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Abstract

Continuous, near-real time predictions of winter flooding are critical to bal-

ancing the protection of life and property with providing water resources

for consumptive use in California’s northern Sierra Nevada. Rain-on-snow

(ROS) events are a major cause of floods in the region and are expected to

increase as a result of climate change. During ROS, the amount of terrestrial

water input (TWI) draining from the snowpack is the major driver of floods

and depends on the snowpack’s capacity to refreeze liquid water, its trans-

missivity, and the magnitude of snow melt during the event. The outcome

is an interplay between (1) the amount and intensity of precipitation, (2)

the antecedent conditions of the snowpack and (3) the potential for incom-

ing energy to melt snow and drain additional water. An incomplete under-

standing and insufficient measurement of these interacting processes limits

the skill of flood prediction in mountain regions. In this study, antecedent

snowpack conditions, specifically cold content, density, liquid water content

and SWE, are examined to understand how these factors modulate TWI dur-

ing ROS. Data from three SNOTEL stations, common in the Western U.S.,

across a 500-m elevation gradient on the eastern side of California’s Sierra

Nevada mountains are used as input to a physically-based model that simu-

lates liquid water drainage explicitly (SNOWPACK). Hourly forcing param-

eters were developed to calibrate and validate the SNOWPACK model to the
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SNOTEL stations spanning water years 1981-2019 and 149 ROS events.

During the 149 historical events, the snowpack mitigated TWI for 80% of

events, 13% had no mitigation, and 7% had conditions for active melt. Mean

TWI increased 32% from the lowest elevation (58 mm of water) to the high-

est elevation (85 mm of water). As expected, the amount of TWI depends

on total rainfall, however, that events with TWI/rain ratios > 1.0 produce

the largest event streamflows. When antecedent conditions were varied in

reasonable ways, total TWI response varies 46% on average across eight

extreme events. A key result is that snowpack cold content explains the

majority of TWI variability. Riper snowpacks generated the highest TWI

values for most events, with a 1 MJ decrease in cold content corresponding

to 0.74 more TWI. Our results highlight the importance of cold content in

TWI response across realistic antecedent conditions. Cold content is rarely

measured and effectively not included in operational flood forecast models.

As ROS becomes increasingly frequent in a warming climate, enhanced ob-

servations of cold content and modeling could have important implications

for improved flood forecasting.



iii

Acknowledgements

Foremost, I’d like to thank Dr. Adrian Harpold, my master’s thesis advi-

sor, for working with me to develop research questions, ideas, processes,

interpretations and with the writing. Dr. Harpold has guided me through the

each step of the scientific process and introduced me opportunities that were

the highlight of my graduate school experience. Thank you for funding this

research and always providing me with the tools I needed to be successful.

Drs. Anne Nolin and Alexandra Lutz for the seemless operation, top-notch

excellence of the Graduate Program in Hydrological Sciences at University

of Nevada, Reno (UNR), and for always helping me out when in a bind.

Dr. Nolin additionally for providing opportunities to enhance my graduate

school experience, such as the NASA SnowEx program and UNR’s Water-

Works.

Dr. Michael Dettinger and CW3e for funding this research, significant con-

tributions to the research focus and review of our results. The Nevada NASA

Space Grant Consortium and Nevada EPSCOR for providing funding for

this work as well as opportunities to present our research at EPSCOR con-

ferences. Additionally, thank you to Karin Peternel, Tina Triplett and the

Nevada Water Resources Association for scholarship funding and guidance.



iv

I’d like to thank my mother, Leslie Riddel, and my father, David Katz, for

always putting up with my antics, for their love and support no matter what

I do. Thank you to Dr. Erica Bigio for employing me as a TA during grad-

uate school, and for her support. Drs. Stephen Drake, Erin Hanan and

Benjamin Hatchett for their service as my master’s thesis committee mem-

bers, as collaborators and for their genius in improving our research. Dr.

Keith Jennings teaching me how to dig my first snowpit, for introducing me

to the SNOWPACK model and installing it on my computer.

A HUGE thank you to Dr. Sebastian Krough who also installed SNOW-

PACK on my computer when I couldn’t figure out how to incorporate and

compile SNOWPACK with the Richards Equation, without his help this re-

search would not have been possible. Additionally, Drs. Krough and Gabe

Lewis have guided and improved this research, and me personally, correct-

ing countless mistakes I’ve made and teaching me ways to enhance my sci-

entific skills. Dr. Hamideh Safa for her support and Python assistance. Dr.

Seshadri Rajagopal for his early contributions to the research focus.

I’d like to thank my colleagues at Nevada Mountain Ecohydrology Lab,

especially Ava Cooper for helping me start with Python, Gary Sterle for

being a supportive and helpful office-mate and collaborator, Lauren Bolotin

for downloading data and overall support, Josh Sturtevant for his assistance

with fieldwork and Python support, and Anne Heggli for her research ideas



v

and conceptual understanding.

Last but not least, I’d like to give a sincere thank you to Jeff Anderson

with the Natural Resources Conservation Service, Nevada Snow Survey, for

taking me in as a wonky Earth Team Volunteer, showing me how to use a

federal sampler, edit data, and encouraging me to apply for the Pathways

internship with the Colorado Snow Survey. You got me started, thank you

Jeff!



vi

Contents

1 Introduction 1

2 Methods 8

2.1 Study sites . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Snow model . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Snow model configuration . . . . . . . . . . . . . . . . . . 13

2.4 Model forcings . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Results 22

3.1 Historical ROS events and model performance . . . . . . . . 22

3.2 Calibrating and validating the SNOWPACK model . . . . . 26

3.3 Historical analysis . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Scenario analysis . . . . . . . . . . . . . . . . . . . . . . . 32

4 Discussion 38



vii

5 Conclusions 46

6 References 47



viii

List of Tables

2.1 Study sites summary . . . . . . . . . . . . . . . . . . . . . 10

3.1 Scenario events dates and times . . . . . . . . . . . . . . . . 23

3.2 Historical analysis- observed event characteristics . . . . . . 24

3.3 Historical analysis- simulated event antecedent snowpack

conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Historical analysis- event TWI response summary . . . . . . 27

3.5 Scenario analysis- simulated event antecedent snowpack con-

ditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Scenario analysis- event TWI response summary . . . . . . 34



ix

List of Figures

2.1 Study sites . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Historical and scenario analysis comparison- antecedent snow-

pack conditions . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 SNOWPACK model performance . . . . . . . . . . . . . . 27

3.3 SNOWPACK calibration and validation . . . . . . . . . . . 29

3.4 TWI response, cold content and stream flow . . . . . . . . . 29

3.5 TWI with elevation . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Variability in TWI and TWI/rain . . . . . . . . . . . . . . . 35

3.7 Importance of antecedent snowpack factors . . . . . . . . . 37



1

Key Points:

1. A calibrated and validated physical snow model reproduces SWE re-

sponses and predicts TWI during extreme rain on snow (ROS) events.

2. TWI varies 26-68% during eight large ROS events using variable mid-

winter antecedent snowpack conditions.

3. Antecedent cold content explains TWI variability, with very wet events

and low cold content snowpacks leading to the largest TWI response.

