
royalsocietypublishing.org/journal/rstb
Opinion piece
Cite this article: Billane K, Harrison E,
Cameron D, Brockhurst MA. 2021 Why do

plasmids manipulate the expression of

bacterial phenotypes? Phil. Trans. R. Soc. B

377: 20200461.
https://doi.org/10.1098/rstb.2020.0461

Received: 17 March 2021

Accepted: 9 July 2021

One contribution of 18 to a theme issue ‘The

secret lives of microbial mobile genetic

elements’.

Subject Areas:
evolution, microbiology

Keywords:
horizontal gene transfer, plasmid, parasitism,

mutualism

Author for correspondence:
Michael A. Brockhurst

e-mail: michael.brockhurst@manchester.ac.uk
© 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Why do plasmids manipulate the
expression of bacterial phenotypes?

Kathryn Billane1, Ellie Harrison1, Duncan Cameron1 and
Michael A. Brockhurst2

1Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
2Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester,
Manchester M13 9PT, UK

EH, 0000-0002-2050-4631; MAB, 0000-0003-0362-820X

Conjugative plasmids play an important role in bacterial evolution by trans-
ferring niche-adaptive traits between lineages, thus driving adaptation and
genome diversification. It is increasingly clear, however, that in addition to
this evolutionary role, plasmids also manipulate the expression of a broad
range of bacterial phenotypes. In this review, we argue that the effects that
plasmids have on the expression of bacterial phenotypes may often represent
plasmid adaptations, rather than mere deleterious side effects. We begin by
summarizing findings from untargeted omics analyses, which give a picture
of the global effects of plasmid acquisition on host cells. Thereafter, because
many plasmids are capable of both vertical and horizontal transmission, we
distinguish plasmid-mediated phenotypic effects into two main classes
based upon their potential fitness benefit to plasmids: (i) those that promote
the competitiveness of the host cell in a given niche and thereby increase
plasmid vertical transmission, and (ii) those that promote plasmid conju-
gation and thereby increase plasmid horizontal transmission. Far from
being mere vehicles for gene exchange, we propose that plasmids often act
as sophisticated genetic parasites capable of manipulating their bacterial
hosts for their own benefit.

This article is part of the theme issue ‘The secret lives of microbial mobile
genetic elements’.
1. Introduction
Plasmids are semi-autonomous, self-replicating, non-chromosomal DNA
elements that are commonly present in bacterial genomes [1]. Many bacterial
genomes contain multiple plasmid replicons [2,3], and plasmids have been dis-
covered in the genomes of diverse bacterial taxa from awide variety of ecological
niches, including environmental and clinical settings [4,5]. Plasmid genes can be
divided into those encoding either backbone or accessory functions [1,6]. The
backbone genes encode plasmid functions, including replication and mainten-
ance, whereas the accessory genes encode non-plasmid functions of potential
utility to the bacterial host cell [1,7].

Some plasmids enable the transfer of accessory genes between bacterial
strains and species, even between phylogenetically distant lineages [8]. Hori-
zontal gene transfer (HGT) is thus a major driving force in the evolution of
bacteria and has contributed significantly to the genomic and ecological diver-
sification of bacterial taxa [9–12]. Plasmid accessory genes encode a wide range
of ecological functions, including resistance to toxins, metabolic and catabolic
capabilities, and production of virulence factors and anticompetitor toxins
[13,14]. Plasmids thus enable their bacterial hosts to adapt to environmental
stresses, such as antibiotics and toxic metals, or to colonize new niches, for
example, through the exploitation of novel substrates or new hosts [8,15,16].
The huge number and diversity of accessory genes creates a vast pool of genetic
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variation, enabling bacteria to undergo rapid evolutionary
innovation [8,17]. Given this important role in HGT, it is
understandable, therefore, that most studies of the ecological
and evolutionary impact of plasmids have focused on these
accessory functions.

It is becoming increasingly clear, however, that besides the
accessory gene functions they encode, plasmid acquisition
alters the expression of a wide range of bacterial phenotypes
[11,16,18]. These effects of plasmid carriage have typically
been studied as the underlying causes of fitness costs because,
at least in the laboratory, plasmid acquisition is frequently
associated with reduced growth of plasmid-bearers compared
with plasmid-free cells [11]. Costly side effects of plasmid car-
riage are thought to include: induction of SOS responses,
cytotoxic gene products, disruption of cellular homeostasis,
and the energetic burden of replicating, transcribing and trans-
lating new genetic material [11,19].

