem exudates (Fu et al., 2019). 

5.4.6 Soil Analysis 

 Total and bioavailable Cd concentration of the rhizosphere soil 

One gram of rhizosphere soil from the pot experiment was digested with conc HNO3 (10 

mL) and diluted to 25 mL with de-ionized water. The total Cd concentration in each 

digested solution was determined by GFAAS. For bioavailable soil Cd concentration, 30 

mL CaCl2 (0.05 mol/L, pH 7) was added to 5 g of soil in a centrifuge tube and shaken in 

an end-over-end shaker for 2 hr at room temperature. The solution was centrifuged at 
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1068 g for 10 min and filtered through Whatman 42 filter paper. The filtered solution was 

then analyzed using GFAAS. 

5.4.7 Quality control measures 

All chemicals used in the experiments were of analytical grade. The limit of detection for 

Cd for total Cd concentration in this work was 0.002 mg Cd/L. The accuracy of the 

measurements was assessed by analyzing certified reference materials in parallel with 

unknown samples. For soil total Cd concentration, NIST SRM 2710a Montana soil I 

sample, (total Cd 12.3 mg Cd/kg), was used as the certified reference material. The mean 

Cd concentration of the NIST SRM 2710a was obtained as 12.0±1 mg Cd/kg, which is 

90-106% of the expected value. For plant total tissue Cd analysis, NIST 1573a (National 

institute of standards and technology, tomato leaves-1.52 mg Cd/kg) was used as certified 

reference material and found to be within 93-105% of the expected mean value. 

5.4.8 Statistical analysis 

Statistical analysis was conducted with Minitab 18 and OriginPro 9 (OriginLab, USA) 

statistical software. The effect of Cd treatments on different plant and soil variables was 

statistically analysed using a one-way ANOVA test; if a significant (P<0.05) main effect 

was detected, the difference between treatment means was tested using a Tukey HSD 

posthoc test. The statistical differences of shoot Cd and LMWOAs concentration between 

chicory and plantain were analysed with an unpaired t-test for each Cd treatment in the 

hydroponic experiment. A set of Pearson simple linear correlation analyses relating the 

xylem sap Cd concentration and shoot Cd concentration to different xylem sap LMWOAs 

concentration was performed for the hydroponic experiment. Stepwise regression was 
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used to determine overall relationships between xylem sap LMWOAs, hydroponic 

solution Cd and shoot Cd concentration in the hydroponic experiment. 

5.5 Results and Discussion 

5.5.1 Experiment one: Hydroponic experiment  

 Biomass dry matter  

The average root dry weight of chicory for the 0.01, 0.1 and 0.5 mg Cd/L treatments was 

nominally lower than the control but significantly decreased (P<0.05) by 78% and 86% 

for the 2.5 and 5 mg Cd/L treatments, respectively, relative to the control (Table 5.2). The 

shoot dry weight of chicory did not show any significant (P>0.05) difference for the 0.01 

mg Cd/L treatment, but significantly (P<0.05) decreased by 48%, 42% 85% and 90% for 

the 0.1, 0.5, 2.5 and 5 mg Cd/L treatments, respectively, compared to control (Table 5.2). 

In contrast, there was no significant difference in plantain root and shoot dry weight with 

increasing Cd concentration in the hydroponic media. This may be due to the lower Cd 

accumulation in plantain shoots than chicory shoots (discussed in the next section). Many 

studies have reported that high Cd accumulation in plant roots and shoots can cause plant 

growth reduction due to Cd toxicity (Ouzounidou et al., 1997; Xin et al., 2014; Huang et 

al., 2019). For example, Dias et al. (2013) reported that lettuce plants exposed to 0.1 and 

1 mg Cd/L concentrations showed a significant decrease of 16 and 46% dry weight, 

respectively, compared to plants growing in control treatments. These authors suggested 

that plants growing in Cd-enriched solutions can uptake the metal through their roots, 

which accumulates in different tissues, eventually reducing plant growth and productivity 

via interfering with a number of normal metabolic processes. These may include (1) 

synthesis of proteins (2) the activities of some important enzymes by binding to free 
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amino, carboxylate or side groups and/or replace some important metal ions associated 

with such groups and (3) various photosynthetic processes such as chlorophyll 

biosynthesis (Stobart et al., 1985; Van Assche et al., 1988). 

Table 5.2. Effect of Cd concentration in hydroponic media on chicory and plantain growth. 

Added Cd 

concentration in the 

hydroponic solution 

(mg Cd/L) 

Plant dry weight (g/plant DW) 

Chicory Plantain 

Root Shoot Root Shoot 

0 (control) 5.90±1.50a 28.09±0.58a 3.54±0.04a 23.72±1.55a 

0.01 4.98±0.78ab 21.88±1.82ab 2.59±0.05a 30.76±1.93a 

0.1 2.89±0.36abc 14.40±1.83c 2.30±0.20a 27.88±2.22a 

0.5 4.07±1.04abc 16.20±2.24bc 2.76±0.47a 23.96±0.79a 

2.5 1.29±0.37bc 4.14±0.39d 2.08±0.37a 26.41±2.37a 

5.0 0.80±0.09c 2.65±0.38d 2.04±0.19a 22.60±1.87a 

 Plant tissue Cd concentration and translocation 

The concentration of Cd in roots and shoots of both plant species was affected by the Cd 

concentration in hydroponic solution (Figure 5.2). There was a trend of increasing Cd 

concentration in roots and shoots of both chicory and plantain as the Cd concentration in 

solution increased from the control to 5 mg Cd/L (Figure 5.2). The shoot and root Cd 

concentration in chicory increased from 3.2 to 168.6 mg Cd/kg DW and 2.1 to 786.6 mg 

Cd/kg DW, respectively when the hydroponic solution Cd concentration increased from 

control to 5 mg Cd/L. The shoot and root Cd concentration in plantain increased from 2.5 

to 54.6 mg Cd/kg DW and 8.0 to 1397.5 mg Cd/kg DW, respectively, when the 

hydroponic solution Cd concentration increased from control to 5 mg Cd/L level. In a 

similar study by Simon et al. (1996) the chicory shoot Cd concentration increased from 

1.3 to 307.0 mg Cd/kg and the root Cd concentration from 1.0 to 891.1 mg Cd/kg when 

the hydroponic Cd concentration increased from the control treatment to 6 mg Cd/L in 

Data are means±standard errors of three replicates. Values in each line, followed by different letters within a column for each plant, are significantly 

different at P<0.05 (n=3). 
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the current work. The shoot Cd concentration of chicory was between 28 to 208% higher 

than for plantain for all Cd treatments (Appendix 4). This is in agreement with Abe et al. 

(2008) who investigated Cd uptake of 93 plants, including chicory and plantain, grown 

in sandy loam soil (3 mg Cd/kg soil) and who recorded a higher shoot Cd concentration 

in chicory (77 mg Cd/kg DW) than plantain (5.5 mg Cd/kg DW). A glasshouse study 

described by Stafford et al. (2016) found the mean tissue Cd concentration in chicory to 

be 231% higher than plantain.  

In the current experiment the ratio of the Cd concentration in shoots to roots, defined as 

the Cd translocation factor, was calculated to describe the relative ability of these plants 

to translocate Cd from roots to shoots (Jeyakumar et al., 2014; Ubeynarayana et al., 2021). 

The TF of chicory significantly (P<0.05) increased from 1.5 to 3.5 when the Cd 

concentration increased from the control treatment to 0.01 mg Cd/L. The TF decreased 

from 3.5 to 0.2 with increasing Cd concentration from 0.01 to 5 mg Cd/L, however, this 

decrease was significant (P<0.05) only at 2.5 and 5 mg Cd/L hydroponic concentration 

compared to control (Figure 5.2a). Simon et al. (1996) observed that the TF factor of 

chicory significantly decreased from 1.1 to 0.3 when the hydroponic solution Cd 

concentration increased from the control treatment to 6 mg Cd/L. In the current work, the 

TF for plantain was always <1, with a decrease from 0.39 to 0.03 as the hydroponic Cd 

concentration increased from the control level to 5 mg Cd/L. However, this decrease was 

only significant (P<0.05) for a hydroponic Cd concentration of 0.01 mg Cd/L and greater 

(Figure 5.2b). These results showed that chicory had a higher TF range (12-4%) in all Cd 

treatment levels than plantain (Figure 5.2).
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Figure 5.2. Cadmium concentration and TF of (a) chicory (b) plantain grown in different Cd concentrations in the hydroponic medium. Significant differences 

of root and shoot Cd concentrations between Cd treatments are represented by lower- (a-d) and upper- (A-D) case letters, respectively. Values in each bar 

followed by different letters are significantly different at P<0.05. Values in TF line followed by different letters (K-N) are significantly different at P<0.05. 

Vertical error bars represent ±SE (n=3). 
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 Total and free xylem sap Cd concentration  

The xylem sap Cd concentration in chicory and plantain showed a significant positive 

correlation (R=0.977, P<0.001; R=0.738, P<0.001, respectively) with hydroponic Cd 

concentration and increased from 0.1 to 6.4 mg Cd/L and 0.3 to 4.0 mg Cd/L, respectively 

when the hydroponic Cd concentration increased from control to 5 mg Cd/L (Figure 5.3). 

This increase was significant (P<0.05) for chicory for all hydroponic Cd concentrations 

of 0.1 mg Cd/L. However, for plantain, the xylem sap Cd concentration was not different 

for the 0.01 and 0.1 mg Cd/L treatments relative to the control, and higher Cd treatments. 

 

 

 

 

 

Figure 5.3. Xylem sap Cd concentration of chicory and plantain grown with increasing 

hydroponic Cd concentration. Significant differences of xylem sap Cd concentrations among 

Cd treatments of chicory and plaintain are represented by lower- and upper-case letters, 

respectively. Values in line followed by different letters are significantly different at P<0.05 

(n=3). Vertical error bars represent ±SE (n=3). 
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Analysis of the free Cd2+ ion concentration in the xylem sap of chicory and plantain for 

the 5 mg Cd/L hydroponic Cd concentration treatment showed that 8% and 7% of Cd was 

present as the free Cd2+ ion, respectively (Table 5.3). Similarly, the free Cd2+ ion 

concentration of the 2.5 mg Cd/L hydroponic Cd concentration treatment showed that 9% 

and 10% of Cd in chicory and plantain xylem sap was present as the free Cd2+ ion, 

respectively. These results suggest that Cd2+ ions in the plant xylem sap are mainly in the 

complexed form. 

Table 5.3. Free Cd2+ ion concentration of chicory and plantain xylem saps. 

Sample name 
Free [Cd2+] measured from 

electrode (mg Cd/L) 

Total [Cd] measured from GFAAS 

(mg Cd/L) 

 Plants grown in 5 mg Cd/L  

Chicory xylem sap 0.51±0.27 6.40±0.03 

Plantain xylem sap 0.28±0.30 4.00±0.30 

 Plants grown in 2.5 mg Cd/L  

Chicory xylem sap 0.39±0.18 4.35±0.10 

Plantain xylem sap 0.41±0.11 4.41±0.03 

Data are means±standard errors of three replicates (n=3). 

