
Adaptive UAV Swarm Mission Planning by

Temporal Difference Learning

Shreevanth Krishnaa Gopalakrishnan

School of Aerospace, Transport and

Manufacturing

Cranfield University

Milton Keynes, United Kingdom

S.Gopalakrishnan@cranfield.ac.uk

Saba Al-Rubaye

School of Aerospace, Transport and

Manufacturing

Cranfield University

Milton Keynes, United Kingdom

S.Alrubaye@cranfield.ac.uk

Gokhan Inalhan

School of Aerospace, Transport and

Manufacturing

Cranfield University

Milton Keynes, United Kingdom

Inalhan@cranfield.ac.uk

Abstract— The prevalence of Unmanned Aerial Vehicles in

precision agriculture has been growing rapidly. This paper

tackles the UAV global mission planning problem by first

incorporating a greater capacity for human-machine teaming

in the design of a flexibly autonomous, near-fully-distributed

Mission Management System for UAV swarms. Subsequently,

to maximize the efficiency with which missions are carried out,

the two problems of global mission planning: task

assignment/routing and path planning, were solved together,

for small problem sizes, by an integrated solution. This consists

of a geometric clustering algorithm which prioritizes the

minimization of overall mission time, and an off-policy, model-

free Temporal Difference Learning global agent capable of

learning about an initially unknown mission environment

through simulations. The latter component makes the solution

adaptive to missions with different requirements.

Keywords—Reinforcement Learning, Temporal Difference

Learning, UAV, Global Mission Planning, Precision Agriculture.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), or drones, are aerial

robots that can support and transport cameras,

communication equipment, sensors, and other payloads

specific to the mission requirements. UAVs can be

classified into three main types based on their profile and

propulsion method as fixed-wing, single-rotor, multi-rotor,

and hybrid fixed-wing Vertical Take-off and Landing

(VTOL) [1]. Although originally, they were primarily

employed for ‘dull, dirty, or dangerous’ [2] missions, due to

their increasing networking capabilities, ‘intelligence’ and

payload diversity, their benefits have been realized for

broader applications in the civil domain such as

photography, construction, logistics, remote surveillance,

precision agriculture etc.

To cope with the expected world population of 9 billion

by 2050, there is a need for a 70% increase in agricultural

yield and products. UAVs and other Information and

Communication Technologies (ICT) such as broadband

connectivity, Internet of Things (IoT), sensors etc., are

currently being leveraged to help the agricultural sector

manage crops and resources more efficiently [3]. This falls

into the domain of Precision Agriculture (PA) which is the

use case selected for this paper.

PA’s objectives are as follows: (i) to increase the yield

of crops; (ii) to improve the quality of products; (iii) to

make more efficient use of agrichemical products; (iv) to

save energy; and (v) to protect the physical environment

against pollution [3].

UAVs are particularly useful since they can grant the

farmers insights into spatially and temporally varying data

regarding the crop’s health and nutrient requirements, soil

composition, topography etc., thereby allowing the creation

of more productive farming practices [3].

In this paper, first, a flexibly autonomous Unmanned

Aerial System (UAS) swarm architecture for mission

management is proposed. It is designed to provide it with a

capability to adapt to the intricacy and reliability

requirements of the mission. This is achieved by extracting,

integrating, and repurposing state-of-the-art architectural

elements from the literature. Subsequently, to address the

prevalent challenges of limited endurance and drone

operator fatigue [4], a swarm global mission planner (GMP)

is designed and developed using algorithms from the field of

Reinforcement Learning (RL). The overall aim of this work

is to increase the efficiency of UAVs for short missions.

The contributions of this paper are three-fold: 1)

highlighting the importance and relevance of the field of

precision agriculture; 2) designing a flexibly autonomous

UAV mission management architecture; and 3) developing

an adaptive, deep RL-based global mission planning

algorithm architected using traditional Object-Oriented

Programming principles, combined with a simple geometric

clustering algorithm to increase system decentralization.

II. TECHNICAL BACKGROUND

A. Unmanned Aerial Systems

UASs comprise the entire ecosystem that enables a UAV

to function. Broadly, they consist of three principal sub-

systems as demonstrated by Fig. 1 [5]:

• Aerial platform: airframe, navigation system (flight

controller, autopilot, localization (GPS/GNSS),

inertial system), power and propulsion system

(actuators), and payload(s). The flight controller is

the central processing unit of the drone.

• Ground Control Station (GCS): human-machine

interface platform e.g., portable remote control, full-

fledged command station etc., human supervisor(s),

and other relevant software for high-level mission

planning, control, and data exchange in real time.

• Communication system: transmission and reception

equipment selected according to GCS-swarm and

intra-swarm operating distance, and environmental

conditions.

h.binning
Text Box
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

h.binning
Text Box
Proceedings of the 2021 AIAA/IEEE 40th Digital Avionics Systems Conference (DASC), 3-7 October, San Antonio, TX, USA
DOI: 10.1109/DASC52595.2021.9594300

Fig. 1. High-level UAS architecture [5]

Fig. 2. RL Agent seeks to maximize cumulative reward obtained

B. Intelligent Agents and Reinforcement Learning

Autonomous UAVs, by definition, can operate according

to a predefined mission plan without human intervention

[6]. The level of autonomy of UAVs is typically divided

into Classes ‘A’ to ‘E’, with ‘E’ representing fully-remote-

controlled, and ‘A’ representing fully-autonomous operation

[7]. Autonomy is capable of easing operator workload,

reducing error rate associated with attention-intensive

control tasks, enabling faster response to developing

operational conditions due to eliminated datalink time loss,

optimizing battery usage, and improving landing accuracy.

