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Abstract: Visual navigation is an essential part of planetary rover autonomy. Rock segmentation
emerged as an important interdisciplinary topic among image processing, robotics, and mathemat-
ical modeling. Rock segmentation is a challenging topic for rover autonomy because of the high
computational consumption, real-time requirement, and annotation difficulty. This research proposes
a rock segmentation framework and a rock segmentation network (NI-U-Net++) to aid with the
visual navigation of rovers. The framework consists of two stages: the pre-training process and
the transfer-training process. The pre-training process applies the synthetic algorithm to generate
the synthetic images; then, it uses the generated images to pre-train NI-U-Net++. The synthetic
algorithm increases the size of the image dataset and provides pixel-level masks—both of which are
challenges with machine learning tasks. The pre-training process accomplishes the state-of-the-art
compared with the related studies, which achieved an accuracy, intersection over union (IoU), Dice
score, and root mean squared error (RMSE) of 99.41%, 0.8991, 0.9459, and 0.0775, respectively. The
transfer-training process fine-tunes the pre-trained NI-U-Net++ using the real-life images, which
achieved an accuracy, IoU, Dice score, and RMSE of 99.58%, 0.7476, 0.8556, and 0.0557, respectively.
Finally, the transfer-trained NI-U-Net++ is integrated into a planetary rover navigation vision and
achieves a real-time performance of 32.57 frames per second (or the inference time is 0.0307 s per
frame). The framework only manually annotates about 8% (183 images) of the 2250 images in the
navigation vision, which is a labor-saving solution for rock segmentation tasks. The proposed rock
segmentation framework and NI-U-Net++ improve the performance of the state-of-the-art models.
The synthetic algorithm improves the process of creating valid data for the challenge of rock seg-
mentation. All source codes, datasets, and trained models of this research are openly available in
Cranfield Online Research Data (CORD).

Keywords: image segmentation; remote sensing; terrain identification; data synthesis; transfer learning

1. Introduction

Planetary rovers integrate various sensors and computing units, making the study
an interdisciplinary research topic of subjects such as mathematics, human–robot interac-
tion, and computer vision [1–3]. The Spirit rover endured the Martian winter, survived
1000 Martian days (sols), and traveled more than 6876 m, while the Opportunity rover
traveled more than 9406 m [4]. However, the space environment poses challenges to the
planetary rover operation [5]. The Spirit and Opportunity rovers experienced communi-
cation and function failures during their explorations [6,7]. To prevent this, automating
onboard systems is essential for future planetary rovers [3,8]. This research focuses on
the semantic terrain segmentation from the monocular navigation vision of the planetary
rovers [8], which can provide support for the high-level planetary rover functionalities.
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Semantic segmentation is an important research topic in computer vision [9]. Semantic
segmentation can be achieved using either traditional computer vision or deep learning [10].
Traditional computer vision solutions utilize probabilistic models to predict pixels [11,12].
Deep learning-based solutions can be further classified into two categories: one-stage
pipelines and two-stage pipelines [10]. One-stage pipelines provide End-to-End (E2E) [13]
pixel-level predictions for each pixel [14,15]. Popular architectures include DeepLab [16],
SSD [17], and U-Net [14]. Two-stage pipelines detect the bounding box of the target and
then conduct pixel-level segmentations. Popular two-stage pipelines include RCNN [18],
SDS [19], and Mask-RCNN [20].

Semantic segmentation plays an essential role in autonomous driving. Dewan et al.
and Badrinarayanan et al. conducted multi-classification for each pixel (road, car, bicycle,
column-pole, tree, and sky) [21,22]. Teichmann et al. committed to the road segmenta-
tion [23]. He et al. and Wu et al. focused on various traffic participants (vehicles and
people) [20,24]. However, autonomous driving operates in a structured environment, while
rover navigation, the focus of this research, operates in an unstructured environment. A
structured environment refers to a scene with prior knowledge, while an unstructured
environment refers to a scene without prior knowledge [25].

Rocks are typical semantic targets in planetary environments [26,27]. The jet propul-
sion laboratory (JPL) in the National Aeronautics and Space Administration (NASA) studied
the terrain classification for the planetary rovers [6,28]. Rocks play a significant role in
the planetary rovers’ autonomy [26]. For example, the Curiosity Mars rover involves a
generally flat plain with about 5% of the area covered by small (tens of cm size or smaller)
rocks [26]. The Spirit, Curiosity, and Opportunity all occurred challenges because of rock-
related terrain [6,7,29]. However, existing geometric hazard detection methods cannot
detect all of the rocks [28].

The related studies on rock segmentation for planetary rovers can be divided into the
following five categories. Table 1 summarizes the discussions in a tabular form, while their
results have been summarized in Table 1 in the Appendix A.

Table 1. The summary of the related studies on rock segmentation for planetary rovers.

Category 1 Explanation Machine Learning-Based Reference Index 2

i 3D point cloud No [30–32]
ii Edge-based method No (except [33]) [4,5,33–36]
iii Outstanding rocks No [5,37,38]
iv Other non-machine learning studies No [32,39–41]
v Machine learning studies Yes [8,27,28,35,42–44]

1 “i”, “ii”, “iii”, “iv”, and “v” correspond to the same index of category in the context. 2 “Reference index” refers to the same citation index
in References.

Category-i refers to the studies that use 3D point clouds [30–32]. The 3D point cloud
is generally obtained through LIDAR or stereo cameras, which requires considerable
computing resources and storage space. This research applies a less computing and lighter
weight solution through 2D images and the monocular camera.

Category-ii refers to the studies that use texture and boundary-based image processing
methods [4,5,33–36]. The Rockster [36] and Rockfinder [34] are popular software packages in
this category. However, some image conditions (such as skylines, textures, backgrounds,
and unclosed contours) can significantly affect their performance [4]. This research has
better robustness on image conditions by applying the various brightness, contrast, and
resolution to the input images.

Category-iii refers to the studies focusing on rock identification [5,37,38], while the
rock segmentation is only a sub-session of the identification studies. However, this research
focuses on pixel-level segmentation, which can achieve more accurate segmentation results.

Category-iv refers to all the rest of the studies using non-machine learning-based
methods. Virginia et al. committed to using shadows to find rocks [39]. Li et al. built
detailed topographic information of the area between two sites based on rock peak and
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surface points [40]. Xiao et al. focus on reducing computational cost [32]. Yang and Zhang
proposed a gradient-region constrained level set method [41]. In general, they applied
artificial features, which usually require significant manual adjustments. This research uses
learning-based features, which can intelligently learn the optimized feature from the image
and annotations.

Category-v refers to the studies using machine learning methods. Dunlop et al. used
a superpixel-based supervised learning method [35]. Ono et al. used Random Forest for
terrain classification [28]. Ding Zhou et al. and Feng Zhou et al. focused on the mechanical
properties corresponding to different terrain types [27,42]. Gao et al. reviewed the related
results of monocular terrain segmentation [8]. Furlan et al. conducted a deeplabv3plus-
based rock segmentation solution [43], and Chiodini et al. proposed a fully convolutional
network-based rock segmentation solution [44]. Although their performance is much better
than Category-i/ii/iii/iv, their training dataset is very small because the annotation costs
significant time and effort. This research proposes a synthetic algorithm that can generate a
large amount of data and corresponding annotations with very limited manual annotation.

Pixel-level rock segmentation is a challenging task. The shape of rocks in an unstruc-
tured planetary exploration environment is hard to predict [5]. Identifying the boundary
of the rocks can be made difficult by the low resolution of the navigation camera and the
blurred outlines between background and rocks. Furthermore, most rock segmentation
datasets for the planetary rovers are confidential to the public or only in the form of images
instead of video [7,45].

A solution based on generating synthetic data addresses these problems. Data synthe-
sis produces pixel-level data annotation and image generation. Therefore, synthetic data
can generate a large amount of images and corresponding annotations for the pre-training
process [46]. Furthermore, the synthetic process is based on the practical video stream,
which guarantees good transferability in the following transfer-training process. Then, the
model can be transfer-trained to the convergence based on the prior knowledge from the
pre-training process.

