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Abstract: This paper focuses on the development of an explicit finite difference numerical method
for approximating the solution of the inhomogeneous fourth-order Euler–Bernoulli beam bending
equation with velocity-dependent damping and second moment of area, mass and elastic modulus
distribution varying with distance along the beam. We verify the method by comparing its predictions
with an exact analytical solution of the homogeneous equation, we use the generalised Richardson
extrapolation to show that the method is grid convergent and we extend the application of the Lax–
Richtmyer stability criteria to higher-order schemes to ensure that it is numerically stable. Finally, we
present three sets of computational experiments. The first set simulates the behaviour of the un-loaded
beam and is validated against the analytic solution. The second set simulates the time-dependent
dynamic behaviour of a damped beam of varying stiffness and mass distributions under arbitrary
externally applied loading in an aeroelastic analysis setting by approximating the inhomogeneous
equation using the finite difference method derived here. We compare the third set of simulations of
the steady-state deflection with the results of static beam bending experiments conducted at Cranfield
University. Overall, we developed an accurate, stable and convergent numerical framework for
solving the inhomogeneous Euler–Bernoulli equation over a wide range of boundary conditions.
Aircraft manufacturers are starting to consider configurations with increased wing aspect ratios and
reduced structural weight which lead to more slender and flexible designs. Aeroelastic analysis
now plays a central role in the design process. Efficient computational tools for the prediction of the
deformation of wings under external loads are in demand and this has motivated the work carried
out in this paper.

Keywords: inhomogeneous Euler–Bernoulli equation; stability analysis; high-order finite difference
schemes; aeroelasticity; comparisons with experimental data; flexible aircraft

1. Introduction

Pressures to minimise the environmental impact of air travel have led to aircraft manu-
facturers becoming focused on reducing the fuel consumption of the next generation of civil
transport aircraft. Manufacturers are starting to consider configurations with increased
wing aspect ratios and reduced structural weight, and this is leading to more structurally
flexible designs [1–4]. Engineers can no longer assume that the airframe is rigid, and it
becomes increasingly important to take account of the aeroelastic behaviour earlier in the
design process. Efficient computational tools for use at the conceptual design stage for the
prediction of the deformation of wing beams with representative physical properties under
varying external loads are now in demand. Such tools are also applicable to the aeroelastic
analysis of helicopter rotor blades and wind turbines. Recent research works related to
aeroelastic analysis were conducted by Amoozgar et al. [5], Vazhayil Thomas et al. [6],
Rajpal et al. [7], Tsushima et al. [8], Rong et al. [9], Sommerwerk et al. [10] and Qin et al. [11].
It is with these developments in mind that the present work was undertaken.
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This paper addresses the problem of finding approximate solutions to the inhomo-
geneous fourth-order Euler–Bernoulli partial differential Equation (PDE) using the finite
difference method for application to the analysis of flexible aircraft at the conceptual
design stage.

Work to exploit the Calculus and partial differential equations to analyse the strength
and deformation of structures began in the 18th Century. A good survey of the history of
this field of engineering was prepared by Timoshenko [12]. Leonhard Euler (1707–1783) and
Daniel Bernoulli (1700–1782) worked in collaboration to apply the mathematical tools of the
Calculus to the analysis of the strength and deformation of beams under an external load,
and this work was continued and refined by Claude-Louis Navier (1785–1836). A major
result of their work is the fourth-order Euler–Bernoulli PDE.

In recent decades, the Euler–Bernoulli equation has been used in engineering analysis
to predict the dynamic oscillatory behaviour of structures under loads that vary in both
space and time. In particular, the equation has been successfully applied to the prediction
of the oscillatory deformation of aircraft wings, helicopter rotor blades, wind turbines and
hydrofoils undergoing unsteady fluid-dynamic loading. Good introductions to this topic
and its application in the field of aerospace design are given by Murua and Palacios [13],
Hodges [14], Wright and Cooper [15] and Bisplinghoff et al. [16,17].

In recent years, a large amount of work has been conducted regarding the application
of the Euler–Bernoulli equation to the emerging technological field of nano-structures—
especially micro-electro mechanical systems (MEMSs). We refer the reader to the work
of Fernandez et al. [18], and for the use of changes of coordinates to take account of
very large deflections, we refer the reader to the work of Tari et al. [19]. Regarding new
techniques in the numerical solution of the equation, Scuciato et al. [20,21] used a time
domain boundary element method to solve the inhomogeneous equation for beams with
mechanical properties that are independent of length along the beam.

Of particular interest is the work of Li and Sun [22] who derived a finite difference
scheme for the Timoshenko-coupled PDEs. While the Timoshenko equations are applicable
to a wider class of problems than those of the Euler–Bernoulli equation, the work presented
in [22] contains several simplifying assumptions that means their results are only applicable
to problems where the beam stiffness E, second moment of the area of cross-section I,
Timoshenko coefficient κ, cross-sectional area A, and shear modulus G are independent of
the distance along the beam span. These assumptions were not made in the present work.

Analytic solutions exist for the homogeneous version of the Euler–Bernoulli PDE
and for certain specific boundary conditions. In contrast, solving the equation for arbitrary
boundary and initial conditions using analytic techniques is very difficult, and it is more
practical in these cases to use a numerical approach to find approximate solutions. Numer-
ical techniques based on modal analysis were widely used and a large body of knowledge
now exists for this approach. Our motivation for pursuing the work described in this paper
was a desire to avoid the a priori choice of the mode basis functions. The result was an alter-
native solution technique based on the finite difference method that makes no assumptions
regarding the modes of deformation, and does not use a component summation approach.
By developing an approximation method based on an independent theory, the two methods
can be compared and used to validate each other. In addition to the practical aspects of
comparing predictions and computational techniques, having two alternative theoretical
bases may lead to a greater depth of understanding of the underlying equation.

In this paper, we derived an analytical solution to the Euler–Bernoulli equation with
boundary conditions relevant to application in aeroelastic analysis. Other authors have
provided analytical solutions for different applications of Euler–Bernoulli and Timoshenko
equations. Kundu and Ganguli [23] carried out an analysis on the weak solution of the
Euler–Bernoulli equation taking into account an axial force. The inclusion of an axial force
term in the Euler–Bernoulli equation has particular application to the analysis of helicopter
rotor blades and wind turbine blades where the dynamics were strongly influenced by the
centrifugal force (see the work of Fleischmann et al. [24]). Li et al. [25] provided a bending
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solution of Timoshenko beams based on the solutions of the homogeneous Euler–Bernoulli
equation. Analytical formulations of the stochastic Euler–Bernoulli beam equation were
derived by Yuan [26]. One can find more analytical solutions to different applications in
the works of Miao et al. [27], Xu et al. [28], Sumelka et al. [29], Baghani et al. [30], Ma
and Gao [31], Dongming and Liu [32], Ndogmo [33], Djondjorov [34], and Elishakoff and
Livshits [35].

Reddy and El Borgi [36] proposed a formulation of the governing equations of Euler–
Bernoulli and Timoshenko beams taking into account moderate rotations. They considered
the length scales of the materials relying on the Eringen’s non-local theory using a nonlinear
finite element approach. Further details on the development of the non-local theory
of Euler–Bernoulli and Timoshenko beams were discussed by Sarkar and Reddy [37],
Khodabakhshi and Reddy [38], Fernandez et al. [18] and Roque et al. [39]. The Euler–
Bernoulli theory was also applied to the analytical and numerical investigation of the
behaviour of micro- and nanobeams (see the works of Ghayesh et al. [40]; Demir and
Civalek [41]; Rahaeifard [42]; Semnani et al. [43]; Shafiei et al. [44]; Nejad and Hadi [45];
Nejad et al. [46]; Mehdi and Nikkhah [47]; Abadi and Daneshmehr [48]; Mehdi and
Nikkhah [47]; Mehdi [49]; Eltaher et al. [50]; Roque et al. [39]; and Kong et al. [51,52]. Other
nanoscale applications have been found in the literature, and it is important to mention
that Khajeansari et al. [53] derived an explicit solution for bending nanowires using the
Euler–Bernoulli beam theory.

The consideration of time-varying load distribution is of central interest in engineer-
ing applications. The Euler–Bernoulli beams in conjunction with moving loads were
studied by Giunta et al. [54] and Prasad [55]. A dynamic analysis was carried out by
Shangand et al. [56] using a generalised finite element formulation and a time-dependent
boundary element method was employed by Scuciato et al. [20,21]. There is ongoing
research into the identification of the basis function coefficients of approximate solutions
to the Euler–Bernoulli equation which was carried out by Lerma and Hinestroza [57],
Kawano [58], Marinov and Vatsala [59,60].

In an attempt to improve fuel efficiency, aircraft manufacturers are considering wings
with much higher aspect ratios. To achieve the planform area required, such large wing-
spans are needed that folding wing tips are considered to allow access to airport gates.
The aeroelastic behaviour and design of the folding geometry and stiffness is of important
concern, and this has been investigated using a finite element approximation to the Euler–
Bernoulli equation in [61,62]. In some concepts, spring stiffness is introduced at the hinge
line for the purpose of gust alleviation, and research in this area is presented in [63,64].

We begin this paper with a short review of the Euler–Bernoulli equation and the
development of a numerical approach for solving it. For comparison purposes, the full
derivation of an analytical solution to the homogeneous version of the equation with a
very specific set of boundary and initial conditions is presented in Appendix A. The results
of computations using the new finite difference algorithm presented towards the end of
this paper will then be compared against this analytical solution, and this forms part of the
validation of the algorithm. We followed this by documenting a commonly used (but to
the best of knowledge, unpublished) systematic method for deriving expressions for finite
difference approximations of derivatives of any given degree to any given order of accuracy,
and we provided a snippet of Matlab® computer code in a dataset linked to this paper that
implements the method. A write-up of the method in the form of post-graduate teaching
notes prepared by Miskandarani can be found, e.g., in [65]. We applied the method to
the construction of an explicit finite difference solution scheme for the Euler–Bernoulli
equation for the application to the analysis of beams in the presence of time-varying
external loads with a velocity-dependent damping term and taking into account mass, the
second moment of area, and elastic modulus beam structural properties, that arbitrarily
vary with the distance along the beam.
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The Lax–Richtmyer stability criteria were applied to the scheme to derive an upper
limit on ∆t to ensure numerical stability. The concern is that such a restriction on the size
of ∆t might render this finite difference scheme computationally inefficient. However, this
concern has proved unfounded in practice. To strengthen confidence in the validity of the
scheme and its implementation, we present the results of a grid sensitivity study using the
Richardson generalised extrapolation method (as can be seen in the work of Roache in [66])
and these results demonstrated that the scheme is indeed grid convergent.

We followed this by presenting the results of three sets of computer experiments.
The first set simulated the behaviour of the unloaded beam. Careful choice of the initial and
boundary conditions allowed us to compare the results with the homogeneous analytical
solution provided in the earlier part of this paper. The second set of computer experiments
simulated the time-domain behaviour of a beam with properties chosen to represent the
slender flexible wing structure of a generic aircraft. This consisted of the stiffness and
mass distributions varying along the length of the beam, while subjected to inertial and
fluid-dynamic loading during a gust encounter. It is crucial to appreciate that in this work
the external load distribution due to the fluid-dynamic lift is dependent on the surface
geometry, which in turn depends on the beam deformation. In this way, the deformation
feeds back into the external load distribution. The third set of computer experiments was
used to validate the finite difference method against experimental data. Experiments were
conducted as part of background research at Cranfield University to measure the static
deformation of the tip of a horizontally oriented aluminium alloy beam cantilevered at
one end as different transverse point loads are applied to the opposite end. Computer
simulations were conducted with the replicated boundary conditions and the results were
compared with the experimental results.

This paper concludes by summarising the main findings and giving suggestions for
further work to expand the applicability of the methods presented.

2. Governing Equations and Solution Methodology

In this section, we develop a numerical approach for solving the inhomogeneous
Euler–Bernoulli equation. The derivation of an analytical solution to the homogeneous
version of the Euler–Bernoulli equation with simple boundary and initial conditions is
provided in Appendix A which we use in Section 3 to validate the numerical scheme
developed in this work. For the inhomogeneous equation, when the function describing
the transverse loading is taken into account, the unsteady numerical method was employed
and a stability analysis was also carried out. We assumed that (a) deformations remain
elastic which means that the deformations are small and that strain in the material remains
within the elastic range; (b) plane sections remain plane, which means that cross-sections
do not distort out of plane during bending; (c) the material properties are isotropic; and
(d) the beam is not subject to any longitudinal loading. These assumptions restrict the
validity of the Euler–Bernoulli theory to those cases where the deformation is small relative
to the length of the beam. This means that nonlinearities associated with large deflections
are neglected in the work presented here. In such cases, the beam bending theory of
Timoshenko can be considered.

