Supplementary Information

Gene editing enables rapid engineering of complex antibiotic assembly lines.

Authors: Wei Li Thong[†], Yingxin Zhang[†], Ying Zhuo[†], Katherine J. Robins, Joanna K. Fyans, Abigail J. Herbert, Brian J.C. Law, and Jason Micklefield^{*}.

Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.

†These authors contributed equally.

*Corresponding author Email: jason.micklefield@manchester.ac.uk

Table of Contents

Supplementary Fig. 1	Sequence alignments for the swap 1 constructs
Supplementary Fig. 2	Characterisation of 2a produced in this study
Supplementary Fig. 3	1H 1D spectra of $1a$ (a) and $2a$ (b) in H ₂ O-D ₂ O-TFA (9:1:0.05, v/v/v), acquired at 500 MHz
Supplementary Fig. 4	2D NOESY spectra of 1a (a) and 2a (b) in H2O-D2O-TFA (9:1:0.05, v/v/v), acquired at 500 MHz
Supplementary Fig. 5	Enlarged section of the 1H NMR spectra of 1a and 2a
Supplementary Fig. 6	Enlarged section of the NOESY spectra of 1a and 2a , focusing on the NH moiety of residue 2
Supplementary Fig. 7	Homologous recombination mediated endA gene knock-out and gene complementation
Supplementary Fig. 8	Extracted ion chromatographs from LC-HRMS analysis of extracts from <i>S. fungicidicus</i> strains used in this study
Supplementary Fig. 9	LC-HRMS/MS characterisation of 3a produced by mutant F2 in this study
Supplementary Fig. 10	LC-HRMS/MS characterisation of 4a produced by mutant F3 in this study.
Supplementary Fig. 11	LC-HRMS/MS characterisation of 4a produced by mutant F4 in this study.
Supplementary Fig. 12	LC-HRMS/MS characterisation of 4a produced by mutant F5 in this study.
Supplementary Fig. 13	LC-HRMS/MS characterisation of 5a produced by mutant F8 in this study.
Supplementary Fig. 14	LC-HRMS/MS characterisation of 6a produced by mutant F9 in this study.
Supplementary Fig. 15	LC-HRMS/MS characterisation of 6a produced by mutant F10 in this study.
Supplementary Fig. 16	Calibration curve of commercial enduracidin a standard, plotted based on the peak area of the extracted ion chromatogram of m/z 785.6550 $[M+H]^+$.
Supplementary Table 1	Bacterial strains and plasmids used in this study
Supplementary Table 2	Bioinformatics information for each swap mutant
Supplementary Table 3	Key proton chemical shifts (ppm) that identify each residues in enduracidin a and its new analogue.
Supplementary Table 4	Yield of enduracidin (1a & 1b) and engineered variants in each cultivation flasks as estimated based on the standard curve of commercial enduracidin standard.
Supplementary Table 5	Mutations identified via whole genome sequencing
Supplementary Methods	
References	

Supplementary Figures

Supplementary Fig. 1. Sequence alignments of the subdomain for the swap 1 constructs. a, Alignment of the GrsA Phe-A domain with the *endA* $Thr^{[2]}$ and *endC* $Ser^{[12]}$ A domains, with the subdomain regions highlighted. b, An example sequencing result for the subdomain of mutant F1 showing the swap 1 has occurred.

Supplementary Fig. 2. Characterization of 2a produced in this study. a, MS/MS fragmentation observed in 2a. b, MS/MS fragmentation of y ions. c, MS/MS fragmentation of b and c ions.

Supplementary Fig. 3. ¹H 1D spectra of 1a (a) and 2a (b) in H₂O-D₂O-TFA (9:1:0.05, v/v/v), acquired at 500 MHz.

Supplementary Fig. 4. 2D NOESY spectra of 1a (a) and 2a (b) in H_2O-D_2O-TFA (9:1:0.05, v/v/v), acquired at 500 MHz.

