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Abstract 

Background:  Current methods fail to accurately predict women at greatest risk of developing fetal growth restriction 
(FGR) or related adverse outcomes, including stillbirth. Sexual dimorphism in these adverse pregnancy outcomes is 
well documented as are sex-specific differences in gene and protein expression in the placenta. Circulating maternal 
serum microRNAs (miRNAs) offer potential as biomarkers that may also be informative of underlying pathology. We 
hypothesised that FGR would be associated with an altered miRNA profile and would differ depending on fetal sex.

Methods:  miRNA expression profiles were assessed in maternal serum (> 36 weeks’ gestation) from women deliver-
ing a severely FGR infant (defined as an individualised birthweight centile (IBC) < 3rd) and matched control partici-
pants (AGA; IBC = 20–80th), using miRNA arrays. qPCR was performed using specific miRNA primers in an expanded 
cohort of patients with IBC < 5th (n = 15 males, n = 16 females/group). Maternal serum human placental lactogen 
(hPL) was used as a proxy to determine if serum miRNAs were related to placental dysfunction. In silico analyses were 
performed to predict the potential functions of altered miRNAs.

Results:  Initial analyses revealed 11 miRNAs were altered in maternal serum from FGR pregnancies. In silico analy-
ses revealed all 11 altered miRNAs were located in a network of genes that regulate placental function. Subsequent 
analysis demonstrated four miRNAs showed sexually dimorphic patterns. miR-28-5p was reduced in FGR pregnancies 
(p < 0.01) only when there was a female offspring and miR-301a-3p was only reduced in FGR pregnancies with a male 
fetus (p < 0.05). miR-454-3p was decreased in FGR pregnancies (p < 0.05) regardless of fetal sex but was only positively 
correlated to hPL when the fetus was female. Conversely, miR-29c-3p was correlated to maternal hPL only when the 
fetus was male. Target genes for sexually dimorphic miRNAs reveal potential functional roles in the placenta including 
angiogenesis, placental growth, nutrient transport and apoptosis.

Conclusions:  These studies have identified sexually dimorphic patterns for miRNAs in maternal serum in FGR. These 
miRNAs may have potential as non-invasive biomarkers for FGR and associated placental dysfunction. Further studies 
to determine if these miRNAs have potential functional roles in the placenta may provide greater understanding of 
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Introduction
Fetal growth restriction (FGR) is a pregnancy complica-
tion where the fetus fails to reach its genetically deter-
mined growth potential and is a significant cause of fetal 
morbidity and mortality [1]. FGR is associated with a 
range of placental abnormalities, including impaired 
growth, villous and vascular structural abnormalities, and 
impaired nutrient transport and endocrine function [2, 
3]. Fetal growth restriction and associated placental dys-
function are linked to increased rates of stillbirth, death 
of a fetus in utero after 24 weeks gestation [4]. Stillbirth 
affects 1 in 240 pregnancies in the UK [5], thus identify-
ing pregnancies with placental dysfunction at greatest 
risk of FGR and stillbirth is an important clinical aim [2].

The only current direct test of placental function in 
utero in routine clinical use for detection of FGR is Dop-
pler ultrasound assessment of umbilical artery blood flow 
[2] however, although this screen is sensitive for detect-
ing early-onset FGR (< 34 weeks’ gestation), it is not reli-
able for late-onset FGR which comprises the majority of 
all FGR cases [6]. Whilst other tests in late pregnancy 
such as measurement of placental hormones in maternal 
blood, e.g. placental growth factor (PlGF), human pla-
cental lactogen (hPL) have also been proposed to iden-
tify placental dysfunction, a recent systematic review and 
meta-analysis demonstrated such tests are insufficient to 

predict FGR pregnancies thus additional biomarkers are 
required [7].

MicroRNAs are short (~ 20 nucleotide) RNA mole-
cules that post-transcriptionally regulate gene expression 
by mediating mRNA destabilisation and translational 
repression [8]. miRNAs are produced in all cells and tis-
sues, including the placenta, where they regulate growth, 
differentiation, survival and vascular development [9–
12]. Vascular maldevelopment and altered trophoblast 
turnover and function are features of placental dysfunc-
tion observed in FGR and pregnancies ending in stillbirth 
[13] suggesting that the underlying pathology may be 
a consequence of altered miRNA levels in the placenta. 
miRNAs have also been shown to be released from tis-
sues, including the placenta, into the circulation either 
in complexes with proteins such as Argonaute 2 or con-
tained within extracellular vesicles (EVs) [14–16]. In the 
maternal circulation, specific alterations to miRNA sig-
natures are associated with pregnancy pathologies such 
as pre-eclampsia (PE), gestational diabetes and pre-term 
labour [17–20]. Furthermore, in pregnant mice, plasma 
miRNAs have been proposed to offer a non-hormonal 
biomarker for direct indication of placental dysfunction 
[21], suggesting that circulating miRNAs may also offer 
promise as biomarkers to predict FGR and associated 
placental dysfunction in human pregnancy.

the pathogenesis of placental dysfunction and the differing susceptibility of male and female fetuses to adverse in 
utero conditions.

Highlights 

•	 Detection and treatment of pregnancies at high risk of fetal growth restriction (FGR) and stillbirth remains a 
major obstetric challenge; circulating maternal serum microRNAs (miRNAs) offer potential as novel biomark-
ers.

•	 Unbiased analysis of serum miRNAs in women in late pregnancy identified a specific profile of circulating miR-
NAs in women with a growth-restricted infant.

•	 Some altered miRNAs (miR-28-5p, miR-301a-3p) showed sexually dimorphic expression in FGR pregnancies 
and others a fetal-sex dependent association to a hormonal marker of placental dysfunction (miR-454-3p, miR-
29c-3p).

•	 miR-301a-3p and miR-28-5p could potentially be used to predict FGR specifically in pregnancies with a male or 
female baby, respectively, however larger cohort studies are required.