1 Introduction

Rain-on-snow (ROS) events cause the largest stream and river floods in

many parts of the world, with both the storm characteristics and snowpack

conditions sensitive to climate change effects (Kattelmann, 1996; Kroczyn-

ski, 2004; Marks, Kimball, et al., 1998; Ohba & Kawase, 2020; Rössler

et al., 2013; Sui & Koehler, 2001). ROS events are any storm that causes

significant rain onto an existing snowpack, with the largest effects typically

in maritime regions with large potential for winter rain events (Musselman,

Lehner, et al., 2018). In the Sierra Nevada mountains, USA, ROS is often

associated with atmospheric river events that produce large rainfall amounts

and a warm, humid atmosphere that can melt the snowpack (Glossary of

Meteorology: Atmospheric River 2018; Guan et al., 2016; Kim et al., 2013;

Henn et al., 2020). Consequently, the existing snowpack and its response
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during ROS events (i.e. melting or not) can be critical for determining flood

potential (Würzer et al., 2016; Garvelmann, Pohl, & Weiler, 2015). The

future effects of ROS events are complicated by a rising snow-line and less

area for ROS response (Klos, Link, & Abatzoglou, 2014), more extreme

precipitation (Santer et al., 2007), a greater proportion of rain (less snow)

falling on existing snowpacks (Knowles, M. D. Dettinger, & Cayan, 2006),

and high intensity precipitation (Trenberth, 2011). Although the snow line

is rising in many areas (Knowles, M. D. Dettinger, & Cayan, 2006), like

the Sierra Nevada mountains (Hatchett et al., 2017), climate models suggest

that mid elevations (1,500-2,500 m.a.s.l) will have an increase in ROS fre-

quency, with more water available for runoff and 20-200% greater flood risk

(Musselman, Lehner, et al., 2018). Less snow water equivalent and lower

cold content at all elevations will make the melt response more sensitive to

larger energy inputs (Luce & Tarboton, 2009), causing earlier and more in-

termittent snowmelt (Musselman, Clark, et al., 2017). However, future ROS

response is difficult to predict because it depends on antecedent snowpack

conditions (i.e. SWE, cold content, density, etc.) and its interactions with

specific storm characteristics (i.e. rainfall amount and intensity, wind speed,

temperature and humidity, etc.).

Terrestrial water input (TWI) is the amount of liquid water from the atmo-

sphere that reaches the soil surface. When a snowpack is present, liquid
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water that drains through the snowpack becomes TWI. TWI can be com-

posed of rainfall, snowmelt, and/or liquid water stored the snowpack. These

inputs, in addition to other antecedent conditions like soil moisture and

reservoir levels, are key determinants of hydrological flood risk. TWI is

affected by the amount and intensity of rainfall, refreezing of rainfall within

the snowpack, and the potential for incoming energy to melt snow and drain

additional water. Previous studies have shown that similar amounts of rain-

fall events can produce very different amounts of TWI due to drainage of

liquid water and melt processes (Kroczynski, 2004). For wet snowpacks,

the amount of initial snowpack water that drains to TWI depends primarily

on rainfall amount. If the water is draining via simpler matrix flow, rain-

fall percolates through the pore spaces between snow grains from the top-

down, filling up any undersaturated areas and eventually forcing out initial

snowpack water once the snowpack’s maximum water holding capacity is

reached (Singh et al., 1998). Sub-zero temperature snowpacks (i.e. cold

content < 0) will freeze rain on top of or within the snowpack, which can

create a layer of ice with higher density and release latent and sensible heat

that warms the snowpack. In many conditions, rain will enhance prefer-

ential flow, isolated areas of higher conductivity and liquid water content

that tend to increase drainage relative to matrix flow (Waldner et al., 2004;

Dozier et al., 1989; Schneebeli, 1995). Warm, moist air masses can transfer
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latent and sensible heat into the snowpack and are thought to be the primary

energy input for melt during ROS (Marks, Kimball, et al., 1998; Würzer et

al., 2016), as well as longwave radiation from a cloudy atmosphere (Würzer

et al., 2016; Mazurkiewicz, Callery, & McDonnell, 2008). Periods of high

winds increase turbulent transfer of heat, promoting snow melt that aug-

ments rainfall and increases TWI (Marks, Kimball, et al., 1998; Kroczyn-

ski, 2004). Evidence is emerging that TWI variability during ROS events

is mediated by antecedent snowpack conditions in ways that can switch the

system from completely storing incoming rainfall to draining rainfall and

stored snowpack water (Garvelmann, Pohl, & Weiler, 2015). The controls

of antecedent snowpack conditions on ROS flood risk are not well under-

stood and are a poorly constrained source of error for current and future

operational streamflow forecasting models.

Meltwater freezing, snow melt and drainage are very difficult processes to

simulate even with the most advanced physically based, energy balance

model. In the most advanced physically representative snowpack modes,

like SNOWPACK (Bartelt & Lehning, 2002; Lehning, Bartelt, Brown, &

Fierz, 2002; Lehning, Bartelt, Brown, Fierz, & Satyawali, 2002), ice and

liquid water water content are tracked in finite snow layers using mass and

energy conserving equations. Energy inputs to the snowpack need to be

fully resolved (i.e. longwave and shortwave radiation) in order to capture
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the melt dynamics caused by turbulent and radiative energy and typically

requires calibration of variables like surface roughness. In general, ’excess’

energy above 0◦C melts the ice matrix and any energy below 0◦C freezes

meltwater in ways that are mediated by the hydraulic conductivity and wa-

ter content using the Richards equation (Richards, 1931; Wever, C. Fierz, et

al., 2014). While SNOWPACK’s finite element grid is a large improvement

over most multi-layer snow models, it still does not capture preferential flow

that tends to increase TWI above matrix flow estimates (Wever, Würzer, et

al., 2016) nor the role of hillslope processes that can transmit water laterally

before reaching the soil surface (Bartelt & Lehning, 2002). Its worth noting

that model calibration and validation of ROS-mediated processes is chal-

lenged by a dearth of direct measurements, with key variables like cold and

liquid water content only made in very limited conditions, and variables like

SWE and snow density at resolutions that are often insufficient for hourly

(or finer) physical models. In contrast to sophisticated snowpack models,

most operational snowmelt models, like SNOW-17 (E. Anderson, 2006) use

temperature index approaches that only require temperature and precipita-

tion as input variables. SNOW-17 still retains some foundations of an en-

ergy balance by estimating energy inputs and tracking snowpack cold and

liquid water content based on empirical relationships from a single site, but

is a bulk model with calibrated, empirical parameters. E. Anderson (2006)
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recognized that periods with warm temperatures, high humidity, and strong

winds, characteristic of large ROS events, where SNOW-17 under-predicts

melt. Despite a multitude of new field and remote observations, few mea-

surements of snowpack conditions can be used by operational forecasters to

tune or validate their models. This has left the operational community in the

maritime western U.S. focused on improvements to ensemble hydrometeo-

rological forecasts that use simpler, deterministic hydrology models. Given

recent extreme ROS events and projections for increased ROS flooding in

the Sierra Nevada (Musselman, Lehner, et al., 2018), a better understand-

ing of the role of snowpack antecedent conditions on TWI response and its

importance for operational forecasting is needed.

Water management in the northern Sierra Nevada mountains of California

and Nevada, and other maritime mountains globally, is challenged by ROS.

ROS events in winter produce floods, while at the same time reservoirs need

to be filled by snowmelt to prepare for seasonal summer droughts. This

leads to the inevitable ’water managers dilemma’ that requires water sup-

ply for late summer demand, while maintaining empty storage capacity to

accommodate winter storm runoff and protect growing urban areas from

flooding (Brekke et al., 2014). The highly variable climate of the region

(Dettinger et al., 2004) leads to ’weather whiplash’, where rapid transitions

between dry and wet conditions further stress water management institu-
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tions and are expected to increase in this area (Swain et al., 2018). An

important recent example from the northern Sierra Nevada is the the recent

2012–2016 drought followed by the winter 2017 flooding and Oroville Dam

spillway incident. The potential to increase lead times during ROS events

to better manage reservoirs, termed ‘forecast informed reservoir manage-

ment’, could have potentially mitigated some of the risk for snowpack melt

and under-predicted reservoir inflows (Brekke et al., 2014; White et al.,

2019; Delaney et al., 2020). Henn et al. (2020) estimated that ∼40% of the

Oroville flood inflows came from snowmelt that was concentrated at low

to medium elevations (Henn et al., 2020). Work in Switzerland (Würzer

et al., 2016) suggests that high elevation snowpack can store rainfall dur-

ing these large events. SWE observations in the Sierra Nevada from Henn

et al. (2020) support these findings, however the impact of high-elevation

storage for catchment-scale TWI inputs and streamflow forecasting are not

well quantified. In this study, we focus on a transect of snow and hydrome-

teorological measurements in the Sagehen Creek watershed in the northern

Sierra Nevada to calibrate and validate the SNOWPACK model. We use the

validated model in a historical (hindcasting) approach and a scenario analy-

sis to determine the role of antecedent snowpack conditions on hydrological

response to historical ROS events and a scenario analysis of antecedent con-

ditions. Our work is motivated by the following research questions:
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1. How does terrestrial water input (TWI) vary during events with different

rainfall amounts?

2. How does TWI vary during events with different antecedent snowpack

conditions?