In the domain of Artificial Intelligence (AI), each UAV

can be abstracted to being an intelligent agent which is a

goal-oriented, self-governing entity that perceives its

environment through sensors and influences it using

actuators. There are five main types of agents: simple reflex,

model-based, goal-based, utility-based, and learning [8]. In

swarm-based systems, agents also incorporate a social layer

for communication with peer agents.

The two architectures of interest in this paper are

utility-based and learning agents. Utility-based agents

choose actions that maximize their utility function/internal

performance measure. In addition to considering the

importance of mission goals, they assign ‘value’ to states in

the world. This allows them to reach the goal optimally [8].

Reinforcement Learning, a branch of AI, deals with the

‘learning’ problem for intelligent agents. RL agents search

for more effective ways to understand and navigate around

initially unknown environments by learning from the impact

of their interactions [9]. The fundamental schematic of an

RL agent working is shown in Fig. 2.

Fig. 3. Types of agricultural drones [10]

TABLE I. MAIN PRECISION AGRICULTURE PRACTICES [3]

Process Description

Production mapping
Crop efficacy calculation and
identification of production

determining factors.

Soil mapping
Determination of the variability of the
soil’s chemical composition.

Electrical conductivity

mapping

Identification of homogeneous soil

management zones.

Remote sensing (RS)
Remote information capture by
measuring the crops’ electromagnetic

radiation etc.

Variable Rate Application

(VRA)

Distribution of agrochemical products
(pest control, fertilizer) in different

doses, including water for irrigation.

C. Precision Agriculture

With regards to types of UAVs, multirotor (quadrotor)

UAVs, as seen in Fig. 3, are typically selected for precision

agriculture due to their ability to hover, take-off and land

without considerable space (runway) or launch equipment

(catapult etc.). However, when endurance is more important

than maneuverability, fixed-wing UAVs are optimal. Some

examples of common PA tasks are explained in TABLE I.

Variable Rate Application (VRA) of agrochemical

products such as fertilizers is the main interest of this paper.

VRA is typically carried out in a map-based or sensor-based

method. In the former case, the UAV relies on GPS and a

product prescription map for dosage. Alternatively,

specialized UAVs with dedicated sensors can measure the

characteristics of each area in real-time [11]. UAV swarms

are typically preferred due to the possibility of dividing the

farmland into areal blocks and tackling them independently.

These UAVs would consist of an agrochemical product

dispenser system, which, for fluids, comprises a tank,

pipeline, pump, and nozzle [1].

D. UAV Mission Planning Taxonomy

The UAV mission planning problem can be sub-divided

into vehicle routing and trajectory optimization [12].

The routing problem deals with the assignment of UAVs

to achieve a set of predetermined tasks while optimizing

cost, time, distance, or energy. Additional constraints may

be in place to account for the payload weight, environmental

effects (obstacles, wind etc.), battery life, and demand (node

visits) [13]. There are several variants of the routing

problem including the Capacitated Vehicle Routing Problem

(CVRP), the Travelling Salesman Problem (TSP) and the

UAV Task Assignment Problem (UAVTAP). However, this

category of problems is Non-deterministic Polynomial time-

hard (NP-hard), implying that scalability is an issue [14].

The other half of mission planning is to do with

trajectory optimization (TO) and path planning (PP). TO

problems involve determining the trajectory of a system

(control inputs for desired maneuvers) while minimizing a

scalar performance index (flight time, fuel consumption

etc.), and satisfying a set of boundary conditions and

constraints regarding system kinematics and dynamics [12].

Path planning is a geometric problem which deals with

finding a collision-free path from a pre-determined start

position to a goal position, for an agent in Euclidean space.

This problem has also been shown to be NP-hard if the

vehicle velocity is unbounded and rotation is not considered.

It can be solved in a discrete or continuous space. Discrete

formulations (graph space) rely on exact or heuristic solvers

and usually output polygonal paths, thereby warranting

separate curvature inclusion [12].

III. SYSTEM DESIGN

A. Related Work on UAS Mission Management Systems

As the name suggests, a UAS mission management

system (MMS) is responsible for all tasks beginning from

the receipt of mission objectives from the GCS, to the

completion of the mission by individual UAVs in swarm.

Nieuwenhuisen and Behnke [15] designed a layered

mission planning and navigation system targeted towards

multi-rotor micro air vehicles (MAVs) which are required to

operate in partially observable environments. In this system,

the GCS is tasked with high-level, low frequency mission

planning and global path planning. Subsequently, an

allocentric map is passed onto the MAVs for local path

refinements and obstacle avoidance at higher frequencies.

Rudnick and Schulte [16] proposed an agent-based

architecture which allows a range of human independence/

control levels over the UAV. In this scenario, the planning is

carried out by a Hierarchical Task Network (HTN). Tasks

allowed higher levels of independence are placed higher in

the tree. Importantly, the operator is offered guided access

to the HTN to prevent jeopardisation of the mission intent.

The design of a multi-drone UAS MMS also entails the

specification of the control architecture. Compared to a

centralized system, it has been shown that distributed

control results in higher reliability, and requires lower

computational resources and communication [17], [18].

