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Abstract
Multivariate networks comprising several compositional and structural variables

can be represented as multigraphs by various forms of aggregations based on vertex

attributes. We propose a framework to perform exploratory and confirmatory

multiplexity analysis of aggregated multigraphs in order to find relevant associa-

tions between vertex and edge attributes. The exploration is performed by com-

paring frequencies of the different edges within and between aggregated vertex

categories, while the confirmatory analysis is performed using derived complexity

or multiplexity statistics under different random multigraph models. These statistics

are defined by the distribution of edge multiplicities and provide information on the

covariation and dependencies of different edges given vertex attributes. The pre-

sented approach highlights the need to further analyse and model structural

dependencies with respect to edge entrainment. We illustrate the approach by

applying it on a well known multivariate network dataset which has previously been

analysed in the context of multiplexity.

Keywords Random multigraphs � Edge multiplicity � Complexity � Multivariate

networks � Data aggregation

1 Introduction

Multivariate networks consist of several different relations (also referred to as

endogenous or structural variables) mapped on a common set of vertices with

multiple covariates (also referred to as exogenous or compositional variables). Thus,

the term can be seen as a generalisation of what is referred to as multiple, multi-

relational, multilayered or multiplex networks (White et al., 1976; Fienberg et al.,
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1985; Lazega and Pattison, 1999; Pattison and Wasserman, 1999; Magnani and

Wasserman, 2017; Bianconi, 2018). Analysing such networks provides unique

opportunities in unravelling the mechanisms that govern the structure, but with the

cost of increased methodological and computational complexity. A common

approach to overcome these issues is to simplify the networks and apply single

network analytic tools. A recent review on such methods for multilayer networks is

given by Interdonato et al. (2020). Existing studies on multiplexity have used the

concept in different contexts. These include visualization De Domenico et al.

(2015), community detection Bothorel et al. (2015), Mucha et al. (2010), and model

development for both cross sectional and longitudinal network data Krivitsky et al.

(2020), Koehly and Pattison (2005), Snijders et al. (2013).

To date, multiplexity studies that incorporate vertex covariates in the analysis are

still scarce. The approach proposed in this work allows for the analyses of

multiplexity given single or combined vertex attributes. We simplify an observed

multi-relational network while keeping available information on the vertices. This is

done by aggregating with respect to single or combined vertex categories. Such

networks can be represented using multigraphs with multiple inter-category edges

of different kind, and intra-category edges represented as self-edges or loops

(Shafie, 2015; 2016). Using this multigraph representation, we propose different

tools to visually examine network properties and perform an exploratory analysis of

the joint and marginal distribution of edges, i.e. the edge proportions among dyads

in different aggregated vertex categories. The multigraph representation addition-

ally enables the use of probabilistic multigraph models proposed in Shafie

(2015, 2016) to analyse structural features given vertex covariates. Note that the

models proposed in Shafie (2015, 2016) are different than those presented in e.g.

Janson (2009, 2014), Ranola et al. (2010), Godehardt (1993) since the former allow

self-edges while the latter models define them as structural zeros.

The considered multigraph models in this work are used with a special focus on

entrainment of the multiple edges. Specifically, multiplexity statistics derived under

the models are used to detect associations between the different types of edges, and

to infer whether the occurrence of various edge types are statistically different and/

or independent of each other. To illustrate the proposed framework, we apply the

methods on a multivariate network with five relations and two vertex attributes. This

dataset has been analysed in several multiplexity studies, all of which only focus

structural patterns and associations among the multiple type of edges. These

applications include visualization techniques (Rossi and Magnani, 2015; Dickison

et al., 2016), descriptive measures of node, tie and network level features (Dickison

et al., 2016; Interdonato et al., 2020), computation of similarities between the

different layers of the networks (Bródka et al., 2018), and exploration of the

multiplex structure using generalised multidimensional scaling (Giordano et al.,

2019).

The remainder of this paper is structured as follows. Multigraph representations,

including aggregation technique and random multigraph models, are given in the

following section. In Sect. 2, statistics used to analyse multiplexity are defined and

their use is exemplified. Section 3 introduces the dataset used throughout the paper

and the analysis is performed in Sect. 4. In Sect. 5, we present an extension to the
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proposed framework which is not contingent on the presence of vertex covariates.