3. Which antecedent conditions are most predictive of TWI during ex-

treme events?

We expect that our results can help inform the value of the current moni-

toring network that focuses on SWE and snow depth, and determine which

snowpack conditions should be a focus for validating models and improving

forecast information.

2 Methods

2.1 Study sites

Study sites were located on the leeward side of California’s northern Sierra

Nevada crest, north of Interstate 80 and the Town of Truckee, and west of

California Highway 89. The Sierra Nevada features a maritime climate with

cool, wet winters. Snow storms arrive as early as November, the snowpack

begins to accumulate in January and is typically ablated by June. Winters

are characterized by deep snowpacks with less cold content compared to

similar continental sites (Jennings, Kittel, & Molotch, 2018).
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Figure 2.1 shows snow modeling locations at three sites within the Natu-

ral Resources Conservation Service (NRCS) SNOTEL network, SNOTEL

541 Independence Lake (S-2541, 39°49’ N, 120°28’23”), SNOTEL 539 In-

dependence Camp (S-2124, 39°42’75” N, 120°31’34”), and SNOTEL 540

Independence Creek (S-1962, 39°42’75” N, 120°31’34”). The naming con-

vention we use for these sites is S-, followed by the elevation of the site

in meters. S-2124 sits on the shore of Independence Lake (2.83 km2 sur-

face area). All three study sites are characterized by flat surfaces in small

forest gaps. The dominate tree species are Jeffery Pine (Pinus jeffreyi) and

Ponderosa Pine (Pinus ponderosa).

Table 2.1 provides a summary of environmental variables at the study sites.

Mean canopy height is one meter higher at S-2541 than S-2124, and almost

5 meters higher than S-1962. Canopy coverage and leaf area index (LAI)

at S-2541 and S-2124 is more than double that at S-1962. The average

windspeed at S-2541 is one meter per second higher than that at S-2124 and

S-1962. S-2541 has greater than twice the average peak SWE of S-2124 and

three times the average peak SWE of S-1962.

2.2 Snow model

The SNOWPACK snow model was used for this study. SNOWPACK is

a one-dimensional, multi-layer, physically-based model developed by the
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Figure 2.1. Study sites. The location of the Truckee River Watershed, on the border California and Nevada,

within the western United States (a). A topographical map showing two basins within the Truckee River

Watershed, the Middle Truckee Basin and the Lake Tahoe Basin. The study sites are located in the northwest

corner of the Middle Truckee Basin. (b). A topographical map of the three study sites and their proximity to

Independence Lake. The thin, solid lines are 100m contours (c). Photos of SNOTEL weather stations at the

study sites, SNOTEL 540 Independence Creek (S-1962, d), SNOTEL 539 Independence Camp (S-2124, e),

and SNOTEL 541 Independence Lake (S-2541, f).

Swiss Federal Institute for Snow and Avalanche Research. SNOWPACK

was originally intended for daily operational avalanche risk assessment,

however its usefulness is unmatched for ROS research because unlike other

snow models, SNOWPACK implements the full Richards equation (RE) to

provide a more accurate description of water flow through the snowpack.

Table 2.1. Study sites summary.

Site
Elevation

(m)

Peak SWE

(mm) 1

Mean

canopy

height

(m)2

Canopy

cover

(%)2

LAI2

Average

windspeed

(m/s)1

S-2541 2541 1157 9.9 44.6 1.7 3.6

S-2124 2124 487 8.5 54.8 2.2 2.5

S-1962 1962 378 5.1 21.1 0.8 2.2

1 Averages over water years (WYs) 1981-2019.
2 Calculated within a 20 m radius from the center of the SNOTEL.
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The RE outputs better agree with the timing and quantity of observed snow-

pack runoff at daily and seasonal timesteps, particularly in stratified snow-

packs common to the northern Sierra Nevada. The RE calculates differ-

ences in capillary suction between layers (Wever, C. Fierz, et al., 2014).

SNOWPACK with full implementation of the RE was chosen for this study

to accurately represent liquid water dynamics in a variety of conditions.

SNOWPACK is documented in Bartelt & Lehning (2002), and Lehning,

Bartelt, Brown, & Fierz (2002) and Lehning, Bartelt, Brown, Fierz, &

Satyawali (2002). Model inputs can vary, however, we used the following

commonly found datasets: air temperature, precipitation, relative humidity,

ground surface temperature, windspeed, incoming shortwave and longwave

radiation. The model incorporates the three phases of water (ice, water, and

water vapor) into the simulated snowpack. Snowpack state is based on the

principles of conservation of mass, energy and momentum by implicitly and

sequentially solving a set of four governing differential equations for bulk

temperature, vapor diffusion, water transport, and settlement. SNOWPACK

incorporates the underlying assumptions that creep movements and water

flow equal zero, all lateral temperature and vapor pressure gradients equal

zero, and at any given time all constituents are at the same bulk temperature.

Unique snowpack layers are discretized by SNOWPACK into a finite el-

ement grid, based on the Lagrangian Gauss-Siedel finite element method.
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The four governing differential equations are solved for each element in the

grid independently. Finite elements can be added to or subtracted from an

existing grid to accommodate changes in snow depth. Phase change pro-

cesses occur at the surface and subsurface of the element. Meltwater re-

freezing, for example, is a volumetric heat source that happens when the

bulk temperature of the element is below 0◦C and meltwater is present

(meltwater is always assumed to be at 0◦C). Refreezing meltwater increases

volumetric ice content and decreases volumetric water content of the ele-

ment.

The SNOWPACK model is well regarded for its treatment of snowpack

microstructure. The model uses four independent microstructure parame-

ters: sphericity, dendricity, grain size and bond size, with additional deriva-

tions of the primary parameters, such as coordination number. Changes in

sphericity and dendricity happen much faster in wet snow than in dry snow

and are treated separately within the model. Wet snow metamorphism in

SNOWPACK is based on an empirical relationship for the volume growth

of grains as a function of the mass fraction of liquid water. SNOWPACK

assumes that wet snow bond growth is dominated by pressure sintering1 be-

cause there is a lack of data and theory on wet snow bond growth. This

treatment is considered simplistic, but advanced compared to the treatment
1Density increases from ice-grains moving closer together under the self-weight of the snowpack.
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used in other models.

2.3 Snow model configuration

SNOWPACK was initialized with two soil layers and no snow layers, and

run consecutively for 40 water years (WYs) 1981 to 2019. The model was

run at a 15 minute integration step length, which was consistent with im-

plementation of the Richards Equation, and results were output hourly. The

RE was used for both water and soil transport schemes:

RE =
∂θ

∂t
=
∂

∂z
[K(θ)(

∂h

∂z
+ 1)] (2.1)

Where K is hydraulic conductivity,

h is the matric head induced by capillary action,

z is the elevation above a vertical datum,

θ is the volumetric water content,

t is time.

In common practice, observed snow depth is used as a forcing dataset in

SNOWPACK and the setting ’enforce measured snow heights’ is turned on.2

In this configuration, the model uses measured snow depth as a proxy for
2standard, Intercantonal measurement and Information System (ImIS). ImIS is a network of snowpack monitoring stations in Switzer-

land, where the SNOWPACK model was developed and is used operationally in avalanche risk assessment.
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precipitation inputs to force the mass balance. For the scenario analysis,

however, the design required that precipitation inputs were independent of

modeled snow depth. Therefore snow depth is omitted from model forcings

and the aforementioned setting is turned off.

Realistic estimates of snowpack TWI require that models accurately repre-

sent snowpack-forest interactions (Gouttevin et al., 2015). Forest clearings

accumulate, redistribute and melt snow differently than adjacent forested

areas (Golding & Swanson, 1986) or areas in the open (Marks & Winstral,

2001). The tree canopy affects snowpack mass and energy budgets in many

ways, such as intercepting falling snow, filtering shortwave radiation and

buffering wind. Snowpacks <15 m from tree canopies show greater snow

variability than areas >15 m from tree canopies (Broxton et al., 2015).

To tune the model, we characterized the forest surrounding each study site

using LIDAR scans. Average canopy heights and percent canopy cover-

age were calculated for radii 10, 20, and 30 m from the study site center.

