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Abstract 

 The history of the World could not be told without mentioning specialized 

metabolites. Long before we had the notion of organic molecules, we were already sailing 

across the oceans in the pursue of their valuable sources, and raising whole empires based 

on the economy of spices, tobacco and coffee. Our own survival and adaptability as a 

species can be credited to discoveries of nature-sourced drugs through the centuries, such 

as penicillin, paclitaxel and artemisinin. As our awareness towards the environment 

evolved, so did our perspective on these molecules, which are now recognized as important 

products and intermediates of the interaction between organisms and their ecosystems. It 

is not an overstatement thus, to affirm that in the light of an imminent environmental crisis, 

the study of specialized metabolites will be of fundamental importance for the preservation 

and recovery of biodiversity. 

 The development of untargeted analytical techniques has greatly advanced our 

ability to investigate these compounds in their natural contexts. Among those, the 

application of Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy for chemical 

profiling enabled the recognition of compound structural features and facilitated the 

identification of unknown compounds even prior to the laborious work of isolation. 

However, because multiple resonance signals arise from a single compound, a considerable 

amount of overlap is observed in biological samples which can limit our ability to detect 

those key structural markers. There are certain NMR pulse experiments that can aid in 

deconvoluting these signals, but a more practical approach resides in the statistical 

treatment of the 1H NMR spectrum, in which regular variations across the spectrum are 
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directly mapped to variables pertinent to the system in study, such as biological activity, 

biogeographical data, or phylogenetic classification. 

 This document presents an innovative strategy in which gene co-expression 

network analysis is adapted for the statistical treatment of 1H NMR spectral data, resulting 

in the deconvolution of metabolite signals and simplification of the spectrum into a few 

variables. These variables represent statistically measurable chemical patterns that in 

conjunction with other measurements can support addressing a multitude of topics in 

Chemical Ecology. In Chapter 1, we describe the method development and validation in a 

controlled experiment with prepared mixtures of known compounds and demonstrate how 

it recognizes metabolite identity at different structural levels. We then demonstrate its 

applicability in the study of natural mixtures with the investigation of ontogenetic changes 

of metabolism in Piper kelleyi. In Chapter 2, we applied the method to the identification of 

biologically active compounds from a chemically heterogeneous set of 29 Piper extracts. 

By quantifying the association between chemical patterns and measurements of antifungal 

activity, we accurately identified specific targets for the isolation of antifungal compounds, 

while also establishing a framework to evaluate the effect of specific structural features in 

modulating the toxicity of different plant species. Finally, in Chapter 3, we adopted an 

untargeted approach to investigate the phylogenetic signal of specialized metabolites in a 

broader collection of Piper species. Based upon measurements of chemical similarity, we 

identified the chemical traits most strongly associated with the clade Schilleria, ultimately 

leading us to the characterization of novel lignans. Altogether, this 1H NMR network 

approach represents a powerful tool for the study of specialized metabolites in a myriad of 

contexts relevant to the field of Chemical Ecology. 
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Chapter 1: Development of a Network Analysis Framework for 1H NMR Data 

 

The work presented in this chapter was published1 and this author contributed in the execution of 

research and elaboration of the manuscript. 

 

1.1 Introduction 

 

1.1.1 The study of specialized metabolites 

 

The notion that the planet holds an unmeasurable natural diversity, much of which remains 

unexplored,2 makes a formidable claim for the bioprospection of biologically relevant compounds. 

With that motivation, the avid researcher that arrives to an untouched segment of forest may 

contemplate the possibility of chemically dissecting all of the plant species he can collect, and his 

ambition will be well justified if one of them yields a new molecule of pharmaceutical importance, 

or one that holds unique properties and structure. However feasible, this serendipitous search is 

lengthy, costly and may lead to duplicated or individually inactive compounds, which is not 

surprising given growing evidence for the combinatorial effect of some metabolites.3 Additionally, 

the search for biologically active compounds is typically biased towards a few targets of clinical 

relevance, often within the narrow scope of expertise of each research group, thus underestimating 

the functionality of some compounds. The efforts to maintain public molecular libraries may help 

to close gaps in the functional space, but still, a focus on clinical application underscores an array 

of specialized metabolites that serve important functions in their natural context, albeit being 

irresponsive to targeted assays. 
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An alternative ecological-guided approach prioritizes the all over the part, in which entire 

chemical phenotypes are perceived as the outcome of the dynamic interaction between organisms 

and their ecossystems.4 This perspective is rooted in Erlich and Raven's coevolutionary 

hypothesis5 and is supported by modern phylogenetic analysis of plants and their herbivores.6 As 

a consequence of this evolutionary selection, the contextualized study of specialized metabolites 

has the potential to offer direct leads towards compounds with enhanced biological properties, 

newly described biological functions, and unique structural features. For instance, the 

quantification of chemical phenotypes and its patterns of variation is desirable not only for 

chemical ecology, but also for natural products research. 

 

1.1.2 1H NMR-based metabolomics 

 

Unlike the traditional approaches to compound discovery, a holistic investigation of 

chemical phenotypes demands the untargeted collection and analysis of large volumes of 

multivariate data (metabolomics). In order to extract relevant chemical signals from the metabolic 

baseline, the analytical method must be capable to detect compounds at widely different 

concentrations across chemical space, while also providing distinguishable signals for each 

metabolite. These challenges have been partially overcome by important technological 

advancements in Mass Spectrometry (MS) and 1H NMR spectroscopy, markedly towards the 

improvement of detection limits, structural resolution, and dynamic ranges.7, 8 

NMR spectroscopy and MS provide complementary types of information about the 

metabolome.9, 10 The latter is arguably the most commonly applied technique due to instrument 

accessibility, high sensitivity and deconvolution of compound signals through coupling with 
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chromatography. However, 1H NMR spectroscopy presents several advantages over MS that are 

suitable for comparing organisms at varying taxonomic levels.11 Namely, it can virtually detect 

any type of compound independently of its physicochemical properties (volatility, polarity, 

molecular weight, etc.), which also translates into facile sample preparation methods.12 In addition, 

1H NMR spectroscopy data is reproducible, quantitative and, more importantly, it provides a high 

degree of molecular information that can expedite compound identification.  

Structural resolution comes at the expense of a convoluted spectrum, so the application of 

1H NMR spectroscopy in metabolomics depends on statistical analyses for data mining. Typically, 

ordination techniques such as PCA (Principal Component Analysis) and PLS-DA (Partial Least 

Squares Discriminant Analysis) are utilized to detect a few peaks in the spectrum that amount to 

the largest variation across samples. While these techniques are well suited for discriminating 

chemical markers from moderately homogeneous samples (e.g. specimens under differentiated 

treatment or different cultivars),13-16 they do not perform well for the identification of subtle 

similarities across taxa, where the number of distinguishing variables is far more expressive. 

Meanwhile, recent advancements on MS data analysis demonstrated the potential of molecular 

networks to deconvolute complex chemical datasets and identify shared structural features across 

samples,17, 18 thus providing an attractive precedent for the development of a similar strategy 

towards 1H NMR data. 

 

1.1.3 Weighted Gene Co-Expression Network Analysis (WGCNA) 

 

 Networks represent a mathematical reconstruction of the relationships between the 

elements within a system. Each element is represented as a node, the connection between a pair of 
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nodes is defined by an edge, and the overall arrangement of these components define the network 

topology. This concept gained particular relevance in the field systems biology and became a 

powerful means to explain the intricacies of biochemical processes.19 Zhang and Horvath 

consolidated a framework for the study of gene expression data that utilizes weighted network 

analysis to identify clusters of co-expressed genes (we define weighted and unweighted networks 

in section 1.2).20 From this methodology, each gene is a node and the strength of an edge is defined 

by the degree of similarity in the expression profiles of its pair of genes. If a group of genes fits 

the same overall profile, they are grouped into modules, which can then be verified against 

phenotypical data to reveal biologically meaningful sets of genes. 

 We consider that the chemical profile obtained from 1H NMR spectra is structurally very 

similar to gene expression data, and that the WGCNA methodology could be easily adapted to this 

type of data. For instance, a network constructed with hydrogen resonance data (chemical shifts 

and integration) will result in modules composed of co-occurring peaks, which represent 

compounds or molecular features present in the sample set. Therefore, we predicted that (a) these 

chemical modules should reveal shared chemotypes across samples, and (b) the correlation 

between module values and biological or ecological measurements should offer direct leads to 

functional compounds. We first tested prediction (a) by applying the WGCNA approach to a 

controlled experiment with prepared compound mixtures, and then validated both assumptions 

with the analysis of a set of crude extracts of the plant species Piper kelleyi, where we verified the 

association of chemical modules with qualitative ontogenetic data. 
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1.2 Methods 

 

Sample preparation: We prepared 196 artificial mixtures containing three to four different 

compounds from a collection of 31 plant specialized metabolites, obtained commercially or 

extracted from natural sources (Table 1.2). Admittedly, these compounds comprise only a small 

fraction of the phytochemical landscape, but they represent the structural features observed in 

major groups of metabolites implied in plant defenses, including terpenoids, flavonoids, 

phenylpropanoids, furanocoumarins, amides and alkaloids.21 The mixtures were prepared in 

deuterated methanol at a concentration of 10 mg/mL, and while this is not an optimal solvent for 

1H NMR spectroscopy analysis due to the presence of two wide residual peaks that can overlap 

with sample peaks, it was the one that best solubilized the tested compounds. Additionally, 

methanol is the preferable solvent for extracting a broad range of metabolites in untargeted 

experiments,22 so this choice of analytical solvent is also determining for generating network 

modules that can be applied annotate phytochemical data obtained in future studies. Mixture 

compositions were designed to reflect varying degrees of metabolite complexity, as observed for 

phytochemical extracts, and they can be divided in three groups. "Intraclass" samples included 21 

combinations of three compounds within the same metabolic group at a mass ratio of 3:1:1. 

"Interclass" samples included 97 combinations of three compounds from two different metabolic 

groups also at the ratio of 3:1:1. Lastly, 78 "4-component" mixtures were prepared with four 

compounds from three different groups at a ratio of 2:1:1:1, thus yielding samples with higher 

compound diversity and evenness. Both interclass and 4-component mixtures contained two 

compounds from the same metabolic group in order to reflect the observation from natural extracts 

that compounds of the same biosynthetic pathways tend to co-occur.23 In addition to the specialized 
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metabolites, eicosanol was also included as a component in some of the mixtures to simulate the 

effect of long chain fatty acids, which are typically present in plant extracts and contribute to 

increased peak overlap in the upfield region of the 1H NMR spectrum (H 0.5–2). 

 Leaf samples of P. kelleyi were collected from Yanayacu Biological Station, Napo 

Province, Ecuador (0°36′ S, 77°53′ W, 2080 m). The most recently expanded leaves were collected 

for each individual plant, and also young leaves when available. Plants were divided into three age 

categories according to the indicative number of nodes in their stems, adults (>25 nodes, N=12), 

saplings (<20 nodes, N=18) and seedlings (<10 nodes, N=17). Samples were dried in air-

conditioned laboratory, ground with mortar and pestle to a fine powder. 2 g of this powder were 

combined with 10 mL of methanol in a screw cap test tube, sonicated for 10 minutes and then 

filtered to separate the supernatant. This process was repeated with the spent leaf material, the 

supernatants were combined and transferred to pre-weighed 20 mL scintillation vials. The solvent 

was then removed under reduced pressure at 30 C and the extracts were redissolved in deuterated 

methanol for 1H NMR analysis. 

 

NMR analyses: All spectra were recorded utilizing a Varian 400 spectrometer (399.78 MHz 1H 

frequency). For 1H NMR acquisitions we adopted the standard parameters set by the instrument, 

with spectral accumulations of 64 transients (nt) for the prepared mixtures and 256 transients for 

the plant extracts. Additionally, 1H NMR spectra were acquired for the individual compounds 

present in the mixtures (nt=128) and complete peak assignments were performed to aid in the 

structural annotation of network modules. For compounds whose 1H NMR spectra showed severe 

degree of peak overlap, such as phytosterols and glycosylated molecules, we also acquired 13C 

(nt=10000), 1H{1H} gCOSY (nt=4x128), 1H{13C} gHSQC (nt=4x256) and 1H{13C} gHMBC 
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(nt=8x256) spectra to assist in this process. The software MNova (version 10.0, Mestrelab 

Research, Santiago de Compostela, Spain) was utilized for spectral treatment and data extraction. 

Each 1H NMR spectrum was referenced by the residual solvent peak at H 3.31, then collectively 

phased (automatic global method), baseline-corrected (polynomial fit of order 3) and binned into 

intervals of 0.04 ppm within the spectral range H 0.5–12 (bins integrated by average sum).24 After 

binning, the solvent peaks were removed, the spectra were normalized to a total of 100 units and 

the data was exported as a text file for statistical analyses. 

 

Network analyses: All network analyses were performed in the statistical software R (version 

3.2.3) using the package WGCNA, which executes all steps required for network construction with 

a single function.25 Initially, the nxm data matrix containing m samples and n spectral bins is 

transformed into a correlation matrix of nxn nodes, in which sij (Eq. 1.1) represents the degree of 

similarity between the intensity profiles of spectral bins i and j across samples. A thresholding 

function was then applied to these values to eliminate baseline correlations from the analysis, 

resulting in an adjacency matrix, where aij denotes the connection strength (edge) between two 

nodes. Unweighted networks are obtained by setting a hard threshold value  beneath which any 

correlations are eliminated (Eq. 1.2).  This type of network is not compatible with the continuous 

nature of values expressed in NMR data and it may lead to loss of information,25 so we applied a 

soft-thresholding power function (Eq. 1.3) to generate a weighed network. It has been observed 

that robust biological networks largely follow a Scale-free Topology,26 in which the frequency 

distribution of node connectivity follows a decaying power law (Eq. 1.3), so we utilized this 

criterion to select . In practical terms, a plot of  versus R2 (the fitting index with a scale-free 

topology model) is generated and  is chosen at the plateau, the point at which network stability is 
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established (Figure 1.1). We also followed the recommendation that only values of  resulting in 

R20.8 should be considered.20 

 

 𝑠𝑖𝑗 =  𝑐𝑜𝑟𝑟(𝑥𝑖 , 𝑥𝑗) Eq. 1.1 

 
𝑎𝑖𝑗 =  {

1 𝑖𝑓 𝑠𝑖𝑗 ≥ 𝜏

0 𝑖𝑓 𝑠𝑖𝑗 < 𝜏
 

Eq. 1.2 

 𝑎𝑖𝑗 = |𝑠𝑖𝑗|
𝛽

 Eq. 1.3 

   

 Hierarchical clustering analysis (HCA) was used to detect modules in the networks with a 

minimum size of three nodes and a merging criterion of 75% similarity between modules. Each 

module was then assigned an arbitrary color, where "grey" was reserved for unassigned nodes (not 

an actual module).  Through singular value decomposition, an eigenvector was generated for each 

module (the equivalent of a weighted average of its nodes) and used to obtain a module eigenvalue 

for each spectrum. With the mixtures data, we calculated the Pearson correlation values between 

module eigenvalues and compound concentrations to verify specific compound-module 

associations, and then quantified module coverage of compound signals for significant 

associations (p  0.05). To achieve that, we first estimated the number of distinguishable 

compound peaks by visually investigating their individual spectra. Hydrogen resonances within 

0.05 ppm of each other were considered part of the same signal (Figure 1.2) and diastereotopic 

methylene peaks were only counted once. Following, we calculated the number of peaks detected 

by a module's nodes, where complete overlaps were attributed a value of 1 and nodes within 0.1 

ppm of a compound signal were valued as 0.75 (Figure 1.2). Finally, we calculated module 
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coverage as the ratio of sum of node matches to the total number of distinguishable compound 

peaks. 

 

 

Figure 1.1. Network topology plot. Numbers indicate values for threshold parameter . Red 

numbers are positioned according to the resulting fitness with a scale-free topology model (left 

axis), while blue numbers represent the resulting node connectivity (right axis). In this example, 

 = 13 is chosen for an appropriate network.  

 

 To verify module-to-age associations in the P. kelleyi data, we performed a Multivariate 

Analysis of Variance (MANOVA) with module eigenvalues as dependent variables and 

developmental stage (adult, sapling, and seedling) as predictor variables. Modules that 

demonstrated a significant main effect on developmental stage were analyzed using Tukey’s HSD 

post-hoc tests to determine the developmental stage associated to those modules. 
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Figure 1.2. Example of module discrimination of compound peaks. Modules are represented by 

the shaded boxes. In this spectrum, resonances 4 and 1 are considered indistinguishable because 

they are less than 0.05 ppm apart. The orange module has complete overlap with resonance 6, 

so their association is valued 1. Both orange and blue modules detect the group of peaks 4/1 by 

0.75 because they are within 0.1 ppm of those resonances. Module blue is not considered to 

detect the peak 6. 

 

1.3 Results 

 

Prepared mixtures: To assess the efficacy of the method to detect structural features at different 

levels of sample complexity, we performed the network analysis in three different sets of samples: 

intraclass mixtures, interclass with 4-component, and then 4-component only. All analyses resulted 

in roughly the same number of modules and average number of nodes by module, although the 

number of unassigned nodes was larger for the 4-component network (Table 1.1). That overall 

convergence was also expressed by coherent associations between modules and specific 

compounds or structural features across the three networks, with node-module membership being 

retained in most cases. As mentioned in the last section, arbitrary colors were assigned to each 
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module, so for the ease of discussion we labeled the modules generated in each analysis according 

to the consistent structural features they represented (Appendix A.1). 

 

Table 1.1. Network results obtained for each group of prepared mixtures. 

 Intraclass 
Interclass and 4-

component 
4-component 

-parameter 16 6 10 

Number of modules 21 23 21 

Average 

nodes/module ( sd) 
9 ( 4) 

8 ( 4) 8 ( 3) 

Unassigned nodes 31.6% 29.8% 39.3% 
 

 

 For the intraclass mixtures, the technique was effective at detecting common structural 

features among relatively homogeneous samples. The information captured by the modules was 

strongly influenced by mixture composition, thus emphasizing structural motifs common to 

compounds of the same class (Figure 1.3). Due to the high degree of compound co-occurrence in 

these mixtures, we also observed indirect module-compound associations that were not supported 

by the module's chemical shifts. For example, the module PHP3 described structural features 

present in the phenylpropanoids eugenol and resveratrol which are not present in PBA (Figure 

1.3). However, since PBA was present in all mixtures containing eugenol, it was also significantly 

associated with PHP3. Notwithstanding a compositional bias towards intra-class associations, the 

network analysis was still able to recognize structural features shared across classes of compounds, 

such as the motifs present in prenyl groups of PBA and triterpenes under the module STR2 (Figure 

1.3). 
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Figure 1.3. Module-compound heatmap from the intraclass network. Insert A (top) shows 

significant module associations with phenylpropanoids. Modules are represented by the color 

bar, with consolidated names shown. Structural featured represented in these associations are 

highlighted in the color-coded boxes (middle) and shaded regions of the spectrum (bottom). 

Insert B shows the association of module STR2 with compounds from different classes. 
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 Compound co-occurrence had a lesser effect in the network analysis of interclass and 4-

component mixtures. These mixtures were more representative of the complexity present in natural 

extracts and provided a better parameter for assessing the method's sensitivity to compound 

concentrations and peak overlap. The resulting networks not only retained the compound-class 

specific modules observed in the intraclass analysis, but they were also characterized by molecular 

features shared among compounds from distinct and converging biosynthetic pathways. For 

example, in the interclass and 4-component analysis, the module PHP3 captured the 

phenylpropanoid-derived aromatic ring present in the flavonoids genistein and daidzein, and in the 

stilbene resveratrol (Figure 1.4). Flavonoids and iridoids also shared a common module – GLC1 

– due to their glycosylated moieties (Appendix A.1). 

 

 

Figure 1.4. Biosynthetic origin of shared structural features from module PHP3. Fragments 

colored in red originate from the phenylpropanoid pathway, while the blue features come from 

the polyketide pathway. The black circles represent resonances identified by PHP3. 

 

 

 A particular case of structural similarity was observed in modules involved with amides 

and alkaloids, which were interconnected in the network through specific proton resonances 

vicinal to nitrogen atoms (Figure 1.5). In the interclass analysis, three amides and the alkaloid 

brucine were associated with the module AMD1 due to proton resonances in the - and -position 
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of the nitrogen atoms. This module was connected to two alkaloid-related modules, and together 

they composed a cluster (or meta-module) that was indicative of nitrogen-containing compounds 

(Figure 1.5). Each of these modules also retained attributes that were particular to their most 

significant compounds, which accounts for their connections with modules outside of the cluster. 