 Composition and concentration of LMWOAs in xylem sap 

The composition and quantities of LMWOA in the xylem sap of both plant species varied 

as the Cd concentration of the hydroponic solution increased from 0 to 5 mg Cd/L. Oxalic, 

fumaric, acetic, citric and malic acids were quantified as the major LMWOAs in xylem 

sap for all Cd treatments of both plants (Figure 5.4), and with the exception of fumaric 

acid, chicory produced significantly (P<0.05) higher concentrations of all LMWOAs than 

plantain under all Cd treatments (Figure 5.4). 

The concentration of oxalic, acetic and citric acids in chicory xylem sap did not 

significantly vary for treatments up to 2.5 mg Cd/L, but significantly increased from 257.6 

to 537.8 mg/L, 1237.7 to 2619.8 mg/L, and 266.5 to 716.5 mg/L, respectively, at the 5 
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mg Cd/L treatment compared to control (Figure 5.4). The fumaric acid concentration in 

chicory showed nominal variation between the control, 0.01 and 0.1 mg Cd/L treatments, 

but significantly (P<0.05) increased from 31.9 to 77.5, 31.9 to 55.9 and 31.9 to 68.1 mg/L 

at the 0.5, 2.5 and 5 mg Cd/L treatments, respectively, compared to the control. The malic 

acid concentration in chicory xylem sap did not show any significant (P>0.05) difference 

between the control, 0.01 and 0.1 mg Cd/L treatments but significantly (P<0.05) increased 

from 513.8 to 771.2 mg/L at the 0.5 mg Cd/L treatment and showed a nominal variation 

between the 0.5, 2.5 and 5 mg Cd/L treatments compared to control treatment. For 

plantain, the oxalic acid concentration in xylem sap did not significantly (P>0.05) change 

with increasing Cd levels in hydroponic solution and ranged from 18.8 to 37.1 mg/L. The 

acetic acid concentration in plantain xylem sap showed a nominal variation up to 2.5 mg 

Cd/L treatment and significantly increased by 88% (329.1-621.1 mg/L) at the 5 mg Cd/L 

treatment compared to the control. The concentration of citric acid (30.7-71.9 mg/L), 

fumaric acid (109.3-15.1 mg/L) and malic acid (62.7-158.8 mg/L) in plantain xylem sap 

did not show any trend with the increasing concentration of Cd in the hydroponic solution.  

Studies have suggested that the complexation of Cd with LMWOAs will create an 

important pathway to avoid the toxicity of free reactive Cd2+ ions inside the plant, and 

reduce the impact of free Cd on plant metabolic processes including growth (Pence et al., 

2000; Wei et al., 2007). In the current study, although the xylem sap LMWOA 

concentration increased with increasing hydroponic Cd concentration, there was a 

significant (P<0.05) reduction in chicory shoot biomass at the 0.1, 0.5, 2.5 and 5 mg Cd/L 

treatments compared to the control. Although there was a continuous biomass reduction 

with increasing Cd treatments, the reduction of biomass was only 42-48% up to 0.5 mg 

Cd/L treatment compared to the control and was associated with a nominal increase in 

the shoot Cd concentration. However, at 2.5 and 5 mg Cd/L treatments, there was a more 
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severe shoot biomass reduction (>80%) compared to the control with a significant 

increase in shoot Cd concentration. This observation implies that although xylem sap 

LMWOA production increased with increasing Cd concentration in hydroponic solution, 

these xylem sap LMWOAs may be limited in their Cd detoxification potential to only 

low concentrations of Cd in the growth media (i.e. the 0.01 mg Cd/L treatment) and only 

partially effective for Cd detoxification at medium-level Cd concentrations in the growth 

media (i.e. 0.1 and 0.5 mg Cd/L treatments). These results indicate that there is no effect 

of LMWOA in Cd detoxification at the solution concentration treatments of 2.5 and 5 mg 

Cd/L. 

Some studies have shown that once absorbed, toxic metals are not completely inert and 

can interfere with the activities of specific enzymes of the plant respiration system and 

disrupt the TCA cycle leading to higher production of LMWOAs (Bansal et al., 2002; 

Mnasri et al., 2015). Greater shoot Cd accumulation in chicory reported in this work for 

the high Cd treatments may specifically impact the activity of the malate dehydrogenase 

enzyme in the TCA cycle inhibiting the conversion of malic acid to oxaloacetate. By this 

mechanism, the inhibition of oxaloacetate production in the TCA cycle will increase the 

production of other LMWOAs. Bansal et al. (2002) reported that Cd toxicity decreased 

the activity of malate dehydrogenase in pea seeds by 40% compared to control for a 

hydroponic media Cd concentration of 28 µg Cd/L. López-Millán et al. (2009) found that 

the activity of fumarase in extracts from tomato leaves decreased by 50% at a treatment 

level of 11.2 mg Cd/L compared to the control, and this reduction was attributed to Cd 

toxicity. However, further investigations should be carried out to confirm these 

explanations.
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Figure 5.4. LMWOA concentration in xylem sap of chicory 

and plantain as a function Cd concentration in the 

hydroponic medium. (a) oxalic acid (b) fumaric acid (c) 

acetic acid (d) citric acid (e) malic acid. Significant 

differences in LMWOA concentration between Cd 

treatments are represented by lower- (a-d) and                  

upper-(A-D) case letters for chicory and plantain 

respectively. Values in each bar, followed by different 

letters are significantly different at P<0.05. The significant 

difference of LMWOA concentration between chicory and 

plantain for each Cd treatment are represented by k-l letters. 

Vertical error bars represent ±SE (n=3). 
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 Relationship of xylem sap and plant shoot Cd concentrations with xylem sap 

LMWOAs 

The results presented in this chapter suggest that the increase of shoot Cd concentration 

with increasing Cd treatment levels in both plants may be due to the increase of 

bioavailable Cd concentration in the hydroponic solution. The shoot Cd concentration of 

chicory (R=0.916; P<0.001) and plantain (R=0.927; P<0.001) was significantly and 

positively correlated with the hydroponic Cd concentration and the shoot Cd 

concentration of both chicory (R=0.942, P<0.001) and plantain (R=0.795, P<0.001) 

showed a strong significant positive correlation with xylem sap Cd concentration. This 

implies that long-distance translocation of Cd via xylem is a key factor determining Cd 

accumulation in the above-ground part in chicory and plantain.  

Many studies have identified LMWOAs as potential chelators to facilitate trace metal 

transport in plant species via xylem sap (Fu et al., 2019; Tao et al., 2020). To further 

investigate the factors that control the xylem sap and shoot tissue Cd concentration in 

chicory and plantain, Pearson’s correlation coefficients were calculated for each factor 

(hydroponic solution Cd concentration and xylem sap LMWOA concentrations) (Table 

5.4). Xylem sap and shoot tissue Cd concentrations in chicory significantly and positively 

correlated with all LMWOA concentrations, in xylem sap, and with the hydroponic 

solution Cd concentration (R=0.606-0.977 for xylem sap Cd; R=0.606-0.916 for shoot 

Cd). However, for plantain, the xylem sap and shoot tissue Cd concentration was only 

significantly correlated with the hydroponic solution Cd concentration (R=0.738 for 

xylem sap Cd; R=0.927 for shoot Cd). These data suggest xylem sap LMWOA does not 

influence the Cd uptake for plantain. 
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Table 5.4. Correlations coefficients (R) between xylem sap LMWOA concentrations with xylem 

sap Cd and shoot Cd concentration in chicory and plantain. 

 Oxalic Fumaric Citric Acetic Malic Solution [Cd] 

Chicory 

Xylem sap [Cd] 0.764** 

 

0.648* 

 

0.721** 

 

0.853** 

 

0.606* 

 

0.977** 

 

Shoot tissue [Cd] 0.606* 

 

0.700* 

 

0.607* 

 

0.753** 

 

0.650* 

 

0.916** 

 

Plantain 

Xylem sap [Cd] 0.043 -0.157 0.360 0.232 0.130 0.738** 

Shoot tissue [Cd] 0.084 -0.021 0.043 0.450 -0.121 0.927** 

*P<0.05 **P<0.001 

In order to determine which of these properties is the main factor controlling xylem sap 

or shoot tissue Cd concentration in chicory, a stepwise regression analysis was conducted 

using these factors. The regression analysis showed that the Cd concentration in the 

hydroponic solution and fumaric acid concentration in xylem sap were the controlling 

factors, explaining 96% and 88% of the variability of xylem sap and shoot tissue Cd 

concentrations, respectively. The stepwise regression equations are presented as 

Equations 1 and 2. 

𝑋𝑦𝑙𝑒𝑚 𝑠𝑎𝑝 𝐶𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =  −0.022 + 1.1411 [𝐻𝑦𝑑𝑟𝑜𝑝𝑜𝑛𝑖𝑐 𝐶𝑑] + 0.01523 [𝐹𝑢𝑚𝑎𝑟𝑖𝑐]  Equation 1 

𝑆ℎ𝑜𝑜𝑡 𝐶𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =  −8.9 + 27.19 [𝐻𝑦𝑑𝑟𝑜𝑝𝑜𝑛𝑖𝑐 𝐶𝑑] + 0.838 [𝐹𝑢𝑚𝑎𝑟𝑖𝑐]     Equation 2 

 
where, [Hydroponic Cd] = Hydroponic solution Cd concentration and [Fumaric] = Fumaric acid concentration 

in xylem sap. 

Fumaric acid is a dicarboxylic acid and has a greater affinity towards Cd2+ ions (fumaric 

acid-pKa1=3.02, pKa2=4.44) (Adeniji et al., 2010). Cornu et al. (2020) found that 

fumaric acid production in xylem sap influenced Cd translocation via xylem sap in 

Sunflowers (Helianthus-ES RICA variety). Similarly, Tatár et al. (1998) reported that 

xylem sap fumaric acid production significantly increased the shoot Pb concentration of 

cucumber (Cucumis sativus). 
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5.5.2 Experiment two: Pot experiment 

Results from the pot experiment showed there was no influence of LWMOA 

concentration or composition on the xylem sap or shoot Cd concentration in the plantain. 

Therefore, only the results for the chicory are further analysed and presented in this 

section. The results for plantain are presented in Appendix 5. 

 Soil and plant Cd concentration 

The average total and bioavailable Cd concentration in the rhizosphere soil varied 

between the three soil types (Table 5.5). The Allophanic soil showed significantly higher 

total Cd concentration (0.71 mg Cd/kg) than the total Cd concentration in Gley (0.48 mg 

Cd/kg) and Recent soil (0.22 mg Cd/kg), respectively. The bioavailable Cd concentration 

followed the same trend where the Allophanic soil showed the highest concentration (0.20 

mg Cd/kg) followed by the Gley (0.14 mg Cd/kg) and Recent soils (0.02 mg Cd/kg). 

These results agree with the earlier work of Stafford et al. (2018) who reported the mean 

soil Cd concentration of Allophanic soil (1.27 mg Cd/kg) to be higher than the mean Cd 

concentration in Gley soil (0.36 mg Cd/kg) (Table 5.5).  

