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Abstract— The prevalence of Unmanned Aerial Vehicles in 

precision agriculture has been growing rapidly. This paper 

tackles the UAV global mission planning problem by first 

incorporating a greater capacity for human-machine teaming 

in the design of a flexibly autonomous, near-fully-distributed 

Mission Management System for UAV swarms. Subsequently, 

to maximize the efficiency with which missions are carried out, 

the two problems of global mission planning: task 

assignment/routing and path planning, were solved together, 

for small problem sizes, by an integrated solution. This consists 

of a geometric clustering algorithm which prioritizes the 

minimization of overall mission time, and an off-policy, model-

free Temporal Difference Learning global agent capable of 

learning about an initially unknown mission environment 

through simulations. The latter component makes the solution 

adaptive to missions with different requirements.  

Keywords—Reinforcement Learning, Temporal Difference 

Learning, UAV, Global Mission Planning, Precision Agriculture. 

I. INTRODUCTION 

 

Unmanned Aerial Vehicles (UAVs), or drones, are aerial 

robots that can support and transport cameras, 

communication equipment, sensors, and other payloads 

specific to the mission requirements. UAVs can be 

classified into three main types based on their profile and 

propulsion method as fixed-wing, single-rotor, multi-rotor, 

and hybrid fixed-wing Vertical Take-off and Landing 

(VTOL) [1]. Although originally, they were primarily 

employed for ‘dull, dirty, or dangerous’ [2] missions, due to 

their increasing networking capabilities, ‘intelligence’ and 

payload diversity, their benefits have been realized for 

broader applications in the civil domain such as 

photography, construction, logistics, remote surveillance, 

precision agriculture etc. 

 

To cope with the expected world population of 9 billion 

by 2050, there is a need for a 70% increase in agricultural 

yield and products. UAVs and other Information and 

Communication Technologies (ICT) such as broadband 

connectivity, Internet of Things (IoT), sensors etc., are 

currently being leveraged to help the agricultural sector 

manage crops and resources more efficiently [3]. This falls 

into the domain of Precision Agriculture (PA) which is the 

use case selected for this paper.  

 

PA’s objectives are as follows: (i) to increase the yield 

of crops; (ii) to improve the quality of products; (iii) to 

make more efficient use of agrichemical products; (iv) to 

save energy; and (v) to protect the physical environment 

against pollution [3].  

UAVs are particularly useful since they can grant the 

farmers insights into spatially and temporally varying data 

regarding the crop’s health and nutrient requirements, soil 

composition, topography etc., thereby allowing the creation 

of more productive farming practices [3]. 

 

In this paper, first, a flexibly autonomous Unmanned 

Aerial System (UAS) swarm architecture for mission 

management is proposed. It is designed to provide it with a 

capability to adapt to the intricacy and reliability 

requirements of the mission. This is achieved by extracting, 

integrating, and repurposing state-of-the-art architectural 

elements from the literature. Subsequently, to address the 

prevalent challenges of limited endurance and drone 

operator fatigue [4], a swarm global mission planner (GMP) 

is designed and developed using algorithms from the field of 

Reinforcement Learning (RL). The overall aim of this work 

is to increase the efficiency of UAVs for short missions.  

 

The contributions of this paper are three-fold: 1) 

highlighting the importance and relevance of the field of 

precision agriculture; 2) designing a flexibly autonomous 

UAV mission management architecture; and 3) developing 

an adaptive, deep RL-based global mission planning 

algorithm architected using traditional Object-Oriented 

Programming principles, combined with a simple geometric 

clustering algorithm to increase system decentralization. 

 

II. TECHNICAL BACKGROUND 

A. Unmanned Aerial Systems 

 

UASs comprise the entire ecosystem that enables a UAV 

to function. Broadly, they consist of three principal sub-

systems as demonstrated by Fig. 1 [5]: 

• Aerial platform: airframe, navigation system (flight 

controller, autopilot, localization (GPS/GNSS), 

inertial system), power and propulsion system 

(actuators), and payload(s). The flight controller is 

the central processing unit of the drone. 

• Ground Control Station (GCS): human-machine 

interface platform e.g., portable remote control, full-

fledged command station etc., human supervisor(s), 

and other relevant software for high-level mission 

planning, control, and data exchange in real time. 

