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Abstract
Objective  To determine the variability, and preferred values, for normal liver longitudinal water proton relaxation rate R1 
in the published literature.
Methods  Values of mean R1 and between-subject variance were obtained from literature searching. Weighted means were 
fitted to a heuristic and to a model.
Results  After exclusions, 116 publications (143 studies) remained, representing apparently normal liver in 3392 humans, 99 
mice and 249 rats. Seventeen field strengths were included between 0.04 T and 9.4 T. Older studies tended to report higher 
between-subject coefficients of variation (CoV), but for studies published since 1992, the median between-subject CoV was 
7.4%, and in half of those studies, measured R1 deviated from model by 8.0% or less.
Discussion  The within-study between-subject CoV incorporates repeatability error and true between-subject variation. 
Between-study variation also incorporates between-population variation, together with bias from interactions between 
methodology and physiology. While quantitative relaxometry ultimately requires validation with phantoms and analysis 
of propagation of errors, this survey allows investigators to compare their own R1 and variability values with the range of 
existing literature.
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Introduction

The liver longitudinal water proton relaxation rate R1 is 
important for several reasons. Native R1 is a biomarker 
of liver pathology [1, 2]. Also, other liver biomarkers are 
secondarily derived from R1 measurements: for example, 
increase in R1 post-gadoxetate is a biomarker of hepatocyte 
function [3, 4]; extracellular volume is derived by compar-
ing R1 pre and post contrast [5]; and baseline R1 is required 
for rate constants in dynamic contrast-enhanced MR [6], for 
tissue oxygen tension in oxygen-enhanced MR [7], and for 
relaxivity measurements in contrast agent research[8].

Measurements of R1 in individual livers or liver regions 
suffer from both systematic errors and random errors [9]. 
Systematic errors (bias) arise because measurements are 
imperfectly performed. Other systematic deviations occur 
because different methods, even when perfectly performed, 
yield R1 values with different dependences on liver compo-
sition and physiology. Random (repeatability) errors arise 
from physiologic and instrument noise, and can be high 
particularly when regions-of-interest are small. In addi-
tion, even in the absence of bias and noise, there are, in 
each study, genuine between-subject differences in R1 due 
to between-subject variation in physiology or subclinical 
pathology.

To mitigate the effects of random error in establishing 
a “normal” or “baseline” liver R1, investigators sometimes 
employ a "compromise" R1, averaged from all subjects in 
their study. This likely reduces the "noise" variance, but 
introduces other errors by ignoring true between-subject 
variation. Other investigators may obtain R1 from literature 
reports, although this will introduce additional bias if dif-
ferent measurement methods had been used, or different 
populations had been studied.
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The aim of this study was to survey values, and variabili-
ties, of normal liver R1 from the published literature. This 
would give investigators an indication of whether the liver 
R1 or T1 values and variabilities they measure are broadly 
consistent with, or discordant from, the prior literature.

Methods

Literature searching

Literature was searched manually using "Ovid Medline" 
(www.​ovid.​com) for “magnetic resonance imaging” AND 
“liver” AND “relaxation”. Additional literature reports were 
retrieved from citations, supplemented by a more intensive 
search for data with B0 = 4.7 T, 7 T, 9.4 T, 11.7 T, 14.1 T 
or 21.1 T (see supplementary material 1 for further details). 
Liberal inclusion criteria were employed: any report, in 
any language, which claimed to measure liver R1 or T1 was 
included, irrespective of methodology or study design. Stud-
ies where B0 was unclear, or where liver R1 or T1 was meas-
ured but not reported, were necessarily excluded. Studies 
using Look-Locker methods were included if they reported 
T1 or R1, but excluded if they reported an apparent T1* only. 
Human and rodent subjects were included if they were nor-
mal controls of any age, if the study reported normal parts 
of livers with focal disease, or if they were patients in whom 
no liver abnormality had been found. Studies of definitely 
pathological liver, suspected duplicates, and ex vivo studies 
were excluded.

Analysis

The mean and variance of R1 across all subjects in each 
study was estimated from the publications, with the coeffi-
cient of variation given by CoV =

√

variance∕mean . Where 
measurements were made on the same subjects using the 
same method (repeatability), the weighted mean ± SD was 
used, however where measurements were made on the 
same subjects using different method (e.g., different field 
strengths) the measurements were treated as if from two dif-
ferent studies. Any R1 measurement method was allowed, as 
long as T1 (s) or R1 (s−1) was reported. Where T1 ± SD was 
reported, a point estimate of R1 was estimated as T1

−1 and 

the between-subject variance in R1 was estimated (see sup-
plementary material 2) as:

In a few cases, the between-subject variance in R1 was 
estimated from a bar or scatterplot depicted in the publica-
tion, or from the range rule [10]. To aggregate the data, 
individual studies were weighted by the inverse of their 
between-subject variance in R1. Studies with N = 1, or 
where a variance could not be extracted, were included in 
Figs. 1 and 2, but their R1 was assigned zero weight in the 
fits. In addition, a method to account for the well-known 
B0-dependence of liver R1 [11–15] was needed. Two meth-
ods of representing this B0 dependence were used: a heuris-
tic log–log relationship, and a biophysical power-law model 
developed by Diakova et al. [12]. R1 was fitted to B0 using 
the weighted non-linear least squares function nls() in R[16] 
(see supplementary material 3). The fitted parameters in the 
heuristic were M and C:

The fitted parameters in the model were A and B:

where R1,∞ is the high-frequency asymptote, i.e., the extreme 
narrowing condition, set here to 0.213 s−1 at 310 K[17]; �

D
 

is the translational correlation time from Diakova et al. [12] 
adjusted for temperature to 1.43 × 10–11 s; k = −0.6 also 
from Diakova et al. [12]; and � = 2� × 42.58 × 106 × B0 
s−1. In the summaries, lower (LQ) and upper (UQ) quartiles, 
and medians, are reported. For exploratory fits using other 
weightings, see Supplementary Material 4.

Results

Approximately 500 publication abstracts were read, from 
which around 270 publications were selected and reviewed. 
After exclusions, 116 publications remained, with publi-
cation dates between 1981 and 2020. Some publications 
reported multiple studies, or multiple groups within a single 
study, so that 143 studies were available to contribute to this 
analysis. These represented 3392 humans [1–4, 7, 11, 14, 15, 
18–94], 99 mice [95–105] and 249 rats [5, 33, 105–126]. 
The number of subjects per study varied between 1 and 1037 
(median 12). A very wide variety of T1 measuring methods 
was used. Frequently used approaches (see supplementary 
material 5) were inversion-recovery (18% of studies), satu-
ration-recovery (21%) or variable-flip-angle (10%), which 
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Fig. 1   Log–log dependence of longitudinal relaxation rate on field 
strength. Blue: human; Red: rat; Green: mouse. Each symbol rep-
resents one study. Size of circle reflects number of subjects (some 
smaller symbols are occluded by larger symbols). Dashed black 
line: fit to Eq. 2. Solid black line: fit to Eq. 3 with R1,∞ = 0.213 s−1. 
The dotted line illustrates, for the benefit of investigators work-
ing at > 10 T, fits to Eq. 3 where R1,∞ was fixed at higher values of 
0.4 s−1, 0.6 s−1, and 0.8 s−1, intermediate between 0.213 s−1 and the 
0.9–1.0 s−1 value observed at 9.4 T in Table 1

◂

http://www.ovid.com


782	 Magnetic Resonance Materials in Physics, Biology and Medicine (2021) 34:779–789

1 3

compare signal arising respectively when inversion time, 
repetition time, or flip angle are incremented. The median 
number of increments was 3 (range 2–20). Various read-outs 
were employed including spin-echo, gradient-echo, echo-
planar or localized spectroscopy. Other studies employed 
variants of Look-Locker (24%) or MR fingerprinting (1%). 