We conclude with a discussion on the flexibility, limitations and possible extensions

of the approach.

2 Multigraph representations

2.1 Network data aggregation

Multigraphs can be used to represent directly observed networks with multiple

edges mapped on the same set of vertices. These graphs commonly exclude loops

since observing self-edges is very unlikely in many applications. However, there are

other ways in which a multigraph can be obtained as a representation of observed

networks. For instance, using different aggregation techniques on the available

vertex attributes in a multivariate network. As illustrated in Shafie (2015, 2016),

vertices can be partitioned into categories based on single or combined attributes.

Such aggregations result in multigraphs which are significantly smaller than the

original graph and contain intra-category edges represented by loops. This approach

naturally allows for a simultaneous study of compositional and structural variables

including their covariation. These aggregation techniques are the main focus of our

approach and are exemplified in Sect. 3.2 using the multivariate network data

presented in Sect. 3.1.

2.2 Random multigraph models

An undirected multigraph with n vertices and m edges can be represented by its edge

multiplicity sequence denoted M ¼ ðMij : ði; jÞ 2 RÞ, where R ¼ fði; jÞ :
1� i� j� ng is the canonical site space for undirected edges, that is vertex pair

sites where edges can be present. The edge multiplicity Mij then denotes the number

of (multiple) edges at these different sites ði; jÞ 2 R for 1� i� j� n and with i ¼ j
representing edge loops. The number of available vertex pair sites for a multigraph

on n vertices is given by r ¼ n þ 1

2

� �
.

In the following, we briefly present the details of two probabilistic multigraph

models introduced by Shafie (2015, 2016). Applications of the models can be found

in Frank and Shafie (2018) and Shafie (2015). The first model is a random

multigraph model which can be seen as a generalisation of the Bernoulli model. The

m edges of the multigraph are independently assigned to the sites ði; jÞ 2 R and the

edge multiplicity sequence M follows a multinomial distribution with parameters

m and Q ¼ ðQij : ði; jÞ 2 RÞ, where Q is the edge probability sequence with edge

assignment probabilities Qij for each site ði; jÞ 2 R. The model is referred to as the

independent edge assignment model (IEA) (Shafie, 2015) and the probability of a

multigraph under this model is given by
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PðM ¼ mÞ ¼
m

m

� �
Qm ¼ m!Q

i� j mij!

Y
i� j

Q
mij

ij : ð1Þ

The second model is a random multigraph model where the assumption of inde-

pendence is dropped and a degree based dependence is incorporated. The observed

edges are split, and the stubs (or half-edges) are randomly coupled to form edges.

This model is referred to as the random stub matching model (RSM) given a fixed

degree sequence. The edge probability sequence Q is defined as a function of these

degrees d ¼ ðd1; . . .; dnÞ. The edge assignment probabilities are given by

Qij ¼

di

2

� �
=

2m
2

� �
for i ¼ j

didj=
2m
2

� �
for i\j ;

8>><
>>:

ð2Þ

and the probability of a multigraph under this model is given by

PðM ¼ mÞ ¼
2m2

m

m

� �

2m

d

� � ¼ 2m2m!
Qn

i¼1 di!

ð2mÞ!
Q

i� j mij!
; ð3Þ

where m2 ¼
PP

i\j mij (Shafie, 2016).

The independence assumption following the IEA model is known to be

unrealistic in real world settings but can serve as a baseline for comparison and to

suggest necessary model modifications which go beyond the independence

assumption. Moreover, moments of certain statistics to analyse multigraph

structures are easier to handle under this model (specific examples of such statistics

are given in the following section). In contrast, the RSM model allows for degree

based effects such as the Matthew effect (Merton, 1968) but comes with

combinatorial difficulties when deriving closed formulas for the moments of

statistics. These formulas are essential for analysing observed networks since

computing full multigraph probability distributions under either of the two models

increase quickly and becomes infeasible for larger networks. Specifically for the

IEA model, the number of multigraphs represented byM is given by
m þ r � 1

m

� �
.