The Cd concentration in chicory shoots as a function of soil Cd concentration decreased 

following the order Allophanic> Gley> Recent, with on average Cd concentrations of 

3.20, 1.91 and 0.94 mg Cd/kg DW, respectively (Table 5.4). The root Cd concentration 

followed the same trend with the greatest root Cd concentration recorded for the 

Allophanic soil (2.1 mg Cd/kg), followed by the Gley (1.2 mg Cd/kg) and Recent (1.1 

mg Cd/kg) soils (Table 5.4). The xylem sap Cd concentration in chicory was highest for 

plants grown on the Allophanic soil (0.42 mg Cd/L) and considerably higher than for 

plants growing on the Gley (0.03 mg Cd/L) and Recent soils (0.04 mg Cd/L). The results 
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suggest that the significantly higher total and bioavailable Cd concentration in the 

Allophanic soil relative to the Gley and Recent soils had a significant influence on both 

the tissue and xylem sap Cd concentration in chicory plants. 

Table 5.5. Summary of soil and plant Cd concentrations for chicory grown on three soil types. 

Soil and Plant Cd 

concentrations   

(mg Cd/kg) 

Soil types 

Allophanic Gley Recent 

Soil Total Cd 0.71±0.04a 0.48±0.05b 0.22±0.01c 

Soil bioavailable Cd 0.20±0.04a 0.14±0.03b 0.02±0.00c 

Plant root Cd 2.11±0.04a 1.25±0.07ab 1.11±0.04b 

Plant shoot Cd 3.20±0.61a 1.91±0.06b 0.94±0.06c 

Xylem sap Cd (mg/L)1 0.42±0.02a 0.03±0.00b 0.04±0.01c 

Data are means±standard errors of three replicates. Values in each line, followed by different letters within a row for each parameter, are significantly 

different at P<0.05 (n=3). 
1
 Measured by GFAAS. 

 Composition and concentration of LMWOAs in xylem sap 

The concentration of LMWOAs in the xylem sap of chicory varied as a function of soil 

type (Figure 5.5). LMWOAs measured in the xylem sap of chicory in the pot experiment 

were similar to the LMWOAs (acetic, citric, fumaric, malic and oxalic acids) measured 

in chicory plants from the hydroponic experiment, however, the concentrations were 

different. Only plants grown in the Allophanic soil showed a similar concentration of 

LMWOAs (with the exception of fumaric acid) to the hydroponic experiment. Chicory 

plants grown in the Gley and Recent soils produced lower LMWOA concentrations 

relative to all treatments of the hydroponic experiment (Figure 5.5).  
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Figure 5.5. Concentrations of LMWOAs in xylem sap of chicory grown in three soil types. The 

significant difference of each LMWOA concentration between soil types is represented by a-d 

letters. Values in each bar, followed by different letters are significantly different at P<0.05. 

Vertical error bars represent ±SE (n=3). 

 Application of the regression model to predict shoot Cd concentration of chicory 

grown in different soil types 

The shoot Cd concentration of chicory grown in the Allophanic, Gley and Recent were 

calculated using the equation developed in section 5.5.1.5. When the bioavailable soil Cd 

concentration in the Gley and Recent soils was used to predict the shoot Cd concentration 

using Equation 2, the calculated shoot Cd concentration values were negative due to low 

soil bioavailable Cd concentrations. To overcome this limitation the relationship between 

total soil Cd and bioavailable Cd was examined. The total soil Cd concentration showed 

a strong significant and positive correlation with bioavailable Cd concentration (R=0.944 
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P<0.001) (Figure 5.6). and therefore, the total soil Cd concentration was used to predict 

the shoot Cd concentration. 

 

Figure 5.6. Relationship between total soil Cd concentration and bioavailable Cd concentration 

of three soil types. 

The actual and predicted shoot Cd concentration of chicory grown in the three soil types 

are shown in Figure 5.7. The predicted shoot Cd concentration showed a significant and 

positive correlation (R=0.925, P<0.001) with the actual shoot Cd concentration for each 

soil type. However, the results showed that the model overpredicted shoot Cd 

concentration by factors of 5, 4 and 3 for the Allophanic, Gley and Recent soils, 

respectively. The reason for this higher prediction may be the use of ‘total Cd 

concentration of soil’ instead of ‘soil bioavailable Cd concentration’ of each soil type to 

predict the shoot Cd concentration in the model.  
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The confirmation of the specific role and active range of LMWOA concentration on Cd 

translocation will be tested only for chicory and discussed in the next chapter as LMWOA 

in plantain xylem sap does not influence Cd translocation in plantain. 

 

Figure 5.7. The predicted and actual shoot Cd concentration of chicory grown in different soil 

types. Vertical error bars represent ±SE (n=3). 

5.6 Summary 

The results of this experiment showed that the quality and quantity of LMWOA in the 

xylem sap of chicory and plantain varies under different Cd treatments. Chicory produced 

a higher concentration of LMWOAs (oxalic, acetic, citric and malic) in the xylem sap 

except for fumaric acid compared to plantain. The free Cd2+ analysis of the xylem sap 

using the thiosalicylic acid-modified electrode showed Cd in the xylem sap of chicory 

and plantain existed dominantly in a complexed form than free Cd2+ ion form. There was 
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a significantly higher shoot Cd concentration in chicory than plantain for all Cd treatments 

and this difference can be explained in terms of variations of xylem sap LMWOA 

production in both plants. The regression analysis between shoot Cd concentration and 

xylem sap LMWOA concentration showed that Cd mainly binds with fumaric acid in 

chicory and translocate towards above-ground parts, while there was no significant 

association of LMWOAs on shoot Cd accumulation in plantain. However, reduction of 

chicory shoot biomass of chicory with increasing hydroponic Cd concentration suggests 

that although chicory produced a higher concentration of LMWOA with increasing Cd 

concentrations, these xylem sap LMWOAs may be limited in their Cd detoxification 

potential to only low concentrations of Cd in the growth media (i.e. the 0.01 mg Cd/L 

treatment).  
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Effect of exogenous organic acid on Cd uptake and 

translocation in chicory 

6.1 Graphical Abstract 

 

6.2 Abstract 

Low molecular weight organic acids play an important role in Cd uptake, translocation, 

and detoxification in forage plants such as chicory which are of economic importance to 

New Zealand agriculture. A hydroponic experiment was conducted to evaluate the effects 

of external application of fumaric, acetic and citric acids to a hydroponic solution on the 

uptake and translocation of Cd in chicory plants. Seedlings were grown for 21 days in a 

nutrient solution containing increasing concentration ratios of LMWOA to Cd: control, 

1:0 (Cd-only), 1:1, 10:1, 50:1, 100:1 for each LMWOA. The entire experiment was 

replicated, with the nutrient solution in one replicate renewed every 7 days and the 
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nutrient solution in the other replicate maintained without renewal for the duration of the 

21 days of the experiment. Analysis of the hydroponic solution showed that the efficacy 

and stability of LMWOA decreased as a function of time. An effect of LMWOA was only 

observed in treatments that were renewed every 7 days. Fumaric acid reduced Cd uptake 

and translocation in chicory with a maximum reduction achieved at a ratio of 10:1 and 

50:1 fumaric acid to Cd for root and shoot Cd accumulation, respectively. Acetic acid 

significantly increased the shoot Cd concentration at lower acetic acid levels (1:1 

treatment) and reduced the shoot Cd accumulation with increasing acetic acid 

concentrations from 10:1 to 100:1 treatment ratio. Root Cd accumulation increased for 

the 1:1 to 50:1 treatment. There was no effect of citric acid on Cd uptake and translocation 

at any treatment ratio. The current work found no strong ameliorative effect of LMWOA 

on Cd toxicity at any concentration for the LMWOA ratios and Cd concentration (1 mg 

Cd/L) used in this study. 

6.3 Introduction 

Among the various LMWOA produced by plants, studies have identified acetic acid as a 

potential ligand for Cd which can increase the Cd concentration in plants. For example, 

Hawrylak-Nowak et al. (2015) reported that the addition of acetic acid to growth media 

at an acetic acid to Cd concentration ratio of 100:1 increased the root Cd concentration in 

sunflower from 378.5-572.0 mg Cd/kg DW, compared to a Cd-only treatment (0.5 mg 

Cd/L). These authors also observed a significant increase in root FW by 42% relative to 

the Cd-only treatment suggesting that the complexation of Cd with acetic acid may 

alleviate Cd toxicity in roots. Similarly, Han et al. (2006) showed that maximum root Cd 

accumulation in maize plants was achieved through increasing the acetic acid: Cd 

concentration ratio in the hydroponic solution from 1:1 to 50:1. Root Cd accumulation 
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then decreased with a further increase in organic acid to above a Cd ratio of 100:1. Han 

et al. (2006) suggested that either acetic-Cd complexes in the soil/hydroponic solution 

can act as a carrier for Cd2+ ions towards the root surface and that these complexes can 

disassociate into free Cd2+ at the root surface which is absorbed by root membrane, or 

mobile organically bound Cd-complexes can penetrate via root membrane to increase Cd 

uptake. Cieśliński et al. (1998) suggested that higher root secretion of acetic acid from 

wheat cultivar-Kyle relative to wheat cultivar -Arcola, contributed to high Cd uptake and 

translocation in Kyle. These authors observed that higher secretion of acetic acid (by 

163%) in Kyle significantly increased both shoot and total plant Cd content by 153% and 

33%, respectively, compared to Arcola for plants growing in Sutherland sandy loam soil 

with a total Cd concentration of 0.41 mg/kg.  

Plants also have mechanisms associated with fumaric acid to regulate root Cd uptake and 

translocation (Tatár et al., 1998; Kazemi Movahed, 2020). For example, Oloumi et al. 

(2011) reported that the addition of fumaric acid (5 mg/L) to the growing media 

significantly (P<0.05) reduced the total Cd concentration in canola seedlings in the 

presence of 1 mg Cd/L compared to the control treatment (reduction was by 98%). Fan et 

al. (2016) suggested that a significant (P<0.05) increase of fumaric acid secretion from 

1.2 to 2.0 mg/L in rice (Oryza sativa cultivar Hua-Hang-Si-Miao) exposed to a Cd + Si 

(5 mg Cd/L + 42 mg Si/L) treatment influenced the chelation of Cd2+ ions and reduced 

plant Cd uptake relative to the control. Kazemi Movahed (2020) observed a higher 

secretion of fumaric acid (11-fold compared to control) by low Cd accumulating soya 

bean cultivar (AC Hime) roots and lower secretion of fumaric acid (3-fold compared to 

control) in high Cd accumulating soya bean cultivar (Westag 97) at a treatment 

concentration of 3.3 mg Cd/L. These authors suggested that fumaric acid reduced the 

solubility and bioavailability of Cd for uptake by the plant through 1) the formation of 
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Cd-LMWOA complexes in the growing media, or 2) steric factors associated with 

complexes that are too large to cross root membranes easily preventing Cd influx into the 

root cells. However, the effect of fumaric acid on increasing root Cd uptake and root 

sequestration has not been well documented in the literature. 

In addition to root Cd uptake, studies have reported that increasing metal concentration 

in the growing media increases the production of fumaric acid in the plant xylem sap and 

can influence both the xylem plant Cd translocation and shoot Cd accumulation (Tatár et 

al., 1998; Cornu et al., 2020). For example, Cornu et al. (2020) found that fumaric acid 

production in xylem sap influenced Cd translocation via xylem sap in Sunflowers (ES 

RICA variety).  