The contributions of this research include the following:

(i) This research proposed a synthetic algorithm and transfer learning-based framework,
which provides a labor-saving solution for the rock segmentation in the navigation
vision of the planetary rovers.

(ii) This research proposed a synthetic algorithm and a synthetic dataset, which aid the
research into the rock segmentation in the navigation vision of the planetary rovers.

(iii) This research came up with an end-to-end (E2E) network (NI-U-Net++) for the pixel-
level rock segmentation, which achieved state-of-the-art in the synthetic dataset.

All source codes, datasets, and trained models of this research are openly available in
Cranfield Online Research Data (CORD) at https://doi.org/10.17862/cranfield.rd.16958728,
accessed on 26 November 2021.

The article is arranged as follows. Section 2 depicts the proposed synthetic algorithm
and rock segmentation network. Section 3 discusses the experimental results. Conclusions
and future work are placed in Section 4.

2. Methods

The proposed rock segmentation framework is based on the transfer learning process
(see Figure 1). Transfer learning is a typical solution for the data-limited situation [47,48].
The overall framework can be divided into the following.

(1) The framework can be divided into two processes. Figure 1 identifies the pre-training
process and the transfer-training process with the blue and green frames, respectively.
Rock segmentation in an unannotated scenario is significantly difficult, and the
transfer learning strategy divides the learning process into two steps. Although
the synthetic dataset can generate large amount of pixel-level annotated data, they
inevitably have a significant difference from the real-life data. The real-life data
represent the practical mission, while its annotation corresponds to an expensive

https://extranet.cranfield.ac.uk/10.17862/,DanaInfo=doi.org,SSL+cranfield.rd.16958728
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cost. Therefore, a cooperated solution between the synthetic data and real-life images
becomes very promising. The pre-training process aims to achieve prior knowledge
from a similar scene, and then, the transfer-training process fine-tunes the pre-trained
weight to fit the real-life images.

(2) In the pre-training process:

(a) The purple ellipse with “Annotation-1” refers to the first manual annotation,
which aims to acquire the backgrounds and rock samples for the synthetic
algorithm.

(b) Then, the synthetic algorithm utilizes these backgrounds and rock samples to
generate the synthetic dataset. The synthetic dataset contains 14,000 synthetic
images and corresponding annotations.

(c) The orange solid round frame refers to the proposed rock segmentation net-
work (NI-U-Net++). The blue dash arrow refers to the pre-training, which
aims to achieve prior knowledge from the synthetic dataset.

(d) The pre-training process eventually accomplishes the pre-trained weights of
the NI-U-Net++, and these pre-trained weights refer to the prior knowledge
from the synthetic dataset.

(3) In the transfer-training process:

(a) The purple ellipse with “Annotation-2” refers to the second manual annotation,
which aims to produce some pixel-level annotations (see the green round frame
with “Annotated visual dataset”). The “Annotated visual dataset” contains
183 real-life images and corresponding pixel-level annotations.

(b) The green dash arrow refers to the transfer training, which aims to fine-tune
the pre-trained weights to fit the “Annotated visual dataset”.

(c) (iii–iii) The transfer-training process comes up with the final weights of the
NI-U-Net++.
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Figure 1. The pipeline of the proposed rock segmentation framework. The rover navigation visual
dataset used in this research is the Katwijk beach planetary rover dataset [49], while it can be different
in other scenarios. The synthetic dataset for the pre-training is not augmented, while the annotated
visual dataset for the transfer training is applied augmentation to extend the dataset.

2.1. The Real-Life Visual Navigation Dataset for the Planetary Rovers

The visual navigation dataset of the planetary rovers used in this research is part1
and part2 of the Katwijk beach planetary rover dataset [49] from the European Space
Agency (ESA) [50–53], which contains 2250 frames of the image. The Katwijk dataset
is a professional open dataset for the navigation vision of the planetary rover research,
and many studies use the Katwijk dataset as the planetary environment [44,52,54]. The
Katwijk dataset is achieved at the site where is near the heavy-duty planetary rover (HDPR)
platform project of the European Space and Technology Research Center [49].

The reasons for adopting the Katwijk dataset are as follows: (i) The focus of this research
is to integrate a real-time and E2E rock segmentation framework into the navigation
vision of planetary rovers. Thus, a navigation vision stream for evaluating the real-time
performance is essential. (ii) The Katwijk dataset involves all relevant landmarks supported
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in the research of Ono et al. [28]. (iii) Other datasets are not suitable for this research. For
example, [54] involves some targets that are less likely to appear in planetary exploration
(such as the tree, wall, and people). (iv) Other datasets (such as NASA raw images [55])
contain many different types of rock samples, introducing a more complex marginal
probability distribution (this research utilizes the concept about task, domain, and marginal
probability distribution from [56] as the fundaments). However, rock diversity (or even
new rocks [38]) is not the focus of this research but an entirely new discipline.

2.2. The Synthetic Dataset

The proposed synthetic algorithm aims to generate a large amount of images and
the corresponding pixel-level annotations with limited manual annotations. Although
planetary exploration provides numerous visual data, they have barely been pixel-level
annotated. Labor-saving annotation is a vital and usual challenge for planetary visual
data. The target of the synthetic algorithm is to build a labor-saving solution to generate
a large amount of images and corresponding pixel-level annotations for the pre-training
process. Planetary explorations are expensive regarding labor, time, and resource, while the
synthetic approach aims to minimize the associated costs. Although multi-labeler seems a
promising solution for suppressing human errors, it will further increase the labor and time
required. The proposed synthetic algorithm can generate pixel-level annotations while
generating synthesized images. To maintain the labor-saving and annotation quality, the
following four highlights are essential for designing the synthetic algorithm.

(1) The synthetic algorithm also prepares data for the pre-training process. Therefore, the
materials utilized in the synthetic algorithm should come from the real-life images.

(2) Another target is to generate images and annotations synchronously through the
synthesis algorithm, thereby significantly reducing the cost of manual intervention.

(3) The target is to ensure the diversity of the synthetic dataset. The pre-training dataset
can determine the robustness and generalization ability of the segmentation frame-
work for the navigation visions. The data diversity introduced through morphology,
brightness, and contrast transformations are significantly important to the above end.

(4) The embedded rock samples require further processing to simulate the visual com-
fortable images.

2.2.1. The Proposed Synthetic Algorithm

The synthetic algorithm uses image processing technology and the illumination
intensity-based assumption. Equations (1)–(9) and Figure 2 depict the illumination intensity-
based assumptions and the corresponding process based on the geometrics and mathemat-
ics. Figure 2a abstracts a typical navigation scenario of the planetary rovers using a sketch.
The light source (I) can be approximated as the sun in the scenario. The angles between the
rays i1, i2, and i3 of the light and the horizontal ground (g) are θ1, θ2, and θ3, respectively.
When I is significantly far away from the ground g, this research considers that all light
rays are parallel to each other, so the angles θ1, θ2, and θ3 of i1, i2, and i3 and the horizontal
ground are equal (see Equation (1)).{

i1 ‖ i2 ‖ i3,
θ1 = θ2 = θ3,

i f I → +∞. (1)
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Figure 2b shows the abstracted sketch of Figure 2a through applying Equation (1).
The angles between all rays (i) and g all equal to θ. This research defines ρ to refer to the
density of rays, which also refers to the illumination intensity (L) in the unit area on the
ground. Therefore, the L on a specific ground area equals the multiplication between the
area of the region (S) and ρ (see Equation (2)).

L = ρ ∗ S (2)

The solid blue lines (p1 and p2) in Figure 2b refer to the rock area captured by the
navigation camera. The dashed line (lb) refers to the normal line perpendicular to the phase
plane. The solid black line segment (PG3) refers to the corresponding rock on the image.
Although the rock occupies the same image region as the ground G1G3, the L of the rock is
different than the ground without rock because of the difference between G2G3 and G1G3.
In Equation (3), LG1G3 refers to the L in the G1G3 area, and PG3 refers to the PG3 area.