Nonetheless, plasmids have also been shown to cause
differential expression of chromosomal genes, altering the
expression of a wide variety of bacterial traits in ways that do
not always appear straightforwardly maladaptive. Indeed,
there is growing evidence to suggest that, in some cases,
these plasmid-mediated alterations to the bacterial phenotype
may have niche-adaptive fitness consequences that may well
be missed in highly simplified laboratory environments [18].
Plasmid manipulation of bacterial gene regulation could,
therefore, play an important role in the relationship between
plasmids and their bacterial hosts and, moreover, could
mediate the fitness effects of plasmid acquisition.

In this review, we argue that the effects that plasmids have
on the expression of bacterial phenotypes may often represent
plasmid adaptations, rather than mere deleterious side effects.
As self-replicating biological entities, plasmids are capable of
evolving adaptations to increase their own fitness. A plasmid’s
fitness can be defined as the sum of its vertical and horizontal
replication (i.e. at bacterial cell division and plasmid conju-
gation events, respectively). As such, the fitness interests of
plasmids need not necessarily always be aligned to those of
the bacterial host cell. We begin by summarizing findings
from untargeted omics analyses, which give a picture of the
global effects of plasmid acquisition on host cells. Thereafter,
because many plasmids are capable of both vertical and
horizontal transmission, we distinguish plasmid-mediated
phenotypic effects into two main classes of potential fitness
benefit: (i) those that promote the competitiveness of the host
cell in a given niche and thereby increase plasmid replication
through vertical transmission, and (ii) those that promote
plasmid conjugation and thereby increase plasmid replication
through horizontal transmission.
2. What is the ‘omic’ footprint of plasmid
acquisition upon the host cell?

Omics methods can provide an untargeted global view of
the impact of plasmid acquisition on the bacterial cell.
Transcriptomics, proteomics and metabolomics have each
been used to compare plasmid-carrying cells with plasmid-
free cells. These studies reveal extensive variation between
plasmid–host pairings, in terms of both the degree of altera-
tion caused by the plasmid and the range of cellular functions
that are affected (table 1). Whereas some plasmids affect the
expression or translation of several hundreds of genes and
many diverse functions, other plasmids have much more lim-
ited effects upon their host cell [15,20,21].

In transcriptomic studies, the percentage of differentially
expressed chromosomal genes ranges from 0.59 to 20%
across diverse plasmid–host interactions [15,20]. This typi-
cally includes both up- and downregulation, and where
very large numbers of chromosomal genes are affected,
is often linked to the plasmid altering the expression of
chromosomal regulators. For example, Coulson et al. [15]
demonstrated that two plasmid-encoded transcriptional
regulators affected expression of 18% of the bacterial
genome by altering expression of 31 chromosomal regulatory
genes, including transcriptional regulators, sigma factors and
an anti-termination regulator [15]. Similarly, Shintani et al.
[22] showed that the acquisition of pCAR1 affected host tran-
scriptional regulators. In a related study, pCAR1 affected the
expression of 463 (8.08%) conserved open reading frames
(ORFs) in Pseudomonas putida KT2440, several of which are
involved in translation, transcription and DNA replication
cellular processes [21]. Plasmid acquisition can also lead to
very large fold-changes in the expression of specific chromo-
somal genes. For example, in P. putida KT2440, acquisition of
the plasmid pCAR1 led to 100–200-fold upregulation of the
chromosomal gene encoding the efflux system MexEF-
OprN (161.8-fold change for MexE, 186.5-fold change for
MexF and 113.0-fold change for OprN) [21,22] resulting in a
70-fold increase in the concentration of the MexF protein in
the cell (PP_3426) [23].