However, of greatest interest in this paper is the work

by Sanchez-lopez et al. on ‘AEROSTACK’ [19]. This is

full-fledged mission management architecture that offers the

benefits of high mission autonomy, versatility and swarm

operation. It is offered as an open-source package which

contains a system architecture and a multi-purpose software

framework. It consists of five layers:

• Social layer: for intra-UAS communication.

• Reflective layer: for supervision of other layers, to

assess if the system is progresssing towards its

goals, and for troubleshooting the current position

of the agent.

• Deliberative layer: for generation of global

solutions for mission planning and path planning.

• Executive layer: for generation of instructions to

the reactive layer based on the inputs from the

Deliberative layer.

• Reactive layer: for low-level control through sensor

(percept) – actuator (action) loops.

B. Core System Requirements Specification

Distilling the key priorities from the relevant literature,

functionally, the MMS should enable the operator to

communicate the target locations to be visited on a farm

through a user interface. This information must then be

passed onto a Global Mission Planner (GMP) which is part

of the GCS software suite. The GMP’s role involves the

following: 1) computing the optimal UAV swarm size

through task assignment, 2) determining task sequence for

each UAV for VRA of fertilizers without colliding with

obstacles, 3) passing this information to a dedicated swarm

coordinator UAV through the wireless datalink equipment.

The GMP will be designed to learn (plan) the initial,

global mission objectives before the mission commences.

However, the MMS must provide the operator the ability to

intervene with a mission when necessary or abort it. E.g., in

case the operator wishes to interrupt the agricultural UAV

VRA to carry out manual soil mapping or health monitoring.

At the operational level, the architecture must facilitate

cooperative drone working in a swarm and not be dependent

on significant levels of communication between drones for

completion of the mission, i.e., a near-fully-distributed

architecture. The MMS should implement a hierarchical

structure of mission planning, wherein the global task

sequence is refined by the UAVs locally and adaptively in

accordance with dynamic environmental conditions. Finally,

the MMS must enable the storage of up-to-date knowledge

about the position of obstacles and No-Fly-Zones.

C. Proposed Architecture

It is envisaged that the GMP abstract agent will have

hybrid characteristics: utility-based and learning. Fig. 4 and

Fig. 5 demonstrate the proposed flexibly autonomous UAS

architecture. It possesses the following features:

• Hierarchical mission planning workflow, with the
GCS at the global level, the swarm coordinator at
the interim, and the local UAVs at the bottom.

Planning System

Agent Mission
Planner

Local Path
Planner

Obstacle
Avoidance Unit

Sensors
(Proprioceptive)

Sensors
(Exteroceptive)

Motors

Actuators

Human-Machine Interface

Display +
RC

Communication
Platform
(External)

Deliberative Layer Executive Layer Reactive LayerReflective and/or
Social Layer

Hardware
Interface

Environment

Communication
Platform
(internal)

Swarm
Coordinator

Localization,
Tracking and
Mapping Unit

Action Manager
Motion

Controller

Perception
Manager/

Feature Extractor

Map of the
farm/region

Sensor
feedback

Global Mission
Planner

Obstacle and
NFZ info.

Aerial and Communication Platforms

Ground Control Station

Fig. 4. Reconfigurable UAS Mission Management System architecture

Global Mission Planner

Simulation
Engine

UAV Router
Hierarchical

Task Algorithm

A

Global Path
Planner

Swarm Coordinator

Dynamic Task
Allocator

Supervisor

B

Fig. 5. Architecture subcomponents: A) Global Mission Planner with

added flexibility; B) Swarm coordinator

• AEROSTACK’ backbone which can manage drone
swarming and full autonomy inherently.

• Flexible autonomy incorporated through software

changes within the GMP. This leverages the

strengths of human-machine teaming.

 Having been constrained to a set of tasks following the
hierarchy of mission planning, the local UAVs are able to
operate in a near-fully-distributed manner. The in-built HTN
and Simulation engine interface, as per [16], shown in Fig. 5,
enable the operator to modify any of the original objectives
without impeding the overall intent of the mission. It has
been highlighted in the literature that this combination of
routing and trajectory optimization is essential for increasing
the efficiency of real-world UAV operations [12].

There is a single, assigned swarm coordinator which is

responsible for receiving (from the GMP) and relaying the

respective task sequences to each member of the swarm,

supervising their progress during the mission, and

forwarding the information back to the GCS for displaying

to the operator. The flow of information is shown in Fig. 6.

Finally, it is proposed that the intra-swarm

communication is conducted according to a Flying Ad-hoc

Network (FANET) layout [20], as shown in Fig. 7.

Designing and developing the GMP’s routing and path

planning algorithms for the VRA application will be the

focus of the rest of this paper.

Mission
Objectives and

Waypoints

Spray Fertiliser Survey Farm

Global Mission

Global Path
Planning

Task Allocation
to UAVs in the

Swarm

Generate Tasks for each UAV

Hover and
Assess

Conditions

Move to
Target

Spray Fertilizer LandTake-off

Interpret
Mission

Plan/Refine
Local Path

Obstacle
Detected?

Execute
Mission (+

Localize UAV)

Perceive
Surroundings

and Step

Knowledge
Database

New Obstacle/NFZ
Information?

Mission
Completed?

Generate and Send Global Plans for all UAVs

NO

YES YES

YES

Generate
Performance

Report

NO

Retrieve Agent
Status

Distribute
Mission Plans

Supervise
UAVs

Swarm
Coordinator
(Airborne)

Receive
Inputs/Display

Progress

GMP and UI (Ground Control Station)

Local Agent Level (Airborne)
Fig. 6. Interaction between GCS, coordinator, and local agents

Fig. 7. Flying Ad-hoc Network configuration proposed [20]

IV. PROBLEM FORMULATION

Prior to designing the Global Path Planner, the farm

environment (mission area) within which the UAS will

operate, and the sample problem(s) to be solved, will be

formulated and described.