Some studies reported that they suppressed fat, and/or cor-
rected for iron-induced T1-shortening; some reported motion 
suppression, registration, triggering, gating or breath-hold; 
some reported B1 correction or phantom-based validation. 
Some studies analysed quite small regions of interest often 
avoiding blood vessels and bile ducts; others included most 
or all of the liver. Seventeen field strengths were included 
between 0.04 T and 9.4 T. No values were found in reports 
using B0 > 9.4 T: one report of T∗

1
= 1.0 ± 0.1 s at 14.1 T 

was excluded[127]. Figures 1 and 2 show plots of R1 against 
B0, in which R1 shows the expected decrease with increas-
ing field: Table 1 gives values for the most important field 
strengths. The fit to Eq.  2 gave M = −0.3611 ± 0.0115 
and C = 0.2956 ± 0.0073 .  The f it  to Eq.  3 gave 
A = (8.663 ± 0.681) × 104 and B = (1.294 ± 0.082) × 109 . 
An exploratory attempt at a three-parameter fit to Eq. 3 (i.e., 
to A, B, and R1,∞ ) failed to provide evidence for R1,∞ > 0 
(supplementary material 4). When data were subgouped by 
species or by method, no evidence was found that the sub-
goup R1 values deviated systematically from Eq. 3 (supple-
mentary material 6). Across all studies, the median between-
subject CoV was 9.1% (LQ 5.9%, UQ 16.5%, rms 17.0%). 
There was, however, a tendency for early studies to report 
high between-subject CoV (Fig. 3 and supplementary mate-
rial 7): no study published after 1992 had CoV ≥ 20%, and 
for post-1992 studies the median between-subject CoV was 
7.4% (LQ 5.6%, UQ 11.0%, rms 9.6%). In half those studies, 
the measured R1 deviated from Eq. 3 by 8.0% or less (LQ 
2.8%, UQ 16.6%).

At each field strength, there was considerable variation 
in R1 between studies: the between-study CoV was 16% for 
post-1992 studies. Six publications[2, 37, 98, 119, 128, 129] 
also reported liver R1 repeatability (same subject, different 
scan, same measurement conditions): the rms CoV was 
1.9%. These CoVs allowed a crude estimate (supplemen-
tary material 8) of the relative size of the three main vari-
ance components: repeatability variance contributed ~ 1%; 
within-study-between-subject variance contributed ~ 25%; 
and between-study variance contributed ~ 74%.

Fig. 2   Dependence of longitudinal relaxation rate on field strength. 
Each symbol represents one study. Dashed black line: Eq.  2. Solid 
black line: Eq. 3. Dotted line: R1,∞ = 0.213s−1

Table 1   Preferred R1 values 
(s−1) for five commonly used 
field strengths, derived from the 
data and from the fits

Five different methods of generating a preferred R1 are illustrated: the model fit (in bold) makes greatest 
use of the available information

B0 (T) Mean over 
studies (N stud-
ies)

Weighted mean over 
studies (N studies)

Mean over 
subjects (N 
subjects)

Fitted to heuristic Eq. 2 
(143 studies /3740 sub-
jects)

Fitted to 
model 
Eq. 3

9.4 0.90 (4) 1.01(4) 0.89(38) 0.88 0.92
7 1.02 (9) 1.02(9) 1.00(56) 0.98 1.02
4.7 1.12 (5) 1.22 (5) 1.05(34) 1.13 1.15
3 1.34 (36) 1.42(36) 1.29(989) 1.33 1.33
1.5 1.66 (37) 1.47(37) 1.55(1700) 1.71 1.66
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Discussion

In liver, as in pure water, both intramolecular and inter-
molecular water 1H-1H dipolar relaxation contribute to R1. 
Specific additional contributors to water 1H R1 in liver arise 
from 1H-1H dipolar relaxation between water and other mol-
ecules, and 1H-electron dipolar relaxation between water and 
various iron- or copper-containing substances or dioxygen. 
These 1H-containing and unpaired-electron-containing sub-
stances differ in concentration between subjects. The liver 
1H resonance arises mostly from tissue water in hepatocytes. 
Other contributions come from water in other intracellu-
lar compartments (e.g., Kupffer cells, erythrocytes), and 
in extracellular compartments (e.g., bile, plasma, space of 
Disse). Signal from triglyceride and inflowing blood may 
contribute, depending on the sequence used. Macromol-
ecules contribute to the signal, notably collagen and gly-
cogen which have different concentrations in different sub-
jects. These factors likely account for some of the variation 
between subjects and between studies.

Fits from the heuristic and from the model were very 
similar. The main difference is that the heuristic forces R1 to 
zero at infinite field, while the model forces R1 to asymptote 

in the extreme narrowing condition. This difference might 
become important at fields above 7 T (Fig. 1). In this study, 
following Diakova et al.[12], the asymptote R1,∞ was fixed 
at 1/4.7 s−1, equal to the R1 of pure deoxygenated water 
at 310 K at high field [17]: a slightly higher value would 
be more appropriate if R1 values from liver water and pure 
water do not converge as illustrated in Fig. 1.

The relative magnitude of the major variance components 
was estimated. This is very crude, and given the heterogene-
ity and variable quality of the raw data, should be considered 
a rough guide only. The within-study between-subject CoV 
reflects not only repeatability error (~ 1% of the variance), 
but also the expected between-subject variation (~ 25% of the 
variance). Between-study variation (~ 74% of the variance) 
also includes between-population variation, together with bias 
from interactions between each study’s measurement method 
and its livers’ variation in flow, motion, fat, oedema, colla-
gen, glycogen and iron. R1 may also change after a meal [89], 
during the menstrual cycle [25] or with drug treatment [25].

The literature survey was not fully PRISMA-compliant 
[130] and is unlikely to be complete. Studies explicitly of 
liver R1 or T1 as a biomarker are readily retrieved, because 

Fig. 3   Within-study between-subject coefficient of variation as a function of year of publication
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appropriate keywords are generally used in the title and 
abstract. However, for studies where liver R1 or T1 measure-
ment is incidental to another objective, for example extra-
cellular volume, relaxivity, or dynamic contrast-enhanced 
studies, suitable keywords may not have been included.