•	 Further investigations of these miRNAs and their relationship to placental dysfunction will lead to a better 
understanding of the pathophysiology of FGR and why there is differing susceptibility of male and female fetuses 
to FGR and stillbirth.

Keywords:  miRNA, Placenta, Pregnancy, Serum, Biomarker, Placental dysfunction, FGR, Stillbirth, Sexual dimorphism
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Indeed, changes in circulating miRNAs in pregnan-
cies complicated by FGR have been reported [22–25], 
however, none of the miRNAs currently identified have 
sufficient diagnostic accuracy for use as biomarkers for 
FGR. This is likely due to key differences between study 
design, for example the analysis of a limited number of 
preselected candidate miRNAs rather than global profil-
ing of miRNAs [22, 26]; differences in gestational ages of 
when serum was drawn between studies [24, 25]; analys-
ing miRNA content in isolated EVs in some studies ver-
sus total serum in others [24]; and analysing obstetric 
populations with mixed FGR subtypes including women 
with PE and FGR [23]. To date, no published studies have 
stratified for fetal sex, a variable known to affect both 
rates of FGR, stillbirth and placental miRNA expression 
[27–30]. Therefore, we constructed our study to perform 
unbiased assessment of miRNAs, instead of selecting for 
specific candidate miRNAs; to profile total serum rather 
than EV enriched serum; to use a well-defined FGR 
population with no other known obstetric/medical com-
plications; to stratify for fetal sex; to use in silico analy-
ses to identify miRNAs involved in placental regulatory 
networks; and to combine analysis of miRNA expression 
profiles with levels of a known marker of placental dys-
function. We hypothesised that using this methodology, 
we would identify miRNA profiles that were associated 
with both FGR and placental dysfunction and that these 
miRNA profiles may be dependent on the presence of a 
male or female fetus.

Methods
Participants and clinical samples
Study participants were pregnant women receiving ante-
natal care at St Mary’s Hospital, Manchester, recruited 
to the MFHRG Biobank (ethical approval: North West 
REC (08/H1010/55 + 5)). Written informed consent 
was obtained and detailed demographic and biophysi-
cal data were recorded. Exclusion criteria were multiple 
pregnancy, pre-term deliveries (< 36  weeks gestation), 
known fetal anomalies, pre-eclampsia or hypertension, 
maternal diabetes or any other co-existing obstetric/
medical complications. Maternal serum samples were 
collected in the third trimester (27–42  weeks’ gesta-
tion). Briefly maternal venous blood drawn into serum 
gel tubes (Sarstedt, Numbrecht, Germany) was allowed 
to clot for 30 min and centrifuged at 3000 g for 10 min. 
Aliquots were immediately frozen at −  80  °C for analy-
sis. After delivery, obstetric outcome data were collected 

and the individualised birthweight centile (IBC) calcu-
lated using Gestation Related Optimal Weight (GROW) 
Centile Calculator version 6.7 [31]. Babies were consid-
ered FGR when IBC < 5th centile. All FGR samples were 
matched on a 1:1 basis to appropriately grown (AGA; 
IBC ≥ 20 ≤ 80th centile) fetuses for the following mater-
nal demographic and biophysical characteristics: infant 
sex (50:50 female to male), gestation at time of blood 
sampling, and gestation at delivery. Initial miRNA array 
profiling was performed on a subset of maternal serum 
samples drawn between 36–37  weeks’ gestation where 
primary selector was delivery of a baby with severe FGR 
(IBC < 3rd centile) (n = 4/group; Table  1). For all other 
analyses, a larger cohort of 62 participants’ samples (male 
n = 15, female n = 16; per group; Table 2), were included 
and FGR was defined as IBC < 5th centile. In both array 
samples and the larger cohort, only infant birthweight 
and IBC were significantly different by design between 
groups (array samples p < 0.05, larger cohort p < 0.0001, 
Mann–Whitney; Tables 1 and 2). 

Table 1  Demographic and obstetric outcome data for groups 
used for microRNA array profiling

Data are median and range unless stated otherwise. Participants were 
matched 1:1 on all demographic and obstetric factors, except for birthweight 
and individualised birthweight centile which were significantly different 
between groups (*p < 0.05 FGR vs AGA, Mann–Whitney test). Data analysed 
by Mann–Whitney (continuous data) or Fisher’s exact test (categorical data). 
AGA​ appropriate for gestational age, BMI body mass index, FGR fetal growth 
restriction, IBC individualised birthweight centile

Category AGA​
n = 4

FGR (IBC < 3rd)
n = 4

Age
(years)

28
(27–35)

30.8
(27–35)

Ethnicity
Caucasian:other
Number (%)

2:2
(50%:50%)

2:2
(50%:50%)

Non-smoker
Number (%)

4
(100%)

4
(100%)

BMI at booking
kg/m2

24.45
(23–28)

24.05
(22.3–28.9)

Gestation at delivery
(days)

280
(272–284)

278.5
(264–284)

Birthweight
(gramme)

3207
(3040–3560)

2225*
(1880–2880)

IBC 32.8
(21.5–46.8)

0.95*
(0.1–3.0)

Male infant
Number (%)

2
(50%)

2
(50%)

Gestation of blood draw
(days)

252
(252–252)

252
(252–262)
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Table 2  Demographic and obstetric outcome data for study participants used for miRNA QPCR analyses stratified by infant sex

Data are median and range unless stated otherwise. Data analysed by Kruskal–Wallis with Dunn’s post hoc test (continuous data) or Fisher’s exact test (categorical 
data). AGA​ appropriate for gestational age, BMI body mass index, FGR fetal growth restriction, IBC individualised birthweight centile. ***p < 0.001, ****p < 0.0001; aFGR 
male compared to AGA male; bFGR female compared to AGA female; (Kruskal–Wallis with Dunn’s post hoc test)

Category AGA male
(n = 15)