A. Environment Model and Mission Description

The operating environment of the UAVs is modelled as

a square grid of size , where is 500 meters,

and is comprised of square cells of

length 1 meter. A 10-task scenario, which was one of the

problems considered, is shown in Fig. 8. Let denote the

list of static obstacles, such that ,

and let denote the list of static obstacles and No-Fly-

Zones (NFZs), such that .

Fig. 8. 10-target mission scenario with a central depot

TABLE II. MISSION PLANNING PROBLEM ASSUMPTIONS

Category
Characteristics

Type Description of Assumptions

UAVs

Quantity and

traits

Multiple, homogeneous UAVs;
fleet size variable; vehicles not

capacitated.

Modelling

properties

No vehicle flight dynamics
(geometric problem only) or

equations of motion considered;

Dubin’s model not assumed.

Waypoints
Quantity Multiple, unordered.

Constraints Single visit allowance.

Environment
Conditions

Obstacles and NFZs present; no

wind.

Dimensionality 2D plane.

Launching
Quantity of

depots

Single, central depot; no inter-

depots.

Time Fixed/Variable
Time and velocity are fixed (not to

be optimized).

Thus, the only traversable spaces are the free spaces

which are denoted by , where .

The complete set of target states , where

⊆ , is finite in length ().

The mission is formulated and constrained as per a

standard TSP/VRP as follows. Operating from a central

depot , a swarm of agricultural UAVs are tasked with

visiting a subset of the targets each for fertilizer spraying in

a near-optimal path (time and distance). Once a target is

visited, it is added to a list ⊆ . The motion of each

UAV is from one state () to another () such that

, , and , i.e., revisits are not allowed.

Finally, as stated earlier, during the mission, the UAVs

must avoid collisions with obstacles and other UAVs, and

must not enter the pre-defined No-Fly Zones (NFZs). Three

mission environments were created: 5, 10 and 20 tasks.

TABLE II. presents the key assumptions made.

B. Agent-Based Problem Formulation

The fundamental building block of RL is a Markov

Decision Process (MDP) [9], and it can be defined by the

tuple: with state space , action space , reward

function , and probabilistic transition function mapping

from . For finite horizon MDPs, the time

index is used as subscript.

The agent’s observation at each time step in the

simulation can be represented by , which

consists of two elements:

• contains the current position of the agent

in one-hot-encoded format, where represents the

Boolean domain {0, 1}.

• contains the set of visited positions of

the agent at time . Once a task is completed, its

position in is marked as TRUE.

 (1)

Since the positions of obstacles are not represented

within the state space, this problem can be categorized as a

Partially Observable MDP (POMDP). Additionally, since

the agent needs to remember the set of tasks it has already

completed and the rewards are ‘non-stationary’, it is

essential to pass to the agent. This makes the problem

Markovian, thereby preventing the need for ‘memory’.

Since the agent jumps from task-to-task, neglecting the

interim states, the action space can be defined as:

 (2)

In model-free RL, there is no need to know the

probabilistic transition function, and hence it has been

preferred in the literature in most cases of UAV path

planning where the environment’s mathematical model is

unknown as a prior [21]. The final element of the MDP is

the reward function . It was designed as follows:

• which represents the penalty (negative) given

to the agent upon attempting to do a task it is not
allowed to. This would account for crashes into
obstacles and NFZs.

• which represents the bonus (positive) given

when the agent completes a task appropriately.

 Hence, the narrowed down problem scope can be
formally divided into two parts: 1) allocate tasks to a suitable
number of UAVs for the mission. Each UAV (would
therefore need to perform ,

2) plan a path for each UAV such that it visits each task only
once, does not collide with obstacles, NFZs or other UAVs,
and returns to the depot.

V. ALGORITHM DEVELOPMENT

A. Related Work on Task Allocation Algorithms

With regards to the objective of task allocation, Li et al

[22] developed a Variable Neighborhood Descent-enhanced

Particle Swarm Optimization algorithm for the flight path

optimization of multiple agricultural UAVs. Their

conclusion was that for point-to-point missions, it is more

efficient to minimize mission time by minimizing the length

of the longest UAV path, as opposed to total distance.

In a similar line of work, Ann et al [23] devised an area

allocation algorithm for the coverage path planning problem

of multiple UAVs based on the clustering (K-means) and

the graph method. Their algorithm enabled the division of a

mission zone into multiple collision-free sub-areas

consisting of obstacles, each covered by a different UAV.

These two works suggest that geometric clustering

approaches like K-means could be sufficient for task

allocation in a UAV MMS.

B. Background of Reinforcement Learning Algorithms

RL algorithms are particularly suitable for sequential

decision-making problems like path planning. Generically,

RL agents search for an optimal behavior policy , that

consistently maximizes their reward when interacting with

the environment [9]. Temporal Difference (TD) Learning

refers to the category of algorithms in which the agents

update their estimates of the value function and action-

value function , as per the Bellman equations, using only

previously learned estimates and the observed reward

via bootstrapping [9].

Q-learning is a model-free, off-policy, TD Learning

technique. Its premise is the iterative improvement of the

function to guide and evaluate the process of learning . As

shown in Fig. 2 earlier, the agent does this by sequentially

observing its current state , performing an action

 according to its current policy ,

receiving a reward , and repeating the process

at [9]. The Q-update formula for finding the optimal

policy is given by the following two equations.