Chromosomal genes differentially expressed upon plas-
mid acquisition are involved in a wide variety of bacterial
cellular functions. These most commonly include metab-
olism, respiration, secretion systems, signalling, translation
and transcription, motility, the tricarboxylic acid (TCA)
cycle and iron acquisition (table 1). While these differen-
tially expressed functions may be common across diverse
bacterium–plasmid pairings, the specific genes affected tend
to differ. Metabolic pathways altered by plasmid acquisition
include amino acid and nucleotide metabolism, and metab-
olism of energy sources, carbohydrates, nitrogen and lipids
[20–24,26]. The direction of the effect of plasmid acquisition
upon the expression of secretion systems tends to vary by
secretion system, such that Type-III (T3SS) and Type-IV
(T4SS) secretion systems are usually upregulated, whereas
Type-VI (T6SS) secretion systems are usually downregulated
in plasmid carriers, though not exclusively [20,23–26]. All of
these secretion systems can have a variety of functions, but
generally T3SS and T4SS contribute to bacterial virulence,
with an added functional role in conjugation for T4SS [27].
By contrast, T6SS secretion is involved in bacterium–bacter-
ium communication and interaction, including toxin-
mediated killing of competitors [27]. Downregulation of
genes required for the flagellar complex may account for
observed reduction in motility for plasmid-bearers in some
cases [21,23]. Other notable bacterial functions affected by
plasmid acquisition include surface polysaccharides (e.g.
PNAG) and adhesion-related functions involved in biofilm
formation, which, for example, in the case of Acinetobacter
baumannii and Salmonella enterica, were downregulated in
plasmid-bearers [24,25].

Comparative studies where the same plasmid is intro-
duced into diverse bacterial strains or species reveal that a
given plasmid can have very different transcriptional effects
in different host backgrounds. For example, the A/C2



Table 1. Bacterial cellular functions differently expressed following plasmid acquisition, compiled from untargeted proteomic, transcriptomics and metabolomics
studies.

function bacteria plasmid reference

metabolism Escherichia coli DH10B, Escherichia coli AR060302, Salmonella

enterica SL317, Salmonella enterica SL486, Salmonella enterica

MH16125, Shewanella oneidensis MR-1

A/C2 [24]

amino acid

metabolism

Pseudomonas aeruginosa pBS228, Rms149, pAKD1,

pAMBL1, pAMBL2, pNUK73

[20]

Pseudomonas putida KT2440 pCAR1 [23]

Pseudomonas putida KT2440, Pseudomonas aeruginosa PAO1,

Pseudomonas fluorescens Pf0-1

pCAR1 [22]

nucleotide

metabolism

Pseudomonas putida KT2440 pCAR1 [23]

Pseudomonas aeruginosa PAO1, Pseudomonas fluorescens Pf0-1 pCAR1 [22]

energy

metabolism

Pseudomonas aeruginosa pBS228, Rms149, pAKD1,

pAMBL1, pAMBL2, pNUK73

[20]

Pseudomonas putida KT2440, Pseudomonas aeruginosa PAO1,

Pseudomonas fluorescens Pf0-1

pCAR1 [22]

Pseudomonas putida KT2440, Pseudomonas aeruginosa PAO1,

Pseudomonas fluorescens Pf0-1

pCAR1 [21]

Escherichia coli DH10B, Salmonella enterica SL317, A/C2 [24]

carbohydrate

metabolism

Pseudomonas aeruginosa pBS228, Rms149, pAKD1,

pAMBL1, pAMBL2, pNUK73

[20]

Pseudomonas putida KT2440, Pseudomonas aeruginosa PAO1, pCAR1 [22]

Pseudomonas putida KT2440 pCAR1 [23]

nitrogen

metabolism

Pseudomonas aeruginosa pBS228, Rms149, pAKD1,

pAMBL1, pAMBL2, pNUK73

[20]

lipid metabolism Pseudomonas aeruginosa pBS228, Rms149, pAKD1,

pAMBL1, pAMBL2, pNUK73

[20]

Pseudomonas putida KT2440, Pseudomonas aeruginosa PAO1,

Pseudomonas fluorescens Pf0-1

pCAR1 [22]

respiration Pseudomonas putida KT2440, Pseudomonas aeruginosa PAO1,

Pseudomonas fluorescens Pf0-1

pCAR1 [21]

Salmonella enterica MH16125, Shewanella oneidensis MR-1 A/C2 [24]

secretion systems Pseudomonas aeruginosa pBS228, Rms149, pAKD1,

pAMBL1, pAMBL2, pNUK73

[20]

Type-III Pseudomonas aeruginosa pBS228, Rms149, pAKD1,

pAMBL1, pAMBL2, pNUK73

[20]

Salmonella enterica SL317, Salmonella enterica SL486, Salmonella

enterica MH16125

A/C2 [24]