• Communication system: transmission and reception 

equipment selected according to GCS-swarm and 

intra-swarm operating distance, and environmental 

conditions.  
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Fig. 1. High-level UAS architecture [5] 

 

 
Fig. 2. RL Agent seeks to maximize cumulative reward obtained 

 

B. Intelligent Agents and Reinforcement Learning 

 

Autonomous UAVs, by definition, can operate according 

to a predefined mission plan without human intervention 

[6]. The level of autonomy of UAVs is typically divided 

into Classes ‘A’ to ‘E’, with ‘E’ representing fully-remote-

controlled, and ‘A’ representing fully-autonomous operation 

[7]. Autonomy is capable of easing operator workload, 

reducing error rate associated with attention-intensive 

control tasks, enabling faster response to developing 

operational conditions due to eliminated datalink time loss, 

optimizing battery usage, and improving landing accuracy. 

 

In the domain of Artificial Intelligence (AI), each UAV 

can be abstracted to being an intelligent agent which is a 

goal-oriented, self-governing entity that perceives its 

environment through sensors and influences it using 

actuators. There are five main types of agents: simple reflex, 

model-based, goal-based, utility-based, and learning [8]. In 

swarm-based systems, agents also incorporate a social layer 

for communication with peer agents.  

 

The two architectures of interest in this paper are 

utility-based and learning agents. Utility-based agents 

choose actions that maximize their utility function/internal 

performance measure. In addition to considering the 

importance of mission goals, they assign ‘value’ to states in 

the world. This allows them to reach the goal optimally [8]. 

 

Reinforcement Learning, a branch of AI, deals with the 

‘learning’ problem for intelligent agents. RL agents search 

for more effective ways to understand and navigate around 

initially unknown environments by learning from the impact 

of their interactions [9]. The fundamental schematic of an 

RL agent working is shown in Fig. 2.  

 
Fig. 3. Types of agricultural drones [10] 

TABLE I.  MAIN PRECISION AGRICULTURE PRACTICES [3] 

Process Description 

Production mapping 
Crop efficacy calculation and 
identification of production 

determining factors. 

Soil mapping 
Determination of the variability of the 
soil’s chemical composition. 

Electrical conductivity 

mapping 

Identification of homogeneous soil 

management zones. 

Remote sensing (RS) 
Remote information capture by 
measuring the crops’ electromagnetic 

radiation etc. 

Variable Rate Application 

(VRA) 

Distribution of agrochemical products 
(pest control, fertilizer) in different 

doses, including water for irrigation.  

 

C. Precision Agriculture 

 

With regards to types of UAVs, multirotor (quadrotor) 

UAVs, as seen in Fig. 3, are typically selected for precision 

agriculture due to their ability to hover, take-off and land 

without considerable space (runway) or launch equipment 

(catapult etc.). However, when endurance is more important 

than maneuverability, fixed-wing UAVs are optimal. Some 

examples of common PA tasks are explained in TABLE I.  

 

Variable Rate Application (VRA) of agrochemical 

products such as fertilizers is the main interest of this paper. 

VRA is typically carried out in a map-based or sensor-based 

method. In the former case, the UAV relies on GPS and a 

product prescription map for dosage. Alternatively, 

specialized UAVs with dedicated sensors can measure the 

characteristics of each area in real-time [11]. UAV swarms 

are typically preferred due to the possibility of dividing the 

farmland into areal blocks and tackling them independently. 

These UAVs would consist of an agrochemical product 

dispenser system, which, for fluids, comprises a tank, 

pipeline, pump, and nozzle [1].  

 

D. UAV Mission Planning Taxonomy 

 

The UAV mission planning problem can be sub-divided 

into vehicle routing and trajectory optimization [12].  

 

The routing problem deals with the assignment of UAVs 

to achieve a set of predetermined tasks while optimizing 

cost, time, distance, or energy. Additional constraints may 

be in place to account for the payload weight, environmental 

effects (obstacles, wind etc.), battery life, and demand (node 



visits) [13]. There are several variants of the routing 

problem including the Capacitated Vehicle Routing Problem 

(CVRP), the Travelling Salesman Problem (TSP) and the 

UAV Task Assignment Problem (UAVTAP). However, this 

category of problems is Non-deterministic Polynomial time-

hard (NP-hard), implying that scalability is an issue [14]. 

 

The other half of mission planning is to do with 

trajectory optimization (TO) and path planning (PP). TO 

problems involve determining the trajectory of a system 

(control inputs for desired maneuvers) while minimizing a 

scalar performance index (flight time, fuel consumption 

etc.), and satisfying a set of boundary conditions and 

constraints regarding system kinematics and dynamics [12]. 