 (3)

 (4)

The selection of the maximum Q-value at time is

attributed to the greedy strategy used for finding the optimal

policy. refers to the learning rate of the algorithm.

Q-learning suffers from issues regarding lack of

generalization and scalability when implemented using a

two-dimensional () lookup table. One well-known

solution to this is a Deep Q Network (DQN) which utilizes a

multi-layered neural network Q-function approximator [24].

However, for this paper, since DQNs have been proven to

overestimate and due to the operator, a Double

DQN (DDQN) algorithm [25] was narrowed down on.

To improve computational stability, Mnih et al [26]

suggested the simultaneous use of two separate networks: a

policy network (with parameters) and a target network

(); and experienced replay.

Fig. 9. Neural network architecture of a DQN

The NN takes the agent’s current state as input, and

outputs the vector . The target network has the

same structure as the original (online/policy) network,

however, are updated/copied only every steps from .

On the other hand, experience replay is a uniform random

sampling technique that was proposed to reduce correlations

in the training data which is otherwise sequential. The

agent’s experience is typically stored in a finite replay

buffer in a quadruple format: () [25]. The DDQN

TD target is shown below in:

 (5)

The novelty introduced by DDQN is that the TD target is

determined by gathering the values associated with the

action selected by the policy network [25].

A recent work by Theile et al [27] addressed the

coverage path planning problem using a DDQN. Their

network architecture interprets 3-channel map-like input

through convolutional layers to generate the observation.

More recently, Xie et al [28] formulate UAV path

planning as a POMDP. They use recurrent neurons to handle

the partial observability by extracting crucial information

from historical state-action pairs, and convolutional neurons

to capture spatial feature information from the observation

prior to determining the Q values of a state. This is referred

to as a DRQN algorithm.

Therefore, the literature suggests that the DDQN

algorithm is highly relevant for the path planning problem,

and that the network can be combined with convolutional or

recurrent neurons to provide it with secondary capabilities.

C. Double Deep Q-Learning Model and Simulation Setup

The DQN neural network architecture shown in Fig. 9

below was adopted for the policy network and the target

network, and hence, the DDQN-based agent was created.

Two 2D convolutional layers with a flat kernel of size

(1x2) are used to extract the spatial features from the agent’s

state tensor. The resulting tensor of shape (8x1x19), for,

say a 20-task problem, is flattened prior to being passed to a

densely connected layer for reshaping into the action space

’s dimensions (1 x 21). The resulting vector represents the

predicted values corresponding to each state-action pair at

time .

Action selection at each step is carried out based on the

predicted values from the policy network according to an

-greedy algorithm as shown below. refers to the

probability of a case occurring.

(6)

The -greedy algorithm is one of the ways to solve the

exploration-exploitation dilemma during agent training [9].

During each training step, as per the standard neural

network training procedure, the loss is computed for each

batch sampled from , and the network parameters () are

trained through backpropagation by an optimizer. For this

paper, the Huber Loss function was selected since it

combines the beneficial properties of both, Mean Absolute

Error (MAE) and MSE). It is represented by:

(7)

Adam [29] was selected as the optimizer due to its

robustness and limited requirement for hyperparameter

optimization resulting from as a result of its adaptive

learning rate selection.

The simulation environment was designed in Python.

The PyTorch library [30] was used for designing the neural

networks and the training infrastructure.

The elbow point method was selected for use in tandem

with K-means clustering to determine the optimal number of

UAVs () needed. This method seeks to trade-off the

minimization of the Within Cluster Sum of Squares (WCSS)

with the number of clusters. Clustering was repeated

iteratively to ensure that each task was reachable within

each cluster, and the UAV had a safe path to the depot at the

end of the mission.

With respect to task assignment, to prevent collisions,

some of the edges were labelled as ‘blocked paths’ and

associated with a negative reward. They were determined by

comparing the closest point of approach between each path

and the obstacles and NFZs with a threshold of 10 meters.

 In Object-Oriented Programming terms, the Agent and

Environment were created as two separate classes. The

interaction between the agent and the environment objects is

demonstrated in Fig. 10.

The training was set to run for several hundred or a

thousand simulation episodes, and each episode was run for

up to 150 timesteps or until all the agents completed their

designated tasks and reached the goal state (depot).

Blocked
Paths

Current
Position

Allowed
Actions History of

Positions

Mission Area Knowledge

Generate New
Observation

Reset Agent
Position

Undertake
Step

Reward Agent

Reward
Function

Transition
Function

Select Action

Environment

Sample Replay
Buffer

Train NN

Agent 1

•

•

•

•

Policy NN, θ

Target NN, θ

ACTION

STATE,
REWARD

Agent N

Knowledge
Function/
Method

Legend

Status
(Done)

Depot
(goal) pos.

Fig. 10. Object-Oriented Programming-inspired structure of the

simulation environment

Fig. 11. Elbow point method shows s smooth curve with a relatively

ambiguous elbow point

VI. SIMULATION RESULTS AND ANALYSIS

A. Task Allocation

The implementation of the elbow point method for the 3

different missions revealed that, for the 5-task and 10-task

missions, the optimal UAV swarm size is 3. However, for

the 20-task mission, the gradient was found to continue to

decline relatively steeply beyond 3, and hence, the optimal

swarm size was determined to be 4. Refer to Fig. 11.