Under the assumptions stated above, the Euler–Bernoulli equation can be used to
predict the dynamic deformation behaviour of a slender beam under a laterally applied
distributed load. The inhomogeneous Euler–Bernoulli equation in a rectangular Cartesian
coordinate system (see Figure 1) can be written as

∂

∂t

(
µ

∂w
∂t

)
+

∂2

∂x2

(
EI

∂2w
∂x2

)
= q(x, t), (1)

where E = E(x) is the modulus of elasticity of the beam material, I = I(x) is the second
moment of area of cross-section of the beam taken about the neutral axis parallel to the
plane z = 0, µ = µ(x) is the mass-per-unit length along the beam, the function w = w(x, t)
is the lateral deflection of the beam as a function of distance along the beam x and time t,
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and q = q(x, t) is the given external force per metre applied to the beam as a function of
distance along the beam x and time t.

Figure 1. The coordinate system of a structural beam along with the notation used in this paper.

In real-world engineering applications, mechanical damping causes the amplitude of
oscillation of a beam under a steady externally applied load to decrease over time and the
deformation tends towards an equilibrium deformation profile. To capture this behaviour,
we included a velocity-dependent damping term in our simulation. We assumed that the
mechanical damping force was linearly proportional to velocity, and directly the opposite
to the local deflection velocity. Including the damping term and re-arranging, we have:

∂2

∂t2 w(x, t) =
q(x, t)
µ(x)

− 1
µ(x)

∂2

∂x2

[
E(x)I(x)

∂2

∂x2 w(x, t)
]
− β

∂

∂t
w(x, t), (2)

where β is the non-dimensional damping coefficient.

2.1. Development of a Numerical Approach for Solving the Inhomogeneous
Euler–Bernoulli Equation

In this section, we develop a numerical scheme for solving the inhomogeneous Euler–
Bernoulli Equation (1) by using finite difference approximations. We emphasise that the
proposed approach overcomes the assumption that the deformation function is the linear
superposition of basis mode shapes, and thus we avoid the necessity of defining the shape
of the mode basis functions at the outset. The numerical scheme is applied to a single
beam experiencing a transverse load distribution q(x, t) in a single direction (see Figure 2).
We note that the load distribution q(x, t) is not a follower distribution, and therefore the
method described here is limited to conditions where values of ‖∂w/∂x‖ are small.

Geometric nonlinearities were taken into account in this work by permitting arbitrary
distributions of structural properties as a function of distance along the beam x, and these
distributions are sampled at discrete positions corresponding to the beam nodes of the
finite difference method described below. These variable structural properties are E = E(x);
I = I(x); µ = µ(x); and q = q(t, x). If the distribution of these beam properties rapidly
changes, our approach would be to increase the fineness of the discretisation and increase
the number of nodes in the finite difference scheme.
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Figure 2. The computational domain used in the beam/finite difference simulations.

The purpose of the time-marching finite difference scheme is to determine w(xi, tn+1),
given w(xi, tn), and w(xi, tn−1) for all i ∈ {0, . . . , N}, where we have adopted the sub-
script n in keeping with the convention used in finite difference schemes for indexing the
time levels. We combined finite difference approximations for the various derivatives in
Equation (1) to form the finite difference version of the Euler–Bernoulli equation and we
re-arranged the equation to obtain an expression for w(xi, tn+1) in terms of w(xi, tn) and
w(xi, tn−1) for all i ∈ {0, . . . , N}.

We emphasise that the function w(x, t) represents the deformation of the initially
straight beam, and is measured perpendicularly to the straight beam. Since no account
was taken of the change in the angle of the beam as w varies, this approach necessarily
ignores the preservation of beam length. This is an additional reason for the imposition of
the small ‖∂w/∂x‖ condition of the method.

We assume that the beam is initially at rest so that:

∂

∂t
w(xi, 0) =

∂2

∂t2 w(xi, 0) = 0, ∀i ∈ {0, . . . , N}. (3)

Using numerical techniques to propagate the geometry of the beam from one discrete
time level to the next involves solving the Euler–Bernoulli equation for the unknown
node displacement at each node. It is important to note that great care must be taken in
computing the numerical approximation of the derivatives in Equation (1). To perform
computations for nodes near the ends of the beam, it is necessary to fill the stencil beyond
the ends with artificially generated values of w. We call these artificial values "ghost" points
and we call the artificially generated nodes at which these values are taken "ghost" nodes.
We will show that contrarily to being an impediment to the method, the values of w at the
ghost points are fully determined by the boundary conditions.

We proceed to substitute for partial derivatives in the inhomogeneous Equation (2)
using finite difference expressions. Without loss of generality, we assumed ∆t is a con-
stant for all time levels and ∆x is a constant for each point along the beam. Evaluating
the inhomogeneous Euler–Bernoulli Equation (2) at the discrete coordinates xi and tn,
we obtain:

∂2

∂t2 w(xi, tn) =
q(xi, tn)

µ(xi)
− 1

µ(xi)

∂2

∂x2

[
E(xi)I(xi)

∂2

∂x2 w(xi, tn)

]
− β

∂

∂t
w(xi, tn). (4)
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Substituting central second-order accurate temporal and spatial discretisation schemes,
we can write the finite difference approximation of Equation (4) as

w(xi, tn+1)− 2w(xi, tn) + w(xi, tn−1)

(∆t)2 +O(∆t)2

=
q(xi, tn)

µ(xi)
− 1

µ(xi)
S(xi, tn)− β

[
w(xi, tn+1)− w(xi, tn−1)

2∆t
+O(∆t)2

] (5)

where xn+1 = xn + ∆x, etc., and where S is defined as

S(xi, tn) =
1

(∆x)2

{
F(xi−1)

[
∂2

∂x2 w(xi−1, tn)

]b

− 2F(xi)

[
∂2

∂x2 w(xi, tn)

]c

+ F(xi+1)

[
∂2

∂x2 w(xi+1, tn)

] f}
+O(∆x)

(6)

where the superscripts b, c, and f denote backward, central, and forward second deriva-
tives to third-order accuracy, respectively, and where F(xi) = E(xi)I(xi). For the three
second-degree spatial derivatives in Equation (6), we employed third-order accurate finite
difference discretisation schemes, and we write:

S(xi, tn) =
1

(∆x)4

{
− 1

12
F(xi−1)w(xi−4, tn) +

1
3

F(xi−1)w(xi−3, tn)

+

[
1
2

F(xi−1) +
1
6

F(xi)

]
w(xi−2, tn)

+

[
−5

3
F(xi−1)−

8
3

F(xi)

]
w(xi−1, tn)

+

[
11
12

F(xi−1) + 5F(xi) +
11
12

F(xi+1)

]
w(xi, tn)

+

[
−8

3
F(xi)−

5
3

F(xi+1)

]
w(xi+1, tn)

+

[
1
6

F(xi) +
1
2

F(xi+1)

]
w(xi+2, tn)

+
1
3

F(xi+1)w(xi+3, tn)−
1
12

F(xi+1)w(xi+4, tn)

}
+O(∆x),

(7)

where the central third-order accurate spatial second-degree derivative in Equation (6) is
estimated by

f (2)(x) ≈−
1

12 f (x− 2∆x) + 4
3 f (x− ∆x)

(∆x)2

+
− 5

2 f (x) + 4
3 f (x + ∆x)− 1

12 f (x + 2∆x)

(∆x)2

+O(∆x)3,

(8)

the backward third-order accurate scheme is estimated by

f (2)(x) ≈−
1

12 f (x− 3∆x) + 1
3 f (x− 2∆x)

(∆x)2

+
1
2 f (x− ∆x)− 5

3 f (x) + 11
12 f (x + ∆x)

(∆x)2

+O(∆x)3,

(9)
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and the forward third-order accurate discretisation is estimated by

f (2)(x) ≈
11
12 f (x− ∆x)− 5

3 f (x) + 1
2 f (x + ∆x)

(∆x)2

+
1
3 f (x + 2∆x)− 1

12 f (x + 3∆x)

(∆x)2

+O(∆x)3.

(10)

The process of forming the finite difference representation of a partial differential
equation requires that each derivative in the original equation be replaced by a finite
difference approximation of a given order of accuracy. The order of accuracy directly affects
the number of terms in the Taylor expansion that are taken into account. It can be a laborious
task to derive these approximations by hand. We used an algorithm suitable for computer
automation in the derivations of the expressions in Equations (8)–(10). Such algorithms are
frequently taught in university courses but we did not find them in the published literature.
For this reason, we included a derivation of the algorithm in Appendix B. A Matlab® script
that implements this algorithm can be found in the MDPI code database (see Appendix E).

A specific combination of left, centre, and right finite differences are contained in
Equation (6). This choice of biases is largely based on our computational experience.
We tried to use other combinations of biases, but these attempts exhibited unexpected
oscillatory characteristics that do not correspond to physically realistic behaviour found
in the experiment. For example, replacing the biases in Equation (6) with centred finite
differences throughout results in the wild unbounded continual oscillatory behaviour of
the function w that appears right from the start of the simulation. The authors believe that
the suitability of the choice of biases in the different terms is associated with the route of
information propagation through the algorithm. To illustrate our heuristic justification, we
present plots of stencils of the nodes used in two different simulations (see Figures 3 and 4).
A derivative sampling scheme that gives rise to wild oscillatory behaviour is presented in
Figure 3 and the derivative sampling finally chosen for this work is shown in Figure 4.

Figure 3. Fourth-order derivative bias stencil for wild oscillatory behaviour.
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Figure 4. Fourth-order derivative bias stencil for good agreement with physical behaviour.

It is important to note that the oscillatory scheme (see Figure 3) required the use
of third-order accuracy for the approximation of both second-degree derivatives, while
the physically realistic scheme (see Figure 4) only requires third-order accuracy for the
approximation of the first second-degree derivative. This suggests that taking higher-order
accuracy alone does not lead in itself to the better capture of physical phenomena.

Re-arranging Equation (5) and dropping the order terms gives:

w(xi, tn+1) ≈
1

1 + β∆t
2

[
(∆t)2

µ(xi)
q(xi, tn)−

(∆t)2

µ(xi)
S(xi, tn)

+

(
β∆t

2
− 1
)

w(xi, tn−1) + 2w(xi, tn)

]
,

(11)

where S(xi, tn) is given by Equation (7). The stencil of Equation (11) is illustrated in
Figure 5.

Figure 5. Stencil for the spatial and temporal discretisation of the function w in the finite differ-
ence scheme.

The outputs of the algorithm are approximations of the deflection function w at
discretely sampled intervals along the length of the beam x and at discretely sampled times
t greater than 0. In the next subsection, we derive sufficient criteria for the finite difference
scheme to be stable.
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2.2. Extension of the Lax–Richtmyer Stability Criteria to the Fourth-Order
Euler–Bernoulli Equation

There are several established methods for determining conditions on the spatial step
size ∆x and the time-step size ∆t in PDEs such that instabilities are avoided. An existing
method suitable for use in explicit parabolic finite difference schemes of second-order
linear PDEs is given in [67].

In order to assure the stability of the fourth-order Euler–Bernoulli equation presented
in this paper, we propose to extend the application of the Lax–Richtmyer stability criteria to
higher-order schemes to obtain an upper limit on ∆t which is dependent on ∆x. We focus on
the coefficient of the w(xi, tn) term in Equation (11). According to the Lax–Richtmyer criteria,
the finite difference scheme will likely be stable if the coefficient has a positive pre-sign.

First, considering the multiplicative term in Equation (11), we see that:

1

1 + β∆t
2

> 0 (12)

for all β > 0 and all ∆t > 0, so it remains to consider the coefficients inside the square
braces in Equation (11). Grouping all terms in w(xi, tn) and explicitly writing this condition,
we require that:

2− 1
µ(xi)

(∆t)2

(∆x)4

[
11
12

F(xi−1) + 5F(xi) +
11
12

F(xi+1)

]
> 0, (13)

which leads to the inequality for a stable time-step size of the discretised Euler–Bernoulli
equation given by

∆t < (∆x)2

√
2µ(xi)

11
12 F(xi−1) + 5F(xi) +

11
12 F(xi+1)

. (14)

Since this condition must hold for the whole beam, we see that ∆t must satisfy:

∆t < min
i∈{0,...N}

{
(∆x)2

√
2µ(xi)

11
12 F(xi−1) + 5F(xi) +

11
12 F(xi+1)

}
. (15)

The Lax–Richtmyer stability criteria states that the pre-signs of all coefficients of w depend-
ing on ∆x and ∆t on the right-hand side of Equation (11) should be positive. Taking the
coefficient of w(xi−4, tn) as an example, we have:

aw(xi−4,tn) = −
(

1

1 + β∆t
2

)
1

µ(xi)

(∆t)2

(∆x)4

[
− 1

12
F(xi−1)

]
, (16)

which is always positive for all ∆x and ∆t by virtue of the fact that F(xj) is positive for all
j ∈ {1, . . . , N}. Similar expressions exist for the coefficients of w(xi+4, tn), w(xi−1, tn), and
w(xi+1, tn).

