Sleep Duration May Not Have Any Effect on The Risk of Stroke: Insights from Mendelian Randomization and Prospective Cohort Studies

Туре

Research paper

Keywords

sleep duration, Mendelian Randomization, Stroke, Ischemic stroke

Abstract

Introduction

Due to contentious associations between sleep and stroke risk we performed a meta-analysis of cohort studies and utilized Mendelian randomization (MR).

Material and methods

For the meta-analysis we pooled prospective studies and then reviewed the largest genome-wide association studies regarding self-reported or accelerometer-derived sleep duration with stroke [ischemic (IS), cardioembolic (CES), large artery (LAS), small vessel (SVS)]. Inverse variance weighted method (IVW), weighted median (WM)-based method, MR-Egger and MR-Pleiotropy RESidual Sum and Outlier (PRESSO) were performed. To determine the impact of single nucleotide polymorphisms (SNPs) leave-one-out method was applied.

Results

Pooled prospective studies demonstrated shorter (<7h) [n=25 studies, I2 = 71.4, p <0.001; risk ratio (RR): 1.18, 95%CI: 1.08-1.30, p <0.001] and longer (>8h) [n=16 studies, I2 = 53.6, p <0.001; RR: 1.38, 95%CI: 1.24-1.53, p <0.001] sleep increased stroke risk (compared with 7-8h), but were subject to high levels of heterogeneity. In MR, self-reported sleep duration had no significant effect on IS (IVW: beta = -0.031, p = 0.747), CES (IVW: beta = -0.039, p = 0.849), LAS (IVW: beta = -0.246, p = 0.328) and SVS (IVW: beta = -0.102, p = 0.667) risk. This was also observed for short and long accelerometer-derived sleep (all p >0.126). Estimated associations had no significant heterogeneity and MR-PRESSO revealed no outliers. There was low likelihood of pleiotropy (all estimations p >0.539) and associations were not driven by single SNPs.

Conclusions

Meta-analysis revealed shorter and longer sleep increased total stroke risk, but with high heterogeneity. MR analysis showed no causal associations between sleep duration and stroke risk.

Sleep Duration May Not Have Any Effect on The Risk of Stroke: Insights from Mendelian Randomization and Prospective Cohort Studies

Running title: Sleep duration and the risk of stroke

ABSTRACT:

Introduction: Due to contentious associations between sleep and stroke risk we performed a metaanalysis of cohort studies and utilized Mendelian randomization (MR).

Material and Methods: For the meta-analysis we pooled prospective studies and then reviewed the largest genome-wide association studies regarding self-reported or accelerometer-derived sleep duration with stroke [ischemic (IS), cardioembolic (CES), large artery (LAS), small vessel (SVS)]. Inverse variance weighted method (IVW), weighted median (WM)-based method, MR-Egger and MR-Pleiotropy RESidual Sum and Outlier (PRESSO) were performed. To determine the impact of single nucleotide polymorphisms (SNPs) leave-one-out method was applied.

Results: Pooled prospective studies demonstrated shorter (<7h) [n=25 studies, $l^2 = 71.4$, p <0.001; risk ratio (RR): 1.18, 95%CI: 1.08-1.30, p <0.001] and longer (>8h) [n=16 studies, $l^2 = 53.6$, p <0.001; RR: 1.38, 95%CI: 1.24-1.53, p <0.001] sleep increased stroke risk (compared with 7-8h), but were subject to high levels of heterogeneity. In MR, self-reported sleep duration had no significant effect on IS (IVW: beta = -0.031, p = 0.747), CES (IVW: beta = -0.039, p = 0.849), LAS (IVW: beta = -0.246, p = 0.328) and SVS (IVW: beta = -0.102, p = 0.667) risk. This was also observed for short and long accelerometer-derived sleep (all p >0.126). Estimated associations had no significant heterogeneity and MR-PRESSO revealed no outliers. There was low likelihood of pleiotropy (all estimations p >0.539) and associations were not driven by single SNPs.

Conclusions: Meta-analysis revealed shorter and longer sleep increased total stroke risk, but with high heterogeneity. MR analysis showed no causal associations between sleep duration and stroke risk.

Keywords: Mendelian Randomization, sleep duration, Stroke, Ischemic stroke

INTRODUCTION:

Stroke is a major cardiovascular (CV) event that can lead to brain tissue damage and functional disability, as well as death (1). Due to these detrimental effects of stroke, evaluating stroke risk factors can be of high importance to prevent this potentially fatal CV disease (CVD) or determine its outcomes.

Sleep duration is recognised as a major factor for a healthier lifestyle and improved cardiac function (2). In this context, sleeping patterns (i.e. short or long duration) have been closely linked to morbidity and mortality (3, 4), as well as with chronic cardiometabolic disease, including obesity, hypertension, diabetes, respiratory diseases, coronary heart disease and reduced renal function (CHD) (2, 5-9). There are several parameters that can influence sleep duration, such as cultural, social, psychological, behavioral, pathophysiological and environmental factors (10, 11).

Considering the potential harmful effects of unfavourable sleep duration on public health, it is clinically important to establish whether causality exists between sleep duration and CVD. Recent studies showed that sleep duration may be a risk factor for CVD (12). Both short (<7 h) and long (>8 h) sleep duration have been related to a greater risk of myocardial infarction (MI) (12-14). However, the National Health and Nutrition Examination Survey (NHANES), the Nurses' Health Study (NHS) and the Monitoring Trends and Determinants on Cardiovascular Disease (MONICA) Augsburg cohort study reported inconsistent findings regarding the association between sleep duration and CHD risk (5, 15, 16). A prospective study of 461,347 UK Biobank (UKB) individuals found that short and long sleep duration had a 20 and 34% higher risk of incident MI compared with sleeping 6 - 9 h, respectively, independent of individuals' genetic predisposition to CHD (17).

With regards to stroke, epidemiological studies showed a significant association between long sleep duration and stroke risk (16, 18, 19). In contrast, no significant relationship between sleep duration and stroke risk was observed in another prospective cohort study of 2,282 males (20). Previous systematic reviews evaluated the links between sleep duration, CV outcomes and all-cause death (11, 12), reporting that both short and long duration of sleep were associated with a greater risk of total mortality and/or CVD morbidity, including CHD and stroke. However, the high heterogeneity between the studies was a limitation, making it difficult to draw safe conclusions or support causal inference.

Given the controversial evidence on the potential role of sleep duration on CVD outcomes and its importance for public health, there is an unmet need to elucidate this link in terms of developing effective approaches (including drug therapy) for stroke prevention and management. Epidemiological studies provide only simple estimates of the associations between sleep duration and disease risk, and they are prone to bias. Therefore, Mendelian Randomization (MR) studies can evaluate these relationships with the use of a large-scale genetic data [involving single nucleoid polymorphisms (SNPs) as proxies for lifetime exposure] to provide a more reliable indication of a causal role of sleep duration on stroke risk (21).

In the present study, a comprehensive systematic review and meta-analysis was conducted to examine the associations between sleep duration and the risk of total stroke based on data from prospective cohort studies. Second, a MR analysis was performed to assess the associations between sleep duration (<7 vs >8 h) and different types of stroke, surpassing the limitations of the epidemiological studies (i.e. residual bias, confounding factors and reverse causation) (22).

METHODS

[A] Cohort studies

Literature search and study selection

The meta-analysis was designed, conducted and reported, according to the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) guidelines (23) (the MOOSE checklist is provided in **Supplementary Table 1**). The primary exposure of interest was sleep duration and stroke was the primary outcome. Prospective cohort studies published up to 31 October 2019 (without language restriction) were searched using the PubMed, Embase, and Scopus databases; the query search syntax is shown in **Supplementary Table 2**. When required, further searches were performed regarding the reference list of eligible articles, previous reviews or meta-analyses, as well as email correspondence with authors for additional data.

Study Selection

Predefined inclusion criteria (see below) were used to determine prospective cohort studies regarding the association between sleep duration and stroke risk. Duplicates were removed and then titles and abstracts were screened by two reviewers (MM and NS). To avoid bias, both reviewers were blinded to the names, qualifications or the affiliations of the study authors. The overall agreement between both reviewers was excellent (*Kappa* index: 0.91; p <0.001) and a meeting was held to resolve any disagreements between reviewers prior to articles being retrieved (a flow chart outlining this process is available in **Figure 1**).

We included studies if the following criteria were met: (1) the topic of interest was sleep duration; (2) the studies were population-based cohort studies which reported stroke risk data; (3) relative risk (RR), hazard ratio (HR) or odds ratio (OR) estimates with 95% confidence interval (CI) adjusted for multivariable factors were available or could be calculated.