Under the RSM model, this number is far lower since it is constrained by the degree

sequence. However, to the best of our knowledge, no explicit formula for this

number under the RSM model exists for multigraphs with more than three vertices.

A formula for multigraphs with three or fewer vertices can be found in Frank and

Shafie (2018).

Shafie (2016) studies the possibility to approximate the distribution of M under

the RSM model using the IEA model, thus allowing the closed expressions of

moments of statistics to be used in the structural analysis, This approximation is

based on ignoring the dependence of the edge assignments and letting the edge

probability sequence be defined as a function of the degree or stub multiplicity
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sequence Q ¼ QðdÞ, as shown in Eq. 2. While the RSM model can be seen as

selecting pairs of stubs to form edges without replacement, the IEA approximation

can is equivalent to selecting pairs of stubs to form edges with replacement. Thus,

we have independent edge assignment of stubs and the number of multigraphs M is

still restricted by outcomes consistent with the stub multiplicity sequence. In order

to determine when this approximation is justified, Shafie (2016) studies the edge

multiplicity distributions for loops and non-loops, and the two central moments of

these multiplicities. Some examples of the general results found are that the edge

multiplicity distributions under RSM is closely related to that of the approximate

IEA distribution at low degree vertices. For a more detailed discussion on the

justification of this approximation, see Shafie (2016).

2.3 Multiplexity statistics

The moments of certain statistics to analyse structural properties of multigraphs are,

as mentioned above, easier handled under the IEA model. This holds when using the

IEA model as a stand-alone model or as an approximation to the RSM model.

Examples of such statistics include the number of loops and numbers of non-loops.

These can be used to analyse the edges moving within and between aggregated

vertex pair categories and effects such as homophily or heterophily (see Shafie,

2015) for more details and examples). We here focus on statistics which can be used

to detect multiplexity. These statistics are defined using a complexity sequence, i.e.

the distribution of edge multiplicities1. This sequence is given by R ¼
ðR0;R1;R2; . . .;RmÞ where

Rk ¼
XX

i\j

IðMij ¼ kÞ for k ¼ 0; 1; . . .;m ; ð4Þ

and I is an indicator variable. Thus, R0 denotes the number of vertex pair sites with

no edge occupancy, R1 single edge occupancy, R2 double edge occupancy, and so

forth.

Multiplexity can be analysed using combinations of the Rk statistics. Comparing

R0 þ R1 to R3 þ � � � þ Rk, for instance, may reveal tendencies toward strengthening

ties given an edge type. The first two central moments of Rk under the IEA model

are derived in Shafie (2015) and given by

EðRkÞ ¼
XX

i� j

m

k

� �
Qk

ijð1� QijÞm�k
for k ¼ 0; 1; . . .;m ; ð5Þ

and

1 The term complexity stems from Wasserman and Faust (1994): ‘‘if a graph contains loops and/or any
pairs of nodes is adjacent via more than one line, a the graph is complex’’.
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VðRkÞ ¼
m
k

� � P
s2R

Qk
sð1� QsÞm�k

1� m
k

� �
Qk

sð1� QsÞm�k
� �h i

�
m
k

� � P
s;t2R

s 6¼t

P m�k
k

� �
Qk

s Qk
t ð1�Qs�QtÞm�2k�

m
k

� �
Qk

s Qk
t ½ð1�QsÞð1�QtÞ�m�k

h i ð6Þ

where s and t are site pairs in R ¼ fði; jÞ 2 V2 : i� jg. For instance, the number of

sites with no edge occupancy has expected value

EðR0Þ ¼
XX

i� j

ð1� QijÞm

ð7Þ

and variance

VðR0Þ ¼
X
s2R

ð1� QsÞmQm
s �

XX
s;t2R
s 6¼t

ð1� Qs � QtÞm � ð1� QsÞmð1� QtÞm½ �; ð8Þ

and the number of sites with single edge occupancy is given by R1 has expected

value

EðR1Þ ¼ m
XX

i� j

Qijð1� QijÞm�1

ð9Þ

and variance

VðR1Þ ¼ m
X
s2R

Qsð1� QsÞm�1
1� mQsð1� QsÞm�1

� �

� m
XX

s;t2R
s6¼t

ðm � 1ÞQsQtð1� Qs � QtÞm�2 � mQsQt½ð1� QsÞð1� QtÞ�m�1
h i

:

ð10Þ

The expected values and variances of Rk for all k ¼ 1; . . .;m under the IEA model

are implemented in the R package multigraphr2. The resulting interval esti-

mates can be used to find indicators for dependencies among edges, i.e. when

intervals overlap for multiple edge types. We illustrate this in Sect. 4. All notation

used in this paper is summarised in Table 1.

3 Running example

3.1 Data description

To illustrate the proposed framework, we use the AUCS dataset, a multivariate

network which consists of different type of ties and vertex attributes (Dickison

et al., 2016; Rossi and Magnani, 2015), which has been analysed in several

2 https://CRAN.R-project.org/package=multigraphr
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multiplexity studies, e.g. Rossi and Magnani (2015), Dickison et al. (2016),

Interdonato et al. (2020), Bródka et al. (2018), Giordano et al. (2019).3 The network

includes five different types of relations (co-authorship, Facebook friendship, shared

leisure activities, regularly eating lunch together, and working with each others)

among 61 employees of the Computer Science Department at Aarhus University.

The data also includes two categorical vertex attributes, namely the affiliation to

eight different research groups and five academic positions (professor, associate,

postdoctoral researcher, PhD student, and administrative staff). In our analysis, we

exclude the actors with missing values and those with multiple attribute categories

assigned to them (e.g. an admin was affiliated with two research groups).4 After

pruning the data, we additionally excluded one research group with only one

associated person. This leaves us with five networks on 52 vertices which is used in

the subsequent analyses. The five relations are shown in Fig. 1 and some descriptive

statistics are presented in Table 2.

3.2 Data transformation

A multigraph representation of the AUCS network is obtained by aggregating the

edges based on single or combined vertex categories or vertex pair sites, as specified

by the actor attributes, and with the different ties moving between and within the

chosen categories. Hence, three different multigraphs can be constructed using the

given vertex attributes. Two that are aggregated based on single vertex categories,

academic position and research group, and one that is aggregated based on cross

classifying both attributes. The resulting graphs are shown in Fig. 2.

Multigraphs as shown in Fig. 2 are the traditional way of displaying networks.

However, multiple edge categories and the existence of loops can have a negative

impact on the readability. We thus offer an alternative visualization using waffle
matrices as shown in Fig. 3. The waffle matrices show occurrences of the five ties as

cells of a matrix, with each row and column representing a vertex pair category. The

diagonal thus represents edges within categories, i.e. the loops.

The multigraph based on the aggregation of academic position (cf. Figs. 2a and

3a) shows that eating lunch seems to be the most frequent interaction among all

positions and that most interactions occur between the PhD students themselves, and

between PhD students and Postdocs. This tendency is particularly clear for leisure

activities and eating lunch together. We also note that the majority of publications

occur between PhD students and Professors (likely their supervisors).

The multigraph based on the aggregation of research groups (cf. Figs. 2b and 3b)

comprises seven vertices. The most frequent interactions occur within research

groups, with the second group (G2) having the most internal interactions, especially

with respect to eating lunch together and being friends on Facebook. Note that some

research groups seem to not interact at all.

3 The dataset can be found at http://multilayer.it.uu.se/datasets.html
4 Note that this is not how missing and ambiguous attribute values should be treated in an empirical

study. We opt for this solution as we use the application as a mere illustration of the proposed framework.
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The largest multigraph is given by the aggregation of both research group and

academic position, which yields a graph with 20 vertices, excluding 15 isolates

(Fig. 2c). For a multigraph of this size, the waffle matrix is not easily readable. We

therefore exclude it here. However, we do note the following from the cross

classification presented in Fig. 2c; a small cluster of heavy interaction is observed

from and to the second research group, and in particular among the PhD students.