Supplementary Fig. 5. Enlarged section of the ¹H NMR spectra of 1a and 2a. Comparison of the proton spectra revealed the loss of a doublet at 1.39 ppm corresponding to the methyl moiety at Thr^[2] in 1a

Supplementary Fig. 6. Enlarged section of the NOESY spectra of 1a and 2a, focusing on the NH moiety of residue 2. Comparison of correlations from the NH moiety revealed the loss of a methyl signal and the appearance of a new signal at 4.06 ppm corresponding to the methylene moiety in 2a.

Supplementary Fig. 7. Homologous recombination mediated *endA* gene knock-out and gene complementation. Diagnostic PCR using the indicated primers to determine that *endA* has been replaced by an apramycin resistance cassette (aac(3)IV) in the *endA* deletion strain ($\Delta endA$) and has been complemented in *endA* complementation strain (permEp::endA). Wild type (WT) and plasmid used for *endA* knock-out (pKOendA) were used as controls. This experiment was performed once.

Supplementary Fig. 8. LC-HRMS/MS characterization of 3a produced by mutant F2 in this study.

Supplementary Fig. 9. Extracted ion chromatographs from LC-HRMS analysis of extracts from *S. fungicidicus* strains used in this study. No production of enduracidin was observed in both F6 and F7 mutants.

Supplementary Fig. 10. LC-HRMS/MS characterization of 4a produced by mutant F3 in this study.

Supplementary Fig. 11. LC-HRMS/MS characterization of 4a produced by mutant F4 in this study.

Supplementary Fig. 12. LC-HRMS/MS characterization of 4a produced by mutant F5 in this study.

Supplementary Fig. 13. LC-HRMS/MS characterization of 5a produced by mutant F8 in this study.

Supplementary Fig. 14. LC-HRMS/MS characterization of 6a produced by mutant F9 in this study.

Supplementary Fig. 15. LC-HRMS/MS characterization of 6a produced by mutant F10 in this study.

Calibration curve of enduracidin A and B standard

Supplementary Fig. 16. Calibration curve of commercial enduracidin a standard, plotted based on the peak area of the extracted ion chromatogram of m/z 785.6550 [M+H]⁺. The experiment was performed in triplicate, n=3. Data are presented as mean values +/- standard error. Source data are provided with this paper.

Strain/Plasmid	Characteristic(s)	Source/ Reference
<i>Actinoplanes</i> sp. ATCC 33076	Wild type strain, Ramoplanin-producing	ATCC
Streptomyces coelicolor M145	Wild type strain, CDA-producing	ATCC
<i>Streptomyces</i> sp. DSM 40338	Wild type strain, Pristinamycin-producing	DSMZ
Pseudomonas syringae DSM 10604	Wild type strain, Syringafactin-producing	DSMZ
Streptomyces griseolus NRRL 3739	Wild type strain, predicted to produce Streptobactin	NRRL
Streptomyces rochei NRRL B1559	Wild type strain, predicted to produce Antimycin and Lipopeptide 8D1-1	NRRL
Streptomyces rimosus sub. paramomycinus NRRL 2455	Wild type strain, predicted to produce Tyrobetaine	NRRL
Streptomyces fungicidicus	5	
ATCC 21013	Wild type strain, Enduracidin-producing	ATCC
F1	ATCC 21013 derivative with A domain swapping (Thr ^[2] \rightarrow Ser ^[12])	This study
ΔendA	$\Delta endA$ deletion mutant of ATCC 21013	This study
∆endA::endA	$\Delta endA$ mutant of ATCC 21013 complemented with endA ($\Delta endA$::endA)	This study
F1a	$\Delta endA$ mutant of ATCC 21013 complemented with endA with A domain swapping (Thr ^[2] \rightarrow Ser ^[12])	This study
F2	ATCC 21013 derivative with A domain swapping (Ser ^[12] \rightarrow Thr ^[2])	This study
F3	ATCC 21013 derivative with A domain swapping (Ser ^[12] \rightarrow Allo-Thr ^{[5]_Ramo13})	This study
F4	ATCC 21013 derivative with A domain swapping (Ser ^[12] \rightarrow Allo-Thr ^{[8]_Ramo17})	This study
F5	ATCC 21013 derivative with A domain swapping (Ser ^[12] \rightarrow <i>Allo</i> -Thr ^{[12]_Ramol4})	This study
F6	ATCC 21013 derivative with A domain swapping (Ser ^[12] \rightarrow Ala ^[16])	This study
F7	ATCC 21013 derivative with A domain swapping (Ser ^[12] \rightarrow Ala ^{[16]_Ramol4})	This study
F8	ATCC 21013 derivative with A domain swapping ($Gly^{[14]} \rightarrow Ala^{[16]}$)	This study
F9	ATCC 21013 derivative with A domain swapping (Ala ^[16] \rightarrow Gly ^[14])	This study
F10	ATCC 21013 derivative with A domain swapping (Ala ^[16] \rightarrow Gly ^{[14]_Ramol4})	This study
F11	ATCC 21013 derivative with A domain swapping (Thr ^[2] \rightarrow Ser ^{[1]_CDAPS1})	This study
F12	ATCC 21013 derivative with A domain swapping (Ser ^[12] \rightarrow Thr ^{[2]_Streptobactin})	This study
F13	ATCC 21013 derivative with A domain swapping ($Gly^{[14]} \rightarrow Ala^{[4]}_{Tyrobetaine}$)	This study
F14	ATCC 21013 derivative with A domain swapping (Ala ^[16] \rightarrow Gly ^{[8]_Lipopeptide 8D1-1})	This study
F15	ATCC 21013 derivative with A domain swapping (Ser ^[12] \rightarrow Thr ^{[1]_Antimycin})	This study
F16	ATCC 21013 derivative with A domain swapping (Ser ^[12] $\rightarrow Allo_Thr^{[2]_Pristinamycin}$)	This study
F17	ATCC 21013 derivative with A domain swapping (Ser ^[12] $\rightarrow Allo_Thr^{[5]_Syringafactin}$)	This study
Escherichia coli		
DH5a	Host for general cloning	NEB
ET12567 (pUZ8002)	Donor strain for conjugation between E.coli and Streptomyces	(1)
BW25113 (pIJ790)	Strain for λ Red recombination system	(2)