However, upon further analysis with regards to the

positions of the obstacles, the algorithm revealed that, to

provide accessibility to all tasks in the 5-task mission, a

maximum of 2 UAVs/clusters would be possible.

B. Reinforcement Learning Algorithms’ Validation

To validate the RL algorithms, the problem was

simplified to a single agent scenario, and the blocked paths

were not considered to simplify the set-up of optimization

problem (multi-vehicle VRP).

TABLE III. RL ALGORITHM PARAMETERS FOR VALIDATION

Parameter Value Justification

Episodes (E)
500 (5, 10) or

1000 (20)
Enables path exploration

Timesteps (TS)
100 (5, 10) or

150 (20)
Encourages path completion

Optimizer LR (α) 0.001 With Adam, it is adaptive

Discount Factor (γ) 0.99 Prioritises future rewards

Epsilon range

(εinit - εmin)
0.90 – 0.1 Encourages path exploration

Epsilon decay (λ)
0.995 (5, 10)
- 0.998 (20)

Slow exponential decay

Decay threshold
2x or 3x ideal

steps

RBES: More leeway for 20-

target scenario with 3x.

Target model update

frequency ()
10 timesteps Stabilizes NN optimization

Training batch size 512 timesteps
Trade-off between optimizer

step accuracy and compute

Replay buffer()

length

10000

timesteps
At least 100 episodes’ data

Min. Reward (0 Only positive reinforcement

Max. Reward (+100 Same as above

Distance reward

scaler ()
10

Encourages nearest

neighbour-seeking

Branch-and-Bound (B&B) refers to a family of

algorithms which are used to produce exact solutions to NP-

hard problems like path planning [31]. Here, since the

number of tasks was small, the B&B method was used. Both

the candidate RL algorithms: single DQN, and DDQN were

set up according to the architecture shown in Fig. 9 using

the parameters as per TABLE III.

To maximize exploration, the initial was set to a high

value of 0.9. Subsequently, this was decayed exponentially,

at a rate of 0.999, each time the number of timesteps to

complete the trajectory was below a threshold. Finally, for

the last 10% of episodes, it was manually forced to 0.1 to

maximize consolidation of the gathered knowledge.

The ‘Step’ function, shown in Fig. 10, is responsible for

reflecting the action taken by the agent. Working with the

‘Reward Agent’ function, it assigns a negative reward

(, for Agent) if the agent visits the depot

prematurely, or attempts to repeat a task or travel via a

blocked path. In case these conditions are not violated, it

assigns a positive reward to each agent as follows: 1)

compute distance () from to , 2) identify shortest

(non-zero) path possible: , 3) calculate distance reward

 , 4) count previously

completed tasks: , 5) observe length of agent ’s

subspace: , 6) calculate visited cells reward

, and finally, 7) return

. Hence, it is apparent that encourages

the agent to find its nearest neighbor from any position.

was used as a scaling factor to trade-off with reinforcing the

agent to complete new tasks.

The results in Fig. 12 and TABLE IV. demonstrate that

the RL algorithms perform better with smaller mission sizes.

Additionally, it is evident that the algorithms are

comparably accurate to the exact B&B method, and hence,

the simulation setup methodology is validated. Overall, it

can also be observed that the DDQN algorithm performs

better than the ‘vanilla’ DQN.

Fig. 12. RL algorithms’ validation for the 5-task mission

TABLE IV. RL AGENT VALIDATION RESULTS: DISTANCES

Algorithms
Number of targets

5 10 20

B&B 1274m 2068m 2128m

DDQN 1274m 2174m 2975m

DQN 1746m 2623m 3270m

TABLE V. UPDATED PARAMETERS FOR MISSION PLANNING

Parameter Value

Episodes (E) 1000

Timesteps (TS) 100

Epsilon decay (λ) 0.995

Decay threshold 3x (5) or 4x (10) ideal steps

C. Metrics for Mission Planning Evaluation

Moving forward, two of the three mission scenarios have

been selected for comparison: 5 and 10 tasks. Two metrics

are used to compare the performance of the candidate

algorithms:

• Average reward (: This is calculated as the sum

of all agents’ rewards, averaged by the number of

timesteps to complete the episode .

 (8)

• Number of ideal trajectories (): The ‘ideal’

number of timesteps for any UAV (

) is the sum of the cluster size and

one (to return to the depot).

D. Results and Evaluation

This section provides the results obtained from the full

simulations (four scenarios) of the vanilla DQN and the

DDQN global path planning algorithms. TABLE V.

presents the amendments made to the algorithms’

parameters to account for the increased problem complexity

resulting from the inclusion of obstacles and NFZs in the

mission area. TABLE VI. presents the results in terms of the

average episode reward and the number of ideal trajectories.

TABLE VI. RL ALGORITHMS PATH PLANNING RESULTS

Algorithms Metrics
Number of targets

5 10

DDQN
 113 51

Maximum 1278 2205

DQN
 76 37

Maximum 1265 2114

Fig. 13. Average Reward growth. A 2nd order Savitsky-Golay filter with

window size of 21 was used for smoothing.

Fig. 14. DDQN GMP agent predictions: a) 5-tasks b) 10-tasks

Referring to Fig. 13 which shows the improvement in

the average reward per episode over the training period, it

can be observed that the DQN algorithm performed

relatively poorly compared to DDQN for both cases.