ρ =
LG1G3

PG3
(3)

Notably, all images involved in this section refer to the grayscale images. Thus, PG3 is
a grayscale image. This research assumes the image grayscale value of the PG3 area relates
to two parameters, corresponding density (ρ) and the surface optical properties (Popt) of
the object (cT).

i. The above discussion uses Equation (2) to achieve the desired illumination intensity,
while ρ is difficult to obtain from a grayscale image. However, the known information
is the corresponding image grayscale value (G1G3) and the area of PG3. It is notewor-
thy that G1G3 and G2G3 appear in the same image region. This research assumes that
the ratio (ρ) between the sum grayscale in G1G3 and the area of PG3 can approximate
the value of ρ (see Equation (4)).

ρ ≈ ρ =
LG1G3

PG3
= ∑

(x,y) ∈ T

[
pixelimg(x, y)

Npixel

]
(4)

However, Figure 2c shows another scenario. A pronounced difference between G1G2
(Figure 2b) and G1G2 (Figure 2c) comes from a smaller and closer rock landmark.
Therefore, the difference (∆ρ) between ρ and ρ is located on G1G2 (equivalent to
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G1G2). It is noteworthy that ρ is the ratio between the sum grayscale of G1G3 and PG3,
whereas ρ is the ratio between the sum grayscale of G2G3 to PG3 (see Equation (5)).

∆ρ = ρ− ρ =
LG1G3

PG3
−

LG2G3

PG3
=

LG1G3 − LG2G3

PG3
(5)

Substituting Equation (2) into Equation (5) can produce Equation (6), so ∆ρ is a value
related to LG1G2 .

∆ρ = ρ− ρ =
ρ ∗ G1G3 − ρ ∗ G2G3

PG3
=

ρ ∗ G1G2

PG3
=

LG1G2

PG3
(6)

ii. The optical properties of the object surface are complex (such as surface reflectance,
refracting, and absorptivity), and they do not belong to the scope of this research. Here,
we use a variable cT to pack all factors related to optical properties. Equation (7) depicts
the grayscale change caused through the optical properties.

Popt = f1(cT) (7)

Recalling the objective of the synthetic algorithm, Equation (7) can only correlate the
optical properties and image grayscales implicitly. Thus, this research proposes Equation (8)
to approach Equation (7) artificially. Equation (8) assumes that the grayscale distribution in
the target region (rock in this research) is a function of the coordinates when ρ is constant.
This research calculates the averaged grayscale value (imgmean) for the corresponding
image area. Then, it subtracts the grayscale values (img) to imgmean to obtain a differential
grayscale “image” (img∆), which is a statistical result only related to the coordinates.

Popt ≈ img∆ = img− imgmean (8)

The synthetic algorithm corresponding to the rock-embedded area can be depicted
using Equation (9):

L = ρ ∗ img∆ − C. (9)

The C refers to the constants used to correct the distance between ρ and ρ. Recalling
Equation (6), ∆ρ positively correlates to the LG1G2 . The practical area of LG1G2 is a varying
value that is dependent on the appearance of the target. Measuring LG1G2 is challenging,
but LG1G2 positively correlates to imgmean (a brighter image causes a higher LG1G2). Thus,
this research assumes C is a constant that depends on imgmean. Table 2 depicts the values
of C, while the detailed experiments for deciding C can be found in Appendix A.2 in
the Appendix A. It is noteworthy that L, L, and img∆ all contain multiple values, which
correspond to the coordinates.

Table 2. The constant C to correct ρ from ρ.

Conditions Value 1

imgmean ≤ 25 0
25 < imgmean ≤ 50 5
50 < imgmean ≤ 75 10

75 < imgmean ≤ 100 15
100 < imgmean ≤ 125 20
125 < imgmean ≤ 150 25
150 < imgmean ≤ 175 30
175 < imgmean ≤ 225 35
200 < imgmean ≤ 225 40
225 < imgmean ≤ 250 45

250 < imgmean 50
1 The values correspond to the grayscale metric with 256 scales.



Mathematics 2021, 9, 3048 8 of 28

2.2.2. Implementation

Figure 3 and Algorithm 1 show the implementation process of the proposed
synthetic algorithm.

i. This research randomly picks up 35 images from the Katwijk dataset for “Annotation-1”.
The number of 35 images is arbitrary; it needs to be large enough to get a sufficient
dataset of rock annotations but not too large that it takes a long time to annotate
the images. Furthermore, this research focuses on exploring a feasible framework
so that the upper and lower limits of the image number in “Annotation-1” are not
studied thoroughly.

ii. Then, the synthetic algorithm conducts the “Annotation-1” to these images (see
Figure 3). The red mask refers to the rock sample, and the green masks refer to other
rocks. It is noteworthy that each image only includes the largest rock in the rock
samples. Before embedding into a new background, a morphological transformation
is necessary to ensure the variant of the synthetic dataset. However, the enlarged
morphological transformations can bring a significant resolution change if the rock
sample is too small.

iii. The algorithm also utilizes the images in “Annotation-1” as backgrounds for the
synthetic algorithm. The annotation rule for “Annotation-1” is: if a rock cannot be
identified with the three to six times enlargement, this research decides to abandon it
as a part of the background.

iv. The above three steps finish the data preparation for the synthetic algorithm. The
rocks refer to rock samples, and scenes refer to backgrounds. Then, the algorithm
conducts Algorithm 1 to generate the synthetic dataset.

v. Morphological transformations can increase the number and diversity of the syn-
thetic dataset. The morphological transformation schemes for rock samples (augrock)
come from the combinations using mirror, flatten, narrowing, and zooming. The
morphological transformation schemes for backgrounds (augscene) further include the
adjustments of brightness, contrast, and sharpness.

vi. Then, Algorithm 1 traverses each background with all augscene to achieve the mor-
phologically transformed images (sceneaug in Algorithm 1) (see row 3 and 4 in
Algorithm 1). Meanwhile, the sky and ground segmentation model is applied to
identify the ground pixels, and the rock samples are only embedded into the ground
region. The sky and ground segmentation model comes from [57].

vii. For each sceneaug the synthetic algorithm embeds a random number of rockaug (see
row 11 in Algorithm 1).

viii. Each rockaug comes from a random selection from the rocks (rockselect). The algorithm
also randomly selects a morphological transformation scheme (augr) from augrock. The
algorithm conducts augr to rockselect, which results in a morphologically transformed
rock (rockaug) (see rows 9, 10, and 11 in Algorithm 1).

ix. The algorithm adopts Equation (8), Equation (4), Table 2, and Equation (9) to achieve
img∆, ρ, the correction constant for the corresponding ρ (Cselect), and the grayscale
values of the embedded rock (rockreplace) (see rows 12, 14, 15, and 16 in Algorithm 1).
The further discussion of the values in Table 2 can be found in Appendix A.2.

x. Finally, the synthetic images that correspond to the sceneaug are saved as the
synthetic dataset.
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Algorithm 1: Synthetic algorithm

Input: rock samples: rock = [rock1, rock2, . . . , rock35]
practical sense: sense = [scene1, scene2, . . . , scene35]
correction constant: C = [C1, C2, . . . , C11]
scene augmentation: augscene = [s1, s2, . . . , s8]
rock augmentation: augrock = [r1, r2, . . . , r9]

Output: Synthetic dataset: img = [img1, img2, . . . , imgn]
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x. Finally, the synthetic images that correspond to the 𝑠𝑐𝑒𝑛𝑒  are saved as the syn-
thetic dataset. 
It is noteworthy that the proposed synthetic algorithm is a typical incremental 

method through embedding new rock samples into the original image, which inevitably 
adds many large and obvious rocks. Thus, the synthetic algorithm may lead the quantita-
tive metrics to a better result in the pre-training process than the transfer-training process. 
In addition, the metrics adopted in this research include the accuracy, intersection over 
union (IoU), and Dice score. 
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respectively.