For example, ALK3 represents the alkaloid brucine, but it was linked to the phenylpropanoid 

module PHP2 (green nodes in Figure 1.5) due to the aromatic proton resonances of that compound. 

 

 

Figure 1.5. Nitrogen-related modules from the interclass network. The expanded region of the 

network shows the connectivity between modules that represented alkaloids and amides. Their 

most important compounds are indicated in the corresponding color-coded rectangles: 

pipleroxide (1), alkene amide (2), crotaline (3), boldine (4) and brucine (5).  

 

 Another interesting result demonstrates that the network analysis provided evidence for the 

interaction between compounds. Particularly, the phenolic peaks in resveratrol were generally 

broad and undetectable due to proton exchange with the solvent, but the nearly negligible 

resonances at H 9.10 and H 9.30 from mixtures containing resveratrol, escin and oleanic acid 

were captured by module PHP4. Phenolic peaks are sensitive to intermolecular interactions based 
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on hydrogen-bonding, as they reduce proton exchange and improve peak sharpness.27 We verified 

experimentally that these peaks only appeared in the presence of escin, suggesting that resveratrol 

has hydrogen-bonding interactions with the glycosylated portions of that compound in solution 

(Figure 1.6). 

 

 

 

Figure 1.6. Phenolic hydrogen peaks detected by module PHP4. Resonances at H 9.10 and H 

9.30 are absent for resveratrol in a protic solvent (methanol) but become evident in the presence 

of escin as a result of stabilizing hydrogen-bonding interactions (grey boxes) between the hydroxyl 

groups of these molecules (highlighted in red). Those peaks are also present when resveratrol is 

analyzed in an aprotic solvent (dimethyl sulfoxide), which minimizes exchange of labile protons.  

  

 Given that each network analysis generated module-compound associations that were 

described by different collections of peaks, we evaluated the efficacy of the approach to identify a 

compound across different degrees of sample complexity. However, establishing a definitive 

measurement of compound identity can be challenging, considering that not every resonance is 

relevant to identify a compound, particularly because several structural motifs are ubiquitous to 

the molecules utilized in this study. For that reason, we opted to define compound identity as the 

complete set of its resonance peaks, and to calculate network accuracy as the fraction of a  
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Table 1.2. Compound detection accuracy for the three networks of prepared mixtures 

    Relative Accuracy 

Compounds   Intraclass  Interclass  4 compounds  

Alkaloids Brucine 0.33 0.35 0.35 

  Boldine 0.58 0.80 0.68 

  Crotaline 0.32 0.57 - 

  Caffeine - 0.19 0.19 

Amides Alkene amide 0.64 0.56 0.44 

  Piplartine 0.88 0.63 0.72 

  Pipleroxide 0.58 0.48 0.38 

Iridoid glycosides Aucubin - 0.34 - 

  Catalposide 0.28 0.28 0.41 

  Catalpol 0.23 0.36 0.36 

Cardiac glycosides Digitoxin - 0.21 0.25 

Furanocoumarins Bergapten - 1.00 0.88 

  Imperatorin - 0.88 - 

  Xanthotoxin - 0.67 0.83 

Flavonoids Rutin 0.54 0.45 0.54 

Isoflavonoid Daidzein 0.95 0.95 0.00 

  Daidzin 0.58 0.78 0.25 
 

Genistein - 0.60 0.80 

Terpenoids Carene 0.86 0.86 0.86 

  Phytol 0.53 0.53 0.72 

  Nerolidol 0.69 0.94 0.59 

Triterpeinoid saponins Escin 0.26 0.17 0.31 

Saponin Diosgenin 0.56 0.49 - 

  Oleanolic Acid 0.56 0.46 - 

Phenylpropenoids Eugenol 0.43 0.86 0.71 

  Resveratrol 1.00 0.83 0.83 

  Prenylated 

Benzoic Acid 

0.48 0.33 - 

Phytosterols Sitosterol - 0.77 0.44 

  Stigmasterol - 0.50 0.38 
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compound's total peaks that is detected by its most correlated module (Table 1.2). The average 

overall accuracy was similar across all analyses (0.56  0.05, 0.58  0.05, and 0.52  0.05 for 

intraclass, interclass, and 4-component mixtures respectively), indicating that about 55% of the 

signals were captured by the most representative module of a compound in each analysis. In some 

cases, such as with digitoxin and escin, the modules had a relatively low accuracy because the 

compounds had a large number of resonances and only the protons from specific structural features 

were identified. 

 

P. kelleyi samples: Network analysis on the spectra obtained from P. kelleyi extracts resulted in 

19 modules, with a broad variation in module size (10  9 nodes/module) and only three 

unassigned nodes. Due to the complexity of crude extracts, more regions of the spectrum were 

occupied with detectable resonances in comparison with the prepared mixtures, thus contributing 

for the detection of larger clusters of co-occurring peaks. Through HCA of module eigenvalues, 

we detected three clusters of samples with apparent enrichment for specific developmental stages 

(Figure 1.7). These findings were corroborated through MANOVA, which indicated a strong 

association of about half of the modules with specific life stages (Wilks  = 0.09, p   0.01). Six 

of those modules were specifically associated with seedings (Tukey's HSD, p  0.05), and they 

converged with modules from the mixtures networks that described the amide piplartine. Some of 

the resonances that were not directly associated with piplartine followed the same peak patterns of 

that compound, suggesting the presence of closely related amides in the seedlings extracts.28 

 A more limited number of modules had significant associations with adults and saplings, 

and their signature signals were overlapped, indicating that chemical distinction between these two 

groups was not so evident. Nonetheless, the peaks representing these groups were identified as 
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part of a previously reported chromene compound along with its dimeric benzopyran (Figure 

1.7).29 No piplartine peaks were detected in the adult samples investigated, and complementarily, 

no chromene peaks were observed in the seedlings. In saplings, however, these compounds were 

present as a gradient of combinations, demonstrating a clear transition between the metabolic states 

expressed in the other two extreme developmental stages. 
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Figure 1.7. Module-to-age associations from the P. kelleyi network. Top: heatmap of module 

eigenvalues for P. kelleyi samples, which are organized in the dendrogram according to their 

module similarity. Significant modules (colored bar) are indicated according to the plant age 

their mostly significantly represent (A–adults, P–saplings, S–seedlings). Bottom: spectral 

features indicating the presence of piplartine (orange) and the chromene compound (blue). 
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1.4 Discussion 

 

 The methodology introduced by this study demonstrates the potential of 1H NMR 

spectroscopy to expose chemical markers of interest from complex mixtures. Through the use of 

prepared mixtures of specialized metabolites, we verified the reliability of the analysis for linking 

groups of proton resonances to structurally similar compounds and identifying class-specific 

modules for metabolites. The results obtained from the intraclass mixtures also demonstrate that 

the technique identified metabolites connected by co-expression profiles, even with limited 

structural similarity. This could be a useful feature for the identification of biosynthetically related 

compounds from complex extracts, especially in cases where the more derivatized compounds are 

present in minimal concentrations.  

 By varying the complexity of the prepared mixtures, we gained insight into compound 

associations driven by shared secondary structural features (prenyl and glycosyl moieties in 

aromatic compounds) and core structural elements (Nitrogen-vicinal resonances in amides and 

alkaloids). We also gathered evidence for specific peaks originating from compound associations 

through hydrogen bonding, which not only shows the degree of sensitivity of this technique, but 

also demonstrates its utility to the study of the synergistic effects of specialized metabolites. 

Moreover, the networks produced the same general module-compound associations across varying 

degrees of mixture complexity, with a reasonable degree of structural coverage for all the 

compounds. These results were based on a compound set that represents only part of the structural 

diversity found in plant secondary metabolites, but they demonstrate that this technique could be 

also effective in the study of natural samples. 
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 In the study of P. kelleyi, we combined the variable reduction feature from the network 

analysis with classic statistical methods to elucidate the effects of plant ontogeny on chemical 

composition. Due to the spectral complexity presented by the crude extracts, the modules 

generated in this analysis were more robust and contained a larger fraction of the inputted 

information comparatively to those obtained from the artificial mixtures. Based on that 

observation, we predicted that the largest modules would represent the baseline metabolites 

expressed through plant development, while age-specific information should be represented by the 

smaller modules. However, the results demonstrated the opposite trend, with the largest modules 

accounting for age-specific compounds. Upon inspection of spectral data, we verified that this 

effect was a result of the co-occurrence of closely related compound in the extracts. For instance, 

turquoise, which was the largest module and the most significantly associated with seedlings, 

included contiguous regions of the spectrum containing peaks representative of piplartine and its 

closely related analogs. While these results were desirable to gain a holistic perspective of the 

metabolites present in each stage, we project that with a more rigorous  threshold, the network 

analysis could generate smaller modules with higher compound specificity. 

 Ontogeny is a driving element for plasticity in specialized metabolism,30, 31 and the age-

module-compound associations revealed by this study provided strong evidence to attribute plant 

development as the cause of dramatic changes in the chemical profile of P. kelleyi. We initially 

hypothesized that the observed changes were related to the defensive roles of the metabolites 

expressed in each stage, thus reflecting the different sources of mortality that challenge these 

plants. Amides are produced by several species of Piper, where they function as antifungal and 

anti-herbivore defensive compounds.32-36 Thus, the production of piplartine and other amides is 

particularly important for seedlings, which are especially vulnerable to generalist herbivores and 
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fungal pathogens. Complementarily, previous studies on P. kelleyi found that plants producing 

PBA and chromene had a lower diversity of specialist caterpillars, suggesting that these 

compounds play a defensive role against herbivory in adult plants.37 Following the publication of 

these results, a study was published that attributed the changes in metabolism of P. kelleyi as a 

result of plant placement in the canopy.38 Through an elaborated field experiment, the authors 

demonstrated that access to sunlight drives a growth-defense tradeoff, in which taller plants invest 

the available resources towards the production of biomass through photosynthesis, while also 

directing some of its incorporated carbon into photoactive defensive chromenes. With a more 

limited access to sunlight, plants in the forest understory need to invest more resources to preserve 

biomass against predation, so their phenylpropanoid metabolism is repurposed for the production 

of piplartine. By estimating plant's age from the number of nodes in its main stem, we introduced 

a confounding variable in our study, thus leading to incorrect inferences about ontogeny. 

 

1.5 Conclusion and future directions 

 

 We demonstrated that network analysis of 1H NMR spectra can summarize complex 

phytochemical profiles into a few chemotype-related variables. These variables may represent 

groups of compounds or shared structural features, and in conjunctions with other statistical 

techniques, they can help connecting the chemical profile with biological information. Thus, this 

approach facilitates the examination of the consequences of complete biosynthetic products, as 

opposed to focusing on the effects of single compounds. Moreover, the experiment with prepared 

mixtures helped establishing a reference library that can be useful to annotate modules obtained 

from the network analyses of other sets of samples, as exemplified in the study of P. kelleyi. Thus, 
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we expect that by aggregating more data to this analysis, particularly from chemically 

characterized biological samples, one can create a more robust model that is capable to identify a 

broader range of structural features. With that perspective, this analysis can be expanded beyond 

the realm of phytochemistry to incorporate compounds typically produced by other taxa and 

support the investigation of chemically mediated effects in other systems. From the perspective of 

natural products chemistry, this approach has the potential to facilitate the prioritization of samples 

from large field collections, allowing one to select extracts characterized by the most promising 

modules for subsequent isolation and structure determination. For chemical ecology, it provides a 

tool for quantifying entire arrays of chemical defenses that can be used as predictors or response 

variables in statistical models. Module importance and overall network parameters can be 

examined in response to manipulation of resources, or they can be mapped into phylogenies to 

address interesting questions about the evolution of metabolism across taxa and the origins of 

biodiversity.  
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Chapter 2: 1H NMR Network Analysis Applied to the Identification and Isolation of 

Antifungal Compounds from Species of the Genus Piper 

 

2.1 Introduction 

 

 As it was discussed in Chapter 1, plant specialized metabolism is the evolutionary result of 

a dynamic and complex interplay of selective pressures. Fungal pathogens are an important 

element in that equation, accounting for more than 13000 unique species and over 75000 plant-

fungal combinations only in the United States.1 Some episodes in history demonstrate the 

devastating effect of fungal diseases to domesticated crops, such as the potato blight that led to the 

Great Hunger in an 1840s Ireland,2 but the effect of these pathogens in natural systems still remains 

underestimated. A recent meta-analysis revealed that fungal diversity is particularly prominent in 

higher latitude forests, contrary to the trend observed for plants and arthropods, which are more 

abundant in the tropical zone.3 According to the study, fungal distribution was primarily associated 

with climate factors, particularly temperature, but symbiotic taxa showed a narrower climate niche 

than the parasitic counterparts. It has also been shown that deforestation has a detrimental effect 

saprophytical soil fungi, while benefitting pathogenic species.4 It is thus increasingly evident that 

climate change and forest disturbance will lead to the prevalence of phytopathogens and to the 

dramatic alteration in the structure of ecosystems.5 

 The basic mechanisms of defense against fungi in plants are rather unspecific to these 

pathogens and must have originated in the early stages of adaptation of land plants.6 For example, 

the cellular deposition of callose prevents fungal invasion,7 but it is also a primary constituent 

responsible for strengthening plant structure against the effects of gravity; flavonoids which are 
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implied in defense against some fungal pathogens may also have been fundamental for the 

protection of early plants against UV radiation. However, breeches in these mechanisms of defense 

due to natural variation of pathogens and hosts must have led to events of infection and the 

consequential development of specific plant-pathogen defenses.6 As an example of specificity, 

tomato produces the antifungal saponin -tomatine, but the tomato pathogen Septoria lycopersici 

produces tomatinase, an extracellular enzyme that hydrolyses -tomatine into a significantly less 

toxic compound.8 Consequentially, we can speculate that specific chemical defenses must be more 

prevalent in habitats that favor the fungus,9 and that variations of these chemical traits will be 

retained in taxa among species occupy the same habitat. 

 With over 1000 species distributed pantropically and an astounding phytochemical 

diversity, Piper is a formidable model genus for the study of ecological interactions.10, 11 However, 

the investigation of plant-pathogen interactions in this genus have remained mostly limited to the 

characterization of specific antifungal across individual species. A recent review showed the 

prevalence of amides and phenylpropanoids as the most commonly found antifungal compounds 

in the genus,12 which could indicate the conservation of specific modes of chemical defenses. In 

this study, we adopted the 1H NMR network approach described in Chapter 1 to investigate the 

biological activity of 30 species of Piper against model organisms, including the unicellular fungus 

Saccharomyces cerevisae. We identified specific molecular features associated with yeast 

inhibition in two species and utilized those targets to guide the process of compound isolation and 

characterization, thus arriving at three novel compounds, two of which presented antifungal 

activity. Applied to pathogenic fungi, this methodology could be not only a valuable means to 

study conserved phytochemical defenses across taxa, but also a useful tool for establishing 
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structure-activity relationships (SAR) of potential targets and optimizing the pharmacological 

properties of specialized metabolites. 

 

2.2 Methods 

 

Sample preparation: 30 different species of Piper (Table 2.1) were collected at La Selva 

Biological Station in Costa Rica, Heredia Province (10°25′ N, 84°00′ W, 50 m). The most recently 

expanded leaves were collected from multiple individuals and pooled for each species. The 

samples were then dried, extracted and prepared for 1H NMR according to the methodology 

described in Chapter 1. 

 

Bioassays: The crude methanolic extracts were assayed in three different panels: 1) a bacterial 

growth assay using Escherichia coli (Enterobacteriaceae); 2) a yeast growth assay with 

Saccaromyces cereviseae (Saccharomycetaceae); and 3) a root growth assay using the plant 

Arabidopsis thaliana (Brassicaceae). 

 E. coli strain DH5α cells were grown on Luria Broth (LB) solid media and incubated at 37 

°C for 16 hr. Single colonies were then used to inoculate 10 mL LB liquid cultures, which were 

incubated at 37 °C for 16 h with shaking. Aliquots of the saturated cultures were diluted 100-fold 

in LB liquid medium. Plant extracts were dissolved in methanol at a standardized concentration of 

80 mg/mL, and test extracts were added to the diluted E. coli cultures at a concentration of 80 

μg/mL. Two hundred microliter samples were arrayed into individual wells of a sterile 96-well 

plate and sealed with clear adhesive film. The plate was placed in a SpectraMax M2e 96-well plate 

reader (Molecular Devices, Sunnyvale, CA) equilibrated at 37° C. The absorbance at 600 nm 
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(OD600) was measured every 5 min for 12 h with an initial shake time of 5 s and 3 s shake prior 

to each reading. 

 

Table 2.1. Piper species included in the study and their clades. 

Clade Species 

Schilleria P. cabagranum 

P. scheideanum 

Radula P. xanthostachyum  

P. silvivagum 

P. umbricola 

P. concepcionis 

P. biolleyi 

P. aduncum 

P. sanctifecilis 

P. glabrescens 

P. friedrichsthalii 

P. urostachyum 

P. colonense 

Pothomorphe P. peltatum 

P. auritum 

Peltobyron 

 

P. nudifolium  

P. phytolaccifolium 

P. trigonum 

P. augustum 

P. garagaranum 

Macrostachys 

 

P. melanocladum 

P. biseriatum 

P. holdridgeanum 

P. cenocladum 

P. imperiale 

P. arboreum 

P. peracuminatum 

P. pseudobumbratum 

Enckea P. reticulatum 

- P. perbrevicaule 
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 S. cerevisiae growth curves were measured in a similar manner. S. cerevisiae S288c cells 

were plated on YPD media (2% [w/v] peptone, 1% [w/v] yeast extract, 2% [w/v] glucose) and 

incubated for 2 days at 30 °C. A single colony was used to inoculate a 10 mL YPD culture, which 

was incubated at 30 °C for 18 h with shaking. Saturated cultures were diluted 100-fold into liquid 

YPD, and extracts were diluted into these cultures as described above. Samples were arrayed into 

96-well plated and sealed with adhesive film. A sterile needle was used to puncture a small hole 

in the adhesive film above each well to prevent gas buildup. The resulting plate was assayed in a 

SpectraMax M2e 96-well plate reader as described above with OD600 readings taken at 5 min 

intervals for 18 h with 30 s of shaking before each reading. Following the identification of 

inhibitory targets, we repeated the assays with the purified compounds, initially at a concentration 

of 100 M, and then at serial dilutions in order to calculate the half maximal inhibitory 

concentration (IC50). 

 A. thaliana Col-0 seeds were surface sterilized with seed cleaning solution (3% [v/v] 

sodium hypochlorite, 0.1% [w/v] sodium dodecylsulfate) for 20 min at 25 °C. The seed cleaning 

solution was removed, and seeds were washed five times in sterile water. Seeds were resuspended 

in sterile water, incubated at 4 °C for 48 h, then plated on MS-agar media (1/2X Murashige and 

Skoog salts, MES-KOH pH 5.7, 1% [w/v] sucrose, 1% [w/v] phytoagar) with or without the 

addition of Piper extracts at a final concentration of 80 μg/mL. Plants were grown vertically in a 

growth chamber at 22 °C with constant light for seven days. The roots of each seedling were 

straightened, and the resulting plants were imaged on a flatbed scanner. Root lengths were 

measured using ImageJ (imageJ.nih.gov/ij/). 
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NMR analyses: Plant extracts were analyzed under the same experimental parameters described 

in Chapter 1. For chromatographic fractions, sample were resuspended in 300-500 L of methanol-

d4, depending on the amount of sample available, and subjected to the same analytical method as 

the crude extracts. For the characterization of purified compounds, we also collected 13C 

(nt=15000), 1H{1H} gCOSY (nt=4x128), 1H{13C} gHSQC (nt=4x256) and 1H{13C} gHMBC 

(nt=8x256), using an experimentally determined optimal pulse width for each compound. In cases 

where the solvent residual peaks compromised the characterization of the compounds, samples 

were also prepared and analyzed using deuterated acetonitrile to resolve the assignments. 

 Spectra from plant samples were processed using MNova according to the methodology 

described in Chapter 1. In addition, we also evaluated the results obtained through a newly 

incorporated method for data binning from that software, which automatically recognizes peak 

regions and attributes zero-values to regions of baseline spectral signal. Spectra acquired for the 

isolated compounds were processed to improve signal resolution according to established standard 

protocols. 