For the coefficients of w(xi−3, tn), w(xi−2, tn), w(xi+2, tn), and w(xi+3, tn), the coef-
ficients are negative irrespective of the choice of ∆x and ∆t, and so the Lax–Richtmyer
stability criteria can never be satisfied by these terms. It may appear that this jeopardises
the stability of the algorithm. However, some terms with a negative pre-sign are in fact
necessary; otherwise, the function w(xi, tn) would be a monotonic increasing function of xi
and tn.
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2.3. Specification of Boundary Conditions and Values of Functions F and W at the Ghost Nodes

As illustrated in Figure 6, to compute w(xi, tn+1) for i ∈ {1, . . . , N} in Equation (11),
two ghost values of F are required beyond each end of the beam. We defined these values
by linear extrapolation as

F(x−1) = F(x0) + [F(x0)− F(x1)],

F(x−2) = F(x−1) + [F(x−1)− F(x0)],
(17)

and:

F(xN+1) = F(xN) + [F(xN)− F(xN−1)],

F(xN+2) = F(xN+1) + [F(xN)− F(xN−1)].
(18)

Figure 6. Stencil for the function F in the finite difference index grid.

For the cantilevered beam considered in this paper, the physical boundary conditions
on w are:

w(x0, tn) = 0,
∂

∂x
w(x0, tn) = 0,

∂2

∂x2 w(xN , tn) = 0

and
∂3

∂x3 w(xN , tn) = 0 ∀n ∈ N.
(19)

To ensure that the gradient of the w function vanishes at x0, we set w(x−1, tn) =
w(x0, tn) = w(x1, tn) = 0 for all n ∈ N. We also set w(x−2, tn) = 0 for all n ∈ N so the
first and second left hand ghost points are determined by the second boundary condition.
Considering the third boundary condition, we have:

w(xN+1, tn)− 2w(xN , tn) + w(xN−1, tn)

(∆x)2 = 0 ∀n ∈ N, (20)

and re-arranging this gives:

w(xN+1, tn) = 2w(xN , tn)− w(xN−1, tn), (21)

so the first right ghost point is determined by the third boundary condition. Finally, we
consider the fourth boundary condition, and we require:

w(xN+2, tn)− 2w(xN+1, tn) + 2w(xN−1, tn)− w(xN−2, tn)

(∆x)3 = 0, (22)
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and re-arranging this gives:

w(xN+2, tn) = 2w(xN+1, tn)− 2w(xN−1, tn) + w(xN−2, tn), (23)

so the second right ghost point is determined by the fourth boundary condition. The third
and fourth left and right ghost points remain to be determined. We arbitrarily constrain the
third and fourth left-hand ghost point values of w to be zero. We set the third and fourth
right-hand ghost points using linear extrapolation as

w(xN+3, tn) = 2w(xN+2, tn)− w(xN+1, tn), (24)

and:
w(xN+4, tn) = 2w(xN+3, tn)− w(xN+2, tn). (25)

The finite difference scheme described in this paper together with the boundary
conditions were implemented in a Matlab® script which is included in the dataset linked
to this paper (see Appendix E). All simulations were performed using this script.

3. Results and Discussions
3.1. Grid Sensitivity Study for the Fourth-Order Euler–Bernoulli Equation

We begin by showing that the finite difference scheme for approximating the fourth-
order Euler–Bernoulli equation with damping is grid convergent. We present the results
of a grid sensitivity study using the Richardson generalised extrapolation method as
detailed in [66]. For this activity, we used a uniformly applied constant external load
function q(x, t) = q, a constant beam structural properties E(x) = E and I(x) = I, and a
damping coefficient β = 10 throughout. We examined the accuracy of the finite element
scheme as ∆x is varied. For each choice of ∆x, the value of ∆t is chosen such that the
Lax–Richtmyer criteria were met for the w(xi, tn) term for all i ∈ {0, . . . , N}. We performed
four simulations of the finite difference scheme and we identified variables associated with
each of the different simulations by the subscript j.

We selected four values of ∆x denoted by ∆xj for j ∈ {1, 2, 3, 4} such that:

∆x1

L
≈ 0.08,

∆x2

L
≈ 0.04,

∆x3

L
≈ 0.02 and

∆x4

L
≈ 0.01, (26)

so that, in general, ∆xj+1 ≈ ∆xj/2 for each j ∈ {1, 2, 3}. The number of nodes for each j is
given by

Nj ≈
L

∆xj
, (27)

and in order to keep the mass of the beam M constant and independent of j, the node mass
Mj(xi) = Mj is taken to be:

Mj =
M
Nj

. (28)

Now, we select a fixed time t? > t0 where t0 is the time at the start of a simulation,
and a fixed C ∈ (0, 1). Then, we define a node index ij such that ij/Nj ≈ C for each
j ∈ {1, 2, 3, 4}. In this way, the ith

j node is at approximately the same point along the beam
for all values of j. We proceeded to perform the four simulations of the finite difference
scheme, one for each ∆xj, and consider the predicted value of the function w at the point
(xij , t?) for each simulation j. For a more convenient notation, we set:

wj ≡ w(xij , t?) (29)

for each simulation.
Since the Lax–Richtmyer stability inequality in (15) contains a (∆x)2 multiplicative

term, it is clear that, as the value of ∆x reduces, a smaller step size in t must be chosen to
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ensure numerical stability. Thus, for each ∆xj, there is a corresponding stable time step
and we denote this by ∆tj. This in turn implies that the number of iterations required to
estimate wj will strongly depend on j.

Once the simulations are completed and the values of wj are known, we form the
three norms given by

n1,2 =
|w1 − w2|
|w2|

, n2,3 =
|w2 − w3|
|w3|

and n3,4 =
|w3 − w4|
|w4|

. (30)

The corresponding grid convergence indices (GCIs) Gj are then given by

Gj =
nj,j+1(

∆xj
∆xj+1

)p
− 1

, ∀j ∈ {1, 2, 3}, (31)

where p is the order of accuracy of the finite difference scheme. In our case, since the
scheme is first-order accurate in space, we set p = 1. According to the theory presented
in [66], if Gj < Gj+1 for j = 1 and j = 2, then the finite difference scheme is grid convergent.

The finite difference simulation was performed using the Matlab® script with the
parameters presented in Table 1.

Table 1. Physical parameters used in the grid convergence study of the Euler–Bernoulli finite difference scheme.

Symbol Name Vaue Units Notes

t? - 1.0 s
E Young’s modulus 70.0× 109 N/m2 Aluminium
I Second moment of area 6.67× 10−5 m4 Rectangular section, height 0.2 m, breadth 0.1 m

M Total mass 80 kg Mass evenly distributed over the nodes
β Damping coefficient 10 −
q External load 4940 N/m
C Fraction of span 0.5 −
L Beam length 10 m

The results of the simulations are presented in Table 2 below.

Table 2. Grid Convergence Index calculations.

j ∆xj ∆tj No. of Iterations ij wj No. of Nodes

1 0.833 1.0× 10−4 1.0× 104 13 1.0043 13
2 0.4 3× 10−5 3.33× 104 26 1.1881 26
3 0.2 8× 10−6 1.24× 105 51 1.2609 51
4 0.1 2× 10−6 5× 105 101 1.2957 101

The norms are then given by

n1,2 =
|w1 − w2|
|w2|

=
|1.0043− 1.1881|
|1.1881| = 0.1547

n2,3 =
|w2 − w3|
|w3|

=
|1.1881− 1.2609|
|1.2609| = 0.0577

n3,4 =
|w3 − w4|
|w4|

=
|1.2609− 1.2957|
|1.2957| = 0.0268.

(32)
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Finally, computing the GCI values, we have:

G1 =
n1,2(

∆x1
∆x2

)1
− 1

=
0.1547

1
= 0.1547,

G2 =
n2,3(

∆x2
∆x3

)1
− 1

=
0.0577

1
= 0.0577

G3 =
n3,4(

∆x3
∆x4

)1
− 1

=
0.0268

1
= 0.0268.

(33)

These are good results. We see that G1 > G2 > G3, which implies that the finite difference
scheme fulfils the criteria for grid convergence given by Richardson [66]. We are concerned
that while the values of wj demonstrate grid convergence, this analysis does not measure
the number of oscillations of the beam tip before t?. To verify whether the number of
oscillations is stable between cases, a second grid convergence study was performed
with β set to zero throughout, and the results are presented in Table 3. Table 3 includes
the extra column indicating the number of oscillations performed by the vibrating beam
during the simulation time. The spread of values of wj was explained by the fact that the
measurement was taken at different phases of oscillation. The amplitudes of oscillation
were very closely matched.

Table 3. Second Grid Convergence Index calculations.

j ∆xj ∆tj No. of Iterations ij wj No. of Nodes No. of Oscillations

1 0.8 1.0× 10−4 1.0× 104 13 −0.7165 13 5
2 0.4 3× 10−5 3.33× 104 26 3.1390 26 4.6
3 0.2 8× 10−6 1.24× 105 51 3.2071 51 4.5
4 0.1 2× 10−6 5× 105 101 2.5763 101 4.4

Figure 7 presents the beam deformation distributions for each of the four grid conver-
gence study cases at time t = t?.

Figure 7. Beam deformation distributions for the four grid convergence study cases.
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This grid convergence study was performed with the algorithms implemented in
Matlab®. On a PC with 8 Intel Core i7-7800X @3.50GHz processors, one iteration of the
fourth case of the grid convergence study (101 nodes) takes approximately five microsec-
onds to execute, as measured by the Matlab® tic and toc functions. This way, to compute
one second of beam dynamics for this case takes approximately 10 s of computation time.

In the next sub-section, we describe activities undertaken to compare the predictions
using the finite difference approach with the analytical solution.

3.2. Comparison of the Simulation Results with an Analytical Solution

Here, we compare the finite difference algorithm with the analytical solution of the
homogeneous equation derived in Appendix A. We compare the time histories of the
tip deflection of a beam without damping predicted by both approaches for the specific
boundary and initial conditions of a cantilevered beam with initial deflection equal to the
first mode shape and without an external load. The geometry and structural properties
used here are the same as for the beam in the grid convergence study presented above.

For the purposes of validating the finite difference algorithm against the homogeneous
Euler–Bernoulli equation, we start with Equation (A28) and set the initial geometry of the
beam to:

w(x, 0) = w1(x, 0)

=

(
(cos α1x− cosh α1x) +

(
sin α1L− sinh α1L
cos α1L + cosh α1L

)
(sin α1x− sinh α1x)

)
,

(34)

with H1 = 1. As such, we dramatically simplify the form of the function w(x, 0) with-
out compromising the method of validation of the finite difference method. Then, we
define the exact analytic function wa as

wa(x, t) =

(
(cos α1x− cosh α1x)

+

(
sin α1L− sinh α1L
cos α1L + cosh α1L

)
(sin α1x− sinh α1x)

)
cos

(
t

√
EI
µ

α4
1

)
.

(35)

For a beam of length L = 10 m we, find that the first positive value of α (denoted α1)
satisfies Equation (A16) to be 0.1875.

With E = 70.0× 109 (aluminium), I = 6.67× 10−5 and M = 80 (beam mass evenly
distributed over all the nodes), it follows that:

wa(x, t) =

(
(cos α1x− cosh α1x)

+

(
sin α1L− sinh α1L
cos α1L + cosh α1L

)
(sin α1x− sinh α1x)

)
cos

(
t

√
EI
µ

α4
1

)

=

(
(cos 0.1875x− cosh 0.1875x)

+

(
sin 1.8751− sinh 1.8751
cos 1.8751 + cosh 1.8751

)
(sin 0.1875x− sinh 0.1875x)

)
cos (26.857t).

(36)

Figure 8 presents the deflection of the 10-m cantilevered beam in free vibration using
Equation (36) as a function of length along the beam x and time t. Figure 9 presents a
comparison of the tip excursions predicted for this cantilevered beam in free vibration
using Equation (36) and using the finite difference algorithm presented above. It is clear
that the natural frequency of vibration predicted using the finite difference approach is
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higher than the analytical solution when fewer nodes are used, and as the number of nodes
increases, the predicted frequency decreases towards the analytical solution.

Figure 8. Analytical solution of the Euler–Bernoulli homogeneous equation for a 10-m cantilevered
beam in free vibration.

Figure 9. Comparison of the tip deflection between the analytical solution and finite difference
predictions for a 10-m cantilevered beam in free vibration.