FGR male
(n = 15)

AGA female
(n = 16)

FGR female
(n = 16)

Age
(years)

24 (18–40) 28 (18–40) 29 (22–39) 27.5 (20–36)

Ethnicity
Caucasian:other
Number (%)

10:5
(67%:33%)

8:7
(53%:47%)

7:9
(44%:56%)

10:6
(63%:37%)

Smoker
Number (%)

4 (27%) 4 (27%) 1 (6%) 1 (6%)

BMI at booking
kg/m2

25.6
(21.8–29.8)

24.9
(18.7–30.9)

23.8
(19.0–28.6)

25.0
(19.4–30.5)

Gestation at delivery
(days)

282
(257–297)

280
(260–286)

280
(265–293)

274
(256–293)

Birthweight
(g)

3560
(3094–4640)

2520**** a

(1960–3190)
3390
(2674–3856)

2370***b

(1660–2880)

IBC 41
(20.7–81.3)

1.54**** a

(0.002–5)
54.1
(20.7–81.1)

0.69**** b

(0.1–3.5)

Gestation of blood draw
(days)

252
(192–287)

252
(199–281)

252
(197–291)

257
(200–282)

Table 3  MicroRNAs differentially expressed in maternal serum between FGR and uncomplicated pregnancies identified by microarray

Fold-change in maternal serum expression for FGR < 3rd IBC compared to AGA matched controls profiled by microarray with unadjusted p value. Evidence of sexual 
dimorphism and/or association with pregnancy pathologies was determined by PubMed literature search accessed 30 May 2021. M male, F female, PE pre-eclampsia, 
SGA small for gestational age, PTB pre-term birth, EPL early pregnancy loss, FGR fetal growth restriction. ddCq = (dCq miRNA FGR) – (dCq miRNA AGA) as defined in Livak 
et al. [56]

miRNA ID SD ddCq 
adverse/
normal

Fold-change Unadjusted p 
value

Sexual dimorphism Reported association with pregnancy 
pathology

miR-28-5p
MIMAT0000085

0.641 − 1.258 − 2.4 0.029 ↑ F non-pregnant plasma [39] Not reported

miR-200b-3p
MIMAT0000318

0.169 − 0.874 − 1.8 0.012 ↑ M cerebellum + colorectal mucosa 
[40]

↑ Placental expression in PE with SGA [41]
↑ Myometrial expression in mouse
model of PTB [42]

miR-224-5p
MIMAT0000281

0.426 − 0.931 − 1.9 0.022 Not reported ↑ Placental expression and maternal serum levels 
in PE [43]
↑ In trophoblasts exposed to hypoxia [44]

miR-378a-3p
MIMAT0000732

0.275 − 0.491 − 1.4 0.038 ↑ F normal-term placenta [45] ↑ Placental expression in PTB [46]
↓ Expression in EPL decidua [47]

miR-526b-5p
MIMAT0002835

0.420 − 1.463 − 2.8 0.026 ↑ M cerebellum [40] Placental specific C19MC cluster
↓ Placental expression in FGR [48, 49];
↑ placental expression in PE [50] and PTB [46]

miR-550a-3p
MIMAT0003257

0.254 − 0.429 − 1.3 0.043 Not reported Not reported

miR-29c-3p
MIMAT0000681

0.089 0.332  + 1.3 0.0051 ↑ M plasma [39]
↑ F cerebellum [40]

↑ Plasma levels in gestationally obese women [51]

miR-301a-3p
MIMAT0000688

0.364 0.588  + 1.5 0.048 ↑ M peripheral blood [40] ↑ Maternal serum levels in PE [43]

miR-409-3p
MIMAT0001639

0.422 1.716  + 3.3 0.02 Plasma concentration + vely corre-
lates with lung function in asthmatic 
boys [52]

High placental expression (C14MC cluster)
↓ Maternal serum levels in PE [53]

miR-454-3p
MIMAT0003885

0.727 1.396  + 2.6 0.031 ↑ M peripheral blood [40]
↑ M FGR fetal heart baboon [54]

↑ Placental expression in PE [55]

miR-551a
MIMAT0003214

0.303 0.988  + 2.0 0.03 Not reported Not reported
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RNA isolation
Total RNA was extracted from 200  µl of maternal 
serum using the miRCURY RNA Isolation Kit—Bio-
fluid (Exiqon, Denmark) following the manufacturers’ 
protocol, with inclusion of an on column DNAse diges-
tion step. For increased reproducibility, a carrier RNA 
(1 µg MS2 phage RNA; Roche, UK)) was added prior to 
extraction along with RNA spike-in controls (UniSp2, 
UniSp4, UniSp5 Exiqon, cat no. 203203) to monitor the 
technical quality of the RNA isolation, cDNA synthesis 
and the presence of PCR inhibitors. Samples contami-
nated by haemolysis where ΔCt miR-23a-3p–miR-451a 
was > 7 were excluded. Standard methods of RNA yield/
purity are inaccurate due to carrier RNA, however we 
adhered to best practise guidelines by standardising input 
amounts based on isolating from identical starting vol-
umes and using the same volume of purified RNA for all 
downstream processes [32].

miRNA array profiling
Isolated maternal serum RNA (19  µl) was reverse tran-
scribed in 95-µl reactions using the miRCURY LNA™ 
Universal RT microRNA PCR system (Exiqon, Denmark) 
then diluted 50 × before analysis using the miRCURY 
LNA™ Universal RT microRNA PCR Human panel I + II 
Array plates (Exiqon, Denmark) which detects 752 indi-
vidual miRNAs (list of all miRNAs profiled contained in 
Additional file 1). Sample quality control was monitored 
using spike-ins for RNA isolation efficiency (UniSp2, 
UniSp4, UniSp5) and cDNA synthesis control (UniSp6). 
Individual miRNA Ct values in each sample, were nor-
malised to the global mean of a panel of 194 miRNA Ct 
values detected in the same sample (the 194 miRNAs 
were detected in all samples) as recommended by Mest-
dagh et  al. [33]. The stability of the average of the 194 
microRNAs was higher across samples/groups than any 
single miRNA in the dataset as measured by NormFinder 
software [34]. The coefficient of variation (CoV) for the 
array was 0.00024–0.048%. Detection of statistical dif-
ferences between patient groups was performed using a 
paired t-test followed by Benjamini and Hochberg mul-
tiple testing correction, using the software R/Bioconduc-
tor [35]. miRNAs with fold-change increase or decrease 

of more than 1.2-fold (≤ 0.83 ≥ 1.2) change p < 0.05 were 
considered significant.