Supplementary Table 1. Bacterial strains and plasmids used in this study.

Plasmids		
pDWU5	pBluescript KS+ based vector used for gene inactivation and gene complementation in this study	John Innes Centre
рІЈ86	Template for ermE* promoter	John Innes Centre
pIJ10700	Template for hygromycin resistance cassette	John Innes Centre
pSET152	Integrative vector for gene complementation in this study	(3)
pIJ773	Template for apramycin resistance cassette	(2)
pCRISPomyces-2	E.coli-Streptomyces shuttle vector for gene inactivation in Streptomyces species	(4)
pZY104	pCRISPomyces-1 derivative for A domain swapping (Thr ^[2] \rightarrow Ser ^[12])	This study
pZY150	pCRISPomyces-1 derivative for A domain swapping (Ser ^[12] \rightarrow Thr ^[2])	This study
pZY152	pCRISPomyces-1 derivative for A domain swapping (Ser ^[12] $\rightarrow a$ Thr ^{[5]_Ramo13})	This study
pZY153	pCRISPomyces-1 derivative for A domain swapping (Ser ^[12] $\rightarrow a$ Thr ^{[8]_Ramo17})	This study
pZY154	pCRISPomyces-1 derivative for A domain swapping (Ser ^[12] $\rightarrow a$ Thr ^{[12]_Ramol4})	This study
pZY187	pCRISPomyces-1 derivative for A domain swapping (Ser ^[12] \rightarrow Ala ^[16])	This study
pZY188	pCRISPomyces-1 derivative for A domain swapping (Ser ^[12] \rightarrow Ala ^{[16]_Ramo14})	This study
pZY167	pCRISPomyces-1 derivative for A domain swapping ($Gly^{[14]} \rightarrow Ala^{[16]}$)	This study
pZY163	pCRISPomyces-1 derivative for A domain swapping (Ala ^[16] \rightarrow Gly ^[14])	This study
pZY164	pCRISPomyces-1 derivative for A domain swapping (Ala ^[16] \rightarrow Gly ^{[14]_Ramo14})	This study
WL1	pCRISPomyces-1 derivative for A domain swapping (Thr ^[2] \rightarrow Ser ^{[1]_CDAPS1})	This study
WL15	pCRISPomyces-1 derivative for A domain swapping (Ser ^[12] \rightarrow Thr ^{[2]_Streptobactin})	This study
KR20	pCRISPomyces-1 derivative for A domain swapping ($Gly^{[14]} \rightarrow Ala^{[4]_Tyrobetaine}$)	This study
AH22	pCRISPomyces-1 derivative for A domain swapping (Ala ^[16] \rightarrow Gly ^{[8]_Lipopeptide 8DI-1})	This study
KR19	pCRISPomyces-1 derivative for A domain swapping (Ser ^[12] \rightarrow Thr ^{[1]_Antimycin})	This study
AH11	pCRISPomyces-1 derivative for A domain swapping (Ser ^[12] \rightarrow Allo_Thr ^{[2]_SnbC})	This study
KR14	pCRISPomyces-1 derivative for A domain swapping (Ser ^[12] \rightarrow Allo_Thr ^{[5]_Syringafactin})	This study