Table 1 Notations used in this paper

n Number of vertices

m Number of edges

R Canonical site space for undirected edges

r
Number of vertex pair sites ði; jÞ 2 R given by

n þ 1

2

� �

M Sequence with edge multiplicities Mij for sites ði; jÞ 2 R
m Sequence of realisations of edge multiplicities mij at sites ði; jÞ 2 R
Q Sequence with edge assignment probabilities Qij at sites ði; jÞ 2 R
d Sequence of vertex degrees d1; d2; . . .; dn

R Sequence of edge multiplicity frequencies R0;R1;R2; . . .;Rm

coauthor facebook leisure lunch work

Position Admin Associate PhD Postdoc Professor
RG

G1 G2 G3 G4

G5 G6 G7

Fig. 1 The five types of relations of the considered network dataset. The available vertex attributes are
research group (RG) and academic position

Table 2 Descriptive statistics for the five relation types in the used network dataset

Type Edges Non-isolated vertices Transitivity Max degree

coauthor 21 25 0.43 5

facebook 96 29 0.50 14

leisure 87 46 0.34 14

lunch 162 52 0.63 15

work 114 52 0.37 14
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Additionally, we observe a cluster of ties representing interactions between certain

academic positions within research group seven.

4 Multiplexity analysis

4.1 Joint and marginal distribution of edge types

In order to explore the covariation of the different edges given vertex attributes, the

joint and marginal distribution of the
52

2

� �
¼ 1326 dyads within and between

categories (or vertex pairs sites) can be systematically analysed for each aggregated

multigraph. Doing so, we may be able to detect conditional dependencies of edges

given vertex attributes. Practically, this can be done using contingency tables in

which the proportions of edges within and between the different categories are

represented and analysed (Shafie, 2015). If we, for example, are interested in

Admin Associate

PhD

Postdoc Professor

(a)
G1

G2

G3

G4 G5

G6

G7

(b)

Associate (G1)

PhD (G1)

Postdoc (G1)

PhD (G2)

Postdoc (G2)
Professor (G2)

PhD (G3)

Postdoc (G3)

Admin (G4)

Associate (G4)

PhD (G4)

Postdoc (G4)

PhD (G5)

Postdoc (G5)

Professor (G5)
Associate (G6)

PhD (G6)

PhD (G7)

Postdoc (G7)

Professor (G7)

(c)

Associate (G1)

PhD (G1)

Postdoc (G1)

PhD (G2)

Postdoc (G2)
Professor (G2)

PhD (G3)

Postdoc (G3)

Admin (G4)

Associate (G4)

PhD (G4)

Postdoc (G4)

PhD (G5)

Postdoc (G5)

Professor (G5)
Associate (G6)

PhD (G6)

PhD (G7)

Postdoc (G7)

Professor (G7)

coauthor facebook leisure lunch work

Fig. 2 Aggregated multigraphs based on actor attributes (a) academic position, (b) research group, and
(c) combination of academic position and research group (with isolated vertices omitted). Thickness of
edges represents multiplicity counts
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statistics that measure the local edge density, then varying edge proportions among

the dyads in different categories would indicate the need for a model with dependent

edges.

For cases with more than two types of ties, a clustering of the dyad distributions

may be needed. Alternatively, a systematic review of pairwise ties can be used for

cross tabulation and visualization. As an illustration, we consider the multigraph

aggregated by research group and the joint and marginal distribution of work and

leisure ties. The proportion of edges (work, leisure, or both) within and between the

different vertex pairs sites are shown in Fig. 4. The frequency of edges relative to

the total number of possible edges in each vertex pair category (y axis) is given as

dots, where the size of dots represents observed frequencies. We note a tendency for

the two ties to appear simultaneously within the same research group (as represented

by the black dots). To obtain consistent results, we emphasize the need to

systematically check these dyad distributions for all the different edges in the

multigraph under study.