Bioinformatic analysis of altered miRNAs
A list of all 11 miRNAs altered in maternal serum from 
FGR pregnancies was uploaded to Ingenuity Knowl-
edge Base (Ingenuity Pathway Analysis (IPA), Qiagen, 
Redwood City, www.​qiagen.​com/​ingen​uity) and miR-
NET version 2.0 [36], a freely available tool that can be 
accessed at https://​www.​mirnet.​ca., which integrates data 
from 15 different miRNA databases (including miRbase, 
TarBase, miRTarBase, miRecords, miRanda, TransmiR2.0 
miR2Disease, HMDD, ENCODE and ExoCarta) [36], to 
allow network-based visualisation of miRNA–target gene 
interactions coupled with functional analysis.

Networks of interacting genes associated with altered 
miRNAs were determined using miRNET and functional 
annotation and enrichment analysis of predicted target 

Fig. 1  Volcano plot of differentially expressed microRNAs in maternal 
serum of FGR versus normal pregnancies. Log2 (fold-change) values 
for detected miRNAs were plotted against − log10 of the unadjusted 
p-value. Significantly up-regulated genes shown in red, significantly 
down-regulated genes shown in blue (p < 0.05). Dotted line 
represents p = 0.05

Fig. 2  Interacting mRNA networks of all altered miRNAs. A, B A list of all 11 miRNAs altered in FGR was uploaded to miRNET and A networks 
of interacting genes (pink circles) associated with altered miRNAs (blue square) were determined. B Functional enrichment analysis of network 
genes was performed using Reactome, GO and KEGG. Key functional effects associated with the network were found in pathways associated with 
cellular response to stress (red; 77 node genes; Adj p = 4.9 × 10–6), cell proliferation (yellow; 111 node genes; Adj p value = 0.00012) and vascular 
development (turquoise; 97 node genes; Adj p value = 0.00037)

(See figure on next page.)

http://www.qiagen.com/ingenuity
https://www.mirnet.ca
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Fig. 2  (See legend on previous page.)
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genes of altered miRNAs was performed using both miR-
NET (using Reactome, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analy-
ses) and IPA. Network connectivity and functions with 
p < 0.05 were regarded as statistically significant.

Real‑time QPCR assessment of serum miRNA levels
Altered miRNAs that had known sexually dimorphic 
expression in other tissues and/or previous associations 
with pregnancy pathologies as determined by perform-
ing literature searches using PubMed [37] (Table 3), were 
assessed by QPCR in a larger set of maternal serum sam-
ples (Table  2). Reverse transcription of isolated serum 
RNA (4  µl) was performed using miRCURY™ LNA 
Universal RT microRNA PCR system (Exiqon, Ved-
baek, Denmark), with a UniSp6 RNA spike-in template 
included as an internal QC to monitor the reaction effi-
ciency. QPCR was performed using ExiLENT SYBR 
Green master mix (Exiqon) and specific LNA-primer 
sets for 7 selected candidate miRNAs (miR-28-5p, miR-
29c-3p, miR-301a-3p, miR-378a-3p, miR-409-3p, miR-
454-3p and miR-526b-5p with target sequences listed in 
Additional file 2: Table S1) and reference dye 5-carboxy-
X-rhodamine (ROX) in a Stratagene MX3000P real-time 
PCR machine. Thermocycling conditions consisted of 
polymerase activation for 10 min at 95 °C followed by 40 
cycles each one consisting of 10 s at 95 °C then 1 min at 
60  °C. The CoV for qPCR assays ranged from 0.2–2.4%. 
Data were normalised as 2−ΔCT using the geometric 
mean of two reference miRNAs (miR-23a-3p and miR-
191-5p) determined to be most stably expressed between 
the sample groups as described by Vandesompele et  al. 
[38].

Measurement of maternal serum human placental 
lactogen (hPL)
Levels of human placental lactogen (hPL), an estab-
lished marker of placental endocrine function associated 
with a poor pregnancy outcome [57, 58], were assessed 
in matched serum samples which had been analysed for 
miRNA levels, where available (n = 59 from a total of 62 
samples). Maternal serum samples were diluted 1:100 
and assessed using a specific hPL ELISA (EIA-1283, 
DRG Diagnostics, Germany) according to manufactur-
er’s instructions. Briefly, 10-µl aliquots of samples and 

standards were applied to ELISA plates in duplicate and 
absorbance read at 450 nm using a Versamax plate reader 
and SoftMax Pro software (Molecular Devices, Califor-
nia, USA). The inter- and intra-assay variabilities were 
4.3–9.9% and 2.6–5.5%, respectively. To identify altered 
miRNAs that were associated with placental dysfunc-
tion in FGR, maternal hPL concentrations and 2−ΔCT val-
ues for altered circulating miRNAs were plotted for each 
individual patient sample.