We excluded studies if the following criteria were met: (1) narrative reviews, reviews, comments, opinion papers, methodological reports, editorials, letters, or any other publications lacking primary data and/or specific descriptions of the methods which were used; (2) not population-based cohort studies; (3) RR, HR or OR estimates with 95%CI were either not available or could not be calculated.

Data extraction and management

The full text of studies meeting the inclusion criteria were retrieved and eligibility was determined via screening by two reviewers (MM and NS). An assessment of study quality was determined using the Newcastle-Ottawa Scale (NOS) (**Supplementary Table 3**) (24). Furthermore, sources of funding pertaining to each eligible study was investigated. Following an assessment of methodological quality, both reviewers (MM and NS) extracted data using a purpose-designed data extraction form. Using this data the most important results from each study were summarized by each reviewer independently. Both summaries were then compared, and a third reviewer (MB) to then consulted to resolve any differences. Any necessary additional calculations regarding the study data, were performed by the first reviewer (MM) and verified by the second reviewer (NS). Specific information which was extracted from each eligible study included: author, year and references, study name, proportion male, mean age, follow-up time (Years), assessment of sleep duration, main confounders (**Table 1**).

Data synthesis and statistical analyses

For those studies which reported results from a variety of multivariable-adjusted models, only the model with the most confounding factors was incorporated into the meta-analysis. A random-effect model was employed to generate pooled RRs, 95%CI and p values for heterogeneity. RRs comparing the highest and lowest categories were combined across studies to determine summary associations. The extent of heterogeneity across studies was examined using the I² test (25-27); an I²>50% with a two-sided p <0.05 indicated significant heterogeneity (25-27).

Publication bias

To determine potential publication bias Begg's funnel plot asymmetry was investigated by visual inspection and Begg's rank correlation and Egger's weighted regression tests were also used (28). To adjust for the effects of publication bias the Duval and Tweedie trim method was utilized (28). Comprehensive Meta-Analysis (CMA) V3 software (Biostat, NJ) was used to conduct the meta-analysis (29).

[B] Mendelian Randomization

Study design

For our MR study a two-sample MR study design was used and the largest genome wide association studies (GWAS) on sleep duration (objectively and subjectively measured) and interested outcomes were used to obtain summary statistics. We then applied methods to estimate the unbiased effect of sleep traits on the risk of different types of stroke [i.e. ischemic (IS), cardioembolic (CES), large artery (LAS), small vessel (SVS)].

Genetic instruments for sleep duration

Procedures pertaining to genotyping, quality control, and imputation which have been used in the UKB have been previously described (30). From the largest GWAS, 78 SNPs were identified to be associated with sleep duration (self-reported) among individuals of European ancestry (n = 446,118) (**Supplementary Table 4**) (31). We hypothesized that the link between sleep duration and stroke risk might be non-linear; therefore, we also used data pertaining to 27 SNPs associated with short sleep (<7h; n = 106,192 cases/305,742 controls) and 8 SNPs related to long sleep (>8 h; n = 34,184 cases/305,742 controls) in the two-sample MR analysis (31). We applied on the GWAS (n = 85,205 participants), performed in the UKB for genetic variants known to be robustly associated with accelerometer-driven sleep trait data (nocturnal sleep duration), which were compared with causal estimates obtained by the genetic variants associated with self-reported sleep duration (**Supplementary Table 4**). Data on this procedure has been previously published (32). We identified proxy SNPs with a minimum linkage disequilibrium (LD) r2 = 0.8 if a SNP was unavailable for the outcome GWAS summary statistics. We restricted our genetic instrument to independent SNPs not in linkage disequilibrium (p = 0.0001) to minimize bias in effect estimates induced by correlation between SNPs. Herein we will refer to a set of SNPs which act as a proxy for sleep duration as "genetic instruments."

Association of genetic instruments with outcome

We utilized the largest available extensively genotyped dataset, i.e. the METASTROKE, a collaboration of the International Stroke Genetics Consortium to determine genetic associations with different ischemic stroke types (33). This dataset included GWAS data on 34,217 IS cases and 404,630 controls of European ancestry from across 15 studies [subtyped into SVS (n = 5,386), LAS (n = 4,373) and CES (n = 7,193)] (33). The majority of the IS cases involved brain imaging confirmation. Approximately 50% of the cases had IS subtype information (2,365 CES, 2,167 LAS and 1,894 SVS cases) based on the Trial of ORG 10172 in Acute Stroke Treatment (TOAST) classification (34). Additional phenotype descriptions and details of individual studies included in the dataset are available elsewhere (33).

MR analysis

The effect of 5 instruments were combined using the inverse variance weighted (IVW) method as implemented using the TwoSampleMR package within the R environment [version 3.4.2 R Core Team (2017)]. Heterogeneity was assessed by the Q value for IVW. The potential effects of pleiotropic variants were addressed on the final effect estimate by performing a sensitivity analysis, including weighted median (WM) and MR-egger tests (35). To identify instruments which might drive the MR results sensitivity analysis was conducted using the leave-one-out method. The WM estimate provides correct estimates if SNPs accounting for ≥50% of the weight are valid instruments. To weight the variants inverse variance was used and to estimate Cis bootstrapping was applied (35). MR-egger analysis can define estimates even under the assumption that all SNPs are invalid instruments if the assumption of instrument strength independent of direct effect (InSIDE) is satisfied (35). That said, the InSIDE assumption is not easy to verify. The p value of the intercept term from the MR-Egger analysis was used to assess the average directional pleiotropy across genetic variants (35). Causal estimates in MR-Egger are less precise than those obtained by using IVW MR (36). Indeed, due to its lower statistical power the analysis using MR-Egger has a lower false-positive but a higher false-negative rate than IVW (37).

The Q' heterogeneity statistic (38) and the MR pleiotropy residual sum and outlier (MR-PRESSO) test (38) were both used to assess heterogeneity between individual genetic variant estimates. The Q' statistic uses modified 2nd order weights that are derived from a Taylor series expansion and considers the uncertainty in both numerator and denominator of the instrumental variable ratio (38). The MR-PRESSO framework detects and removes effect estimates which are outliers by regressing the variant-outcome associations on variant-exposure associations. Then a global heterogeneity test was implemented which compares the observed distance between residual sums of squares of all variants to the regression line with the distance expected under the null hypothesis of no pleiotropy (39). In

addition to this, we also applied an MR-Robust Adjusted Profile Score (RAPS) to correct for pleiotropy using robust adjusted profile scores. RAPS can also provide an unbiased causal estimate in the presence of weak instruments. We considered all results which were causal estimates that agreed in direction and magnitude across MR methods, as well as passing nominal significance in the IVW MR analysis and which did not, after applying heterogeneity tests, show evidence of bias from horizontal pleiotropy. To assess the instrumental variable analysis "exclusion-restriction" assumption, we used Ensembl release (<u>http://useast.ensembl.org/index.html</u>), which contains a base of SNP phenotypes.

Ethics

The present meta-analysis and MR analysis used published or publicly available summary data without involvement of participants or original data collection. Ethical approval for each of the studies included in these analyses can be found in the original publications (including informed consent from each participant). The study conforms to the ethical guidelines of the 1975 Declaration of Helsinki.

RESULTS:

Meta-analysis and systematic review

Of 44 eligible full articles, 12 articles with 594,632 participants met the inclusion criteria (**Figure 1**). The included studies were published between 1997 (16) and 2016 (40), from different countries, including the United States of America (3 studies) (16, 19, 41), UK (1 study) (42), Japan (2 studies) (20, 43), Germany (2 studies) (44, 45), Australia (1 study) (46), China (2 studies) (40, 47) and Sweden (1 study) (48). A total of 3 studies presented sex-specific results, one study involved only men (20) and 2 studies only women (19, 47). The age of the participants ranged from 44 (20) to 63 years (46) and the follow up duration from 2 (41) to 14 years (20, 44). Basic characteristics of the 12 prospective cohort studies are shown in **Table 1**.

Sleep duration and risk of stroke

Compared with participants sleeping 7 - 8 h per night (reference group), individuals with <7 h sleep had a significantly higher risk of stroke (RR: 1.18, 95%CI: 1.08 - 1.30, p <0.001, n = 25 studies, **Figure 2**), but with a high level of heterogeneity ($I^2 = 71.4$, p <0.001). In gender analysis, stroke risk was insignificantly increased by 18% in men (RR: 1.18, 95%CI: 0.88 - 1.58, p = 0.263, n = 4 studies, $I^2 = 43.5$, p = 0.150) and by 20% in women (RR: 1.20, 95%CI: 0.98 - 1.46, p = 0.064, n = 7 studies, $I^2 = 79.3$, p <0.001).

