
University of Malta &
Reykjavik University

PhD Dissertation Report

Developing Theoretical Foundations for
Runtime Enforcement

Ian Cassar

Supervised by:
Prof. Adrian Francalanza,

Prof. Luca Aceto, and
Prof. Anna Ingólfsdóttir

Submitted in partial fulfillment of the requirements for the degree of PhD.
in Computer Science on 24th January 2020.

University of Malta and Reykjavik University

Declaration

I, the undersigned, declare that the dissertation entitled:

Developing Theoretical Foundations for Runtime Enforcement

submitted is my work, except where acknowledged and referenced.

Ian Cassar

24th January 2020

ii

The research work disclosed in this publication is partially funded by the

Endeavour Scholarship Scheme (Malta). Scholarships are part-financed

 by the European Union - European Social Fund (ESF) -

 Operational Programme II – Cohesion Policy 2014-2020

 “Investing in human capital to create more opportunities and promote the well-being of society”.

European Union – European Structural and Investment Funds

Operational Programme II – Cohesion Policy 2014-2020

“Investing in human capital to create more opportunities

 and promote the well-being of society”

Scholarships are part-financed by the European Union -

European Social Funds (ESF)

Co-financing rate: 80% EU Funds;20% National Funds

Acknowledgements

I would like to thank my parents for always being supportive of my decisions and
for always encouraging me to keep on pursuing my academic goals. I will be forever
grateful for their love and support. I would especially like to thank my girlfriend,
and soon to be wife, Melanie for staying by my side through the tough times of
this PhD. This academic venture proved to be a challenge for both of us since it
required having to delay and sacrifice a lot of our couple goals, including that of
getting married and buying a place of our own. It was an emotional challenge that
only the two of us can truly understand.

I would also like to thank my friends at UOM and RU for making my life at both
universities a fun and loving experience. In particular, I would like to thank Duncan
for always having the right words to calm me down and cheer me up whenever I was
stressed, Aaron for always keeping me good company and for giving me tips on how
to improve my physical exercises at the gym, Antonis for always having my back
while I was in Iceland, and Keith, Sandro and their awesome team of PhD students
with whom I had the best laughs of my life. Moreover, I’d like to thank the Icelandic
people in general for giving me a very warm and loving stay in such a cold country
as Iceland. I have had many wonderful experiences during my stays in Iceland that
I will cherish them for all my life. Finally, I’d like to thank my PhD advisers Luca,
Anna and Adrian for always giving me excellent advice and guidance.

I further acknowledge that the research work disclosed in this dissertation was
partially supported by the projects “TheoFoMon: Theoretical Foundations for Mon-
itorability” (nr.163406-051) and “Developing Theoretical Foundations for Runtime
Enforcement” (nr.184776-051) of the Icelandic Research Fund, and by the Endeav-
our Scholarship Scheme (Malta), part-financed by the European Social Fund (ESF)
- Operational Programme II - 2014-2020.

iv

“Somehow I can’t believe that there are any heights that can’t be scaled
by a man who knows the secrets of making dreams come true. This
special secret, it seems to me, can be summarized in four C s. They
are curiosity, confidence, courage, and constancy, and the greatest of
all is confidence. When you believe in a thing, believe in it all the way,
implicitly and unquestionable. ”

– Walt Disney

Nagato Uzumaki: “Sometimes you must hurt in order to know, fall in
order to grow, lose in order to gain because life’s greatest lessons are
learned through pain.”

– Masashi Kishimoto, Naruto

v

Abstract∗

The ubiquitous reliance on software systems is increasing the need for ensuring
their correctness. Runtime enforcement is a monitoring technique that uses moni-
tors that can transform the actions of a system under scrutiny in order to alter its
runtime behaviour and keep it in line with a correctness specification; these type of
enforcement monitors are often called transducers. In runtime enforcement there
is often no clear separation between the specification language describing the cor-
rectness criteria that a system must satisfy, and the monitoring mechanism that
actually ensures that these criteria are met. We thus aim to adopt a separation of
concerns between the correctness specification describing what properties the sys-
tem should satisfy, and the monitor describing how to enforce these properties. In
this thesis we study the enforceability of the highly expressive branching time logic
µHML, in a bid to identify a subset of this logic whose formulas can be adequately
enforced by transducers at runtime.