4.2 The sequence of edge multiplicities

We analyse the multiplexity statistics Rk given in Eq. 4 for the multigraphs in Fig. 2

in two different ways. First, we explore the distribution of these statistics given all

five relations and all three aggregated multigraphs, as shown in Fig. 5. This gives an

indication for patterns regarding single, double, triple, etc. occupancy of the

different edges. Note that the cut off point k ¼ 10 in Fig. 5 is chosen since there are

only a few occurrences of more than ten edges of each type in the used data set. In

principle, the value can be set to the maximally observed value. Note that the count

b Fig. 3 Aggregated multigraph based on (a) academic position with 5 vertices and (b) research group with

7 vertices. Each cell represents a vertex pair category and the diagonal represent within category edges
(loops)
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Fig. 4 Relative frequencies of leisure and work ties within and between vertex pair categories based on
research group. Size of dots represent observed frequencies
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Fig. 5 Frequencies of edge multiplicities Rk for k ¼ 1; . . .; 10 in the three aggregated multigraphs in
Fig. 2 based on academic position (a), research group (b) and the combination of both (c)
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values illustrated as bars of different colours for different edge types in Fig. 5 are

always relative to the same number: the number of possible vertex pair sites given

by r. Specifically, for the three aggregated multigraphs considered, these numbers

equal 15 (cf. Fig. 5a), 28 (cf. Fig. 5b) and 210 (cf. Fig. 5c). Note that when dividing

the observed Rk by these numbers, the fractions should be interpreted differently for

null occupancy of edges (R0) and single, double or multiple occupancies of edges

(R1; . . .;Rk). A high proportion of null occupancies may indicate a sparse network

and a high proportion of multiple occupancies may point to a dense network.

Figure 5 reveals several tendencies in the data. The coauthor relation has the

most null occupancies of edges (R0) in the multigraphs based on academic position

and research group. This, however, is due to the sparsity of the edge type. It is

generally important to pay attention to the edge densities when interpreting the

presented bar charts. In Fig. 5a, for instance, leisure and coauthor have a similar

number of null occupancies but differing densities in the respective network. While

the coauthor network is indeed sparse, leisure edges are concentrated in only a few

vertex pair categories (cf. Fig. 3a). We also note that working relationships most

frequently come in pairs (R2) for the multigraph based on research group (b). For the

latter, note that R0 þ R1 for work ties is smaller than R2 þ R3 þ � � � þ R10, indicating

a tendency to strengthen the ties. In contrast, we also see that the multigraph

aggregated based on both attributes has a majority of null and single occupancies

(R0 and R1) for the different edges meaning there is no indication of certain relations

being strengthened.

4.3 Application of the probability models

As a last step, we apply the IEA model, and the IEA approximation of the RSM

model. Note that while the analyses thus far have primarily been descriptive,

showing only tendencies and indications of multiplexity, we now move toward the

confirmatory part of the analyses where we can formally test whether ties are

associated to each other using the fitted models. Specifically, interval estimates of

the Rk statistics are used to inform on the covariation of the five ties given the

aggregated vertex categories in the three multigraphs shown in Fig. 2. Although

unrealistic, the IEA model can still provide insight into the multiplex structure of the

multigraphs and may inspire further model specifications. Thus, when testing

whether the occurrence (or non-occurrences) of the various edge types are

significantly different, overlapping intervals would imply failure to reject the null

and indicate dependency among those edges.

Under the IEA model, the maximum likelihood estimate of the edge assignment

probabilities are given by the empirical fraction of each edge type, i.e. Q̂ij ¼ mij=m

for 1� i� j� n. Under the RSM approximation, these probabilities are given by the

observed degree sequence of each edge type, as given in Eq. 2. Expected values and

variance of Rk are estimated and intervals Ê � 2
ffiffiffiffî
V

p
are depicted in Fig. 6 where

the IEA model is shown in the left column (a,c,d) and the RSM approximation is

given in the right column (b,d,f). The rows represent the three aggregated

multigraphs in Fig. 2. The figure allows us to check the fit of the model, that is
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whether observed frequencies of the statistics are captured by the model specified

intervals. As already mentioned, overlapping intervals given the different edges

hints to edge entrainment and dependence, thus implying model revision is needed.
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Fig. 6 Interval estimates for multiplicity statistics Rk under the IEA model (a, c, e) and the IEA
approximation of the RSM model (b, d, f) for the three aggregated multigraphs in Fig. 2 based on a–b)
academic position, c–d) research group, and e–f) a combination of both
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Interpreting Fig. 6, we note the following. Both the IEA model and its

approximation of the RSM model provide good fits for the multigraph aggregated

based on research group as the observed values are almost all captured by their

respective intervals (Fig. 6c and d). In fact, the simple IEA model in Fig. 6c

provides the best fit as the intervals capture all observations (note that R3 under the