LAI was estimated using a maximum value of 4m2/m2 from the west shore

of Lake Tahoe, CA, and multiplied by the percentage canopy cover. Sim-

ulations for ten water years were evaluated against observations of SWE

with measured values for canopy height, canopy throughfall, and LAI at

increasing radius lengths, and additionally with the canopy settings turned

off. Consistent results across the three study sites showed that modeled
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SWE matched observations most closely with canopy settings turned off.

This suggests that within the SNOWPACK framework, the study sites are

more accurately represented by open site conditions than forest clearings.

All subsequent snow modeling in this study was conducted with canopy

settings turned off.

2.4 Model forcings

The complete set of SNOWPACK model forcings was collected from the

three study sites in Independence Creek Basin and additionally from a neigh-

boring watershed, Upper Sagehen Creek Basin. The three study sites in the

Independence Creek Basin are comparable to three Upper Sagehen Creek

Basin weather stations in elevation,3 they are similarly characterized by flat

surfaces in forest gaps, and they feature vegetation alike in species com-

position and density. Like the study sites, the weather stations at Sagehen

Creek are permanent installations. The period of record for Upper Sagehen

Creek dates back to 1990. Model forcings collected in Independence Creek

Basin were air temperature, precipitation and ground surface temperature.

Model forcings collected in Upper Sagehen Creek Basin included relative

humidity, ground surface temperature, windspeed, and incoming shortwave

and longwave radiation. Data from both locations were combined to com-

plete the SNOWPACK forcing dataset, taking place over the ‘scenario anal-
3Upper Sagehen Creek Basin station elevations are 2350 m at the highest elevation, 2214 m at the middle elevation, and 1934 m at

the lowest elevation weather station.
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ysis period’ from WYs 1981 to 2019. The ‘calibration period’ refers to

the dataset constrained to WYs 2009 to 2019, and the ’validation period’ to

WYs 1981 to 2008.

Hourly air temperature at the three study sites was acquired for the calibra-

tion period from the NRCS Report Generator.4 Known error in the dataset,

from an incorrect algorithm applied to extended-range YSI air temperature

sensors across the SNOTEL network, was corrected with the algorithm pub-

lished in Harms et al. (2016). Monthly bias corrections of hourly data were

made between the study sites to fill null values, data <-20◦C and all data

gaps. The forcing dataset was extended into the validation period with

hourly NLDAS-2 data, bias corrected to each study site on a monthly basis.

Untrustworthy hourly totals of observed precipitation from rocket-style gauges

can result from plugging, where snow freezes onto the sides and top of the

gauge and is suspended above the antifreeze (J. Anderson, 2020). Error in

the hourly totals were minimized with an algorithm that relies more heavily

on quality-controlled, daily precipitation totals. Daily and hourly precipita-

tion data were downloaded from the NRCS Report Generator. Daily values

were dis-aggregated into hourly values using a scaling fraction, hourly to-

tal divided by daily total. This way, timing and relative magnitude of the

hourly data were preserved. The calibration dataset was extended into the
4https://wcc.sc.egov.usda.gov/reportGenerator
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validation period with NLDAS-2 data, bias corrected to each study site on a

monthly basis.

For each calibration period forcing dataset, monthly bias corrections were

developed using linear regressions of daily average observations from 2009-

2019 between the study sites, those with the highest R2 were used to fill data

gaps. The dataset was extended into the validation period using downscaled

NLDAS-2 data that was bias corrected to each study site on a monthly ba-

sis, using a linear regression. NLDAS data were collected from the grid cell

encompassing the Truckee River Basin. The precipitation bias correction

required two separate bias corrections be developed, one for the calibra-

tion period and another for the validation period, as trends in precipitation

changed for our three study sites over the 40 years of the scenario analysis.

Hourly ground surface temperature for the calibration period was acquired

from the NRCS Report Generator. The data were collected from the three

study sites using a Hydraprobe Analog (2.5 Volt) at 2 in below the soil

surface. Hourly relative humidity data for the calibration period was ac-

quired from the Berkeley Sensor Database (sensor.berkeley.edu, BSD), the

data were acquired with Vaisala HmP45C-L Temperature/Relative Humid-

ity sensors located on meteorological towers at 100 ft above ground surface

at the Sagehen Creek Basin stations. Hourly windspeed data for the cali-

bration period was acquired from the BSD and collected with RM Young
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Wind monitor 05103-L wind sensors located on the meteorological towers

at 100 ft above ground level at the Sagehen Creek Basin stations. Hourly

average incoming shortwave and longwave radiations starting in 2009 was

downloaded from the BSD. The data were collected using a Campbell Sci-

entific Li-Cor LI200X-L Pyranometer located at the lowest elevation station

in Sagehen Creek Basin. Incoming shortwave radiation data were not avail-

able for the higher elevation weather stations in Sagehen Creek Basin.

To calibrate and validate SNOWPACK, SWE and snow depth observations

were acquired for the Independence Creek SNOTEL stations from the NRCS

Report Generator, where values published at midnight are quality controlled

by NRCS staff. The quality controlled values were used to develop hourly

datasets for SWE and snow depth. The midnight value was applied to each

hour in the 24-hour period straddling the midnight timestamp. Streamflow

data were acquired from the USGS’ National Water Information System for

USGS gauge 10343500 at Sagehen Creek north of Truckee, CA.

There are many definitions of a ROS event. The goal of an individual study

usually determines the selection criteria for which ROS events are analyzed,

with a large impact on study outcomes. In this study, ROS events are defined

by periods of >5 mm total precipitation, > 5% precipitation as rain, and >5

mm starting SWE. A minimum of 24 hours was required between events

and all events were capped at a maximum of 9 days (216 hours). Using this
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criteria, a total of 71 ROS events were identified over the scenario analysis

period.

Of those 71 events eight of the most extreme were chosen for further study,

limiting the potential for redundancy in our results that might have been

incorporated over a larger number of events. Extreme events with respect to

warm air temperature and more or less wind were identified using a principle

component analysis. Of that subsample of extreme events, eight events were

chosen for their overall rain amount. Two events had approximately 300 mm

of rain, ’05 was a warm and windy event and ’95 was less windy, and ’86

had approximately 500 mm of rain. Two events had approximately 200 mm

of rain, ’96 was warm and windy, and ’82 was warm and less windy. Two

events had approximately 130 mm of rain, ’17 was a warm and windy event

and ’83 was less windy, and ’15 had approximately 60 mm of rain. All ROS

events began 24 hours prior to the start of precipitation and continued until

24 hours after precipitation stopped, for a maximum duration of 9 days. At

the end of one ROS event, a 24-hour period without precipitation buffered

each event before the next began.

Model calibration and validation

Parameters and decisions in SNOWPACK allow the user to optimize per-

formance by tailoring the model to specific environmental conditions at the
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study site. Over 1,425 unique models, or combinations of parameters and

decisions, were tested to optimize SNOWPACK’s performance across our

three study sites. The unique models incorporated parameterizations of per-

cent rainfall (precipitation phase) and snow surface roughness values, as

well as decisions pertaining to atmospheric stability, shortwave radiation

absorption, new snow density, and albedo. Calibration included five unique

aerodynamic roughness lengths (m): 0.0005, 0.001, 0.0075, 0.01 and 0.02,

according to ranges specified for the Sierra Nevada in (Leydecker & Melack,

1999). Atmospheric stability was calibrated using ‘MO HOLSTAG’ (Holt-

slag & De Bruin, 1988), the simple log-linear model ‘MO LOG LINEAR’

and ‘MO MICHLMAYR’ (Stearns & Weidner, 2011; Michlmayr et al.,

2008). Shortwave absorption was calibrated to both single- and multi-band

schemes. The new snow density models used were ‘LEHNING NEW’,

‘ZWART’ (Zwart, 2007), and ‘PAHAUT’ (Pahaut, 1976). Albedo parame-

terization models used were ‘LEHNING 1’, ‘SCHMUCKI GSZ’ and

‘SCHMUCKI OGS’ (Schmucki et al., 2014). Precipitation phase was cal-

ibrated using three air temperature thresholds, -2◦C to 2◦C, -1◦C to 3◦C,

and 0◦C to 4◦C. Ranges were based on observations from an OTT Parsivel2

laser disdrometer from the lowest elevation station in the Sagehen Creek

Basin. The thresholds provided the lower and upper range for fully solid /

fully liquid precipitation. Within the provided range, a linear transition was
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assumed.