Fig. 14 presents the planned trajectories for each of the

UAVs by the DDQN-based GMP. During training, there

were scenarios when the agent did not converge to the

optimal trajectory. This can be attributed to the stochasticity

in the model training because of the ε-greedy action

selection, the limited training episodes, the impact of the

reward-based epsilon decay strategy, and the dominance of

the nearest neighbor-seeking tendency ().

Therefore, it can be inferred that the DDQN-based GMP

is able to explore the state space more efficiently (larger

value of) and converge faster to a solution in both

scenarios. This can be attributed to its greater accuracy with

respect to estimating the values of the environment, as

explained previously.

E. Final Discussion and Scope for Future Work

Hence, RL models offer significant flexibility in

addressing missions of different types, each with different

requirements and constraints, without the need for a

mathematical model of the environment as a prior. Tunable

properties of the simulation environment such as the reward

function and the strategy of ε decay were found to

contribute greatest to this adaptiveness. Alternatively, this

can be perceived as a limitation, since, in this work, no

single combination of hyperparameters was found to be

suitable for all mission sizes and constraints. The search for

such a best set of hyperparameters would require a

computationally expensive grid search, which is common in

the field of Machine Learning (ML). This is one of the areas

of recommended future work.

In this paper, keeping in mind the application of the

UAS for small-scale VRA on farmlands, the neural network

models were made relatively shallow, thereby allowing it to

be implemented on inexpensive GPUs. For these small-scale

scenarios, the combination of geometric clustering for task

allocation and DDQN for path planning proved to work

effectively in a near-fully-distributed manner.

It is noteworthy that the overall UAV MMS was

designed to be suitable for larger scale mission scenarios as

well. However, while scaling, the impact of NP-hardness of

path planning on both the task assignment and path planning

tasks must be borne in mind and supported by greater

computational resources, larger NNs, and a more efficient

clustering algorithm.

To improve the quality of the paths provided to the local

agents by the swarm coordinator, it is mainly recommended

that the path planning problem be migrated to a Gridworld-

based environment which considers only static obstacles [9].

It is envisaged that, while this would require greater

development time, and could slow down training and

prediction time at the GCS end, it would greatly reduce the

computational requirements of the distributed local agents.

VII. CONCLUSIONS

In this paper, first, to leverage the strengths of human-

machine teaming, a flexibly autonomous UAV Mission

Management System was architected.

Second, based on the design and development work

towards building a novel Global Mission Planner (GMP) it

was observed that model-free, off-policy algorithms such as

Double Deep Q-Learning enable the GMP to be adaptive to

different mission types since it does not need a model of the

environment as a prior and its operation can be finetuned

through hyperparameters.

Overall, the prospect of using Reinforcement Learning

as a Global Mission Planner for UAV swarms carrying out

missions in rapidly developing avenues such as precision

agriculture is promising and warrants further research.

VIII. REFERENCES

[1] M. F. F. Rahman, S. Fan, Y. Zhang, and L. Chen, “A

comparative study on application of unmanned aerial

vehicle systems in agriculture,” Agric., vol. 11, no. 1,

pp. 1–26, 2021, doi: 10.3390/agriculture11010022.

[2] B. Liu, “Recent Advancements in Autonomous Robots

and Their Technical Analysis,” Math. Probl. Eng., vol.

2021, 2021, doi: 10.1155/2021/6634773.

[3] P. Radoglou-Grammatikis, P. Sarigiannidis, T. Lagkas,

and I. Moscholios, “A compilation of UAV applications

for precision agriculture,” Comput. Networks, vol. 172,

no. February, p. 107148, 2020, doi:

10.1016/j.comnet.2020.107148.

[4] R. W. Wohleber et al., “The impact of automation

reliability and operator fatigue on performance and

reliance,” Proc. Hum. Factors Ergon. Soc., pp. 211–

215, 2016, doi: 10.1177/1541931213601047.

[5] R. Altawy and A. M. Youssef, “Security, privacy, and

safety aspects of civilian drones: A survey,” ACM

Trans. Cyber-Physical Syst., vol. 1, no. 2, 2017, doi:

10.1145/3001836.

[6] A. Atyabi, S. MahmoudZadeh, and S. Nefti-Meziani,

“Current Advancements on Autonomous Mission

Planning and Management Systems: an AUV and UAV

perspective,” arXiv, 2020.

[7] K. Nonami, “Present state and future prospect of

autonomous control technology for industrial drones,”

IEEJ Trans. Electr. Electron. Eng., vol. 15, no. 1, pp.

6–11, 2020, doi: 10.1002/tee.23041.

[8] S. Russell and P. Norvig, Artificial Intelligence: A

Modern Approach, 3rd ed. Prentice Hall, 2010.

[9] R. S. Sutton and A. G. Barto, “An introduction to

reinforcement learning,” Decis. Theory Model. Appl.

Artif. Intell. Concepts Solut., pp. 63–80, 2011, doi:

10.4018/978-1-60960-165-2.ch004.

[10] T. Talaviya, D. Shah, N. Patel, H. Yagnik, and M. Shah,

“Implementation of artificial intelligence in agriculture

for optimisation of irrigation and application of

pesticides and herbicides,” Artif. Intell. Agric., vol. 4,

pp. 58–73, 2020, doi: 10.1016/j.aiia.2020.04.002.

[11] J. Campos, M. Gallart, J. Llop, P. Ortega, R. Salcedo,

and E. Gil, “On-Farm Evaluation of Prescription Map-

Based Variable Rate Application of Pesticides in

Vineyards,” Agronomy, vol. 10, no. 1, p. 102, 2020, doi:

10.3390/agronomy10010102.