We then pooled the risk of stroke for those with ≤ 5 h of sleep who had a significantly greater stroke risk compared with the reference group (RR: 1.34, 95%CI: 1.17 - 1.53, p <0.001, n = 13 studies, **Figure 3**) but again with a high level of heterogeneity ($I^2 = 58.4$, p <0.001). No association was observed for participants sleeping 6 h per night (compared with the reference group) (RR: 1.07, 95%CI: 0.98 - 1.18, p = 0.110, n = 12 studies, $I^2 = 52.6$, p = 0.016, **Figure 4**). Longer sleep duration (i.e. >8 h) was related to an increased stroke risk compared with 7 - 8 h sleep (RR: 1.38, 95%CI: 1.24 - 1.53, p <0.001, n = 16 studies, $I^2 = 53.6$, p <0.001, **Figure 5**). In gender analysis, the risk was 22% in men (RR: 1.22, 95%CI: 1.00 - 1.49, p = 0.042, n = 3 studies, $I^2 = 0.0$, p = 0.398) and 24% in women (RR: 1.24, 95%CI: 0.91 - 1.67, p = 0.159, n = 5 studies, $I^2 = 81.6$, p <0.001).

Compared with the reference group, >9 h of sleep also significantly increased stroke risk (RR: 1.35, 95%CI: 1.22 - 1.50, p <0.001, n = 13 studies, $I^2 = 41.5$, p = 0.043), whereas 10 h of sleep did not affect the risk (RR: 1.40, 95%CI: 0.95 - 2.07, p = 0.082, n = 3 studies, $I^2 = 75.7$, p = 0.016). It should be noted that in all the above comparisons, there was a high level of heterogeneity between the studies.

Sensitivity analysis

In the leave-one-out sensitivity analyses, the pooled effect estimates remained similar for the effect of both shorter and longer (in comparison with the reference group) sleep duration (RR: 1.18, 95%CI: 1.08 - 1.30, and 1.38, 95%CI: 1.24 - 1.53, respectively). This confirms that the significant difference between the studied groups is the overall effect of all included studies.

Publication bias

Egger's linear regression also supported the absence of any publication bias (intercept = 2.33, 95%Cl = 1.77, -5.22, p = 0.450). Furthermore, Begg's rank correlation test (Kendall's Tau with continuity correction = 0.412, z = 0.832, p = 0.452) was not indicative for publication bias.

Mendelian Randomization

The list of all instruments associations for sleep duration (subjectively and objectively assessed) is shown in **Supplementary Table 4**. The results, expressed as *beta*-coefficient for sleep duration per one standard deviation (SD) increase in outcomes (i.e. stroke risk) are presented in **Tables 2-5**. Self-reported sleep duration had no significant effect on the risk of IS (IVW: beta = -0.031, p = 0.747), CES (IVW: beta = -0.039, p = 0.849), LAS (IVW: beta = -0.246, p = 0.328) and SVS (IVW: beta = -0.102, p = 0.667) (**Table 2**). The same pattern was observed for the accelerometer recorded sleep duration (for IS IVW: beta = 0.033,

p = 0.739; for CES IVW: beta = -0.072, p = 0.713; for LAS IVW: beta = 0.109, p = 0.664 and for SVS IVW: beta = 0.367, p = 0.149) (Table 3).

Short sleep duration had also no significant impact on the risk of different strokes (for IS IVW: beta = 0.343, p = 0.335, for CES IVW: beta = -0.384, p = 0.614, for LAS IVW: beta = 1.321, p = 0.156 and for SVS IVW: beta = -0.009, p = 0.990) (**Table 4**). Similar results were found for long sleep duration (for IS IVW: beta = -0.219, p = 0.805, for CES IVW: beta = 1.895, p = 0.279, for LAS IVW: beta = 2.126, p = 0.389 and for SVS IVW: beta = 1.369, p = 0.508) (**Table 5**).

None of the IWV estimates showed any heterogeneity (**Tables 2-5**). The MR-PRESSO analysis also did not show any possibility of outlier for all the estimates. Furthermore, the pleiotropy test, with very negligible intercept and insignificant p value, also indicated low chance of the pleiotropy for all estimations (all p >0.539, **Tables 2-5**). The results of the MR-RAPS were identical with the IVW estimates in almost all cases, highlighting again a low likelihood of pleiotropy. The results of the leave-one-out method demonstrated that the observed associations were not driven by single SNPs.

DISCUSSION:

In the present study, we performed a comprehensive systematic review and meta-analysis of the available prospective cohort studies, as well as conducted a MR analysis to evaluate the potential effects of sleep duration on the risk of stroke in a causal model. By pooling prospective studies, we showed that shorter and longer sleep duration might be considered as a significant risk factor for stroke. However, these results were subjected to a high level of heterogeneity, thus minimizing their validity, and highlighting the need for further, more reliable, statistical analyses. In this context, the MR analysis showed no association between sleep duration and the risk of different types of stroke, with low levels of heterogeneity and pleiotropy.

Sleep duration is generally not regarded as a traditional risk factor for CVD, but previous studies reported a negative association between short and long sleep duration with CVD morbidity (48) and CVD risk factors (49). Indeed, sleep duration and circadian rhythm disorders, as well as insomnia have been related to stroke (49,50) with approximately half of stroke survivors potentially having insomnia (50).

Growing evidence suggests that short and long sleep duration may be linked to adverse health outcomes, including total mortality (3, 4), CVD events (4, 15, 18, 51), diabetes (52) and hypertension (7, 8). The exact underlying mechanisms of a potential association between sleep duration and CVD have not been established yet. In this context, short sleep duration may increase leptin and ghrelin levels (53), leading to increased appetite and caloric intake and reduced energy expenditure, both of which

may contribute to the development of obesity (54). Increased cortisol secretion and changes in growth hormone metabolism have also been reported in relation to short sleep duration (55), as well as lowgrade inflammation, which can predispose to CVD (55,56). Furthermore, epidemiological studies have shown that short sleep duration may be related to higher levels of hemoglobin A1C (56), total cholesterol, triglycerides and blood pressure (57), which are all CVD risk factors. Sleep disorders have also been suggested to affect the outcomes of CVD events (58)

Depressive symptoms, low socio-economic status, unemployment and low level of physical activity have been linked to long sleep duration and may confound the relationship of sleep duration with morbidity and mortality (59, 60). In this context, the observed harmful effects of longer sleep were confounded by depression or socioeconomic status (61).

One previous meta-analysis (n = 74 studies; 3,340,684 participants) reported no significant differences in stroke events in relation to self-reported sleep duration shorter or longer than 7 h, whereas a moderate increase in stroke mortality was observed in those sleeping \geq 7 h (2). A study in 2,282 males healthy aged 35 - 54 years found no significant association between any sleep duration and stroke risk during 14 years of follow-up, after adjustment for potential confounders, including traditional CVD risk factors and working status (20). In contrast, another systemic review and meta-analysis of 15 prospective studies (n = 474,684 male and female individuals; follow-up 6.9 - 25 years) reported that both short and long sleep duration were significantly related to a greater risk of stroke (12).

Ikehara *et al.* performed a study which included 98,643 individuals (41,489 men and 57,145 women) aged 40 to 79 years and found that long sleep duration (\geq 10 h) was associated with a 1.5 to 2-fold increased mortality from total and ischemic stroke compared with 7 h of sleep (18). In a 10-year follow up of the NHANES cohort (n = 7844; aged \geq 32 years), long (>8 h) sleep duration was related to a higher risk of stroke compared with the reference group (6 to 8 h of sleep) (16). In another meta-analysis of 16 prospective studies, the lowest stroke risk was observed in those sleeping 7 h per night; of note, in cases of >7 h sleep, total stroke risk was increased by 13% for every 1 h increase in sleep duration was significantly associated with ischemic stroke among postmenopausal women (19). In motor-impaired, right hemisphere stroke patients, sleep latencies were longer and sleep efficiency was worse in comparison to age-and sex-matched controls (62). Furthermore, in a Taiwan administrative data study which included 21,438 participants with insomnia and 64,314 age and sex-matched without insomnia, those with insomnia had a 54% increased risk of stroke (63).

The present findings should be extrapolated with caution since our analysis has some limitations. In this context, we were unable to thoroughly evaluate individual-level confounding factors. Although we used different methods in our MR analysis, there might be still a chance of horizontal pleiotropy. Furthermore, a high level of heterogeneity was observed in the present meta-analysis. Despite this, the present analysis has strengths, including the fact that the MR analysis reduced the risk of potential reverse causation and genotypes were assumed to be randomly distributed with respect to confounders.