Type-VI Pseudomonas aeruginosa pBS228, Rms149, pAKD1,

pAMBL1, pAMBL2, pNUK73

[20]

Acinetobacter baumannii pAB5 [25]

Pseudomonas putida KT2440 pCAR1 [23]

signalling Pseudomonas putida KT2440, Pseudomonas aeruginosa PAO1,

Pseudomonas fluorescens Pf0-1

pCAR1 [22]

translation and

transcription

Pseudomonas aeruginosa pBS228, Rms149, pAKD1,

pAMBL1, pAMBL2, pNUK73

[20]

Pseudomonas putida KT2440, Pseudomonas aeruginosa PAO1,

Pseudomonas fluorescens Pf0-1

pCAR1 [22]

(Continued.)
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Table 1. (Continued.)

function bacteria plasmid reference

motility Pseudomonas putida KT2440 pCAR1 [23]

Pseudomonas putida KT2440, Pseudomonas fluorescens Pf0-1 pCAR1 [22]

Pseudomonas putida KT2440, Pseudomonas aeruginosa PAO1,

Pseudomonas fluorescens Pf0-1

pCAR1 [21]

Salmonella enterica SL317, Salmonella enterica SL486, Salmonella

enterica MH16125

A/C2 [24]

biofilm formation

and adherence

Acinetobacter baumannii pAB5 [25]

Salmonella enterica SL317, Salmonella enterica SL486, Salmonella

enterica MH16125

A/C2 [24]

TCA cycle Pseudomonas putida KT2440 pCAR1 [23]

Pseudomonas putida KT2440, Pseudomonas aeruginosa PAO1,

Pseudomonas fluorescens Pf0-1

pCAR1 [21]

Escherichia coli DH10B, Shewanella oneidensis MR-1 A/C2 [24]

iron acquisition Acinetobacter baumannii pAB5 [25]

Pseudomonas putida KT2440 pCAR1 [23]

Pseudomonas putida KT2440, Pseudomonas aeruginosa PAO1,

Pseudomonas fluorescens Pf0-1

pCAR1 [22]

Salmonella enterica SL486, Salmonella enterica MH16125, Shewanella

oneidensis MR-1

A/C2 [24]

transporters Acinetobacter baumannii pAB5 [25]

Pseudomonas aeruginosa pBS228, Rms149, pAKD1,

pAMBL1, pAMBL2, pNUK73

[20]

Pseudomonas putida KT2440 pCAR1 [23]

Pseudomonas putida KT2440, Pseudomonas aeruginosa PAO1,

Pseudomonas fluorescens Pf0-1

pCAR1 [22]

Salmonella enterica MH16125 A/C2 [24]
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plasmid causes downregulation of pathogenicity islands
in Salmonella hosts, but primarily affects metabolism in Escher-
ichia coli strains and Shewanella oneidensis. Metabolic functions
affected in E. coli included: upregulation of 2-carbon and fatty
acid metabolism, glycolate metabolism and glycoxylate cycle,
amino acid degradation and downregulation of amino acid
biosynthesis [24]. Very few functions were affected consist-
ently by A/C2 acquisition across all bacterial hosts.
Upregulation of genes involved in oxidation/reduction reac-
tions, cellular metabolism and metal cofactor binding
occurred in all hosts, while only two genes were universally
downregulated, qacEΔ1 for a quaternary ammonium com-
pound-resistance protein and sul1 a sulfonamide-resistance
dihydropteroate synthase [24]. A comparative study of the
PCAR1 plasmid in three different Pseudomonas host species
(P. putida KT2440, Pseudomonas aeruginosa PAO1 and Pseudo-
monas fluorescens Pf0-1) showed large differences in the
extent of differential expression across species: 15.3% of
KT2440 genes, 2.7% of PAO1 genes and 0.7% of Pf0-1 chromo-
somal genes [21]. Only four genes were affected by plasmid
acquisition in all three host species, including one involved
in iron acquisition, and two possibly involved in acetate
metabolism that were in the same operon [21,22]. Interestingly,
the effect of pCAR1 carriage on transcription was most similar
between KT2440 and PAO1, despite KT2440 being more
closely related to Pf0-1 phylogenetically, suggesting that tran-
scriptional effects do not scale straightforwardly with genetic
similarity of the host in this case.