Literature has also identified citric acid as a ligand for Cd uptake and translocation in 

plants (Senden et al., 1995; Ehsan et al., 2014; Wang et al., 2017). For example, Senden 

and Wolterbeek (1990) reported that metal complexes, such as Cd-citrate, in tomatoes, 

could transport Cd efficiently from root to shoot via xylem sap. A study by Ehsan et al. 

(2014) reported that the addition of citric acid (480 mg/L) to Cd (5.6 mg Cd/L) 

significantly increased the shoot Cd concentration by 31% compared to a non-citric acid 

control. However, the dose of citric acid is important. Li et al. (2014) reported that a low 

dose (288 mg/L) of citric acid induced a 26.7% higher concentration of Cd in ramie root 

compared to a higher dose (786 mg/L) in the presence of 10 mg /L Cd. In contrast to these 

reported increases of root Cd uptake associated with citric acid, Pinto et al. (2008) 

reported that under Cd stress, citrate exuded from the roots of maize and sorghum 

effectively decreased the free Cd ion concentration in solution, and this, in turn, reduced 

Cd uptake by maize and sorghum plants. Literature evidence suggests that different plants 
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have specific mechanisms to regulate Cd uptake and translocation, and these mechanisms 

may be associated with different concentrations of different types of LMWOAs. 

Previous experiments in this thesis suggested the lower secretion of fumaric acid and 

higher secretion of acetic acid was associated with an increase in root Cd uptake by 

chicory, while fumaric acid production in xylem sap facilitated translocation of this metal 

within chicory plants. However, the literature reported in this introduction has also 

identified citric acid as a common carrier for Cd uptake and translocation in many plants. 

Therefore, the relative impact of fumaric, acetic and citric acids on Cd uptake and 

translocation to aerial tissues in chicory deserves more research. This chapter reports the 

findings of an experiment which investigated the effect of external application of fumaric, 

acetic and citric acid on plant Cd uptake and translocation in chicory. The stability of 

LMWOAs in the environment (Hoagland solution) with time was also examined as this 

parameter will assist the assessment of using LMWOAs in pastoral agriculture to regulate 

Cd uptake. The specific objectives of this study were (a) to explore the specific role of 

fumaric, acetic and citric acid on Cd uptake and translocation in chicory and their effect 

on the alleviation of Cd toxicity in chicory; and (b) to understand the stability of fumaric, 

acetic and citric acid in the environmental media with time. 

6.4 Materials and Methods 

6.4.1 Hydroponic experiment  

A hydroponic experiment was set up in a greenhouse at the Massey University Plant 

Growth Unit with average day/night temperatures of 17/20 ℃. Growth media was a 

modified Hoagland solution adjusted to six increasing concentration ratios (mg/L) of 

LMWOA to Cd: 0:0 (control), 0:1(Cd-only), 1:1, 10:1, 50:1, and 100:1 with fumaric, 



134 

 

acetic, and citric acids, independently. The concentrations (mg/L) of Cd and each 

LMWOA in these treatments are shown in Table 6.1. Plants grown in Hoagland solutions 

without organic acid and Cd (i.e. treatment 0:0) were used as controls.  

Table 6.1. The concentration of Cd and LMWOA in each LMWOA treatment. 

LMWOA: Cd concentration 

ratio in the treatments 

Cd concentration in the 

treatment (mg/L) 

LMWOA concentration in the 

treatment (mg/L) 

Control (0:0) 0.0 0.0 

0:1 1.0 0.0 

1:1 1.0 1.0 

10:1 1.0 10.0 

50:1 1.0 50.0 

100:1 1.0 100.0 

The composition of the Hoagland solution was: 602.2 mg/L (3 mM) Ca(NO3)2·2H2O, 

303.3 mg/L (3 mM) KNO3, 123.3 mg/L (0.5 mM) MgSO4·7H2O, 68.1 mg/L (0.5 mM) 

KH2PO4, 16.2 mg/L (0.1 mM) FeCl3, 0.6 mg/L (10 μM) H3BO3, 0.2 mg/L (1 μM) 

MnCl2·4H2O, 0.1 mg/L (0.5 μM) ZnSO4·7H2O, (1 µg/L) 0.01 μM H2MoO4 and 0.02 

mg/L (0.1 μM) CuSO4·5H2O. The FeCl3 was substituted for EDTA-Fe in the Hoagland 

solution to prevent possible chelating reactions with Cd. The pH of the solution was 

adjusted to 5.5-6.0 every day using 0.1M HNO3 acid to prevent significant depletion of 

nutrients and changes in pH. Chicory was used in this experiment, and germination and 

the experimental set up were similar to the experimental procedures explained in Chapter 

5 (Figure 6.1). Hydroponic containers were arranged in a completely randomized design 

and growth was continued for 21 days. The entire experiment was replicated, with the 

Hoagland solution in one replicate renewed every 7 days (Hoagland solution replacement 

on Day 7 and Day 14 hereafter described as the ‘renewed’ replicate treatment). The 

Hoagland solution in the other replicate was maintained without renewal for the 21 days 

of the experiment (‘non-renewed’ replicate treatment). In a parallel experiment, change 

of the hydroponic solution pH and LMWOA concentration of the 1:1, 10:1, 50:1 and 
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100:1 LMWOA: Cd treatments (all fumaric, acetic and citric treatments) were measured 

as a function of the experiment days. More details of this experiment are presented in 

Appendix 6. 

 

Figure 6.1. Experimental setup in the greenhouse. (a) Germination of the chicory seeds in green 

plastic cups on germination bench (b) arrangement of the hydroponic containers in the 

greenhouse. 

6.4.2 Plant harvest 

Twenty-one days after transplanting, plant shoots and roots were removed separately 

from nutrient media and roots were immediately dipped in a cold 0.36 × 10-3 mg/L HCl 

solution to remove any Cd adsorbed to the root surface (Ghnaya et al., 2013).   

6.4.3 Chemical analysis  

Quantification of plant shoot and root dry weight, tissue Cd concentration, and LMOWA 

concentrations in the hydroponic solution were performed as explained in Chapter 5. The 

pH of the hydroponic solution was measured using a Eutech Instruments Cyber Scan pH 

310. The shoot to root translocation factor (TF) was calculated as the ratio of shoot Cd 
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concentration to root Cd concentration (Jeyakumar et al., 2010). The growth tolerance 

index (TI) of the shoot and root of plants grown in different LMWOA treatments was 

calculated as the ratio between the shoot or root dry weight at treatment and the shoot/root 

dry weight at control (Huang et al., 2019). 

6.4.4 Transmission electron microscope observation of shoot cells  

Shoot samples (approximately 5 mm in length) from the Cd-only, 100:1 fumaric, 100:1 

acetic and 100:1 citric acid treatments collected (at the end of the experiment) from the 

renewed (weekly) hydroponic replicate were fixed with 3 % (v/v) glutaraldehyde and 2% 

(v/v) formaldehyde in 0.1 M phosphate buffer (pH 7.2) for at least 2 hr. Fixed samples 

were buffer washed 3 times in 0.1 mol/L phosphate buffer (pH 7.2) for 10 min each before 

being post-fixed in 1% Osmium Tetroxide in 0.1 mol/L phosphate buffer for no more 

than 1 hr. Samples were then again buffer washed 3 times (as above) for 10 min each and 

dehydrated using a graded acetone series (25%, 50%, 75%, 95%, and 100%) for 10-15 

min each followed by 2x changes of 100% for 1 hr each. The dehydrated samples were 

placed into 50:50 resin: acetone and stirred overnight. The leaf samples were slowly 

infiltrated with resin over 3 days before being placed into silicon moulds with fresh resin 

and cured for 48 hr to give rectangular blocks that could be cut with a microtome. The 

block of resin containing the leaf sample was then trimmed down to the selected area 

using a Diamond Knife (Diatome, Austria) set at 100 nm. These were stretched with 

chloroform to prevent wrinkle and mounted on a grid using a Quick Coat G glue pen 

(Saiko, Japan). The 100 nm sections mounted on grids were stained in Saturated Uranyl 

Acetate in 50% ethanol for 4 min, washed with 50% ethanol and MilliQ water and then 

stained in lead citrate for a further 4 min. This was followed by a wash in MilliQ water. 
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Samples were viewed using an FEI Tecnai G2 Spirit BioTWIN Transmission Electron 

Microscope (Czech Republic). 

6.4.5 Quality control measures  

All chemicals used were of analytical grade. The limit of detection for Cd in this work 

was 0.002 mg Cd/L. The accuracy of the measurements was assessed by analysing 

certified reference materials in parallel with unknown samples. For plant total tissue Cd 

analysis, NIST 1573a (tomato leaves; National Institute of Standards and Technology) 

was used as certified reference material. The analysed Cd concentration was within          

94-108% of the expected mean value (1.52 mg Cd/kg). 

6.4.6 Statistical analysis 

Statistical analysis was conducted with Minitab 18 and OriginPro 9 (Origin Lab, USA) 

statistical software. The effect of Cd treatments on different plant and soil variables was 

statistically analysed using a one-way ANOVA test; if a significant (P<0.05) main effect 

was detected, the difference between treatment means was tested using a Tukey HSD 

posthoc test. The significant differences of the shoot and root Cd concentrations between 

renewed and non-renewed treatments were analysed with an unpaired t-test for each type 

of Cd: LMWOA treatment. 
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6.5 Results and Discussion 

6.5.1 Composition of the hydroponic solution 

 Variation of LMWOA with time 

The concentration of LMWOAs in the hydroponic solution significantly reduced 

(P<0.05) as a function of increasing days of the experiment for all treatments (Figure 6.2). 

The fumaric acid concentration in solutions decreased by 100%, 100%, 87% and 81% for 

the 1:1, 10:1, 50:1 and 100:1 treatment, respectively with time from Day 1 to 7. The 

corresponding decrease for the acetic acid and citric acid treatments was 100% for all 

treatment combinations. The reduction of LMWOA concentration with time may be a 

result of the microbial degradation of the LMWOAs or LMWOA-Cd complexes with 

time: organic acids represent one of the most labile sources of carbon in the hydroponic 

media and therefore it is possible that microorganisms will metabolise this form of 

exogenous carbon (Jones et al., 2003).
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Figure 6.2. Variation of LMWOA concentration 

in hydroponic solution over time (a) fumaric 

acid (b) acetic acid (c) citric acid. 
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 Variation of pH with time 

The pH of the hydroponic solution was initially significantly reduced for all LMWOA 

treatments compared to the control treatment (Figure 6.3). However, after Day 1, the pH 

of the hydroponic solution increased each day. The initial pH drop may be due to the 

immediate dissociation of H+ ions from the acid form of LMWOA added to the growth 

media (Osmolovskaya et al., 2018). Evangelou et al. (2008) reported that soil pH 

increased from 5.5 to 7.7 over 96 hrs for a Cu (450 mg Cu/kg) + citric acid (62.5 mmol/kg) 

soil treatment. They suggested that this pH increase resulted from the microbial 

degradation of carboxylic acids (LMWOA) which consumed H+ and liberated OH− and 

CO2. 
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Figure 6.3. Variation of hydroponic solution pH 

over the initial seven days of the experiment for 

each treatment of all three LMWOA. (a) 

fumaric acid (b) acetic acid (c) citric acid. 
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6.5.2 Tissue Cd concentration 

The Cd accumulation in the shoots and roots of chicory was affected by the external 

application of LMWOAs into the hydroponic solution and the frequency of solution 

(treatment) renewal (Figure 6.4). 