 

Statistical analyses: To facilitate the characterization of bioactive molecular targets from the 

crude extracts, we seeded the network analysis with some of the spectra collected from the 

prepared mixtures (Chapter 1). After the modules were calculated for the combined set of mixtures 

and extracts, we calculated the Pearson correlations between module eigenvalues and bioassay 

data. We then processed a parallel analysis to assign module correlations with compound 

concentrations from the mixtures. By comparing these results, we were then able to estimate the 

structural elements present in the bioactive targets. Moreover, by referring to the modules that 
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demonstrated significant correlation with bioactivity, we identified diagnostic peaks in the 1H 

NMR spectrum that were used as a guide for the isolation of the bioactive compounds. 

 

Compound isolation: For the isolation of target compounds, we sequentially and extensively 

extracted 6 g of leaf material with n-hexane, acetone and methanol at room temperature under 

mechanical agitation. For extracts that displayed the target peaks upon 1H NMR analysis, 200 mg 

of the extract were pre-fractionated using preparative RP-LPLC (10 g, FC-C18 60 m, 2.5 cm x 8 

cm), eluted with acetone/H2O at discrete increments of 10% acetone from the equilibration mixture 

(e.g., acetone extracts were eluted at 50%–100% Acetone). Two samples of 15 mL were collected 

for each eluent mixture, then dried under reduced pressure, prepared and analyzed by 1H NMR. 

When additional steps of purification were necessary, the pre-purified fractions were submitted to 

RP-LPLC (5 g, FC-C18 60 m, 1.5 cm x 5 cm) eluting with a continuum gradient of acetone/H2O. 

 

2.3 Results 

 

Bioassays: Moderate to high biological activity was verified for the collection of extracts across 

the three assay panels analyzed. E. coli growth inhibition was modest for a few species, while A. 

thaliana root growth was affected in variable extents by all Piper extracts. Conversely, S. 

cereviseae assays resulted in the most distinct results, with two species–P. holdrigeanum and P. 

peracuminatum–presenting nearly total growth inhibition. P. holdrigeanum was also the species 

with the highest inhibitory activity in all panels. 
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Network analysis: The generated network ( = 11) resulted in 22 modules, with an average of 8 

( 4) nodes/module, excluding the turquoise module which was outstandingly large. Considering 

only positive eigenvalues, module representation differed between the seeded mixtures and the 

Table 2.2. Inhibitory activities of various Piper extracts represented as % 

growth from control. 

 E. coli A. thaliana S. cereviseae 

P. aduncum 0.0 62.4 3.7 

P. arboreum 0.0 59.3 10.1 

P. augustum 6.5 25.6 2.1 

P. auritum 9.6 19.6 10.3 

P. biolleyi 2.0 13.1 0.0 

P. biseriatum 15.5 16.2 1.4 

P. cabagranum 1.3 27.6 8.8 

P. cenocladum 16.7 19.5 6.9 

P. colonense 7.8 30.6 28.9 

P. concepcionis 5.0 32.4 18.8 

P. friedrichsthalii 0.0 16.7 22.4 

P. garagaranum 0.0 48.9 12.1 

P. glabrescens 0.5 27.3 19.9 

P. holdridgeanum 29.1 82.9 93.7 

P. imperiale 0.0 27.5 8.3 

P. melanocladum 0.0 29.1 4.4 

P. nudifolium  19.6 10.4 17.3 

P. peltatum 12.6 21.8 7.7 

P. peracuminatum 7.4 24.9 98.7 

P. perbrevicaule 1.3 24.3 0.0 

P. phytolaccifolium 0.0 14.2 22.6 

P. pseudobumbratum 1.8 29.4 63.2 

P. reticulatum 0.0 72.8 5.8 

P. sanctifecilis 17.1 30.1 15.4 

P. scheideanum 0.0 22.1 19.4 

P. silvivagum 2.2 15.8 5.0 

P. trigonum 0.0 15.4 14.8 

P. umbricola 0.0 28.0 3.5 

P. urostachyum 5.5 19.7 15.8 

P. xanthostachyum  11.1 30.9 12.0 

Average 5.8  7.5 29.9  17.8 18.4  24.3 
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plant extracts, reflecting the differences in complexity of these two sources of data. The spectra 

from the mixtures were represented by a smaller number of modules than the extracts (6.4   2.2 

versus 10.1  2.6, t-value = -6.96, p<0.01), but the average eigenvalue for each spectrum was 

larger for the mixtures (0.12  0.05 versus 0.08  0.03, t-value = 4.12, p<0.01). Mean eigenvalue 

variance was also larger for the mixtures set (0.13  0.05 versus 0.009  0.005, t-value = 2.92, 

p<0.01). 

 Significant correlations (p < 0.05) between module eigenvalues and biological activity 

were verified for all the bioactivity assays, and they reflected strong module associations with 

plant species that displayed enhanced inhibitory activity (Figure 2.1). For instance, the module 

lightgreen had the strongest association with fungal inhibition, and its highest eigenvalue was 

calculated for P. peracuminatum ( = 0.56), the most potent extract against S. cereviseae. The 

second highest eigenvalue for this module was verified with P. pseudobumbratum ( = 0.11), 

which also showed distinguishable yeast growth inhibition, although to moderate extent. 

Interestingly, the second most potent extract, from P. holdrigeanum, was not associated with this 

module, suggesting different mechanisms of inhibition for that species. 

 By combining mixtures and extracts into the same network analysis, we were able to 

directly identify the structural features described by each module. Thus, module lightgreen was 

strongly associated with prenylated benzoic acid, and according to its chemical shifts (H 5.33, H 

1.82–1.74), it described the prenyl portion of that molecule. Those peaks are present in both P. 

peracuminatum and P. pseudobumbratum, where they represented the most dominant signals in 

the spectrum, suggesting that the corresponding target compounds were the major components of 

each extract. Given the limited degree of structural overlap revealed by lightgreen, we turned to 

other modules correlated with these Piper species to gain more information about the bioactive 
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targets. The second most important module for P. peracuminatum was royalblue ( = 0.18), which 

was associated with pipleroxide and alkene amide in the mixtures through the -carbonyl benzylic 

proton resonance (H 2.86). P. pseudobumbratum was most strongly associated with the module    

lightyellow ( = 0.41), which contained chemical shifts representative of the vinylic methyl  

and allylic methylene resonances from nerolidol and carene in the mixtures (H 1.98–1.94, H 

1.58–1.54). With the convergence of these results, we predicted that these two species of Piper 

contained structurally similar prenylated aryls as their most abundant and bioactive compounds 

(Figure 2.2). P. pseudobumbratum presents the least functionalized of these compounds, which is 

corroborated by its similarity with the basic terpenoid scaffold of nerolidol, while P. 

peracuminatum's compound has an oxidized moiety similar to that observed in the propenone 

portion of pipleroxide. We considered these characteristic signals to perform an NMR-guided 

fractionation of the crude extracts and isolate the active compounds.



39 

 

 
Figure 2.1. Network analysis from Piper extracts. The top panel displays module eigenvalues for each species and the bottom panel 

indicates module correlation to measurements of inhibition across the assay panels. Modules are represented by colors in the middle 

panel. 
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Figure 2.2. Chemical features associated with antifungal activity. In the top panel, 

chemical shifts for modules lightgreen, lightyellow and royalblue are identified across 

the spectra obtained from two species of Piper by the respective colored bars. These 

peaks identify structural features present in molecules from the mixtures (bottom, shaded 

boxes of equivalent color), and helped estimate the structure of the target compounds in 

each species. 
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Compound isolation: Targeting the isolation of the bioactive compounds from P. 

peracuminatum and P. pseudobumbratum, we identified the crude acetone extracts as the 

ones containing the signature peaks for each species. Pre-fractionation of the P. 

pseudobumbratum extract yielded the target compound at high concentration from the 

second fraction eluted with 50% acetone:H2O, which following purification, resulted in 35 

mg of compound 1 (Table 2.3). Analysis of the 1H NMR data suggested the presence a 

1,2,3,5-tetrasubstitued aromatic ring of a farnesyl moiety, characterized by a sequence of 

three vinylic resonances (H 5.0–5.4). From the 13C NMR data we concluded that one of 

the ring substituents was a carboxylic acid (C 170.6) and that the other two were hydroxyl 

groups (aromatic C 149.4 and C 145.4). Finally, we concluded that since the carboxylic 

carbon C-7 and one of the hydroxylated carbons (C-4) showed 1H{13C} HMBC 

correlations with both the aromatic protons, they should stand symmetrically in reference 

to H-2 and H-6. Placing the protons in the ortho position of the carbonyl substituent 

equilibrated the shielding/deshielding effects of the hydroxyl and carbonyl substituents and 

was coherent with the aromatic resonances observed at H 7.34 and H 7.48. NOESY data 

confirmed the configuration of the alkene groups, and the final structure was determined 

as 3,4-dihydroxy-5-(Z,E-farnesyl)benzoic acid, which is a novel isomeric form of the 

equivalent E,Z compound isolated from P. auritum.13 HRESIMS analysis on negative 

mode determined a mass of m/z 357.2009 [M - H]-, further supporting this assignment.  
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Table 2.3. NMR assignments for the isolated compound 1 

 

1 

Position C, type H 1H{13C} HMBC 1H{1H}NOESY 

1 122.4, C 
  

 

2 115.1, CH 7.32 d (2.0 Hz) 3, 4, 6, 7  

3 145.4, C 
  

 

4 149.4, C 
  

 

5 137.3, C 
  

 

6 124.1, CH 7.35 dt (2.0, 0.5 Hz) 2, 4, 7 1', 2' 

7 170.7, C 
  

 

1' 28.8, CH2 3.33 br d (7.1 Hz) 4, 5, 2', 3' 6, 4' 

2' 124.0, CH 5.36 br t (7.4 Hz) 1', 3', 4', 13' 6, 13' 

3' 129.0, C 
  

 

4' 32.9, CH2 2.21–2.15 5, 2', 5', 6', 13' 1', 6', 13' 

5' 27.6, CH2 2.16–2.09 4', 6', 7' 14' 

6' 125.3, CH 5.16 br t (7.4 Hz) 5', 8', 14' 4', 8' 

7' 136.2, C 
  

 

8' 40.8, CH2 1.98–1.92 5', 6', 7', 9', 10', 14' 6', 14' 

9' 27.8, CH2 2.08–2.01 6', 8', 10', 11' 14' 

10' 125.5, CH 5.07 m 12', 15' (weak) 8', 12' 

11' 132.0, C    

12' 25.9, CH3 1.65 br s  10', 11', 12' 10' 
13' 23.8, CH3 1.75 br q (1.2 Hz) 5, 2', 3', 4' 2', 4' 

14' 16.1, CH3 1.60 br s 6', 7', 8' 5' 

15' 17.7, CH3 1.58 br s 10', 11', 15'  
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 Pre-fractionation of the acetone extract from P. peracuminatum led to the recovery 

of the target peaks in both fractions eluted with 50% acetone:H2O and in the first one eluted 

with 60%. These fractions were pooled for purification and, to our surprise, the resulting 

collections yielded two novel compounds–2 (20 mg) and 3 (16 mg)–with proximal eluting 

times that contained the target resonances for antifungal activity. Both presented 

resonances characteristic of prenyl groups (identified by module lightgreen) across the 1H- 

NMR spectrum, but they were consistently and slightly shifted upfield for 3 (Table 2.5) 

compared to the same peaks in 2 (Table 2.4). The compounds also had the signature peak 

from module royalblue (H 2.86, H-9), which was confirmed to be the part of a propenone 

moiety based on its 1H{1H} COSY correlations with the methylene resonance at ~H 3.25 

(H-8) and on the 1H{13C} HMBC peaks of both methylenes with the carbonyl resonance at 

C 206 (C-7). The peak from H-9 was present at an integration ratio of 1:1 with the vinylic 

resonance (~H 3.25, H-2') in compound 3, which led us to the conclusion that this 

compound possessed two equivalent prenyl groups.  

 The most distinctive proton peak patterns for the two compounds were verified in 

the aromatic region, where compound 2 displayed three diagnostic resonances for a 1,2,4-

trisubstituted ring, while 3 contained a unique singlet indicative of a symmetric 1,2,3,4-

tetrasubstituted ring. We confirmed from the 1H{13C} HMBC peaks between these 

aromatic protons and the carbons C-9 and C-1' that the prenyl groups are implicated in the 

ring symmetry of 3, and that in both compounds the propenone moiety is attached to the 

ring through the -carbonyl carbon, at the meta position with reference to the prenyl 

groups. The remaining substituent was identified as a methoxyl group in compound 2 and 

a hydroxyl group in 3 based upon 1H{13C} HMBC signals between a hydroxylated 
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aromatic carbon (C-13) and the respective aromatic protons. Finally, we identified the 

singlet at H 5.86 as being part of a symmetric trihydroxylated aromatic system, which was 

connected to the propenone linker through the carbonyl carbon (1H{13C} HMBC, C-7 and 

H-3/5), thus concluding both structures. HRESIMS analysis on negative mode 

corroborated these assignments with masses of m/z 355.1560 [M - H]- and m/z 409.2030 

[M - H]- for 2 and 3, respectively. 
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Table 2.4. NMR assignments for the isolated compound 2 

 

2 

Position C, type H 1H{13C} HMBC 

1 105.3, C 
  

2/6 165.2, C 
  

3/5 95.9, CH 5.86 s 1, 2/6, 4, 7 

4 164.9, C 
  

7 205.9, C 
  

8 46.8, CH2 3.27–3.24 7, 9, 10 

9 30.5, CH2 2.84 dd (8.2, 6.7 Hz) 7, 8, 10, 11, 15 

10 134.7, C 
  

11 130.4, CH 6.98 d (2.0 Hz) 9, 13, 15, 1' 

12 130.6, C 
  

13 156.6, C 
  

14 111.5, CH 6.82 d (8.3 Hz) 10, 11, 12, 13, 15 

15 127.6, CH 7.01 dd (8.2, 2.3 Hz) 11, 13, 14  

16 56.1, CH3 3.77 s  

1' 29.3, CH2 3.24 br d (7.4 Hz) 11, 12, 13, 2', 3' 

2' 123.7, CH 5.25 m 5' (weak) 

3' 132.9, C   

4' 25.9, CH3 1.70 br s 2', 3', 5' 

5' 17.8, CH3 1.70 br s 2', 3', 4' 
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Table 2.5. NMR assignments for the isolated compound 3 

 

3 

Position C, type H 1H{13C} HMBC 

1 105.3, C 
  

2/6 165.1, C 
  

3/5 95.8, CH 5.86 s 1, 2/6, 4, 7 

4 164.7, C 
  

7 206.0, C 
  

8 46.7, CH2 3.21–3.27 7, 9, 10 

9 30.6, CH2 2.79 t (7.6 Hz) 7, 8, 10, 11/15 

10 134.4, C 
  

11/15 128.2, CH 6.79 s 9, 13, 1'/1'' 

12/14 128.7, C 
  

13 151.0, C 
  

1'/1'' 29.7, CH2 3.25 br d (7.3 Hz) 11/15, 13, 12/14, 2'/2'', 3'/3'', 

5'/5'' 

2'/2'' 125.5, CH 5.26 m 1'/1'', 4'/4'', 5'/5'' 

3'/3'' 132.0, C   

4'/4'' 23.8, CH3 1.72 br s 2'/2'', 3'/3'', 5'/5'' 

5'/5'' 17.7, CH3 1.71 br s 2'/2'', 3'/3'', 4'/4'' 
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2.4 Discussion 

 

 The direct network analysis on the combined 1H NMR data from prepared mixtures 

and plant extracts exhibited the same efficiency at recognizing shared structural features as 

did the analyses described in Chapter 1. Overall module specificity was different for 

spectra obtained from seeded mixtures and crude extracts as a result of sample complexity. 

Thus, modules were more evenly represented (lower eigenvalues and higher module count 

per spectrum) in the chemically complex crude extracts, while the seeded mixtures, with a 

significantly smaller number of compounds, were more strongly associated with specific 

modules. These differences were determinant in recognizing chemical patterns across the 

data set, as the mixtures served as a common library of well-defined chemical signatures 

which were then quantitatively affiliated (module eigenvalues) with each of the individual 

Piper extracts. This feature was fundamental for establishing a direct correlation between 

measurements of biological activity and molecular composition of the crude extracts, 

ultimately leading to the guided and accurate annotation of the biologically active targets. 

With this metabolomic evaluation, compounds were purified targeting the resonances that 

were identified as relevant to bioactivity. Isolation led to three compounds, two of which 

retained the inhibitory activity verified from the original extracts (Table 2.6), thus 

validating the effectiveness of this method in the early-stage identification of bioactive 

molecules from complex natural mixtures. 
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Table 2.6. Inhibitory activity of isolated 

compounds against S. cereviseae 

Compound IC-50 (M) 

1 46.8 (± 19.2) 

2 3.02 (± 1.05) 

3 ** 
 

** not significantly different from control 

 

  Several Piper extracts exhibited moderate to high inhibitory activity in the yeast 

and plant root assays, but we prioritized P. peracuminatum and P. pseudobumbratum 

because the differentiated antifungal activity of the extracts from these two species offered 

a formidable insight into how the network analysis can be applied to establishing SAR for 

target samples. Extracts of both plant species were associated with the module that showed 

the strongest correlation (r = 0.64) with S. cereviseae inhibition, and which represented a 

prenyl moiety, suggesting that this recurring structural feature was determining for 

compound activity in the investigated extracts. This result resonates with a collection of 

studies that encountered prenylated benzoic acid derivatives with antifungal activity in 

several species of Piper.14 It is noteworthy, however, that although this particular structural 

feature was correlated with increased inhibitory activities of compounds 1 and 2, the 

presence of a second prenyl unit in compound 3 resulted in significantly reduced potency, 

suggesting that the spacial arrangement of this functional group is also important. 

 The enhanced inhibitory effect of P. peracuminatum was associated with another 

module that was not statistically significant, but that still had a correlation of 0.13 with 

yeast inhibition. This module represented part of a dihydrochalcone motif, which was also 

present in antifungal compounds isolated from P. mollicomum15 and P. aduncum16, and 
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that can be postulated as an important element for yeast inhibition. Conversely, the module 

that was most strongly associated with P. pseudobumbratum was only marginally 

correlated with inhibitory activity as it represented structural features of an elongated 

farnesyl group that was not as important. We predict that the evaluation of a more complete 

library of Piper extracts using this methodology may further elucidate the structural effect 

of elongation and functionalization of the prenyl chain in modulating the antifungal 

activities of these compounds. Complementarily, the application of this approach with 

yeast deletion collections could provide a powerful method to identify the specific 

mechanisms of action of a compound.17 Gene knockouts that result in altered drug 

resistance may offer direct cues to structure-cellular target affiliations, and thus help to 

discern whether varying levels of inhibition result from differentiated compound-

specificity towards a common target, or if these compounds target distinct cellular 

processes. The refined structural information obtained from the chemical modules can then 

be evaluated against susceptible/resistant phenotypes to highlight the role of specific 

molecule motifs in dictating biological activity. 

 Finally, it is noteworthy that for the two Piper species investigated, the active 

compounds were also the major components of the extract, so the distinction of the target 

structures was facilitated by a more simplified spectrum. Less informative results may be 

expected in cases where the crude extract is far more convoluted or when a minor 

compound is responsible for the bioactivity. We suspect that this scenario is applicable to 

P. holdrigeanum, where the analysis did not highlight specific peaks in the 1H NMR 

spectrum despite a potent inhibitory activity of the extract across all assays. The only 

module associating this species with bioactivity accounted for a minor peak in the spectrum 
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at H 8.61-8.53, offering limited insight into potential structural features. However, 

attempts to isolate the active compound led to the disappearance of the target peak and the 

consequent loss of inhibitory activity. The investigation of this phenomenon goes beyond 

the scope of this work, but it demonstrates how even in a more complex scenario the 

network analysis can distinguish the spectral signals associated with modes of bioactivity.  