3.3. Application of the Finite Difference Scheme to a Realistic Case of a Commercial Aircraft Wing
in a Gust Encounter

As part of the certification procedure for any new design of commercial aircraft, the de-
sign authority (manufacturer) is obliged to demonstrate that the aircraft can satisfactorily
operate when subjected to gusts and turbulence during flight. A set of standard vertical
gust velocity profiles is specified by the certification authority for use in the certification
process, and one of these profiles is often referred to as the “one minus cosine” profile.
A full description of the gust specification can be found in the Federal Airworthiness
Administration publication [68]. The one minus cosine profile is a vector field defined as
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~v(x, y, z) =

{
0~i + 0~j +

(
M
2 (1− cos(2π(x− x0)/S))

)
~k, if x0 ≤ x ≤ x0 + S

0~i + 0~j + 0~k, otherwise,
(37)

where~i,~j, and~k are the unit vectors in the three orthogonal axes x, y, and z, respectively,
and where M and S are fixed scalar constants.

Here, we present the results of a set of simulations of the finite difference algorithm
applied to the case of a wing of a large commercial passenger aircraft encountering a one
minus cosine gust during steady forward flight to predict the vertical deformation of one
of the wings. We assumed the aircraft is symmetric with regard to the vertical centre-line
plane, and that the wings are built into a rigid fuselage; therefore, it is only necessary to
analyse one wing (the right wing in this case). We estimated distributions of mass, the
second moment of area, and Young’s modulus from the general engineering experience,
and we used an inhomogeneous source function predicted by unsteady potential flow
theory for the gust encounter. Figure 10 shows the results of the simulation that starts at
time t = 0 with zero initial deflection; that is, w(x, 0) = 0 for all x.

The Euler–Bernoulli Equation (1) models the transverse translation deformation of
the beam. It does not explicitly incorporate any coupling with twisting deformation.
In physical aero-elastic scenarios, there is strong interaction between the bending and
twisting. For the case described in this section, only bending was considered. This was
done to specifically study the finite difference method in isolation. This way, we were sure
that the dynamical deformation of the beam observed here was only due to the algorithm
presented in this paper.

An Unsteady Vortex Lattice Method (UVLM) developed by one of the authors and
implemented in the software package Flexit and described in [24] was used to predict
the inhomogeneous source function q(x, t). The UVLM was described in [69]. The gust
velocity profile (which varies with the position in the flow field) affects the boundary
conditions on the UVLM as the aircraft flies through the gust. These changes in the
boundary conditions affected the resulting predicted pressure distribution over the wing.
This change in pressure distribution in turn changes the Euler–Bernoulli source function
q(x, t), and the finite difference method predicts a change in the deflection function w(x, t)
of the wing spar. It is crucial to appreciate that this change in w(x, t) results in a change in
the wing aerodynamic geometry and a new bound vortex geometry. On the next time step,
the UVLM uses this new bound vortex geometry and the resulting pressure distribution
prediction is based on this new geometry.

The unsteady nature of the computation ensures that there is a feedback between
the fluid-dynamic forces and the wing geometry. The resulting simulation is therefore
not simply a forced vibration, but rather a full time-varying fluid–structure interaction
(FSI) simulation. In the present work, we used the Flexit software code to perform these
calculations. More details of the FSI algorithms used in this software are described in
reference [24].

For the purpose of this demonstration of the algorithm, we discretised the wing
structural beam into just eight nodes. For a typical aeroelastic analysis, many more nodes
would be used. The left-hand plot shows a snapshot of the deformation geometry at the end
of the simulation. The right-hand plot shows the wing tip deflection and the value of the
load applied along the wing as they vary throughout the simulation. The beam oscillates
at the start of the simulation as the transverse load is initially applied. The amplitude of
oscillation decreases, and at approximately 1 s, the oscillation has almost completely died
out (and the tip deflection settles at approximately 4 m). At 2.2 s, the aircraft flies into the
one minus cosine gust profile, and the potential flow theory predicts a transient increase
in the transverse load. The finite difference algorithm then predicts a sudden increase in
wing tip deflection peaking at approximately 8 m before again reducing to 4 m after the
aircraft has flown past the gust profile.
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Figure 10. Prediction of the deformation of an aircraft wing.

The algorithm presented in this paper was included in a computational scheme where
the twist and bending algorithms were executed in parallel. Implicit coupling takes place
in this scheme because at each time step, the twist of the wing changes the UVLM panel
geometry. This changes the predicted aero-dynamic pressure distribution, which in turn
modifies the transverse load distribution q(x, t) in Equation (5). This coupling is not the
immediate topic of this paper; however, the reader can see an illustration of the effect of
the twisting on bending implemented in this way, in Appendix F.

3.4. Validation of the Finite Difference Approximation for the Euler–Bernoulli Equation against
Experimental Data
3.4.1. Damping Coefficient β

For the established approach to predict the deformation of a beam using modal
analysis, Rayleigh damping is usually used, with a mass damping coefficient µ and a
stiffness damping coefficient λ. Estimates of µ and λ were established over many years by
comparison between experiment and simulation.

For the approach developed in this work, the damping term is velocity-dependent,
and we did not find a quantitative correspondence between the two damping methods.

As a result, it is difficult to estimate the correct value of the damping coefficient β
that should be used when performing simulations with the finite difference algorithm.
Structural damping is highly sensitive to the fine details of how the beam is constructed and
assembled, and it is also sensitive to temperature. However, comparing the magnitudes
of the damping force with typical external applied loads, it is clear that the effects of the
damping forces are relatively small. In simulations for the design of an aircraft wing,
the authors noted node deformation velocities of the order of 5 m per second. For a typical
value of β of 10, this results in a damping force of 50 Newtons per node, while the external
load applied to the node is approximately 1000 Newtons. Thus, the damping force accounts
for approximately 5 percent of the response of the beam. If the error in the estimate of β is
50 percent, for instance, then the error in the simulation that results will only be 2.5 percent.

3.4.2. Comparison of Static Deflection Experiment with Finite Difference Simulation

As part of a general research project being performed by the Dynamics, Control and
Simulation group at Cranfield University, experiments were conducted to determine the
steady-state equilibrium tip deflection of a scale model of an aircraft wing spar clamped at
the wing root when different transverse loads are applied at the tip. Here, we present the
results of the work we performed to compare the static deflections measured during the
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experiments with simulations performed using the finite difference algorithms presented
in this paper. Note that here we only compare the steady-state tip deflections once any
transient oscillations have died out. More examples of the comparisons of beam bending
theory with experimental data can be found in [70].

Figure 11 presents the geometry and structural properties of the wing spar model.
The scale model under investigation is very simple, and consists of a single flat 6082-T6
specification aluminium plate, nominally measuring 2 mm in thickness with a rectangular
cross-section. Accurate measurements of the sample conducted by the authors using a
micrometre showed that the actual plate thickness varied from 1.7 mm to 1.9 mm along
the length of the spar. Figure 12 shows the experimental set-up. Measurements of the tip
deflection were recorded with a resolution of 1 mm. It is estimated that the measurement
error is +/− 1 mm (2 σ).

Figure 11. Wing spar model geometry and mechanical properties.

Figure 12. Wing spar experimental set-up.

The wing spar model beam properties are also presented in Table 4.
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Table 4. Wing spar model beam properties.

Station Chord Length (m) Iy(m4) Element Mass (kg)

1 100.0000× 10−3 48.6000× 10−12 6.8760× 10−3

2 100.0000× 10−3 48.6000× 10−12 11.9109× 10−3

3 173.2233× 10−3 84.1865× 10−12 11.4449× 10−3

4 166.4466× 10−3 80.8930× 10−12 10.9789× 10−3

5 159.6699× 10−3 77.5996× 10−12 10.5130× 10−3

6 152.8932× 10−3 74.3061× 10−12 10.0470× 10−3

7 146.1165× 10−3 71.0126× 10−12 9.5810× 10−3

8 139.3398× 10−3 67.7191× 10−12 9.1151× 10−3

9 132.5631× 10−3 64.4256× 10−12 8.6491× 10−3

10 125.7864× 10−3 61.1322× 10−12 8.1831× 10−3

11 119.0096× 10−3 57.8387× 10−12 7.7172× 10−3

12 112.2329× 10−3 54.5452× 10−12 7.2512× 10−3

13 105.4562× 10−3 51.2517× 10−12 6.7852× 10−3

14 98.6795× 10−3 47.9582× 10−12 6.3193× 10−3

15 91.9028× 10−3 44.6648× 10−12 5.8533× 10−3

16 85.1261× 10−3 41.3713× 10−12 5.3873× 10−3

17 78.3494× 10−3 38.0778× 10−12 4.9214× 10−3

18 71.5727× 10−3 34.7843× 10−12 4.4554× 10−3

19 64.7960× 10−3 31.4909× 10−12 3.9894× 10−3

20 58.0193× 10−3 28.1974× 10−12 3.7958× 10−3

21 55.2031× 10−3 26.8287× 10−12 3.7111× 10−3

22 53.9721× 10−3 26.2304× 10−12 3.6265× 10−3

23 52.7411× 10−3 25.6322× 10−12 3.5419× 10−3

24 51.5101× 10−3 25.0339× 10−12 3.4572× 10−3

25 50.2791× 10−3 24.4357× 10−12 3.3726× 10−3

26 49.0482× 10−3 23.8374× 10−12 3.2879× 10−3

27 47.8172× 10−3 23.2391× 10−12 3.2033× 10−3

28 46.5862× 10−3 22.6409× 10−12 3.1186× 10−3

29 45.3552× 10−3 22.0426× 10−12 3.0340× 10−3

30 44.1242× 10−3 21.4444× 10−12 2.9494× 10−3

31 42.8932× 10−3 20.8461× 10−12 2.8647× 10−3

32 41.6623× 10−3 20.2479× 10−12 2.7801× 10−3

33 40.4313× 10−3 19.6496× 10−12 2.6954× 10−3

34 39.2003× 10−3 19.0513× 10−12 2.6108× 10−3

35 37.9693× 10−3 18.4531× 10−12 2.5261× 10−3

36 36.7383× 10−3 17.8548× 10−12 2.4415× 10−3

37 35.5073× 10−3 17.2566× 10−12 2.3569× 10−3

38 34.2764× 10−3 16.6583× 10−12 2.2722× 10−3

39 33.0454× 10−3 16.0601× 10−12 2.1876× 10−3

40 31.8144× 10−3 15.4618× 10−12 2.1029× 10−3

41 30.5834× 10−3 14.8635× 10−12 2.0183× 10−3

42 29.3524× 10−3 14.2653× 10−12 1.9336× 10−3

43 28.1214× 10−3 13.6670× 10−12 1.8490× 10−3

44 26.8905× 10−3 13.0688× 10−12 1.7644× 10−3

45 25.6595× 10−3 12.4705× 10−12 1.6797× 10−3

46 24.4285× 10−3 11.8722× 10−12 1.5951× 10−3

47 23.1975× 10−3 11.2740× 10−12 1.5104× 10−3

48 21.9665× 10−3 10.6757× 10−12 1.4258× 10−3

49 20.7355× 10−3 10.0775× 10−12 1.3411× 10−3

50 19.5046× 10−3 9.4792× 10−12 1.2565× 10−3

51 18.2736× 10−3 8.8810× 10−12 1.1719× 10−3

52 17.0426× 10−3 8.2827× 10−12 -
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In the experimental set-up, the wing was clamped ad built-in over the whole rectan-
gular area on the left of the sample, and the larger irregular area was freely cantilevered.
The geometry of the experiment, the relatively small tip loadings, and the small magnitudes
of the deflections imply that the Euler–Bernoulli PDE can give a good approximation of
the experiment.

The dynamic simulation was performed using a number of nodes ranging from 27
to 102, a damping coefficient β of 5.0, and varying time steps (always satisfying the Lax–
Richtmyer criteria), and we used the planform shape and second moment of area (Iy)
distributions of the actual test piece. Plate thicknesses ranging from 1.6 mm to 1.9 mm
were investigated. The simulation began with zero initial deflection and the prediction
was sampled after several million iterations after the oscillations completely damped out.
Table 5 presents the loading cases and the corresponding deflections measured in the
experiment and predicted by computer simulations using the finite difference algorithm.

Table 5. Comparison between measured and predicted deflections for the wing spar experiment.

Case Tip Load (N) Measured
Deflection (m)

Simulated Deflection.
Thickness 1.9 mm

Simulated Deflection.
Thickness 1.8 mm

Simulated Deflection.
Thickness 1.6 mm

0 0.000 0.026 0.0135 0.0150 0.024
1 0.098 0.029 0.0151 0.0169 0.027
2 0.196 0.033 0.0168 0.0189 0.031
3 0.294 0.036 0.0184 0.0208 0.035
4 0.392 0.039 0.0200 0.0227 0.038
5 0.490 0.042 0.0217 0.0246 0.042
6 0.687 0.048 0.0249 0.0285 0.050
7 0.981 0.056 0.0299 0.0343 0.061
8 1.177 0.062 0.0331 0.0381 0.068
9 1.373 0.069 0.0364 0.0420 0.076
10 1.471 0.071 0.0381 0.0439 0.079
11 1.668 0.076 0.0413 0.0478 0.087
12 1.962 0.086 0.0463 0.0536 0.097

The errors between the experimental results and the simulations are quite large. Figure 13
demonstrates that, as well as the magnitudes of deflection being in disagreement, there is also
disagreement in the rate of the change of deflection with the load between the experiment and
the simulations. Before passing judgement on the accuracy of the simulation, it is important
to consider factors in the set-up of the experiment that may lead to these large discrepancies.
These factors may include the impact of the inaccurate manufacture of the scale model such as
variations in plate thickness, the arrangement for the clamping of the built-in spar, the method
and accuracy of measurement of the deflection, and the existence of the pre-bend in the
spar before the tests took place. In addition, the load was applied close to the tip, and not
exactly at the tip of the beam. Figure 13 presents simulation data for a wide range of beam
thicknesses in order to demonstrate that the algorithm is stable and robust over a wide range
of input parameters.