There is no single “correct” value for any liver’s 1H R1. 
R1 may vary spatially across the liver [60, 119]. Water 1H R1 
is multiexponential, particularly with sequences where mac-
romolecule-associated fast-relaxing water contributes to the 
measurement. Other substances in the liver may also contrib-
ute to the 1H signal, such as glycogen [87] or triglyceride [76, 
131]. Inflowing blood [110, 132], physiologic motion [71], 
magnetization transfer, and iron affect the measured R1 in 
ways which depend both on the sequence and on the analysis 
employed. There may be systematic differences in R1 between 
fat-suppressed vs. non-fat-suppressed acquisitions; 2D acqui-
sitions more vulnerable to inflow effects than 3D; breathhold 
or gated vs. free-breathing; and so on. Some investigators 
advocate the use of a “corrected” T1 to avoid bias caused by 
the relaxivity of iron-containing substances [65]. Because of 
these biases in the literature, studies which deviate from these 
survey data should not immediately be considered “incorrect”, 
but if large deviations are observed, then an explanation on 
methodological or physiological grounds should be sought.

There are some other limitations. While some publica-
tions reported carefully designed and conducted biomarker 
validation studies, in other publications, the precise value 
of T1 was only of incidental interest and possibly acquired 
with less care. However, in this survey, the study design 
and objectives were not incorporated into the weightings. 
Most studies did not report validation of their liver R1 by 
means of a phantom, so accuracy is unknown. It was difficult 
to explore the effect of methodology on R1, because some 
studies used methodology which was poorly described or 
did not appear robust, and because of correlation between 
field strength and methodology (old studies used old meth-
odology and lower fields). Likewise, there was correlation 
between field strength and species (humans at low-medium 
fields, rats at medium–high fields and mice at high fields), 
so it was difficult to compare between species.

Conclusion

Quantitative relaxometry requires validation with phantoms 
and analysis of propagation of errors. However, it is also 
good scientific practice to compare one’s own findings with 
prior literature. An investigator who finds their average liver 
R1 in normal liver to be within 8% of the fit to Eq. 3, with 
between-subject CoV < 8%, can conclude that their measure-
ments are in agreement with the majority of the literature: 

for measurements far outside these limits, a physiological or 
methodological explanation should be sought.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10334-​021-​00928-x.

Acknowledgements  The research leading to these results received 
funding from the Innovative Medicines Initiatives 2 Joint Undertak-
ing under grant agreement No 116106 (IB4SD-TRISTAN). This Joint 
Undertaking receives support from the European Union’s Horizon 2020 
research and innovation programme and EFPIA.

Author contributions   Waterton, JC. Study conception and design, 
acquisition of data, analysis and interpretation of data, drafting of 
manuscript and critical revision.

Declarations 

Conflict of interest  John Waterton holds stock in Quantitative Imag-
ing Ltd and is a Director of, and has received compensation from, 
Bioxydyn Ltd, a for-profit company engaged in the discovery and de-
velopment of MR biomarkers and the provision of imaging biomarker 
services.

Research involving human and animal participants  Not applicable, as 
this is a survey of previously published research.

Informed consent  Not applicable, as this is a survey of previously 
published research.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Smith FW, Mallard JR, Reid A, Hutchison JMS (1981) Nuclear 
magnetic resonance tomographic imaging in liver disease. Lancet 
317:963–966

	 2.	 Banerjee R, Pavlides M, Tunnicliffe EM, Piechnik SK, Sarania 
N, Philips R, Collier JD, Booth JC, Schneider JE, Wang LM, 
Delaney DW, Fleming KA, Robson MD, Barnes E, Neubauer S 
(2014) Multiparametric magnetic resonance for the non-invasive 
diagnosis of liver disease. J Hepatol 60:69–77

	 3.	 Haimerl M, Utpatel K, Verloh N, Zeman F, Fellner C, Nickel D, 
Teufel A, Fichtner-Feigl S, Evert M, Stroszczynski C, Wigger-
mann P (2017) Gd-EOB-DTPA-enhanced MR relaxometry for 
the detection and staging of liver fibrosis. Sci Rep 7:41429

	 4.	 Haimerl M, Verloh N, Fellner C, Zeman F, Teufel A, 
Fichtner-Feigl S, Schreyer AG, Stroszczynski C, Wigger-
mann P (2014) MRI-based estimation of liver function: 

https://doi.org/10.1007/s10334-021-00928-x
http://creativecommons.org/licenses/by/4.0/


785Magnetic Resonance Materials in Physics, Biology and Medicine (2021) 34:779–789	

1 3

Gd-EOB-DTPA-enhanced T1 relaxometry of 3T vs The MELD 
score. Sci Rep 4:5621

	 5.	 Luetkens JA, Klein S, Träber F, Schmeel FC, Sprinkart AM, 
Kuetting DLR, Block W, Uschner FE, Schierwagen R, Hittatiya 
K, Kristiansen G, Gieseke J, Schild HH, Trebicka J, Kukuk GM 
(2018) Quantification of liver fibrosis at T1 and T2 mapping with 
extracellular volume fraction MRI: Preclinical results. Radiology 
288:748–754

	 6.	 Li Z, Sun J, Chen L, Huang N, Hu P, Hu X, Han G, Zhou Y, Bai 
W, Niu T, Yang X (2016) Assessment of liver fibrosis using phar-
macokinetic parameters of dynamic contrast-enhanced magnetic 
resonance imaging. J Magn Reson Imaging 44:98–104

	 7.	 O’Connor JPB, Naish JH, Jackson A, Waterton JC, Watson Y, 
Cheung S, Buckley DL, McGrath DM, Buonaccorsi GA, Mills 
SJ, Roberts C, Jayson GC, Parker GJM (2009) Comparison of 
normal tissue R1 and R2* modulation by oxygen and carbogen. 
Magn Reson Med 61:75–83

	 8.	 Ziemian S, Green C, Sourbron S, Jost G, Schütz G, Hines CDG 
(2021) Ex vivo gadoxetate relaxivities in rat liver tissue and 
blood at five magnetic field strengths from 1.41 to 7T. NMR 
Biomed. 34:e4401

	 9.	 Raunig DL, McShane LM, Pennello G, Gatsonis C, Carson 
PL, Voyvodic JT, Wahl RL, Kurland BF, Schwarz AJ, Gönen 
M, Zahlmann G, Kondratovich MV, O’Donnell K, Petrick N, 
Cole PE, Garra B, Sullivan DC (2015) Quantitative imaging 
biomarkers: A review of statistical methods for technical per-
formance assessment. Stat Methods Med Res 24:27–67

	 10.	 Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean 
and variance from the median, range, and the size of a sample. 
BMC Med Res Methodol 5:13

	 11.	 Araya YT, Martínez-Santiesteban F, Handler WB, Harris CT, 
Chronik BA, Scholl TJ (2017) Nuclear magnetic relaxation dis-
persion of murine tissue for development of T1 (R1) dispersion 
contrast imaging. NMR Biomed 30:e3789

	 12.	 Diakova G, Korb JP, Bryant RG (2012) The magnetic field 
dependence of water T1 in tissues. Magn Reson Med 68:272–277

	 13.	 Thomsen C (1996) Quantitative magnetic resonance methods 
for in vivo investigation of the human liver and spleen. Techni-
cal aspects and preliminary clinical results. Acta Radiol Suppl 
401:1–34

	 14.	 Keevil SF, Dolke G, Brooks AP, Armstrong P, Farthing MJG, 
Alstead EM, Smith MA (1992) Proton NMR relaxation times in 
the normal human liver at 0.08 T. Clin Radiol 45:302–306

	 15.	 Henriksen O, de Certaines JD, Spisni A, Cortsen M, Muller RN, 
Ring PB (1993) V. In vivo field dependence of proton relaxation 
times in human brain, liver and skeletal muscle: A multicenter 
study. Magn Reson Imaging 11:851–856

	 16.	 R Development Core Team (2018) R 3.5.1., A language and 
environment for statistical computing. R Found Stat Comput 2. 
https://​www.R-​proje​ct.​org.