We performed a model calibration using a multi-objective function that fo-

cused specifically on ROS events. For 35 events between 2009 and 2019, we

minimized the difference between observations and modeled predictions for

(1) SWE at the start of the storm and (2) accumulated SWE losses over the

course of the storm. The 10 top performing models over the multi-objective

function were used to validate the model. Model validation was performed

over a unique set of 135 ROS events from 1981 to 2008, and evaluated using

the same multi-objective function from the calibration process.

Historical analysis and scenario analysis

ROS events chosen for the historical and scenario analysis are described

in the ’Selection of events’ section above. In both analyses, we use re-

sults from the SNOWPACK model, however the analyses differ with re-

spect to antecedent snowpack conditions. Historical analysis ROS events

were considered as the transpired. This is in contrast to the scenario analy-

sis, where event meteorological forcing data (precipitation, air temperature,

windspeed, etc.) for the eight most extreme events was held constant, while

40 different antecedent snowpacks varied. The 40 snowpacks occurred ev-
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ery year on January 26, the average start date of all the ROS events.

3 Results

3.1 Historical ROS events and model performance

There was high variability in precipitation, rain fraction and SWE across 71

ROS events identified at S-1962 between WYs 1981 and 2019 (historical

events). Average precipitation was 195 mm, average rain was 95 mm, and

the average rain fraction was 0.49. The eight scenario analysis events, a

subset of the historical events, were chosen for their extreme meteorological

conditions (scenario events, Table 3.1). ’86 had the most precipitation (779

mm) and the most rain (522 mm). ’15 had the least precipitation (95 mm) and

the least rain (72 mm). Rain fractions ranged from 0.67 to 0.91. Observed

initial SWE averaged 403 mm across all events. Of the scenario analysis

events, ’95 had the highest initial SWE with 973 mm and ’15 had the lowest

initial SWE at 50 mm. Mean air temperature across all events averaged -

1.1◦C. Of the scenario analysis events, mean air temperature was highest for

’15 (2.8◦C) and lowest for ’96 (-1.1◦C). Mean event windspeeds increased

with elevation, from 2.4 m/s to 3.1 m/s to 4.5 m/s. ’86 had the highest

mean windspeed across the watershed (4.7 m/s) and ’95 had the lowest (2.3

m/s). Mean incoming short and longwave radiations, measured at S-1962,

was 63 and 282 Wm−2, respectively. Incoming shortwave was highest for

’95 (93 Wm−2) and lowest for ’96 and ’05 (37 Wm−2). Incoming longwave
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Table 3.1. Scenario analysis events dates and times

’15 ’17 ’83 ’96 ’82 ’95 ’05 ’86

Event start

2/5/15

1:00

2/5/17

1:00

11/14/83

21:00

12/28/96

11:00

2/11/82

19:00

3/7/95

2:00

12/24/05

15:00

2/10/86

19:00

Event end

22/10/15

22:00

2/13/17

1:00

11/21/83

4:00

1/4/97

2:00

2/17/82

4:00

3/15/95

1:00

1/1/06

18:00

2/17/86

19:00

Total event

hours 141 192 151 159 129 191 192 168

was highest for ’82 (306 Wm−2) and lowest for ’15 (278 Wm−2).

The antecedent snowpack conditions, cold content, SWE, liquid water con-

tent and density, varied substantially across the historical and scenario anal-

yses. A principle component analysis (PCA, Figure 3.1) compares the an-

tecedent snowpack conditions of the historical events with those on January

26 each year that were used in the scenario analysis. The antecedent con-

ditions of the historical analysis events were generally well bounded by the

antecedent conditions of the scenario analysis events. The historical events

tended to have more SWE, higher densities, and higher liquid water content

than the scenario analysis events, but less cold content (Figure 3.5). For the

highest elevation study site, antecedent SWE was approximately 160 mm

less for the scenario analysis compared to historical conditions. The snow-

pack at each elevation study site was approximately 0.8 MJ colder for the

scenarios than historical conditions.
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Table 3.2. Historical analysis- observed event characteristics
(Meteorologic characteristic means are taken over the duration of the ROS event. The four horizontal rows for each

meteorologic characteristic correspond to the study sites, the top row refers to S-1962, the second to S-2124, the third

to S-2541, and the bottom to the watershed area-weighted site average. Meteorologic characteristics with only one row

correspond to data collected at S-1962.)

All

events
’15 ’17 ’83 ’96 ’82 ’95 ’05 ’86

Mean absolute humidity (%)

3.8,

3.4,

2.5,

3.2

4.1,

3.3,

2.2,

3.1

4.7,

3.9,

2.3,

3.6

3.7,

3.4,

2.2,

3.2

3.7,

3.5,

2.7,

3.5

4.2,

3.6,

2.7,

3.5

4.4,

4.0,

3.1,

3.8

3.8,

3.7,

2.9,

3.6

4.0,

3.5,

2.5,

3.4

Mean air temperature (◦C)

-1.0,

-1.1,

-2.3,

-1.4

3.4,

2.8,

0.2,

2.2

2.0,

0.5,

-1.7,

0.1

-1.1,

-0.4,

-1.9,

-0.8

-1.8,

-1.1,

-1.4,

-1.2

1.0,

0.8,

0.7,

0.8

1.8,

1.1,

0.1,

0.8

-1.0,

0.0,

-0.3

-0.1

-0.3,

-0.5,

-1.0,

-0.6

Antecedent SWE (mm)

253,

349,

760,

446

08,

08,

307,

110

363,

427,

1189,

673

38,

58,

178,

123

203,

257,

668,

446

234,

381,

1034,

563

455,

671,

1285,

891

13,

13,

338,

138

367,

487,

804,

560

Delta SWE (mm)

59,

82,

187,

107

15,

20,

390,

110

28,

61,

299,

73

33,

51,

145,

148

-31,

137,

211,

148

0,

33,

162,

63

0,

88,

252,

124

48,

84,

317,

140

246,

277,

602,

355

Mean wind velocity (ms−1)

2.5,

3.1,

4.6,

3.4

3.2,

2.6,

3.9,

2.9

3.5,

3.3,

5.0,

3.7

2.3,

3.0,

4.4,

3.3

2.6,

3.9,

5.9,

3.4

2.4,

3.0,

4.5,

3.3

1.5,

2.0,

3.0,

2.3

2.8,

3.7,

6.3,

4.3

3.4,

4.2,

6.4,

4.7

Mean incoming short

wave radiation (Wm−2)1 63 75 56 53 37 54 93 37 61

Mean incoming long

wave radiation (Wm−2)1 284 278 295 284 279 306 297 279 296

1 Observed at S-1962 and applied to all study sites.
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Figure 3.1. Antecedent snowpack conditions for the historical and scenario analyses. Principal compo-

nent analysis shows the similarity between historical antecedent snowpack conditions and those used in the

scenario analysis.

3.2 Calibrating and validating the SNOWPACK model

The calibration process identified the models that performed best over mul-

tiple points during an ROS event. The calibration considered 1,425 unique

model decision or parameter combinations for snow surface roughness length,

atmospheric stability scheme, shortwave radiation absorption scheme, new

snow density, and albedo parameterization. The 10 highest performing

models featured snow surface roughness lengths of 0.001 m and 0.0005 m,
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Table 3.4. Historical analysis- event TWI response summary
(S-1962, S-2124, S-2541, watershed area-weighted site average)

All

events
’15 ’17 ’83 ’96 ’82 ’95 ’05 ’86

Cumulative event rain (mm)

73,

89,

119,

95

76,

70,

78,

72

134,

137,

109,

130

101,

132,

177,

142

131,

191,

237,

199

145,

193,

338,

226

249,

264,

387,

293

244,

307,

356,

316

400,

453,

718,

522

Cumulative event TWI (mm)