Alternatively, changes in gene regulation have been quan-
tified for a given bacterial host carrying different plasmids: in
P. aeruginosa PAO1, a variety of plasmids altered regulation of
a few common functional groups, most prominently metab-
olism (of amino acid, energy production and nitrogen) and
secretion systems (Type-III and Type-VI) [20]. Furthermore,
38 chromosomal genes were consistently differentially tran-
scribed in plasmid-bearers carrying different plasmids [20].
The rest of the transcriptional profile varied, indicating that
despite these similarities, each plasmid also affected the
expression of distinct sets of host functions.

Metabolic analysis has shown that plasmid acquisition
can alter metabolic pathways such as glycolysis, the TCA
cycle and the pentose phosphate pathway in E. coli, corre-
sponding to transcriptomic data from other studies [27].
Untargeted metabolic analysis using mass spectrometry
showed the abundances of a large number of compounds
were affected in the same way by diverse plasmids in
P. aeruginosa PAO1. Out of the 5000 compounds that were
detected, the levels of 462 compounds were altered by
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plasmid acquisition across the sample set, of which the abun-
dance of 11 compounds was significantly different in plasmid
carriers for four of the six plasmids, which is much higher
than would be expected by chance [20]. Of particular note
were altered nucleotide abundances, particularly down-
regulated RNA nucleotides and upregulated (or unaltered)
deoxynucleotides [20]. However, relatively few compounds
could be identified (1.94%), so while metabolic analysis
using mass spectrometry appears promising, more studies
that cover a greater diversity of bacterial species and
plasmids will be needed to identify robust patterns.

The existing omics studies discussed here have some
limitations. First, it is rarely confirmed that the plasmid-
carrying transconjugants have not acquiredother chromosomal
mutations that may alter chromosomal transcription indepen-
dently of the plasmid. This could be determined by curing
the plasmid and confirming that transcription returns to
wild-type levels, or by genome sequencing the transconjugant
to confirm no additional mutations are present [28]. More
studies with these additional controls would be valuable. The
studies discussedhere also almost exclusively focus ongamma-
proteobacterial hosts, and it would be useful for future studies
to investigate the impact of plasmids in a broader taxonomic
range of bacterial hosts outside of this well-studied clade.

The diversity of plasmids is such that it may be difficult or
impossible to predict a priori how plasmid-encoded genes
interact with bacterial regulatory networks [11,29]. We might
expect that adaptive plasmid manipulation would cause rela-
tively consistent transcriptional effects across multiple host
genotypes encountered in the plasmid’s recent evolutionary
history. By contrast, among the few existing comparative
studies, it would appear that each bacterium and plasmid
pairing has a different, unique differential expression profile.
However, such studies typically use a few bacterial strains iso-
lated from different locations and habitats; meanwhile, the
natural host of the plasmid is often unknown. Future studies
are required, therefore, that compare the transcriptional effects
of plasmids upon hosts that they coexisted with in nature
within ecologically coherent communities, and thus are
likely to represent the recent selective environment for the
plasmid. In the studies highlighted above, although the
specific genes affected may vary, groups of cellular functions
commonly affected by plasmid carriage do begin to emerge,
for example, bacterial metabolism appears to be the most fre-
quently affected of these functions. While this could represent
adaptive manipulation by the plasmid, an alternative hypoth-
esis is that this could instead be a generic response of bacteria
to the acquisition of plasmids, and future studies should
attempt to distinguish between these competing hypotheses.
In future, it will also be valuable to study how the expression
of bacterial functions is affected by plasmid acquisition within
the context of relevant environmental niches to better under-
stand how plasmids shape the host bacterial phenotype and
fitness in nature.
3. Linking altered expression of bacterial
functions to plasmid fitness

Understanding the evolutionary impact of plasmid manipu-
lation of the expression of bacterial phenotypes requires an
understanding of how these different bacterial phenotypes
are linked to plasmid fitness. Plasmid fitness has two main
components, first, replication by vertical transmission to
daughter cells, and second, replication by horizontal trans-
mission through cell-to-cell conjugation. In the following
sections, we suggest ways in which plasmid manipulation
of the expression of chromosomally encoded bacterial traits
could potentially affect these plasmid fitness components.