 

2.5 Conclusions and future directions 

 

 Plant-pathogen interactions have shaped the phytochemical landscape for as early 

as the transition from aquatic to terrestrial life forms. The mechanisms of defense identified 

in modern plants offer a snapshot of this convoluted story of chemical character selection, 

and by probing plant-bacteria or plant-fungi interactions through diverse assays one can 

discriminate plant taxa with enrichment for phytochemical defenses against such 

pathogens. Complementarily, NMR-based network analysis allows the deconvolution of 

phytochemical profiles into quantifiable chemical characters that can be mapped directly 

into bioassay data. The immediate product of this process is the identification of diagnostic 

peaks in the spectrum that can be utilized to monitor the isolation of bioactive compounds, 

thus replacing the recursive assay of chromatographic fractions. Moreover, with a suitable 

library of annotated spectra from pure compounds that can be analyzed in conjunction with 

the extracts, one can dereplicate known compounds and estimate the identity of novel 

molecules. However, the utility of this methodology is not limited to optimizing the process 

of compound isolation and identification. For example, in combination with inhibition 

assays against knockout libraries of model organisms, such as S. cereviseae, the analysis 
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of chemical modules can support the optimization of structural features for enhancing 

compound activity against specific cellular targets. Additionally, activity screening against 

other species of fungi might reveal additional inhibitory compounds and provide evidence 

for the implication of structural features in compound selectivity towards different strains. 

The information contained by the modules can ultimately help assessing the taxonomical 

recurrence of molecular motifs associated with specific modes of biological activity, as 

demonstrated with the genus Piper, and help retracing the evolutionary history of chemical 

defenses in plants and other organisms. 
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Chapter 3: Chemical Networks Reveal Conserved Metabolite Patterns in the Piper 

clade Schilleria 

 

3.1 Introduction 

 

 Beyond the realm of bioactive targets, the study of specialized metabolites is driven 

by the discovery of novel molecules and by the exploration of nature-driven 

transformations that inspire biomimetic organic synthesis,1 of which Robinson's 

preparation of tropinone is a landmark.2 However, without a guide for sample 

prioritization, this untargeted approach incurs into some of the same limitations 

encountered in the prospection of bioactive compounds, which have been discussed in 

chapter 1. In that regard, phylogenetic information provides a formidable reference to 

phytochemical studies, as it correlates to the summation of the evolutionary processes that 

amount to metabolite diversity.3 It can thus help prioritizing the investigation of taxa which 

shows enrichment for a specific class of compounds,4 or taxa in which high rates of 

speciation may indicate a hotspot for structurally diverse compounds. Complementarily, 

phytochemical data can be mapped into phylogenies to help reconstructing the evolution 

of metabolic pathways,5 and to assess the conservation of chemical traits within taxa. 

Inferences from the chemical similarity between known and unexplored species can then 

be drawn to facilitate compounds dereplication and, supported by phylogenetic 

associations, assist the identification of novel molecules. 

 Efforts to bridge secondary metabolism and phylogeny have largely focused on the 

study of biosynthetic gene clusters,6, 7 which makes use of specific sequence tags to 
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evaluate accumulated modifications in target enzymes. Alternatively, comparisons of 

unspecific sequence markers provide a holistic description of species phylogeny, which 

can accommodate the untargeted study of complete phytochemical profiles. The caveat for 

this approach is the risk of conflicting phylogenetic signals,6 thus demanding a 

metabolomics methodology that can reliably reproduce the degree of structural refinement 

present at a given taxonomic level. As an insightful example, Ernst et al demonstrated the 

use MS-similarity approaches to assess chemo-evolutionary relationships in the hyper-

diverse plant genus Euphorbia, which ultimately led to a better understanding of the 

biogeographic history of this genus.8 Following the promising results obtained in chapter 

2, we project that chemo-phylogenetic comparisons utilizing 1H NMR data should more 

accurately reveal the varying levels of chemical diversification across taxa. Notably, the 

refined structural resolution inferred from the 1H NMR spectrum is advantageous to 

discriminate compound features that result from different stages of the biosynthetic process 

(Chapter 1, Figure 1.4), and which may highlight more complex chemo-taxonomical 

relationships than when considering generalized classes of metabolites. Network analysis 

can thus consolidate the phytochemical data into quantifiable chemotypes, which may be 

used to assess species similarity at various phylogenetic scales. 

 In this study, we revisit the plant genus Piper to assess the presence of conserved 

specialized metabolites in infrageneric groups. According to molecular phylogenetic based 

on ITS sequences, Neotropical Piper species form a segregated group from Old World 

species, comprising eight distinct clades.9 Radula and Macrostachys are the most species 

rich (~450 and ~200 species, respectively) and also the most recently diverged clades (ca. 

7-11 Ma), suggesting that current diversity in the genus is a result of recent diversification 
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events.10 We sampled over 90 species representing six of the Neotropical Piper clades, and 

by utilizing the 1H NMR-based network approach, we evaluated the overlap between 

phytochemical profiles and species phylogenetic distribution. We then focused our efforts 

on the clade Schilleria, and by identifying modules that most consistently characterized 

species within this clade, we encountered chemical commonalities that suggested the 

conserved biosynthesis of lignans. These compounds are formed from the oxidative 

coupling of two C3-C6 phenylpropanoid units, involving the direct, or oxygen-bridged, 

linkage between carbons 3 or 8, thus giving rise to an incredible diversity of structural 

motifs.11 Lignans are implicated in several mechanisms of plant defense,12 which is a 

statement for their evolutionary relevance. Altogether, this chapter establishes a framework 

for the integration of chemical and phylogenetic data, supplementing an evolutionary 

argument for the discovery of new compounds. 

 

3.2 Methods 

 

Data preparation: We gathered 1H NMR data from a digital library of Piper samples 

maintained by the Hitchcock Center for Chemical Ecology at UNR. Samples were 

collected over the last decade from a broad geographical range of the Central and Southern 

American tropics, including collection sites in Brazil, Panama, Ecuador, Costa Rica and 

French Guyana, then processed and extracted according to the general protocol described 

in Chapter 1. After data filtering for adequate signal resolution and sample-to-solvent 

signal ratio, 223 1H NMR spectra from Piper specimens with taxonomical identification 

were selected for the network analysis (Table 3.1). That included 94 species, which were 
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assigned into clades according to published Piper phylogeny,9 Radula being the most well 

represented (88 samples) and Enckea the least (5 samples). Compared to the natural 

distribution of Neotropical Piper species,10 Radula was the only clade with a proportional 

number of species (35), while the remaining ones were over or underrepresented in varying 

extents. 

 The spectra were individually referenced by the residual solvent peak (methanol-

d4,  3.31), collectively phased and baseline-corrected (polynomial fit of order 3). For 

spectral binning, we opted to utilize a different method that became available in the most 

recent versions of the processing software MNova, and that automatically recognizes peak 

regions before integrating the ranges. A visual comparison of the results obtained with this 

"peak" method and the regular "average sum" approach showed that the former is more 

efficient at distinguish peaks from baseline signals or undefined regions with peak overlap 

(Figure 3.1). For example, the residual solvent peak region at ~ 4.85 is considerably 

reduced with peak-binning because the areas flanking that peak are not considered for 

integration, unless a detectable sample signal is present. These differences ultimately led 

to a decreased influence of the baseline on the integrated data and reduced the fraction of 

spectrum area that is represented by the aliphatic region ( 0.5-2.5). 
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Statistical analyses: Network analysis was performed on the entire selection of Piper 

spectral data. Following, HCA was applied to module eigenvalues to evaluate the 

clustering of samples according to shared chemical featured, where distances between 

samples were calculated based on pairwise Pearson correlations, and clusters were defined 

by complete linkage. We then evaluated the overall success to distinguish clade-specific 

chemical features by calculating and comparing average distances within clade, outside of 

clade, and within species. MANOVA was performed to verify module-to-clade 

associations, and modules with significant interaction were further probed using Tukey’s 

HSD post-hoc tests to verify the clade they most significantly distinguished. For method 

 

Figure 3.1. Effect of binning method on spectral data. Panel A compares method 

performance in differentiating peak intensities. The "binned by peaks" method provided a 

better ratio between areas containing defined peaks (blue rectangles) compared to baseline-

intensity or undefined peaks (orange rectangles). In panel B "binned by peaks" also 

performed better at reducing the influence of the areas flanking the residual solvent peaks. 
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comparison, we also analysed intra- and inter-clade distances obtained directly from the 

filtered 1H NMR data. 

 

Table 3.1. Piper species utilized in the study. 

Clade Species Samples Country of Origin 

Enckea P. laevigatum LAE1 Ecuador 

P. reticulatum RET1–RET4 Ecuador and Costa Rica 

Macrostachys P. arboreum  ARB1–ARB2 Ecuador and Costa Rica 

P. auritifolium ARF1–ARF4 Costa Rica 

P. bellidifolium BEL1 Ecuador 

P. biseriatum BIS1–BIS5 Costa Rica 

P. cenocladum CEN1–CEN5 Costa Rica 

P. holdrigeanum HOL1–HOL5 Costa Rica 

P. imperiale IMP1–IMP4 Costa Rica 

P. marsupiiferum MAR1–MAR4 Ecuador 

P. melanocladum MEL1–MEL2 Costa Rica 

P. obliquum OBL1 Ecuador 

P. obtusilimbum OBT1–OBT6 Ecuador 

P. peracuminatum PER1–PER2 Costa Rica 

Peltobyron P. andreanum AND1 Ecuador 

P. caucaense CAU1 Ecuador 

P. cirratum CIR1–CIR2 Ecuador 

P. conejoense CNJ1 Ecuador 

P. conispicum CON1 Ecuador 

P. cyanophyllum CYA1–CYA3 Ecuador and Costa Rica 

P. cyphophyllum CYP1 Costa Rica 

P. garagaranum GRG1 Costa Rica 

P. generalense GEN1–GEN5 Costa Rica 

P. lanceolatum LAN1 Ecuador 

P. macerispicum MAC1 Ecuador 

P. maranyonense MRN1 Ecuador 

P. musteum MUS1–MUS6 Ecuador 

P. nudifolium NUD1–NUD2 Costa Rica 

P. nudilimbum NDL1 Ecuador 

P. paludosum PAL1–PAL2 Ecuador 

P. pubinervulum PBN1–PBN2 Ecuador 

P. prismaticum PRI1–PRI3 Costa Rica 

P. stelipilum STE1–STE3 Ecuador 

P. terrabanum TER1–TER3 Panama and Costa Rica 
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P. trigonum TRG1–TRG3 Costa Rica 

Pothomorphe 

 

P. auritum  AUR1 Costa Rica 

P. multiplinervium MUL1–MUL2 Costa Rica 

P. peltatum PEL1–PEL3 Costa Rica 

P. umbellatum UBL1–UBL2 Ecuador and Costa Rica 

Radula 

 

P. amoenum AMO1 Ecuador 

P. arcteacuminatum ARC1–ARC4 Costa Rica 

P. bioleyi BIO1 Costa Rica 

P. baezense BZS1–BZS2 Ecuador 

P. chiminanthifolium CHI1 Brazil 

P. concepcionis CNP1–CNP2 Costa Rica 

P. colonense COL1–COL5 Costa Rica 

P. coruscan COR1 Ecuador 

P. crassivervium CRA1 Brazil 

P. culebranum CUL1–CUL2 Costa Rica 

P. epigynium EPI1–EPI2 Costa Rica 

P. friedrichsthalii FRI1–FRI2 Costa Rica 

P. gaudichaudianum GAU1 Brazil 

P. glabracens GLA1–GLA3 Costa Rica 

P. goesii GOE1 Brazil 

P. hispidum HIS1 Ecuador 

P. "hispidum complex" HISc1–HISc4 Costa Rica 

P. immutatum IMM1–IMM2 Ecuador 

P. lacunosum LAC1–LAC2 Ecuador 

P. lanceifolium LCF1 Ecuador 

P. longicaudatum LON1–LON2 Ecuador 

P. malacophyllum MAL1 Brazil 

P. mosenii MOS1 Brazil 

P. napo-pastazanum NAP1 Ecuador 

P. otophorum OTO1 Costa Rica 

P. pseudofuligineum PSF1 Panama 

P. sancti-felicis SAN1–SAN6 Costa Rica 

P. schuppii SCH1–SCH2 Ecuador 

P. silvivagum SIL1–SIL6 Costa Rica 

P. tabanicidum TAB1 Costa Rica 

P. tonduzii TON1–TON5 Costa Rica 

P. umbricola UMB1–UMB5 Costa Rica 

P. urostachyum URO1–URO7 Costa Rica 

P. villaloboense VIL1 Ecuador 

P. xanthostachyum XAN1–XAN8 Costa Rica 

Schilleria P. aequale AEQ1–AEQ3 Ecuador 
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 For the investigation of the clade Schilleria, we first performed an HCA including 

the species from that clade exclusively, but utilizing the same modules obtained from the 

network analysis of all samples. Clusters of chemically similar samples were then 

evaluated, and shared chemical features were identified through the comparison of cluster-

associated modules and the original spectra. Two of these modules were identified as 

relevant targets for compound isolation, leading to the phytochemical investigation of P. 

cabagranum and P. paulownifolium. 

 

Compound isolation: Leaf samples of P. cabagranum and P. paulownifolium collected at 

La Selva Biological Station in Costa Rica were sequentially and exhaustively extracted 

with hexanes and acetone. We then subjected 200 mg of the crude extracts to pre-

P. amphioxys AMP1 Panama 

P. asymmetricum ASY1–ASY3 Costa Rica 

P. cabagranum CAB1 Costa Rica 

P. paulownifolium PAU1–PAU3 Costa Rica 

P. perlaense PRL1–PRL2 Panama 

P. scutilimbum SCU1 Ecuador 

P. subscutatum SUB1–SUB3 Ecuador 

P. urophyllum URP1–URP5 Costa Rica 

Undeterminated P. baezanum BAE1 Ecuador 

P. barbatum BAR1 Ecuador 

P. boquetense BOQ1 Panama 

P. eriocladum Sodiro ERI1 Ecuador 

P. japurense JAP1 Ecuador 

P. lucigaudens LUC1 Panama 

P. pseudobumbratum PSB1–PSB3 Costa Rica 

P. pseudogaragaranum PSG1–PSG2 Panama 

P. pseudovariabile PSV1 Panama 

P. puberulescens PUB1 Ecuador 

P. sinugaudens SIN1–SIN2 Panama 
 



62 

 

fractionation through RP-LPLC and subsequent purification by RP-MPLC to recover the 

target compounds, following the procedure described in Chapter 2. Compound 

characterization was supported by one- and two-dimensional NMR analytical techniques, 

according to the parameters also specified in Chapter 2. 

 

3.3 Results 

 

Network analysis of Piper:  The collection of Piper spectra analyzed in this study 

represented a matrix of chemical data that was far more diverse than any of the analyses 

described in the previous chapters. As a result, a much lower threshold parameter ( = 4) 

was required to construct the network, which resulted in 31 modules with an average 

composition of 7  2 nodes/module. HCA on module eigenvalues distinguished three 

clusters predominantly composed of samples pertaining to Radula and one enriched with 

samples of the Peltobyron clade (Figure 3.2, shaded sectors). The majority of the clusters, 

however, contained a combination of samples belonging to multiple clades, and no other 

clade was uniformly represented within a cluster. 
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 In order to obtain a quantitative assessment of these results, we estimated sample 

similarity as the pairwise Pearson correlation distance of module eigenvalues. If two 

samples express the same general module profiles, their distance is small, and they are 

considered to be chemically similar. We found that distances to samples outside of the 

 

Figure 3.2. Hierarchical clustering obtained from the analysis of module eigenvalues of 

Piper samples. The colored circles represent clade assignments for each sample. Shaded 

sectors in the dendrogram show clusters with enrichment for the clades Peltobyron (blue) 

and Radula (cyan). Other clusters display a more heterogeneous clade composition. 
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clade were consistent across all groups, and marginally higher than the distances to samples 

within-clade (Table 3.2). Intra-clade similarity generally decreased with species diversity, 

and for Radula (s = 35) that diversity led to a closer overlap between intra- and inter-clade 

distances. However, intraspecific variation in that clade was comparable with the least 

diverse clades Enckea (s = 2) and Pothomorphe (s = 4). Conversely, Schilleria (s = 9) 

showed the lowest degree of intraspecific similarity, despite having a higher intra-clade 

similarity than Radula. Moreover, intra-clade distances obtained directly from the 1H NMR 

data were higher than those generated from the module eigenvalues, while inter-clade 

distances were conserved, demonstrated that the modules were more effective at 

distinguishing clade-associated features. 

 

 

  

  

Table 3.2. Average sample distances calculated from module eigenvalues and 
1H NMR data. 

 Module eigenvalues 1H NMR data 

 Intra-clade Inter-clade Intra-species Intra-clade* 

Enckea 0.57 ( 0.12) 0.98 ( 0.22) 0.41 ( 0.16) 0.74 ( 0.31) 

Macrostachys 0.87 ( 0.26) 1.00 ( 0.21) 0.50 ( 0.25) 0.95 ( 0.16) 

Peltobyron 0.91 ( 0.29) 1.01 ( 0.22) 0.36 ( 0.12) 0.94 ( 0.20) 

Pothomorphe 0.55 ( 0.27) 1.01 ( 0.21) 0.43 ( 0.37) 0.77 ( 0.22) 

Radula 0.97 ( 0.26) 1.01 ( 0.20) 0.46 ( 0.17) 0.99 ( 0.15) 

Schilleria 0.91 ( 0.23) 1.01 ( 0.21) 0.63 ( 0.14) 0.94 ( 0.18) 
  

* Inter-clade measures from 1H NMR data were consistently around 1.01 with a standard 

deviation of approximately 0.11. 
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 To verify the presence of clade-specific chemotypes, we tested module association 

with clade identity. MANOVA indicated the significance of this relationship (Wilks  = 

0.09, p   0.01), and 9 of the 31 modules showed specific connection with one of the clades 

(Tukey's HSD, p  0.01). The clade Schilleria was most significantly identified by the 

module darkgreen, so we subsequently performed an HCA for samples within that clade 

to evaluate how this module associated with different species. Samples were distinguished 

into three main clusters (S1–S3), but the darkgreen module was most consistently 

associated with S3, predominantly due to the species P. subscutatum (Figure 3.3). Visual 

analysis of the 1H NMR spectra from SUB1 revealed the presence of few dominant 

resonance peaks that coincided with those represented by darkgreen.  Based on reported 

phytochemical studies of P. subscutatum, were identified those peaks as pertaining to the 

lignan grandisin (Figure 3.6).13 This compound was present at high concentrations in all P. 

subscutatum samples, but only as a trace compound in other samples that were 

distinguished into S3. Interestingly, the darkgreen module was also modestly associated 

with the species P. cabagranum, not due to the presence of grandisin, but for the partial 

overlap with a similar group of resonances in the aromatic and methoxylated regions of the 

spectrum. Given that P. cabagranum was present in another cluster (S1), we considered 

this evidence a prognostic for the presence of structurally related compounds in other 

Schilleria species. 

 Targeting modules that were shared by samples within the same cluster, we 

identified grey60 as a relevant module that was most strongly associated with P. 

cabagranum. This module contained a group of resonance peaks that altogether indicated 

the presence of a C6-C3 phenylpropanoid system with a hydroxylated aromatic ring (H 
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6.78 and H 6.66). The most characteristic peak for this structural motif, a ddt pattern at 

approximately H 6.00, was also identified in other species present in S1, but those 

displayed different patterns across the aromatic region (Figure 3.3). For instance, CAB1 

contained two apparent pairs of 1,3-coupled protons at H 6.60–7.00 (J ~ 2 Hz), URP2 

showed a single peak at  6.49, and PAU3 contained a major pair of 1,2-coupled resonances 

at H 6.80 and H 7.25 (J ~ 8 Hz). These patterns suggested the presence of diverse lignan 

structures in Schilleria, so we targeted some of these compounds for isolation. We selected 

P. cabagranum and P. paulownifolium for this investigation primarily due to sample 

availability, but also because they represented the most dissimilar samples in the cluster 

S1, thus likely to contain the most distinct lignan motifs. 
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Figure 3.3. HCA of the clade Schilleria. Top: heatmap of module eigenvalues, with 

samples organized according to chemical similarity into three main clusters (S1-S3). 

Cluster associations with modules darkgreen (a) and grey60 (b) are highlighted. Bottom: 

spectral features from grey60. 
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Compound isolation: Targeting the recovery of the resonance peak at ~H 6.00, we 

identified the acetone extracts as the source for the desired compounds in each species. 