59,

69,

86,

95

15,

70,

43,

61

148,

120,

31,

99

98,

129,

155,

134

113,

198,

228,

202

121,

176,

292,

202

268,

276,

373,

299

224,

303,

337,

308

402,

453,

678,

506

Cumulative event TWI/rain

0.62,

0.63,

0.55,

0.61

0.20,

1.00,

0.55,

0.86

1.10,

0.88,

0.28,

0.74

0.98,

0.97,

0.88,

0.95

0.87,

1.04,

0.97,

1.01

0.84,

0.91,

0.86,

0.90

1.08,

1.04,

0.96,

1.02

0.92,

0.99,

0.95,

0.97

1.01,

0.98,

0.95,

0.97

the ‘MO HOLSTAG’ atmospheric stability scheme, single and multiband

shortwave adsorption schemes, new snow density schemes ‘ZWART’, ‘PA-

HAUT’ and ‘LEHNING NEW’, and the albedo parameterization scheme

‘SCHMUCKI OGS’.The model was calibrated to 35 events between 2009-

2019 (‘calibration period’). Calibration was performed using a high-quality,

(a) (b)

Figure 3.2. Model performance. Annual SWE curves at the three study sites. Overall, simulated SWE from

1,450 unique versions of the SNOWPACK model (colored lines) show good agreement with observations

(black line) over the calibration period, WYs 2009-2019. (a). Similarly, simulated SWE for the 10 highest

performing models between the three sites (colored lines) show good agreement overall with observations

(black line) over the validation period, WYs 1981-2008.
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observed dataset collected from the study sites. The model was validated

with 114 events between 1981-2008, (‘validation period’). The model was

simultaneously calibrated and validated to all three study sites, which spanned

the watershed. The mean Nash-Sutcliffe efficiency for all calibration mod-

els on a daily basis at S-1962, S-2124 and S-2541 was 0.86, 0.83 and 0.91

(Hallouin, 2021). The calibration error percentages for RMSE of initial

SWE was 9% at S-1962, 7% at S-2124, and 2% at S-2541. The calibration

percentages for RMSE of accumulated SWE loss was 37% at S-1962, 32%

at S-2124, and 125% at S-2541. The mean Nash-Sutcliffe efficiency for the

ten validation models on a daily basis at S-1962, S-2124 and S-2541 was

0.54, 0.68 and 0.83. Validation model percentage errors for RMSE of initial

SWE were 3%, 3%, and 2%, from the lowest to the highest elevation study

site. Validation model percentage errors for RMSE of accumulated SWE

loss were 7%, 12%, and 345%, from lowest to highest elevation study site.

Calibration errors for RMSE of accumulated SWE loss were 30% and 20%

higher than validation errors at the lower elevation study sites and 220%

lower at the highest elevation study site. The difference in calibration and

validation errors could be attributed to differences in data quality between

the calibration and the validation periods, as well as the number of events

considered (35 vs. 144).
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Figure 3.3. SNOWPACK calibration and validation. Performance of the 10 best models from the calibra-

tion (left panel) and the validation (right panel) at each study site. Model performance was assessed using a

multi-objective function, RMSE of the difference between observed and simulated values of (1) SWE at the

start of the event, and (2) the sum of SWE losses over duration of the event.

3.3 Historical analysis

Our results show two main positive relationships, (1) between the TWI/rain

ratio and streamflow volume, and (2) between less negative modeled cold

content and streamflow volume (Figure 3.4), which has implications for

flooding. Ten events with TWI more than rain plot above the 1:1 line in Fig-

(a) (b)

Figure 3.4. TWI response, cold content and stream flow. 71 historical ROS events between WYs 1981 to

2019 show a positive trend with a 1:1 line of rain and TWI. The largest rain events generate the largest TWI

and also the greatest cumulative streamflow (a). Events with less negative cold content and TWI/rain close

to 1, produce the largest streamflows. Black solid lines mark median values for each axis. A dotted, black

line marks TWI/rain equal to 1 (b). Start dates correspond to the eight ROS events analyzed in the scenario

analysis.
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ure 3.4a. The three largest rain events are also the three largest TWI events,

and plot on or almost on the 1:1 line. The majority of historical events be-

gin with ripe snowpacks (Figure 3.4b). The largest TWI events ’86, ’05,

’95 and ’96, have TWI more than or equal to rain and little to no antecedent

snowpack cold content. A positive trend, where events with TWI/rain near

1.0 and ripe snowpacks produce the largest streamflow volumes. ’96 has

TWI/rain>1.0 and produces the largest event streamflow, 21x107 f t3 dur-

ing the historical period. ’95 also has TWI/rain>1.0 and generates 4x107

f t3. ’05 and ’ 86 have TWI/rain near 1.0 and generate large streamflow

volumes of 7.4x107 and 6.5x107 f t3, respectively. Some events, however,

have TWI/rain>1.0 and ripe snowpacks that produce smaller stream flows.

This could be attributed to meteorological conditions, such as lower event

windspeeds, or other antecedent conditions of the hydrological system like

soil moisture and groundwater.

We find more rain at high elevations and TWI that increases with elevation

during large historical ROS events (Figure 3.5). Mean cumulative event rain

was 46 mm higher at S-2541 than S-1962, however the rain gradient with

elevation was less steep for smaller events than larger events. The highest

elevation experienced 2 mm more rain than the lowest elevation during ’15

(the smallest event) and 318 mm during ’86 (the largest event) (Table 3.4.

TWI summed up over all events was 32% larger at S-2541 than S-1962, and
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(a) (d)

(b) (e)

(c) (f)

Figure 3.5. TWI with elevation. Left column: ROS events trend positively on a 1:1 line of rain and TWI at

the highest, middle and low elevation study sites. Events are colored by inital SWE of the snowpack. ROS

events that plot above the 1:1 line have the largest initial SWE for all historical events and across all study

sites. Lower elevation study sites, S-1962 (a) and S-2124 (b), have less initial SWE than S-2541 (c). Right

column: TWI residuals, the difference between TWI and rain, at the highest, middle and lowest elevation

study sites. TWI residuals greater than zero correspond to events with more TWI than rain. Positive TWI

residuals are more common and larger at the lower elevation sites (d) and (e) than at (f), the highest elevation

site. Events labeled with start dates correspond to the eight events analyzed in the scenario analysis.
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20% larger than S-2124. For ’86, the largest TWI response, S-2541 con-

tributed the most TWI (678 mm) to the watershed, whereas the S-2124 and

S-1962 contributed less, 453 mm and 402 mm TWI, respectively. Adjusted

for the size of the ’86 event, the TWI/rain ratio decreases with elevation,

from 0.95 at S-2541 to 1.01 at S-1962, suggesting that for the same amount

of rain S-1962 would produce more TWI. Potentially, some ROS events in

the northern Sierra are temperature inverted, whereby S-2541 experiences

a greater rain precipitation than S-2124 or S-1962. ’17, a smaller event,

had more rain at the low elevation than the high elevation, this generated

the highest TWI/rain ratio of any site for all events. Residuals of TWI and

the 1:1 line, particularly residuals<0, show that S-1962 and S-2124 retain

less rain than S-2541, by 43% and 35% respectively (Figure 3.5). Large

initial SWE at higher elevations may facilitate liquid water storage through

freezing and/or refreezing.

3.4 Scenario analysis

Results of the scenario analysis show that different antecedent conditions

lead to a wide range in TWI/rain. Some events switch from TWI/rain >1

to <1 and others are largely different from the historical ratio. With mete-

orological conditions held constant for each event, TWI and TWI/rain re-

sponses were the result of differences in antecedent snowpack only 3.6c).

While TWI increases linearly with rain input, TWI/rain ratios increase in a
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horseshoe pattern, where events with mean cumulative event rain >200 mm

and <300 mm have the largest TWI/rain ratios. Of the eight scenario mod-

elling events, ’82 and ’95 had mean TWI/rain >1, 1.01 and 1.00 respectively.

Mean TWI/rain for ’82 switches from ≤ 1 historically to ≥ 1 in the scenar-

ios, with a 0.11 difference in mean TWI/rain (unitless). There is TWI/rain

≥ 1 for 21 out of 40 of the ’82 scenarios and for 25 out of 40 of the ’95

scenarios. 15 out of 40 ’96 scenarios have TWI/rain ≥ 1, however the event

mean is lower than 1. The TWI/rain scenario response encompassed the his-

torical response for all events, except for ’86. The scenario response spread

for TWI/rain generally decreased with mean cumulative event TWI/rain ra-

tios and event size. ’15, the smallest event, had the lowest mean TWI/rain

ratio (0.64) and the mostly highly variable TWI/rain response (82%). ’83,

the third smallest event, had 74% variability in TWI/rain responses. The

four events with the highest mean cumulative event TWI/rain ratios had the

four lowest TWI/rain response variabilities. While the pattern for TWI/rain

response varied with size of the event, less negative cold content snow-

packs consistently generated more TWI and higher TWI/rain ratios across

all events.