	 17.	 Krynicki K (1966) Proton spin-lattice relaxation in pure water 
between 0°C and 100°C. Physica 32:167–178

	 18.	 Kamimura K, Fukukura Y, Yoneyama T, Takumi K, Tateyama 
A, Umanodan A, Shindo T, Kumagae Y, Ueno SI, Koriyama C, 
Nakajo M (2014) Quantitative evaluation of liver function with 
T1 relaxation time index on Gd-EOB-DTPA-Enhanced MRI: 
Comparison with signal intensity-based indices. J Magn Reson 
Imaging 40:884–889

	 19.	 Kim KA, Park MS, Kim IS, Kiefer B, Chung WS, Kim MJ, Kim 
KW (2012) Quantitative evaluation of liver cirrhosis using T1 
relaxation time with 3 tesla MRI before and after oxygen inhala-
tion. J Magn Reson Imaging 36:405–410

	 20.	 Heye T, Yang SR, Bock M, Brost S, Weigand K, Longerich T, 
Kauczor HU, Hosch W (2012) MR relaxometry of the liver: Sig-
nificant elevation of T1 relaxation time in patients with liver 
cirrhosis. Eur Radiol 22:1224–1232

	 21.	 Block W, Reichel C, Träber F, Skodra T, Lamerichs R, Kreft B, 
Spengler U, Sauerbruch T, Schild H (1997) Effect of cytochrome 
P450 induction on phosphorus metabolites and proton relaxation 
times measured by in vivo 31P-magnetic resonance spectroscopy 
and 1H-magnetic resonance relaxometry in human liver. Hepatol-
ogy 26:1587–1591

	 22.	 de Certaines JD, Henriksen O, Spisni A, Cortsen M, Ring PB 
(1993) IV. In vivo measurements of proton relaxation times in 
human brain, liver, and skeletal muscle: A multicenter MRI 
study. Magn Reson Imaging 11:841–850

	 23.	 Van Lom KJ, Brown JJ, Perman WH, Sandstrom JC, Lee JKT 
(1991) Liver imaging at 1.5 Tesla: Pulse sequence optimization 
based on improved measurement of tissue relaxation times. Magn 
Reson Imaging 9:165–171

	 24.	 Steudel A, Harder T, Träber F, Dewes W, Schlolaut KH, Koster O 
(1989) Relaxationszeitmessungen in Der Kernspintomographis-
chen Differentialdiagnose Von Lebertumoren. RöFo Fortschritte 
auf dem Gebiete der Röntgenstrahlen und der Neuen Bildgeb 
Verfahren 151:449–455

	 25.	 Richards MA, Webb JAW, Jewell SE, Gregory WM, Reznek RH 
(1988) In-vivo measurement of spin lattice relaxation time (T1) 
of liver in healthy volunteers: The effects of age, sex and oral 
contraceptive usage. Br J Radiol 61:34–37

	 26.	 Thomsen C, Christoffersen P, Henriksen O, Juhl E (1990) Pro-
longed T1 in patients with liver cirrhosis: An in vivo MRI study. 
Magn Reson Imaging 8:599–604

	 27.	 Cassinotto C, Feldis M, Vergniol J, Mouries A, Cochet H, 
Lapuyade B, Hocquelet A, Juanola E, Foucher J, Laurent F, De 
Ledinghen V (2015) MR relaxometry in chronic liver diseases: 
Comparison of T1 mapping, T2 mapping, and diffusion-weighted 
imaging for assessing cirrhosis diagnosis and severity. Eur J 
Radiol 84:1459–1465

	 28.	 Henninger B, Kremser C, Rauch S, Eder R, Zoller H, Finkenstedt 
A, Michaely HJ, Schocke M (2012) Evaluation of MR imaging 
with T1 and T2* mapping for the determination of hepatic iron 
overload. Eur Radiol 22:2478–2486

	 29.	 Weinreb JC, Brateman L, Maravilla KR (1984) Magnetic 
resonance imaging of hepatic lymphoma. Am J Roentgenol 
143:1211–1214

	 30.	 Belt TG, Cohen MD, Smith JA, Cory DA, McKenna S, Weetman 
R (1986) MRI of Wilms’ tumor: Promise as the primary imaging 
method. Am J Roentgenol 146:955–961

	 31.	 Ohtomo K, Itai Y, Furui S, Yoshikawa K, Yashiro N, Iio M 
(1985) Magnetic resonance imaging (MRI) of primary liver 
cancer. MRI- pathologic correlation. Radiat Med - Med Imag-
ing Radiat Oncol 3:38–41

	 32.	 Nyman R, Ericsson A, Hemmingsson A, Jung B, Sperber G, 
Thuomas KÅ (1986) T1, T2, and relative proton density at 0.35 
T for spleen, liver, adipose tissue, and vertebral body: Normal 
values. Magn Reson Med 3:901–910

	 33.	 Stark DD, Moseley ME, Bacon BR (1985) Magnetic resonance 
imaging and spectroscopy of hepatic iron overload. Radiology 
154:137–142

	 34.	 Gilligan LA, Dillman JR, Tkach JA, Xanthakos SA, Gill JK, 
Trout AT (2019) Magnetic resonance imaging T1 relaxation 
times for the liver, pancreas and spleen in healthy children at 1.5 
and 3 tesla. Pediatr Radiol 49:1018–1024

	 35.	 Kim JE, Kim HO, Bae K, Choi DS, Nickel D (2019) T1 map-
ping for liver function evaluation in gadoxetic acid–enhanced 
MR imaging: comparison of look-locker inversion recovery and 
B1 inhomogeneity–corrected variable flip angle method. Eur 
Radiol 29:3584–3594

	 36.	 Yang L, Ding Y, Rao S, Chen C, Zeng M (2020) T1 mapping on 
Gd-EOB-DTPA-enhanced MRI for the prediction of oxaliplatin-
induced liver injury in a mouse model. J Magn Reson Imaging 
53:896–902

https://www.R-project.org


786	 Magnetic Resonance Materials in Physics, Biology and Medicine (2021) 34:779–789

1 3

	 37.	 Bradley CR, Cox EF, Scott RA, James MW, Kaye P, Aithal GP, 
Francis ST, Guha IN (2018) Multi-organ assessment of compen-
sated cirrhosis patients using quantitative magnetic resonance 
imaging. J Hepatol 69:1015–1024

	 38.	 Zhou ZP, Long LL, Qiu WJ, Cheng G, Huang LJ, Yang TF, 
Huang ZK (2017) Comparison of 10- and 20-min hepatobiliary 
phase images on Gd-EOB-DTPA-enhanced MRI T1 mapping for 
liver function assessment in clinic. Abdom Radiol 42:2272–2278

	 39.	 Agrawal S, Hoad CL, Francis ST, Guha IN, Kaye P, Aithal GP 
(2017) Visual morphometry and three non-invasive markers in 
the evaluation of liver fibrosis in chronic liver disease. Scand J 
Gastroenterol 52:107–115