Pre-fractionation of the P. paulownifolium extract yielded the target peaks in the fractions 

eluted with 60% acetone:water, which upon purification resulted in 12 mg of compound 4. 

Analysis of the 1H NMR spectrum of this compound confirmed the presence of a 2-

propenyl unit, and suggested the presence of a 1,2,3,4-tetrasubstitued ring (H 6.62 and H 

6.59, J ~ 2 Hz), in addition to a 1,4-disubstitued ring system (H 7.31 and H 6.32). A linear 

sequence of resonances was also identified that included a methyl doublet coupled with a 

methine doublet of quartets (H 1.37 and  3.43, J ~ 7 Hz), which in turn was coupled with 

a more deshielded methine doublet (H 5.11, J = 9.5 Hz). Guided by the original hypothesis 

of structurally diverse lignans, we predicted that this group of resonances indicated a 

modified 1-propenyl unit that integrated the disubstituted ring and connected the two ring 

systems. The large coupling constant values between the two methines suggested a trans 

ring system, while the presence of the deshielded methine at H 5.11 indicated an O–linked 

carbon, thus strongly supporting the hypothesis of a benzofuran lignan. Similarity searches 

against our in-house database of published Piper compounds (Jennifer McCracken, 

Hitchcock Center for Chemical Ecology) led us to a neolignan isolated from P. aequale 

(Table 3.3) whose proton resonances closely matched our experimental results.14 We found 

enough overlap between the data to assume that this is the identity of the isolated 

compound. 
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Table 3.3. 1H NMR assignments for the isolated compound 

4 (400 Mz, CDCl3) and comparison with reported data14 

 

4 

Position H, type  H (exp. - lit.14) 

2 5.11 d (9.4 Hz) 0 

3 3.43 dq (9.3, 7.0 Hz) -0.01 

3-Me 1.37 d (6.8 Hz) 0.02 

4 6.59 m -0.02 

5-OMe 3.87 s 0 

6 6.62 m -0.01 

8 3.35 dt (6.7, 1.5 Hz) 0 

9 5.98 ddt (16.8, 10.0, 6.7 

Hz) 

0.01 

10 5.05–5.14 m 0 

2'/6' 7.31 d (8.6 Hz) 0.05 

3'/5' 6.82 d (8.6 Hz) 0.04 
 

 

 

 Pre-fractionation of the P. cabagranum extract yielded the target peaks in the 

fractions eluted with 50% acetone:water, and subsequent purification resulted in 28 mg of 

compound 5 (Figure 3.4 and Table 3.4). It was immediately apparent from the 1H NMR 

spectrum that this molecule contained two distinct propenyl units, one of which was 

substituted at the position 1, resulting in a ddd pattern for the vinyl-methine resonance (H-

8'). We verified from the 1H{1H} COSY spectrum that the corresponding benzyl methine 

(H-7') displayed a resonance peak at H 5.07, thus strongly suggesting a hydroxyl 
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substituent. The compound also showed three methyl singlets at H 3.5–4.0, suggesting the 

presence of methoxyl groups. Proton resonances in the aromatic region indicated the 

presence of two pairs of meta-coupled protons (H 6.96/6.74 and H 6.83/6.65, J ~ 2 Hz), 

each pair displaying 1H{13C} HMBC signals (Table 3.4) with two aromatic O-substituted 

carbons (C 144–154) and one of the benzylic carbons (C 76.0 and c 40.8, respectively). 

We concluded from this data and from the absence of otherwise indicative resonances, that 

the two ring systems must be directly connected, although we found no supporting 

evidence from the 1H{13C} HMBC spectrum for the long range 1H{13C} coupling between 

the two rings. Still, 1H{1H} NOESY correlations between the least deshielded protons in 

each ring supported the proximity of the two rings through direct linkage (Table 3.4). We 

believe that the two rings are oriented with a dihedral angle of 0–90º, which causes the 

inner protons H6/H6' to experience anisotropic shielding. Lastly, through 1H{1H}NOESY 

we located three methoxyl groups across the aromatic rings, which supported that the lone 

phenol was para to the modified propenyl moiety. HRESIMS on positive mode produced 

an ion of mass m/z 379.1551 [M + Na]+, which is coherent with the determined structure. 
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 We also verified the resonances from the target propenyl moiety in other fractions 

collected from the purification of compound 5, as well as 70% acetone:water fraction from 

the pre-fractionation of the acetone extract. The purification of these fractions resulted in 

four compounds (Figure 3.4 and Table 3.5) that retained most of the structural features 

present in compound 5, but that also captured a sequence of modifications in the propenyl 

moiety connected to the hydroxylated ring (Figure 3.6). For instance, compound 6, isolated 

from the 70% acetone:water eluent, represented the reduced precursor of compound 5, 

Table 3.4. NMR assignments for the isolated compound 5 (400 Mz, CD3OD) 

Position C, type H 
1H{13C} 

HMBC* 

1H{1H} 

NOESY 

1 126.7, C 
 

  

2 146.2, C 
 

  

2-OMe 61.1, CH3 3.58 s 2 3-OMe, 6' 

3 153.9, C 
 

  

3-OMe 56.3, CH3 3.86 s 3, 4 2-OMe, 4 

4 113.1, CH 6.83 d (2.1 Hz) 2, 3, 5, 6, 7 3-OMe, 7 

5 136.9, C 
 

  

6 124.4, CH 6.65 d (2.2 Hz) 1, 2, 3, 4, 7 7, 6' 

7 40.8, CH2 3.35 br d (6.5 Hz) 4, 5, 6, 8 4, 6, 8, 9 

8 138.9, CH 5.98 ddt (16.8, 10.0, 6.7 Hz) 5, 7 7 

9 116.0, CH2 5.01–5.12   

1' 133.9, C 
 

  

2' 144.3, C 
 

  

3' 149.1, C    

3'-OMe 56.5, CH3 3.90 s 3', 4' 4' 

4' 109.9, CH 6.96 d (2.0 Hz) 2', 3', 5', 6', 7' 3'-OMe, 7' 

5' 135.2, C    

6' 122.6, CH 6.74 d (2.1 Hz) 1', 2', 3', 4', 7' 6, 2-OMe, 7' 

7' 76.0, CH 5.07 d (5.6 Hz) 8', 9' (weak)  4', 6' 

8' 142.3, CH 6.05 ddd (17.1, 10.3, 5.9 Hz) 5', 7' 4', 6' 

9' 114.5, CH2 5.28 dt (17.1, 1.6 Hz) 8' (weak)  

  5.15–5.11   
 

* HMBC correlations are from the proton(s) to the indicated carbon.  
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lacking the benzylic hydroxyl group. Compound 7 and 8, isolated concomitantly from the 

purification of compound 5, were characterized as the ketone and aldehyde functionalized 

products. Compound 9 was also isolated from the the 70% acetone:water eluent, but it was 

later found to be a predominant component of the hexane extract. It displayed a more 

complex spectrum, containing a series of multiplets in the H 0.5–2.0 range that suggested 

the presence of a terpenoid-like motif. The methine at H 5.49 indicated that this group 

contained a trisubstituted alkene and from the pair of methyl doublets at ~H 0.85 that it 

must also contain an isopropyl moiety. 1H{1H} COSY correlations from these two units 

suggested a [2.2.2]bicyclic motif, and further support from a key 1H{13C} HMBC 

correlation between the methine at H 3.50 and the carbon at C 202.4 revealed that this 12-

carbon system was connected to the aromatic ring through a ketone group (Figure 3.5). The 

configuration of the carbons C-8' and C-12' was assumed from the NOESY correlation 

between their corresponding protons, which must be in closer proximity (Figure 3.5). 

Further 2-D NMR correlations led to the assignment of compound 9, which is postulated 

to be the product of Diels-Alder coupling between the enone 7 and the monoterpene -

phellandrene (Figure 3.6). To the best of our knowledge, this new molecule represents a 

novel late-stage merger between terpene and lignan biosynthesis through a unique Diels-

Alder reaction. 
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Figure 3.4. Compounds isolated from P. cabagranum. 

 

Figure 3.5. HMBC and NOESY correlations identified for compound 9. 
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Table 3.5. Partial NMR assignments for the isolated compounds 6–9 (400 Mz, CD3OD) 

 6 7 8 9 

Position* C, type H (J in Hz) C, type H (J in Hz) C, type H (J in Hz) C, type H (J in Hz) 

1' 133.8, C 
 

132.9, C  132.5, C  133.1, C  

2' 144.1, C 
 

151.1, C  152.1, C  150.3, C  

3' 149.0, C  149.3, C  149.5, C  149.1, C  

3'-OMe 56.5, CH3 3.87 s 56.6, CH3 3.98 s 56.7, CH3 3.98 s 56.6, CH3 3.95 s 

4' 112.0, CH 6.76 d (2.0) 110.9, CH 7.59 d (2.1) 109.5, CH 7.46 d (1.9) 110.8, CH 7.48 d (2.0) 

5' 131.9, C  129.4, C  129.5, C  128.8, C  

6' 124.1, CH 6.56 d (2.0) 127.4, CH 7.52 d (2.1) 129.9, CH 7.36 d (1.9) 126.5, CH 7.44 d (2.0) 

7' 40.9, CH2 3.34–3.31 d 191.1, C  193.0, C 9.76 s 202.4, C  

8' 139.4, CH 5.92–6.04 ddt 133.4, CH 7.33 dd  

(17.0, 10.6) 

  48.4, CH 3.50 ddd  

(9.4, 5.8, 1.9) 

9' 115.6, CH2 5.00–5.13 129.6, CH2 6.37 dd  

(17.0, 2.0) 

  29.5, CH2 1.66–1.76 m 

    5.87 dd  

(10.6, 2.0) 

    

10'       37.5, CH 2.40 m 

11'       32.7, CH2 1.80, 0.97 m 

12'       48.5, CH 1.48 m 

13'       38.7, CH 2.93 dt (6.5, 2.0) 

14'       121.9, CH 5.49 br d (6.2) 

15'       144.6, C  

15'-Me       20.0, CH3 1.76 d (1.7) 

16'       34.5, CH 1.08 m 

16'-Me       21.7, CH3 0.88 d (6.5) 

       20.9, CH3 0.82 d (6.6) 
 

* Positions 1–9 are identical or very similar to 5 (Table 3.4). 
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3.4 Discussion 

 

 In this study, we surveyed a remarkably diverse collection of phytochemical data, 

which by means of network analysis was consolidated into a few descriptors (modules) of 

commonly expressed molecular features. By comparing module expression across 

samples, we identified patterns of chemical diversification in Piper that were far more 

complex than the phylogenetic classification into clades, suggesting that phytochemical 

traits are dispersed. For instance, we verified clusters of chemically similar samples that 

were most consistently aligned with the clades Radula and Peltobyron (Figure 3.2), 

although samples identified with those clades were also distributed in clusters that had a 

more heterogeneous species composition. Uckele et al arrived at a similar conclusion from 

the analysis of 1H NMR profiles of 65 Neotropical Piper species, supported by a direct and 

highly resolved phylogenomic analysis of the investigated species.15 They detected no 

phylogenetic signal at the level of compound structural resolution obtained from 1H NMR 

data, but clearer patterns of trait distribution across Radula emerged when phytochemical 

profiles were characterized by the qualitative presence/absence of general metabolite 

classes. Likewise, we observed that samples were more chemically dissimilar when 

considering then entire 1H NMR profile than when utilizing module expression profiles 

(Table 3.2). This divergence suggests that while early biosynthetic products are moderately 

conserved, chemical traits emerging from the late-stage modification of common 

precursors are phylogenetically labile.15 We thus speculate that the network modules 

distinguished compound traits from both early- and late-stage biosynthetic steps, but that 

modules containing broader compound class features were more important for the 
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clustering of Piper species of the same clade. Structural annotation of the modules might 

validate these hypotheses, but a yet stronger evidence for the conserved distribution 

chemical traits might be constructed by incorporating complete phylogenetic data into this 

analysis. 

 Our results partially differ from those obtained by Salazar and collaborators who 

found no phylogenetic signal of chemical composition for a smaller collection of Piper 

species from Costa Rica.16 In that study, phytochemical profiles were surveyed by GC-MS, 

and that is likely a determining element to explain the different results obtained in each 

study. MS is a useful technique to reveal similarities in compound composition, but that 

type of information represents a limited snapshot of the chemical overlap between different 

species and does not distinguish between isomeric molecules and lacks the functional 

group-level resolution required to make phylogenetic references. In contrast, 1H NMR data 

describes varying levels of structural complexity, from conserved class-specific motifs to 

generalized compound modifications. It should be noted, however, that differences in the 

sampling effort (geographical location, replicates per species and total number of species) 

may also have an influential effect in the conclusions obtained from each study. 

 We verified that intra-clade chemical similarity decreased with the number of 

species, but that trend was particularly exacerbated in Schilleria, which showed an average 

intra-clade sample distance comparable to Peltobyron with just half the number of species. 

Schilleria was also the clade with the most chemically dissimilar samples at the 

intraspecific level, despite the fact that species representation was consistent across all 

clades (2.5  0.4 sample/species). A possible reason for this outstanding diversity comes 

from uncertain taxonomical identification of some Piper species, which might be 
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particularly prominent in Schilleria. For example, P. amphyoxis, P. asymmetricum, P. 

cabagranum and P. perlaense are listed as synonyms of P. aequale,17 and the HCA 

revealed that AEQ samples were assigned to distinct clades of the dendrogram, where they 

were chemically more similar to other synonym species (Figure 3.3). It should also be 

considered, however, that these differences might reflect an actual diversity of chemotypes 

within the same population. The Schilleria species sampled in this study were represented 

by individuals collected from the same geographical locations, and as it has been 

demonstrated by Richards et al, phytochemical diversity has a beneficial effect on plant 

communities by reducing herbivory.18 While these inferences can only be fully supported 

by a direct phylogenetic analysis of the samples in question, the intraspecific variation 

observed in Schilleria demonstrates how phytochemical data can also supplement and help 

resolving conflicting taxonomical classifications. 

 Although the HCA on module profiles only partially grouped samples from the 

same clade, MANOVA revealed significant module associations for all Piper clades. This 

divergence indicates that the phylogenetic signal of secondary metabolites was rather 

defined by a few chemical characters. Thus, statistical methods that evaluate the individual 

contribution of modules should be prioritized for the detection of phylogenetically relevant 

markers. This strategy allowed us to identify the predominance of lignan motifs in samples 

from the clade Schilleria (Figure 3.3), and we project that the same approach can also 

reveal conserved classes of specialized metabolites from other Piper clades. It is 

noteworthy that although the most significant module for Schilleria (darkgreen) was highly 

specific to grandisin, its association with samples of the cluster S1 (Figure 3.3) resulted 

from a different compound. Therefore, the relative magnitude of module eigenvalues can 
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be interpreted as (i) the differential expression of a particular compound, or (ii) the degree 

of structural similarity between different compounds. Effect (i) dictated the relationship 

between samples in the cluster S3, which contain grandisin in varying concentrations, while 

the association between darkgreen and CAB1 was driven by (ii). We deem this latter 

interpretation particularly useful for the prospection of structurally diverse compounds 

within a clade, as evidenced by the successful isolation of lignans in this study. 

 Our results reinforce the evolutionary relevance of lignans by suggesting the 

conservation of their biosynthesis in the Piper clade Schilleria, and principally by 

demonstrating the structural diversification of these compounds within the clade. We 

encountered lignans formed from three distinct linkages in three different Piper species 

(Figure 3.6), and that is certainly an understatement to the chemical diversity present in the 

clade. For example, URP2 contains a major lignan whose spectrum combines elements 

from both P. cabagranum and P. subscutatum (Figure 3.3), and the cluster S2 possibly 

contains structural motifs that are still more distinct from those represented in S1 and S3. 

Moreover, the minor compounds isolated from P. cabagranum demonstrate that further 

modifications from the main lignan motifs contribute to increase compound diversity and 

complexity, which might be important for intraspecific chemical variations within the 

clade. We cannot ascertain the evolutionary implications of these findings without the 

support of direct phylogenetic data, but by characterizing the compounds represented by 

other Schilleria-related modules, we might be able to provide a stronger phytochemical 

basis for this argument. 
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Figure 3.6. Lignans identified in the clade Schilleria. Top: structural variation observed in 

the lignans from three Piper species as a result of different linkage modes between the 

phenylpropanoid units. Bottom: proposed biosynthetic steps for the lignans isolated from 

P. cabagranum. 
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3.5 Conclusions and future directions 

 

 Specialized metabolites account for a large portion of the evolutionary history 

impressed into phylogenies. As such, the integration between genetic and phytochemical 

data provides a powerful means to retrace the diversification of plant taxa and to expand 

our understanding of chemically mediated adaptations. We herein demonstrated that our 

1H NMR-based network approach can support this integration, revealing conserved 

chemical traits even at the high level of intra- and interspecific diversity present in Piper. 

The main advantage of this methodology is that it permits the quantification of chemotypes 

into modules eigenvalues, which can be used to estimate chemical diversity across taxa. 

This feature can be particularly useful in the context of ecological and populational studies 

that consider phytochemical diversity as an explaining variable for community dynamics. 

A second advantage, as shown with the clade Schilleria, is that it facilitates the 

characterization of chemo-phylogenetic signals, whether that is through the comparative 

analysis of significant modules, or the isolation of compounds guided by specific spectral 

features. 

 This study was mostly focused on the chemical characterization of the clade 

Schilleria, but we also found significant module interactions for the other clades. We thus 

anticipate that future directions may undertake the investigation of those phylogenetic 

associations, which ultimately will contribute to consolidate a chemical phylogeny for the 

genus Piper. A promising modification to the method could include pre-fractionation of 

the extracts to emphasize minor compounds which would otherwise not be detected by the 

analysis, as observed with P. cabagranum. Lastly, the conclusions from our study are based 
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on indirect inferences from a generic phylogeny of the genus Piper. Paired chemical 

analysis using direct phylogenetic data from species subsets should further qualify the 

generalization of these results. 
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Conclusions 

  

 The metabolome is a composite variable that encapsulates the evolutionary history 

of an organism, and for that reason, it is an important source of natural data for the study 

of ecosystems. For example, the study of P. kelleyi highlighted in Chapter 1 demonstrated 

how resource availability and herbivore/parasite pressures are simultaneously implicated 

in metabolic plasticity through plant development, and how the phytochemical products 

resulting from these adaptations influence predator community. 1H NMR analysis enables 

the access to a high-degree of structural information from these complex biological 

mixtures, thus allowing us to establish organismal comparisons that could not be as feasibly 

attained with a pure focus on compositional analysis. Thus, partial structural overlap 

between metabolic profiles may be informative of chemo-phylogenetic relationships at 

varying taxonomic levels, as shown in Chapter 3, but more importantly, it can highlight a 

biochemical convergence of different organisms towards the production of compounds 

with similar biological properties, as demonstrated in Chapter 2. 

 Our network approach addresses two major limitations that emerges from the 

informational content of the 1H NMR spectrum, namely, intensified peak overlap and 

variable redundancy. By consolidating patterns of peak co-variance into modules, the 

analysis primarily operates a variable reduction transformation, but this process also helps 

resolving certain convoluted regions of the spectra, such as the glycosylated region (H 3-

4.5). Another important aspect of this pattern recognition approach is the filtering of 

uncorrelated peaks, which are irrelevant in the context of comparative analyses of large 

sample collections. Altogether, the modules are a simplified and more meaningful 
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representation of the metabolomic space. They can serve as composite variables in 

discriminant and exploratory analyses to verify sample segregation from which inferences 

may be drawn on the association of certain modules with specific groups. Moreover, the 

chemical identity of each module can be more easily determined based on the specific peak 

combinations they represent, which in some instances may even preclude compound 

isolation for the complete characterization.  

 Trait quantification through module eigenvalues is arguable the most important 

result from this approach, as it enables the direct association between chemotype and 

biological information. That can be a categorical value (P. kelleyi developmental stages in 

Chapter 1 and Piper clades in Chapter 3) or a quantifiable variable (mixture composition 

in Chapter 1 and assay activities in Chapter 2). Similarity measurements can also be 

obtained from the module eigenvalues, not only as a means to determine the chemical 

proximity between samples, but also as a potential measurement of chemical heterogeneity 

across different groups. For example, average intra-group distances may be calculated 

based on module profile for organisms two different physiological states, where a 

significantly higher distance could imply a state that leads to higher diversity. Not 

addressed in this work but a potential future direction is also the employment of module 

eigenvalues for deriving chemical diversity measurements within sample.  