The shoot Cd concentration decreased as a function of increasing fumaric acid 

concentration in the hydroponic solution from the 1:1 to 50:1 fumaric acid treatment ratio 

with the weekly renewal of fumaric acid treatments (Figure 6.4a). However, this decrease 

was significant (P<0.05) only at fumaric acid to Cd ratios of 10:1 and 50:1 where the 

reduction in tissue Cd concentration was by 37% and 36%, respectively, relative to the 

Cd-only treatment (weekly renewed). However, the shoot Cd concentration significantly 

(P<0.05) increased by 34% for the 100:1 fumaric acid treatment compared to the Cd-only 

treatment. The root Cd concentration also decreased by 22% and 32% for the 1:1 and 10:1 

fumaric acid treatments, respectively, compared to the Cd-only treatment, but 

significantly (P<0.05) increased by 43% and 75% at 50:1 and 100:1 fumaric acid 

treatments, respectively, compared to Cd-only treatment (Figure 6.4a).  

The root and shoot Cd concentration of plants grown in the non-renewed fumaric acid 

treatments showed no significant difference (P<0.05) among treatments. However, there 

was a nominal decrease in root Cd concentration by 10%, 17% and 30% at the 10:1, 50:1 

and 100:1 treatment ratio, respectively, relative to the Cd-only control, and a nominal 

decrease by 21%, 39% and 18% in the shoot Cd concentration for the 10:1, 50:1 and 

100:1 treatments respectively, compared to Cd-only treatment (Figure 6.4a). 
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Figure 6.4. Shoot and root Cd concentration of chicory grown in different LMWOA concentrations in 

renewed and non-renewed hydroponic solution; (a) fumaric acid (b) acetic acid (c) citric acid. Significant 

differences (at P<0.05) of root Cd concentration between Cd treatments of plants grown in renewed and 

non-renewed hydroponic solutions are represented by lower- (a-d) and upper-case (A-D) letters, 

respectively.Significant differences (at P<0.05) of shoot Cd concentration between Cd treatments in 

renewed and non-renewed hydroponic solutions are represented by lower- (w-z) and upper-case (W-Z) 

letters, respectively. Significant differences (at P<0.05) of both root and shoot Cd concentration between 

the plants grown in renewed and non-renewed hydroponic solutions for each Cd treatment are represented 

by k-n letters, respectively Vertical error bars represent ±SE (n=3). 
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The shoot Cd concentration significantly increased (P<0.05) as a function of acetic acid 

treatment (by 31%) for the 1:1 treatment, and then significant (P<0.05) decreased by 32%, 

30%, and 35% at 10:1, 50:1 and 100:1 treatments, respectively, relative to the Cd-only 

treatment where acetic acid was renewed weekly. In contrast to shoots, the root Cd 

concentration showed a trend of increasing Cd concentration with an increasing ratio of 

acetic acid treatment compared to the Cd-only treatment where acetic acid was renewed 

weekly. However, this increase was significant (P<0.05) only for the 10:1 and 50:1 acetic 

acid treatment, by 90% and 110%, respectively, compared to the Cd-only treatment 

(weekly renewed) (Figure 6.4b). 

For the replicate design with no renewal of acetic acid treatment, there was no significant 

difference observed between root Cd concentration of chicory plants at acetic acid 

concentration ratios less than 100:1. The root Cd concentration significantly (P<0.05) 

reduced by 42%, at 100:1 acetic acid treatment, compared to the Cd-only treatment. 

However, for this replicate, where LMWOAs were not renewed weekly, the shoot Cd 

concentration showed a significant (P<0.05) decrease only at the 50:1 treatment by 59% 

compared to Cd-only treatment. The shoot Cd concentration for the 1:1, 10:1 and 100:1 

acetic acid treatment did not show any significant (P>0.05) difference with the shoot Cd 

concentration of the Cd-only treatment (Figure 6.4b).  

There was no significant difference (P<0.05) in shoot Cd concentration as a function of 

increasing hydroponic solution citric acid concentrations compared to the Cd-only 

treatment where citric acid was renewed weekly (Figure 6.4c). However, root Cd 

concentration significantly increased by 111% and 60% at 50:1 and 100:1 citric acid 

treatment, respectively, compared to the Cd-only treatment (weekly renewed). The shoot 

and root Cd concentration of chicory grown in non-renewed citric acid treatments did not 
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show any defined trend with increasing hydroponic citric acid concentration compared to 

the Cd-only treatment. However, the shoot Cd concentration showed a significant 

increase (P<0.05) as a function of citric acid treatment (by 40%) at the 10:1 treatment, 

although there was no significant difference observed between the shoot Cd concentration 

of 1:1, 50:1 and 100:1 treatments and Cd-only treatment (weekly non-renewed) where 

citric acid was not renewed weekly. The root Cd concentrations where citric acid was not 

renewed weekly, showed a significant increase (by 34%) at the 1:1 treatment compared 

to the Cd-only treatment. The root Cd concentration for the other treatments (1:1, 50:1 

and 100:1) showed nominal variation with the root Cd concentration of the Cd-only 

treatment (Figure 6.4c). 

 Translocation of Cd from root to shoot 

The TF of plants grown in fumaric acid treatments decreased as a function of increasing 

fumaric acid concentration in the hydroponic solution from the 1:1 to 50:1 fumaric acid 

treatment ratio where fumaric acid treatments were renewed weekly (Figure 6.5a). 

However, this decrease was significant (P<0.05) only at the 50:1 fumaric acid to Cd ratio 

where the reduction was by 55% relative to the Cd-only treatment (weekly renewed). The 

TF of plants grown in the non-renewed fumaric acid treatments did not show any 

significant (P>0.05) difference compared to the Cd-only treatment (Figure 6.5a). The TF 

of plants grown in acetic acid treatments decreased from 0.6 to 0.2 with the increase of 

treatment from the Cd-only treatment to the 100:1 treatment when the acetic acid was 

renewed weekly. This decrease was significant (P<0.05) for an acetic acid treatment ratio 

of 10:1 and greater (Figure 6.5b). Plants grown in the replicate design with no renewal of 

acetic acid treatment did not show any significant difference of TF among treatments 

(Figure 6.5b). 
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Figure 6.5. Variation in TF of plants with increasing LMWOA 

treatments in hydroponic solution for the renewed and             

non-renewed replicates (a) fumaric acid (b) acetic acid (c) citric 

acid. Significant differences of TF between renewed and        

non-renewed LMWOA treatments are represented by          

lower- and upper-case letters, respectively. Values in each line 

followed by different letters are significantly different at 

P<0.05. Vertical error bars represent ±SE (n=3). 
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There was no trend observed in plant TF (0.6-0.4) as a function of increasing hydroponic 

solution citric acid concentration compared to the Cd-only treatment where citric acid 

was renewed weekly (Figure 6.5c). The TF of plants grown in the non-renewed citric acid 

treatments did not show any significant difference (P<0.05) with increasing hydroponic 

citric acid concentration compared to the Cd-only treatment. These results show that the 

TF of plants significantly (P<0.05) varies with increasing LMWOA concentrations 

(especially acetic acid) when the LMWOA is weekly renewed. However, there was no 

significant (P>0.05) difference observed in TF of plants as a function of LMWOA where 

the treatment was not renewed weekly. This discrepancy may be due to the reduction of 

efficacy of LMWOA with increasing days of the experiment. 

6.5.3 Biomass dry matter content 

A significant increase in the shoot and root chicory Cd concentration was correlated with 

a significant reduction in the shoot and root dry weight of the plants (Table 6.2). Where 

the hydroponic solution was renewed weekly, the shoot dry weight significantly (P<0.05) 

decreased by 79% for the Cd-only treatment compared to the control (0 Cd treatment) 

while the root dry weight nominally decreased by 22% for the same treatment (Table 6.2). 

Where the hydroponic solution was not renewed, the reduction in shoot and root dry 

weight was by 66% and 41%, respectively, for the Cd-only treatment compared to the 

control (0 Cd treatment). With respect to Cd treatments with LMWOA, there was a 

difference in root and shoot biomass as a function of solution renewal. For treatments 

where hydroponic solution as replaced weekly, there was no effect of fumaric and citric 

acid treatments on the shoot and root dry weights relative to the Cd-only treatment. There 

was, however, an effect of weekly renewed acetic acid on shoot dry weight: the shoot dry 

weights of plants grown in 10:1, 50:1 and 100:1 weekly renewed acetic acid treatments 
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significantly (P<0.05) increased by 73%, 87% and 112%, respectively, compared to the 

Cd-only treatment. The significantly higher shoot dry weight production at high 

concentration (>10:1) of acetic acid treatments may be due to the significant reduction of 

shoot Cd concentration with increasing acetic acid concentration in the hydroponic 

solution. For the replicate design with no renewal of citric or acetic acid treatment, there 

was no significant difference observed between the root and shoot Cd concentration of 

chicory with increasing organic acid treatment levels compared to the Cd-only treatment. 

However, the shoot and root dry weight of plants grown in fumaric acid treatment, where 

LMWOAs were not renewed weekly, significantly (P<0.05) increased by 80% and 70% 

at 100:1 and 50:1 treatments, respectively, compared to Cd-only treatments.
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Table 6.2.Effect of increasing LMWOA concentrations in hydroponic solution (1 mg Cd/L) on chicory growth for weekly renewed and non-renewed treatments. 