In conclusion, pooled data from prospective cohort studies showed that sleep duration may increase the risk of stroke, but the high level of heterogeneity observed between studies significantly minimizes the validity of these findings. Furthermore, the MR analysis reported no associations between sleep duration and the risk of different ischemic stroke types, with a low level of heterogeneity and pleiotropy.

REFERENCES:

1. Prevention S. Guidelines for medical treatment for stroke prevention. Ann Intern Med. 1994;121:54-5.

2. Kwok CS, Kontopantelis E, Kuligowski G, Gray M, Muhyaldeen A, Gale CP, et al. Self-reported sleep duration and quality and cardiovascular disease and mortality: a dose-response meta-analysis. Journal of the American Heart Association. 2018;7(15):e008552.

3. Kripke DF, Garfinkel L, Wingard DL, Klauber MR, Marler MR. Mortality associated with sleep duration and insomnia. Archives of general psychiatry. 2002;59(2):131-6.

4. Ferrie JE, Shipley MJ, Cappuccio FP, Brunner E, Miller MA, Kumari M, et al. A prospective study of change in sleep duration: associations with mortality in the Whitehall II cohort. Sleep. 2007;30(12):1659-66.

5. Ayas NT, White DP, Manson JE, Stampfer MJ, Speizer FE, Malhotra A, et al. A prospective study of sleep duration and coronary heart disease in women. Archives of internal medicine. 2003;163(2):205-9.

6. Ayas NT, White DP, Al-Delaimy WK, Manson JE, Stampfer MJ, Speizer FE, et al. A prospective study of self-reported sleep duration and incident diabetes in women. Diabetes care. 2003;26(2):380-4.

7. Cappuccio FP, Stranges S, Kandala N-B, Miller MA, Taggart FM, Kumari M, et al. Gender-specific associations of short sleep duration with prevalent and incident hypertension: the Whitehall II Study. Hypertension. 2007;50(4):693-700.

8. Gangwisch JE, Heymsfield SB, Boden-Albala B, Buijs RM, Kreier F, Pickering TG, et al. Short sleep duration as a risk factor for hypertension: analyses of the first National Health and Nutrition Examination Survey. hypertension. 2006;47(5):833-9.

9. Mazidi M, Shekoohi N, Katsiki N, Banach M. Longer sleep duration may negatively affect renal function. Int Urol Nephrol. 2021;53(2):325-32.

10. Cappuccio FP, Taggart FM, Kandala N-B, Currie A, Peile E, Stranges S, et al. Meta-analysis of short sleep duration and obesity in children and adults. Sleep. 2008;31(5):619-26.

11. Cappuccio FP, D'Elia L, Strazzullo P, Miller MA. Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies. Sleep. 2010;33(5):585-92.

12. Cappuccio FP, Cooper D, D'elia L, Strazzullo P, Miller MA. Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. European heart journal. 2011;32(12):1484-92.

13. Jike M, Itani O, Watanabe N, Buysse DJ, Kaneita Y. Long sleep duration and health outcomes: A systematic review, meta-analysis and meta-regression. Sleep Medicine Reviews. 2018;39:25-36.

14. Itani O, Jike M, Watanabe N, Kaneita Y. Short sleep duration and health outcomes: a systematic review, meta-analysis, and meta-regression. Sleep medicine. 2017;32:246-56.

15. Meisinger C, Heier M, Löwel H, Schneider A, Döring A. Sleep duration and sleep complaints and risk of myocardial infarction in middle-aged men and women from the general population: the MONICA/KORA Augsburg cohort study. Sleep. 2007;30(9):1121-7.

16. Qureshi AI, Giles WH, Croft JB, Bliwise DL. Habitual sleep patterns and risk for stroke and coronary heart disease: a 10-year follow-up from NHANES I. Neurology. 1997;48(4):904-10.

17. Daghlas I, Dashti HS, Lane J, Aragam KG, Rutter MK, Saxena R, et al. Sleep Duration and Myocardial Infarction. Journal of the American College of Cardiology. 2019;74(10):1304-14.

18. Ikehara S, Iso H, Date C, Kikuchi S, Watanabe Y, Wada Y, et al. Association of sleep duration with mortality from cardiovascular disease and other causes for Japanese men and women: the JACC study. Sleep. 2009;32(3):295-301.

19. Chen J-C, Brunner RL, Ren H, Wassertheil-Smoller S, Larson JC, Levine DW, et al. Sleep duration and risk of ischemic stroke in postmenopausal women. Stroke; a journal of cerebral circulation. 2008;39(12):3185.

20. Hamazaki Y, Morikawa Y, Nakamura K, Sakurai M, Miura K, Ishizaki M, et al. The effects of sleep duration on the incidence of cardiovascular events among middle-aged male workers in Japan. Scandinavian journal of work, environment & health. 2011:411-7.

21. Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ (Clinical research ed). 2018;362:k601.

22. Smith GD, Ebrahim S. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? International journal of epidemiology. 2003;32(1):1-22.

23. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. Jama. 2000;283(15):2008-12.

24. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. European journal of epidemiology. 2010;25(9):603-5.

25. Ferretti G, Bacchetti T, Sahebkar A. Effect of statin therapy on paraoxonase-1 status: A systematic review and meta-analysis of 25 clinical trials. Progress in lipid research. 2015;60:50-73.

26. Sahebkar A. Are curcuminoids effective C-reactive protein-lowering agents in clinical practice? Evidence from a meta-analysis. Phytotherapy research : PTR. 2014;28(5):633-42.

27. Sahebkar A, Serban MC, Mikhailidis DP, Toth PP, Muntner P, Ursoniu S, et al. Head-to-head comparison of statins versus fibrates in reducing plasma fibrinogen concentrations: A systematic review and meta-analysis. Pharmacological research. 2016;103:236-52.

28. Duval S, Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56(2):455-63.

29. Borenstein M, Hedges L, Higgins J, Rothstein H. Comprehensive Metaanalysis (Vers. 2). Englewood Cliffs, NJ: Biostat. Inc; 2005.

30. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203-9.

31. Dashti HS, Jones SE, Wood AR, Lane JM, van Hees VT, Wang H, et al. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nature communications. 2019;10(1):1100.

32. Jones SE, van Hees VT, Mazzotti DR, Marques-Vidal P, Sabia S, van der Spek A, et al. Genetic studies of accelerometer-based sleep measures yield new insights into human sleep behaviour. Nature communications. 2019;10(1):1585.

33. Malik R, Chauhan G, Traylor M, Sargurupremraj M, Okada Y, Mishra A, et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet. 2018;50(4):524-37.

34. Adams HP, Jr., Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24(1):35-41.

35. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet Epidemiol. 2016;40(4):304-14.

36. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512-25.

37. Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG. Sensitivity Analyses for Robust Causal Inference from Mendelian Randomization Analyses with Multiple Genetic Variants. Epidemiology. 2017;28(1):30-42.

38. Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan N, Thompson J. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Statistics in medicine. 2017;36(11):1783-802.

39. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693-8.

40. Song Q, Liu X, Zhou W, Wang L, Zheng X, Wang X, et al. Long sleep duration and risk of ischemic stroke and hemorrhagic stroke: the Kailuan Prospective Study. Scientific reports. 2016;6:33664.

41. Petrov MER, Letter AJ, Howard VJ, Kleindorfer D. Self-reported sleep duration in relation to incident stroke symptoms: nuances by body mass and race from the REGARDS study. Journal of Stroke and Cerebrovascular Diseases. 2014;23(2):e123-e32.

42. Leng Y, Cappuccio FP, Wainwright NW, Surtees PG, Luben R, Brayne C, et al. Sleep duration and risk of fatal and nonfatal stroke: a prospective study and meta-analysis. Neurology. 2015;84(11):1072-9.

43. Amagai Y, Ishikawa S, Gotoh T, Kayaba K, Nakamura Y, Kajii E. Sleep duration and incidence of cardiovascular events in a Japanese population: the Jichi Medical School cohort study. Journal of epidemiology. 2010:0912090122-.

44. Helbig AK, Stöckl D, Heier M, Ladwig K-H, Meisinger C. Symptoms of insomnia and sleep duration and their association with incident strokes: findings from the population-based MONICA/KORA Augsburg Cohort Study. PLoS One. 2015;10(7):e0134480.

45. Von Ruesten A, Weikert C, Fietze I, Boeing H. Association of sleep duration with chronic diseases in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. PloS one. 2012;7(1):e30972.

46. Magee CA, Kritharides L, Attia J, McElduff P, Banks E. Short and long sleep duration are associated with prevalent cardiovascular disease in Australian adults. Journal of sleep research. 2012;21(4):441-7.