 The study cases highlighted in this work demonstrate that the network approach 

can resolve the spectral complexity of samples collections with varying levels of chemical 

diversification, from single species (P. kelleyi) to the broad survey of a chemically diverse 

genus (Piper). It is important to recognize, however, that as an analytical technique that 

operates via pattern recognition, it might encounter some limitations in systems with 
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minimal structural overlap, as with species from broader taxonomic levels. We postulate 

that in this scenario module identity will be largely descriptive of chemical traits expressed 

at lower taxonomical ranges (e.g., within a genus), with only a few modules that are more 

broadly represented across samples (e.g., different genus or families). However, even if 

limited, the detection of structural overlap may provide evidence for concerted chemical 

strategies, particularly when strongly associated with biological or environmental factors. 

For example, diverse plant species within an experimental plot might produce similar 

phytochemical responses to seasonal fluctuation in precipitation, or to predation by 

arthropod herbivores, in which case we may anticipate the detection of commonly 

expressed traits in modules that have higher eigenvalues for samples subjected to these 

altered states. 

 A promising future direction for this approach is the cross-platform integration with 

LCMS data to further improve compound deconvolution in the generated modules. 

Consequentially, module-based measurements of chemical diversity may be factorized into 

compositional and structural determinants to discern whether diversity arises from complex 

mixtures of compounds or from increased structural complexity of a few metabolites. This 

integration can also expedite the process of compound dereplication and characterization 

of novel molecules. Another compelling development might arise from the analysis of two-

dimensional NMR data, particularly 1H{13C} correlation spectra, utilizing this approach. 

Notwithstanding the technical challenges associated with handling higher-dimensionality, 

network analysis on correlational data may provide an unprecedent level of structural 

coverage from complex mixtures and unveil more subtle and intricate chemical 

associations between organisms. 
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Appendix 

A.1. Module-compound associations from the network analysis of prepared mixtures. 

 

 For each table, modules are named accordingly to the color code generated in the 

analysis, and the unified code (in parenthesis) that best describes the highlighted structural 

features. The representative compounds for each module are shown with their respective 

correlation value. The colored circles indicate proton resonances depicted by the module, 

whose values in ppm are displayed under the module name. Unfilled circles identified 

resonances within 0.1 ppm of an identified bin. Chemical shift values with no 

correspondence to the molecules of the module are indicated in black. 
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Table A.1.1. Module identity, chemical shifts and compound correlations obtained 

from the network analysis of intraclass mixtures. 

Module () Compounds (Pearson's correlation) 

BROWN (PHP-1) 

6.17   6.21   6.49   6.53   

6.81   6.97   7.37   9.05   

9.09   9.13   9.20   9.28   

9.48 

Resveratrol 

(0.93) 

GREY 60 (PHP-2) 

1.74   2.14   2.18   5.33   

9.76   9.80 

Eugenol (0.48) 

PBA (0.97) 

Resveratrol (0.46) 

CYAN (PHP-3) 

5.93   5.97   6.61   6.65   

6.69   6.73   6.77 

Eugenol (0.97) 

PBA (0.68) 
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Resveratrol (0.68) 

PINK (TPN-1) 

0.62   0.66   0.70   0.74   

0.78   0.82   1.06   1.62   

2.22   2.34   5.25 

Carene (0.92) 

Nerolidol (0.58) 

Phytol 

(0.51) 

SALMON (TPN-2) 

0.58   1.30   1.54   1.70   

2.02   2.06   2.10   5.89 

Carene (0.61) 

Nerolidol (0.94) 

Phytol (0.61) 

Phytenal 

LIGHT CYAN 

(TPN-3) 

0.90   0.94   1.34   1.42    

4.09   9.96  10.0 

Carene (0.57) 

Nerolidol (0.57) 

Phytenal 
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Phytol (0.95) 

ROYAL BLUE 

(STR-1) 

5.49    5.53   7.89 

Escin (0.84) 

 

 

 

 

 

 

 

 

 

 

 

 

 

LIGHT YELLOW 

(STR-2) 

1.66   1.78   1.82 

Diosgenin 

(0.63) 

 

 

 

 

 

Escin (0.54) 
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Oleanic acid (0.56) 

PBA (0.52) 

TURQUOISE 

(STR-3) 

0.86   0.98   1.02   1.10   

1.18   1.26   1.50   1.58   

1.86   1.94   1.98   2.26   

5.37   5.41   5.45   7.81 

Diosgenin (0.81) 

Escin 

(0.81) 

 

 

 

Oleanic acid (0.77) 
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LIGHT GREEN (ALK-

1) 

1.22   1.38   1.46   6.09   

6.13 

Boldine (0.52) 

Brucine (0.52) 

Crotaline (0.96) 

YELLOW (ALK-2) 

2.46   2.50   2.58   2.98   

3.02   3.06   3.10   3.14   

3.18   3.61   3.89   6.57   

8.01 

Boldine (0.97) 

Brucine (0.66) 
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Crotaline (0.64) 

GREEN YELLOW 

(ALK-3) 

2.74   2.78   2.82   4.13   

4.17   4.33   4.37   7.77 

Boldine (0.55) 

Brucine (0.92) 

Crotaline (0.53) 

PURPLE (AMD-1) 

2.42   2.86   2.90   2.94   

3.22   3.81   4.25   4.29   

7.05 

Alkene amide (0.86) 

Piplartine (0.67) 



94 

 

Pipleroxide (0.90) 

MAGENTA (AMD-2) 

2.54   3.93   4.01   4.05   

6.05   7.09   7.13   7.33   

7.61   7.65 

Alkene amide (0.52) 

Piplartine (0.99) 

Pipleroxide (0.53) 

 

GREEN (FLV-1) 

3.41   3.45   4.49   3.57   

4.49   4.53   4.57   5.21   

6.25   6.45   7.69   7.73   

9.64 

Daidzein (0.51) 

Daidzin (0.49) 
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Rutin (0.93) 

MIDGNIGHT BLUE 

(IRG-1) 

3.77    5.61   6.41   7.53   

7.57   7.93   7.97 

Aucubin (0.51) 

Catalpol (0.54) 

Catapolside (0.99) 

TAN (IRG-2) 

3.69   3.73   5.29   5.65   

6.33   8.57   10.68    

10.96   11.0  11.28   

11.84   11.88 

Aucubin (0.50) 
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O

O

HO

OH

Catalpol (0.97) 

Catapolside (0.66) 

BLACK (IRG-3) 

2.30   3.26   3.65   4.21   

5.77   5.81   5.85   6.33 

6.37 

Aucubin (0.95) 

Catalpol (0.75) 

Catapolside (0.72) 

BLUE (FLV-2) 

2.70   4.45   6.29   6.93   

7.29   7.45   7.49   8.09   

8.21   8.29   8.33   8.37   

8.45 

Daidzein (0.97) 
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O

O

OH

OOH

HO

O

O

OH

OH

OH

O

HO OH

OH

OH

Rutin (0.43) 

RED (FLV-3) 

2.62   2.66   3.53   4.41   

7.21  7.25   7.41   8.05   

8.13   8.17   8.25   8.49   

8.97 

Daidzein (0.43) 

Daidzin (0.96) 

DARK RED 

(IRG-4) 

5.01    5.05    5.09 

Aucubin (0.5) 

Catalpol (0.47) 
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Catapolside (0.47) 

Eugenol (0.72) 
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Table A.1.2. Module identity, chemical shifts and compound correlations obtained 

from the network analysis of interclass mixtures. 

Module () Compounds (Pearson's correlation) 

ROYAL BLUE 

(PHP-2) 

2.14   5.33   9.76   9.80 

PBA (0.95) 

TAN (TPN-3) 

0.90   0.94   1.42   4.09   

5.41   9.92   9.96   10.0 

Carene (0.19) 

Escin 

(0.26) 

 

Nerolidol (0.18) 

Phytol (0.89) 

Phytenal 

PINK (TPN-2) 

1.30   1.54   1.70   2.02   

2.06   2.10   5.13   5.17   

5.21   5.89 

Carene (0.22) 

Phytol (0.24) 
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Phytenal 

Nerolidol (0.9) 

YELLOW (TPN-1) 

0.58   0.62   0.66   0.74   

0.78   0.82   1.06   1.62   

2.18   2.22   2.34   2.38   

5.25 

Carene (0.94)  

Nerolidol (0.3) 

Phytol (0.19) 

MAGENTA 

(STR-3) 

0.70   0.86   0.98   1.02   

1.10   1.50   1.58   2.26   

5.37 

Diosgenin (0.63) 

Escin 

(0.35) 
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Oleanic Acid (0.5) 

 

 

Sitosterol (0.35) 

Stigmasterol (0.21) 

MIDNIGHT BLUE 

(STR-2) 

1.26   1.66   1.78   1.82   

1.86   1.94   1.98 

Carene (0.33) 

Digitoxin (0.33) 



102 

 

Diosgenin (0.5) 

Escin 

(0.52) 

 

Nerolidol (0.15) 

Oleanic Acid (0.32) 

PBA (0.22) 
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LIGHT YELLOW 

(STR-1) 

5.45   5.49   5.53   5.85 

Escin 

(0.91) 

 

Quillaja (0.33) 

 

  

PURPLE (ALK-1) 

1.22   1.38   1.46   2.74   

3.18   4.41    6.09   6.13 

Aucubin (0.16) 

Crotaline (0.98) 
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TURQUOISE 

(ALK-2) 

2.46   2.50   2.54   2.58   

2.62   2.66    2.98   3.02   

3.06   3.10   3.14   3.61   

3.89   6.57   8.01   8.97 

Boldine (0.96) 

Brucine (0.29) 

Crotaline (0.17) 

CYAN (ALK-3) 

1.90   2.78   2.82   4.13   

4.17   4.37   7.77 

Aucubin (0.25) 

Brucine (0.9) 

Caffeine (0.2) 
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O

O

HO

OH

O

O

OH

OOH

HO

OH

O

O

OH

OH

OH

O

HO

OH

OH

BLACK (FRC-1) 

1.74   5.01   5.57   5.61   

6.41   7.57   7.61   7.89   

7.93   8.05 

Aucubin (0.15) 

Imperatorin (0.91) 

Xanthotoxin (0.15) 

SALMON (FLV-1) 

1.14   1.18   3.49   4.57   

6.25   6.45    7.65   7.69 

Daidzein (0.16) 

Rutin (0.92) 



106 

 

GREY 60 

(IRG-3) 

2.30   4.21   5.73   5.77    

5.81    7.97 

Aucubin (0.77) 

Catapolside (0.43) 

GREEN YELLOW 

(IRG-2) 

3.26   3.69   3.73   3.77   

5.29   5.65    6.33    

8.57 

Aucubin (0.23) 

Catalpol (0.88) 

Catapolside (0.34) 

BLUE (FRC-2) 

4.25   4.29   4.33   6.29   

6.37   7.13   7.17   7.21   

7.53   7.73   7.81   7.85   

8.25   8.49   9.40 

Bergapten (0.96) 

Xanthotoxin (0.77) 
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N

O

O

O

O

N

O

NO

O

O H

H

H

N

O O

O

O

O

N

O O

O

O

O

BROWN 

(FLV-2) 

2.70   3.53   4.45    5.69   

6.89   6.93   7.29   7.45   

7.49   8.09   8.13   8.17   

8.21   8.37   8.45 

Daidzein (0.8) 

Daidzin (0.55) 

LIGHT CYAN  

(AMD-1) 

2.42   2.86   2.90   2.94   

3.22   3.81   3.97 

Alkene Amide (0.77) 

Brucine (0.19) 

Piplartine (0.26) 

Pipleroxide (0.53) 

LIGHT GREEN 

(AMD-2) 

3.93   4.05   6.05    7.09    

7.33 

Alkene Amide (0.18) 
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Digitoxin (0.23) 

Piplartine (0.9) 

Pipleroxide (0.38) 

Quillaja Saponin (0.19) 

 

Stigmasterol (0.16) 
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OH

OH

HO

HO

H

H

H

OH

O

OH

OH

HO

O

HO

GREEN (PHP-3) 

3.85   5.05   5.09   5.93   

5.97   6.01   6.61   6.65   

6.69    6.73   6.77   9.60 

Eugenol (0.91) 

Resveratrol (0.25) 

RED (PHP-1) 

4.53   6.17   6.21   6.49    

6.53    6.81    6.85   

6.97   7.01   7.05   7.37   

7.41 

Daidzein (0.18) 

Genistein (0.23) 

Resveratrol (0.93) 

DARK RED (PHP-4) 

9.13   9.16   9.32 

Oleanic Acid (0.17) 

Resveratrol (0.34) 
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DARK TURQUOISE 

(GLC-1) 

3.41   3.45   3.65 

Aucubin (0.31) 

Catapolside (0.4) 

Catalpol (0.24) 

Rutin (0.6) 

DARK GREEN 

(FLV-3) 

7.25   8.29   8.33 

Bergapten (0.96) 

Daidzein (0.39) 
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Daidzin (0.55) 

Xanthotoxin (0.4) 
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Table A.1.3. Module identity, chemical shifts and compound correlations obtained 

from the network analysis of complex mixtures.  

Module () Compounds (Pearson's correlation) 

GREEN 

(TPN-3) 

0.90   0.94   0.98   1.10    

1.22   1.42   1.46   1.50   

4.09   5.37   5.41   9.96 

Escin 

(0.31) 

  

Phytol (0.76) 

Phytenal (N/A) 

Sitosterol (0.25)  

PURPLE (TPN-2) 

1.54   1.58   1.66   1.70   

2.02   2.06   2.10   2.14   

5.89 

Carene (0.23) 

Phytol (0.32) 

Phytenal 
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Nerolidol (0.93) 

PINK (TPN-1) 

0.62   0.66   0.78   0.82   

1.06   1.62   2.34   2.38   

5.25 

Carene (0.95) 

Nerolidol (0.25) 

BLACK (STR-1) 

1.94   1.98   4.45   5.45   

5.49   5.53   5.77   5.81   

5.85    6.13 

Escin 

(0.88) 

 

Quillaja Saponin (0.55) 

 

MIDNIGHT BLUE 

(STR-2) 

1.26   1.74   1.78   1.82   

1.86   2.22 

Carene (0.47) 
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N

O

NO

O

O H

H

H

Digitoxin (0.77) 

Escin 

(0.28) 

 

BROWN (ALK-2) 

2.50   2.58   2.62   2.66   

2.70   3.02   3.06   3.10   

3.14   3.61   3.89   6.57 

Boldine (0.95) 

Catalpol (0.25) 

TAN (ALK-3) 

1.90   2.74   2.78    2.82   

4.17    4.37   7.77 

Brucine (0.97) 
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N

N N

N

O

O

Caffeine (0.43) 

RED (FLV-1) 

1.14   1.18   3.41   3.45   

3.49   3.65   4.53   4.57   

6.45   7.69 

Daidzein (0.59) 

Daidzin (0.5) 

Rutin (0.89) 

YELLOW (IRG-1) 

3.26   3.69   3.73   3.77   

4.21   5.29   5.57    5.61   

5.65    6.33    7.93    

8.57 

Catalpol (0.8) 
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Catapolside (0.83) 

TURQUOISE 

(FRC-2) 

4.29   4.33    6.29    

6.41   7.17   7.21    7.25   

7.53   7.81   7.85    8.01   

8.25   8.29   8.33 

Bergapten (0.98) 

Xanthotoxin (0.84) 

LIGHT YELLOW 

(FLV-3) 

7.29   8.17   8.21 

Daidzin (0.73) 

Rutin (0.49) 
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GREY 60 (AMD-1) 

2.42   2.46   2.94   3.97   

7.05 

Alkene Amide (0.8) 

Boldine (0.22) 

Pipleroxide (0.22) 

GREEN YELLOW 

(AMD-2) 

2.54   3.93    6.05    

6.93   7.09    7.33    

7.65 

Piplartine (0.82) 

Pipleroxide (0.4) 

BLUE (PHP-3) 

3.85   5.01   5.05   5.09   

5.93   5.97   6.01   6.61   

6.65   6.69   6.73   6.77 

Eugenol (0.89) 

Resveratrol (0.28) 

 

CYAN 

(FLV-2) 

6.25   6.37   7.41   7.45   

8.09   8.13 

Genistein (0.88) 
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Resveratrol (0.35) 

MAGENTA (PHP-1) 

6.17     6.21     6.49     

6.53     6.81     6.85     

6.97     7.01     7.37 

Genistein (0.35) 

Resveratrol (0.91) 

DARK RED (TPN-2) 

5.13   5.17   5.21 

Catalpol (0.23) 

Catapolside (0.32) 

Daidzin (0.23) 

Nerolidol (0.76) 
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Rutin (0.26) 

LIGHT CYAN 

(FRC-2) 

0.70      7.13      7.49      

7.73      7.97      9.40 

Bergapten (0.47) 

Sitosterol (0.26) 

Xanthotoxin (0.38) 

LIGHT GREEN 

(AMD-1) 

2.86   2.90   3.18   3.22   

3.81 

Alkene Amide (0.53) 

Piplartine (0.26) 
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Pipleroxide (0.69) 

ROYAL BLUE 

(STR-1) 

4.49   9.48   9.56 

Escin 

(0.52) 

 

Quillaja Saponin (0.88) 

 

SALMON (STR-3) 

0.58   0.74   0.86    1.02    

2.26    2.30    5.33 

Sitosterol (0.76) 
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Stigmasterol (0.42) 
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A.2. S. cereviseae inhibition assays 
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Table A.2.1. Dose-response inhibition data for compound 1. 

Concentration (𝜇M) AUC 1* AUC 2* AUC 3* 

100.0 0.381 0.367 0.331 

50.0 0.877 0.891 0.616 

25.0 0.897 0.879 0.905 

12.5 0.942 0.953 0.881 

3.25 0.978 0.973 0.893 

1.56 0.974 0.962 0.879 

* AUC: area under growth curve normalized by total area of the curve generated from control 

sample (YPD + yeast + acetone). Numerals 1, 2 and 3 indicate assay trials. 

 

 

 
Figure A.2.1. Log(C) vs. inhibition response for compound 1. 
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Table A.2.2. Dose-response inhibition data for compound 2. 

Concentration (𝜇M) AUC 1* AUC 2* AUC 3* 

100.0 0.326 0.203 0.137 

50.0 0.211 0.217 0.199 

25.0 0.213 0.224 0.199 

12.5 0.213 0.227 0.241 

3.25 0.552 0.210 0.467 

1.56 0.966 0.963 0.826 

* AUC: area under growth curve normalized by total area of the curve generated from control 

sample (YPD + yeast + acetone). Numerals 1, 2 and 3 indicate assay trials. 

 

 

 
Figure A.2.2. Log(C) vs. inhibition response for compound 2. 
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A.3. 1H and 13C NMR spectra 
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Figure A.3.1. 1H NMR (400 MHz, CD3OD) spectrum of compound 1. 
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Figure A.3.2. 13C NMR (101 MHz, CD3OD) spectrum of compound 1. 
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Figure A.3.3. 1H NMR (400 MHz, CD3CN) spectrum of compound 2. 
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Figure A.3.4. 13C NMR (101 MHz, CD3CN) spectrum of compound 2. 
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Figure A.3.5. 1H NMR (400 MHz, CD3CN) spectrum of compound 3. 
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Figure A.3.6. 13C NMR (101 MHz, CD3CN) spectrum of compound 3. 
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Figure A.3.7. 1H NMR (400 MHz, CDCl3) spectrum of compound 4. 
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Figure A.3.8. 1H NMR (400 MHz, CD3OD) spectrum of compound 4. 
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Figure A.3.9. 1H NMR (400 MHz, CD3OD) spectrum of compound 5. 
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Figure A.3.10. 13C NMR (101 MHz, CD3OD) spectrum of compound 5. 
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Figure A.3.11. 1H NMR (400 MHz, CD3OD) spectrum of compound 6. 
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Figure A.3.12. 13C NMR (101 MHz, CD3OD) spectrum of compound 6. 
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Figure A.3.13. 1H NMR (400 MHz, CD3OD) spectrum of compound 7. 
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Figure A.3.14. 13C NMR (101 MHz, CD3OD) spectrum of compound 7. 
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Figure A.3.15. 1H NMR (400 MHz, CD3OD) spectrum of compound 8. 
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Figure A.3.16. 13C NMR (101 MHz, CD3OD) spectrum of compound 8. 
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Figure A.3.17. 1H NMR (400 MHz, CD3OD) spectrum of compound 9. 
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Figure A.3.18. 13C NMR (101 MHz, CD3OD) spectrum of compound 9. 
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A.4. R script for 1H NMR data treatment, network analysis and subsequent statistical 

treatment of modules 
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Required packages: WGCNA, ggplot2, ggdendro, egg, tidyr, ggpubr, factoextra, Morpho, 

HDMD 

 

###===================ImportingData======================### 

 

#Read data for ".txt" files 

MyData<-read.table("Adults_Data.txt", header = TRUE, row.names = 1,check.names = 

F) #change file name 

 

#Read data for ".csv" files 

MyData<-read.csv("CABsample.csv",sep=",", header = TRUE, row.names = 

1,check.names = F) #change file name 

 

###=======================Spectral Editing========================### 

 

#If the data was generated using the Script version of MNova and it's already normalized 

and cleared of empty columns,  

#skip directly to the network analysis section (rows must contain samples and columns 

the binned ppm in NMR or a peak/feature in MS). 