RSM approximation falls outside of the interval). This allows us to use statistics

under the IEA model, such as number of loops or number of non-loops, to study

homophily or heterophily effects within and between vertex categories. Moreover,

multiplexity statistics defined in Sect. 4 can be used to study possible edge

dependencies and associations between the different edges. We note that all

intervals Rk for k � 1 in Fig. 6c and d are overlapping, thus indicating that their

occurrences are not significantly different, nor are they independent implying that

some form of edge dependency is needed in the model specification.

The results can guide further model revisions, for instance, when specifying

multiplexity statistics in ERGMs for multivariate and multilayered networks

(Koehly and Pattison, 2005; Krivitsky et al., 2020). While these model extensions

go beyond the scope of this paper, we briefly outline how they can be implemented.

The core principle of using ERGMs is to specify the models using conceptually

suitable and relevant structural properties which are founded in social theory.

Moreover, these properties need to be motivated by a hypothesis driven analysis.

The presented multigraph framework not only helps to hypothesise about structural

features with respect to multiplexity, but most importantly allows the filtering of

relevant vertex covariates and edge types with respect to multiplexity. We

exemplify this using the results in Fig. 6c and d where almost all observed values of

Rk are captured by their estimated intervals, thus indicating an adequate fit. This

interdependencies, shown as overlapping intervals, can be used to formulate

hypotheses about multiplexity effects given the research group affiliations. For

example, we might be interested in examining if staff members, given the research

group, tend to eat lunch or spend leisure time with those they also work together

with. It is also evident that co-authorship is entrained with work tie, but not vice

versa. Such hypotheses can then serve as guidelines for statistics to include in

multivariate or multilayered ERGMs. Since multiplexity is included as interaction

terms between pairs of tie variables, caution must be taken to not include too many

parameters in the model. This in particular since we are using covariates (here

research group) implying homogeneity constraints yielding equal parameters for

isomorphic configurations can not be considered. In order to avoid this, we can

restrict hypotheses to models including pairwise ties and selecting those that are

almost perfectly overlapping in Fig. 6c and d. For example, this holds for Facebook

and lunch ties in Fig. 6c. Thus, an initial fitted ERGM would result in a positive

multiplexity parameter for these ties (while controlling for density and research

group). The second model could then include more multiplexity configurations that

are of higher order than two vertices. Consider for example degree based effects

which can be read from Fig. 6d (i.e. the approximated RSM model given degree

sequences). These degree based effects can then be included in an ERGM using

alternating k-star or the geometrically weighted degree configurations (see Krivitsky

et al. (2020) for more details on such statistics).
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5 Extension to the presented framework

The presented framework is not contingent on the presence of vertex attributes.

Multigraphs can be obtained by only using the edge information of networks.

Observed edge variables can be transformed into vertex variables by considering

statistics such as centrality. Aggregations will be based on these transformed vertex

variables, either alone or in combination with each other.

We illustrate this by using the same dataset yet discarding the two existing vertex

attributes. Consider the relations Facebook friendship, leisure activities and eating

lunch together. Once transformed into vertex variables, these three relations can be

defined as a measurement of online (Facebook) and offline (leisure and lunch) social

influence. This is done by calculating the degree of each vertex based on the three

relations, which we then dichotomize to reflect low and high social influence. This

dichotomisation is based on a median split of the degree distributions, as shown in

Fig. 7.

Table 3 shows how these three binary vertex variables can be used to aggregate

the work and co-authorship networks into a multigraph on six vertices based on

online and offline social influence. The resulting multigraph is shown in Fig. 8. This

multigraph can be used to examine whether there is an association between (online

and offline) social influence and the two work ties by a similar approach as given in

Sect. 4.