It is noteworthy that the proposed synthetic algorithm is a typical incremental method
through embedding new rock samples into the original image, which inevitably adds many
large and obvious rocks. Thus, the synthetic algorithm may lead the quantitative metrics
to a better result in the pre-training process than the transfer-training process. In addition,
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the metrics adopted in this research include the accuracy, intersection over union (IoU),
and Dice score.

2.3. Proposed Rock Segmentation Network

This section discusses the modified rock segmentation network (named the NI-U-Net++).
Figure 4 depicts the proposed NI-U-Net++, which is a modified U-Net++ [15] through
modifying the overall architecture and integrating some modified micro-networks. It is
noteworthy that this research has been inspired by the U-Net++ [15] and NIN [58].
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Figure 4. The proposed rock segmentation network (NI-U-Net++).

The U-Net network uses the encoder–decoder configuration and concatenation layer
to configure a deep network [14,59], which provides an efficient and effective structure
for feature extraction and backpropagation. U-Net++ is an updated U-Net, which adopts
a new encoder–decoder network with a series of nested, dense skip pathways. U-Net++
further applies deep supervision to avoid the skips of the shallow sub-U-Nets [15].

The proposed NI-U-Net++ adopts a similar overall structure of the encoder–decoder
design and deep supervision as the U-Net++. The blue and green solid arrows in Figure 4
refer to the encoder and decoder part, respectively. The encoder part in the NI-U-Net++
has four scale reductions (see the four blue arrows in Figure 4). Deep supervision is
implemented using the concatenate and convolutional layers (see the purple arrows and
white blocks at the top of Figure 4). Moreover, the purple arrows refer to the “highway”
using the concatenate layers to connect the front and back layers. These highways can pass
the backpropagation gradients in the front layers, thereby avoiding the gradient vanishing.

The NIN refers to the micro-block of networks assembled in another neural network.
The 1 × 1 convolutions play an essential role in NIN. The 1 × 1 convolutions have low
computational consumption, while they can integrate cross-channel information. Further-
more, 1 × 1 convolutions can transform the number of channels without changing the
tensor scale [58].

This research proposes a modified NIN network as a micro-network to integrate into
the NI-U-Net++. Figure 5 depicts the structure of the proposed micro-network, which
is the orange squares in Figure 4. The channel of the micro-network input tensor is N
channels, and the first 3 × 3 convolution decreases it to N/4 channels. Then, the following
two 1 × 1 convolutions can be understood as the fully connected layers along the channel
axis. Finally, another 3 × 3 convolution restores the tensor channels to N channels. Thus,
the micro-network ensures the proposed NI-U-Net++ can adopt a deep structure with a
small computational graph.
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There are three highlights in the proposed NI-U-Net++ rock segmentation network.
(1) NI-U-Net++ does not determine the image scale-change in NI-U-Net++. NI-U-Net++
provides more flexible freedom of the scale-change than U-Net, and the task can automati-
cally find the optimal scale. The scale-change refers to the optimal number of continuous
downsampling operations before the decoder. (2) The strategy of deep supervision is
adopted in the proposed NI-U-Net++. Zhou et al. mentioned that the shallow sub-U-Nets
might be disconnected when the deep supervision is not activated [15]. To this end, deep
supervision can provide the backpropagation to any sub-U-Nets. (3) The micro-network
establishes the cross-channel data relevance in each scale of the segmentation network.
(The further pairwise comparisons between proposed NI-U-Net++ and related studies can
be found in Appendix A.4.)

2.4. The Pre-Training Process

The pre-training process aims to provide efficient prior knowledge for rock segmenta-
tion. The pre-training process divides the synthetic dataset into a training, validation, and
testing set according to the ratios of 80%, 10%, and 10%. The hyperparameters are listed
in Table 3. The number of epochs is set to 50 epochs, the batch size is set to 5 samples per
batch, the learning rate is set to 0.00005, the optimizer adopts the Adam, and the binary
cross-entropy loss is chosen as the loss function. The pixels of the rocks are annotated using
value one, and the background pixels use value zero. Furthermore, the pre-training process
uses six usual metrics to compare the proposed NI-U-Net++ to the related studies. The six
metrics are accuracy, intersection over union (IoU), Dice score, root mean squared error
(RMSE), and receiver operating characteristic curve (ROC). The related studies correspond
to U-Net [14], U-Net++ [15], NI-U-Net [57], Furlan2019 [50], and Chiodini2020 [44].

Table 3. The hyperparameters of the pre-training process.

Hyperparameter Setting Hyperparameter Setting

Epoch 50 epochs Batch size 5 sample per batch
Learning rate 0.00005 Optimizer Adam
Loss function Binary cross-entropy Training set ratio 80% of the synthetic dataset

Validation set ratio 10% of the synthetic dataset Testing set ratio 10% of the synthetic dataset

Evaluation metrics Accuracy, intersection over union (IoU), Dice score, root mean squared error (RMSE), and receiver
operating characteristic curve (ROC)

The chosen evaluation metrics come from the following reasons. (i) Loss function
decides the learning gradient, and it is the specific factor for fitting conditions, converges,
and the learning process. (ii) Accuracy refers to a very intuited indicator for knowing per-
formance. (iii) IoU is a prevalent and influential metric in semantic segmentation studies,
but it is also based on the confusion matrix as the accuracy. (iv) Dice score is a similar
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metric. Thus, this research puts the Dice score in the Appendix A as additional results.
(v) ROC indicates the sensitivity for different thresholds of positive and negative prediction.

It is noteworthy that the training, validation, and testing sets are saved to local storage
to prevent the potential uncertainty from the dataset shuffle. Thus, any synthetic dataset
mentioned in this study refers to the same data distribution. Some details of the related
studies have been discussed as following:

(i) U-Net is proposed by Ronneberger et al. [14], which is a very popular one-stage
image segmentation network [60,61]. The applied U-Net references the high-starred
implementations on GitHub [62,63]. The encoder of U-Net contains four downsam-
pling layers, the decoder contains four upsampling layers, and the activation uses the
“ReLU” function. The size of each convolution kernel is 3 × 3.

(ii) U-Net++ is proposed by Zhou et al. [15] in 2018, which is an undated U-shaped
network based on the U-Net. The applied U-Net++ references the high-stared imple-
mentation on GitHub [64]. The applied U-Net++ contains four downsampling layers,
and the deep supervision has been activated.

(iii) The NI-U-Net [57] shares the same architecture as the sky and ground segmentation
network used in Section 2.2. NI-U-Net only contains a single U-shaped encoder-
decoder design, and the micro-networks have also been applied.

(iv) Furlan et al. proposed a deeplabv3plus-based rock segmentation solution in 2019,
and the implementation of Furlan2019 referenced the study in [43].

(v) Chiodini et al. proposed a fully convolutional network-based rock segmentation
solution in 2020; the implementation of Chiodini2020 referenced the study in [44].

2.5. The Transfer-Training Process

The aim of the transfer-training process is to fine-tune the NI-U-Net++ from the
“Pre-trained weights” to the “Final weights” for the real-life images (see Figure 1). The
“Annotated visual dataset” is divided into training, validation, and testing sets according
to the ratio of 80%:10%:10% (similar to the pre-training process). The hyperparameters
have been depicted in Table 4: the number of epochs is set to 50 epochs, the batch size is set
to 5 samples per batch, the learning rate is set to 0.00005, the optimizer uses the Adam, and
the loss function uses the binary cross-entropy. The evaluation also uses the three popular
metrics, accuracy, IoU, and Dice score.

Table 4. The hyperparameters of the transfer-training process.

Hyperparameter Setting Hyperparameter Setting

Epoch 50 epochs Batch size 5 sample per batch
Learning rate 0.00005 Optimizer Adam
Loss function Binary cross-entropy Training set ratio 80% of the synthetic dataset

Validation set ratio 10% of the synthetic dataset Testing set ratio 10% of the synthetic dataset

Evaluation metrics Accuracy, intersection over union (IoU), Dice score, root mean squared error (RMSE), and receiver
operating characteristic curve (ROC)

The data for the transfer-training process comes from “Annotation-2” in Figure 1.
“Annotation-2” can be composed of the following four steps.