	 40.	 Tunnicliffe EM, Banerjee R, Pavlides M, Neubauer S, Robson 
MD (2017) A model for hepatic fibrosis: the competing effects of 
cell loss and iron on shortened modified Look-Locker inversion 
recovery T1 (shMOLLI-T1) in the liver. J Magn Reson Imaging 
45:450–462

	 41.	 Chen Y, Jiang Y, Pahwa S, Ma D, Lu L, Twieg MD, Wright 
KL, Seiberlich N, Griswold MA, Gulani V (2016) MR finger-
printing for rapid quantitative abdominal imaging. Radiology 
279:278–286

	 42.	 Ding Y, Rao SX, Chen C, Li R, Zeng MS (2015) Assessing liver 
function in patients with HBV-related HCC: a comparison of T1 
mapping on Gd-EOB-DTPA-enhanced MR imaging with DWI. 
Eur Radiol 25:1392–1398

	 43.	 Haimerl M, Verloh N, Zeman F, Fellner C, Müller-Wille R, 
Schreyer AG, Stroszczynski C, Wiggermann P (2013) Assess-
ment of clinical signs of liver cirrhosis using T1 mapping on 
Gd-EOB-DTPA-enhanced 3T MRI. PLoS ONE 8:e85658

	 44.	 Katsube T, Okada M, Kumano S, Hori M, Imaoka I, Ishii K, 
Kudo M, Kitagaki H, Murakami T (2011) Estimation of liver 
function using T1 mapping on Gd-EOB-DTPA-enhanced mag-
netic resonance imaging. Invest Radiol 46:277–283

	 45.	 Jafari F, Nayeri N, Tahsini M, Khodadoust AA (1999) Differen-
tiation of hepatic cavernous hemangioma from metastases by rare 
sequence MR imaging. Magn Reson Imaging 17:669–677

	 46.	 Halavaara J, Lukkarinen S, Sepponen R, Markkola A, Tanttu J 
(2003) Contrast-to-noise ratio of multiple slice spin lock tech-
nique: Prospects for liver imaging. Br J Radiol 76:788–791

	 47.	 Skjold A, Vangberg TR, Kristoffersen A, Haraldseth O, Jynge 
P, Larsson HBW (2004) Relaxation enhancing properties of 
MnDPDP in human myocardium. J Magn Reson Imaging 
20:948–952

	 48.	 De Bazelaire CMJ, Duhamel GD, Rofsky NM, Alsop DC (2004) 
MR Imaging Relaxation Times of Abdominal and Pelvic Tis-
sues Measured in Vivo at 3.0 T: Preliminary Results. Radiology 
230:652–659

	 49.	 Tadamura E, Hatabu H, Li W, Prasad PV, Edelman RR (1997) 
Effect of oxygen inhalation on relaxation times in various tissues. 
J Magn Reson Imaging 7:220–225

	 50.	 Morio S, Oh H, Endo N, Kawano E, Nakamura H, Asai T, Saito 
Y, Uchida Y, Ikehira H, Yoshida K (1997) Magnetic resonance 
imaging of reticulo-endothelial system in patients with idiopathic 
thrombocytopenic purpura. Am J Hematol 56:52–58

	 51.	 Tamburrini O, Andò S, Della Sala M, Maggiolini M, Sessa M 
(1993) Emocromatosi epatica secondaria: diagnosi e quantifi-
cazione con risonanza magnetica 0.5 T. Valore e limite Radiol 
Medica 86:841–846

	 52.	 Blüml S, Schad LR, Stepanow B, Lorenz WJ (1993) Spin-lattice 
relaxation time measurement by means of a TurboFLASH tech-
nique. Magn Reson Med 30:289–295

	 53.	 Patrizio G, Pavone P, Testa A, Marsili L, Tettamanti E, Pas-
sariello R (1990) MR characterization of hepatic lesions by 
T-null inversion recovery sequence. J Comput Assist Tomogr 
14:96–101

	 54.	 Squillaci E, Cecconi L, Tipaldi L, Grandinetti ML, Orlacchio 
A, Squillaci S (1989) La Risonanza Magnetica Nelle Lesioni 
Epatiche. Esperienza Con Campo Magnetico Da 1,5 T. Radiol 
Medica 78:585–592

	 55.	 Rummeny E, Weissleder R, Stark DD, Saini S, Compton CC, 
Bennett W, Hahn PF, Wittenberg J, Malt RA, Ferrucci JT (1989) 
Primary liver tumors: Diagnosis by MR imaging. Am J Roent-
genol 152:63–72

	 56.	 Rademaker M, Webb JAW, Lowe DG, Meyrick-thomas RH, 
Kirby JDT, Munro DD (1987) Magnetic resonance imaging as a 
screening procedure for methotrexate induced liver damage. Br 
J Dermatol 117:311–316

	 57.	 The Clinical NMR Group (1987) Magnetic resonance imaging 
of parenchymal liver disease: a comparison with ultrasound, 
radionuclide scintigraphy and X-ray computed tomography. Clin 
Radiol 38:495–502

	 58.	 Richards MA, Webb J, Reznek RH, Davies G, Jewell SE, Shand 
WS, Wrigley PFM, Lister TA (1986) Detection of spread of 
malignant lymphoma to the liver by low field strength magnetic 
resonance imaging. Br Med J (Clin Res Ed) 293:1126–1128

	 59.	 Glazer GM, Aisen AM, Francis IR, Gyves JW, Lande I, Adler 
DD (1985) Hepatic cavernous hemangioma: Magnetic resonance 
imaging. Radiology 155:417–420

	 60.	 Obmann VC, Mertineit N, Marx C, Berzigotti A, Ebner L, 
Heverhagen JT, Christe A, Huber AT (2019) Liver MR relax-
ometry at 3T – segmental normal T1 and T2* values in patients 
without focal or diffuse liver disease and in patients with 
increased liver fat and elevated liver stiffness. Sci Rep 9:8106

	 61.	 Doyle FH, Pennock JM, Banks LM, McDonnell MJ, Bydder 
GM, Steiner RE, Young IR, Clarke GJ, Pasmore T, Gilderdale 
DJ (1982) Nuclear magnetic resonance imaging of the liver: 
Initial experience. Am J Roentgenol 138:193–200

	 62.	 Ramachandran P, Serai SD, Veldtman GR, Lang SM, Mazur W, 
Trout AT, Dillman JR, Fleck RJ, Taylor MD, Alsaied T, Moore 
RA (2019) Assessment of liver T1 mapping in fontan patients 
and its correlation with magnetic resonance elastography-
derived liver stiffness. Abdom Radiol 44:2403–2408

	 63.	 Huber AT, Razakamanantsoa L, Lamy J, Giron A, Cluzel P, 
Kachenoura N, Redheuil A (2020) Multiparametric differen-
tiation of idiopathic dilated cardiomyopathy with and with-
out congestive heart failure by means of cardiac and hepatic 
T1-weighted MRI mapping. Am J Roentgenol 215:79–86

	 64.	 Obmann VC, Marx C, Berzigotti A, Mertineit N, Hrycyk J, 
Gräni C, Ebner L, Ith M, Heverhagen JT, Christe A, Huber 
AT (2019) Liver MRI susceptibility-weighted imaging (SWI) 
compared to T2* mapping in the presence of steatosis and 
fibrosis. Eur J Radiol 118:66–74