In silico analysis to identify validated targets of altered 
miRNAs
Target genes and previously reported associations 
between altered miRNAs and pregnancy complica-
tions associated with placental dysfunction, were identi-
fied using in silico analyses. Briefly, miRNA target genes 
were selected based on previous experimental validation 
or that were predicted target genes in more than 1 tar-
get prediction program (miRbase v.22 [59] miRTarBase 
Release 8.0 [60], TargetScan Release 7 [61] and miRDB 
[62]), based solely on the miRNA seed sequence. To 
further refine the list a literature search was performed 
using PubMed [37] to identify published studies sup-
porting a functional role of the gene in the placenta or 
showing associations between gene target expression 
and pregnancy pathologies associated with placental dys-
function, including pre-term birth (PTB), FGR, PE, early 
pregnancy loss (EPL) or gestational diabetes (GDM).

Statistical analysis
Statistical analyses were performed using GraphPad 
Prism (version 8.4). Demographic and obstetric out-
come data were analysed using Mann–Whitney U test 
for continuous data or Fisher’s exact test for categori-
cal data. Data from QPCR analyses were analysed using 
Mann–Whitney U test for 2 groups or 2-way ANOVA 
for multiple groups. Correlations between miRNAs and 
hPL were analysed using Spearman’s correlation or linear 
regression. Results were considered significant if p < 0.05. 
Sample sizes were dictated by power calculations based 
on previous studies [63] or in the case of validation stud-
ies, were determined using a power calculation at 0.95 
level of confidence and a p < 0.05 based on the microarray 
values.

(See figure on next page.)
Fig. 3  Functional enrichment analysis of miRNAs and predicted target genes. A list of the 11 miRNAs altered in FGR was uploaded to Ingenuity 
Pathway Analysis and A predicted diseases and disorders and B predicted molecular and cellular functions and functions associated with 
physiological system development were determined from miRNAs and their experimentally validated and predicted targets. Orange line represents 
significance threshold value of − log p value = 1.5
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Fig. 3  (See legend on previous page.)
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Results
miRNA profiling of maternal serum samples in FGR 
and uncomplicated pregnancies
Analysis of microarrays revealed 11 miRNAs that were 
altered between maternal serum samples from FGR 
(IBC < 3rd) and uncomplicated pregnancies at 36 weeks’ 
gestation (fold-change of ≤ 0.83 ≥ 1.2; p < 0.05; Fig. 1). Of 
these, five miRNAs: miR-29c-3p, 409-3p, 551a, 454-3p 
and 301a-3p, were increased in FGR and six miRNAs: 
miR-200b-3p, 224-5p, 526b-5p, 28-5p, 378a-3p and 550a-
3p, had reduced levels in FGR serum when compared to 
AGA controls. Eight of the altered miRNAs: miR-28-5p, 
200b-3p, 378a-3p, 29c-3p, 526b-5p, 301a-3p, 409-3p 
and 454-3p, had previously reported sex differences in 
expression and /or known association with pregnancy 
pathologies (Table 3).

Functional enrichment analysis of altered miRNAs
Network analysis, using miRNET, revealed that all 11 
miRNAs were present in an interacting gene network 
(Fig.  2A) enriched in predicted target genes (Fig.  2B) 
associated with cellular response to stress (77 node 
genes; Adj p value = 4.9 × 10–6), cell proliferation (111 
node genes; Adj p value = 0.00012) and vascular develop-
ment (97 node genes; Adj p value = 0.00037). Ingenuity 
pathway analysis (Fig. 3) also revealed a predicted func-
tional effect of altered miRNAs in pathways associated 
with placental development including cellular growth 
and proliferation, cellular movement, cell death and sur-
vival and cell-to-cell signalling and interaction.

Sexually dimorphic maternal circulating miRNAs 
associated with FGR pathology
Subsequent analysis in a larger cohort of patients by 
QPCR revealed that only miRNA-28-5p and miR-454-3p 
levels were significantly reduced in FGR compared to 
normal pregnancies (p = 0.028 and p = 0.045; Fig. 4A and 
F, respectively). miR-378a showed a trend for lower levels 
in FGR pregnancies, but this did not reach significance 
(p = 0.08; Fig. 4D). Four remaining miRNAs (miR-29c-3p, 
miR-301a-3p, miR-409-3p and miR-526b-5p; Fig.  4B, C, 
E, G), were unaltered between groups. However, male 
fetuses have poorer outcomes and are at higher risk of 
FGR and stillbirth [29, 64] than their female counterparts 

[29, 64]. Whilst mechanisms remain unclear, sex-specific 
differences in miRNA expression between placentas 
of male and female fetuses have been reported [27, 30]. 
When initial miRNA array data were analysed by sex, 
rather than pathology, sex differences between four miR-
NAs: miR-29c-3p, miR-32-5p, miR-136-5p (all increased 
in male samples) and miR-520  h (increased in female), 
were observed (Table 4). Whilst only one of these miR-
NAs, miR-29c-3p, was found to also be altered in FGR 
miRNA array data (Table 3), it suggested that there was 
potentially sexual dimorphism in miRNA levels in FGR 
pregnancies. QPCR data obtained for the seven miRNAs 
assessed in the larger cohort of patient samples was strat-
ified by fetal sex to determine if there were sexual dimor-
phic patterns for these serum miRNAs in FGR (Fig.  5). 
Using 2-way ANOVA miR-29c-3p (p = 0.031; Fig.  5B), 
miR-526b-5p (p = 0.0224; Fig.  5G) and miR-454-3p 
(p = 0.014; Fig.  5F) were found to have sexually dimor-
phic expression independent of fetal growth. Addition-
ally, altered miR-301a-3p and miR-28-5p levels in FGR 
pregnancies were sex-specific; specifically miR-301a-3p 
was 45% lower in FGR pregnancies when the fetus was 
male (4.22 ± 1.87 vs 2.33 ± 1.35 Male AGA vs FGR 
(mean ± standard deviation); interaction (F) p = 0.037; 
Fig. 5C) but not female, and miR-28-5p was reduced by 
28% in FGR pregnancies with a female fetus (0.59 ± 0.34 
vs 0.32 ± 0.14 AGA vs FGR (mean ± standard deviation); 
interaction (F) p = 0.05; Fig. 5A), but not when the fetus 
was male. No other miRNAs assessed showed sexually 
dimorphic patterns.