We note that a small variation in the thickness of the aluminium sheet results in a
large change in the predicted magnitudes of deflection. This is because the thickness is
increased to the fourth power when computing the second moment of area. A change in
thickness of 5 percent leads to a change in predicted deflection of 16 percent. Then, we note
the error between the tip deflections predicted for zero tip loads and those measured in the
test. These may be partially explained if the sample had a pre-bend before the test.
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Figure 13. Experiment versus simulation.

Of more concern, however, is the difference in the slopes of the load versus deflection
curves. The slope of the simulation predictions is lower than that for the experiment,
implying that the simulation overestimates the bending strength of the beam. Finally, we
note that, as the number of nodes used in the simulation increases from 27 to 102 (for a
plate thickness of 1.8 mm), the error in the predicted displacement in fact increases.

4. Conclusions and Future Work

Here, we discuss the main conclusions concerning the finite difference method pre-
sented in this paper. The finite difference method provides an alternative approach to the
established mode shape analysis for the approximation of both the homogeneous and inho-
mogeneous versions of the Euler–Bernoulli equation. We demonstrated that the method
can be applied to the analysis of aeroelastic phenomena in aircraft. The method results in
excellent agreement with the analytical solution to the homogeneous Euler–Bernoulli equa-
tion. As the number of nodes increases, the finite difference algorithm appears to rapidly
converge to the analytical solution. By applying the method to an idealised commercial
aircraft wing subjected to external loading, we showed that the method can be applied
in the general case where E, I, µ, and ∆x arbitrarily vary with x, and where the external
load q arbitrarily varies with x and t. Indeed, the finite difference algorithm is stable and
well behaved when performed for this realistic physical case. The equilibrium deforma-
tion predicted by the finite difference algorithm appears to give poor agreement with a
particular set of experimental results. To form an accurate picture, comparison with other
experimental results is recommended. We extended the application of the Lax–Richtmyer
stability criteria to the fourth-order Euler–Bernoulli partial differential equation using a
finite difference approximation. The stability of the finite difference algorithm is highly
sensitive to the choice of forward, backward, and central finite difference approximations
to the various derivatives. This paper considered the case of a simple beam geometry with
one end cantilevered. By choosing different boundary conditions, it is possible to consider
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beams with different anchorings. The boundary conditions at the ends of the beam can
easily be controlled by setting the values of w at the ghost nodes.

In this work, we considered the deflection function w : R2 → R that describes the
scalar deflection in the z direction as a function of distance along the beam x and time t.
We can extend the range of cases that can be analysed to beams subject to external load
distributions and undergoing deflections in any direction in the yz plane (see Figure 1).
These situations can be analysed by resolving the loads in the orthogonal y and z directions,
and performing independent finite difference simulations in each of the resolved directions.
The scheme described in this paper assumes that all the beam nodes are colinear. Real
beams to be analysed in engineering applications are often not straight, and approximating
them by a straight line is not appropriate. By expressing the Euler–Bernoulli equation
in the generalised curvilinear coordinates, we can admit the analysis of beams with non-
colinear nodes. The dynamical structural behaviour of a given beam undergoing angular
rotation is different to that of the non-rotating beam. The effect of the angular velocity
of a real beam is to increase its effective stiffness and increase the natural frequencies of
vibration. By ignoring the effect of angular velocity, the predicted deformations will be too
large and the oscillatory frequencies will be too low. To use the finite difference method
for the analysis of rotating beams such as helicopter rotor blades, an extra term must be
included in the PDE to account for centrifugal forces. See Appendix C for a description
of the extra term required to take account of centrifugal forces. The effects of rotation of
the cross-sections in the xz plane can become significant when larger deformations are
experienced or when the shear modulus of the beam material is low. Developing a finite
difference approach for the Timoshenko coupled equation will significantly extend the
body of knowledge in two ways; firstly, it will provide an example of application of this
method to coupled PDEs with two unknown functions of x and t (w and ϕ); and secondly,
it will provide a second method of predicting beam deflections and a comparison of the
two methods will contribute to their validation. A description of the Timoshenko-coupled
PDEs can be found in Appendix D. Finally, the choice of biases for the finite difference
approximations should be further investigated.
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Abbreviations

The following abbreviations are used in this manuscript:
GCI Grid Convergence Index
MEMS Micro-Electronic Mechanical System
PDE Partial Differential Equation
Latin Nomenclature
A Beam Cross-Section Area (m2)
A Constant in Analytical Solution (-)
B Constant in Analytical Solution (-)
C Constant in Analytical Solution (-)
C Fraction of Beam Span Used in Richardson Analysis (−)
D Constant in Analytical Solution (-)
E(x) Young’s Modulus (Pa)
F(x) The Product of E and I (kgm3/s)
Fn Sequence of Constants in Analytical Solution (-)
Gn Sequence of Constants in Analytical Solution (-)
Gj Richardson Grid Convergent Index (−)
G Beam Shear Modulus (Pa)
Hn Sequence of Constants in Analytical Solution (-)
I(x) Second Moment of Area (m4)
i Beam Node Index (-)
ij Beam Node Index Used for jth GCI (-)
L Total Beam Length (m)
M The Total Mass of the Beam (kg)
M Gust Constant (m/s)
Mj Beam Node Mass of jth Richardson Simulation (kg)
mi Mass of ith Node (kg)
N The Number of Finite Difference Nodes along the Beam (-)
Nj Number of Beam Nodes Of jth Richardson Simulation (-)
n Time Step Index (-)
ni,j Auxiliary Quantity (−)
q(x, t) Beam External Loading Function (kg/ms2)
S Gust Constant (-)
S Auxiliary Quantity in Finite Difference (kg/s2)
T Analytic Deflection Function Dependent Only on Time (m)
t Time (s)
t? Time at which Richardson Criteria Are Applied (s)
∆t Finite Difference Time Step Size (s)
~v Gust Velocity Vector Field (m/s)
w(x, t) Beam Deflection Distance Function (m)
wa(x, t) Analytic Deflection Function (m)
X Analytic Deflection Function Dependent Only on Distance Along Beam (m)
x Distance along the beam (m)
xi Distance Along Beam of ith Node (m)
∆x Distance Between Adjacent Nodes (m)
z Distance Perpendicular to Beam (m)
Greek Symbols
αn Auxiliary Constants in the Analytical Solution (-)
β Velocity-Dependent Damping Coefficient (-)
κ(x) Timoshenko Shear Modulus Coefficient (-)
λ Rayleigh Stiffness Damping Coefficient (-)
µ(x) Beam Mass per Unit Length (kg/m)
µ Rayleigh Mass Damping Coefficient (-)
λ Auxiliary Constant in the Analytical Solution (-)
ϕ Angular Rotation of Beam Cross-Section (rad)
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Appendix A. An Analytical Solution of the Homogeneous Euler–Bernoulli Equation
for Validation Purposes

As part of the validation of our numerical work, we will compare our approximate
numerical results against an exact analytical solution, and we derive the exact solution in
this section.

For the general case, we might consider a rigidly cantilevered beam at one end (and
otherwise free to deform) and then a time and span-wise varying transverse loading
distribution function q(x, t) is applied. However, it is difficult to derive any analytical
results when q(x, t) 6= 0 and β 6= 0 in Equation (2). Therefore, purely for validation
purposes, we will consider here the special case of the homogeneous Equation (q(x, t) = 0)
and β = 0 with the rigidly cantilevered beam at one end. In this case, an analytical solution
can be derived as outlined below.

While the homogeneous case is relatively simple, it does exercise much of the be-
haviour of the numerical method, and so provides a valuable means of improving confi-
dence in the validity of the current work.

With these considerations in mind, we derived an analytical solution with boundary
conditions where the beam is cantilevered at one end and the beam is free to oscillate
without damping. The inhomogeneous case, in which the transverse load distribution is
significant and varying in time and space will be subsequently discussed along with a
comparison with experimental data.

Let us consider the homogeneous version of the Euler–Bernoulli equation with the
beam property functions E, I, and µ independent of x and with the external force applied
to the beam q(x, t) and the damping coefficient β both set to zero. In this case, we can write:

∂4w
∂x4 = − µ

EI
∂2w
∂t2 , (A1)

which is often referred to as the free vibration equation. By applying the technique of
separation of variables, an analytical solution to the homogeneous Equation (A1) can be
found for a beam of length L of the form:

w(x, t) = X(x)T(t), (A2)

where the corresponding boundary conditions are:

X(0) = 0, X(1)(0) = 0, and X(2)(L) = 0, X(3)(L) = 0, (A3)

where we adopt the notation f (p) to denote the pth derivative of the function f with respect
to its independent parameter.

Substituting Equation (A2) into Equation (A1), we obtain:

TX(4) = − µ

EI
XT(2), (A4)

and re-arranging Equation (A4) gives:

X(4)

X
= − µ

EI
T(2)

T
, (A5)

where the left side of Equation (A5) is only dependent on x and the right side is only
dependent on t. Since x and t are independent variables, both sides must be equal to the
same constant, e.g., λ. Thus, we have:

X(4) − λX = 0 (A6)

and:
µ

EI
T(2) + λT = 0. (A7)
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In this way, we expressed the partial differential Equation (A1) as two ordinary differential
equations and a constant λ.

Beginning with the first ordinary differential Equation (A6) in x, we impose the
constraint that we will only consider real-valued functions X. We justify this simplification
by appealing to the fact that the deflection itself is real. We can also exclude the trivial and
physically un-meaningful solutions when λ = 0 and λ < 0, respectively. This leaves us
with the case λ > 0, and we consider the trial solution:

X(x) = A cos(αx) + B sin(αx) + C cosh(αx) + D sinh(αx), (A8)

where λ = α4. After differentiating the trial solution (A8) four times, we obtain:

X(1)(x) = −αA sin(αx) + αB cos(αx) + αC sinh(αx) + αD cosh(αx), (A9)

X(2)(x) = −α2 A cos(αx)− α2B sin(αx) + α2C cosh(αx) + α2D sinh(αx), (A10)

X(3)(x) = α3 A sin(αx)− α3B cos(αx) + α3C sinh(αx) + α3D cosh(αx), (A11)

and:

X(4)(x) = α4 A cos(αx) + α4B sin(αx) + α4C cosh(αx) + α4D sinh(αx). (A12)

We can see that X(4)(x) = α4X(x) = λX(x), so the trial solution given in Equation (A8)
is indeed a solution to the ordinary differential Equation (A6). It remains to determine
the coefficients A, B, C, and D, and the new constant α. To do this, we use the boundary
conditions (A3) of the partial differential Equation (A1). By applying boundary conditions
(A3) to our trial solution (A8) and imposing the condition that α 6= 0, we obtain:

A = −C, B = −D, (A13)

thus:

A = −B
sin(αL) + sinh(αL)
cos(αL) + cosh(αL)

, (A14)

and:

A = B
cos(αL) + cosh(αL)
sin(αL)− sinh(αL)

. (A15)

By combining Equations (A14) and (A15), we obtain the condition on α given by

1 + cos(αL) cosh(αL) = 0. (A16)

There are countably infinite real (and therefore ordered) solutions to Equation (A16)
for α and we denote them by αn, n ∈ N. The first few solutions can then be numerically
approximated. For each n, the function:

Xn(x) = An cos(αnx) + Bn sin(αnx) + Cn cosh(αnx) + Dn sinh(αnx), (A17)

is a solution to the ordinary differential Equation (A6). Substituting for Bn, Cn, and Dn
using Equations (A13) and (A15), we obtain:

Xn(x) =An

{
[cos(αnx)− cosh(αnx)]

}

+An

{[
sin(αnx)− sinh(αnx)
cos(αnx) + cosh(αnx)

]
[sin(αnx)− sinh(αnx)]

}
,

(A18)

and these functions Xn are often referred to as mode shapes. Since the linear sum of solutions
to an ordinary differential equation is also a solution, it follows that, in general, any linear
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superposition of the mode shape functions is also a solution. Figure A1 presents the first

five modes for An = 1, together with the total deformation shape given by
5
∑

n=1
Xn(x). Note

that, here, An is simply a scaling constant.