	 65.	 Mojtahed A, Kelly CJ, Herlihy AH, Kin S, Wilman HR, McKay 
A, Kelly M, Milanesi M, Neubauer S, Thomas EL, Bell JD, 
Banerjee R, Harisinghani M (2019) Reference range of liver 
corrected T1 values in a population at low risk for fatty liver 
disease—a UK Biobank sub-study, with an appendix of inter-
esting cases. Abdom Radiol 44:72–84

	 66.	 Chen Y, Lee GR, Aandal G, Badve C, WrighT KL, Griswold 
MA, Seiberlich N, Gulani V (2016) Rapid volumetric T1 map-
ping of the abdomen using three-dimensional through-time 
spiral GRAPPA. Magn Reson Med 75:1457–1465

	 67.	 Wiese S, Voiosu A, Hove JD, Danielsen KV, Voiosu T, Grøn-
bæk H, Møller HJ, Genovese F, Reese-Petersen AL, Mookerjee 
RP, Clemmesen JO, Gøtze JP, Andersen O, Møller S, Bendt-
sen F (2020) Fibrogenesis and inflammation contribute to the 
pathogenesis of cirrhotic cardiomyopathy. Aliment Pharmacol 
Ther 52:340–350

	 68.	 Runge VM, Clanton JA, Smith FW, Hutchison J, Mallard J, 
Partain CL, James AE (1983) Nuclear magnetic resonance 



787Magnetic Resonance Materials in Physics, Biology and Medicine (2021) 34:779–789	

1 3

of iron and copper disease states. AJR Am J Roentgenol 
141:943–948

	 69.	 Ebara M, Ohto M, Watanabe Y, Kimura K, Saisho H, Tsuchiya 
Y, Okuda K, Arimizu N, Kondo F, Ikehira H (1986) Diagnosis 
of small hepatocellular carcinoma: Correlation of MR imaging 
and tumor histologic studies. Radiology 159:371–378

	 70.	 Brasch RC, Wesbey GE, Gooding CA, Koerper MA (1984) Mag-
netic resonance imaging of transfusional hemosiderosis compli-
cating thalassemia major. Radiology 150:767–771

	 71.	 Ehman RL, McNamara MT, Pallack M, Hricak H, Higgins CB 
(1984) Magnetic resonance imaging with respiratory gating: 
Techniques and advantages. Am J Roentgenol 143:1175–1182

	 72.	 Rödl W (1985) Differentialdiagnose von Lebererkrankungen im 
Kernspintomogramm. RöFo Fortschritte auf dem Gebiete der 
Rontgenstrahlen und der bildgeb Verfahren 142:505–510

	 73.	 Rupp N, Reiser M, Stetter E (1983) The diagnostic value of mor-
phology and relaxation times in NMR-imaging of the body. Eur 
J Radiol 3:68–76

	 74.	 Buonocore E, Borkowski GP, Pavlicek W, Ngo F (1983) NMR 
imaging of the abdomen: Technical considerations. Am J Roent-
genol 141:1171–1178

	 75.	 Brown DW, Henkelman RM, Poon PY, Fisher MM (1985) 
Nuclear magnetic resonance study of iron overload in liver tis-
sue. Magn Reson Imaging 3:275–282

	 76.	 Mozes FE, Tunnicliffe EM, Moolla A, Marjot T, Levick CK, 
Pavlides M, Robson MD (2019) Mapping tissue water T1 in the 
liver using the MOLLI T1 method in the presence of fat, iron 
and B0 inhomogeneity. NMR Biomed 32:e4030

	 77.	 Ding Y, Rao SX, Zhu T, Chen CZ, Li RC, Zeng MS (2015) 
Liver fibrosis staging using T1 mapping on gadoxetic acid-
enhanced MRI compared with DW imaging. Clin Radiol 
70:1096–1103

	 78.	 Moss AA, Goldberg HI, Stark DB, Davis PL, Margulis AR, 
Kaufman L, LEC, (1984) Hepatic tumors: Magnetic resonance 
and CT appearance. Radiology 150:141–147

	 79.	 Träber F, Steudel A, Harder T (1990) In-vivo-messung von 
geweberelaxationszeiten mit lokalisierter 31P- Und 1H-MR-
Spektroskopie. RöFo Fortschritte auf dem Gebiete der Ron-
tgenstrahlen und der Neuen Bildgeb Verfahren 153:209–215

	 80.	 Wang C, Wang ZC, Ding Y, Zeng MS, Rao SX (2018) Value of 
gadoxetate disodium-enhanced magnetic resonance on hepato-
biliary phase T1 mapping for predicting liver injury. Zhonghua 
Gan Zang Bing Za Zhi 26:530–534

	 81.	 Ehman RL, Kjos BO, Hricak H, Brasch RC, Higgins CB (1985) 
Relative intensity of abdominal organs in MR images. J Com-
put Assist Tomogr 9:315–319

	 82.	 Flak B, Ajzen S, Li DKB, Cooperberg PL, Clark C (1989) 
Hemangioma of the liver: Characteristics exhibited on a 0.15 
Tesla scanner. Can Assoc Radiol J 40:135–138

	 83.	 Fletcher BD, Kopiwoda SY, Strandjord SE, Nelson AD, Picker-
ing SP (1985) Abdominal neuroblastoma: Magnetic resonance 
imaging and tissue characterization. Radiology 155:699–703

	 84.	 Foley WD, Kneeland JB, Cates JD, Kellman GM, Lawson TL, 
Middleton WD, Hendrick RE (1987) Contrast optimization for 
the detection of focal hepatic lesions by MR imaging at 1.5 T. 
Am J Roentgenol 149:1155–1160

	 85.	 Schmidt HC, Tscholakoff D, Hricak H, Higgins CB (1985) 
Mr image contrast and relaxation times of solid tumors in 
the chest, abdomen, and pelvis. J Comput Assist Tomogr 
9:738–748

	 86.	 Rödl W (1984) Differential diagnosis of liver diseases with the 
aid of nuclear magnetic resonance imaging. In: Demling L, Lutz 
H, Wenz W, Wildhirt E (eds) Diagnostic Imaging Methods in 
Hepatolology: proceedings of the 37th Falk Symposium, held 
during Basel Liver Week, Basel, September 29–October 2, 1983. 
MTP Press, Lancaster, MA USA, pp 153–158

	 87.	 Weis J, Kullberg J, Ahlström H (2018) Multiple breath-hold 
proton spectroscopy of human liver at 3T: Relaxation times and 
concentrations of glycogen, choline, and lipids. J Magn Reson 
Imaging 47:410–417

	 88.	 Hoad CL, Palaniyappan N, Kaye P, Chernova Y, James MW, 
Costigan C, Austin A, Marciani L, Gowland PA, Guha IN, Fran-
cis ST, Aithal GP (2015) A study of T1 relaxation time as a 
measure of liver fibrosis and the influence of confounding histo-
logical factors. NMR Biomed 28:706–714

	 89.	 O’Connor JPB, Jackson A, Buonaccorsi GA, Buckley DL, Rob-
erts C, Watson Y, Cheung S, McGrath DM, Naish JH, Rose CJ, 
Dark PM, Jayson GC, Parker GJM (2007) Organ-specific effects 
of oxygen and carbogen gas inhalation on tissue longitudinal 
relaxation times. Magn Reson Med 58:490–496