 

#---------------------------------------------------------------------------------------------------------- 

#NRM_diagn calculates an accumulated sum of spectra, and then iteratively calculates 

the mean of sums per chemical shift after removing one peak at a time.  

#This method is a good diagnostic for intense solvent peaks that did not get totally 

removed during the spectrum treatment step. 

#The generated plot shows the average area per bin for each removed peak, a red line 

indicates the threshold factor for the acceptable deviation from the mean (2x standard).  

#In addition to the visual diagnostic, it also returns a list of ppm values that violate the 

threshold (standard = 2X mean average sum). 

#---------------------------------------------------------------------------------------------------------- 

 

NMR_diagn<-function(nmr,thresh=2){ 

   

  nmrSum<-data.frame(sum=apply(nmr,1,sum, na.rm=T)) #creates a sum of spectra 

across each ppm 

  for (i in 1:nrow(nmrSum)){nmrSum$meanWO[i]=mean(nmrSum$sum[-i])} #for each 

removed ppm [i], calculates mean area per ppm without [i] (if its area is too big, it will 

lead to a much smaller value) 

  thresh=mean(nmrSum$meanWO)-thresh*sd(nmrSum$meanWO) #sets the deviation 

from the mean sum of areas that should be considered an outlier 
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plot(ggplot(nmrSum,aes(x=as.numeric(row.names(nmrSum)),y=meanWO))+theme(axis.t

itle.x = element_text(size=12,margin=margin(0.3,0,0,0,"cm")), 

    axis.text.x = 

element_text(size=10,color="black",margin=margin(0.1,0,0,0,"cm")),axis.title.y = 

element_text(size=12,margin=margin(0,0.3,0,0,"cm")), 

    axis.text.y = 

element_text(size=10,color="black",margin=margin(0,0.1,0,0,"cm")),plot.margin=margi

n(0.3,0.3,0.3,0.3,"cm"))+scale_x_reverse( 

    name="ppm",expand=c(0,0),breaks = 

seq((max(as.numeric(row.names(nmrSum)))%/%0.25+1)*0.25,by=-

0.25,(min(as.numeric(row.names(nmrSum)))%/%0.25 

    )*0.25))+scale_y_continuous(name="Mean of sums without 

outlier")+geom_hline(yintercept=thresh,linetype="dashed",color="red")+geom_line()) 

   

  ggsave("NMRoutlier.pdf",width=12,height = 8,units = "in") 

   

  NMRoutlier<-row.names(nmrSum[which(nmrSum$meanWO<=thresh),]) #returns the 

list of outliers 

} 

 

#----------------------------------------------------------------------------------------------------------  

#NMR_edit works for an NMR dataset that is generated without the MNova scripts (this 

option results in fewer alignment issues) 

#It normalizes each spectra by total sum (set as 100), then removes all columns 

containing only values under the acceptable signal threshold (0.0001 is the standard) 

#The resulting table is in the correct format for network analysis (ppm as columns) 

#---------------------------------------------------------------------------------------------------------- 

 

NMR_edit<-function(nmr,minCut=0.0001,outlier=NULL){ 

   

  if(is.null(outlier)==FALSE) {nmr< NMR[which(row.names(nmr)!=outlier),]} #removes 

outlier peaks (from NMR_diagn) 

  nmr<-t(nmr[which(complete.cases(nmr)),]*100)/apply(nmr,2,sum, na.rm=T) 

#"which[complete.cases()]" removes variables containing NA-only values across the 

dataset (solvent cut areas), then the data is transposed to have variables across the 

coluumns. "apply" gathers the sum for each original column (samples), which is used to 

normalize the spectra  

  nmr[which(nmr<minCut)]<-0 #reassigns any bin area under the signal threshold as 

zeroes 

  nmr< NMR[,which(apply(nmr,2,sum)>0)] #removes zero-only variables (retains only 

columns which sum>0) 

} 
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###=================Network Analysis====================### 

#---------------------------------------------------------------------------------------------------------- 

#Net_power creates a plot to determine your beta-threshold value, this may be all over 

the place but I start with the threshold at the beginning of the plateau# 

#Red numbers indicate the SFTM fit values (primary axis), while the blue ones show the 

corresponding mean node connectivity (secondary Y) 

#The red line indicates the ideal threshold of 0.8 correlation with a Scale-Free Topology 

model 

#---------------------------------------------------------------------------------------------------------- 

 

Net_power<-function(dat,cutfit=0.80){ 

   

  sft = pickSoftThreshold(dat, powerVector = c(c(1:30))) #from WGCNA; calculates the 

soft threshold parameters from an array of power values 

  yfactor=(max(sft$fitIndices[,"mean.k."])%/%10+1)*10 #parameter for adjusting the 

secondary Y axis 

   

  plot(ggplot(sft$fitIndices,aes(x=Power))+geom_text(aes(y=-

sign(slope)*SFT.R.sq,label=Power),size=4,color="red")+geom_text(aes(y=mean.k./yfact

or, 

    label=Power),size=4,color="blue")+scale_y_continuous(name=expression('Scale-Free 

Topology Model Fit - signed R'^2),breaks=seq(0,1,0.2), 

    sec.axis = sec_axis(~.*yfactor,name="Mean Node 

Connectivity",breaks=seq(0,yfactor,yfactor/5)),limits=c(0,1))+geom_hline(yintercept=cut

fit,linetype="dashed", 

    color="red")+labs(x=expression(paste("Power (", beta," )")),title="Network 

Topology")+theme(plot.title = element_text(hjust=0.5, 

    face="bold",size=16),axis.title = element_text(size=12),axis.text = 

element_text(color="black", size=10), axis.title.y.left = element_text( 

    margin=margin(0,0.2,0,0,"cm")), axis.title.y.right = 

element_text(margin=margin(0,0,0,0.3,"cm"),size=12),plot.margin=margin(0.3,0.3,0.3,0.

3,"cm"))) 

 

  ggsave("NetTopo.pdf",width=12,height = 8,units = "in") 

} 

 

#---------------------------------------------------------------------------------------------------------- 

#Net_build creates and return the network. It also saves the TOM parameters for 

graphical construction of the network on Cytoscape. 

#To be entered: NMR data array, power, module-merging cut parameter ([1- degree of 

correlation], 0.25 is the standard) and min module size (3 is standard). 

#---------------------------------------------------------------------------------------------------------- 

 

Net_build<-function(dat,pwr,cutpar=0.25, 

modSize=3,save=F,dataSave="MyData",cytThresh=0.02){ 
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  #from WGCNA 

  MyNet<-blockwiseModules(dat, power =pwr,TOMType = "unsigned", minModuleSize 

=modSize,reassignThreshold = 0, mergeCutHeight = cutpar, 

    numericLabels = TRUE, pamRespectsDendro = FALSE,saveTOMs = 

TRUE,saveTOMFileBase = paste(dataSave,"TOM.csv",sep = "-")) 

   

  if (save==T){ 

    #prep data for module composition table 

    MEnodes<-data.frame("Module"=labels2colors(MyNet$colors)) 

    row.names(MEnodes)<-sprintf("%.2f",as.numeric(names(MyNet$colors))) 

     

    #prep data for ME table 

    MEs<-ME_name2color(MyNet,F) 

    

    # gives a file of modules and eigenvalues across samples 

    write.csv(MEs,paste(dataSave,"MEs.csv",sep = "-")) 

     

    # gives a file of module-chemical shift (node) affiliation 

    write.csv(MEnodes,paste(dataSave,"MEnodes.csv",sep = "-")) 

     

    #prep data for network visualization in Cytoscape 

    options(stringsAsFactors = FALSE) 

    TOM<-TOMsimilarityFromExpr(dat, power=pwr) #recalculates TOM 

    modules<-colnames(MEs[,-ncol(MEs)]) #all modules but grey are included 

    probes<-colnames(dat) #extracts all ppm values 

    selModules<-is.finite(match(MEnodes$Module, modules)) 

    modProbes<-probes[selModules] #excludes ppms from grey 

    modTOM<-TOM[selModules, selModules] #filters TOM from grey nodes 

    dimnames(modTOM)<-list(modProbes, modProbes) 

     

    #export the edge and nodes file for cytoscape you may need to play with the threshold 

here a bit to make it reflect the modules 

    cyt = exportNetworkToCytoscape(modTOM, 

                                   edgeFile = paste(dataSave,"Cyto_edges.txt", sep=""), 

                                   nodeFile = paste(dataSave,"Cyto_nodes", ".txt", sep=""), 

                                   weighted = TRUE, 

                                   threshold = cytThresh, 

                                   nodeNames = modProbes, 

                                   altNodeNames = modules, 

                                   nodeAttr = MEnodes$Module[selModules]) 

  } 

  return(MyNet) 

} 
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#---------------------------------------------------------------------------------------------------------- 

#ME_name2color changes column names in the MEs table of entered network from 

numbers to the corresponding module colors, while also removing grey 

#---------------------------------------------------------------------------------------------------------- 

 

ME_name2color<-function(net,rmGray=F){ 

  if (rmGray){ 

    MEs<-net$MEs[,!names(net$MEs)=="ME0"] 

  }else{ 

    MEs<-net$MEs 

  } 

  names(MEs)<-labels2colors(as.numeric(substring(names(MEs),3))) 

  return(MEs) 

} 

 

 

###=================Network Visualization====================### 

 

#---------------------------------------------------------------------------------------------------------- 

#Net_modules gives a list of the modules and the number of nodes in them as a graphical 

representation 

#---------------------------------------------------------------------------------------------------------- 

 

Net_modules<-function(MyNet){ 

 

  mergedColors = labels2colors(MyNet$colors) #extracts module identity as colors 

  moduleTable<-aggregate(mergedColors,by=list(mergedColors),FUN=length) 

#consolidates and adds up nodes per module 

  moduleTable<-cbind(moduleTable,Perc=100*moduleTable$x/sum(moduleTable[,2])) 

#calculates % nodes in module from total 

 

plot(ggplot(moduleTable,aes(y=reorder(Group.1,Perc),x=Perc,fill=Group.1))+geom_bar(

stat="identity")+labs(x="% of nodes", 

    y="Modules",title="Network 

Composition")+scale_fill_manual(values=moduleTable[order(moduleTable$Group.1),]$

Group.1 

    )+theme(legend.position = "none",plot.title = 

element_text(hjust=0.5,face="bold",size=16, margin=margin(0,0,0.3,0,"cm")), 

    axis.title = element_text(size=12),axis.text = element_text(color="black",size=10), 

axis.title.y = element_text(margin=margin( 

    0,0.3,0,0,"cm")),axis.title.x = 

element_text(margin=margin(0.3,0,0,0,"cm")),plot.margin=margin(0.3,0.3,0.3,0.3,"cm") 

    

)+scale_y_discrete(labels=toupper(moduleTable[order(moduleTable$Perc),]$Group.1))+

geom_text(aes(label=x), hjust=-0.3,size=4 
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    ) + scale_x_continuous(minor_breaks = seq(1, 25, 

1),limits=c(0,(max(moduleTable$Perc)%/%5+1)*5))) 

 

  ggsave("ModuleComp.pdf",width=12,height = 8,units = "in") 

} 

 

#---------------------------------------------------------------------------------------------------------- 

#Cluster_dendro recreates the Node dendrogram with legend bars of module affiliation 

(by colors). 

#Module affiliation is shown for Modules generated by a Static cut (standard par is 0.99), 

and by Dynamic cut (Par determined in Net_build) 

#---------------------------------------------------------------------------------------------------------- 

 

Cluster_dendro<-function(MyNet, statCut=0.99){ 

   

  statiCut=as.character(cutreeStaticColor(MyNet$dendrograms[[1]],cutHeight = 

statCut,minSize = 3)) #merges modules by the Static cut method (hard tree cut) 

 

  mergedColors = 

data.frame(cbind(labels2colors(MyNet$colors),X=names(MyNet$colors),statColors=stati

Cut,origiColors=labels2colors( 

    MyNet$unmergedColors),Y=1),stringsAsFactors = F) #gathers module color data for 

legend bar graph (unmerged and two merging methods) 

  mergedColors<-mergedColors[MyNet$dendrograms[[1]]$order,] #sorts colors by the 

node dendrogram 

  mergedColors$order<-c(1:nrow(mergedColors)) #sets new order var for plotting 

purposes 

  mergedColors$Y<-as.integer(mergedColors$Y) 

 

  #the next plots will show the module affiliation by color 

  p3<-

ggplot(mergedColors,aes(x=reorder(X,order),y=Y,fill=V1))+geom_bar(stat="identity",wi

dth=1,fill=mergedColors$V1)+scale_fill_manual( 

    values=mergedColors$V1)+ylab("Dynamic \nCut")+theme(legend.position = 

"none",plot.title = element_text(hjust=0.5,face="bold", 

    size=16),axis.title.x = element_blank(),axis.text = element_blank(),axis.title.y = 

element_text(angle=0,vjust=0.5,size=12,margin=margin(0,-0.3,0,0,"cm")), 

    axis.ticks = element_blank(),panel.border = element_rect(colour = "black", fill=NA, 

size=0.5))+scale_y_continuous(expand=c(0,0), 

    breaks = c(0,1),limits = c(0,1))+theme(plot.margin=margin(0,0.3,-0.1,0.3,"cm")) 

   

  p2<-

ggplot(mergedColors,aes(x=reorder(X,order),y=Y,fill=statColors))+geom_bar(stat="iden

tity",width=1,fill=mergedColors$statColors)+scale_fill_manual( 
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    values=mergedColors$statColors)+ylab("Static \nCut")+theme(legend.position = 

"none",plot.title = element_text(hjust=0.5,face="bold", 

    size=16),axis.title.x = element_blank(),axis.text = element_blank(),axis.title.y = 

element_text(angle=0,vjust=0.5,size=12,margin=margin(0,-0.3,0,0,"cm")), 

    axis.ticks = element_blank(),panel.border = element_rect(colour = "black", fill=NA, 

size=0.5))+scale_y_continuous(expand=c(0,0), 

    breaks = c(0,1),limits = c(0,1))+theme(plot.margin=margin(0,0.3,0.3,0.3,"cm")) 

 

  dendro2graph<-dendro_data(MyNet$dendrograms[[1]]) #extracts dendro data for 

graphic manipulation 

   

  for(i in 1:length(dendro2graph$segments$yend)){ 

    if(dendro2graph$segments$yend[i]==0){ 

      if((dendro2graph$segments$y[i]-0.05)>0) dendro2graph$segments$yend[i]<-

dendro2graph$segments$y[i]-0.05 

    } 

  } #this will shorten the leaves from the dendrogram (aesthetically more organized) 

   

  gridLines=NULL 

   

  for(i in 2:length(mergedColors[,1])) if(mergedColors[i,1]!=mergedColors[i-1,1]) 

gridLines<-c(gridLines,mergedColors[i,6]-0.5) #generates the gridlines in the 

dendrogram that align with the Dynamic cut modules 

   

  p4<-ggplot(segment(dendro2graph))+geom_vline(xintercept = 

gridLines,lwd=0.3,color="white")+geom_segment(aes(x=x,y=y, 

    xend=xend,yend=yend))+labs(title = "Cluster Dendrogram", 

    y="Height")+theme(plot.title = 

element_text(hjust=0.5,face="bold",size=16,margin=margin(0,0,0.3,0,"cm")),axis.title.x 

= element_blank(), 

    axis.title.y = element_text(size=12, color="black",angle = 

90,margin=margin(0,0.3,0,0,"cm")),axis.text.y = element_text(size=10, 

    color="black"),axis.text.x = element_blank(),axis.ticks.x = 

element_blank())+scale_y_continuous(expand=c(0.01,0), 

    limits = 

c((min(dendro2graph$segments$yend)%/%0.1)*0.1,1))+scale_x_discrete(breaks=NULL)

+theme(plot.margin=margin(0.3,0.3,0,0.3,"cm" 

    ))+geom_hline(yintercept=statCut,linetype="dashed",color="red") 

   

  plot(ggarrange(p4,p3,p2,nrow = 3, ncol = 1, heights = c(8,1,1), align = "v")) #shows all 

plots together 

 

  ggsave("ClusterDendro.pdf",width=12,height = 8,units = "in") 

} 
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#---------------------------------------------------------------------------------------------------------- 

#Module_dendro creates a Module dendrogram with the corresponding colors. 

#Pearson correlation and average method used as parameters 

#---------------------------------------------------------------------------------------------------------- 

 

Module_dendro<-function(net){ 

   

  #extract MEs info from network 

  MEs<-ME_name2color(net,T) 

   

  scaledME<-as.matrix(scale(t(MEs)))  

  modDendro<-

as.dendrogram(hclust(d=get_dist(x=scaledME,method="pearson"),method = "average")) 

#module dendrogram 

  modOrder<-order.dendrogram(modDendro) 

   

  #extracts data for plotting circles with module colors 

   

  ddata<-dendro_data(modDendro) 

  colors<-as.character(ddata$labels$label) 

  print(colors) 

   

 plot(ggdendrogram(data=modDendro,rotate=F)+theme_gray()+theme(panel.grid.minor.x 

= element_blank(),panel.grid.major.x = element_blank(),axis.ticks = 

element_blank(),axis.text.y = element_text(size=10, 

    color="black", angle=0,margin=margin(0,0,0,0,"cm"),hjust = 1),axis.title.x = 

element_blank(),axis.text.x = element_text(size=12, 

    color="black", angle=90,margin=margin(0,0,0,0,"cm"),hjust = 1,vjust=0.5),axis.title.y 

= element_text(size=12, 

    color="black",margin=margin(0.3,0.3,0.3,0.3,"cm")),plot.margin = margin(0.3,0.3, 

    0.3,0.3,"cm"),plot.title = element_blank())+labs(ylab("Distance"))+labs(y="Distance") 

+scale_y_continuous(expand = c(0.01,0.015))+ 

    geom_point(data = ddata$labels,aes(x = x,y = y,fill=label),size = 8,shape = 21, 

    show.legend = F)+scale_fill_manual(values=colors)) 

   

  ggsave("MEdendro.pdf",width=12,height = 8,units = "in") 

} 

 

#---------------------------------------------------------------------------------------------------------- 

#ModSample_heatmap plots a heatmap of module eigenvalues for the sample set 

#---------------------------------------------------------------------------------------------------------- 

 

ModSample_heatmap<-function(net,textSize=12,method="pearson",orient="h"){ 

   

  #extract MEs info from network 
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  MEs<-ME_name2color(net,T) 

  MEs$samples<-row.names(MEs) 

   

  scaledME<-as.matrix(scale(MEs[1:(ncol(MEs)-1)])) #scaled variables for HCA without 

grey 

  sampleDendro<-

as.dendrogram(hclust(d=get_dist(x=scaledME,method=method),method = "complete")) 

#sample dendrogram 

  sampleOrder<-order.dendrogram(sampleDendro) 

  scaledME<-as.matrix(scale(t(MEs[1:(ncol(MEs)-1)])))  

  modDendro<-as.dendrogram(hclust(d=get_dist(x=scaledME,method=method),method = 

"average")) #module dendrogram 

  modOrder<-order.dendrogram(modDendro) 

   