47. Tu X, Cai H, Gao Y-T, Wu X, Ji B-T, Yang G, et al. Sleep duration and its correlates in middle-aged and elderly Chinese women: the Shanghai Women's Health Study. Sleep medicine. 2012;13(9):1138-45.

48. Westerlund A, Bellocco R, Sundström J, Adami H-O, Åkerstedt T, Lagerros YT. Sleep characteristics and cardiovascular events in a large Swedish cohort. European journal of epidemiology. 2013;28(6):463-73.

49. Meng L, Zheng Y, Hui R. The relationship of sleep duration and insomnia to risk of hypertension incidence: a meta-analysis of prospective cohort studies. Hypertension Research. 2013;36(11):985.

50. Palomäki H, Berg A, Meririnne E, Kaste M, Lönnqvist R, Lehtihalmes M, et al. Complaints of poststroke insomnia and its treatment with mianserin. Cerebrovascular Diseases. 2003;15(1-2):56-62.

51. Stone KL, Ewing SK, Ancoli-Israel S, Ensrud KE, Redline S, Bauer DC, et al. Self-reported sleep and nap habits and risk of mortality in a large cohort of older women. Journal of the American Geriatrics Society. 2009;57(4):604-11.

52. Cappuccio FP, D'Elia L, Strazzullo P, Miller MA. Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis. Diabetes care. 2010;33(2):414-20.

53. Spiegal K, Tasali E, Penev P, Van Cauter E. Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels and increased hunger and appetite. Ann Int Med. 2004;141(11):846-50.

54. Tsubono Y, Fukao A, Hisamichi S. Health practices and mortality in a rural Japanese population. The Tohoku journal of experimental medicine. 1993;171(4):339-48.

55. Copinschi G. Metabolic and endocrine effects of sleep deprivation. Essential psychopharmacology. 2005;6(6):341-7.

56. Nakajima H, Kaneita Y, Yokoyama E, Harano S, Tamaki T, Ibuka E, et al. Association between sleep duration and hemoglobin A1c level. Sleep medicine. 2008;9(7):745-52.

57. BJORVATN B, Sagen IM, ØYANE N, Waage S, Fetveit A, PALLESEN S, et al. The association between sleep duration, body mass index and metabolic measures in the Hordaland Health Study. Journal of sleep research. 2007;16(1):66-76.

58. Duss SB, Seiler A, Schmidt MH, Pace M, Adamantidis A, Muri RM, et al. The role of sleep in recovery following ischemic stroke: A review of human and animal data. Neurobiology of sleep and circadian rhythms. 2017;2:94-105.

59. Stranges S, Dorn JM, Shipley MJ, Kandala N-B, Trevisan M, Miller MA, et al. Correlates of short and long sleep duration: a cross-cultural comparison between the United Kingdom and the United States: the Whitehall II Study and the Western New York Health Study. American journal of epidemiology. 2008;168(12):1353-64.

60. Krueger PM, Friedman EM. Sleep duration in the United States: a cross-sectional populationbased study. American journal of epidemiology. 2009;169(9):1052-63.

61. Patel SR, Malhotra A, Gottlieb DJ, White DP, Hu FB. Correlates of long sleep duration. Sleep. 2006;29(7):881-9.

62. Sterr A, Kuhn M, Nissen C, Ettine D, Funk S, Feige B, et al. Post-stroke insomnia in communitydwelling patients with chronic motor stroke: physiological evidence and implications for stroke care. Scientific reports. 2018;8(1):8409.

63. Wu M-P, Lin H-J, Weng S-F, Ho C-H, Wang J-J, Hsu Y-W. Insomnia subtypes and the subsequent risks of stroke: report from a nationally representative cohort. Stroke. 2014;45(5):1349-54.

Author, year	Country,	Men	Mean	follow-up	Assessment of sleep	Main confounders
and References	region/cohort	(%)	Age	time	duration	
				(Years)		
Chen, 2008 (1)	Prospective cohort study, USA	0	unclear	7.5	Interview questioning	Age, race, education, family income, employment status, depression, smoking, exercise, use of hormone therapy, prior cardiovascular disease, diabetes mellitus, hypertension, high cholesterol level requiring pills and body mass index.
Hamazaki, 2011 (2)	Prospective cohort study, Japan	100	44	14	Self-administered questionnaire	Age, type of job, working hours, mental workload, body mass index, mean blood pressure, HbA1c, total cholesterol, current smoking habit, drinking habit, leisure-time physical activity, medication for hypertension, diabetes, hypercholesterolemia
Helbig, 2015 (3)	Prospective cohort study, Germany	50	48	14	Interview questioning	Age, survey, education , physical activity, alcohol consumption, current smoking activity, body mass index, hypertension, diabetes and dyslipidemia
Leng, 2015 (4)	Prospective cohort study, UK	46	62	9.5	Questionnaire	Age, sex, social class, education, marital status, smoking, alcohol intake, hypnotic drug use, family history of stroke, body mass index, physical activity, depression, systolic blood pressure, diastolic blood pressure, preexisting diabetes, myocardial infarction, cholesterol level and hypertension drug use.

Table 1. Characteristics of the Prospective Cohort Studies included in the meta-analysis.

Magee, 2011 (5)	Prospective cohort study, Australia	47	63	unclear	Self-reported questionnaire	Age, sex, country of birth, marital status, education, employment status, remoteness, body mass index, physical activity, smoking, alcohol and screen time.
Qureshi, 1997 (6)	Prospective cohort study, USA	36	unclear	10	Participants were interviewed	Age, sex, race, education, cigarette smoking, systolic blood pressure, serum cholesterol level, diabetes and body mass index.
Ruiter Petrov, (7)2014	Prospective cohort study, USA	44	61	2	Participants were questioned on sleep	Demographics, stroke risk factors, psychological symptoms, health behaviors and diet quality.
Song, 2016 (8)	Prospective cohort study, China	79	51	7.9	Interviews, death certificates, discharge summaries and medical records	Age, sex, marital status, income, education level, smoking status, physical activity, family history of stroke, body mass index, blood pressure, blood glucose, total cholesterol, lipid-lowering drug use, hypoglycemic drug use, history of myocardial infarction, snoring status, C- reactive protein and atrial fibrillation.
Tu, 2012 (9)	Prospective cohort study, China	0	60	4	Participants were questioned on sleep	Age, education level, occupational status, night-shift work, annual income, menopausal status, marital status, number of live births, physical activity, passive smoking tea consumption, energy intake, time spend watching TV and vitamin supplement use.
Von Ruesten, 2012 (10)	Prospective cohort study, Germany	39	49	8	Participants were interviewed about their sleep	Age, sex, sleeping disorders, alcohol intake, smoking status, walking cycling sports, employment status, education, body mass index, waist-to-hip ratio, hypertension, high blood lipid, caffeinated beverages,

						satisfaction with life, satisfaction with health and intake of antidepressants
Amagai, 2010 (11)	Prospective cohort study, Japan	39	55	10.7	Interview for sleep duration	Age, systolic blood pressure, total cholesterol, body mass index, smoking habits and alcohol drinking habits
Westerlund, 2013(12)	Prospective cohort study, Sweden	35	unclear	13	Questionnaire	Age, sex, education, employment status, smoking, alcohol, snoring, work schedule, depressive symptoms, self-rated health, physical activity, body mass index, diabetes, lipid disturbance and hypertension.

References:

1. Chen J-C, Brunner RL, Ren H, Wassertheil-Smoller S, Larson JC, Levine DW, et al. Sleep duration and risk of ischemic stroke in postmenopausal women. Stroke; a journal of cerebral circulation. 2008;39(12):3185.

2. Hamazaki Y, Morikawa Y, Nakamura K, Sakurai M, Miura K, Ishizaki M, et al. The effects of sleep duration on the incidence of cardiovascular events among middle-aged male workers in Japan. Scandinavian journal of work, environment & health. 2011:411-7.

3. Helbig AK, Stöckl D, Heier M, Ladwig K-H, Meisinger C. Symptoms of insomnia and sleep duration and their association with incident strokes: findings from the population-based MONICA/KORA Augsburg Cohort Study. PLoS One. 2015;10(7):e0134480.

4. Leng Y, Cappuccio FP, Wainwright NW, Surtees PG, Luben R, Brayne C, et al. Sleep duration and risk of fatal and nonfatal stroke: a prospective study and meta-analysis. Neurology. 2015;84(11):1072-9.

5. Magee CA, Kritharides L, Attia J, McElduff P, Banks E. Short and long sleep duration are associated with prevalent cardiovascular disease in Australian adults. Journal of sleep research. 2012;21(4):441-7.

6. Qureshi AI, Giles WH, Croft JB, Bliwise DL. Habitual sleep patterns and risk for stroke and coronary heart disease: a 10 - year follow - up from NHANES I. Neurology. 1997;48(4):904-10.