Serum miRNAs correlate with hPL, a marker of placental 
dysfunction
To determine whether levels of serum miRNAs altered 
in FGR could be indicative of placental dysfunction, the 
relationship between altered miRNA levels and maternal 
concentrations of hPL, an established marker of placen-
tal endocrine function in late pregnancy which is lower 
in pregnancies complicated by FGR [57, 58, 69], were 
assessed (Fig.  6). Positive correlations were found for 
miR-454-3p (p < 0.001, r = 0.449; Fig. 6F) and miR-29c-3p 
(p < 0.05, r = 0.352; Fig.  6B), but no associations were 
found for other miRNAs.

Fig. 4  Q-PCR validation of candidate microRNAs in maternal serum in uncomplicated and FGR pregnancies. qPCR was performed on individual 
microRNAs isolated from maternal serum of women with appropriately grown (AGA; IBC 20–80th) or growth-restricted (FGR; IBC < 5th) infants 
using specific primers for A miR-28-5p, B miR-29c-3p, C miR-301a-3p, D miR-378a-3p, E miR-409-3p, F miR-454-3p and G miR-526b-5p. Data were 
normalised to 2 reference miRNAs and expressed as 2−ΔCt. Individual data points shown (n = 18–31/group); line represents the median. *p < 0.05 
Mann–Whitney U test

(See figure on next page.)
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Further stratification of the data, based on fetal sex, 
revealed that the positive association between miR-
454-3p and hPL, was only in pregnancies with a females 
fetus (r = 0.511, p < 0.01; Fig.  7F), whilst miRNA-29c-3p 
was only correlated with hPL when there was a male fetus 
(r = 0.467, p =  < 0.05; Fig.  7B). No sex-specific associa-
tions with hPL were detected for miRNAs 28-5p, 301a-
3p, 378-3p, 409-3p or miR-526b-5p.

Predicted functional roles of altered miRNAs
For a biomarker to be clinically useful, it must reliably 
be associated with the underlying pathology of a disease 
[70]. Circulating miRNAs have recently been reported 
to enter tissues where they interact with target mRNA 
and affect cellular function [71], thus, in addition to hav-
ing potential biomarker utility, altered circulating miR-
NAs may also be causative for underlying pathologies. 
To assess whether the maternal serum miRNAs have the 
potential to contribute to placental dysfunction associ-
ated with FGR, in silico analysis was performed to deter-
mine experimentally validated downstream target genes 
of the sexually dimorphic miRNAs that were altered 
in maternal serum and/or correlating with hPL in FGR 
pregnancies.

Experimentally validated downstream targets for 
these miRNAs included nutrient transporters, cell cycle 
or apoptosis regulators and growth/angiogenic factors 
(Table  5). Many of these are altered in FGR pregnan-
cies, e.g. vascular endothelial growth factor A (VEGFA) 
[72], pregnancy-associated plasma protein A (PAPPA) 
[73], insulin-like growth factor 1 (IGF-I) [74], insulin-
like growth factor 2 receptor (IGF2R) [75], large neutral 
amino acid transporter (LAT1) [76], apoptosis regulators 
Bcl-2-like protein 11 (BCL2L11), tumour protein p53 
(TP53), and B-cell lymphoma 2(BCL2) [77, 78] and the 
taurine transporter SLC6A6 [79].

Discussion
The current study identified 11 miRNAs that were altered 
in maternal serum of women that gave birth to a severely 
FGR infant compared to those delivering AGA babies. In 
silico analysis of the altered miRNAs revealed that all were 
present in a gene regulatory network with known roles in 
placenta dysfunction associated with FGR. Assessment of 
the altered miRNAs in a larger cohort of patients revealed 
that the association between levels of some maternal cir-
culating miRNAs and FGR was dependent on fetal sex. 

Table 4  Differentially expressed microRNAs between female and male serum samples identified by microarray

When comparing the F group to the M group (combined FGR and AGA) using a t-test, 4 microRNAs were found to be differentially expressed using a cutoff of 
p-value < 0.05. (n = 4/group). Evidence of sexual dimorphism and/or association with pregnancy pathologies was determined by PubMed literature search accessed 
30 May 2021. SD standard deviation, F female, M male, dCq = (Cq target miRNA – Cq reference miRNAs), EVs extracellular vesicles, GDM gestational diabetes mellitus, PE pre-
eclampsia, PTB pre-term birth, FGR fetal growth restriction, PTL pre-term labour

miRNA ID SD F SD M Average
dCq F

Average
dCq M

Fold-change p-value Sexual dimorphism Reported association with pregnancy 
pathology

hsa-miR-520 h
MIMAT0002867

0.40 0.66 − 2.1 − 3.5 2.6 0.018 ↑ In plasma EVs in GDM pregnancies [19]
↑1st trimester plasma in women who develop 
PE [65]
↑ Placental expression in PTB [66]
↓ Placental expression in FGR [49]

hsa-miR-29c-3p
MIMAT0000681

0.28 0.17 2.0 2.5 − 1.4 0.038 ↑ M plasma [39]
↑ F cerebellum [40]

↑ Plasma levels in gestationally obese women 
[51]

hsa-miR-32-5p
MIMAT0000090

0.37 0.15 1.2 1.8 − 1.5 0.039 ↓Placental expression in PE [67]

hsa-miR-136-5p
MIMAT0000448

0.69 0.6 − 2.5 − 1.4 − 2.2 0.046 ↑ In plasma EVs in GDM pregnancies [19]
↑Expression in chorionic membranes in PTL 
[68]

(See figure on next page.)
Fig. 5  Effect of fetal sex on microRNA levels in maternal serum in uncomplicated and FGR pregnancies. qPCR was performed on individual 
microRNAs isolated from maternal serum of women with appropriately grown (AGA; IBC 20–80th) or growth-restricted (FGR; IBC < 5th) infants 
using specific primers for A miR-28-5p, B miR-29c-3p, C miR-301a-3p, D miR-378a-3p, E miR-409-3p, F miR-454-3p and G miR-526b-5p. Data were 
normalised to 2 reference miRNAs and expressed as 2−ΔCt. Data were stratified into male (n = 15/group) and female (n = 16/group). Individual data 
points shown, line represents the median. 2-way ANOVA with linear step-up multiple comparison test. Interaction (F) between the groups was 
considered significant when p < 0.05. Kruskal–Wallis followed by Dunn’s post hoc analysis was used to determine difference between individual 
groups; *p < 0.05, **p < 0.01
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Similarly, the association between maternal circulating 
miRNAs and hPL was fetal sex-dependent.