 

Path planning is a geometric problem which deals with 

finding a collision-free path from a pre-determined start 

position to a goal position, for an agent in Euclidean space. 

This problem has also been shown to be NP-hard if the 

vehicle velocity is unbounded and rotation is not considered. 

It can be solved in a discrete or continuous space. Discrete 

formulations (graph space) rely on exact or heuristic solvers 

and usually output polygonal paths, thereby warranting 

separate curvature inclusion [12].  

 

III. SYSTEM DESIGN 

A. Related Work on UAS Mission Management Systems 

 

As the name suggests, a UAS mission management 

system (MMS) is responsible for all tasks beginning from 

the receipt of mission objectives from the GCS, to the 

completion of the mission by individual UAVs in swarm.  

 

Nieuwenhuisen and Behnke [15] designed a layered 

mission planning and navigation system targeted towards 

multi-rotor micro air vehicles (MAVs) which are required to 

operate in partially observable environments. In this system, 

the GCS is tasked with high-level, low frequency mission 

planning and global path planning. Subsequently, an 

allocentric map is passed onto the MAVs for local path 

refinements and obstacle avoidance at higher frequencies.  

 

Rudnick and Schulte [16] proposed an agent-based 

architecture which allows a range of human independence/ 

control levels over the UAV. In this scenario, the planning is 

carried out by a Hierarchical Task Network (HTN). Tasks 

allowed higher levels of independence are placed higher in 

the tree. Importantly, the operator is offered guided access 

to the HTN to prevent jeopardisation of the mission intent.  

 

The design of a multi-drone UAS MMS also entails the 

specification of the control architecture. Compared to a 

centralized system, it has been shown that distributed 

control results in higher reliability, and requires lower 

computational resources and communication [17], [18]. 

 

However, of greatest interest in this paper is the work 

by Sanchez-lopez et al. on ‘AEROSTACK’ [19]. This is 

full-fledged mission management architecture that offers the 

benefits of high mission autonomy, versatility and swarm 

operation. It is offered as an open-source package which 

contains a system architecture and a multi-purpose software 

framework. It consists of five layers: 

• Social layer: for intra-UAS communication. 

• Reflective layer: for supervision of other layers, to 

assess if the system is progresssing towards its 

goals, and for troubleshooting the current position 

of the agent.  

• Deliberative layer: for generation of global 

solutions for mission planning and path planning.  

• Executive layer: for generation of instructions to 

the reactive layer based on the inputs from the 

Deliberative layer.  

• Reactive layer: for low-level control through sensor 

(percept) – actuator (action) loops. 

 

B. Core System Requirements Specification  

 

Distilling the key priorities from the relevant literature, 

functionally, the MMS should enable the operator to 

communicate the target locations to be visited on a farm 

through a user interface. This information must then be 

passed onto a Global Mission Planner (GMP) which is part 

of the GCS software suite. The GMP’s role involves the 

following: 1) computing the optimal UAV swarm size 

through task assignment, 2) determining task sequence for 

each UAV for VRA of fertilizers without colliding with 

obstacles, 3) passing this information to a dedicated swarm 

coordinator UAV through the wireless datalink equipment.  

 

The GMP will be designed to learn (plan) the initial, 

global mission objectives before the mission commences. 

However, the MMS must provide the operator the ability to 

intervene with a mission when necessary or abort it. E.g., in 

case the operator wishes to interrupt the agricultural UAV 

VRA to carry out manual soil mapping or health monitoring.  

 

At the operational level, the architecture must facilitate 

cooperative drone working in a swarm and not be dependent 

on significant levels of communication between drones for 

completion of the mission, i.e., a near-fully-distributed 

architecture. The MMS should implement a hierarchical 

structure of mission planning, wherein the global task 

sequence is refined by the UAVs locally and adaptively in 

accordance with dynamic environmental conditions. Finally, 

the MMS must enable the storage of up-to-date knowledge 

about the position of obstacles and No-Fly-Zones.  