Figure A1. First five mode shapes for a freely vibrating cantilevered beam.

We then turn our attention to the function T that must satisfy Equation (A7). Since
λ = α4, it follows that there is a value of λ corresponding to each n, and we denote this
value by λn, and we write:

λn = α4
n, ∀n ∈ N. (A19)

Thus, Equation (A7) becomes:
µ

EI
T(2)

n + α4
nTn = 0, (A20)

thus:
T(2)

n = −EI
µ

α4
nTn, ∀n ∈ N. (A21)

Assuming that the solution must be real-valued, for each n, we consider the trial solution:

Tn(t) = Fn cos

(
t

√
EI
µ

α4
n

)
+ Gn sin

(
t

√
EI
µ

α4
n

)
, (A22)

where Fn and Gn are real-valued constants. By taking derivatives, we have:

T(1)
n (t) = −Fn

√
EI
µ

α4
n sin

(
t

√
EI
µ

α4
n

)
+ Gn

√
EI
µ

α4
n cos

(
t

√
EI
µ

α4
n

)
, (A23)

and:

T(2)
n (t) = −Fn

EI
µ

α4
n cos

(
t

√
EI
µ

α4
n

)
− Gn

EI
µ

α4
n sin

(
t

√
EI
µ

α4
n

)
= −EI

µ
α4

nTn(t), (A24)
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as required. Now, we recall that (∂w/∂t)(x, 0) = 0 for all x ∈ (0, L), so Xn(x)T(1)
n (0) = 0,

and this forces T(1)
n (0) = 0. Hence, Gn = 0, and so for each n ∈ N, we have:

Tn(t) = Fn cos

(
t

√
EI
µ

α4
n

)
. (A25)

Bringing together the expressions for Xn and Tn, the function wn(x, t) = Xn(x)Tn(t) can
be written explicitly as

wn(x, t) = Hn

{
[cos(αnx)− cosh(αnx)]

}
cos

(
t

√
EI
µ

α4
n

)

+ Hn

{
Z[sin(αnx)− sinh(αnx)]

}
cos

(
t

√
EI
µ

α4
n

)
,

(A26)

where:

Z =

[
sin(αnL)− sinh(αnL)
cos(αnL) + cosh(αnL)

]
(A27)

and where Hn = AnFn. For each n ∈ N, the function wn(x, t) satisfies the homogeneous
Euler–Bernoulli partial differential equation at (A1) and the boundary conditions w(0, t) =
0 and (∂w/∂x)(0, t) = 0 ∀t > 0, and the initial condition (∂w/∂t)(x, 0) = 0 ∀x ∈ [0, L].
For any given n, the function wn(x, 0) may or may not be equal to the initial geometry of
the beam f (x). In fact:

wn(x, 0) =Hn

{
[cos(αnx)− cosh(αnx)]

}

+ Hn

{
Z[sin(αnx)− sinh(αnx)]

}
,

(A28)

for all x ∈ (0, L) only if f (x) is a constant multiple of:

{[cos(αnx)− cosh(αnx)] + Z[sin(αnx)− sinh(αnx)]}. (A29)

To satisfy a given initial condition f (x) such that w(x, 0) = f (x), in general, it may be
possible to expand f (x) as a linear sum of the mode shapes on the interval (0, L). We can
express w(x, 0) as

w(x, 0) = f (x) =
∞

∑
n=0

Hn{[cos(αnx)− cosh(αnx)] + Z[sin(αnx)− sinh(αnx)]}, (A30)

where the constants Hn are chosen accordingly.
Thus, the final form of the analytical solution to the homogeneous Euler–Bernoulli

Equation (A1) can be written as

w(x, t) =

∑
n∈N

(
Hn{[cos(αnx)− cosh(αnx)] + Z[sin(αnx)− sinh(αnx)]} cos

(
t

√
EI
µ

α4
n

))
,

(A31)

where Hn and αn for each n ∈ N are real constants. In Section 3.2, the values of w(x, t)
given by Equation (A31) will be compared with approximations to w predicted by the
numerical method to demonstrate the accuracy.
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Appendix B. Algorithm for Deriving the Coefficients of a Finite Difference of a Given
Degree and Order of Accuracy

The method described here is taught on undergraduate courses but we did not find it
in the published literature. We followed the approach described by Iskandarani in [65].

We start by considering the Taylor series of a general smooth function f : [a, b]→ R
for the value of f at x + m∆x expanded about the point x ∈ (a, b):

f (x + m∆x) = f (x) +
m∆x

1!
f (1)(x) +

(m∆x)2

2!
f (2)(x) +

(m∆x)3

3!
f (3)(x) + . . . , (A32)

where m is some integer in the set S = {l, . . . , r} for l < r ∈ Z (so that the cardinality of S
is r− l + 1), and where f (p) denotes the pth derivative of f with respect to x.

Now, we construct an equation of the form (A32) for each m ∈ S:

f (x + l∆x) = f (x) +
l∆x
1!

f (1)(x) +
(l∆x)2

2!
f (2)(x) + . . . ,

f (x + (l + 1)∆x) = f (x) +
(l + 1)∆x

1!
f (1)(x) +

((l + 1)∆x)2

2!
f (2)(x) + . . . ,

...

f (x + r∆x) = f (x) +
r∆x
1!

f (1)(x) +
(r∆x)2

2!
f (2)(x) + . . . .

(A33)

Then, we multiply each equation by a corresponding constant am, m ∈ {l, . . . , r},
where these constants are yet to be determined and we subtract am f (x) from both sides of
each equation to give:

al f (x + l∆x)− al f (x) = al
l∆x
1!

f (1)(x) + al
(l∆x)2

2!
f (2)(x)

+ al
(l∆x)3

3!
f (3)(x) +O

(
(∆x)4

)
,

al+1 f (x + (l + 1)∆x)− al+1 f (x) = al+1
(l + 1)∆x

1!
f (1)(x)

+ al+1
((l + 1)∆x)2

2!
f (2)(x)

+ al+1
((l + 1)∆x)3

3!
f (3)(x) +O

(
(∆x)4

)
,

...

ar f (x + r∆x)− ar f (x) = ar
r∆x
1!

f (1)(x) + ar
(r∆x)2

2!
f (2)(x)

+ ar
(r∆x)3

3!
f (3)(x) +O

(
(∆x)4

)
,

(A34)

where we introduced the O(z) notation to indicate a quantity of order z ∈ R.
When 0 ∈ S, the equation corresponding to m = 0 becomes:

a0 f (x + 0)− a0 f (x) = 0, (A35)

which is a trivial statement and provides no additional information. Thus, whenever 0 ∈ S,
we omit the case m = 0 from the system of equations in (A34).
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Constructing a single equation by summing all the equations in Equation (A34) (while
omitting the equation corresponding to m = 0), we obtain:

r

∑
m=l,m 6=0

am f (x + m∆x)−
(

r

∑
m=l,m 6=0

am

)
f (x)

=

(
r

∑
m=l,m 6=0

mam

)
∆x
1!

f (1)(x) +

(
r

∑
m=l,m 6=0

m2am

)
(∆x)2

2!
f (2)(x)

+

(
r

∑
m=l,m 6=0

m3am

)
(∆x)3

3!
f (3)(x) +O

(
(∆x)4

)
.

(A36)

Defining:

bk =

(
r

∑
m=l,m 6=0

mkam

)
(A37)

we can write Equation (A36) as

r

∑
m=l,m 6=0

am f (x + m∆x)−
(

r

∑
m=l,m 6=0

am

)
f (x)

= b1
∆x
1!

f (1)(x) + b2
(∆x)2

2!
f (2)(x) + b3

(∆x)3

3!
f (3)(x) +O

(
(∆x)4

)
.

(A38)

Equation (A38) can be used to find an expression for the finite difference of f of any
given degree and any order of accuracy in ∆x, and we proceed to demonstrate this below.

Given a degree p and an order of accuracy q, we can write an expression for f (p)(x)
to qth-order accuracy by requiring bs = 0 for s ∈ {1, . . . , p− 1, p + 1, . . . , p + q− 1} and
bp = 1. With each of the coefficients bk constrained in this way, Equation (A38) becomes:

r

∑
m=l,m 6=0

am f (x + m∆x)−
(

r

∑
m=l,m 6=0

am

)
f (x) =

(∆x)p

p!
f (p)(x) +O

(
(∆x)p+q). (A39)

Re-arranging the terms in Equation (A39), we have:

(∆x)p

p!
f (p)(x) =

r

∑
m=l,m 6=0

am f (x + m∆x)−
(

r

∑
m=l,m 6=0

am

)
f (x) +O

(
(∆x)p+q), (A40)

thus:

f (p)(x) =
p!

(∆x)p

{
r

∑
m=l,m 6=0

am f (x + m∆x)−
(

r

∑
m=l,m 6=0

am

)
f (x) +O

(
(∆x)p+q)}

=
p!

(∆x)p

{
r

∑
m=l,m 6=0

am f (x + m∆x)−
(

r

∑
m=l,m 6=0

am

)
f (x)

}

+ p!
O((∆x)p+q)

(∆x)p

=
p!

(∆x)p

{
r

∑
m=l,m 6=0

am f (x + m∆x)−
(

r

∑
m=l,m 6=0

am

)
f (x)

}
+O((∆x)q),

(A41)

where we use the fact that O(ab+c)/ac = O(ab) and O(a) = −O(a).
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Thus, the expression:

p!
(∆x)p

{
r

∑
m=l,m 6=0

am f (x + m∆x)−
(

r

∑
m=l,m 6=0

am

)
f (x)

}
(A42)

is a finite difference approximation for f (p)(x), accurate to qth-order in ∆x.
The coefficients am remain to be found, and we subsequently address this challenge.
We note that the conditions on the coefficients am are

b1 =

(
r

∑
m=l,m 6=0

mam

)
= 0,

b2 =

(
r

∑
m=l,m 6=0

m2am

)
= 0,

...

bp−1 =

(
r

∑
m=l,m 6=0

mp−1am

)
= 0,

bp =

(
r

∑
m=l,m 6=0

mpam

)
= 1,

bp+1 =

(
r

∑
m=l,m 6=0

mp+1am

)
= 0,

...

bp+q−1 =

(
r

∑
m=l,m 6=0

mp+q−1am

)
= 0.

(A43)

The equations at (A43) can be written in matrix form as


l l − 1 l − 2 . . . r− 1 r
l2 (l − 1)2 (l − 2)2 . . . (r− 1)2 r2

...
...

lp+q−1 (l − 1)p+q−1 (l − 2)p+q−1 . . . (r− 1)p+q−1 rp+q−1




al
al+1

...
ar

 =


b1
b2
...

bp+q−1

. (A44)

If l ≤ 0 ≤ r, then by choosing r − l = p + q − 1, we see that the first matrix
in Equation (A44) is square (since the column corresponding to m = 0 was removed),
and Equation (A44) is a system of p + q− 1 linearly independent equations in the p + q− 1
unknowns am.

Then, we consider the value of l (and hence r). If p + q− 1 is even, we can choose:

l = −1
2
(p + q− 1) (A45)

and:
r =

1
2
(p + q− 1). (A46)

This choice of l and r corresponds to a central finite difference.
Then, to obtain the finite difference approximation for f (p)(x), it only remains to solve

the system of equations in Equation (A44) using linear algebraic methods.
Since m ranges from −1/2(p + q− 1) to 1/2(p + q− 1), the substitution of the values

of am into Equation (A42) gives the central finite difference approximation for f (p)(x).
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The estimate can be left, biased, or right by decreasing or increasing the value of l, respec-
tively, (while satisfying the inequality l ≤ 0 ≤ r).

Appendix C. Accounting for Centrifugal Force in the Euler–Bernoulli Equation

The Euler–Bernoulli equation with the inclusion of the effect of centrifugal force is
given in [23] as

∂2

∂t2 w(xi, tn) =
q(xi, tn)

µ(xi)

− 1
µ(xi)

∂2

∂x2

(
E(xi)I(xi)

∂2

∂x2 w(xi, tn)

)
+

1
µ(xi)

∂

∂x
T(xi)

∂

∂x
w(xi, tn)

− β
∂

∂t
w(xi, tn),

(A47)

where T(xi) is given by

T(xi) =

L∫
xi

µ(u)Ω2(R + u)du, (A48)

where L is the radius of the tip of the beam, R is the radius of the root, Ω is the angular
velocity of the beam, and u is a dummy variable of integration. By including the finite
difference form of the third term on the right-hand side of Equation (A47) in the finite
difference algorithm, we will be able to account for angular velocity, and hence, we will
extend the range of cases for which the finite difference method can be used.

Work has already been completed to derive the finite difference form of the centrifugal
term, and initial computer experiments to analyse the behaviour of a helicopter rotor blade
show a good comparison with experimental data from full-scale tests—as can be seen
in [24].