7. Petrov MER, Letter AJ, Howard VJ, Kleindorfer D. Self-reported sleep duration in relation to incident stroke symptoms: nuances by body mass and race from the REGARDS study. Journal of Stroke and Cerebrovascular Diseases. 2014;23(2):e123-e32.

8. Song Q, Liu X, Zhou W, Wang L, Zheng X, Wang X, et al. Long sleep duration and risk of ischemic stroke and hemorrhagic stroke: the Kailuan Prospective Study. Scientific reports. 2016;6:33664.

9. Tu X, Cai H, Gao Y-T, Wu X, Ji B-T, Yang G, et al. Sleep duration and its correlates in middle-aged and elderly Chinese women: the Shanghai Women's Health Study. Sleep medicine. 2012;13(9):1138-45.

10. Von Ruesten A, Weikert C, Fietze I, Boeing H. Association of sleep duration with chronic diseases in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. PloS one. 2012;7(1):e30972.

11. Amagai Y, Ishikawa S, Gotoh T, Kayaba K, Nakamura Y, Kajii E. Sleep duration and incidence of cardiovascular events in a Japanese population: the Jichi Medical School cohort study. Journal of epidemiology. 2010:0912090122-.

12. Westerlund A, Bellocco R, Sundström J, Adami H-O, Åkerstedt T, Lagerros YT. Sleep characteristics and cardiovascular events in a large Swedish cohort. European journal of epidemiology. 2013;28(6):463-73.

Table 2. Res	sults of the	e Mendelian Ra	ndomization and	alysis on the a	associations betw	veen self-reported	d sleep duratio	n and different	types of stroke.		
Exposures			М	R		ŀ	Heterogeneity			Pleiotropy	
		Method	beta	SE	р	Method	Q	р	Intercept	SE	р
sleep	IS	MR Egger	-0.229	0.341	0.504	MR Egger	48.668	0.445	0.0034	0.0057	0.547
duration		WM	-0.019	0.154	0.901						
(self-		IVW	-0.031	0.098	0.747	IVW	49.040	0.471			
reported)		RAPS	0.004	0.103	0.967						
	CES	MR Egger	0.537	0.725	0.462	MR Egger	58.130	0.150	-0.010	0.012	0.409
		WM	0.163	0.287	0.569	IVW					
		IVW	-0.039	0.208	0.849		58.967	0.155			
		RAPS	0.055	0.216	0.796						
	LAS	MR Egger	-0.658	0.878	0.457	MR Egger	51.42584	0.341	0.0072	0.014	0.626
		WM	-0.131	0.382	0.731						
		IVW	-0.246	0.251	0.328	IVW	51.68298	0.369			
		RAPS	-0.249	0.259	0.336						
	SVS	MR Egger	-0.369	0.832	0.658	MR Egger	53.354	0.275	0.0046	0.013	0.738
		WM	-0.175	0.367	0.634						
		IVW	-0.102	0.238	0.667	IVW	53.479	0.306			
		RAPS	-0.159	0.258	0.536						
Weighted	median: \	WM, Inverse v	variance weight	ed: IVW, SE	: standard erro	r, beta: beta-co	efficients, RA	PS: MR-Robus	st Adjusted Prof	ile Score. MI	۲:

Mendelian randomization, IS: ischemic stroke, CES: cardioembolic stroke, LAS: large artery stroke, SVS: small vessel stroke

Exposures				MR			Heterogenei	ty		Pleiotropy		
		Method	beta	SE	р	Method	Q	р	Intercept	SE	р	
sleep	IS	MR Egger	-0.043	0.261	0.874	MR Egger	3.344	0.764	0.0037	0.011	0.759	
duration		WM	-0.006	0.132	0.963		3.446					
accelero		IVW	0.033	0.102	0.739	IVW		0.840				
meter		RAPS	0.034	0.105	0.746							
derived)	CES	MR Egger	0.233	0.523	0.671	MR Egger	2.190	0.901	-0.014	0.023	0.550	
		WM	-0.039	0.256	0.878							
		IVW	-0.072	0.198	0.713	IVW	2.590	0.920				
		RAPS	-0.073	0.205	0.720							
	LAS	MR Egger	-0.351	0.683	0.625	MR Egger	6.404 6.975	0.379	0.0223	0.030	0.492	
		WM	-0.132	0.336	0.693							
		IVW	0.109	0.253	0.664	IVW		0.431				
		RAPS	0.056	0.273	0.835							
	SVS	MR Egger	0.038	0.720	0.959	MR Egger	7.557	0.272	0.0157	0.031	0.639	
		WM	0.252	0.320	0.430							
		IVW	0.367	0.254	0.149	IVW	7.863	0.344				
		RAPS	0.353	0.266	0.185							

Meighted median: WM, Inverse variance weighted: IVW, SE: standard error, beta: beta-coefficients, RAPS: MR-Robust Adji Mendelian randomization, IS: ischemic stroke, CES: cardioembolic stroke, LAS: large artery stroke, SVS: small vessel stroke

Exposures				MR			Heterogeneit	ÿ		Pleiotropy	
		Method	beta	SE	р	Method	Q	р	Intercept	SE	р
Short	IS	MR Egger	1.123	1.70	0.515	MR Egger	15.057	0.820	-0.0053	0.0114	0.643
sleep		WM	0.261	0.461	0.571						
duration		IVW	0.343	0.356	0.335	IVW	15.278	0.850			
		RAPS	0.323	0.373	0.386						
	CES	MR Egger	2.089	3.732	0.581	MR Egger	26.571	0.185	-0.0169	0.0250	0.505
		WM	-1.590	0.986	0.106						
		IVW	-0.384	0.763	0.614	IVW	27.152	0.205			
		RAPS	-0.755	0.764	0.322						
	LAS	MR Egger	2.098	4.559	0.650	MR Egger	24.291	0.2791	-0.0053	0.0307	0.863
		WM	1.583	1.191	0.183						
		IVW	1.321	0.932	0.156	IVW	24.327	0.3303			
		RAPS	1.437	0.935	0.124						
	SVS	MR Egger	-0.047	3.901	0.990	MR Egger	21.220	0.445	0.00026	0.0263	0.992
		WM	-0.004	1.098	0.996						
		IVW	-0.009	0.822	0.990	IVW	21.220	0.507			
		RAPS	-0.136	0.865	0.875						

Weighted median: WM, Inverse variance weighted: IVW, SE: standard error, beta: beta-coefficients, RAPS: MR-Robust Adj Mendelian randomization, IS: ischemic stroke, CES: cardioembolic stroke, LAS: large artery stroke, SVS: small vessel stroke

Exposures				MR			Heterogenei	ty		Pleiotropy	
		Method	beta	SE	р	Method	Q	р	Intercept	SE	р
Long	IS	MR Egger	1.836	2.531	0.495	MR Egger	2.311	0.888	-0.012	0.0139	0.418
sleep		WM	-0.132	1.096	0.903						
luration		IVW	-0.219	0.891	0.805	IVW	3.064	0.878			
		RAPS	-0.222	0.929	0.810						
	CES	MR Egger	-3.836	5.247	0.492	MR Egger	4.742	0.577	0.0328	0.0283	0.290
		WM	2.074	2.229	0.352						
		IVW	1.895	1.751	0.279	IVW	6.085	0.529			
		RAPS	2.396	1.845	0.194						
	LAS	MR Egger	16.35	6.517	0.045	MR Egger	3.113 8.521	0.794	-0.0823	0.0355	0.059
		WM	3.095	2.898	0.285						
		IVW	2.126	2.472	0.389	IVW		0.288			
		RAPS	3.084	2.702	0.253						
	SVS	MR Egger	5.993	5.924	0.350	MR Egger	3.877	0.693	-0.027	0.0325	0.436
		WM	1.313	2.640	0.619						
		IVW	1.369	2.072	0.508	IVW	4.571	0.712			
		RAPS	1.394	2.178	0.522						

Weighted median: WM, Inverse variance weighted: IVW, SE: standard error, beta: beta-coefficients, RAPS: MR-Robust Adj Mendelian randomization, IS: ischemic stroke, CES: cardioembolic stroke, LAS: large artery stroke, SVS: small vessel stroke

Reporting of background should include:	Page
	number:
Problem definition	5
Hypothesis statement	5
Description of study outcome(s)	5
Type of exposure or intervention used	5
Type of study designs used	5
Study population	5
Reporting of search strategy should include:	Page
	number:
Qualifications of searchers (eg, librarians and investigators)	1
Search strategy, including time period included in the synthesis and keywords Effort	Appendix 1
to include all available studies, including contact with authors Databases and	6-7
registries searched	6-7
Search software used, name and version, including special features used (eg, explosion) Use of	6-7
hand searching (eg, reference lists of obtained articles)	6-7
List of citations located and those excluded, including justification Method of	Figure 1
addressing articles published in languages other than English Method of	-
handling abstracts and unpublished studies	6-7
Description of any contact with authors	-
Reporting of methods should include:	Page
	number:

Supplementary Table 1. MOOSE Reporting Checklist for Authors, Editors, and Reviewers of Meta-analyses of Observational Studies

Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be	6-7
tested	
Rationale for the selection and coding of data (eg, sound clinical principles or convenience)	6-7
Documentation of how data were classified and coded (eg, multiple raters, blinding, and interrater reliability)	6-7
Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)	6-7
Assessment of study quality, including blinding of quality assessors; stratification or regression on possible predictors of study	6-7
results	
Assessment of heterogeneity	6-7
Description of statistical methods (eg, complete description of fixed or random effects models,	6-7
justification of whether the chosen models account for predictors of study results,	
dose-response models, or cumulative meta-analysis) in sufficient detail to be replicated	
Provision of appropriate tables and graphics	Tables and
	Figures
Reporting of results should include:	Page
	number:
Graphic summarizing individual study estimates and overall estimate Table	Figures
giving descriptive information for each study included	Table
Results of sensitivity testing (eg, subgroup analysis)	8-12
Indication of statistical uncertainty of findings	8-12
Reporting of discussion should include:	Page
	number:
Quantitative assessment of bias (eg, publication bias)	13-16
Justification for exclusion (eg, exclusion of non–English-language citations)	-
Assessment of quality of included studies	13-16
Reporting of conclusions should include:	Page
	number:
Consideration of alternative explanations for observed results	16-17
Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the	16-17
literature review)	
Guidelines for future research	-
Disclosure of funding source	17

Sup	plementary Table 2. Full searc	h terms and strategy for papers indexed in PUBMED.
No	Concept	Search terms
1	Stroke	cerebrovascular[tiab] OR stroke[tiab] OR TIA[tiab] OR transient
		cerebrovascular accident [Mesh:NoExp] OR stroke[Mesh:NoExp]
2	Sleep duration	sleep duration [tiab]
3	Combination Exposure And	#1 AND #2
	Outcome	
4	Limit	Rats[Mesh:NoExp]) OR Mice[Mesh:NoExp]) OR rat[Title/Abstract]) OR rats[Title/Abstract]) OR mouse[Title/Abstract]) OR mice[Title/Abstract]) OR vivo[Title/Abstract]) OR vitro[Title/Abstract])
5	Limit	#3 NOT #4

NEWCASTLE – OTTAWA QUALITY ASSESSMENT SCALE - COHORT STUDIES

Note: A study can be awarded a maximum of one star for each numbered item within the Selection and Outcome categories. A maximum of two stars can be given for Comparability.

Selection

1) Representativeness of the exposed cohort

a) truly representative of the average *healthy adults* in the community \star

b) somewhat representative of the average *healthy adults* in the community \star

c) selected group of users *e.g. nurses, volunteers, vegetarian*

d) no description of the derivation of the cohort

2) Selection of the non-exposed cohort

a) drawn from the same community as the exposed cohort \star

b) drawn from a different source

c) no description of the derivation of the non-exposed cohort

3) Ascertainment of exposure

a) secure record (e.g. 7 day food diary) 🖈

b) structured interview/ \geq 2 dietary recalls/diet history/ food frequency question naire validated for dairy components \star

c) written self-report (e.g. <2 dietary recalls/non-validated food frequency questionnaire or not reported whether food frequency questionnaire was validated)

d) no description

4) Demonstration that outcome of interest was not present at start of study

a) yes★

b) no

Comparability

1) Comparability of cohorts on the basis of the design or analysis

a) study controls for age, sex, smoking, total energy intake, and body mass index \star

b) study controls for any additional factor (e.g. physical activity, alcohol intake, family history of diabetes, dietary factors) 🖈

Outcome

1) Assessment of outcome

a) independent blind assessment (e.g. clinical diagnosis/complete medical information available) 🖈

b) record linkage/medical record or validated self-report \star

c) non-validated self-report

d) no description

2) Was follow-up long enough for outcomes to occur

a) yes/ follow up period for outcome of interest is 10 years or over \star

b) no

3) Adequacy of follow-up of cohorts

a) complete follow-up - all subjects accounted for \star

b) subjects lost to follow-up unlikely to introduce bias - small number lost ≤20% follow-up, or description provided of those lost 🖈

c) follow-up rate <80% or no description of those lost

d) no statement

Supplemental Table 3. Quality assessment of selected cohorts studies.

		Selecti	on		Comparability	Outcome			
Studies	Representativeness of the exposed cohort	Selection of the non- exposed cohort	Ascertainment of exposure	Outcome not present at start of study	Comparability of cohorts on the basis of the design or analysis	Assessment of outcome	Follow- up long enough for outcomes to occur	Adequacy of follow- up of cohorts	Total score
Chen, 2008 (1)	С	A★	в★	A★	А★ В★	в★	В	в★	9
Hamazaki, 2011 (2)	С	A★	в★	A★	А★ В★	в★	A★	в★	8
Helbig, 2015 (3)	С	A★	в★	А¥	А★ В★	в★	A★	в★	8

Leng, 2015 (4)	C	A★	в★	A★	а★ в★	в★	В	в★	9
Magee, 2011 (5)	С	A★	в★	A★	а★ в★	в★	A★	в★	8
Qureshi, 1997 (6)	С	A★	в★	A★	а★ в★	в★	A★	в★	8
Ruiter Petrov, (7)2014	С	A★	в★	A★	а★ в★	в★	A★	в★	8
Song, 2016 (8)	в★	A★	С	A★	A★ B★	в★	A★	С	7
Tu, 2012 (9)	C	A★	в★	A★	A★ B★	в★	В	в★	9
Von Ruesten, 2012 (10)	в★	A★	С	A★	А★ В★	в★	A★	С	7
Amagai, 2010 (11)	С	A★	в★	A★	а★ в★	в★	В	в★	9
Westerlund, 2013(12)	С	A★	в★	A★	а★ в★	в★	A★	в★	8

References:

1. Chen J-C, Brunner RL, Ren H, Wassertheil-Smoller S, Larson JC, Levine DW, et al. Sleep duration and risk of ischemic stroke in postmenopausal women. Stroke; a journal of cerebral circulation. 2008;39(12):3185.

2. Hamazaki Y, Morikawa Y, Nakamura K, Sakurai M, Miura K, Ishizaki M, et al. The effects of sleep duration on the incidence of cardiovascular events among middle-aged male workers in Japan. Scandinavian journal of work, environment & health. 2011:411-7.

3. Helbig AK, Stöckl D, Heier M, Ladwig K-H, Meisinger C. Symptoms of insomnia and sleep duration and their association with incident strokes: findings from the population-based MONICA/KORA Augsburg Cohort Study. PLoS One. 2015;10(7):e0134480.

4. Leng Y, Cappuccio FP, Wainwright NW, Surtees PG, Luben R, Brayne C, et al. Sleep duration and risk of fatal and nonfatal stroke: a prospective study and meta-analysis. Neurology. 2015;84(11):1072-9.

5. Magee CA, Kritharides L, Attia J, McElduff P, Banks E. Short and long sleep duration are associated with prevalent cardiovascular disease in Australian adults. Journal of sleep research. 2012;21(4):441-7.

6. Qureshi AI, Giles WH, Croft JB, Bliwise DL. Habitual sleep patterns and risk for stroke and coronary heart disease: a 10-year follow-up from NHANES I. Neurology. 1997;48(4):904-10.

7. Petrov MER, Letter AJ, Howard VJ, Kleindorfer D. Self-reported sleep duration in relation to incident stroke symptoms: nuances by body mass and race from the REGARDS study. Journal of Stroke and Cerebrovascular Diseases. 2014;23(2):e123-e32.

8. Song Q, Liu X, Zhou W, Wang L, Zheng X, Wang X, et al. Long sleep duration and risk of ischemic stroke and hemorrhagic stroke: the Kailuan Prospective Study. Scientific reports. 2016;6:33664.

9. Tu X, Cai H, Gao Y-T, Wu X, Ji B-T, Yang G, et al. Sleep duration and its correlates in middle-aged and elderly Chinese women: the Shanghai Women's Health Study. Sleep medicine. 2012;13(9):1138-45.

10. Von Ruesten A, Weikert C, Fietze I, Boeing H. Association of sleep duration with chronic diseases in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. PloS one. 2012;7(1):e30972.