 

C. Proposed Architecture 

 

It is envisaged that the GMP abstract agent will have 

hybrid characteristics: utility-based and learning. Fig. 4 and 

Fig. 5 demonstrate the proposed flexibly autonomous UAS 

architecture. It possesses the following features: 

• Hierarchical mission planning workflow, with the 
GCS at the global level, the swarm coordinator at 
the interim, and the local UAVs at the bottom.  
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Fig. 4. Reconfigurable UAS Mission Management System architecture 
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Fig. 5. Architecture subcomponents: A) Global Mission Planner with  

added flexibility; B) Swarm coordinator 

 

• AEROSTACK’ backbone which can manage drone 
swarming and full autonomy inherently. 

• Flexible autonomy incorporated through software 

changes within the GMP. This leverages the 

strengths of human-machine teaming. 

 Having been constrained to a set of tasks following the 
hierarchy of mission planning, the local UAVs are able to 
operate in a near-fully-distributed manner. The in-built HTN 
and Simulation engine interface, as per [16], shown in Fig. 5, 
enable the operator to modify any of the original objectives 
without impeding the overall intent of the mission. It has 
been highlighted in the literature that this combination of 
routing and trajectory optimization is essential for increasing 
the efficiency of real-world UAV operations [12]. 

 

There is a single, assigned swarm coordinator which is 

responsible for receiving (from the GMP) and relaying the 

respective task sequences to each member of the swarm, 

supervising their progress during the mission, and 

forwarding the information back to the GCS for displaying 

to the operator. The flow of information is shown in Fig. 6.  

 

Finally, it is proposed that the intra-swarm 

communication is conducted according to a Flying Ad-hoc 

Network (FANET) layout [20], as shown in Fig. 7.  

 

Designing and developing the GMP’s routing and path 

planning algorithms for the VRA application will be the 

focus of the rest of this paper. 
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Fig. 7. Flying Ad-hoc Network configuration proposed [20] 

 

IV. PROBLEM FORMULATION 

 

Prior to designing the Global Path Planner, the farm 

environment (mission area) within which the UAS will 

operate, and the sample problem(s) to be solved, will be 

formulated and described.   

 

A. Environment Model and Mission Description 

 

The operating environment of the UAVs is modelled as 

a square grid  of size , where  is 500 meters, 

and is comprised of square cells  of 

length 1 meter. A 10-task scenario, which was one of the 

problems considered, is shown in Fig. 8. Let  denote the 

list of static obstacles, such that , 

and let denote the list of static obstacles and No-Fly-

Zones (NFZs), such that .  



 
Fig. 8. 10-target mission scenario with a central depot 

 

TABLE II.  MISSION PLANNING PROBLEM ASSUMPTIONS 

Category 
Characteristics 

Type Description of Assumptions 

UAVs 

Quantity and 

traits 

Multiple, homogeneous UAVs; 
fleet size variable; vehicles not 

capacitated. 

Modelling 

properties 

No vehicle flight dynamics 
(geometric problem only) or 

equations of motion considered; 

Dubin’s model not assumed. 

Waypoints 
Quantity Multiple, unordered. 

Constraints Single visit allowance. 

Environment 
Conditions 

Obstacles and NFZs present; no 

wind. 

Dimensionality 2D plane. 

Launching 
Quantity of 

depots 

Single, central depot; no inter-

depots. 

Time Fixed/Variable 
Time and velocity are fixed (not to 

be optimized). 

 

Thus, the only traversable spaces are the free spaces 

which are denoted by , where . 

The complete set of target states  , where 

⊆ , is finite in length ( ).  

 

The mission is formulated and constrained as per a 

standard TSP/VRP as follows. Operating from a central 

depot , a swarm of agricultural UAVs are tasked with 

visiting a subset of the targets each for fertilizer spraying in 

a near-optimal path (time and distance). Once a target is 

visited, it is added to a list  ⊆ . The motion of each 

UAV is from one state ( ) to another ( ) such that 

, , and , i.e., revisits are not allowed. 

 

Finally, as stated earlier, during the mission, the UAVs 

must avoid collisions with obstacles and other UAVs, and 

must not enter the pre-defined No-Fly Zones (NFZs). Three 

mission environments were created: 5, 10 and 20 tasks. 

TABLE II. presents the key assumptions made. 

 

B. Agent-Based Problem Formulation 

 

The fundamental building block of RL is a Markov 

Decision Process (MDP) [9], and it can be defined by the 

tuple:  with state space , action space , reward 

function , and probabilistic transition function  mapping 

from . For finite horizon MDPs, the time 

index  is used as subscript.  

 

The agent’s observation at each time step in the 

simulation can be represented by , which 

consists of two elements: 

• contains the current position of the agent 

in one-hot-encoded format, where  represents the 

Boolean domain {0, 1}. 