Mut.	Swap	A- domain	Sd size	Replacement	Sd size	Identity/Sin	nilarity (%)
			(aa)	A-domain	(aa)	A-domain	Sd
F1	1*	Thr ^[2]	139	Ser ^[12]	139	92/93	88/89
F1a	1†	Thr ^[2]	139	Ser ^[12]	139	92/93	88/89
F2	2*	Ser ^[12]	139	Thr ^[2]	139	92/93	88/89
F3	3*	Ser ^[12]	139	Allo-Thr ^[5] (Ramo13)	138	65/75	71/75
F4	4*	Ser ^[12]	139	Allo-Thr ^[8] (Ramo17)	143	54/63	55/65
F5	5*	Ser ^[12]	139	Allo-Thr ^[12] (Ramo14)	138	59/69	65/71
F6	6*	Ser ^[12]	139	Ala ^[16]	135	47/60	28/44
F7	7*	Ser ^[12]	139	Ala ^[16] (Ramo14)	133	48/61	31/48
F8	8*	Gly ^[14]	135	Ala ^[16]	135	75/82	75/83
F9	9*	Ala ^[16]	135	Gly ^[14]	135	75/82	75/83
F10	10*	Ala ^[16]	135	Gly ^[14] (Ramo14)	134	64/73	64/74
F11	11*	Thr ^[2]	139	Ser ^[1] (CDAPS1)	141	46/56	32/40
F12	12*	Ser ^[12]	139	Thr ^[2] (Streptobactin) [‡]	143	60/70	64/72
F13	13*	Gly ^[14]	135	Ala ^[2] (Tyrobetaine) [‡]	144	34/45	29/40
F14	14*	Ala ^[16]	135	Gly ^[8] (Lipopeptide 8D1-1) [‡]	135	53/65	44/59
F15	15*	Ser ^[12]	139	Thr ^[1] (Antimycin) [‡]	146	58/67	67/73
F16	16*	Ser ^[12]	139	Thr ^[2] (SnbC)	145	59/70	62/73
F17	17*	Ser ^[12]	139	Allo-Thr ^[5] (SyfB)	144	50/64	57/69

Supplementary Table 2. Bioinformatics information for each swap mutant

* Swap via CRISPR-cas9 editing
† Swap via gene complementation
‡ Predicted natural product and gene cluster
Shaded regions show successful swaps