11. Amagai Y, Ishikawa S, Gotoh T, Kayaba K, Nakamura Y, Kajii E. Sleep duration and incidence of cardiovascular events in a Japanese population: the Jichi Medical School cohort study. Journal of epidemiology. 2010:0912090122-.

12. Westerlund A, Bellocco R, Sundström J, Adami H-O, Åkerstedt T, Lagerros YT. Sleep characteristics and cardiovascular events in a large Swedish cohort. European journal of epidemiology. 2013;28(6):463-73.

Supplementary Table	4. Summary resul	ts of the genetic lo	ci of self-repo	orted or de	erived by
accelerometer sleep o	duration				
SNP	GX	GX SE	EA	OA	EAF
Self-reported sleep d	uration				
s915416	0.019259	0.002495	С	G	0.289947
s269054	-0.01364	0.002293	Т	А	0.577924
12567114	-0.01483	0.00254	G	Α	0.724198
62120041	0.026111	0.004575	Т	С	0.933902
374153	0.017612	0.003103	С	Т	0.158085
75539574	-0.03625	0.004065	А	С	0.914208
7556815	-0.04072	0.00274	G	А	0.780856
12611523	0.012635	0.002276	А	G	0.545244
4538155	-0.01298	0.002374	С	Т	0.352574
10173260	-0.01284	0.002313	Т	С	0.393765
112230981	0.031528	0.005228	А	G	0.94984
17732997	0.012935	0.002288	С	G	0.569098
7644809	0.013062	0.002301	Т	С	0.421606
13088093	-0.01627	0.002402	Т	G	0.663683
2192528	0.013369	0.002269	А	G	0.480065
17427571	0.013826	0.002435	А	G	0.684313
35531607	-0.01284	0.002273	Т	С	0.525917
13109404	0.031204	0.004408	Т	G	0.928024
365663	0.014629	0.002279	А	G	0.545963
56372231	-0.01694	0.0024	С	Т	0.665907
180769	0.012724	0.002294	Т	С	0.424698
151014368	-0.01609	0.00282	G	Α	0.793742
34556183	0.016923	0.002523	А	G	0.719606
\$80193650	-0.01684	0.003067	Α	G	0.837534

rs9382445	0.014536	0.002334	Т	С	0.62305	
rs2231265	-0.01496	0.002699	А	G	0.227711	
rs34731055	-0.01946	0.002948	С	Т	0.81911	
rs2079070	0.017548	0.002566	C	G	0.264613	
rs7806045	0.014792	0.002626	Т	С	0.754703	
rs330088	-0.01447	0.002277	Т	С	0.452988	
rs10973207	-0.02043	0.003124	G	Т	0.842323	
rs1776776	0.019963	0.003411	Т	С	0.873832	
rs12246842	0.013395	0.002274	А	G	0.459815	
rs10761674	0.012333	0.002266	C	Т	0.477334	
rs11190970	0.015379	0.002823	G	А	0.798661	
rs7915425	0.019064	0.00299	Т	C	0.174682	
rs1517572	-0.01464	0.002295	А	С	0.419464	
rs4592416	-0.01468	0.00227	А	G	0.535593	
rs174560	-0.01358	0.002437	Т	С	0.685785	
rs12791153	-0.02355	0.004217	A	Т	0.918911	
rs1939455	0.020425	0.003561	G	Т	0.879446	
rs1263056	0.012799	0.002277	A	G	0.519099	
rs34354917	0.013746	0.002501	C	А	0.710472	
rs11614986	0.016379	0.002951	А	G	0.820952	
rs6575005	0.015564	0.002642	Т	C	0.757854	
rs61985058	-0.01859	0.003229	С	Т	0.856824	
rs11621908	0.024095	0.004163	C	Т	0.917141	
rs8038326	0.01592	0.002541	А	G	0.72691	
rs3095508	0.015352	0.002304	С	А	0.593529	
rs11643715	-0.0139	0.002497	С	G	0.709058	
rs9940646	0.016946	0.002291	C	G	0.577569	
rs7503199	0.014745	0.002564	С	Т	0.734267	
rs1991556	0.016566	0.002724	G	А	0.773765	
						•

rs12607679	0.020139	0.002593	Т	С	0.737717
rs10421649	-0.0133	0.002295	Т	А	0.44303
rs2072727	0.013243	0.002285	Т	С	0.43617
Accelerometer derive	ed sleep duration				
rs2660302	0.041	0.006	А	Т	0.811
rs113851554	0.11	0.011	G	Т	0.943
rs62158170	0.054	0.006	G	А	0.217
rs17400325	0.066	0.012	Т	С	0.958
rs72828540	0.041	0.005	Т	С	0.752
rs9369062	0.033	0.005	С	А	0.292
rs2975734	0.027	0.005	С	G	0.561
rs13282541	0.032	0.005	C	Т	0.739
rs2880370	0.028	0.005	А	Т	0.67
rs800165	0.028	0.005	Т	Т	0.343
rs10138240	0.029	0.005	G	G	0.514
Short Sleep			-		
rs7524118	-0.00576	0.001054	Т	C	0.291624
rs2186122	-0.00567	0.000972	А	Т	0.438434
rs12567114	0.006325	0.001077	G	А	0.7246
rs2820313	-0.00601	0.00101	А	G	0.658888
rs1380703	-0.00676	0.001005	Α	G	0.616469
rs2863957	0.01019	0.001161	С	А	0.781508
rs2014830	0.005786	0.00105	С	Т	0.698128
rs17005118	-0.00648	0.001087	G	А	0.735064
rs13107325	-0.01327	0.001828	С	Т	0.925472
rs12518468	-0.00589	0.001021	Т	С	0.671544
rs3776864	0.005724	0.001019	А	С	0.66721
rs4585442	-0.00635	0.001036	А	G	0.688977
rs12661667	-0.00602	0.001087	С	Т	0.736505

\$9367621	0.005445	0.00097	Т	А	0.43104
\$9321171	0.005354	0.000966	С	Т	0.540122
11763750	0.007212	0.001234	G	А	0.814346
1229762	-0.00724	0.001017	C	Т	0.335499
0882754	0.011304	0.002001	А	Т	0.938985
607227	0.006369	0.001055	G	Т	0.704938
939345	0.006498	0.001182	Т	G	0.207569
/388803	-0.00983	0.001587	А	С	0.894352
779556	0.005491	0.000966	Т	G	0.553827
05024	0.00551	0.000986	С	Т	0.616724
2963463	0.007114	0.00106	С	Т	0.299425
757675	0.006455	0.001099	G	Т	0.259528
g Sleep					
899255	-0.00562	0.001032	G	А	0.855558
9980149	-0.01192	0.002226	С	G	0.971827
348	0.004465	0.00082	C	Т	0.721799
158160	-0.00501	0.00083	С	Т	0.742431
2630583	-0.0047	0.000882	С	Т	0.783789
3608603	-0.00598	0.001073	Α	G	0.867766
5458655	-0.01673	0.002423	С	Т	0.977027
)47395	0.003957	0.000728	G	А	0.50028
effect allele; OA:	other allele, EAF	: effect allele free length: GX SE: sta	quency; GX: t	he per-all GX	ele effect on

Figure 1. Flow chart of study selection.

Meta Analysis

Figure 2: Forest plot of stroke risk associated with <7 hours sleep (Favours A) compared to 7-8 hours sleep (Favours B) from 25 studies. Results are expressed as risk ratios and 95% confidence intervals. Pooled analysis: p < 0.001; heterogeneity test: I2 = 71.4, p < 0.001. The area of each block is proportional to the weight attributed to each study.

Figure 3: Forest plot of stroke risk associated with <5 hours sleep (Favours A) compared to 7-8 hours sleep (Favours B) from 13 studies. Results are expressed as risk ratios and 95% confidence intervals. Pooled analysis: p < 0.001; heterogeneity test: I2 = 58.4, p < 0.001. The area of each block is proportional to the weight attributed to each study.

Meta Analysis

Figure 4: Forest plot of stroke risk associated with 6 hours sleep (Favours A) compared to 7-8 hours sleep (Favours B) from 12 studies. Results are expressed as risk ratios and 95% confidence intervals. Pooled analysis: p = 0.110; heterogeneity test: I2 = 52.6, p = 0.016. The area of each block is proportional to the weight attributed to each study.

Meta Analysis

Figure 5: Forest plot of stroke risk associated with >8 hours sleep (Favours A) compared to 7-8 hours sleep (Favours B) from 16 studies. Results are expressed as risk ratios and 95% confidence intervals. Pooled analysis: p < 0.001; heterogeneity test: I2 = 53.6, p < 0.001. The area of each block is proportional to the weight attributed to each study.

Meta Analysis