[Organic acid]: [Cd] 

(mg acid/L: mg Cd/L) 

Plant dry weight (g/plant) 

Weekly renewed Weekly non-renewed 

Root Root (TI) Shoot Shoot (TI) Root Root (TI) Shoot Shoot (TI) 

Fumaric acid 

0:0 (control) 1.37±0.30a 1.00±0.00a 6.55±0.10a 1.00±0.00a 1.63±0.20a 1.00 ±0.02a 7.59±0.40a 1.00±0.01a 

0:1 (Cd-only) 1.06±0.19a 0.77±0.04ab 1.34±0.30b 0.20±0.05b 0.95±0.02bc 0.58±0.09bc 2.53±0.06c 0.33±0.07c 

1:1 1.12±0.05a 0.81±0.03ab 1.00±0.08b 0.15±0.01b 0.84±0.05bc 0.51±0.03c 1.58±0.14c 0.21±0.01c 

10:1 0.65±0.18a 0.47±0.10b 1.40±0.05b 0.21±0.01b 0.65±0.11c 0.40±0.01c 1.55±0.21c 0.21±0.02c 

50:1 1.23±0.18a 0.90±0.11ab 1.73±0.29b 0.26±0.04b 1.63±0.03a 1.00±0.01a 3.40±0.73bc 0.44±0.09bc 

100:1 1.18±0.09a 0.86±0.06ab 1.39±0.04b 0.21±0.01b 1.33±0.15ab 0.82±0.09ab 4.58±0.10b 0.61±0.01b 

Acetic acid 

0:0 (control) 1.37±0.3a 1.00±0.00a 6.55±0.10a 1.00±0.00a 1.63±0.2a 1.00±0.02a 7.59±0.40a 1.00±0.01a 

0:1 (Cd-only) 1.06±0.01a 0.77±0.04b 1.34±0.30c 0.20±0.05d 0.95±0.02ab 0.58±0.09b 2.53±0.06b 0.33±0.07b 

1:1 1.05±0.07a 0.76±0.04b 2.09±0.02bc 0.32±0.00c 0.50±0.06b 0.31±0.03b 1.71±0.21b 0.22±0.02b 

10:1 1.08±0.11a 0.79±0.07ab 2.31±0.11b 0.35±0.01bc 0.80±0.06b 0.49±0.03b 2.47±0.06b 0.32±0.01b 

50:1 1.09±0.03a 0.79±0.02ab 2.50±0.10b 0.38±0.01bc 0.67±0.03b 0.41±0.01b 1.11±0.20b 0.14±0.02b 

100:1 0.79±0.07a 0.58±0.05b 2.84±0.02b 0.43±0.00b 0.62±0.28a 0.99±0.17a 1.62±0.60b 0.21±0.07b 

Citric acid 

0:0(control) 1.37±0.3a 1.00±0.00a 6.55±0.10a 1.00±0.00a 1.63±0.20a 1.00±0.02a 7.59±0.40a 1.00±0.01a 

0:1 (Cd-only) 1.06±0.01a 0.77±0.04ab 1.34±0.30b 0.20±0.02b 0.95±0.02b 0.58±0.09b 2.53±0.06b 0.33±0.07b 

1:1 0.75±0.07a 0.54±0.04b 0.96±0.13b 0.14±0.02b 0.82±0.03b 0.50±0.02b 2.99±0.16b 0.39±0.02b 

10:1 1.13±0.05a 0.82±0.03ab 1.28±0.08b 0.19±0.01b 0.83±0.05b 0.51±0.00b 2.47±0.73b 0.32±0.09b 

50:1 1.11±0.21a 0.80±0.02ab 1.52±0.28b 0.39±0.10b 0.88±0.09b 0.54±0.02b 3.21±0.39b 0.42±0.05b 

100:1 0.83±0.21a 0.60±0.01ab 1.34±0.27b 0.20±0.04b 0.81±0.09b 0.50±0.05b 2.34±0.27b 0.30±0.03b 

Data are means±standard errors of three replicates. Values in each line, followed by different letters within a column for each LMWOA, are significantly different at P<0.05 (n=3). 
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 Growth tolerance index 

The shoot and root tolerance index is defined as the ratio of dry weight for plants growing 

in the Cd containing growing media and the dry weight for control plants (no Cd in the 

hydroponic solution) and was calculated to better explain the relative variations of plant 

dry weight due to Cd toxicity caused by Cd accumulation in plant tissues (Ali et al., 2002). 

For the plants grown in weekly renewed hydroponic solution, the shoot tolerance index 

significantly (P<0.05) reduced from 1.00 to 0.20 and the root tolerance index nominally 

decreased from 1.00 to 0.77 when the treatment varied from the control (0:0) to the           

Cd-only treatment (0:1). Similarly, for plants grown in the weekly non-renewed 

hydroponic solution, there was a significant (P<0.05) reduction of both shoot and root 

tolerance index from 1.00 to 0.33 and 1.00 to 0.58, respectively, when the treatment 

changed from control to the Cd-only treatment. The significant reduction (P<0.05) of root 

and shoot tolerance index in both weekly renewed and non-renewed Cd-only treatments 

may be due to Cd accumulation in plant tissues interfering with a number of normal plant 

metabolic processes and leading to a plant growth reduction (Xin et al., 2014; Huang et 

al., 2019).  

To visual explore this finding, photomicrographs were obtained from TEM analysis of 

the shoot cells in the Cd-only treatment grown in weekly renewed hydroponic solution 

(Figure 6.6). The effect of Cd toxicity on the ultrastructure of shoot cells is visually 

confirmed by chloroplast swelling and cell wall damage in Figure 6.6a. There was an 

observable increase of plastoglobulus in the chloroplast stroma of the plant cells for the 

Cd-only treatment (Figure 6.6b). Studies have suggested that an increase of 

plastoglobulus is a symptom of Cd toxicity in plants since these globules are lipid droplets 

of degraded thylakoid membranes (de Araújo et al., 2017).  
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Figure 6.6. Transmission Electron Micrographs of shoot cells at Cd-only treatment. (a) 

chloroplast swelling and disruption at Cd-only treatment; (b) increase of plastoglobulus 

in the chloroplast stroma at Cd-only treatment. CW- cell wall, CP- Chloroplast,                 

Pb- Plastoglobulus. 

For treatments where hydroponic solution as replaced weekly, there was no effect of 

fumaric and citric acid treatments on the shoot and root tolerance index, or the root 

tolerance index of acetic acid treatments relative to the Cd-only treatment. The plants 

grown in weekly renewed acetic acid treatments showed a significant increase in the shoot 

tolerance index at 1:1, 10:1, 50:1 and 100:1 treatment by 60%, 72%, 86% and 111% 

compared to values for the Cd-only treatment. This may be due to the significant (P<0.05) 

reduction of shoot Cd concentration with increasing acetic acid treatments compared to 

the Cd-only treatment (see section 6.4.2). This is further confirmed by photomicrographs 

of TEM analysis which showed clear well- organized cell structures for 100:1 acetic acid 

weekly renewed treatment (Figure 6.7b). For, 100:1 weekly renewed fumaric treatment 

there was a chloroplast disruption was observed (Figure 6.7a). However, although there 

was no significant growth difference of shoot between Cd-only treatment and 100:1 citric 



152 

 

treatment, there was no significant effect of Cd toxicity observed in 100:1 citric acid shoot 

cell (Figure 6.7c). 

 

Figure 6.7. Transmission Electron Micrographs of shoot cells at different LMWOA treatments. 

(a) chloroplast disruption at 100:1 fumaric acid treatment; (b) well-organized cell structure at 

100:1 acetic acid treatment; (c) well-organized cell structure at 100:1 citric acid treatment. CW- 

cell wall, CP- Chloroplast. 

Plants grown in the replicate design with no renewal did not show any significant 

difference (P>0.05) in shoot and root tolerance index with increasing acetic and citric acid 

treatments compared to the Cd-only treatment. However, for weekly non renewed 

fumaric acid treatments, the shoot and root tolerance index significantly increased by 84% 

and 100% at the 100:1 and 50:1 treatment ratio, respectively, compared to the Cd-only 

treatment. The shoot and root Cd concentration results showed that there was no 

significant difference observed in the shoot (100:1 treatment) and root (50:1 treatment) 

Cd concentration with the Cd-only treatment shoot and root Cd concentration. These 

results are unlikely to be due to detoxification of Cd as a result of LMWOAs in solution 

due to the recorded high degradation rate of LMWOAs in solution with time as shown in 

Figure 6.2. Thus, this discrepancy may be due to an increase in nutrient (P) availability 

as a function of degradation of fumaric acid or the growth of microorganisms in the 

hydroponic solution which promote plant growth (Strobel, 2001; Jacoby et al., 2017). 
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Overall, these results show that there was very limited evidence for a strong ameliorative 

effect of LMWOA on Cd toxicity, even at very high concentrations of LMWOA. 

6.5.4 Effect of LMWOAs on plant Cd uptake and translocation of chicory. 

Plants which were grown in weekly renewed organic acid treatments had observable 

trends of the shoot and root Cd concentration variation and TF variation with increasing 

LMWOA treatments for all three organic acids (Figures 6.4 and 6.5). However, the plants 

grown in the weekly non-renewed LMWOA treatments did not show any clear trend in 

shoot and root Cd concentration variation and there were no significant differences 

observed in TF among treatments. This suggests that the effect of LMWOA was only 

apparent where organic acids were renewed weekly. This may be a consequence of 

microbial degradation of LMWOA throughout the experiment, reducing the efficacy of 

the treatment over time. The previous explanation of significantly higher microbial 

degradation of LMWOA with time in the hydroponic solution (see section 6.4.1.1) 

supports the minor effect of LMWOA on shoot and root Cd concentration of weekly     

non-renewed organic acid treatments. This suggests that the specific effect of fumaric, 

acetic and citric acid on the shoot and root Cd uptake and translocation may not be 

explained using the results obtained from weekly non-renewed LMWOA treatments. 

Thus, the results obtained from only the weekly renewed LMWOA treatments are used 

to evaluate the impact of LMWOAs on chicory root and shoot Cd accumulation here.  

There was a significant reduction in shoot and root Cd concentration with increasing 

fumaric acid concentration in hydroponic solution up to the 50:1 treatment ratio. This 

observation implies that fumaric acid in hydroponic solution (up to 50:1 treatment) may 

complex with Cd ions in the hydroponic solution and prevent the penetration of Cd via 
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plant root membranes and reduce plant Cd uptake. Oloumi et al. (2011) reported that the 

addition of Cd: fumaric acid at a 1:5 concentration ratio to growth media significantly 

(P<0.05) reduced the total Cd concentration by 98% in canola seedlings compared to the 

control. Similarly, Kazemi Movahed (2020) found that an 11-fold increase in the 

secretion of fumaric acid by soya bean (cultivar AC Hime) at a treatment concentration 

of 3.3 mg Cd/L reduced Cd bioavailability and uptake by plants relative to the control. 

These authors suggested that LMWOA ligands in the growing media do not necessarily 

increase the solubility, transport and bioavailability of metals, but can reduce Cd transport 

and uptake either by the formation of complexes with Cd, or by decreasing of free Cd2+ 

ion concentration.   

However, enhanced Cd accumulation in root and shoot tissues at high fumaric acid 

concentration levels in the current work (100:1 treatment) may be due to a decrease of 

hydroponic solution pH compared to other treatments in the initial days of the experiment 

(Figure 6.3a). High external LMWOA (including fumaric acid) levels in the hydroponic 

solution can cause changes in plant cell structures, leading to phytotoxicity in plants 

(Turgut et al., 2004). Najeeb et al. (2011) explained that the addition of higher 

concentrations of ligands (LMWOAs) into hydroponic solution can influence the shape 

and structure of plant cells and ATPases in the root plasma membrane which can change 

the mode of the transport of ions through the membrane and increase Cd uptake through 

symplasmic or apoplasmic pathways. In the context of the current study, this explanation 

was investigated by analysing TEM photomicrographs from the 100:1 fumaric acid 

treatment in shoot cells. The TEM images showed disrupted and swelled chloroplasts in 

the shoot cells grown at the 100:1 fumaric acid to Cd treatment ratio and this is a main 

symptom of phytotoxicity (Figure 6.7a). 
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The increase in root Cd accumulation from the 1:1 to 50:1 acetic acid treatments and 

decrease in shoot Cd accumulation from the 1:1 to 100:1 acetic acid treatments explains 

that Cd may concentrate in roots by binding as Cd-acetic complexes to cortex cell walls 

which limits the transfer of Cd from the root cortex into the stele. The root: shoot Cd 

concentration ratio showed a significant positive correlation (R=0.729 P<0.05) with 

acetic acid treatments (up to 50 mg/L treatment). Increased Cd accumulation in roots may 

serve to reduce Cd translocation from roots to shoots and reduce Cd toxicity in the shoot. 