•  contains the set of visited positions of 

the agent at time . Once a task is completed, its 

position in  is marked as TRUE. 

  (1)  

Since the positions of obstacles are not represented 

within the state space, this problem can be categorized as a 

Partially Observable MDP (POMDP). Additionally, since 

the agent needs to remember the set of tasks it has already 

completed and the rewards are ‘non-stationary’, it is 

essential to pass  to the agent. This makes the problem 

Markovian, thereby preventing the need for ‘memory’.  

 

Since the agent jumps from task-to-task, neglecting the 

interim states, the action space can be defined as: 

 

  (2)  

In model-free RL, there is no need to know the 

probabilistic transition function, and hence it has been 

preferred in the literature in most cases of UAV path 

planning where the environment’s mathematical model is 

unknown as a prior [21]. The final element of the MDP is 

the reward function . It was designed as follows: 

•  which represents the penalty (negative) given 

to the agent upon attempting to do a task it is not 
allowed to. This would account for crashes into 
obstacles and NFZs. 

•  which represents the bonus (positive) given 

when the agent completes a task appropriately.  

 Hence, the narrowed down problem scope can be 
formally divided into two parts: 1) allocate tasks to a suitable 
number of UAVs for the mission. Each UAV (  would 
therefore need to perform    ,        

2) plan a path for each UAV such that it visits each task only 
once, does not collide with obstacles, NFZs or other UAVs, 
and returns to the depot. 

 

V. ALGORITHM DEVELOPMENT 

A. Related Work on Task Allocation Algorithms 

 

With regards to the objective of task allocation, Li et al 

[22] developed a Variable Neighborhood Descent-enhanced 

Particle Swarm Optimization algorithm for the flight path 

optimization of multiple agricultural UAVs. Their 



conclusion was that for point-to-point missions, it is more 

efficient to minimize mission time by minimizing the length 

of the longest UAV path, as opposed to total distance.  

 

In a similar line of work, Ann et al [23] devised an area 

allocation algorithm for the coverage path planning problem 

of multiple UAVs based on the clustering (K-means) and 

the graph method. Their algorithm enabled the division of a 

mission zone into multiple collision-free sub-areas 

consisting of obstacles, each covered by a different UAV.  

 

These two works suggest that geometric clustering 

approaches like K-means could be sufficient for task 

allocation in a UAV MMS. 

 

B. Background of Reinforcement Learning Algorithms 

 

RL algorithms are particularly suitable for sequential 

decision-making problems like path planning. Generically, 

RL agents search for an optimal behavior policy , that 

consistently maximizes their reward when interacting with 

the environment [9]. Temporal Difference (TD) Learning 

refers to the category of algorithms in which the agents 

update their estimates of the value function  and action-

value function , as per the Bellman equations, using only 

previously learned estimates and the observed reward  

via bootstrapping [9].  

 

Q-learning is a model-free, off-policy, TD Learning 

technique. Its premise is the iterative improvement of the  

function to guide and evaluate the process of learning . As 

shown in Fig. 2 earlier, the agent does this by sequentially 

observing its current state   , performing an action 

 according to its current policy , 

receiving a reward , and repeating the process 

at  [9]. The Q-update formula for finding the optimal 

policy is given by the following two equations.  

 

  (3)  

  (4)  

The selection of the maximum Q-value at time  is 

attributed to the greedy strategy used for finding the optimal 

policy.  refers to the learning rate of the algorithm.  

 

Q-learning suffers from issues regarding lack of 

generalization and scalability when implemented using a 

two-dimensional ( ) lookup table. One well-known 

solution to this is a Deep Q Network (DQN) which utilizes a 

multi-layered neural network Q-function approximator [24]. 

However, for this paper, since DQNs have been proven to 

overestimate  and  due to the  operator, a Double 

DQN (DDQN) algorithm [25] was narrowed down on.  

 

To improve computational stability, Mnih et al [26] 

suggested the simultaneous use of two separate networks: a 

policy network (with parameters ) and a target network 

( ); and experienced replay.  

 
Fig. 9. Neural network architecture of a DQN 

 

The NN takes the agent’s current state  as input, and 

outputs the vector . The target network has the 

same structure as the original (online/policy) network, 

however,  are updated/copied only every  steps from . 