(a) Bacterial phenotypes likely to affect plasmid vertical
transmission

Increased vertical plasmid transmission can result from
enhanced survival and/or growth of the host bacterium in a
given niche. We make the distinction between plasmid fitness
benefits deriving from the accessory genes encoded by the
plasmid and those caused bydifferential expression of chromo-
somally encoded bacterial genes, and focus here only on the
latter. To illustrate this idea, we highlight bacterial phenotypes
where plasmid-induced changes in expression of chromosomal
genes could cause niche-adaptive alterations benefiting both
the bacterium and the plasmid.We suggest that this evolution-
ary strategy could be evident in plasmid manipulation of
bacterial traits, including virulence, resistance to antimicrobials
and metabolism, that allow bacterial cells to survive stressors
or colonize new niches (figure 1).

(i) Increased resistance to antimicrobials
Althoughmany plasmids encode antibiotic resistance genes, in
a number of cases, plasmid acquisition has been shown to alter
the expression of chromosomally encoded resistance determi-
nants. For example, acquisition of the pCAR1 plasmid causes
massive upregulation of the MexEF–OprN efflux system in a
number of Pseudomonas host species [20]. The MexEF–OprN
efflux system provides resistance to a range of antibiotics,
including some quinolones, sulfonamides and chloram-
phenicols [21–23]. Carriage of pCAR1 is, therefore, likely to
increase bacterial resistance to antibiotics without itself encod-
ing antibiotic resistance genes, thus potentially enhancing the
survival of plasmid-carrying bacterial cells (and thus the
plasmid itself ) in antibiotic-containing environments.

(ii) Alternative energy sources
The most common differentially regulated bacterial function
affected by plasmid acquisition is metabolism. Often, multiple
aspects of metabolism are altered (e.g. carbohydrate, energy,
amino acid), with the direction of regulation often varying
among bacterium–plasmid pairings, sometimes for the same
functional group of genes [20]. An interesting example where
a consistent effect is observed across diverse host strains is
the plasmid pLL35, which causes the upregulation of bacterial
anaerobic metabolism genes in phylogenetically diverse E. coli
backgrounds [28]. Although the effect on bacterial growth is
unknown, it is possible that by shifting the host cell from
aerobic towards anaerobic metabolism, the plasmid may
potentiate gut colonization, and thereby promote the fitness
of both the bacterium and the plasmid in this niche.

(iii) Host colonization
Several plasmids have been shown to manipulate the
expression of traits likely to enhance bacterial survival within
eukaryotic hosts [30]. For example, certain extended spectrum
beta-lactamase (ESBL) plasmids upregulate genes (ompA, nha,
dnaJ, arcA) and outer membrane proteins that enhance survival



vertical plasmid fitness
dependent on bacterial survival 

horizontal plasmid fitness
dependent on conjugation events

manipulation of virulence
promotes bacterial
exploitation of the host

use of new energy sources
provides resources with
less competition

increased resistance to
antimicrobials 
increases likelihood of
bacterial survival 

enabling bacterial
colonization of plant
and animal hosts
promotes survival of the
bacteria within the host

decreased anticompetitor
secretion systems
increase likelihood of
survival of conjugation
recipients 

biofilm formation
promotes close proximity
of bacterial cells

increased conjugation
directly increasing
plasmid fitness through
horizontal transmission

reduced motility
promotes sustained
bacterial contact

Figure 1. A schematic of how the bacterial phenotypes altered by plasmid acquisition could affect plasmid fitness (created in BioRender.com). We distinguish
phenotypic effects according to their likely effects on the modes of plasmid inheritance, vertical from mother cell to daughter cell by replication, or horizontal
from cell to cell by conjugation.
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of extra intestinal pathogenic E. coli in host serum [31,32]. The
plasmid pMAR2 upregulates expression of a chromosomal
adhesin in enteropathogenicE. coli, thus enhancing host coloni-
zation by promoting the formation of attaching and effacing
lesions in intestinal epithelial cells [33]. Finally, a Rhodoccocus
equi plasmid alters the expression of chromosomal virulence
regulators promoting macrophage colonization [15] by arrest-
ing phagosomal maturation [34]. In each of these cases, by
enhancing bacterial survival within the eukaryotic host, the
plasmids may increase their own fitness as well as that of
their bacterium in this niche.