Cold content is the most important antecedent condition for predicting TWI

for the eight extreme events in the scenario analysis. A multiple linear re-

gression analysis (MLR) with 0.75 average R2 explains the variance in TWI
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Table 3.5. Scenario analysis- simulated event antecedent snowpack conditions
(S-1962, S-2124, S-2541, watershed area-weighted site average)

All

events

Mean antecedent cold content (MJ) -0.19, -0.19, -0.23, -0.20

Mean antecedent density (kg/m3) 0.28, 0.29, 0.32, 0.30

Mean antecedent liquid water content (%) 1.0, 0.6, 0.37, 0.57

Mean antecedent SWE (mm) 252, 271, 427, 308

Table 3.6. Scenario analysis- event TWI response summary
(S-1962, S-2124, S-2541, watershed area-weighted site average)

’15 ’17 ’83 ’96 ’82 ’95 ’05 ’86

Mean cumulative event rain (mm)

76,

70,

78,

72

134,

137,

109,

130

101,

132,

177,

142

131,

191,

237,

199

145,

193,

338,

226

249,

264,

387,

293

244,

307,

356,

316

400,

453,

718,

522

Mean cumulative event TWI (mm)

65,

49

32,

46

143,

133,

59,

115

107,

72,

128,

87

108,

186,

228,

193

148,

196,

331,

227

255,

270,

361,

292

202,

275,

295,

277

339,

376,

556,

419

Mean cumulative event TWI/rain

0.86,

0.71,

0.41,

0.64

1.07,

0.97,

0.54,

0.86

0.71,

0.81,

0.72,

0.78

0.83,

0.97,

0.96,

0.96

1.03,

1.02,

0.98,

1.01

1.03,

1.02,

0.93,

1.00

0.83,

0.89,

0.83,

0.87

0.85,

0.81,

0.78,

0.80

Variability of cumulative event

TWI/rain responses (%) 82 45 74 26 26 18 21 751

1 An outlier for this event increases the variability.
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Figure 3.6. Variability in TWI and TWI/rain for eight large ROS events. Eight of the largest ROS events

in the Sagehen Creek catchment increase in rain amount from left to right. A bar chart compares cumulative

event rain and precipitation (a). These events show high variability in TWI (b) and TWI/rain (c) over realistic,

mid-winter antecedent snowpack conditions. Events are colored by antecedent cold content of the snowpack

and observed values are denoted by black bars.
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due to antecedent snowpack conditions (Figure 3.7 and associated table).

Beta coefficients show generally logical relationships between antecedent

conditions and TWI response. For most events, greater antecedent cold con-

tent (warmer snowpack) and greater liquid water content lead to an increase

in cumulative event TWI, whereas antecedent SWE and density have the op-

posite response. It is expected that interrelated factors such as SWE and den-

sity would have the same effect on the snowpack, however it is non-intuitive

that greater antecedent density decreases TWI. Higher density snowpacks

are typically indicative of riper snowpack conditions, requiring less energy

to melt than a low density snowpack. Therefore, the density result is sur-

prising, however, the magnitude of the mean response (-0.01) is small. Also

surprising is the large difference in the magnitude for cold content and liquid

water content beta coefficients, since these two factors are also interrelated.

MLR results show that a 1 MJ increase in antecedent cold content would

generate 0.73 mm greater TWI, which is 69% more influential for TWI re-

sponse than a 1% increase in antecedent liquid water content, the second

most influential factor. Cold content is least influential for ’86, the largest

ROS event, which can be explained by the low event R2 and the scenario

outlier. The low R2 for ’83 brings into question the strong influence of liq-

uid water content on this event more so than all other events.
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Antecedent

snowpack

factor

Mean

for all

events
’15 ’17 ’83 ’96 ’82 ’95 ’05 ’86

Beta

coefficient SWE -0.19 -0.23 0.26 -0.05 -0.16 -0.19 -0.39 -0.48 -0.24

Density -0.01 -0.16 0.03 -0.02 -0.13 0.04 0.18 -0.07 0.03

Cold

content 0.74 0.79 0.75 0.68 0.75 0.78 0.82 0.73 0.59

Liquid

water

content 0.23 0.19 0.27 -0.58 0.35 0.16 0.20 0.18 -0.06

R2 0.76 0.80 0.87 0.55 0.93 0.77 0.91 0.91 0.35

Figure 3.7. Antecedent cold content predicts TWI for eight large ROS events. A multiple linear regres-

sion (MLR) analysis, mean R2 >0.75, shows that cold content is the most influential antecedent snowpack

factor over SWE, density, and liquid water content, in predicting TWI for eight large ROS events with variable

mid-winter antecedent snowpack conditions. ROS event sizes order from left to right. Table shows numerical

results from the MLR, beta coefficient and R2 values for each of the eight large events.
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4 Discussion

ROS events with greater rainfall and higher TWI/rain ratios cause the largest

floods in the Sagehen Creek catchment, an important drainage to the Truc-

kee River. The large ROS events used in this study correspond to extreme

events that challenged northern Sierra Nevada water management. For ex-

ample, the 12/28/96 event was the 1997 ‘New Year’s Day Flood’, which

is estimated to have caused $540 million in damages at the time (USGS,

1997) in the downstream Truckee Meadows. The ’17 ROS event triggered

the disaster at the Oroville Dam emergency spillway just north and east of

Sagehen Creek. As expected, large amounts of rain are correlated with large

TWI response during these flood events. However, we show that the amount

of TWI can vary considerably across realistic antecedent snowpack condi-

tions.

The variability in TWI has important implications for the historical context

of these large flood events. For example, the ‘New Year’s Day Flood’ (’96)

event had a TWI/rain ratio closer to 1 and in the upper quartile of poten-

tial TWI response compared to the antecedent conditions in the scenario

analysis, which is consistent with this being a large large flood event in the

Truckee River. Conversely, the ’17 event had lower rainfall and also lower
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TWI to rain ratio that was near the median TWI response compared to the

scenario analysis (Figure 3.6), which led to smaller downstream flooding

effects in the Truckee Basin (Kozlowski & Ekern, n.d.). In general the sce-

nario analysis captures the true historical response, however the ’86 event

has greater TWI than the range of variability considered using January 26

conditions each year. While our analysis of TWI simplifies many of the

other key variables causing large floods, like rain snow elevation, orographic

precipitation effects, and antecedent soil and groundwater conditions, it does

show that antecedent snowpack conditions can play a large role in determin-

ing the amount of water available to become runoff and streamflow.

Historical analysis and a scenario-based scenario analysis confirm the im-

portance of cold content in the amount of TWI and the flood potential from

a given amount of rainfall in our study catchment. Over the period 1989

to 2019, ROS events with the largest TWI response had ripe snowpacks,

with isothermal snowpacks producing more TWI than rain (Figure 3.4b),

implying drainage of snowmelt or liquid water in the snowpack. In agree-

ment with Trubilowicz & Moore (2017) and Würzer et al. (2016), in Figure

3.6b and c, we show the amplifying and dampening affects of snowpack on

TWI, but update this conceptual model to include the consequences of an

elevation gradient in predicting catchment-scale TWI response.