On the other hand, experience replay is a uniform random 

sampling technique that was proposed to reduce correlations 

in the training data which is otherwise sequential. The 

agent’s experience is typically stored in a finite replay 

buffer  in a quadruple format: ( ) [25]. The DDQN 

TD target is shown below in: 

 

  (5)  

The novelty introduced by DDQN is that the TD target is 

determined by gathering the  values associated with the 

action selected by the policy network [25]. 

 

A recent work by Theile et al [27] addressed the 

coverage path planning problem using a DDQN. Their 

network architecture interprets 3-channel map-like input 

through convolutional layers to generate the observation.  

  

More recently, Xie et al [28] formulate UAV path 

planning as a POMDP. They use recurrent neurons to handle 

the partial observability by extracting crucial information 

from historical state-action pairs, and convolutional neurons 

to capture spatial feature information from the observation 

prior to determining the Q values of a state. This is referred 

to as a DRQN algorithm.  

 

Therefore, the literature suggests that the DDQN 

algorithm is highly relevant for the path planning problem, 

and that the network can be combined with convolutional or 

recurrent neurons to provide it with secondary capabilities.  

 

C. Double Deep Q-Learning Model and Simulation Setup 

 

The DQN neural network architecture shown in Fig. 9  

below was adopted for the policy network and the target 

network, and hence, the DDQN-based agent was created.  

 

Two 2D convolutional layers with a flat kernel of size 

(1x2) are used to extract the spatial features from the agent’s 

state  tensor. The resulting tensor of shape (8x1x19), for, 

say a 20-task problem, is flattened prior to being passed to a 



densely connected layer for reshaping into the action space 

’s dimensions (1 x 21). The resulting vector represents the 

predicted  values corresponding to each state-action pair at 

time .  

 

Action selection at each step is carried out based on the 

predicted  values from the policy network according to an 

-greedy algorithm as shown below.  refers to the 

probability of a case occurring. 

 

 
 

(6)  

 

The -greedy algorithm is one of the ways to solve the 

exploration-exploitation dilemma during agent training [9].  

 

During each training step, as per the standard neural 

network training procedure, the loss is computed for each 

batch sampled from , and the network parameters ( ) are 

trained through backpropagation by an optimizer. For this 

paper, the Huber Loss function was selected since it 

combines the beneficial properties of both, Mean Absolute 

Error (MAE) and MSE). It is represented by: 
 

 
 

(7)  

 

Adam [29] was selected as the optimizer due to its 

robustness and limited requirement for hyperparameter 

optimization resulting from as a result of its adaptive 

learning rate selection.  

 

The simulation environment was designed in Python. 

The PyTorch library [30] was used for designing the neural 

networks and the training infrastructure.  

 

The elbow point method was selected for use in tandem 

with K-means clustering to determine the optimal number of 

UAVs ( ) needed. This method seeks to trade-off the 

minimization of the Within Cluster Sum of Squares (WCSS) 

with the number of clusters. Clustering was repeated 

iteratively to ensure that each task was reachable within 

each cluster, and the UAV had a safe path to the depot at the 

end of the mission.  

 

With respect to task assignment, to prevent collisions, 

some of the edges were labelled as ‘blocked paths’ and 

associated with a negative reward. They were determined by 

comparing the closest point of approach between each path 

and the obstacles and NFZs with a threshold of 10 meters. 

 

 In Object-Oriented Programming terms, the Agent and 

Environment were created as two separate classes. The 

interaction between the agent and the environment objects is 

demonstrated in Fig. 10.  

 

The training was set to run for several hundred or a 

thousand simulation episodes, and each episode was run for 

up to 150 timesteps or until all the agents completed their 

designated tasks and reached the goal state (depot).  
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Fig. 10. Object-Oriented Programming-inspired structure of the    

simulation environment 
 

 
Fig. 11. Elbow point method shows s smooth curve with a relatively 

ambiguous elbow point 

VI. SIMULATION RESULTS AND ANALYSIS 

A. Task Allocation 

 

The implementation of the elbow point method for the 3 

different missions revealed that, for the 5-task and 10-task 

missions, the optimal UAV swarm size is 3. However, for 

the 20-task mission, the gradient was found to continue to 

decline relatively steeply beyond 3, and hence, the optimal 

swarm size was determined to be 4. Refer to Fig. 11.  

 

However, upon further analysis with regards to the 

positions of the obstacles, the algorithm revealed that, to 

provide accessibility to all tasks in the 5-task mission, a 

maximum of 2 UAVs/clusters would be possible.  