The TEM images obtained for the 100:1 acetic acid treatment showed clear,                      

well-organized shoot cell structures (Figure 6.7b). Han et al. (2006) reported that adding 

acetic acid (15 mg/L) to the hydroponic solution significantly increased the maize root 

Cd concentration by 125% in the presence of 0.56 mg Cd/L compared to a solution 

without acetic acid. They explained the high root Cd accumulation in maize via two 

mechanisms: (1) penetration of mobile and soluble organically-bound Cd complexes 

(acetic-Cd) via cell membranes to increase Cd uptake and accumulate in the root, (2) The 

ability of the acetic-Cd complex in the soil solution act as a carrier for Cd2+ ions towards 

the root surface and disassociation of these complexes into free Cd2+ at the root surface 

which can be absorbed by root membrane and accumulate in roots. 

The increasing citric acid concentration in the hydroponic solution showed a limited 

effect on Cd accumulation in chicory roots and shoots except for significantly (P<0.05) 

higher Cd accumulation at high citric acid concentration treatments (50:1 and 100:1). 

Thus, suggests little evidence that citric acid influences root to shoot Cd translocation in 

chicory. 
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6.6 Summary 

The results obtained from the present study demonstrated that external application of 

fumaric, acetic and citric acids, have limited practical impact on Cd uptake and 

translocation in chicory due to the decrease of efficacy and stability of LMWOA with 

increasing time. External application of fumaric acid showed the ability to reduce Cd 

uptake and translocation in chicory with a maximum reduction achieved at treatment 

ratios of 10:1 and 50:1 LMWOA to Cd for root and shoot Cd accumulation, respectively. 

Acetic acid treatments promoted Cd uptake and translocation in chicory. However, the 

maximum shoot Cd accumulation was observed at a ratio of 1:1 and shoot Cd 

accumulation significantly (P<0.05) reduced with increasing acetic acid treatments from 

10:1 to 100:1. In contrast, root Cd accumulation increased with increasing acetic acid 

treatments from 1:1 and reached maximum concentration at the 50:1 treatment. There was 

a very limited effect of citric acid on Cd uptake and translocation in chicory. There was 

no strong evidence observed to explain the potential of LMWOAs to ameliorate Cd 

toxicity in chicory. This may be due to the low stability of LMWOA in hydroponic 

solution over time.
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Integrated discussion: Key findings, implications of the 

research and suggestions for future work 

7.1 Background 

Increased Cd accumulation in agricultural soils has been linked to risks for soil health 

and, as a result, to potential impacts on food production. In New Zealand, soil Cd 

concentrations have significantly increased in both pastoral and horticultural soil as the 

result of long-term phosphate fertiliser application (Loganathan et al., 2003; Salmanzadeh 

et al., 2017). For example, Waikato Regional Council has estimated that 11% of 

Waikato’s pastoral soils and 17% of its horticultural soils have a total Cd concentration 

that exceeds the contamination threshold of 1 mg Cd/ kg soil (Stafford, 2017). Despite 

being a nonessential trace element, Cd can be absorbed by plant roots and transported to 

aerial parts (Senden and Wolterbeek, 1990). Hence Cd contamination of New Zealand’s 

most versatile soils threatens to limit their use for high-value pasture, vegetable and tuber 

cropping due to the risk of Cd accumulation in the food chain (Reiser et al., 2014). 

In 1990 new forage species were introduced to New Zealand’s livestock grazing systems 

due to their high drought tolerance, nutrient content and environmental benefits. For 

example, chicory and plantain are deeper rooting plants than perennial ryegrass and clover 

and could be useful in reducing nitrate-N leaching losses from grazed pasture systems (Li 

and Kemp, 2005). However, research by Stafford et al. (2016) showed that forage species 

such as chicory and plantain can accumulate significantly higher Cd concentrations from 

even low Cd soils when compared to grasses and legumes, which have traditionally been 

used in New Zealand agriculture. Grazing Cd-rich forage has the modelled potential to 
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cause an exceedance of the maximum guideline level for Cd in the kidneys and livers of 

livestock (Lee et al., 1996), although the relative risks of such exceedance between forage 

crops are poorly understood.  

To address this knowledge gap, the work for this doctoral thesis was designed and 

implemented to investigate the potential mechanism which may play a role in Cd uptake 

and translocation in chicory and plantain. The intended application of this work is to help 

develop strategies which could assist in avoiding high Cd accumulation in offal to 

maintain the standards of New Zealand’s food production. 

There have been no studies published on the Cd uptake mechanisms of forage species 

such as chicory and plantain used in New Zealand agricultural systems. A review of the 

literature at the outset of this doctoral study highlighted that different plant species have 

different mechanisms to absorb Cd from soils and that translocate of Cd from root to 

shoot is associated with LMWOAs (de la Luz Mora et al., 2009; Fu et al., 2018; Li et al., 

2019b). Therefore, the effect of soil Cd on LMWOAs production in chicory and plantain, 

and the impact of plant produced LMWOAs on Cd uptake and translocation to aerial 

tissues of forage crops, was a key topic addressed in this study.  

Following on from a review of existing literature, the following key research questions 

were identified: 

(i) How does Cd in growth media effect on quantity and composition of 

LMWOAs secreted by chicory and plantain roots? 

(ii) How does the root secrete LMWOAs influence plant Cd uptake and 

translocation by chicory and plantain? 

(iii) Can a chemically modified carbon paste electrode be developed to measure 

the free Cd2+ ion concentration in the plant sap? 
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(iv) How does the concentration and production of LMWOAs in chicory and 

plantain xylem sap vary as a function of Cd in the growing media? 

(v) How does xylem sap produce LMWOAs effect Cd translocation in chicory 

and plantain? 

(vi) How do the variations in LMWOA root secretion and xylem sap LMWOA 

production in both plants explain the differences in plant Cd uptake by chicory 

and plantain? 

(vii) How does the exogenous LMWOA impact on the shoot and root Cd 

concentration in chicory? 

This final Chapter 7 presents an integrated discussion of findings over the individual 

research chapters of the thesis to summarise the key outcomes of the work. 

7.2 Key Findings 

7.2.1 The composition and quantities of LMWOAs in chicory and plantain root 

exudates and xylem sap vary as a function of Cd levels in growing media. 

Two greenhouse experiments (Chapter 3 and 5) were established with different Cd 

concentrations in the growth media to evaluate the effect of Cd in growth media on 

LMWOA secretion by roots of chicory and plantain (Chapter 3) and production in xylem 

sap (Chapter 5). Chapter 3 explains that the composition and quantity of LMWOAs 

secreted by chicory and plantain roots varied as a function of the added Cd concentration 

in the growth media. Oxalic, fumaric, malic and acetic acids secreted by chicory; and 

oxalic, fumaric and malic acids secreted by plantain were the major LMWOAs analysed 

for all Cd treatments. Chicory showed lower secretion of fumaric acid and higher 

secretion of acetic acid compared to plantain. There was no clear difference observed 
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between oxalic and malic acid secretion between the two plants as a function of Cd in 

growth media. Similarly, Chapter 5 illustrated that both chicory and plantain showed 

variable production of oxalic, fumaric, citric, malic and acetic acids, in the xylem sap as 

a function of the Cd concentration in growth media. When the two species were 

compared, chicory produced more of all LMWOA (except fumaric acid) for all Cd 

treatment levels relative to plantain. Further, oxalic, fumaric and malic acids were 

common acids in root exudates and xylem saps of both plants. 

7.2.2 A thiosalicylic acid modified carbon paste electrode developed in this thesis 

measured free Cd ions in environmental media. 

A thiosalicylic acid modified carbon-paste electrode was developed as an alternative and 

reliable measurement tool for the detection of free Cd2+ ions in the environmental 

samples, including xylem saps. Thiosalicylic acid is a readily available commercial         

off-white solid, which is stable to air, and this makes it a conveniently handled ligand 

(Wehr-Candler and Henderson, 2016) to develop a Cd2+ ion-specific electrode with 

compared to other Cd2+ ion ligands used to develop Cd2+ ion specific electrodes in 

literature. The developed electrode showed a lower detection limit of 11 µg Cd/L (0.1 × 

10-6 mol Cd/L) with a linear range from 20 to 100 µg Cd/L (0.18 × 10-6 to 0.88 × 10-6 mol 

Cd/L). To the best of my knowledge this is the first time a Cd2+ ion-specific electrode 

was developed to specifically determine free Cd2+ ion concentration in the plant xylem 

sap. The optimised parameters for electrode composition, type and pH of the supporting 

electrolyte and pre-concentration time for the modified electrode are presented in Table 

7.1. The modified electrode measured free Cd2+ ion concentrations in a range of 

environmental media, including xylem saps with a high precision (RSD<5%). The 

electrode developed in Chapter 4, used to determine the free Cd2+ ion concentration in the 
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chicory and plantain xylem sap to understand the forms of Cd translocation in xylem sap 

(Chapter 5). The measurements of the electrode showed that the Cd in the xylem sap of 

chicory and plantain existed mainly in a complexed form than in free Cd2+ ion form. 

Table 7.1. Parameters for Cd2+ ion detection using TSA-CP electrode. 

Parameter Optimised value 

Electrode composition 15% (w/w) Thiosalicylic acid, 24% (w/w) 

paraffin oil, 61% (w/w) graphite powder 

Supporting electrolyte 0.1 mol/L sodium acetate buffer 

the pH of the supporting electrolyte pH 4.5 

Pre-concentration time 500s  

Sample rate 5 Hz 

Pulse amplitude 0.05 V 

7.2.3 Low secretion of fumaric acid and high secretion of acetic acid by chicory roots 

and fumaric acid production in chicory xylem facilitate elevated shoot Cd 

accumulation in chicory compared to plantain. 

The primary cause for the significant increase of shoot and root Cd concentration in both 

chicory and plantain, as a function of treatment level, was the significantly greater 

bioavailable Cd concentration in growth media with increasing Cd treatment level 

(Chapter 3 and Chapter 5). However, Chapter 3 shows a significantly higher shoot Cd 

accumulation in chicory (18.63 mg Cd/kg DW) than plantain (4.22 mg Cd/kg DW) at the 

highest tested soil Cd concentration (1.6 mg Cd/kg), while Chapter 5 showed a higher 

shoot Cd concentration compared to plantain for the same treatment at all Cd treatment 

level (except for control and 0.01 mg Cd/L treatment). This shows that different plants 

have different abilities to uptake Cd from roots and translocate to shoot. However, based 

on the findings of this thesis, this differential response between chicory and plantain can 

be explained by variations in the LMWOA concentration in root exudates and xylem sap 

for the two plants. The greater shoot Cd accumulation in chicory relative to plantain can 

now be explained by increased acetic acid and reduced fumaric acid secretion by chicory 
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compared to plantain (Chapter 3). This explanation was confirmed by the results of 

Chapter 6 where there was a reduction in shoot Cd concentration with increasing fumaric 

acid concentration in the hydroponic solution. This reduction was greatest at a 

concentration of 50 mg/L (50:1 treatment) fumaric acids in the growth media for shoots, 

and 10 mg/L (10:1 treatment) for roots. The external application of acetic acid to the 

growth media only increased shoot Cd concentration at a low added acetic acid treatment 

concentration (1 mg/L) (1:1 treatment), whereas for roots the maximum increase was at 

an external acetic acid concentration of 50mg/L (50:1 treatment). Free Cd2+ analysis of 

the xylem sap using the thiosalicylic acid-modified electrode showed Cd in the xylem sap 

of chicory and plantain existed dominantly in a complexed form (Chapter 4 and 5). 