(1) “Annotation-2” randomly re-selects 150 images from the Katwijk dataset.
(2) “Annotation-2” performs pixel-level annotations on these images.
(3) The images annotated in “Annotation-1” can also be used for the transfer-training

process, so “Annotation-2” merges 35 images in “Annotation-1” with the 150 images.
It is noteworthy that there are two duplicate images, so the final number of images for
“Annotation-2” is 183 images (The 183 images are only about 8% of the Katwijk dataset)

(4) “Annotation-2” uses data augmentation to simulate possible situations for the plane-
tary rover operations. For example, rotations simulate the pose changes, brightness
changes simulate changes in illumination conditions, and contrast changes simulate
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changes in imaging conditions. The data augmentation eventually achieves about
4000 images.

3. Results and Discussion

All experiments in this research were conducted on the same data, hardware, and
software. This research saved the random-shuffled dataset to ensure the repeatability for
any experiment. The CPU, GPU, and memory size are Core i7-7700, NVIDIA RTX1080,
and 32 GB. The deep learning platform, GPU parallel computing support, program-
ming language, and operating system are TensorFlow 2.1, CUDA 10.1, Python 3.6, and
Ubuntu 18.04.

3.1. The Results of the Proposed Synthetic Algorithm

The proposed synthetic algorithm (Section 2.2) generates 14,000 synthetic images as the
synthetic dataset using the rock samples and real-life backgrounds from
Section 2.2. Figure 6a visualizes an example in the synthetic dataset. The grayscale
distributions between the rock samples and the real-life backgrounds can be significantly
different. For example, directly embedding a rock sample extracted from a dark region
to a bright region of the real-life background is not visually comfortable. The solid blue
frames in Figure 6a refer to the embedded rocks, and the green dashed frames refer to the
original rocks. The grayscale distributions of the embedded rocks are visually comfortable.
Furthermore, Figure 6 illustrates some complex cases that usually appear in the practical
planetary explorations (such as occlusion, unclosed outline, far and small target, etc.).
These complex cases can significantly enforce the robustness and generalization-ability of
the synthetic dataset. Figure 6b refers to the corresponding annotation of Figure 6a, which
is the synthetic image.

Mathematics 2021, 9, 3048 14 of 28 
 

 

algorithm further optimizes visual comfort through the illumination intensity assump-
tion. It is noteworthy that using synthetic data aims to assist rock segmentation in real-life 
images. Therefore, this research utilizes the results in real-life images to verify the capacity 
of the proposed synthetic algorithm (see Figure A2 and the demo video in the supplemen-
tary material). 

 
Figure 6. A typical example in the synthetic dataset. (a,b) refer to the synthetic image (from the proposed synthetic algo-
rithm) and the simultaneously generated annotation. Blue solid frames, green dash frames, and orange dot-dash frames 
refer to original rocks, embedded synthetic rocks, and un-highlighted rocks, respectively. The reason for the un-high-
lighted rocks is their small and dense distribution, which can cause a bad visualization. “1”, “2”, and “3” highlight the 
complex cases of occlusion, unclosed outline, far, and small target, respectively. (b) uses white pixels to refer to the rocks, 
while black pixels refer to the background. 

3.2. The Results of the Pre-Training Process 
This section compares the proposed NI-U-Net++ with five related studies. Table 5 

describes the quantitative comparisons of the pre-training process. Figure 7 depicts the 
loss and accuracy curves of the training and validation sets for the proposed NI-U-Net++. 
Figures A4–A6 describe the loss and accuracy curves of U-Net, U-Net++, NI-U-Net, Fur-
lan2019, and Chiodini2020, respectively. Dice scores have been described in Table A2 in 
the Appendix A. Figure 8 compares the ROC curve of the proposed NI-U-Net++ with the 
advanced studies from Furlan2019 [43] and Chiodini2020 [44]. 

Table 5. The results of the pre-training process. 

Network 
Loss Accuracy IoU RMSE 

Train Valid Test Train Valid Test Train Valid Test Train Valid Test 
U-Net 0.0360 0.0393 0.0397 99.13% 98.96% 98.95% 0.8446 0.8248 0.8255 0.1027 0.1039 0.1043 

U-Net++ 0.0121 0.0211 0.0209 99.56% 99.28% 99.28% 0.9182 0.8769 0.8783 0.0668 0.0744 0.0743 
NI-U-Net 0.0102 0.0281 0.0280 99.63% 99.25% 99.24% 0.9313 0.8715 0.8720 0.0665 0.0775 0.0776 

Furlan2019 0.0273 0.0307 0.0308 99.04% 98.86% 98.86% 0.9125 0.9005 0.9001 0.0912 0.0924 0.0926 
Chiodini2020 0.0108 0.1724 0.1692 99.38% 97.98% 98.00% 0.9423 0.8299 0.8330 0.1298 0.1336 0.1328 
NI-U-Net++ 0.0117 0.0175 0.0173 99.58% 99.40% 99.41% 0.9209 0.8972 0.8991 0.0665 0.0775 0.0775 

The “loss” refers to the binary cross-entropy used for training. The “accuracy”, “IoU”, and “RMSE” refer to the adopted 
evaluation metrics. The “train”, “valid”, and “test” refer to the results from the training, validation, and testing sets. U-
Net, U-Net++, NI-U-Net, Furlan2019, and Chiodini2020 refer to the related studies [14,15,43,44,57], respectively. NI-U-
Net++ refers to the proposed network. Gray shadings indicate the lowest loss, highest accuracy, highest IoU, and lowest 
RMSE. 

Figure 6. A typical example in the synthetic dataset. (a,b) refer to the synthetic image (from the proposed synthetic
algorithm) and the simultaneously generated annotation. Blue solid frames, green dash frames, and orange dot-dash frames
refer to original rocks, embedded synthetic rocks, and un-highlighted rocks, respectively. The reason for the un-highlighted
rocks is their small and dense distribution, which can cause a bad visualization. “1”, “2”, and “3” highlight the complex
cases of occlusion, unclosed outline, far, and small target, respectively. (b) uses white pixels to refer to the rocks, while black
pixels refer to the background.

The target of the synthetic algorithm is to simulate real-life images as much as pos-
sible when generating the synthetic data. The difference between synthetic and real-life
images comes from different imaging sources. Figure A1 in the Appendix A shows that
the synthetic algorithm without well-optimization can cause an apparent visual difference.
The materials used in the synthetic algorithm are all derived from real-life images to en-
sure visual comfort (such as rock samples and backgrounds). Furthermore, the synthetic



Mathematics 2021, 9, 3048 14 of 28

algorithm further optimizes visual comfort through the illumination intensity assumption.
It is noteworthy that using synthetic data aims to assist rock segmentation in real-life
images. Therefore, this research utilizes the results in real-life images to verify the ca-
pacity of the proposed synthetic algorithm (see Figure A2 and the demo video in the
supplementary material).

3.2. The Results of the Pre-Training Process

This section compares the proposed NI-U-Net++ with five related studies. Table 5 de-
scribes the quantitative comparisons of the pre-training process. Figure 7 depicts the loss
and accuracy curves of the training and validation sets for the proposed NI-U-Net++.
Figures A4–A6 describe the loss and accuracy curves of U-Net, U-Net++, NI-U-Net,
Furlan2019, and Chiodini2020, respectively. Dice scores have been described in Table A2 in
the Appendix A. Figure 8 compares the ROC curve of the proposed NI-U-Net++ with the
advanced studies from Furlan2019 [43] and Chiodini2020 [44].

Table 5. The results of the pre-training process.