We conducted our study in relation to two different enforcement instrumenta-
tion settings, namely, a unidirectional setting that is simpler to understand and
formalise but limited in the type of system actions it can transform at runtime, and
a bidirectional one that, albeit being more complex, it allows transducers to effect
and modify a wider set of system actions. During our investigation we define the
behaviour of enforcement transducers and how they should be embedded with a
system to achieve unidirectional and bidirectional enforcement. We also investigate
what it means for a monitor to adequately enforce a logic formula, and define the
necessary criteria that a monitor must satisfy in order to be adequate. Since en-
forcement monitors are highly intrusive, we also define a notion of optimality to
use as a guide for identifying the least intrusive monitor that adequately enforces a
formula.

Using these enforcement definitions, we identify a µHML fragment that can be
adequately enforced via enforcement transducers that drop the execution of cer-
tain actions. We then show that this fragment is maximally expressive, i.e., it is
the largest subset that can be enforced via these type of enforcement monitors.
We finally look into static alternatives to runtime enforcement and identify a static
analysis technique that can also enforce the identified µHML fragment, but without
requiring the system to execute.

∗An electronic copy of this document can be retrieved from http://bit.ly/ian-cassar-phd-2020.

vi

Contents

1. Introduction 1
1.1 Our objectives . 4
1.2 Document structure and outline of contributions 6

2. Preliminaries 9
2.1 Labelled Transition Systems . 9
2.2 Hennessy Milner Logic with recursion (µHML) 11

2.2.1 Prominent µHML fragments in runtime monitoring 14
2.2.2 The after function . 15

I Unidirectional Enforcement 18

3. A unidirectional enforcement model 19
3.1 The model . 20
3.2 Zipping and unzipping . 24
3.3 Summary . 25

4. Enforceability in a unidirectional context 26
4.1 Enforceability . 27

4.1.1 Weak Enforcement . 29
4.1.2 Strong Enforcement . 35
4.1.3 The limits of enforceability . 36

4.2 Optimality . 37
4.3 Summary . 40

5. Synthesising suppression monitors 41
5.1 The synthesis function . 43
5.2 The normalisation algorithm . 54

5.2.1 Reconstructing sHML into sHMLnf with respect to singleton sym-
bolic actions . 55

5.2.2 Reconstructing sHML into sHMLnf with respect to any Symbolic
Action . 62

5.3 Summary . 72

6. Maximal expressiveness 73
6.1 Sound suppression monitors . 73
6.2 Expression-completeness and Maximal expressiveness 76

vii

6.3 Summary . 82

7. A static counterpart to suppression enforcement 83
7.1 Controlled System Synthesis . 85
7.2 Establishing a static counterpart to enforcement 88
7.3 Distinguishing between Suppression Enforcement and CSS 91
7.4 Summary . 93

8. End of Part I 94
8.1 Related Work . 95
8.2 Future Work . 99

II Bidirectional Enforcement 102

9. A bidirectional enforcement model 103
9.1 The proposed approach . 105
9.2 The model . 106
9.3 Zipping and Unzipping . 111
9.4 Summary . 113

10. Enforceability in a bidirectional context 114
10.1 Enforceability . 114
10.2 Optimality . 117
10.3 Summary . 121

11. Synthesising action disabling monitors 122
11.1 The synthesis function . 124
11.2 Summary . 128

12. End of Part II 129
12.1 Related Work . 130
12.2 Future Work . 131

13. Concluding Remarks 133
13.1 Overview of published work . 135

A. Missing Proofs from Chapter 2 147
A.1 Proving Proposition 2.3 . 147
A.2 Proving Proposition 2.4 . 149

B. Missing Proofs from Part I 151
B.1 Missing proofs from Chapter 3 . 151

B.1.1 Proving Proposition 3.1 (Unzipping) 151
B.1.2 Proving Proposition 3.2 (Zipping) 154

B.2 Missing proofs from Chapter 4 . 158
B.2.1 Proving Lemma 4.1 . 158
B.2.2 Proving Lemma 4.2 . 159

viii

B.3 Missing proofs from Chapter 5 . 160
B.3.1 Proving Proposition 5.3 . 160
B.3.2 Proving Lemma 5.1 . 169
B.3.3 Proving Lemma 5.2 . 174
B.3.4 Proving Lemma 5.3 . 175
B.3.5 Proving Lemma 5.4 . 176
B.3.6 Proving Lemma 5.8 . 177
B.3.7 Proving Lemma 5.10. 183
B.3.8 Proving Lemma 5.11. 187
B.3.9 Proving Lemma 5.13. 189

B.4 Missing proofs from Chapter 6 . 194
B.4.1 Proving Lemma 6.1 . 194
B.4.2 Proving Lemma 6.4 . 195
B.4.3 To prove Lemma 6.5. 201

B.5 Missing proofs from Chapter 7 . 203
B.5.1 Proving Theorem 7.1 . 203
B.5.2 Proving Proposition 7.1 . 204