To date, there have been limited studies of maternal 
serum miRNA in pregnancies complicated by FGR and 
existing data are not in agreement [22–25, 49]. In our cur-
rent investigation, there was no overlap with any of the 
miRNAs detected in the previous studies even though they 
were all present in the array used (Fig.  8). However, our 
approach differed from prior studies in several ways includ-
ing: methodology [22, 24], classification of FGR with our 
study focused on later onset FGR and examining the influ-
ence of fetal sex. We initially focussed on later onset FGR 
because the majority of cases of FGR are late-onset and 
our current ability to detect FGR and fetal compromise is 
poorer [6, 23, 25, 80]. Although our study was designed to 
address potential limitations of previous studies, restricting 
the gestational age window of samples in the initial screen 
may have excluded some miRNAs seen in earlier stud-
ies. Differences between samples and study designs likely 
account for the lack of overlapping miRNAs found in any 
published studies.

Sex-specific differences in miRNA expression between 
placentas of male and female fetuses may also contribute 
to the observed differences between published studies. We 
found sex differences in miR-526b, miR-454-3p and miR-
29c-3p in maternal serum, independent of fetal growth. 
miR-454-3p and miR-29c-3p are also expressed in a sex-
dependent manner in other tissues [39, 40, 54] so account-
ing for fetal sex when considering the contribution of these 
miRNAs to disease processes is of obvious importance.

Here, we also report that two miRNAs, miR-28-5p and 
miR-301a-3p are altered in FGR pregnancies only when 
there is a female or male baby, respectively. Whilst there 
are no reports of sex-differences in miR-28-5p during preg-
nancy, the reduction of miR-301a-3p only in FGR pregnan-
cies with a male fetus, is consistent with previous reports 
of sexual dimorphic changes in miR-301a-3p in maternal 
serum in pre-eclampsia (PE) [43]. It is possible therefore, 
that miR-301a-3p and miR-28-5p could be used to predict 
FGR specifically in pregnancies with male or female babies. 
Caution should be taken however, since the heterogeneity 
of FGR pathophysiology means these miRNAs may only be 
useful in predicting FGR in the subpopulation of FGR cases 

in which they were originally identified, that is where the 
infant is < 3rd centile at birth. Prospective studies in a large 
independent cohort are required to assess this.

In addition to the potential biomarker utility of 
these miRNAs, in silico analyses reveal potential func-
tional roles for the altered miRNAs. These miRNAs are 
enriched in functional networks associated with cellular 
response to stress, cell proliferation and vascular develop-
ment. Since these are all hallmarks of placental dysfunc-
tion in FGR pregnancies [13, 81, 82], it is possible that 
they may contribute to the aetiology of FGR by impact-
ing on placental function. Indeed placental sexual dimor-
phism is well documented [28, 30, 45, 83, 84] with male 
fetuses having increased susceptibility to adverse peri-
natal outcomes [64, 85, 86]. It would therefore be inter-
esting to assess whether the sexually dimorphic profiles 
observed for serum miRNAs are also reflected in placen-
tal tissue, and whether the miRNAs have functional roles 
in the placenta. Indeed, the relationship between some of 
the altered miRNAs and hPL—a marker of placental dys-
function together with a functional study showing that 
overexpression of miR-454-3p in trophoblast increases 
proliferation and invasion whilst reducing apoptosis [55], 
would support this hypothesis. Roles for the altered miR-
NAs in other tissues combined with information on their 
validated targets also provides further support for roles 
of these miRNAs in regulation of placental function.

IGF-I, a critical regulator of normal human placental 
development [87, 88], is a validated gene target of miR-
28-5p [89] and is strongly associated with FGR in both 
animal models [90] and human pregnancies [91]. In a 
study of healthy pregnancies, IGF-I concentrations in 
cord blood were found to be higher in women carrying a 
female infant [92]. Target genes of miR-29c-3p and miR-
301a-3p in cell death and survival pathways [93–95] may 
be relevant to FGR as these are known to be altered in 
FGR pregnancies [77, 96, 97], however further studies are 
required to assess this.

Perspectives and significance
This manuscript contributes to an increasing understand-
ing of miRNAs in the maternal circulation and how these 
may be used to predict differing susceptibility of male and 

Fig. 6  Relationship between circulating microRNAs and human placental lactogen (hPL) in maternal serum. Correlation between serum 
miRNA expression measured by qPCR and hPL a hormone marker of placental dysfunction detected by ELISA for A miR-28-5p, B miR-29c-3p, C 
miR-301a-3p, D miR-378a-3p, E miR-409-3p, F miR-454-3p and G miR-526b-5p. Positive correlations with hPL were detected for B miR-29c-3p 
(r2 0.3519, p < 0.05) and F miR-454-3p (r2 0.449, p < 0.001). Individual data points shown (n = 34–56), line represents the median. Spearman rank 
correlations

(See figure on next page.)
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female fetuses to FGR and stillbirth. These studies have 
identified sexually dimorphic miRNA profiles in maternal 
circulation in pregnancies, specifically those that result in 
FGR infants. Further studies to establish where these miR-
NAs originate and investigate potential roles for these miR-
NAs in the placenta may provide greater understanding 
of the pathogenesis of placental dysfunction. In addition, 
it is possible that sex-specific altered circulating miRNAs 
could contribute to the differences in frequency of preg-
nancy complications such as increased incidence of term 
pre-eclampsia and GDM and stillbirth in women carrying 
a male fetus [86, 98]. At present, fetal sex is not consid-
ered in the management of pregnancy conditions, thus the 
management of cases included here and the observation of 
increased frequency of complications will not have altered 
depending upon fetal sex.