With only two type of ties present (work and coauthor), it is easy to explore the

marginal and joint edge distributions of the dyads (cf. Sect. 4). By visualizing them

as shown in Fig. 9, we note the following. When ordering the vertex pair sites in

increasing order of social influence, we note a slight upward trend, i.e. the

propensity of work ties increases with higher values of social influence. This

indicates that the presence of the two edges is contingent on the attribute ‘social

influence’, as defined in Table 3. Note that the large discrepancy between the

number of co-authorship and work ties in each of the networks leads to almost all of

the coauthor ties being present simultaneously with work ties. As shown in Sect. 4,

the multiplexity statistics Rk can then be used to detect potential associations and

dependencies among the different ties.
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Fig. 7 Degree distributions of the three edges used to define online and offline social influence; a)
facebook, b) leisure and c) lunch. The values are dichotomised to reflect low and high based on a median
split of the distributions
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Table 3 Dichotomised online and offline social influence, cross-classified and aggregated into a multi-

graph with vertex categories represented in the third column

Outcome space for social influence

Online = (facebook) Offline = (lunch, leisure) (Online, Offline)

0 0 = (0,0) (0,0)

1 1 = (0,1) or (1,0) (0,1)

2 = (1,1) (0,2)

(1,0)

(1,1)

(1,2)

Vertices in aggregated multigraph

Fig. 8 Aggregated multigraph
with coauthor and work relations
moving within and between
categories based on online and
offline social influence Table 3
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6 Discussion

We presented a framework for analysing multiplexity in multivariate networks,

based on simplifications of an observed network. The main benefit of this

framework is that it allows to analyse multiplexity in the presence of vertex

covariates.

The simplification of the multivariate network is based on aggregation

techniques. Groups of vertices are aggregated into single meta vertices based on

single or combined attributes. The aggregated network can then be represented as a

multigraph with the different kinds of edges moving between and within the meta

vertices. Several visual and exploratory tools were presented to detect tendencies

towards tie entrainment and (conditional) dependencies among the different ties.

The confirmatory analysis is performed using specific statistics derived under

suitable probability models for multigraphs. While these simple models may not fit

the observed data, the derived statistics can still be used to detect dependencies or

other important features that need to be controlled for in a model revision.

The presented approach is particularly useful in networks with several vertex

covariates. However, we also illustrated how the approach can be used when no

attributes are present by transforming edge variables into vertex variables. Note that

these transformations should be guided by the research question and underlying

social theories. The aggregation techniques are also applicable in the presence of

other exogenous network variables. Consider, for example, networks with multiple

types of ties observed over several time periods. Instead of vertex aggregation, we

can aggregate edges over time. Thus, we obtain a multigraph for each edge category

over the total time period. These multigraphs can then again be analysed using

methods and models presented in this paper.

Attention must be paid to the density of various edge types and vertex variable

distributions when applying our methodology. In the extended approach presented

in Sect. 5, it is easy to control for the vertex variable distribution and ensure the

different categories are equally sized by using percentiles of the empirical

distribution. In the specific example, edge variables are transformed into vertex

variables using the median to ensure that the number of observations in each of the

two outcome categories are approximately equal (see Fig. 7). In cases where actor

attributes are skewed, outcome categories can be merged, split or recoded in an

empirically meaningful way to balance the distribution. In case of a large

discrepancy between the different observed edge densities, caution should be taken

when looking at the sequence Rk. The values should not be interpreted in isolation

but in conjunction with other information from the aggregated multigraphs, for

instance, statistics such as density, or observations from visual inspection of the

waffle matrices. This is done to rule out any tendencies due to observed edge

densities (or sparsity) and tendencies due to concentrated edge occupancies in only a

few vertex pair categories.

Some limitations of the proposed multiplexity framework must be noted. First, it

is only applicable to undirected networks. Extending the models to the directed case

is technically involved and requires a lot of additional considerations due to the
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increased combinatorial complexity of the model specifications. Second, visual

inspections of the waffle matrices are only feasible for small networks. Finally, the

presented framework does not reveal the direction (positive or negative) of the

associations between the different edge types. In order to delineate this information,

complementary approaches such as those presented for ERGMs are required.
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