Network
Loss Accuracy IoU RMSE

Train Valid Test Train Valid Test Train Valid Test Train Valid Test

U-Net 0.0360 0.0393 0.0397 99.13% 98.96% 98.95% 0.8446 0.8248 0.8255 0.1027 0.1039 0.1043
U-Net++ 0.0121 0.0211 0.0209 99.56% 99.28% 99.28% 0.9182 0.8769 0.8783 0.0668 0.0744 0.0743
NI-U-Net 0.0102 0.0281 0.0280 99.63% 99.25% 99.24% 0.9313 0.8715 0.8720 0.0665 0.0775 0.0776

Furlan2019 0.0273 0.0307 0.0308 99.04% 98.86% 98.86% 0.9125 0.9005 0.9001 0.0912 0.0924 0.0926
Chiodini2020 0.0108 0.1724 0.1692 99.38% 97.98% 98.00% 0.9423 0.8299 0.8330 0.1298 0.1336 0.1328

NI-U-
Net++ 0.0117 0.0175 0.0173 99.58% 99.40% 99.41% 0.9209 0.8972 0.8991 0.0665 0.0775 0.0775

The “loss” refers to the binary cross-entropy used for training. The “accuracy”, “IoU”, and “RMSE” refer to the adopted evaluation metrics.
The “train”, “valid”, and “test” refer to the results from the training, validation, and testing sets. U-Net, U-Net++, NI-U-Net, Furlan2019,
and Chiodini2020 refer to the related studies [14,15,43,44,57], respectively. NI-U-Net++ refers to the proposed network. Gray shadings
indicate the lowest loss, highest accuracy, highest IoU, and lowest RMSE.
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The gray shadings in Tables 5 and A2 highlight the best results in each column. NI-
U-Net and NI-U-Net++ show better performances than the U-Net and U-Net++ with a
lower “loss” value and higher “accuracy”, “IoU”, and “Dice” values. This suggests that
the proposed micro-network helps to improve the performance of rock segmentation.
Moreover, Figures 6 and A6 both appear to have a more rapid initial learning speed
compared to Figures A4 and A5. Thus, the proposed micro-network can accelerate the
learning efficiency.

The NI-U-Net achieves the highest training accuracy (see Table 5). Arrow “A” in
Figure A6a highlights a U-shaped rise that appears on the validation loss curve, while the
training loss curve keeps decreasing. These indicate that overfitting occurs for NI-U-Net.
This can explain that NI-U-Net achieved the lowest training loss and highest training
accuracy, but the validation and testing loss and accuracy were poorer than others. The
green arrow “B” in Figure A6b indicates that NI-U-Net produces the largest distance in
accuracy between the training and validation sets. NI-U-Net is a modified U-Net using the
micro-network. Compared with U-Net, all the results of NI-U-Net achieve improvements.
Therefore, the proposed micro-network can also suppress the overfitting level.

Table 5 and arrow “A” in Figure A4a find that U-Net achieves a higher loss and lower
accuracy. Thus, U-Net has the highest level of underfitting. Arrow “B” in Figure A4b
highlights that accuracy curves keep flat at the first two epochs. This indicates that the
learning process of U-Net is difficult. This comes from a fixed and high encoder ratio. The
down-sampling operations in the encoder can cause significant information loss, especially
for small targets.

U-Net++ also appears to have overfitting in Table 5. The U-Net++ training curves and
the horizontal reference lines depict that the training curves keep learning throughout the
pre-training process, while the validation curves come to the convergence (see the arrows
“A” in Figure A5a and “B” in Figure A5b).

Table 5 shows that the proposed NI-U-Net++ achieves the lowest validation loss,
lowest validation and testing loss, highest validation and testing accuracy, as well as lowest
RMSE. The curves in Figure 6a,b appear to be promising learning trends. In the initial
stage of training, it drops rapidly and then slowly converges. The arrows “A” and “B” in
Figure 6a,b indicate that NI-U-Net++ stays stable on both the training and validation sets,
and the overfitting level is low. The outstanding evaluation results indicate that the risk of
underfitting is also low. NI-U-Net++ achieved the best pre-training results by improving
the overall configuration and introducing the micro-network.

This research further applied two advanced related studies as the comparisons.
(i) The “Chiodini2020” in Table 5 and Figure A7 indicates the results using Chiodini
et al. [44]. The proposed NI-U-Net++ suppresses all qualitative results of Chiodini2020.
Moreover, Chiodini2020 appears to have significant overfitting and unstable conditions
on the validation set. (ii) The “Furlan2019” in Table 5 and Figure A8 indicates the results
using Furlan et al. [43]. Furlan et al. applied a fully convolutional network (FCN)-based
rock segmentation solution. Although Furlan2019 achieves higher IoU than the proposed
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NI-U-Net++, it is only 0.1–0.3% higher than the proposed NI-U-Net. Furthermore, the
proposed NI-U-Net++ achieves significantly better results in loss, accuracy, and RMSE.

Figure 9 depicts the visualizations of NI-U-Net++ from the pre-training process.
Table A3 indicates the quantitative results of using different numbers of synthetic images,
and the further discussion can be found in Appendix A.5.
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Figure 9. The example results of the NI-U-Net++ rock segmentation network in the pre-training process. “Synthetic image”,
“Annotation”, and “Prediction” refer to the synthetic input images, the simultaneously generated ground truth annotations,
and the predictions from the pre-trained NI-U-Net++, respectively. (a–d) correspond to four examples.

3.3. The Results of the Transfer-Training Process

The results of transfer learning are presented in Table 6. Figure 10 depicts the loss,
accuracy, IoU, and Dice score curves on training and validation sets. Each curve comes
to convergence with a smooth and stable trend. Thus, the model does not appear to be
overfitting. Although transfer learning only used 183 images from the Katwijk dataset, the
proposed synthetic algorithm and the transfer learning strategy accomplish a significantly
low loss value, high accuracy, high IoU, and high Dice score. It is noteworthy that the
used navigation vision has about 2500 images from the Katwijk dataset, and the transfer
learning only uses about 8%. Furthermore, the good results of the metrics indicate that the
NI-U-Net++ does not appear to be underfitting either.

Table 6. Result of transfer-training using the proposed NI-U-Net++.

Loss Accuracy IOU Dice RMSE

Train Valid Test Train Valid Test Train Valid Test Train Valid Test Train Valid Test

0.0061 0.0183 0.0151 99.74% 99.54% 99.58% 0.8841 0.7223 0.7476 0.9384 0.8387 0.8556 0.0499 0.0594 0.0557
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curacy reaches a high level. Although IoU is not as high as in the pre-training process (see 
Table 5), it is already a considerably high value in the image segmentation topic (see the 
IoU level in [16,65,66]). The performance of the Dice score and RMSE are good. Figure 11 
indicates the qualitative results of transfer learning. Figure 11 also involves the results 
using the pre-trained model. The pre-trained model can achieve highly similar predic-
tions, which justified the help using the transfer learning strategy. The supplementary 
video depicts the integration of the transfer learning achievement into the navigation vi-

Figure 10. The transfer training curves using the “Annotation-2” dataset. (a–d) refer to the transfer training curves of the
loss, accuracy, IoU, and Dice score, respectively. The blue solid curves and red dash curves refer to the training records from
the training and validation sets.

Table 6 provides the quantitative records of the transfer learning process (the green
frame in Figure 1). The loss value in Table 6 has reached a small magnitude, and the
accuracy reaches a high level. Although IoU is not as high as in the pre-training process
(see Table 5), it is already a considerably high value in the image segmentation topic
(see the IoU level in [16,65,66]). The performance of the Dice score and RMSE are good.
Figure 11 indicates the qualitative results of transfer learning. Figure 11 also involves the
results using the pre-trained model. The pre-trained model can achieve highly similar pre-
dictions, which justified the help using the transfer learning strategy. The Supplementary
Video S1 depicts the integration of the transfer learning achievement into the navigation
vision of the planetary rovers. Compared with the frame rate of the original navigation
vision (8 FPS), the processing speed of the proposed NI-U-Net++ is 32.57 FPS (or the
inference time is 0.0307 s per frame), which is 4.071 times the frame rate in the original
video. The details of the inference time can be found in Appendix A.6 in the Appendix A,
which shows that the real-time performance of the proposed NI-U-Net++ appears excellent
on the tested device.
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Notably, the quantitative results of the metrics between the transfer learning and the
pre-training are not directly comparable. Compared with pre-training, the result of transfer
learning is low (such as IoU in Table 5). As discussed in Section 2.2, the synthetic dataset
is essentially generated using the incremental approach. The synthetic algorithm sets the
scaling to be 0.6 to 1.0. The evaluation metrics (accuracy, IoU, and Dice) are all based on the
statistical results of pixels. The embedded synthetic rock samples can be divided into two
categories: the clustered pixels (that are easy to determine) and the edge pixels (that are not
easy to determine). As the target size increases, the clustered pixels pull the overall metrics
to a high level. Moreover, many situations do not appear in the pre-training dataset (such
as significant changes in pose, brightness, illumination, sharpness, etc.), which enlarges the
marginal probability distribution of the transfer-training process.