Identifying novel predictive biomarkers that can be used 
in conjunction with existing techniques is important for 
better predicting late-onset FGR and stillbirth and reduc-
ing associated morbidity and mortality [99]. Existing algo-
rithms to detect late-onset placental dysfunction (UAD 
impedance and PlGF/sFlt1 ratio in maternal serum) [100] 
may be strengthened by inclusion of one or more of these 
miRNAs or combining miRNAs with recently identi-
fied circulating mRNA markers such as EMP1, which is 
increased in women who subsequently suffered a still-
birth [101]. Further studies on an extended sample set are 
necessary to test this hypothesis. Including fetal sex in 
these algorithms (which would be necessary to interpret 
the miRNA data) may be challenging as fetal sex is not 

always accurately determined on ultrasound, parents may 
not wish to know the sex of their baby and in some states 
(e.g. India), antenatal determination of fetal sex is prohib-
ited. Nevertheless, the clinical utility of combinations of 
biomarkers (including fetal sex) should be explored, and if 
deemed effective in reducing fetal mortality and morbidity, 
fetal sex could be included.

Conclusions
Our study has identified a distinct profile of circulating 
miRNAs in women with FGR infants < 3rd centile. Two 
of these miR-28-5p and miR-454-3p, were also altered 
in a larger population of pregnancies with infants < 5th 
centile. Further analyses identified sexually dimorphic 
changes in some of the altered miRNAs; both miR-28-5p 
and miR-301a-3p to be altered in maternal serum in FGR 
pregnancies according to infant sex and miR-29c-3p and 
miR-454-3p showed sexually dimorphic relationship to 
placental dysfunction. Furthermore, these altered miRNAs 
are linked to placental regulatory gene networks. Further 
investigations to determine the source of these miRNAs 
and their relationship to placental dysfunction will lead to 
a better understanding of the relationship between circu-
lating miRNAs and placental dysfunction in FGR and may 
enable the development of future treatments for placen-
tal dysfunction. Ultimately, further studies are required to 
determine the potential for these altered miRNAs to pro-
vide potential biomarkers to predict differing susceptibility 
of male and female fetuses to FGR and stillbirth.

(See figure on next page.)
Fig. 7  Effect of fetal sex on correlation between microRNAs and hPL in maternal serum. Correlation between maternal serum miRNA expression 
from male or female pregnancies measured by qPCR and hPL a hormone marker of placental dysfunction detected by ELISA for A miR-28-5p, B 
miR-29c-3p, C miR-301a-3p, D miR-378a-3p, E miR-409-3p, F miR-454-3p and G miR-526b-5p. Positive correlations with hPL were detected for 
B miR-29c-3p (r2 (r = 0.467, p =  < 0.05) in males only and F miR-454-3p (r2 r = 0.511, p < 0.010) in females only. Significant difference detected in 
intercept/elevation for F miR-454-3p (p < 0.01, linear regression). Individual data points shown (n = 17–27 males, n = 18–32 females/group), line 
represents the median. Spearman rank correlations
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Table 5  Bioinformatic analyses of miRNAs altered in maternal serum or correlating with hPL in FGR pregnancies

Potentially relevant gene targets selected from literature-based databases. Bold = experimentally validated as a target using STRONG methods (reporter assay, 
Western blot, qPCR); unbold = experimentally validated as a target using WEAK methods (microarray, NGS, pSILAC, other); italics = predicted target but not 
experimentally validated. FGR fetal growth restriction, hPL human placental lactogen. Correlations analysed using Spearman test

miRNA ID FGR altered
miRNA
(QPCR data)

Sexual dimorphism
(Current dataset)

Correlation with biochemical 
marker of placental dysfunction 
(hPL)

Selected gene targets
Evidence level:
-Strong (bold)
-Weak (unbolded)
-Predicted (italics)

miR-28-5p
MIMAT0000085

Yes ↓in FGR females (QPCR) No CDKN1A, MAPK1, IGFI, RAP1B, 
MAD2L1, SLC7A5, CCND3
PAPPA, CASP3

miR-29c-3p
MIMAT0000681

No ↑ males in microarray
 + ve correlation [hPL] males

Yes
R2 = 0.467
p < 0.05

CDK6, BCL2, MMP2, PTEN, AKT3, 
LAMC1, LAMC2, DNMT3A, COL1A, 
COL3A, FBA, FBB, FBG, PDGFRB
VEGFA

miR-301a-3p
MIMAT0000688

Yes ↓ in FGR males (QPCR) No BCL2L11, PAI-1, RUNX3, PTEN, 
NKRF, TGFβR2, DNMT1, ESR1, XIAP, 
IGF2R, PUMA, SLC6A6, IGF1, PPARG​

miR-454-3p
MIMAT0003885

Yes  + ve correlation [hPL] females Yes
R2 = 0.511
p < 0.01

SMAD4, TGFβR2, ALK7, CXCL12, 
TP53, IGF2R, CCND2, MAPK1, XIAP, 
PARP1, SLC38A2, SLC6A6, IGF1, 
PPARG, DICER1, H19

Fig. 8  Venn diagram showing the overlapping microRNAs identified 
from studies comparing maternal serum from uncomplicated and 
FGR pregnancies. Current study compared with Mouillet et al. [22], 
Whitehead 2013 [23] and Hromadnikova 2019 [24]
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