[12] W. P. Coutinho, M. Battarra, and J. Fliege, “The

unmanned aerial vehicle routing and trajectory

optimisation problem, a taxonomic review,” Comput.

Ind. Eng., vol. 120, no. April, pp. 116–128, 2018, doi:

10.1016/j.cie.2018.04.037.

[13] D. Rojas Viloria, E. L. Solano-Charris, A. Muñoz-

Villamizar, and J. R. Montoya-Torres, “Unmanned

aerial vehicles/drones in vehicle routing problems: a

literature review,” Int. Trans. Oper. Res., vol. 28, no. 4,

pp. 1626–1657, 2021, doi: 10.1111/itor.12783.

[14] B. Alidaee, H. Gao, and H. Wang, “A note on task

assignment of several problems,” Comput. Ind. Eng.,

vol. 59, no. 4, pp. 1015–1018, 2010, doi:

10.1016/j.cie.2010.07.010.

[15] M. Nieuwenhuisen and S. Behnke, “Layered mission

and path planning for MAV navigation with partial

environment knowledge,” Adv. Intell. Syst. Comput.,

vol. 302, no. July, pp. 307–319, 2016.

[16] G. Rudnick and A. Schulte, “Scalable autonomy

concept for reconnaissance UAVs on the basis of an

HTN agent architecture,” 2016 Int. Conf. Unmanned

Aircr. Syst. ICUAS 2016, pp. 40–46, 2016, doi:

10.1109/ICUAS.2016.7502534.

[17] Z. ZHEN, P. ZHU, Y. XUE, and Y. JI, “Distributed

intelligent self-organized mission planning of multi-

UAV for dynamic targets cooperative search-attack,”

Chinese J. Aeronaut., vol. 32, no. 12, pp. 2706–2716,

2019, doi: 10.1016/j.cja.2019.05.012.

[18] W. Yao, N. Qi, N. Wan, and Y. Liu, “An iterative

strategy for task assignment and path planning of

distributed multiple unmanned aerial vehicles,” Aerosp.

Sci. Technol., vol. 86, pp. 455–464, 2019, doi:

10.1016/j.ast.2019.01.061.

[19] J. L. Sanchez-lopez, H. Bavle, and C. Sampedro,

“AEROSTACK : An Architecture and Open-Source

Software Framework for Aerial Robotics,” 2016.

[20] M. A. Khan, I. M. Qureshi, and F. Khanzada, “A hybrid

communication scheme for efficient and low-cost

deployment of future flying AD-HOC network

(Fanet),” Drones, vol. 3, no. 1, pp. 1–20, 2019, doi:

10.3390/drones3010016.

[21] A. T. Azar et al., “Drone deep reinforcement learning:

A review,” Electron., vol. 10, no. 9, pp. 1–30, 2021,

doi: 10.3390/electronics10090999.

[22] X. Li, Y. Zhao, J. Zhang, and Y. Dong, “A Hybrid PSO

algorithm based Flight Path Optimization for Multiple

Agricultural UAVs,” 2016, doi:

10.1109/ICTAI.2016.107.

[23] S. Ann et al., “Area Allocation Algorithm for Multiple

UAVs Area Coverage Based on Clustering and Graph

Method,” IFAC-PapersOnLine, vol. 48, no. 9, pp. 204–

209, 2015, doi: 10.1016/j.ifacol.2015.08.084.

[24] V. Mnih et al., “Playing Atari with Deep Reinforcement

Learning,” 2013, [Online]. Available:

http://arxiv.org/abs/1312.5602.

[25] H. Van Hasselt, A. Guez, and D. Silver, “Deep

reinforcement learning with double Q-Learning,” 30th

AAAI Conf. Artif. Intell. AAAI 2016, pp. 2094–2100,

2016.

[26] V. Mnih et al., “Human-level control through deep

reinforcement learning,” Nature, vol. 518, no. 7540, pp.

529–533, Feb. 2015, [Online]. Available:

http://dx.doi.org/10.1038/nature14236.

[27] M. Theile, H. Bayerlein, R. Nai, D. Gesbert, and M.

Caccamo, “UAV coverage path planning under varying

power constraints using deep reinforcement learning,”

arXiv, pp. 1444–1449, 2020, doi:

10.1109/IROS45743.2020.9340934.

[28] R. Xie, Z. Meng, L. Wang, H. Li, K. Wang, and Z. Wu,

“Unmanned Aerial Vehicle Path Planning Algorithm

Based on Deep Reinforcement Learning in Large-Scale

and Dynamic Environments,” IEEE Access, vol. 9, pp.

24884–24900, 2021, doi:

10.1109/ACCESS.2021.3057485.

[29] D. P. Kingma and J. Ba, “Adam: A Method for

Stochastic Optimization.” 2014, [Online]. Available:

http://arxiv.org/abs/1412.6980.

[30] A. Paszke et al., “PyTorch: An Imperative Style, High-

Performance Deep Learning Library,” in Advances in

Neural Information Processing Systems 32, H. Wallach,

H. Larochelle, A. Beygelzimer, F. d\textquotesingle

Alché-Buc, E. Fox, and R. Garnett, Eds. Curran

Associates, Inc., 2019, pp. 8024–8035.

[31] D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C.

Sewell, “Branch-and-bound algorithms: A survey of

recent advances in searching, branching, and pruning,”

Discret. Optim., vol. 19, pp. 79–102, 2016, doi:

10.1016/j.disopt.2016.01.005.