  #extract the sample dendrogram to be displayed in the heatmap and the order of 

clustered samples 

  longMEs<-pivot_longer(data=MEs,cols = -

c(samples),names_to="module",values_to="ME") #trasforms to long format (necessary 

for heatmap) 

  longMEs$samples<-

factor(x=longMEs$samples,levels=MEs$samples[sampleOrder],ordered=T) #reorder 

samples according to clusters 

  longMEs$module<-factor(x=longMEs$module,levels=colnames(MEs[1:(ncol(MEs)-

1)])[modOrder],ordered=T) #reorder modules according to clusters 

   

  #extract the names of ordered clustered modules 

  colBar<-data.frame(factor(names(MEs[,-ncol(MEs)][modOrder]),levels=names(MEs[,-

ncol(MEs)][modOrder])),Y=1)  #extracts module colors for labeling the x-axis on the 

heatmap 

  names(colBar)[1]<-"module" 

   

  if(orient=="h"){ 

    p1<-ggplot(longMEs,aes(x=module,y=samples,fill=ME)) + geom_tile() + 

scale_fill_gradient2(name="Eigenvalue",low="dodgerblue",high = "brown1", 

      guide = guide_colorbar(frame.colour = "black",ticks = TRUE,nbin = 10,label.position 

= "bottom", 

      barwidth = 13,barheight = 1.3,direction = "horizontal",ticks.colour = "black")) + 

theme(axis.title = element_blank(),axis.ticks.x = element_blank(),axis.text.x = 

element_blank(), 

      axis.text.y.right = element_text(margin = margin(0,0,0,0.1,"cm"),size=textSize, 

color="black"),panel.border = element_rect(color="black",size=0.5,fill=NA), 

      plot.margin = margin(0.3,0,0,0.3,"cm"),legend.position = 

"top",legend.title=element_text(size=12,margin = margin(0,0.3,0,0),vjust=0.7), 

legend.text = element_text(size=10),legend.box.margin = margin(0,0,-0.3,0,"cm")) + 

scale_x_discrete(expand = c(0,0))+scale_y_discrete(expand = c(0,0), 
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      guide = guide_axis(check.overlap = T),position = "right") 

     

    p2<-ggdendrogram(data=sampleDendro,rotate=T)+theme(legend.text = 

element_text(size=12,color="black"),legend.margin = margin(0,0,0.3,-1), 

      axis.text.x = element_blank(),plot.margin = 

margin(1.9+(14.7/(nrow(MEs)*2))*(2.1/1.6),0.3,-

0.22+(14.7/(nrow(MEs)*2))*(2.1/1.6),0,"cm"), 

      plot.title = element_text())+scale_x_discrete(expand=c(0.005,0.005)) 

     

    p3<-

ggplot(colBar,aes(x=module,y=Y,fill=module))+geom_bar(stat="identity",width=1,fill=c

olBar$module)+theme(axis.title=element_blank(),axis.ticks = element_blank(),axis.text = 

element_blank(),panel.border = 

element_rect(color="black",size=0.5,fill=NA),plot.margin = margin(-

0.1,0.3,0.3,0.3,"cm"))+scale_y_continuous(expand = c(0,0),position = 

"right")+scale_x_discrete(expand = c(0,0))+labs(y="Modules") 

     

    p4<-ggplot() + annotate("text",x=1,y=1,hjust=0.8,vjust=-0.5,size=5, label = 

"",fontface=2) +theme_void() 

     

    

plot(ggpubr::ggarrange(egg::ggarrange(p1,p3,nrow=2,heights=c(16,1)),egg::ggarrange(p

2,p4,nrow=2,heights=c(16,1)),ncol=2,widths=c(8,2))) 

     

    ggsave("MEsample.pdf",width=12,height = 8,units = "in") 

     

  }else{ 

     

    p1<-ggplot(longMEs,aes(y=module,x=samples,fill=ME)) + geom_tile() + 

scale_fill_gradient2(name="Eigenvalue",low="dodgerblue",high = "brown1", 

      guide = guide_colorbar(frame.colour = "black",ticks = TRUE,nbin = 10,label.position 

= "bottom", 

      barwidth = 13,barheight = 1.3,direction = "horizontal",ticks.colour = "black")) + 

theme(axis.title = element_blank(),axis.ticks.y = element_blank(),axis.text.y = 

element_blank(), 

      axis.text.x.top = element_text(margin = margin(0,0,0.1,0,"cm"),size=textSize, 

color="black", angle=90,hjust=0),panel.border = 

element_rect(color="black",size=0.5,fill=NA), 

      plot.margin = margin(0,0,0.3,0.3,"cm"),legend.position = 

"bottom",legend.title=element_text(size=12,margin = margin(0,0.3,0,0),vjust=0.7), 

legend.text = element_text(size=10), 

      legend.box.margin = margin(-0.3,0,0,0,"cm")) + scale_y_discrete(expand = 

c(0,0))+scale_x_discrete(expand = c(0,0), 

      guide = guide_axis(check.overlap = T),position = "top") 
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    p2<-ggdendrogram(data=sampleDendro,rotate=F)+theme( 

      axis.text.y = element_blank(),plot.margin = 

margin(0.3,0.10+(27.4/(nrow(MEs)*2))*(2.1/1.6),-

0.3,0.15+(27.4/(nrow(MEs)*2))*(2.1/1.6),"cm"), 

      plot.title = element_text())+scale_x_discrete(expand=c(0.005,0.005)) 

     

    p3<-

ggplot(colBar,aes(x=module,y=Y,fill=module))+geom_bar(stat="identity",width=1,fill=c

olBar$module)+theme(axis.title=element_blank(),axis.ticks = element_blank(), 

      axis.text = element_blank(),panel.border = 

element_rect(color="black",size=0.5,fill=NA),plot.margin = margin(0,0.3,0,-

0.1,"cm"))+scale_y_continuous(expand = c(0,0), 

      position = "right")+scale_x_discrete(expand = 

c(0,0))+labs(y="Modules")+coord_flip() 

     

    p4<-ggplot() + annotate("text",x=1,y=1,hjust=1.5,vjust=0,size=5, label = 

"",fontface=2,angle=90) +theme_void() 

     

    plot(ggpubr::ggarrange(egg::ggarrange(p2,p4,ncol=2,widths 

=c(40,1)),egg::ggarrange(p1,p3,ncol=2,widths =c(40,1)),nrow=2,heights=c(2,8))) 

     

    ggsave("MEsample.pdf",width=12,height = 8,units = "in") 

     

  }     

} 

 

#---------------------------------------------------------------------------------------------------------- 

#ModTrait_heatmap will plot a heatmap of correlation between module eigenvalues and 

the provided traits 

#Applicable to numeric traits; for categorical data, use ModTraitC_heatmap 

#---------------------------------------------------------------------------------------------------------- 

 

ModTrait_heatmap<-function(net,traits,textSize=12,valueSize=3.5){ 

   

  MEs<-net$MEs 

  names(MEs)<-labels2colors(as.numeric(substring(names(MEs),3))) 

  traits<-traits[match(row.names(MEs),row.names(traits)),] 

  modCor<-corAndPvalue(MEs[,1:(ncol(MEs)-1)],traits) 

   

  scaledCorr<-as.matrix(scale(t(modCor$cor))) #scaled traits for HCA 

  traitDendro<-as.dendrogram(hclust(d=dist(x=scaledCorr),method = "average")) 

  traitOrder<-order.dendrogram(traitDendro) 

  scaledCorr<-as.matrix(scale(modCor$cor)) 

  modDendro<-as.dendrogram(hclust(d=dist(x=scaledCorr),method = "average")) 

  modOrder<-order.dendrogram(modDendro) 
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  longCorr<-pivot_longer(data=modCor$cor,cols = -

mod,names_to="trait",values_to="corr") 

  longCorr$mod<-factor(x=longCorr$mod,levels=row.names(modCor$cor),ordered=T)  

  longCorr$trait<-

factor(x=longCorr$trait,levels=colnames(modCor$cor)[traitOrder],ordered=T) #reorder 

samples according to clusters 

  longCorr$pVal<-pivot_longer(data=modCor$p,cols = everything(),names_to = 

"trait",values_to = "pVal")$pVal 

   

  colBar<-data.frame(factor(row.names(modCor$cor),row.names(modCor$cor)),Y=1)  

#extracts module colors for labeling the x-axis on the heatmap 

  names(colBar)[1]<-"module" 

   

  p1<-ggplot(longCorr,aes(x=mod,y=trait,fill=corr)) + geom_tile() + 

scale_fill_gradient2(name="Pearson corr.",low="dodgerblue", 

    high = "brown1",guide = guide_colorbar(frame.colour = "black",ticks = TRUE,nbin = 

10,label.position = "bottom", 

    barwidth = 13,barheight = 1.3,direction = "horizontal",ticks.colour = "black")) + 

theme(axis.title = element_blank(),axis.ticks.x = element_blank(), 

    axis.text.x = element_blank(),axis.text.y.left = element_text(margin = 

margin(0,0.1,0,0,"cm"),size=textSize,vjust=0.5,color="black"), 

    panel.border = element_rect(color="black",size=0.5,fill=NA),plot.margin = 

margin(0.3,0.3,0,0.3,"cm"),legend.position = "top", 

    legend.title=element_text(size=textSize,margin = margin(0,0.3,0,0),vjust=0.7), 

legend.text = element_text(size=0.85*textSize),legend.box.margin = margin(0,0,-

0.3,0,"cm")) + scale_x_discrete( 

    expand = c(0,0))+scale_y_discrete(expand = c(0,0),guide = guide_axis(check.overlap 

= T),position = "left" 

    )+geom_text(aes(label=paste(signif(corr, 2), "\n(", signif(pVal, 1), ")", sep = 

"")),size=valueSize,lineheight=0.8,vjust=0.5) 

  p2<-

ggplot(colBar,aes(x=module,y=Y,fill=module))+geom_bar(stat="identity",width=1,fill=c

olBar$module)+theme(axis.title.x=element_blank( 

    ),axis.title.y = element_text(angle=0,vjust=0.5, size=textSize, face="bold"),axis.ticks = 

element_blank(),axis.text = element_blank(),panel.border = 

element_rect(color="black",size=0.5,fill=NA),plot.margin = margin(-

0.1,0.3,0.3,0.3,"cm"))+scale_y_continuous(expand = c(0,0))+scale_x_discrete(expand = 

c(0,0))+labs(y="Modules") 

   

  egg::ggarrange(p1,p2,nrow=2,heights=c(16,1)) 

} 
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#---------------------------------------------------------------------------------------------------------- 

#ModTraitC_heatmap will plot a heatmap of mean or median eigenvalues per grouping 

defined under traits 

#Group distances are calculated as group Mahalanobis distance (MD) and groups are 

ordered according to the dendrogram 

#Applicable to categorical data 

#---------------------------------------------------------------------------------------------------------- 

 

ModTraitC_heatmap<-

function(net,traits,subGroup=NULL,subGcolors=NULL,textSize=12,valueSize=3.5,mod

e="mean"){ 

   

  #calculates ME-trait associations 

  MEs<-ME_name2color(net,T) 

  MDist<-MD_dist(MEs,traits) 

  meanMEs<-as.data.frame(MDist$means) 

  colnames(meanMEs)<-colnames(MEs) 

  meanMEs$group<-row.names(meanMEs) 

 

  #generates MEdendro for ordering, based on original data 

  scaledME<-as.matrix(scale(t(MEs)))  

  modDendro<-

as.dendrogram(hclust(d=get_dist(x=scaledME,method="pearson"),method = "average")) 

#module dendrogram 

  modOrder<-order.dendrogram(modDendro) 

  scaledTraits<-as.matrix(scale(meanMEs[,-ncol(meanMEs)])) 

  dist<-MD_dist(MEs,traits)$distance 

  row.names(dist)<-meanMEs$group 

  trtDendro<-as.dendrogram(hclust(d=as.dist(dist),method="average")) 

  trtOrder<-order.dendrogram(trtDendro) 

   

  longMEs<-pivot_longer(data=as.data.frame(meanMEs),cols = -

group,names_to="Module",values_to="mean") 

  longMEs$Module<-

factor(x=longMEs$Module,levels=colnames(MEs[modOrder]),ordered=T)  

  longMEs$trait<-

factor(x=longMEs$group,levels=meanMEs$group[trtOrder],ordered=T) #reorder 

samples according to clusters 

   

  colBar<-

data.frame(factor(colnames(MEs)[modOrder],colnames(MEs)[modOrder]),Y=1)  

#extracts module colors for labeling the x-axis on the heatmap 

  names(colBar)[1]<-"module" 
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  p1<-ggplot(longMEs,aes(x=Module,y=trait,fill=mean)) + geom_tile() + 

scale_fill_gradient2(name="Mean eigenvalue",low="dodgerblue", 

   high = "brown1",guide = guide_colorbar(frame.colour = "black",ticks = TRUE,nbin = 

10,label.position = "bottom", 

   barwidth = 13,barheight = 1.3,direction = "horizontal",ticks.colour = "black")) + 

theme(axis.title = element_blank(),axis.ticks.x = element_blank(), 

   axis.text.x = element_blank(),axis.text.y.right = element_text(margin = 

margin(0,0,0,0.1,"cm"),size=textSize,vjust=0.5,color="black"), 

   panel.border = element_rect(color="black",size=0.5,fill=NA),plot.margin = 

margin(0.3,0,0,0.3,"cm"),legend.position = "top", 

   legend.title=element_text(size=textSize,margin = margin(0,0.3,0,0),vjust=0.7), 

legend.text = element_text(size=0.85*textSize),legend.box.margin = margin(0,0,-

0.3,0,"cm")) + scale_x_discrete( 

   expand = c(0,0))+scale_y_discrete(expand = c(0,0),guide = guide_axis(check.overlap = 

T),position = "right" 

   )+geom_text(aes(label=round(mean, 

digits=3)),size=valueSize,lineheight=0.8,vjust=0.5) 

   

  p2<-

ggplot(colBar,aes(x=module,y=Y,fill=module))+geom_bar(stat="identity",width=1,fill=c

olBar$module)+theme(axis.title.x=element_blank( 

   ),axis.title.y = element_blank(),axis.ticks = element_blank(),axis.text = 

element_blank(),panel.border = 

element_rect(color="black",size=0.5,fill=NA),plot.margin = margin(-

0.1,0.3,0.3,0.3,"cm"))+scale_y_continuous(expand = c(0,0))+scale_x_discrete(expand = 

c(0,0)) 

   

  if(is.null(subGroup)){ 

     

    p3<-ggdendrogram(data=trtDendro,rotate=T)+theme(legend.text = 

element_text(size=12,color="black"),legend.margin = margin(0,0,0.3,-1), 

     axis.text.x = element_blank(),plot.margin = 

margin(1.9+(14.7/(nrow(meanMEs)*2))*(2.1/1.6),0.3,-

0.22+(14.7/(nrow(meanMEs)*2))*(2.1/1.6),0,"cm"), 

     plot.title = element_text())+scale_x_discrete(expand=c(0.005,0.005)) 

  

  }else{ 

     

    leafs<-dendro_data(trtDendro)$labels 

    groupBar<-

data.frame(x=leafs$x,color=subGcolors[match(subGroup[match(leafs$label,traits)],uniqu

e(subGroup))]) 

     

    p3<-ggdendrogram(data=trtDendro,rotate=T)+theme(legend.text = 

element_text(size=12,color="black"),legend.margin = margin(0,0,0.3,-1), 
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     axis.text.x = element_blank(),plot.margin = margin(1.9,0.3,-0.22,0,"cm"), 

     plot.title = element_text())+scale_x_discrete(expand=c(0.005,0.005))+ 

     annotate("rect",xmin=groupBar$x-0.5,xmax = 

groupBar$x+0.5,ymin=0,ymax=max(dendro_data(trtDendro)$segments$yend),fill=group

Bar$color,alpha=0.2) 

     

  } 

  p4<-ggplot() + annotate("text",x=1,y=1,hjust=0.8,vjust=-0.5,size=5, label = 

"",fontface=2) +theme_void() 

   

  

plot(ggpubr::ggarrange(egg::ggarrange(p1,p2,nrow=2,heights=c(16,1)),egg::ggarrange(p

3,p4,nrow=2,heights=c(16,1)),ncol=2,widths=c(8,2))) 

   

  ggsave("Module-Trait.pdf",width=14,height = 9,units = "in") 

   

} 

 

 

###=================Similarity Analysis====================### 

#---------------------------------------------------------------------------------------------------------- 

#Sim_method evaluates the best similarity method for calculating sample distance 

#Method's effectiveness is rated based on the ratio between out-group distance and in-

group distance, according to entered categorical variable 

#---------------------------------------------------------------------------------------------------------- 

 

Sim_method<-function(MEs, groups){ 

  disMethod<-c("euclidean", "maximum", "manhattan", "canberra", "binary", 

"minkowski", "pearson", "spearman","kendall") 

  meanDist<-

data.frame(method=disMethod,mean_intraD=NA,mean_interD=NA,ratio=NA,pval=NA) 

  MEscaled<-scale(MEs) 

  traits<-data.frame(sample=row.names(MEs),group=groups) 

   

  for(k in 1:length(disMethod)){ 

     

    distMatrix<-as.matrix(get_dist(MEscaled,disMethod[k])) 

    distMatrix[upper.tri(distMatrix,T)]<-NA 

    MEdist<-as.data.frame(distMatrix) 

    MEdist$sample1<-row.names(MEscaled) 

    longDist<-na.omit(pivot_longer(data=MEdist,cols=-

sample1,names_to="sample2",values_to="dist")) 

    longDist$group1<-traits$group[match(longDist$sample1,traits$sample)] 

    longDist$group2<-traits$group[match(longDist$sample2,traits$sample)] 
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    meanDist$mean_intraD[k]<-

mean(longDist$dist[which(longDist$group1==longDist$group2)]) 

    meanDist$mean_interD[k]<-

mean(longDist$dist[which(longDist$group1!=longDist$group2)]) 

    meanDist$ratio[k]<-meanDist$mean_interD[k]/meanDist$mean_intraD[k] 

    meanDist$pval[k]<-

formatC(t.test(longDist$dist[which(longDist$group1==longDist$group2)],longDist$dist[

which(longDist$group1!=longDist$group2)],)$p.value,format="e",digits = 2) 

  } 

 

  meanDist 

} 

 

#---------------------------------------------------------------------------------------------------------- 

#Group_dist calculates out-group and in-group distances, according to entered categorical 

variable and distance method 

#---------------------------------------------------------------------------------------------------------- 

 

Group_dist<-function(MEs,disMethod,groups){ 

   

  MEscaled<-scale(MEs) 

  traits<-data.frame(sample=row.names(MEs),group=groups) 

  distMatrix<-as.matrix(get_dist(MEscaled,disMethod)) 

  distMatrix[upper.tri(distMatrix,T)]<-NA 

  MEdist<-as.data.frame(distMatrix) 

  MEdist$sample1<-row.names(MEscaled) 

  longDist<-na.omit(pivot_longer(data=MEdist,cols=-

sample1,names_to="sample2",values_to="dist")) 

  longDist$group1<-traits$group[match(longDist$sample1,traits$sample)] 

  longDist$group2<-traits$group[match(longDist$sample2,traits$sample)] 

   

  meanDist<-

data.frame(group=unique(groups),mean_intraD=NA,sd_intraD=NA,mean_interD=NA,sd

_interD=NA) 

   

  for(k in 1:length(meanDist$group)){ 

     

    meanDist$mean_intraD[k]<-

mean(longDist$dist[which(longDist$group1==meanDist$group[k] & 

longDist$group2==meanDist$group[k])]) 

    meanDist$mean_interD[k]<-

mean(longDist$dist[which(longDist$group1==meanDist$group[k] | 

longDist$group2==meanDist$group[k])]) 



161 

 

    meanDist$sd_intraD[k]<-

sd(longDist$dist[which(longDist$group1==meanDist$group[k] & 

longDist$group2==meanDist$group[k])]) 

    meanDist$sd_interD[k]<-

sd(longDist$dist[which(longDist$group1==meanDist$group[k] | 

longDist$group2==meanDist$group[k])]) 

  } 

   

  meanDist 

} 

 

#--------------------------------------------------------------------------------------------------------- 

#MD_dist returns the group Mahalanobis distance, according to entered categorical 

variable 

#---------------------------------------------------------------------------------------------------------- 

 

MD_dist<-function(data,group){ 

   

  covar<-covW(data,group) #make sure to enter category column 

  MD<-pairwise.mahalanobis(data,grouping=group,cov=covar,digits=3) #calculates the 

distance.  

   

  return(MD) 

} 
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