	 90.	 Nyman R, Rhen S, Ericsson A, Glimelius B, Hagberg H, Hem-
mingsson A, Sundström C (1987) An attempt to characterize 
malignant lymphoma in spleen, liver and lymph nodes with mag-
netic resonance imaging. Acta Radiol 28:527–533

	 91.	 Hardy CJ, Edelstein WA, Vatis D, Harms R, Adams WJ (1985) 
Calculated T1 images derived from a partial saturation-inversion 
recovery pulse sequence with adiabatic fast passage. Magn Reson 
Imaging 3:107–116

	 92.	 Kinami Y, Yokota H, Takata M, Takashima S, Yamamoto I 
(1988) Magnetic resonance imaging in the diagnosis of tumors 
of the liver. Gastroenterol Jpn 23:139–146

	 93.	 Leung A, Bydder G, Steiner R, Bryant D, Young I (1984) Mag-
netic resonance imaging of the kidneys. AJR Am J Roentgenol 
143:1215–1227

	 94.	 Okada M, Murakami T, Yada N, Numata K, Onoda M, Hyodo 
T, Inoue T, Ishii K, Kudo M (2015) Comparison between T1 
relaxation time of Gd-EOB-DTPA-enhanced MRI and liver 
stiffness measurement of ultrasound elastography in the evalu-
ation of cirrhotic liver. J Magn Reson Imaging 41:329–338

	 95.	 Chow AM, Gao DS, Fan SJ, Qiao Z, Lee FY, Yang J, Man K, 
Wu EX (2012) Measurement of liver T1 and T2 relaxation 
times in an experimental mouse model of liver fibrosis. J Magn 
Reson Imaging 36:152–158

	 96.	 Ding Y, Yang L, Rao SX, Zeng MS (2019) Gadoxetic diso-
dium-enhanced MRI to characterize T1 relaxation values and 
expression level of organic anion transporters and multidrug 
resistance protein on hepatocyte surface membrane of normal 
C57BL/6 mice. Zhonghua Gan Zang Bing Za Zhi 27:547–551

	 97.	 Matsuo-Tezuka Y, Sasaki Y, Iwai T, Kurasawa M, Yorozu K, 
Tashiro Y, Hirata M (2019) T2* relaxation time obtained from 
magnetic resonance imaging of the liver is a useful parameter 
for use in the construction of a murine model of iron overload. 
Contrast Media Mol Imaging 2019:7463047

	 98.	 Faller TL, Trotier AJ, Miraux S, Ribot EJ (2019) Radial 
MP2RAGE sequence for rapid 3D T1 mapping of mouse 
abdomen: application to hepatic metastases. Eur Radiol 
29:5844–5851

	 99.	 Anderson CE, Wang CY, Gu Y, Darrah R, Griswold MA, Yu X, 
Flask CA (2018) Regularly incremented phase encoding – MR 
fingerprinting (RIPE-MRF) for enhanced motion artifact sup-
pression in preclinical cartesian MR fingerprinting. Magn Reson 
Med 79:2176–2182

	100.	 Jackson LH, Vlachodimitropoulou E, Shangaris P, Roberts TA, 
Ryan TM, Campbell-Washburn AE, David AL, Porter JB, Lyth-
goe MF, Stuckey DJ (2017) Non-invasive MRI biomarkers for the 
early assessment of iron overload in a humanized mouse model 
of β-thalassemia. Sci Rep 7:43439

	101.	 Eberhardt C, Wurnig MC, Wirsching A, Rossi C, Feldmane I, 
Lesurtel M, Boss A (2018) Prediction of small for size syndrome 
after extended hepatectomy: Tissue characterization by relaxom-
etry, diffusion weighted magnetic resonance imaging and mag-
netization transfer. PLoS ONE 13:e0192847



788	 Magnetic Resonance Materials in Physics, Biology and Medicine (2021) 34:779–789

1 3

	102.	 Li H, Gray BD, Corbin I, Lebherz C, Choi H, Lund-Katz S, 
Wilson JM, Glickson JD, Zhou R (2004) MR and fluorescent 
imaging of low-density lipoprotein receptors. Acad Radiol 
11:1251–1259

	103.	 Oostendorp M, Douma K, Hackeng TM, Post MJ, Van Zandvoort 
MAMJ, Backes WH (2010) Gadolinium-labeled quantum dots 
for molecular magnetic resonance imaging: R1 versus R2 map-
ping. Magn Reson Med 64:291–298

	104.	 Ramasawmy R, Campbell-Washburn AE, Wells JA, Johnson 
SP, Pedley RB, Walker-Samuel S, Lythgoe MF (2015) Hepatic 
arterial spin labelling MRI: An initial evaluation in mice. NMR 
Biomed 28:272–280

	105.	 Polasek M, Fuchs BC, Uppal R, Schühle DT, Alford JK, Loving 
GS, Yamada S, Wei L, Lauwers GY, Guimaraes AR, Tanabe KK, 
Caravan P (2012) Molecular MR imaging of liver fibrosis: A fea-
sibility study using rat and mouse models. J Hepatol 57:549–555

	106.	 Müller A, Hochrath K, Stroeder J, Hittatiya K, Schneider G, 
Lammert F, Buecker A, Fries P (2017) Effects of liver fibrosis 
progression on tissue relaxation times in different mouse models 
assessed by ultrahigh field magnetic resonance imaging. Biomed 
Res Int 2017:8720367

	107.	 Braren R, Curcic J, Remmele S, Altomonte J, Ebert O, Rummeny 
EJ, Steingoetter A (2011) Free-breathing quantitative dynamic 
contrast-enhanced magnetic resonance imaging in a rat liver 
tumor model using dynamic radial T1 mapping. Invest Radiol 
46:624–631

	108.	 Cheng HLM, Haedicke IE, Cheng W, Nofiele JT, Zhang XA 
(2014) Gadolinium-free T1 contrast agents for MRI: Tunable 
pharmacokinetics of a new class of manganese porphyrins. J 
Magn Reson Imaging 40:1474–1480

	109.	 Nekolla S, Gneiting T, Syha J, Deichmann R, Haase A (1992) 
T1 maps by k-space reduced snapshot-FLASH MRI. J Comput 
Assist Tomogr 16:327–332

	110.	 Chouhan MD, Ramasawmy R, Bainbridge A, Campbell-Wash-
burn A, Halligan S, Davies N, Walker-Samuel S, Lythgoe MF, 
Mookerjee RP, Taylor SA (2020) Liver perfusion MRI in a 
rodent model of cirrhosis: Agreement with bulk-flow phase-con-
trast MRI and noninvasive evaluation of inflammation in chronic 
liver disease using flow-sensitive alternating inversion recovery 
arterial spin labelling and tissue T1. NMR Biomed 34:e4423

	111.	 Marzola P, Maggioni F, Vicinanza E, Daprà M, Cavagna FM 
(1997) Evaluation of the hepatocyte-specific contrast agent gado-
benate dimeglumine for MR imaging of acute hepatitis in a rat 
model. J Magn Reson Imaging 7:147–152