4. Conclusions and Future Works

This research proposed a rock segmentation framework for the navigation vision of
the planetary rovers using the synthetic algorithm and transfer learning. This framework
provided an end-to-end rock segmentation solution for the future planetary rover autonomy.
Furthermore, the proposed synthetic algorithm provided a new idea for handling the
challenge of the lack of pixel-level semantic annotations in the planetary explorations. The
synthetic dataset also provided a valid dataset and benchmark for the related research.
The proposed NI-U-Net++ achieved the best results (see Section 3.2) in all three popular
metrics compared to the state-of-the-art (the accuracy, IoU, Dice score, and RMSE are
99.41%, 0.8991, 0.9459, and 0.0075, respectively). Moreover, both the pre-training and
transfer-training processes achieved outstanding training curves and results (the accuracy,
IoU, Dice score, and RMSE are 99.58%, 0.7476, 0.8556, and 0.0557, respectively), which
proved the assumptions (of the proposed synthetic algorithm) in Section 2.2.

The proposed framework made a significant step in the semantic segmentation of
unstructured planetary explorations. As a cheap and extensive sensor, the monocular
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camera generates a large amount of data for planetary rover navigation. The proposed
framework can efficiently conduct a semantic analysis for the planetary rover. These rocks
can be integrated into the visual navigation system to further assist various advanced
functions, such as path planning, localization, scene matching, etc.

The future works include transfering the proposed framework to the onboard device.
The proposed framework uses the normal TensorFlow library, while only TensorFlow lite
can operate on the onboard device. The potential action may also include the network
slimming to fit the specific onboard device. Furthermore, the proposed NI-U-Net++
requires optimizations for the targeted system, hardware, and software.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/math9233048/s1, Video S1: The demo video of the proposed rock segmentation solution.
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Nomenclature

X, Y, X, Y Formal parameters.
I Light source.
i1 − i3, i Rays of light.
g Horizontal ground.
θ1, θ2, θ3, θ Angles between the corresponding ray of the Light and the horizontal ground.
ρ The density of rays in the unit ground area.
L Light intensity.
S Area of a ground region.
p1, p2 The boundary rays between object and camera.
lb The normal line perpendicular to the phase plane.
XY The area between X and Y cross-points.
G1 − G3, G1 −
G3

Cross points on the ground.

P Cross point between p1 and PG3.
O The origin of image plane.
LXY The light intensity in the area between X and Y cross-points in the sketch.
Popt Abstracted value of the optical properties.
cT A variable to pack all factors related to optical properties.
ρ An approximate value of ρ.
T The target (rocks in this research) in the sketch.
(x, y) Coordinate.
pixelimg(x, y) Grayscale value at coordinate (x, y).
Npixel The number of pixels in a specific region.
∆ρ The difference between ρ and ρ.

https://extranet.cranfield.ac.uk/article/10.3390/math9233048/,DanaInfo=www.mdpi.com,SSL+s1
https://extranet.cranfield.ac.uk/article/10.3390/math9233048/,DanaInfo=www.mdpi.com,SSL+s1
https://extranet.cranfield.ac.uk/10.17862/,DanaInfo=doi.org,SSL+cranfield.rd.16958728
https://extranet.cranfield.ac.uk/datasets/katwijk-beach-11-2015/,DanaInfo=robotics.estec.esa.int,SSL+
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XY The area between X and Y cross-points.
f1 An implicit function to correlate the optical properties and image grayscales.
imgmean The averaged grayscale value for the corresponding image area.
img A set of the grayscale values for the corresponding image area.
img∆ A set of the differential values between img and imgmean (only related to

the coordinates).
C The constants to correct ρ from ρ.
L An approximation of L using the proposed synthetic algorithm.

Appendix A

Appendix A.1 Further Details of the Related Studies

Table 1. The detailed results of the related studies of Table 1.

Reference Category in Table 1 1 Results 2

[30] i Only the qualitative segmentation results.

[31] i Only the qualitative segmentation results.

[32] i Only the qualitative segmentation results.

[4] ii Fit error = 1.504~114.934.

[5] ii and iii Only the qualitative segmentation results.

[33] ii Only the qualitative segmentation results.

[34] ii
(1) Average precision = 89% (the center matching method);

(2) Average precision = 87% (the overlap method);
(3) Average precision ≥ 90% = 83 images.

[35] ii and v
(1) Standard deviation of recall = 0.2–0.3;

(2) Standard deviation of precision = 0.2–0.3;
(3) Recall and precision are modestly improved.

[36] ii Only the qualitative segmentation results.

[37] iii Only the qualitative segmentation results.

[38] iii (1) RMS error (X) = 0.22–0.93 (HiRISE pixel), RMS error (Y) = 0.22–0.97 (HiRISE pixel);
(2) RMS error (X) = 0.23–0.70 (HiRISE pixel), RMS error (Y) = 0.23–0.89 (HiRISE pixel).

[32] iv CPU time (seconds): 0.2214–0.7484 (MAD); 0.1966–0.6955 (LMedsq); 0.5994–2.2033 (IKOSE);
0.2931–0.9633 (PDIMSE); 0.0380–0.1238 (RANSAC); 106.4747–236.2487 (RECON).

[39] iv (1) Processing time: 2–3 s for 256 * 256 images; 20–45 s for 640 * 480 images
(2) Only the qualitative segmentation results.

[40] iv Medium rock match is successful (up to 26 m).

[41] iv The proposed method is robust and efficient for small- and large-scale rock detection.

[8] v A survey for terrain classification (including rock segmentation).

[27] v
(1) Pixel-wise accuracy = 99.69% (background); 97.89% (sand); 89.33% (rock); 96.33%

(gravel); 89.73% (bedrock).
(2) Mean intersection-over-union (mIoU) = 0.9459.

[28] v (1) Accuracy = 76.2% (derivable terrain comprising sand, bedrock, and loose rock);
(2) Accuracy = 89.2% (embedded pointy rocks).

[42] v mIoU = 0.93; recall = 96%; frame rate = 116 frame per second

[43] v F-score = 78.5%

[44] v Accuracy = 90~96%; IoU = 0.21~0.58.
1 “i”, “ii”, “iii”, “iv”, and “v” in column “Category in Table 1” correspond to the same category index in Table 1. 2 The “Results” column
only provides a statistic summary among the results of related studies. The exact values have no comparability either between each other or
with this research. The reason comes from the different research focus, applied data, and experimental environments. The valid quantitative
comparisons can be found in Section 3.2.
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A.2. The Experiments of the Values in Table 2

Figure A1 illustrates the examples using different settings for the constant value C.
It is noteworthy that C in Table 2 aims to correct the difference from the “ ρ ≈ ρ” in
Equation (4). According to the assumption in Section 2.2.1, this difference is small but
sensitive to rock property. The goal of C is to optimize the visual comfort mentioned in
Section 3.1. Therefore, C is affected by two settings, range and scale.