 

B. Reinforcement Learning Algorithms’ Validation 

 
 

To validate the RL algorithms, the problem was 

simplified to a single agent scenario, and the blocked paths 

were not considered to simplify the set-up of optimization 

problem (multi-vehicle VRP).  



TABLE III.  RL ALGORITHM PARAMETERS FOR VALIDATION 

Parameter Value Justification 

Episodes (E) 
500 (5, 10) or 

1000 (20) 
Enables path exploration 

Timesteps (TS) 
100 (5, 10) or 

150 (20) 
Encourages path completion 

Optimizer LR (α) 0.001 With Adam, it is adaptive 

Discount Factor (γ) 0.99 Prioritises future rewards 

Epsilon range  

(εinit - εmin ) 
0.90 – 0.1 Encourages path exploration 

Epsilon decay (λ) 
0.995 (5, 10) 
- 0.998 (20) 

Slow exponential decay 

Decay threshold 
2x or 3x ideal 

steps 

RBES: More leeway for 20-

target scenario with 3x. 

Target model update 

frequency ( ) 
10 timesteps Stabilizes NN optimization 

Training batch size 512 timesteps 
Trade-off between optimizer 

step accuracy and compute 

Replay buffer( ) 

length 

10000 

timesteps 
At least 100 episodes’ data 

Min. Reward (  0 Only positive reinforcement 

Max. Reward (  +100 Same as above 

Distance reward 

scaler ( ) 
10 

Encourages nearest 

neighbour-seeking 

 

Branch-and-Bound (B&B) refers to a family of 

algorithms which are used to produce exact solutions to NP-

hard problems like path planning [31]. Here, since the 

number of tasks was small, the B&B method was used. Both 

the candidate RL algorithms: single DQN, and DDQN were 

set up according to the architecture shown in Fig. 9 using 

the parameters as per TABLE III.  

 

To maximize exploration, the initial  was set to a high 

value of 0.9. Subsequently, this was decayed exponentially, 

at a rate of 0.999, each time the number of timesteps to 

complete the trajectory was below a threshold. Finally, for 

the last 10% of episodes, it was manually forced to 0.1 to 

maximize consolidation of the gathered knowledge. 

 

The ‘Step’ function, shown in Fig. 10, is responsible for 

reflecting the action taken by the agent. Working with the 

‘Reward Agent’ function, it assigns a negative reward 

( , for Agent ) if the agent visits the depot 

prematurely, or attempts to repeat a task or travel via a 

blocked path. In case these conditions are not violated, it 

assigns a positive reward to each agent as follows: 1) 

compute distance ( ) from  to , 2) identify shortest 

(non-zero) path possible: , 3) calculate distance reward 

 , 4) count previously 

completed tasks: , 5) observe length of agent ’s 

subspace: , 6) calculate visited cells reward 

, and finally, 7) return 

. Hence, it is apparent that  encourages 

the agent to find its nearest neighbor from any position.  

was used as a scaling factor to trade-off with reinforcing the 

agent to complete new tasks. 

 

The results in Fig. 12 and TABLE IV. demonstrate that 

the RL algorithms perform better with smaller mission sizes. 

Additionally, it is evident that the algorithms are 

comparably accurate to the exact B&B method, and hence, 

the simulation setup methodology is validated. Overall, it 

can also be observed that the DDQN algorithm performs 

better than the ‘vanilla’ DQN.  
 

 
Fig. 12. RL algorithms’ validation for the 5-task mission 

TABLE IV.  RL AGENT VALIDATION RESULTS: DISTANCES 

Algorithms 
Number of targets 

5 10 20 

B&B 1274m 2068m 2128m 

DDQN 1274m 2174m 2975m 

DQN 1746m 2623m 3270m 

 

TABLE V.  UPDATED PARAMETERS FOR MISSION PLANNING 

Parameter Value 

Episodes (E) 1000 

Timesteps (TS) 100 

Epsilon decay (λ) 0.995 

Decay threshold 3x (5) or 4x (10)  ideal steps 

 

C. Metrics for Mission Planning Evaluation 

 

Moving forward, two of the three mission scenarios have 

been selected for comparison: 5 and 10 tasks. Two metrics 

are used to compare the performance of the candidate 

algorithms:  

 

• Average reward ( : This is calculated as the sum 

of all agents’ rewards, averaged by the number of 

timesteps to complete the episode .  
 