	R	Reported-1a*5	T	his study-1a**	This	This study-2a**		
Residue	NH	CHα	NH	CHα	NH	CHα		
Asp ^[1]	8.14	4.58	8.43	4.5	8.41	4.57		
Thr ^[2]	8.55	4.95	8.48	4.9	8.52 (Ser)	5.05 (Ser)		
Hpg ^[3]	9.56	5.94	9.76	6.06	9.74	6.03		
Orn ^[4]	8.73	4.05	8.82	3.85	8.83	3.86		
Thr ^[5]	7.4	4.39	7.59	4.19	7.58	4.20		
Hpg ^[6]	8.96	6.81	8.82	6.81	8.81	6.81		
Hpg ^[7]	9.05	5.43	9.10	5.88	9.09	5.97		
Thr ^[8]	-	3.77	7.55	3.8	7.56	3.84		
Cit ^[9]	7.64	4.18	7.61	4.2	7.63	4.18		
End ^[10]	7.73	-	7.76	4.8	7.78	4.87		
Hpg ^[11]	9.38	6.94	9.33	6.94	9.33	6.93		
Ser ^[12]	9.45	5.04	9.33	5.05	9.38	5.05		
Dpg ^[13]	8.97	5.72	9.25	5.8	9.24	5.85		
Gly ^[14]	7.73	3.87	8.82	4.2	8.83	4.15		
End ^[15]	-	-	9.10	5.5	9.09	5.52		
Ala ^[16]	9.68	4.38	9.54	4.44	9.46	4.48		
Hpg ^[17]	7.94	5.44	7.85	5.5	7.92	5.59		
Side chain	-	5.67	-	5.71	-	5.71		

Supplementary Table 3. Key proton chemical shifts (ppm) that identify each residues in enduracidin **a** and its new analogue.

* H₂O-DMSO-*d6* (4:1, v/v) ** H₂O-D₂O-TFA (9:1:0.05, v/v/v)

Production of enduracidin (1a & 1b) and engineered variants (a & b) in mg/L												
	1	2	3	4	5	6	7	8	9	10	Average	e Error
WT	4.14	0.51	3.68	1.16	0.50	0.91	2.86	3.30	0.65	2.45	2.02	± 0.45
F1	0.93	2.77	0.49	0.63	2.90	1.78	0.68	2.64	0.45	1.12	1.44	± 0.32
F2	0.65	1.54	0.91	0.95	1.31	1.00	1.87	1.21	0.89	0.80	1.11	± 0.12
F3	0.35	0.36	0.62	0.42	0.43	0.49	0.41	0.50	0.66	0.85	0.51	± 0.05
F4	0.32	0.29	0.33	0.38	0.31	0.27	0.27	0.43	0.40	0.26	0.33	± 0.02
F5	0.48	0.66	0.75	0.61	0.39	0.58	0.55	0.53	0.84	1.01	0.64	± 0.06
F8	0.24	0.32	0.24	0.28	0.36	0.32	0.38	0.39	0.35	0.39	0.33	± 0.02
F9	0.49	0.32	0.43	0.28	0.51	0.38	0.37	0.33	0.59	0.26	0.40	± 0.03
F10	14.55*	1.91	1.41	0.89	15.68*	1.70	1.77	2.97	1.62	0.88	1.64	± 0.22
WT**	1.32	2.66	2.37	-	-	-	-	-	-	-	2.11	± 0.41
F12**	0.31	0.41	0.27	-	-	-	-	-	-	-	0.33	± 0.04
F15**	0.46	0.71	1.83	-	-	-	-	-	-	-	1.00	± 0.42
F16**	0.38	0.31	0.54	-	-	-	-	-	-	-	0.41	± 0.07
F17**	0.87	0.77	0.55	-	-	-	-	-	-	-	0.73	± 0.09

Supplementary Table 4. Yield of enduracidin (**1a** & **1b**) and engineered variants in each cultivation flasks as estimated based on the standard curve of commercial enduracidin standard.