The range of the pixel value is between 0 and 256. (i) In Table 2, the range of C
is set from 0 to 50. Thus, the maximum adjustment is less than 20% of the pixel value.
Figure A1b shows a synthetic example using Table 2, and the white pixels in Figure A1a
highlight the rocks. Figure A1a,b depict that Table 2 is a visually comfortable setting.
Figure A1c,d respectively increase the range of C by three times and five times, and the
embedded rock samples are very unreal to the background. Figure A1e reduces the range of
C to about half of Figure A1b. The inserted rock is too bright compared to the background.
Therefore, the range setting of C in Table 2 is in a reasonable range. (ii) C in Table 2
is divided into 11 scales according to the corresponding conditions (imgmean). A higher
img_mean corresponds to a higher C. Figure A1f doubles the scale-setting to 21 scales, but
there is no significant change compared to Figure A1b. Therefore, the classification method
in Table 2 is also reasonable.

Mathematics 2021, 9, 3048 21 of 28 
 

 

[43] v F-score = 78.5% 
[44] v Accuracy = 90~96%; IoU = 0.21~0.58.  
1 “i”, “ii”, “iii”, “iv”, and “v” in column “Category in Table 1” correspond to the same category index in Table 1. 2 The 
“Results” column only provides a statistic summary among the results of related studies. The exact values have no com-
parability either between each other or with this research. The reason comes from the different research focus, applied 
data, and experimental environments. The valid quantitative comparisons can be found in Section 3.2. 

Appendix A.2. The Experiments of the Values in Table 2 
Figure A1 illustrates the examples using different settings for the constant value 𝐶. 

It is noteworthy that 𝐶 in Table 2 aims to correct the difference from the “ 𝜌 ≈  �̅�” in 
Equation (4). According to the assumption in Section 2.2.1, this difference is small but 
sensitive to rock property. The goal of 𝐶 is to optimize the visual comfort mentioned in 
Section 3.1. Therefore, 𝐶 is affected by two settings, range and scale. 

The range of the pixel value is between 0 and 256. (i) In Table 2, the range of 𝐶 is set 
from 0 to 50. Thus, the maximum adjustment is less than 20% of the pixel value. Figure 
A1b shows a synthetic example using Table 2, and the white pixels in Figure A1a highlight 
the rocks. Figure A1a,b depict that Table 2 is a visually comfortable setting. Figure A1c,d 
respectively increase the range of 𝐶 by three times and five times, and the embedded rock 
samples are very unreal to the background. Figure A1e reduces the range of 𝐶 to about 
half of Figure A1b. The inserted rock is too bright compared to the background. Therefore, 
the range setting of 𝐶 in Table 2 is in a reasonable range. (ii) 𝐶 in Table 2 is divided into 
11 scales according to the corresponding conditions (𝑖𝑚𝑔 ). A higher img_mean cor-
responds to a higher 𝐶. Figure A1f doubles the scale-setting to 21 scales, but there is no 
significant change compared to Figure A1b. Therefore, the classification method in Table 
2 is also reasonable. 

 
Figure A1. The visualized results of the experiments for the constant 𝐶 in Table 2. (a) refers to the synthetic annotation, 
while (b–f) corresponds to the synthetic images through different settings of 𝐶. (b) applies the same setting as Table 2. (c) 
keeps the grade setting but increases the range of the 𝐶, the maximum 𝐶 is set to 250. (d) refers to the results of only 
increasing maximum 𝐶 to 150. (e) refers to the results of decreasing maximum 𝐶 to 20. (f) keeps the maximum 𝐶 as the 
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Figure A1. The visualized results of the experiments for the constant C in Table 2. (a) refers to the synthetic annotation,
while (b–f) corresponds to the synthetic images through different settings of C. (b) applies the same setting as Table 2.
(c) keeps the grade setting but increases the range of the C, the maximum C is set to 250. (d) refers to the results of only
increasing maximum C to 150. (e) refers to the results of decreasing maximum C to 20. (f) keeps the maximum C as the
same as (b), while the grade setting applies 21 grades.
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Figure A2. Some examples from the synthetic dataset. “Synthetic image” and “annotation” refer to the synthetic im-
ages and corresponding annotations, respectively. Annotations use white and black pixels to represent the rock and
background pixels.

Appendix A.4 Pairwise Comparisons between Proposed NI-U-Net++ and Related Studies

This research uses Figures 3 and A3 in Section 2.3 to discuss the pairwise comparison
between NI-U-Net++ and related studies in Table 5. Figure A3 uses NI-U-Net++ as
background, but some highlights have been added for further comparison. The red arrows
refer to the sub-U-Nets; each of them has a complete encoder–decoder process. Here
defines a concept of compression ratio, which is the ratio between the input and output
size (height or weight) of the encoder. “Sub-U-Net No.1” has the highest compression
ratio, while “Sub-U-Net No.4” has the lowest compression ratio. The blue dash frame
highlights the deep supervision mentioned in Section 2.3, and the orange frames refer to
the micro-networks.

i. NI-U-Net++ with U-Net [14,63]:

a. U-Net only has the “Sub-U-Net No. 1”. Therefore, the compression ratio is
constant at a high level.

b. U-Net does not have deep supervision design.
c. U-Net utilizes the 3 × 3 convolution layers and “Relu” activation instead of

the micro-network in Figures 3, 4 and A3.

ii. NI-U-Net++ with U-Net++ [15]:

a. U-Net++ also has four sub-U-Nets as in the NI-U-Net++.
b. U-Net++ also has the deep supervision as in the NI-U-Net++.
c. However, the U-Net++ applies the 3 × 3 convolution layer and “Relu” activa-

tion as in U-Net instead of the micro-network in NI-U-Net++.

iii. NI-U-Net++ with NI-U-Net [57]:

a. NI-U-Net only has the “Sub-U-Net No. 1”. Therefore, the compression ratio is
constant at a high level.

b. NI-U-Net has not deep supervision design.
c. NI-U-Net utilizes the same micro-network as in NI-U-Net++.
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Appendix A.5 Additional Results of the Pre-Training Process

Table A2. The Dice score of U-Net, U-Net++, NI-U-Net, and NI-U-Net++.

Networks
Dice Score

Train Valid Test

U-Net 0.9158 0.9040 0.9044
U-Net++ 0.9574 0.9344 0.9352
NI-U-Net 0.9644 0.9313 0.9316

NI-U-Net++ 0.9588 0.9458 0.9469
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Figure A4. The loss and accuracy curves of U-Net [14] using the synthetic dataset. The green “A” and “B” correspond to
the two highlights mentioned in Section 3.2. (a) Refers to the epoch-wised loss curves in the training and validation sets.
(b) Refers to the epoch-wised accuracy curves in the training and validation sets. The horizontal dash lines refer to the
references of final converge status.
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Table A3 refers to the results of training NI-U-Net++ using different numbers of syn-
thetic images. This research chooses about 50% (7000 images) and 10% (1000 images) as 
two experiment settings to evaluate the impact when the number of synthetic images de-
creases. All results decrease when the images number decreases. The synthetic algorithm 
aims to generate a large amount of valid data, so applying all available data is more fitted 
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Figure A8. The loss and accuracy curves of Furlan2019 [43] using the synthetic dataset. (a) Refers to the epoch-wised loss
curves in the training and validation sets. (b) Refers to the epoch-wised accuracy curves in the training and validation sets.

Table A3 refers to the results of training NI-U-Net++ using different numbers of
synthetic images. This research chooses about 50% (7000 images) and 10% (1000 images)
as two experiment settings to evaluate the impact when the number of synthetic images
decreases. All results decrease when the images number decreases. The synthetic algorithm
aims to generate a large amount of valid data, so applying all available data is more fitted
to the target of this research.

Table A3. The quantitative results of NI-U-Net++ tested using a different number of synthetic images.

Number 1

(Images)
Loss Accuracy IoU Dice Score

Train Valid Test Train Valid Test Train Valid Test Train Valid Test

7000 0.0137 0.0189 0.0199 99.49% 99.39% 99.37% 0.9164 0.8919 0.8876 0.9564 0.9429 0.9405
1000 0.0273 0.0618 0.0580 99.53% 99.02% 99.03% 0.9175 0.8374 0.8389 0.9570 0.9115 0.9124

1 “Number” refers to the number of synthetic images used in corresponding experiment.

Appendix A.6 Additional Results of the Transfer-Training Process
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Figure A10. Some examples of the real-life rover vision and corresponding predictions. 
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