Analysis of LMWOA in the xylem sap of chicory and plantain showed that variations in 

chicory shoot Cd and xylem sap Cd concentrations had a significant relationship with 

xylem sap LMWOA, while there was no relationship between shoot Cd concentration and 

xylem sap LMWOA in plantain. The functional relationships between chicory shoot Cd 

concentration and xylem sap LMWOA concentrations and hydroponic Cd concentration 

showed that hydroponic Cd concentration and xylem sap fumaric acid concentration are 

the dominant factors controlling shoot Cd accumulation in chicory. Statistical analysis 

showed that these factors explained 88% of the variability in chicory shoot Cd 

concentration observed in this thesis.  

7.2.4 There is potential for LMWOA to reduce toxicity in chicory under pastoral 

farming conditions 

Chicory grown in two hydroponic experiments showed a significant (P<0.05) reduction 

in biomass at higher Cd levels (>0.01 mg Cd/L treatment) (Chapter 5 and 6). Chapter 5 

explains that LMWOAs in chicory xylem sap had an ameliorative effect on Cd toxicity 
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in plant tissues only at a low concentration of Cd in the growth media (i.e. the 0.01 mg 

Cd/L treatment).  

Chapter 6 suggested that the limited Cd detoxifying ability of LMWOA could be a result 

of the reduction of stability and efficacy of the externally applied LMWOA overtime. The 

addition of increasing concentrations of fumaric, acetic and citric acids to the growth 

media in the presence of 1 mg Cd/L concentration did not show any strong ameliorative 

effect of LMWOA on Cd toxicity at any concentration of all three LMWOAs used in this 

study (Chapter 6). 

However, a solution concentration of 1 mg Cd/L is excessively high in the context of New 

Zealand pastoral soils. The pot experiment in Chapter 5 showed that there was no 

significant growth reduction in chicory when grown in different native (different Cd 

concentrations) agricultural soil types (Chapter 5). The bioavailable Cd concentration in 

New Zealand agricultural soil is low reported to be less than 0.1 mg Cd/kg. Applying our 

findings of Chapter 5 stated above, the low bioavailable Cd concentration triggers a 

potential effect of LMWOAs to reduce the Cd toxicity in chicory when they grow in 

agricultural field conditions in New Zealand.  

7.3 Importance of these findings for pastoral agricultural systems   

Chicory and plantain are increasingly being grown in New Zealand pastoral soils as 

specialist summer and livestock finishing crops (Somasiri et al., 2015). Both plants are 

commonly sown as monoculture stands or in combination with legumes such as white 

and red clover. However, studies showed that chicory can accumulate high shoot Cd 

concentration from even low Cd soils to levels that might exceed regulatory guidelines 

for Cd in fodder crops and food compared to plantain. A field study done by Martin et al. 
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(1996) showed that even at extremely low soil total Cd concentrations (0.004-0.017 mg 

Cd/kg), chicory was able to accumulate high leaf Cd concentrations (1.6-2.4 mg Cd/kg 

DM) and this is of concern to food value chains. Of all the pasture species (including 

plantain) tested by Stafford et al. (2016), chicory showed the highest uptake concentration 

of Cd, and this study presents a possible mechanism to explain the elevated Cd uptake 

and translocation potential of chicory. Previous studies have reported differential 

secretion of fumaric and acetic acid by plant roots to explain the variation in shoot Cd 

accumulation in plants. For example, Cieśliński et al. (1998) reported that a high shoot 

Cd accumulating wheat cultivar (Kyle) showed low fumaric acid secretion and high acetic 

acid secretion compared to a low shoot Cd accumulating wheat cultivar (Arcola) when 

plants were grown in York soil. Adeniji et al. (2010) reported that the low shoot                 

Cd- accumulating wheat cultivar (W9261-BG-L) had a higher fumaric acid concentration 

in roots compared to a high shoot Cd-accumulating cultivar (W9261-BG-H). As a 

strategy to potentially reduce Cd accumulation in chicory, it may be possible to upregulate 

the expression of genes that are responsible for the production of fumaric acid and           

down-regulate the expression of genes responsible for acetic acid in the root cells. 

Alternatively, selective breeding of cultivars that show differential excretion of acetic 

acid and fumaric acid and lower production of fumaric acid in the xylem sap may achieve 

the same goal. This strategy could effectively develop low Cd accumulating chicory 

cultivars.  

Quantification of the free Cd2+ ion concentration in environmental solutions has been a 

constraint on analysis of Cd speciation in biological samples. The thiosalicylic acid 

modified electrode developed in this work will help screen xylem saps of different chicory 

and plantain varieties and enable investigation of how the free Cd2+ ion concentration 

varies between low and high Cd uptake plants varieties. The identification of varieties 



165 

 

with low free Cd2+ ion concentration could also potentially underpin the development of 

new cultivars of chicory and plantain with low Cd uptake and translocating ability that 

can be used in New Zealand agricultural systems. The adoption of the strategies described 

here will contribute to reducing the trophic transfer of Cd along the food chain for New 

Zealand pastoral agricultural systems. 

7.4 Recommendations for future research 

To extend the findings of this doctoral research, there are several ongoing knowledge 

gaps that justify further research, and these are summarised in this section.  

(i) Experiments should be conducted to screen presently available chicory 

cultivars in New Zealand which show variation in acetic and fumaric acid root 

secretion. 

(ii) Genetically modified experiments should be conducted to develop new 

breeding of chicory by regulating the necessary genes for the production of 

fumaric acid in root exudates and xylem sap, and acetic acid in root exudates, 

to reduce higher Cd accumulation in chicory. 

(iii) Experiments should be conducted to investigate how the different soil 

parameters such as other metal ions in soil and soil micro-organisms impact 

plant root fumaric and acetic acid secretion and xylem sap fumaric acid 

production in chicory. 
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This thesis has provided a key point to defining the role of root secreted and xylem sap 

LMWOA on Cd accumulation in forage species. The findings of this research would 

underpin efforts to develop new traits of forage plant species that might mitigate the 

continuing risk of Cd transfer into grazing animals via consumption of Cd-rich forages
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Appendix 1 

Table A1.1. Organic carbon content in productive soil in New Zealand based on National Soils 

Database. 

 

New Zealand soil order Total organic carbon content (g C/kg) 

Allophanic 91 

Brown 55 

Gley 57 

Granular 44 

Melanic 46 

Oxidic 79 

Pallic 33 

Podzol 44 

Pumice 58 

Recent 38 

Semiarid 18 

Ultc 43 
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Appendix 2 

 

 

 

 

 

                                                                           

                                                                          

Figure A2.1. Graphical presentation of preparation of TSA-CP electrode. 
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Appendix 3 

Table A3.1 Metal ion concentration in water samples. 

 
Metal type Type of the water sample 

Tap water 

(µg/L) 

Drainage water 

(µg/L) 

Wastewater 

(µg/L) 

Cu2+ 59.6 39.0 302.3 

Pb2+ 56.0 18.6 445.1 

Fe2+ 39.6 221.5 446.7 

Al3+ 59.7 139.3 233.8 

Mn2+ 320.1 240.3 654.5 

Ca2+ 18700 12640 50000 

Mg2+ 4020 4058 8029 
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Appendix 4 

 

Figure A4.1. Significant differences of shoot Cd concentration between chicory and plantain with 

increasing Cd concentrations in the hydroponic solution. Significant differences shoot Cd 

concentrations between chicory and plantain are represented by (a-d) letters. Values in each bar 

followed by different letters are significantly different at P<0.05. Vertical error bars represent 

±SE (n=3). 
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Appendix 5 

Table A5.1. Summary of soil and plant Cd concentrations for plantain grown on three soil types. 

 
Soil and Plant Cd 

concentrations   

(mg Cd/kg) 

Soil types 

Allophanic Gley Recent 

Soil Total Cd 0.73±0.02a 0.43±0.02b 0.24±0.02c 

Soil bioavailable Cd 0.24±0.01a 0.13±0.01b 0.02±0.00c 

Plant root Cd 3.17±0.13a 1.50±0.09c 1.97±0.07b 

Plant shoot Cd 2.51±0.30a 1.07±0.02b 0.55±0.04b 

Xylem sap Cd1 (mg/L) 0.01±0.00b 0.02±0.00b 0.08±0.01a 

1 Measured from GFAAS 

 

Figure A5.1. The significant difference of each LMWOA concentration of plantain between soil 

types are represented by a-d letters. Values in each bar, followed by different letters are 

significantly different at P<0.05. Vertical error bars represent ±SE (n=3). 
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Appendix 6 

A6.1 Analysis of variation of solution pH and LMWOA with time 

A small hydroponic experiment was set up in a greenhouse at the Massey University Plant 

Growth Unit with average day/night temperatures of 17/20 ℃. Growth media was a 

modified Hoagland solution adjusted to six increasing concentration ratios (mg/L) of 

LMWOA: Cd: 0:0 (control), 0:1(Cd-only), 1:1, 10:1, 50:1, and 100:1 with fumaric, acetic, 

and citric acid, independently. One health chicory plant was grown in each container. The 

composition of the hydroponic solution was same as the hydroponic solution used in 

Chapter 6. The pH of the solution was adjusted to 5.5-6.0 every day using 0.1M HNO3 

acid. The hydroponic solution in the containers (1L) did not renewed up to 7 days. The 

variation of the hydroponic solution pH was recorded every day. Further, 35 mL of the 

hydroponic solution was collected from each treatment everyday up to 7 days and the 

LMWOA concentration of that solution was analysed. 

 

A6.1.1The hydroponic solution LMWOA analysis 

 

The composition and concentration of LMWOAs in Hoagland solution were analysed by 

High-Performance Liquid Chromatography HPLC (Agilent Technologies 1200 Series, 

Santa Clara, CA, USA) as described by Cawthray (2003 with modifications. One mL of 

hydroponic solution was diluted with 2 mL of 25 mM KH2PO4 (the HPLC mobile phase 

solution). Each mixture was subsequently filtered through a 0.22 μm filter to remove 

suspended material prior to injection into the HPLC. Separation was conducted on a 250 

× 4.6 mm (5 µm particle size) C18 reverse-phase column. Each sample solution (100 μL) 

was injected into the column with a flow rate of 1.0 mL/min at 25°C and UV detection at 
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210 nm. Potassium dihydrogen phosphate (25 mM) solution was used for isocratic 

elution. Identification of organic acids was performed by comparing retention times in 

samples with those retention times obtained by analysing a standard mixture including 

acetic, citric and fumaric acids. 