Appendix D. Apply the Finite Difference Methods to Other PDEs Relevant to the
Subject of This Paper

There are other well-established PDEs that extend the range of validity beyond that
of the Euler–Bernoulli equation. An important example is that the coupled Timoshenko
equations that take account of shear deformation in the beam. The Timoshenko equations
are:

ρA
∂2w
∂t2 − q(x, t) =

∂

∂x

[
κAG

(
∂w
∂x
− ϕ

)]
(A49)

and:

ρI
∂2 ϕ

∂t2 =
∂

∂x

(
EI

∂ϕ

∂x

)
+ κAG

(
∂w
∂x
− ϕ

)
, (A50)

where, as before, w is the deformation of the beam perpendicular to the beam axis and ϕ is
the angular rotation of the initially plane cross-sections of the beam, ρ is the density of the
material, A is the cross-section area of the beam, E is the elastic modulus, G is the shear
modulus, I is the second moment of area of the beam cross-section, and κ is an empirical
coefficient called the Timoshenko shear modulus.

Appendix E. Description of Matlab® Supplementary Files

1. constructCoefficients.m: This file contains a Matlab® script that generates the coeffi-
cients of a finite difference approximation of given order q, degree p, and bias b using
the methods described in [65]. The order, degree and bias are provided by the user at
the Matlab command line, and the coefficients are displayed in the Matlab command
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window in rational number format. The algorithm is only valid for p and q, chosen
such that p + q− 1 mod 2 = 0, that is, p + q− 1 is even.

2. EBFiniteDifference.m: This file contains a Matlab® script that performs calcula-
tions for the finite difference approximation to the inhomogeneous dynamical Euler–
Bernoulli equation discussed in this paper. The script implements boundary con-
ditions for a cantilevered beam with non-constant material properties and mass
distribution that represents the scale model of the aircraft wing used in the experi-
ments described in Section 3.4.2 of the paper. A “one minus cosine” time-dependent
external load distribution is considered. In the interest of simplicity, just eight equally
spaced beam nodes with lumped masses are considered. This simulation discretises
the smoothly varying external load distribution into 317 time slices, each one lasting
for 1−2 seconds in duration. The time step used in the finite difference calculation
was computed using the Lax–Richtmyer criteria.

3. massR.mat: This file contains the masses (in kg) of each of the eight nodes used in
the simulation.

4. IyRnew.mat: This file contains the distribution of the second moment of area perpen-
dicular to the bending axis of the wing beam cross-section. The values are sampled at
the locations of the eight nodes along the length of the beam.

5. IyRnew.mat: This file contains the values of the externally applied loads (the “one
minus cosine” distribution) at each node at each of the 317 time slices.

6. calcDt.m: This file contains a Matlab® function that is called by EBFiniteDiffer-
ence.m and computes the maximum time step. For some runs of the simulation,
the Lax–Richtmyer time steps are over-ridden and smaller time step values are used.

Appendix F. Coupling between Bending and Twisting

For illustrative purposes, here we present a comparison of wing tip deflection for
a generic design showing simulations with and without a twist in Figure A2. These
simulations were performed with a value of S = 40 and M = 12 in Equation (37), and the
wing encountering the gust centred at frame 200 of the simulation (corresponding to
x0 = 200). The coupling of the bending with the twisting in this way will be a topic of our
future research.

Aerospace 2021, 1, 0 33 of 36

Bernoulli equation discussed in this paper. The script implements boundary con-
ditions for a cantilevered beam with non-constant material properties and mass
distribution that represents the scale model of the aircraft wing used in the experi-
ments described in Section 3.4.2 of the paper. A “one minus cosine” time-dependent
external load distribution is considered. In the interest of simplicity, just eight equally
spaced beam nodes with lumped masses are considered. This simulation discretizes
the smoothly varying external load distribution into 317 time slices, each one lasting
for 1−2 seconds in duration. The time step used in the finite difference calculation is
computed using the Lax-Richtmyer criteria.

3. massR.mat: This file contains the masses (in Kg) of each of the eight nodes used in
the simulation.

4. IyRnew.mat: This file contains the distribution of second moment of area perpendic-
ular to the bending axis of the wing beam cross-section. The values are sampled at
the locations of the eight nodes along the length of the beam.

5. IyRnew.mat: This file contains the values of the externally applied loads (the “one
minus cosine” distribution) at each node at each of the 317 time slices.

6. calcDt.m: This file contains a Matlab® function that is called by EBFiniteDiffer-
ence.m and computes the maximum time step. For some runs of the simulation,
the Lax-Richtmyer time steps are over-ridden and smaller time step values are used.

Appendix F. Coupling between Bending and Twisting

For illustrative purposes, here we present a comparison of wing tip deflection for a
generic design showing simulations with and without twist in Figure A2. These simulations
were performed with a value of S = 40 and M = 12 in Equation (37), and the wing
encountering the gust centred at frame 200 of the simulation (corresponding to x0 = 200).
The coupling of bending with twisting in this way will be the topic of future research by
the authors.

Figure A2. Prediction of the deformation of an aircraft wing tip with and without twist

References
1. Gao, S.; Liu, J. Adaptive neural network vibration control of a flexible aircraft wing system with input signal quantization. Aerosp.

Sci. Technol. 2020, 96, 105593. https://doi.org/10.1016/j.ast.2019.105593.

Figure A2. Prediction of the deformation of an aircraft wing tip with and without twisting.



Aerospace 2021, 8, 356 34 of 36

References
1. Gao, S.; Liu, J. Adaptive neural network vibration control of a flexible aircraft wing system with input signal quantization. Aerosp.

Sci. Technol. 2020, 96, 105593. [CrossRef]
2. Azimi, M.; Farzaneh Joubaneh, E. Dynamic modeling and vibration control of a coupled rigid-flexible high-order structural

system: A comparative study. Aerosp. Sci. Technol. 2020, 102, 105875. [CrossRef]
3. Bekemeyer, P.; Timme, S. Flexible aircraft gust encounter simulation using subspace projection model reduction. Aerosp. Sci.

Technol. 2019, 86, 805–817. [CrossRef]
4. Liu, Z.; Liu, J.; He, W. Dynamic modeling and vibration control of a flexible aerial refueling hose. Aerosp. Sci. Technol. 2016,

55, 92–102. [CrossRef]
5. Amoozgar, M.; Fazelzadeh, S.; Haddad Khodaparast, H.; Friswell, M.; Cooper, J. Aeroelastic stability analysis of aircraft wings

with initial curvature. Aerosp. Sci. Technol. 2020, 107, 106241. [CrossRef]
6. Vazhayil Thomas, P.; ElSayed, M.S.; Walch, D. Development of high fidelity reduced order hybrid stick model for aircraft dynamic

aeroelasticity analysis. Aerosp. Sci. Technol. 2019, 87, 404–416. [CrossRef]
7. Rajpal, D.; Gillebaart, E.; De Breuker, R. Preliminary aeroelastic design of composite wings subjected to critical gust loads. Aerosp.

Sci. Technol. 2019, 85, 96–112. [CrossRef]
8. Tsushima, N.; Yokozeki, T.; Su, W.; Arizono, H. Geometrically nonlinear static aeroelastic analysis of composite morphing wing

with corrugated structures. Aerosp. Sci. Technol. 2019, 88, 244–257. [CrossRef]
9. Rong, Z.; Cao, B.; Hu, J. Stability analysis on an aeroelastic system for design of a flutter energy harvester. Aerosp. Sci. Technol.

2017, 60, 203–209. [CrossRef]
10. Sommerwerk, K.; Michels, B.; Lindhorst, K.; Haupt, M.; Horst, P. Application of efficient surrogate modeling to aeroelastic

analyses of an aircraft wing. Aerosp. Sci. Technol. 2016, 55, 314–323. [CrossRef]
11. Qin, Z.; Marzocca, P.; Librescu, L. Aeroelastic instability and response of advanced aircraft wings at subsonic flight speeds.

Aerosp. Sci. Technol. 2002, 6, 195–208. [CrossRef]
12. Timoshenko, S.P. History of Strength of Materials: With a Brief Account of the History of Theory of Elasticity and Theory of Structures;

Dover Publications, Inc.: New York, NY, USA, 1983.
13. Murua, J.; Palacios, R.; Graham, J.M.R. Applications of the Unsteady Vortex-Lattice Method in Aircraft Aeroelasticity and Flight

Dynamics. Prog. Aerosp. Sci. 2012, 55, 46–72. [CrossRef]
14. Hodges, D.H.; Pierce, G.A. Introduction to Structural Dynamics and Aeroelasticity; Cambridge Aerospace Series; Cambridge

University Press: Cambridge, UK, 2002.
15. Wright, J.R.; Cooper, J.E. Introduction to Aircraft Aeroelasticity and Loads; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2007.
16. Bisplinghoff, R.L.; Ashley, H. Principles of Aeroelasticity; Dover Publications Inc.: New York, NY, USA, 2002.
17. Bisplinghoff, R.L.; Ashley, H.; Halfman, R.L. Aeroelasticity; Dover Publications, Inc.: Mineola, NY, USA, 1996.
18. Fernández-Sáeza, J.; Zaeraa, R.; Loyaa, J.A.; Reddy, J.N. Bending of Euler–Bernoulli beams using Eringen’s integral formulation:

A paradox resolved. Int. J. Eng. Sci. 2015, 99, 107–116. [CrossRef]
19. Tari, H.; Kinzel, G.L.; Mendelsohn, D.A. Cartesian and piecewise parametric large deflection solutions of tip point loaded

Euler–Bernoulli cantilever beams. Int. J. Mech. Sci. 2015, 100, 216–225. [CrossRef]
20. Scuciato, R.; Carrer, J.; Mansur, W. The time-dependent boundary element method formulation applied to dynamic analysis of

Euler–Bernoulli beams: The linear theta method. Eng. Anal. Bound. Elem. 2017, 79, 98–109. [CrossRef]
21. Scuciato, R.; Carrer, J.; Mansur, W. Dynamic analysis of Euler–Bernoulli beams by the time-dependent boundary element method

formulation. Eng. Anal. Bound. Elem. 2016, 63, 134–153. [CrossRef]
22. Li, F.L.; Sun, Z.Z. A finite difference scheme for solving the Timoshenko beam equations with boundary feedback. J. Comput.

Appl. Math. 2007, 200, 606–627. [CrossRef]
23. Kundu, B.; Ganguli, R. Analysis of weak solution of Euler–Bernoulli beam with axial force. Appl. Math. Comput. 2017, 298,

247–260. [CrossRef]
24. Fleischmann, D.; Lone, M.; Weber, S.; Sharma, A. Fast Computational Aeroelastic Analysis of Helicopter Rotor Blades. In

Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 8–12 January 2018.
25. Li, S.R.; Cao, D.F.; Wan, Z.Q. Bending solutions of FGM Timoshenko beams from those of the homogenous Euler–Bernoulli

beams. Appl. Math. Model. 2013, 37, 7077–7085. [CrossRef]
26. Yuan, G. Determination of two unknowns simultaneously for stochastic Euler–Bernoulli beam equations. J. Math. Anal. Appl.

2017, 450, 137–151. [CrossRef]
27. Miao, Y.; Shi, Y.; Luo, H.; Gao, R. Closed-form solution considering the tangential effect under harmonic line load for an infinite

Euler–Bernoulli beam on elastic foundation. Appl. Math. Model. 2018, 54, 21–33. [CrossRef]
28. Xu, X.J.; Zheng, M.L.; Wang, X.C. On vibrations of nonlocal rods: Boundary conditions, exact solutions and their asymptotics.

Int. J. Eng. Sci. 2017, 119, 217–231. [CrossRef]
29. Sumelka, W.; Blaszczyk, T.; Liebold, C. Fractional Euler–Bernoulli beams: Theory, numerical study and experimental validation.