	112.	 Hazle JD, Narayana PA, Dunsford HA (1991) In vivo NMR, 
biochemical, and histologic evaluation of alcohol-induced fatty 
liver in rat and a comparison with CCl4 hepatotoxicity. Magn 
Reson Med 19:124–135

	113.	 Hazle JD, Narayana PA, Dunsford HA (1990) Chronic carbon 
tetrachloride and phospholipase D hepatotoxicity in rat: In vivo 
1H magnetic resonance, total lipid analysis, and histology. Magn 
Reson Med 15:211–228

	114.	 Ling M, Brauer M (1992) Ethanol-induced fatty liver in the 
rat examined by in vivo 1H chemical shift selective magnetic 
resonance imaging and localized spectroscopic methods. Magn 
Reson Imaging 10:663–677

	115.	 Herfkens R, Davis P, Crooks L, Kaufman L, Price D, Miller 
T, Margulis AR, Watts J, Hoenninger J, Arakawa M, McRee R 
(1981) Nuclear magnetic resonance imaging of the abnormal 
live rat and correlations with tissue characteristics. Radiology 
141:211–218

	116.	 Davis PL, Kaufman L, Crooks LE, Miller TR (1981) Detect-
ability of hepatomas in rat livers by nuclear magnetic resonance 
imaging. Invest Radiol 16:354–359

	117.	 Hoy AM, McDonald N, Lennen RJ, Milanesi M, Herlihy AH, 
Kendall TJ, Mungall W, Gyngell M, Banerjee R, Janiczek RL, 

Murphy PS, Jansen MA, Fallowfield JA (2018) Non-invasive 
assessment of liver disease in rats using multiparametric 
magnetic resonance imaging: a feasibility study. Biol Open 
7:bio033910

	118.	 Zhou IY, Jordan VC, Rotile NJ, Akam E, Krishnan S, Arora 
G, Krishnan H, Slattery H, Warner N, Mercaldo N, Farrar CT, 
Wellen J, Martinez R, Schlerman F, Tanabe KK, Fuchs BC, 
Caravan P (2020) Advanced MRI of liver fibrosis and treatment 
response in a rat model of nonalcoholic steatohepatitis. Radiol-
ogy 296:67–75

	119.	 Li J, Liu H, Zhang C, Yang S, Wang Y, Chen W, Li X, Wang 
D (2020) Native T1 mapping compared to ultrasound elas-
tography for staging and monitoring liver fibrosis: an animal 
study of repeatability, reproducibility, and accuracy. Eur Radiol 
30:337–345

	120.	 Gao Y, Erokwu BO, Desantis DA, Croniger CM, Schur RM, Lu 
L, Mariappuram J, Dell KM, Flask CA (2016) Initial evalua-
tion of hepatic T1 relaxation time as an imaging marker of liver 
disease associated with autosomal recessive polycystic kidney 
disease (ARPKD). NMR Biomed 29:84–89

	121.	 Gambarota G, Veltien A, Van Laarhoven H, Philippens M, Jonker 
A, Mook OR, Frederiks WM, Heerschap A (2004) Measurements 
of T1 and T2 relaxation times of colon cancer metastases in rat 
liver at 7 T. Magn Reson Mater Physics, Biol Med 17:281–287

	122.	 Fan YD, Vanzieleghem B, Achten E, De Deene Y, Defreyne L, 
Praet M, Van Huysse J, Kunnen M, De Hemptinne B (2001) T1 
relaxation times for viability evaluation of the engrafted and the 
native liver in a rat model of heterotopic auxiliary liver transplan-
tation: A pilot study. NMR Biomed 14:350–359

	123.	 Nakakoshi T, Kajiyama M, Fujita N, Jong-Hon K, Takeichi N, 
Miyasaka K (1996) Quantitative analyses of correlations of sig-
nal intensity on T1-weighted images and T1 relaxation time with 
copper concentration in the rat liver. Acad Radiol 3:36–39

	124.	 Chamuleau RAFM, De Nie JHNCI, Moerland MA, Van der 
Lende OR, Smidt J (1988) Is the magnetic resonance imaging 
proton spin-lattice relaxation time a reliable noninvasive param-
eter of developing liver fibrosis? Hepatology 8:217–221

	125.	 Ganesh T, Estrada M, Yeger H, Duffin J, Margaret Cheng HL 
(2017) A non-invasive magnetic resonance imaging approach for 
assessment of real-time microcirculation dynamics. Sci Rep 7:7468

	126.	 Sheng RF, Wang HQ, Yang L, Jin KP, Xie YH, Fu CX, Zeng 
MS (2017) Assessment of liver fibrosis using T1 mapping on 
Gd-EOB-DTPA-enhanced magnetic resonance. Dig Liver Dis 
49:789–795

	127.	 Soares AF, Lei H (2018) Non-invasive diagnosis and metabolic 
consequences of congenital portosystemic shunts in C57BL/6 J 
mice. NMR Biomed 31:e3873

	128.	 Steudel A, Traber F, Krahe T, Schiffmann O, Harder T (1990) 
Qualitatskontrolle der quantitativen mr-tomographie: in-vitro 
und in-vivo-uberprufung von relaxationszeitmessungen. RoFo 
Fortschritte auf dem Gebiete der Rontgenstrahlen und der Neuen 
Bildgeb Verfahren 152:673–676

	129.	 Bachtiar V, Kelly MD, Wilman HR, Jacobs J, Newbould R, Kelly 
CJ, Gyngell ML, Groves KE, McKay A, Herlihy AH, Fernandes 
CC, Halberstadt M, Maguire M, Jayaratne N, Linden S, Neu-
bauer S, Banerjee R (2019) Repeatability and reproducibility of 
multiparametric magnetic resonance imaging of the liver. PLoS 
ONE 14:e0214921

	130.	 Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G, 
Atkins D, Barbour V, Barrowman N, Berlin JA, Clark J, Clarke 
M, Cook D, D’Amico R, Deeks JJ, Devereaux PJ, Dickersin K, 
Egger M, Ernst E, Gøtzsche PC, Grimshaw J, Guyatt G, Hig-
gins J, Ioannidis JPA, Kleijnen J, Lang T, Magrini N, McNamee 
D, Moja L, Mulrow C, Napoli M, Oxman A, Pham B, Rennie 
D, Sampson M, Schulz KF, Shekelle PG, Tovey D, Tugwell P 



789Magnetic Resonance Materials in Physics, Biology and Medicine (2021) 34:779–789	

1 3

(2009) Preferred reporting items for systematic reviews and 
meta-analyses: The PRISMA statement. PLoS Med 6:e1000097

	131.	 Haimerl M, Probst U, Poelsterl S, Fellner C, Nickel D, Wei-
gand K, Brunner SM, Zeman F, Stroszczynski C, Wiggermann 
P (2018) Evaluation of two-point Dixon water-fat separation for 
liver specific contrast-enhanced assessment of liver maximum 
capacity. Sci Rep 8:13863

	132.	 Axel L (1984) Blood flow effects in magnetic resonance imaging. 
Am J Roentgenol 143:1157–1166

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Survey of water proton longitudinal relaxation in liver in vivo
	Abstract
	Objective 
	Methods 
	Results 
	Discussion 

	Introduction
	Methods
	Literature searching
	Analysis

	Results
	Discussion
	Conclusion
	Acknowledgements 
	References