C. Missing Proofs from Part II 212
C.1 Missing proofs from Chapter 9 . 212

C.1.1 Proving Proposition 9.1 . 212
C.1.2 Proving Proposition 9.2 . 214

C.2 Missing proofs from Chapter 11 . 215
C.2.1 Proving Proposition 11.1 (soundness) 216
C.2.2 Proving Proposition 11.2 (eventual transparency) 222
C.2.3 Proving Theorem 11.2 (weak DIS-optimal enforcement) 237

ix

List of Figures

1.1 Enforcement instrumentation setups. 2

2.1 The regular fragments of CCS and value-passing CCS. 9
2.2 The syntax and semantics for µHML. 11
2.3 Auxiliary functions. 11
2.4 The safety and co-safety fragments. 14

3.1 Our unidirectional enforcement setup. 19
3.3 The zip function. 24

4.1 Modification Count (mc). 38
4.2 Enforcement Capabilities (ec). 39

5.1 A satisfaction relation for sHML formulas 45
5.2 A syntactic restriction for equated formulas. 56
5.3 The conversion algorithm from an sHML formula to a SoE. 57
5.4 The sHML#

eq syntax. 58
5.5 The powerset construction for systems of equations. 59
5.6 The sHML# syntax. 60
5.7 Constructing a sHML# formula from a SoE. 61
5.8 Converting sHML# formulas into sHMLnf. 62
5.9 The breath first traversal algorithm. 64
5.10A pictorial view of an example equation set traversal. 65
5.11The uniformity algorithm for symbolic actions. 66
5.12A Tree representation of the uni traversal performed on Eq. 68
5.13A breath first traversal using partition to obtain ζ. 68
5.14The Conjunction Reformulation Algorithm. 70

7.1 The syntax for sHMLinv. 84
7.3 The LTS obtained from controlling sb via ϕ5. 87
7.4 The runtime execution graph of the monitored system. 89

9.1 Our bi-directional enforcement setup. 106
9.3 The zipbi function. 111

10.1Modification Count (mc). 117
10.2Enforcement Capabilities (ecbi). 118

x

1. Introduction

Our dependence on software systems raises the demand for ensuring their correct-
ness. Verifying software systems is, however, becoming harder due to their ever
increasing complexity. For instance, systems nowadays are no longer simple mono-
lithic processes that only produce a single output in reaction to an input. In fact,
systems may now opt to collect data from multiple sources before providing the
required response, or else they may supply multiple outputs in response to a sin-
gle input. Moreover, most systems are also developed using concurrent interacting
entities (such as processes, threads or actors) that may lead to non-deterministic
behaviour.

Several techniques help facilitate the arduous task of verifying software by au-
tomating the process of deducing whether the system under scrutiny (SuS) sat-
isfies a predefined set of correctness properties. Properties are either verified pre-
deployment (statically), as in the case of model checking [11, 41], or post-deployment
(dynamically), as per runtime verification [32, 55, 77]. In both cases, any error dis-
covered during verification serves as guidance for identifying the invalid parts of the
system that require adjustment.

Techniques, such as Runtime Enforcement (RE) [52, 78, 80], additionally attempt
to automatically transform the invalid system into a valid one. Runtime enforcement
is a dynamic verification technique that adopts an intrusive monitoring approach
to ensure that the visible behaviour of the SuS is always in agreement with some
correctness specification. It employs a specific kind of monitor (known as a trans-
ducer [12, 22, 95], shield [69] or enforcement-automaton [25, 52, 78, 80, 98]) that
when instrumented with the SuS, produces a well behaved composite (monitored)
system. At runtime, the composed monitor applies transformations to either replace
invalid system actions by valid ones, suppress them, or inserts actions on behalf of
the SuS.

The seminal work in RE [22, 24, 68, 78, 79, 95] models the behaviour of the SuS

1

Chapter 1. Introduction

(a) I
SuS Mon Env

β β′

α

(b) I
J

SuS Mons Env

α′ α

β β′

(c) JI
SuS Mon Env

α′ α

β β′

Figure 1.1: Enforcement instrumentation setups.

as a trace of arbitrary actions, e.g., α1.α2, . . ., and assumes that every action in the
trace is instigated and controlled by the SuS and that the composed monitor can
transform any trace action. This trace-based approach has thus been effectively
used to implement unidirectional enforcement approaches [12, 50, 69] that monitor
the trace of outputs produced by the SuS as illustrated by Figure 1.1 (a).