  (8)  

• Number of ideal trajectories ( ): The ‘ideal’ 

number of timesteps for any UAV (    

) is the sum of the cluster size and 

one (to return to the depot).  

D. Results and Evaluation 

 

This section provides the results obtained from the full 

simulations (four scenarios) of the vanilla DQN and the 

DDQN global path planning algorithms. TABLE V. 

presents the amendments made to the algorithms’ 

parameters to account for the increased problem complexity 

resulting from the inclusion of obstacles and NFZs in the 

mission area. TABLE VI. presents the results in terms of the 

average episode reward and the number of ideal trajectories.  



TABLE VI.  RL ALGORITHMS PATH PLANNING RESULTS 

Algorithms Metrics 
Number of targets 

5 10 

DDQN 
 113 51 

Maximum  1278 2205 

DQN 
 76 37 

Maximum  1265 2114 
 

 

 
Fig. 13. Average Reward growth. A 2nd order Savitsky-Golay filter with 

window size of 21 was used for smoothing. 

 

 
Fig. 14. DDQN GMP agent predictions: a) 5-tasks b) 10-tasks 

 

Referring to Fig. 13 which shows the improvement in 

the average reward per episode over the training period, it 

can be observed that the DQN algorithm performed 

relatively poorly compared to DDQN for both cases.  

 

Fig. 14 presents the planned trajectories for each of the 

UAVs by the DDQN-based GMP. During training, there 

were scenarios when the agent did not converge to the 

optimal trajectory. This can be attributed to the stochasticity 

in the model training because of the ε-greedy action 

selection, the limited training episodes, the impact of the 

reward-based epsilon decay strategy, and the dominance of 

the nearest neighbor-seeking tendency ( ). 

 

Therefore, it can be inferred that the DDQN-based GMP 

is able to explore the state space more efficiently (larger 

value of ) and converge faster to a solution in both 

scenarios. This can be attributed to its greater accuracy with 

respect to estimating the  values of the environment, as 

explained previously.  

E.  Final Discussion and Scope for Future Work 

 
 

Hence, RL models offer significant flexibility in 

addressing missions of different types, each with different 

requirements and constraints, without the need for a 

mathematical model of the environment as a prior. Tunable 

properties of the simulation environment such as the reward 

function and the strategy of ε decay were found to 

contribute greatest to this adaptiveness. Alternatively, this 

can be perceived as a limitation, since, in this work, no 

single combination of hyperparameters was found to be 

suitable for all mission sizes and constraints. The search for 

such a best set of hyperparameters would require a 

computationally expensive grid search, which is common in 

the field of Machine Learning (ML). This is one of the areas 

of recommended future work. 

 

In this paper, keeping in mind the application of the 

UAS for small-scale VRA on farmlands, the neural network 

models were made relatively shallow, thereby allowing it to 

be implemented on inexpensive GPUs. For these small-scale 

scenarios, the combination of geometric clustering for task 

allocation and DDQN for path planning proved to work 

effectively in a near-fully-distributed manner.  

 

It is noteworthy that the overall UAV MMS was 

designed to be suitable for larger scale mission scenarios as 

well. However, while scaling, the impact of NP-hardness of 

path planning on both the task assignment and path planning 

tasks must be borne in mind and supported by greater 

computational resources, larger NNs, and a more efficient 

clustering algorithm.  

 

To improve the quality of the paths provided to the local 

agents by the swarm coordinator, it is mainly recommended 

that the path planning problem be migrated to a Gridworld-

based environment which considers only static obstacles [9]. 

It is envisaged that, while this would require greater 

development time, and could slow down training and 

prediction time at the GCS end, it would greatly reduce the 

computational requirements of the distributed local agents.  

 

VII. CONCLUSIONS 

 

In this paper, first, to leverage the strengths of human-

machine teaming, a flexibly autonomous UAV Mission 

Management System was architected.  

 

Second, based on the design and development work 

towards building a novel Global Mission Planner (GMP) it 

was observed that model-free, off-policy algorithms such as 

Double Deep Q-Learning enable the GMP to be adaptive to 

different mission types since it does not need a model of the 

environment as a prior and its operation can be finetuned 

through hyperparameters.  

 

Overall, the prospect of using Reinforcement Learning 

as a Global Mission Planner for UAV swarms carrying out 

missions in rapidly developing avenues such as precision 

agriculture is promising and warrants further research. 
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