(iv) Virulence
Plasmids can promote bacterial exploitation of eukaryotic
hosts by altering the production of chromosomally encoded
virulence factors. Several plasmids upregulate the bacterial
T3SS [20,24], which delivers toxins to degrade eukaryotic
cells, thus freeing up host resources for bacterial consumption.
In Chlamydia species, a plasmid-encoded transcriptional regu-
lator, Pgp4, controls expression of chromosomal genes
required for the bacterium to exit the host infected cell in
order to infect other cells, a fundamental stage in theChlamydia
infection cycle [35–38].

(b) Bacterial phenotypes likely to affect plasmid
horizontal transmission

Many plasmids can transfer horizontally to new host cells by
conjugation. Even non-conjugative plasmids sometimes
undergo horizontal transfer by piggy-backing on the conju-
gation machinery of other coexisting plasmids, and this can
be vital to ensure their survival in the population [39]. The
rate of plasmid conjugation is usually plasmid-regulated in
a manner that is responsive to conditions in the host cell,
such as growth stage [40]. In addition, the rate of plasmid
conjugation varies across environments and, for example,
can be higher on surfaces that enable higher levels of cell–
cell contact than in planktonic culture [41,42]. In what fol-
lows, we highlight examples where plasmids induce
changes in bacterial phenotypes that could enhance plasmid
conjugation, promoting spread of the plasmid in the bacterial
population or community. Because conjugation is energeti-
cally expensive to host cells and exposes them to killing by
phages that bind the conjugation pilus, these phenotypic
changes may be to the detriment of host cell fitness. Bacterial
phenotypes that may potentially enhance plasmid horizontal
transmission include manipulation of motility, biofilm
formation, the T6SS and the DNA replication process
(figure 1).

(i) Motility
Plasmid acquisition is often associated with reduced bacterial
motility, sometimes caused by plasmid-mediated downregula-
tion of the flagellar complex [21,23,24,43,44]. Cell-to-cell
contact is vital for successful conjugation [41], and thus
reduced motility may increase the likelihood that bacterial
cells remain in contact long enough for the plasmid to undergo
conjugation [45], thus potentially enhancing the horizontal
transmission of the plasmid.

(ii) Biofilm formation
Increased biofilm formation has been reported in a range
of bacterial taxa upon acquisition of conjugative plasmids [46–
48]. In Bacillus subtilis, increased biofilm formation is mediated
by a plasmid-encoded Rap protein (RapP), an intracellular
response regulator involved in biofilm formation and sporula-
tion, among other functions [48,49]. Similarly, in some strains
of enteropathogenic E. coli, ESBL plasmid acquisition is associ-
ated with increased production of extracellular biofilm
components [32]. Opportunities for plasmid conjugation are
expected to be increased in spatially structured populations
suchas biofilms, presumablyowing to increased cell-to-cell con-
tacts, and, therefore, increasing biofilm production may well
indirectly increase plasmid horizontal transmission.
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(iii) Maintenance and transfer
Plasmid pCAR1 encodes three nucleoid-associated proteins
(NAPs). NAPs are global regulators in transcriptional
networks, affecting quorum-sensing systems, and bacterial
metabolism [50–53]. Intriguingly, plasmids that encode
NAPs are more likely to be conjugative [54], suggesting that
plasmids may use NAPs to manipulate host cell regulatory
networks in ways that promote horizontal plasmid fitness.

(iv) Altering bacterial competition
In A. baumannii, the plasmid pAB5 encodes a repressor that
deactivates the bacterium’s T6SS [55], which would otherwise
kill non-kin cells by injecting them with toxins. By deactivat-
ing the host cell’s T6SS, however, the plasmid ensures the
survival of transconjugants, thus increasing the success of
conjugation events [56] and thereby the plasmid’s rate of
horizontal transmission. Intriguingly, by leaving the original
host cell unable to deploy its T6SS apparatus in competition
with other bacteria, the plasmid may decrease its host’s own
fitness. This illustrates how plasmid fitness interests can con-
flict with the bacterial host’s fitness interests. Such traits can
be favoured provided that the resulting increase in horizontal
plasmid replication outweighs the loss of vertical plasmid
replication.
4. Future research directions
This review has highlighted some of the growing evidence that
the relationship between plasmids and bacteria may be more
subtle and manipulative than previously acknowledged. Plas-
mid manipulation of the expression of bacterial chromosomal
genes demonstrates the breadth of parasitic and mutualistic
evolutionary strategies plasmids use to maximize fitness.
Future studies should consider the following directions:

— How does plasmid manipulation vary across environ-
mental contexts? Laboratory conditions are unlikely to
reveal the full extent of niche-specific phenotypic effects
caused by plasmid manipulation. Some of the largest
effects on bacterial functions have been seen in studies
that assess fitness in macrophages or serum [15,31,32]. In
macrophages the plasmid affected expression of 20% of
bacterial chromosomal genes, including those that slowed
phagosome maturation, a key virulence strategy for survi-
val within the eukaryotic host. Future studies should be
conducted under conditions more similar to those encoun-
tered by the bacteria in nature.

— How does plasmid manipulation vary across a broader
taxonomic range of bacterial hosts? Most of the studies
discussed in this review have focused on gammaproteo-
bacterial hosts. In order to gain a fuller and more
representative view of the impact of plasmids on the
expression of bacterial phenotypes beyond this clade,
future studies should test a far broader diversity of
bacterial hosts and plasmids.

— How might integrated omics studies aid our understand-
ing of how differential regulation leads to altered
bacterial phenotypes? Untargeted omics approaches are
an efficient way of obtaining the molecular underpinning
of bacterial phenotype, and allow us to see nuanced
effects of plasmid acquisition. There are many more
metabolites than genes to encode their synthesis, and
metabolic pathways are complex and adaptable [57]. It
is nearly impossible to predict effects on the metabolome
from the wide array of genes that may be differentially
expressed upon plasmid acquisition. Therefore, an inte-
grated, multifaceted omics approach may reveal more of
the story.

— How does plasmid manipulation of bacteria evolve? One
obvious route for plasmid co-option of bacterial gene regu-
lationwould be through duplication of bacterial regulatory
genes onto the plasmid, followed by divergence. Plasmids
(andothermobile elements) frequentlyacquire bacterial genes
through rearrangements [58]. However, it is unclear if such an
evolutionary path would be likely. Genes heavily embedded
into gene networks tend to be underrepresented on mobile
elements [59]. This may be explained by highly connected
genes causing far higher disruption to the cell regulatory net-
work [59]. Duplication of bacterial regulatory genes may,
therefore, face more significant fitness barriers to establish-
ment than, for example, the acquisition of an accessory trait.
Alternatively, plasmid manipulation may arise through non-
specific disruption of regulatory networks. Plasmid acqui-
sition can lead to widespread, subtle (and not so subtle)
shifts in bacterial gene expression [20–24]. Where these
shifts benefit the plasmid, they may be acted on by selection
to further embed this function. Further work will be needed
to determine what evolutionary trajectories lead to the orig-
ination of plasmid regulatory manipulation.

— What are the dynamics of plasmid manipulation traits in
bacterial populations and communities? The inheritance
of plasmid manipulation traits is likely to differ signifi-
cantly from inheritance of accessory traits. Plasmid
accessory traits are typically, perhaps necessarily [59],
self-contained regulatory units whereas manipulation of
bacterial gene regulation is likely to be dependent and con-
tingent upon the regulatory network(s) present in the
bacterial host. Following from this, we might predict that
bacterial manipulation traits may only function in a
narrow taxonomic range of hosts, explaining the high varia-
bility in the breadth and extent of regulatory effects across
hosts, whereas by contrast accessory genes are expected
to function similarly across taxonomically diverse hosts.

5. Conclusion
Plasmids can have effects on bacterial phenotypes that extend
beyond those conferred by the accessory gene cargo that they
encode, by manipulating the expression of genes encoded on
the bacterial chromosome. We identify two possible ways
that such manipulation could affect plasmid fitness: first, by
increasing the growth of the bacterial cell in a particular
niche and thus increasing the vertical transmission of the
plasmid, or second, by altering the phenotype of bacterial
cells in ways that increase the likelihood of conjugation of
the plasmid, thus increasing its horizontal transmission.
This dichotomy highlights the potential for plasmid manipu-
lation of bacterial phenotypes to result in both mutualistic
and parasitic interaction with the bacterial host. Identifying
the mechanisms of plasmid manipulation is challenging (cf.
[55]) but will be essential to better understand how and
why plasmid manipulation has evolved and the role it
plays in the evolutionary success of plasmids.
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