Eur. J. Mech. Solids 2015, 54, 243–251. [CrossRef]
30. Baghani, M.; Mohammadi, H.; Haghdabadi, R. An analytical solution for shape-memory-polymer Euler–Bernoulli beams under

bending. Int. J. Eng. Sci. 2014, 84, 84–90. [CrossRef]

http://doi.org/10.1016/j.ast.2019.105593
http://dx.doi.org/10.1016/j.ast.2020.105875
http://dx.doi.org/10.1016/j.ast.2019.02.011
http://dx.doi.org/10.1016/j.ast.2016.05.017
http://dx.doi.org/10.1016/j.ast.2020.106241
http://dx.doi.org/10.1016/j.ast.2019.02.030
http://dx.doi.org/10.1016/j.ast.2018.11.051
http://dx.doi.org/10.1016/j.ast.2019.03.025
http://dx.doi.org/10.1016/j.ast.2016.11.011
http://dx.doi.org/10.1016/j.ast.2016.06.011
http://dx.doi.org/10.1016/S1270-9638(02)01158-6
http://dx.doi.org/10.1016/j.paerosci.2012.06.001
http://dx.doi.org/10.1016/j.ijengsci.2015.10.013
http://dx.doi.org/10.1016/j.ijmecsci.2015.06.024
http://dx.doi.org/10.1016/j.enganabound.2017.02.010
http://dx.doi.org/10.1016/j.enganabound.2015.11.003
http://dx.doi.org/10.1016/j.cam.2006.01.018
http://dx.doi.org/10.1016/j.amc.2016.11.019
http://dx.doi.org/10.1016/j.apm.2013.02.047
http://dx.doi.org/10.1016/j.jmaa.2017.01.023
http://dx.doi.org/10.1016/j.apm.2017.09.040
http://dx.doi.org/10.1016/j.ijengsci.2017.06.025
http://dx.doi.org/10.1016/j.euromechsol.2015.07.002
http://dx.doi.org/10.1016/j.ijmecsci.2014.04.009


Aerospace 2021, 8, 356 35 of 36

31. Ma, R.; Gao, C. Nodal solutions of a nonlinear eigenvalue problem of the Euler–Bernoulli equation. J. Math. Anal. Appl. 2012,
387, 1160–1166. [CrossRef]

32. Wei, D.; Liu, Y. Analytic and finite element solutions of the power-law Euler–Bernoulli beams. Finite Elem. Anal. Des. 2012,
52, 31–40. [CrossRef]

33. Ndogmo, J. Equivalence transformations of the Euler–Bernoulli equation. Nonlinear Anal. Real World Appl. 2012, 13, 2172–2177.
[CrossRef]

34. Djondjorov, P.A. Invariant Properties of Timoshenko Beam Equations. Int. J. Eng. Sci. 1995, 33, 2103–2114. [CrossRef]
35. Elishakoff, I.; Livshits, D. Some Closed-Form Solutions in Random Vibration of Bernoulli–Euler Beams. Int. J. Eng. Sci. 1984,

22, 1291–1302. [CrossRef]
36. Reddy, J.; El-Borgi, S. Eringen’s nonlocal theories of beams accounting for moderate rotations. Int. J. Eng. Sci. 2014, 82, 159–177.

[CrossRef]
37. Sarkar, S.; Reddy, J. Exploring the source of non-locality in the Euler–Bernoulli and Timoshenko beam models. Int. J. Eng. Sci.

2016, 104, 110–115. [CrossRef]
38. Khodabakhshi, P.; Reddy, J. A unified integro-differential nonlocal model. Int. J. Eng. Sci. 2015, 95, 60–75. [CrossRef]
39. Roque, C.; Ferreira, A.; Reddy, J. Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method. Int. J.

Eng. Sci. 2011, 49, 976–984. [CrossRef]
40. Ghayesh, M.H.; Farokhi, H.; Gholipour, A. Oscillations of functionally graded microbeams. Int. J. Eng. Sci. 2017, 110, 35–53.

[CrossRef]
41. Demir, Ç.; Civalek, Ö. On the analysis of microbeams. Int. J. Eng. Sci. 2017, 121, 14–33. [CrossRef]
42. Rahaeifard, M. Static behavior of bilayer microcantilevers under thermal actuation. Int. J. Eng. Sci. 2016, 107, 28–35. [CrossRef]
43. Dehrouyeh-Semnani, A.M.; Mostafaei, H.; Nikkhah-Bahrami, M. Free flexural vibration of geometrically imperfect functionally

graded microbeams. Int. J. Eng. Sci. 2016, 105, 56–79. [CrossRef]
44. Shafiei, N.; Kazemi, M.; Ghadiri, M. Comparison of modeling of the rotating tapered axially functionally graded Timoshenko

and Euler–Bernoulli microbeams. Phys. E 2016, 83, 74–87. [CrossRef]
45. Nejad, M.Z.; Hadi, A. Non-local analysis of free vibration of bi-directional functionally graded Euler–Bernoulli nano-beams. Int.

J. Eng. Sci. 2016, 105, 1–11. [CrossRef]
46. Nejad, M.Z.; Hadi, A.; Rastgoo, A. Buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano-beams

based on nonlocal elasticity theory. Int. J. Eng. Sci. 2016, 103, 1–10. [CrossRef]
47. Dehrouyeh-Semnaini, A.M.; Nikkhah-Bahrami, M. A discussion on incorporating the Poisson effect in microbeam models based

on modified couple stress theory. Int. J. Eng. Sci. 2014, 86, 20–25. [CrossRef]
48. Abadi, M.M.; Daneshmehr, A. An investigation of modified couple stress theory in buckling analysis of micro composite

laminated Euler–Bernoulli and Timoshenko beams. Int. J. Eng. Sci. 2014, 75, 40–53. [CrossRef]
49. Dehrouyeh-Semnaini, A.M. A discussion on different non-classical constitutive models of microbeam. Int. J. Eng. Sci. 2014, 85,

66–73. [CrossRef]
50. Eltaher, M.; Alshorbagy, A.E.; Mahmoud, F. Vibration analysis of Euler–Bernoulli nanobeams by using finite element method.

Appl. Math. Model. 2013, 37, 4787–4797. [CrossRef]
51. Kong, S.; Zhou, S.; Nie, Z.; Wang, K. Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int. J.

Eng. Sci. 2009, 47, 487–498. [CrossRef]
52. Kong, S.; Zhou, S.; Nie, Z.; Wang, K. The size-dependent natural frequency of Bernoulli–Euler micro-beams. Int. J. Eng. Sci. 2008,

46, 427–437. [CrossRef]
53. Khajeansari, A.; Baradaran, G.; Yvonnet, J. An explicit solution for bending of nanowires lying on Winkler-Pasternak elastic

substrate medium based on the Euler–Bernoulli beam theory. Int. J. Eng. Sci. 2012, 52, 115–128. [CrossRef]
54. Giunta, F.; Muscolino, G.; Sofic, A.; Elishakoff, I. Dynamic analysis of Bernoulli–Euler beams with interval uncertainties under

moving loads. Procedia Eng. 2017, 199, 2591–2596. [CrossRef]
55. Prasad, B. On the Response of a Timoshenko Beam Under Initial Stress to a Moving Load. Int. J. Eng. Sci. 1981, 19, 615–628.

[CrossRef]
56. Shang, H.; Machado, R.; Filho, J.A. Dynamic analysis of Euler–Bernoulli beam problems using the Generalized Finite Element

Method. Comput. Struct. 2016, 173, 109–122. [CrossRef]
57. Lerma, A.; Hinestroza, D. Coefficient identification in the Euler–Bernoulli equation using regularization methods. Appl. Math.

Model. 2017, 41, 223–235. [CrossRef]
58. Kawano, A. Uniqueness in the determination of unknown coefficients of an Euler–Bernoulli beam equation with observation in

an arbitrary small interval of time. J. Math. Anal. Appl. 2017, 452, 351–360. [CrossRef]
59. Marinov, T.T.; Vatsala, A.S. Inverse problem for coefficient identification in the Euler–Bernoulli equation. Comput. Math. Appl.

2008, 56, 400–410. [CrossRef]
60. Marinova, T.T.; Marinova, R.S. Coefficient identification in Euler–Bernoulli equation from over-posed data. J. Comput. Appl.

Math. 2010, 235, 450–459. [CrossRef]
61. Ajaj, R.M. Flight dynamics of transport aircraft equipped with flared-hinge folding wingtips. J. Aicraft 2020, 58, 98–110. [CrossRef]
62. Ajaj, R.M.; Saavedra Flores, E.I.; Amoozgar, M.; Cooper, J.E. A Parametric Study on the Aeroelasticity of Flared Hinge Folding

Wingtips. Aerospace 2021, 8, 221. [CrossRef]

http://dx.doi.org/10.1016/j.jmaa.2011.10.019
http://dx.doi.org/10.1016/j.finel.2011.12.007
http://dx.doi.org/10.1016/j.nonrwa.2012.01.012
http://dx.doi.org/10.1016/0020-7225(95)00056-4
http://dx.doi.org/10.1016/0020-7225(84)90022-3
http://dx.doi.org/10.1016/j.ijengsci.2014.05.006
http://dx.doi.org/10.1016/j.ijengsci.2016.03.006
http://dx.doi.org/10.1016/j.ijengsci.2015.06.006
http://dx.doi.org/10.1016/j.ijengsci.2011.05.010
http://dx.doi.org/10.1016/j.ijengsci.2016.09.011
http://dx.doi.org/10.1016/j.ijengsci.2017.08.016
http://dx.doi.org/10.1016/j.ijengsci.2016.07.007
http://dx.doi.org/10.1016/j.ijengsci.2016.05.002
http://dx.doi.org/10.1016/j.physe.2016.04.011
http://dx.doi.org/10.1016/j.ijengsci.2016.04.011
http://dx.doi.org/10.1016/j.ijengsci.2016.03.001
http://dx.doi.org/10.1016/j.ijengsci.2014.10.003
http://dx.doi.org/10.1016/j.ijengsci.2013.11.009
http://dx.doi.org/10.1016/j.ijengsci.2014.07.008
http://dx.doi.org/10.1016/j.apm.2012.10.016
http://dx.doi.org/10.1016/j.ijengsci.2008.08.008
http://dx.doi.org/10.1016/j.ijengsci.2007.10.002
http://dx.doi.org/10.1016/j.ijengsci.2011.11.004
http://dx.doi.org/10.1016/j.proeng.2017.09.353
http://dx.doi.org/10.1016/0020-7225(81)90003-3
http://dx.doi.org/10.1016/j.compstruc.2016.05.019
http://dx.doi.org/10.1016/j.apm.2016.08.035
http://dx.doi.org/10.1016/j.jmaa.2017.03.019
http://dx.doi.org/10.1016/j.camwa.2007.11.048
http://dx.doi.org/10.1016/j.cam.2010.05.048
http://dx.doi.org/10.2514/1.C035940
http://dx.doi.org/10.3390/aerospace8080221


Aerospace 2021, 8, 356 36 of 36

63. Castrichini, A.; Siddaramaiah, V.; Calderon, D.; Cooper, J.; Wilson, T.; Lemmens, Y. Preliminary investigation of use of flexible
folding wing tips for static and dynamic load alleviation. Aeronaut. J. 2017, 121, 73–94. [CrossRef]

64. Balatti, D.; Khodaparast, H.H.; Friswell, M.I.; Manolesos, M.; Amoozgar, M. The effect of folding wingtips on the worst-case gust
loads of a simplified aircraft model. J. Aerosp. Eng. Inst. Mech. Eng. 2021. [CrossRef]

65. Iskandarani, D.M. Finite Difference Approximation of Derivatives; Technical Report; Rosenstiel School of Marine Atmospheric
Science University of Miami: Miami, FL, USA, 2015.

66. Roache, P.J. Verification and Validation in Computational Sciences and Engineering; Hermosa Publishers: Socorro, NM, USA, 1998.
67. Richtmyer, R.D.; Morton, K.W. Difference Methods for Initial-Value Problems; Krieger Publishing Company: Malabar, FL, USA, 1957.
68. ANM-115. Dynamic Gust Loads; Number 25.341-1 in Advisory Circulars; Federal Aviation Administration: Washington, DC,

USA, 2014.
69. Katz, J.; Plotkin, A. Low Speed Aerodynamics; Cambridge University Press: Cambridge, UK, 2001.
70. Belendez, T.; Neipp, C.; Belendez, A. Numerical and Experimental Analysis of a Cantilever Beam: A Laboratory Project to

Introduce Geometric Nonlinearity in Mechanics of Materials. Int. J. Eng. Educ. 2003, 19, 885–892.

http://dx.doi.org/10.1017/aer.2016.108
http://dx.doi.org/10.1177/09544100211010915

	Introduction
	Governing Equations and Solution Methodology
	Development of a Numerical Approach for Solving the Inhomogeneous Euler–Bernoulli Equation
	Extension of the Lax–Richtmyer Stability Criteria to the Fourth-Order Euler–Bernoulli Equation
	Specification of Boundary Conditions and Values of Functions F and W at the Ghost Nodes

	Results and Discussions
	Grid Sensitivity Study for the Fourth-Order Euler–Bernoulli Equation
	Comparison of the Simulation Results with an Analytical Solution
	Application of the Finite Difference Scheme to a Realistic Case of a Commercial Aircraft Wing in a Gust Encounter
	Validation of the Finite Difference Approximation for the Euler–Bernoulli Equation against Experimental Data
	Damping Coefficient  
	Comparison of Static Deflection Experiment with Finite Difference Simulation


	Conclusions and Future Work
	An Analytical Solution of the Homogeneous Euler–Bernoulli Equation for Validation Purposes
	Algorithm for Deriving the Coefficients of a Finite Difference of a Given Degree and Order of Accuracy
	Accounting for Centrifugal Force in the Euler–Bernoulli Equation
	Apply the Finite Difference Methods to Other PDEs Relevant to the Subject of This Paper
	Description of Matlab® Supplementary Files
	Coupling between Bending and Twisting
	References