In our study catchment, ROS events with historical rainfall ≤ 130 mm had
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storage of liquid water at the highest elevation that dampens the catchment-

scale TWI response, except in the most extreme ripe antecedent conditions

(Figure 3.5c and f). This is consistent with anecdotal evidence and measure-

ments (Table 3.4) during the ’17 event, when TWI at the highest elevations

was less than 30 percent of incoming rainfall. We term these types of events

as ‘high elevation dampened ROS’ and they are accentuated by smaller rain-

fall, steeper precipitation (orographic) gradients in snowpack and cold con-

tent (i.e. more cold snow at high elevation), as well as a higher gradients

in rainfall with increasing elevation. The magnitude of TWI/rain response

is greatest for events with rainfall >150 mm and <300 mm, events where

cumulative TWI is greater than rainfall from melting snow or water storage

at low elevations and high elevation snowpacks store relatively little rain-

fall. We term these storms ‘low elevation melt ROS’ events (Figure 3.5) and

they are most likely to occur when ‘high elevation dampened’ events are

less likely, meaning less cold content, less steep snowpack gradients with

elevation, and a more ‘upside-down’ precipitation gradient with more pre-

cipitation (and energy inputs) at lower elevations. An interesting example

is the ’95 and ’05 events that have similar amounts of rain (293 and 316

mm), but very different TWI/rain ratios of 1.00 and 0.87, respectively, due

to larger overall energy inputs (Table 3.2) and higher solar insolation during

the ’95 event.
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Lastly, there is some evidence of the highest rainfall event (’86) also having

TWI/rain ratios <1, despite having more rainfall and overall TWI. We term

these events as ‘all elevations draining’ and they would tend to occur during

the largest rain events when cold snowpack conditions and steep orographic

gradients exist. We assume that this occurs because liquid water cannot

be stored in the snow matrix, but there is insufficient energy to melt the

snowpack. Given ’86 is such a unique rainfall event (∼40 percent larger

than the next largest event), it may be possible to see large events like the

’86 event but with active melt at lower elevations, but our historically-driven

analysis for 39 years did not observe that type of storm. Because snowpack

response to different storm events is rarely measured at a high temporal

resolution (sub-hourly), efforts like this requires a skillful physical model

and accurate forcing and validation datasets.

Modeling ROS processes is extremely difficult requiring a number of as-

sumptions that underlie the inferences made about ROS flood risk. The

SNOWPACK model has been used with different cold contents (Jennings,

Kittel, & Molotch, 2018), different snowpack depths (Rasmus et al., 2007),

wet (Yamaguchi, Sato, & Michael Lehning, 2004) and dry snowpacks (Lundy

et al., 2001), high elevation and low elevation snowpacks (Wever, Jonas,

et al., 2014), in the forest (Watts et al., 2016), and in the Sierra Nevada

mountains (Musselman, Molotch, et al., 2012). While the physics of the
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model are sophisticated compared to most land surface models, i.e. apply-

ing the RE, SNOWPACK does not consider several important processes like

preferential flowpaths that are documented during ROS events. Preferential

flowpaths would increase TWI by increasing the vertical hydraulic conduc-

tivity and avoid layers of negative cold content that would have otherwise

frozen liquid water into an ice layer (Humphrey, Harper, & Pfeffer, 2012).

For larger ROS events, preferential flow paths become increasingly impor-

tant, efficiently carrying more water down though the snowpack (Würzer

et al., 2016). In a comparison of a SNOWPACK initiated with a simple

bucket-type water balance scheme and a full application of the RE, Wever,

Jonas, et al. (2014) found that for sites with frequent melt, mid-winter melt,

and/or preferential flow paths, both schemes produced less runoff than was

measured, however, the full RE showed slightly better agreement with ob-

servations. An advanced treatment of SNOWPACK using the ‘dual domain

approach’ proposed by Wever, Würzer, et al. (2016) could improve prefer-

ential flow and ice layer formation, but requires additional calibration in of-

ten data sparse settings. Model forest clearings of >30 m in diameter as open

areas, which minimized the potential effects of shading from shortwave ra-

diation, lessened wind speeds and turbulent fluxes (Burns et al., 2014), and

minimized forest debris accumulation onto the snowpack (Gleason, Nolin,

& Roth, 2013). A simple extension of this work would be to understand
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the role of forest cover, which is extensive in the study area, in modulat-

ing the role of cold content in TWI variability. Our scenario analysis only

considered the conditions on January 26 to try to give a realistic range of

conditions. Realistically, however, the conditions on January 26 may have

been primed for melt or resistance to melt in unexpected ways. The influ-

ence of consecutive ROS events (White et al., 2019) or other catalyst meteo-

rological events (Kroczynski, 2004), like uncharacteristically warm or cold

air temperatures, may have set up the snowpack prior to January 26 in an

unusual way. It may be possible to limit these kinds of confounding vari-

ables using SNOWPACK or similar calibrated models to understand which

snowpack conditions could produce the most extreme ROS response and

how that might evolve with climate change.

Our work shows the potential importance of modeling and monitoring an-

tecedent snowpack conditions for operational ROS streamflow forecasting

and their interactions with meterological characteristics of the event. This

study highlights the influence of antecedent conditions, specifically cold

content, on TWI response during ROS events and associated implications

for flooding. In particular, our model results show that cold content can

increase or decrease the TWI response by 20%-30% from the mean re-

sponse during extreme ROS events of very different rainfall and energy

conditions, which is substantial if that variability is translated directly to
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streamflow response. The relatively large events of 150-300 mm of rainfall

will be important to predict for operational purposes because a switch of

TWI by 30 percent could be the difference between a hazardous flood and

one that is below the flood stage. Conversely, the very largest events may

be less important to predict because the flood warnings will likely be made

either way, and in the case of the 1986 storm the variability in TWI caused

by antecedent conditions was lower. The operational flood forecast model

SNOW-17 operates on a simplified energy-balance framework that tracks

cold content but not other key variables like density and is poorly validated

(E. Anderson, 2006). Because the ‘low and mid elevation melt’ scenario

is the most problematic for flood forecasting, the antecedent conditions for

these events seem particularly important to predict or measure. Weather

monitoring stations, such as the NRCS SNOTEL stations, measure SWE

and depth of the snowpack, but not density, liquid water content, or cold

content, which largely require in-person measurement by-hand (Techel &

Pielmeier, 2011) or poorly validated, new sensing technologies. Additional

monitoring of cold content could be used directly in model tuning efforts,

as well as validation of different models. Future comparisons of TWI re-

sponse of SNOWPACK versus SNOW-17 across elevation gradients could

illuminate potential improvements to the operational models.

The ability to forecast ROS associated stream and river floods under a chang-
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ing climate will depend on our ability to predict antecedent conditions of the

snowpack and how they interact with extreme meteorological events. In-

creasing water demand driving changes in reservoir management to release

water based on hydrological forecasts of reservoir inflows. Changes in at-

mospheric river conditions that generate ROS events and potential increases

to rainfall amounts and intensity have been predicted. Combined with in-

creasing ’weather whiplash’ that swings between droughts and floods, cli-

mate change will place additional pressure on water managers to effectively

predict winter flood events. Climate change is expected to decrease SWE

and cold content, which would increase TWI according to our results, with

everything else equal. However, two key questions remain for forecasters:

1. What causes the dampening and draining response and how will future

climate change that occurrence of those events? and 2. Will there be more

very large events like 1986, but with sufficient energy to melt part of the

snowpack and thereby generate even larger flood events? If the upper ele-

vation snowpack began to melt and contribute additional water in a future

climate that could heighten the effects on flooding beyond what was showed

in our historical and scenario analyses. In contrast, if lower elevation areas

become partially or completely snow free that will tend to lessen the effects

of low and mid elevation melt (Nolin & Daly, 2006; Musselman, Lehner, et

al., 2018). Despite the uncertainty of long-term forecasts, flood forecasters
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are in the unenviable situation of using a suite of meteorological ensembles

but a deterministic (and simplistic) hydrological model. Consequently, we

suggest there is potential for immediate impact on operational modeling by

better representing antecedent conditions like cold content. The potential to

increase our modeling and measuring ability of high elevation snowpack ap-

pears to be critical for effectively constraining upland hydrological response

to ROS events in this part of the Sierra Nevada.

5 Conclusions

Climate change and water demands will make streamflow prediction dur-

ing ROS events even more important. However, this study shows that an-

tecedent snowpack conditions that are rarely measured, like cold content

and liquid water content, are likely critical to predicting the TWI response

that is explanatory of the large stream flooding events. Large rains and

ripe snowpacks produce the largest floods events, and with climate change,

larger rains and riper snowpacks will produce even larger floods. Perhaps,

the future holds larger floods than any flood in the last forty years. Larger in-

flows to reservoirs may trigger reservoir floods potentially more devastating

than the 2017 Oroville Dam incident. Reservoir managers will be required

to keep a safe amount of empty winter storage at all times. Climate change

in the US West will require even higher levels of complex water resources
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management and constraints to an already limited water supply.
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