* Statistical outlier

** Distinct batch of additional swap mutants

Strain	Position	SNV	Indel	Predicted gene affected				
				Accession	Description			
				number				
F1	3272110		C deleted	Intergenic region				
F2	No mutations							
F7	1696202- 1696204		GAG inserted	WP_004933182.1	Insertion of Leu into iron chelate uptake ABC transporter family permease subunit CDS			
	2785247	G to A		WP_121546049.1	Pro to leucine change in a helix-turn- helix domain-containing protein (transcriptional regulator)			
	6732973		G inserted	WP_121547643.1	Change in reading frame of arginine deiminase CDS			
F8	2862314	A to G		(1): WP_121546097.1 (2): N/A	2 overlapping genes: (1) silent mutation in a phosphatase PAP2 family protein CDS; (2) Lys to Arg in a hypothetical protein			
	3299859	T to C		Intergenic region				
	3300293	A to G		WP_121546361.1	Phe to Ser, in a helix-turn-helix domain-containing protein(transcriptional regulator)			
	3318273	G to A		WP_121548461.1	Leu to Phe in a hypothetical protein CDS			
	3353049	A to G		WP_004930176.1	Asn to Asp in a M23 family metallopeptidase CDS			
	3374078	A to G		WP_121546404.1	Glu to Gly in a NAD(P)/FAD- dependent oxidoreductase			
	3380245	A to G		WP_004930124.1	Silent mutation in a sigma-70 family RNA polymerase sigma factor			
	3391478	A to G		WP 163013272.1	Lys to Glu in a transporter CDS			
	3432781	A to G		WP_121546444.1	Leu to Pro in a MFS transporter CDS			
	3442305	G to A		WP_121546450.1	Arg to Cys in a molecular chaperone Hsp90			
,	3793404	G to A		WP_121546666.1	Ala to Val in a thiol reductant ABC exporter subunit CydD			
,	4550232		T insertion	Intergenic region				
	4550248		G insertion	Intergenic region				
	4984294		C deletion	WP_004926351.1	Change in reading frame of a PhoH family protein			
F9	2442344		G inserted	Intergenic region				
	2543897	T to C		WP_121545921.1	Tyr to His in a helix-turn-helix domain- containing protein (transcriptional regulator)			
	2747858	G to A		WP-163013249.1	Ala to Thr in a alpha/beta hydrolase CDS			
	4097794		G deleted	N/A	Hypothetical protein coding sequence (will shift reading frame)			
	4561287	C to T		WP_121547137.1	Glu to Lys in an RNA-directed DNA polymerase CDS			
	4728880- 4728888		Deletion of 9 bp (TGGACACCA)	WP_004926852.1	Deletion of 3 amino acids (Asp, Thr, Met) in a sucC gene			
	5305688	T to C		WP_048459195.1	Start codon of a GntR family transcriptional regulator gene changed to a Thr			
F10	2442339		G insertion	Intergenic region				
	5527161		C insertion	WP_121547644.1	Insertion (frame shift) in argF gene (ornithine carbamoyltransferase)			

Supplementary Table 5. Mutations identified via whole genome sequencing

Supplementary Methods

Sequences of subdomains for Swaps 12-15

>FSD Thr^[2] streptobactin*

ggggccgaggacgtctggacgctgttccactcctacgccttcgacttctcggtctgggagctgtggggtgccctgct gcacggcggccggctggtcgtcgtccgcacctgatcagccgcgacccggcggccttcctggagctgctcgcccgc agcgggtcaccgtgctcaaccagacgccgtccgccttctaccagctcagcgccgaccgggaccgccccggcagc gaactcgccctgcgctacgtggtgttcggcggtgaggcgctcgaactcgcccggctggacgactggtacgaccggca cgccgagcacgcccccacgctggtcaacatgtacggcatcaccgagaccaccgtgcacgtcctctacatcgccctgg accgggcgagcgcgccgccgccgggagcagcagcagcaccatcggcgtc

>FSD Gly^[14] tyrobetaine*

>FSD Ala^[16] lipopeptide 8D1-1*

>FSD Thr^[1] antimycin*

*Natural products are predicted using anti-SMASH

References

- 1. Gust, B., Kieser, T., & Chater, *PCR Targeting System in Streptomyces coelicolor A3(2)* (John Innes Centre, Norwich, 2002).
- 2. Gust, B., Challis, G. L., Fowler, K., Kieser, T., & Chater, K. F., PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. *Proc. Natl. Acad. Sci. U.S.A*, **100**, 1541-1546 (2003).
- 3. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F., & Hopwood, D. A. Practical Streptomyces Genetics. (John Innes Foundation, 2000).
- 4. Cobb, R. E., Wang, Y., & Zhao, H. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. *ACS Synth. Biol.* **4**, 723-728 (2015).
- 5. Castiglione, F., Marazzi, A., Meli, M. & Colombo, G. Structure elucidation and 3D solution conformation of the antibiotic enduracidin determined by NMR spectroscopy and molecular dynamics. *Magn. Reson. Chem.* **43**, 603-610, (2005).