In this setup, the monitor is instrumented with the SuS to form a composite
system (represented by the dashed enclosure) and is tasked with transforming the
output behaviour of the SuS to ensure its correctness. For instance, if the SuS
executes an erroneous output β, this gets intercepted by the monitor and modified
accordingly into β′ to stop the error from propagating to the environment.

Despite its merits, unidirectional enforcement lacks the power to enforce proper-
ties that require modifying the input behaviour of the SuS. This happens because,
unlike outputs, inputs are instigated and mainly controlled by the environment. In
fact, although the SuS can control when certain inputs can be supplied (e.g., by
opening and reading from a file, communication port, etc.), at runtime the environ-
ment determines what payload will be provided. Enforcing properties that require
modifying input actions thus requires using a more elaborate instrumentation setup
that supports for transforming input actions.

For this reason, instead of dealing with the complexities of directly transforming
inputs, several solutions [26, 38, 44, 64, 80] have been presented to circumvent
this issue by using an extra unidirectional monitor. As shown in Figure 1.1 (b), this
monitor is attached to the environment to scrutinise its outputs before they are
forwarded as inputs to the SuS. While this approach may be viable in certain cases,
it assumes that a monitor can actually be attached to the environment (which is
often inaccessible).

By contrast, Figure 1.1 (c) presents a less explored bi-directional enforcement
setup. Unlike in (b), the monitor in this setup scrutinises the entire behaviour of
the SuS without instrumenting the environment. Even though the monitor is only
attached to the SuS, along with transforming the outputs produced by the SuS, it
can also regulate the type of inputs allowed by the system, e.g., by sanitising the

2

Chapter 1. Introduction

input payload before it reaches the SuS [87]. This setup must therefore adopt more
elaborate transformations that exploit the limited control of the SuS to modify its
inputs as necessary.

In view of these different instrumentation setups, one may realise that it is quite
cumbersome to specify correctness properties directly as monitors. Particularly,
this would burden the specifier with not only having to specify what properties
need to be enforced, but also with how to enforce them at runtime, and which
instrumentation setup to use. Our main aim in this dissertation is therefore to
extend a recent line of research [2, 3, 5, 55–57] and adopt a separation of concerns
between the correctness specification, describing what properties the SuS should
satisfy, and the monitor, describing how to enforce these properties. We study the
enforceability of the well-studied process logic µHML [70, 75], and explore which
properties can be operationally enforced by enforcement monitors in view of the
different instrumentation setups illustrated by Figure 1.1. As setup (b) is just a
reformulation of (a), we conjecture that any enforceability result attained for (a) can
also be applied to (b) with minimal effort, and thus only explore enforceability vis-
a-vis setups (a) and (c), i.e., unidirectional and bidirectional enforcement.

There are, however, several issues that we must address throughout our investi-
gation. (i) Since software analysis tools ought to form part of the trusted computing
base, enforcement monitoring should be, in and of itself, correct. However, it is un-
clear what is to be expected of an enforcement monitor to adequately enforce a µHML
formula. Nor is it clear for which type of specifications this approach should be ex-
pected to work effectively—it has been well established that a number of properties
are not monitorable [3, 5, 6, 37, 39, 56, 89] and it is therefore reasonable to expect
similar limits in the case of enforceability [47]. It is also desirable for monitors to be
optimal, particularly by minimising their intrusion when correcting the behaviour
of the SuS. However, we are unsure whether a property can be enforced by different
monitors, and if so, whether some monitors are more optimal than the others.

(ii) Studying enforcement in view of its entire behaviour is quite challenging, es-
pecially since bidirectional enforcement has barely been explored. Moreover, since
the SuS enjoys limited control over its input behaviour, it is unclear whether the
traditional monitor transformations suffice to completely enforce properties con-
cerning both inputs and outputs. In fact, since properties are violated when the
system performs an invalid action, it may be too late for the monitor to prevent the
violation if it allows the SuS to input a value that then turns out to be invalid. It is
hence questionable whether the monitor can intercept and suppress (or replace) an
invalid input that has already been provided by the environment. The monitor must
therefore exploit the system’s limited control over its inputs in the best possible way

3

Chapter 1. Introduction

to ensure that the resulting composite system can perform all the specified valid in-
puts, while preventing it from performing invalid ones. We thus conjecture that the
monitor must adopt a different enforcement approach than the ones conventionally
used for enforcing behaviour in unidirectional settings.

(iii) The current RE state of the art [24, 50, 78, 80, 86, 87] fails to distinguish be-
tween the transformations performed by the monitor (i.e., suppressions, insertions
and replacements) and their resulting effect on the visible behaviour of the com-
posite system. In fact, it is commonly accepted that the monitor’s transformations
dictate directly what happens to an action once it gets transformed. For instance,
if an action gets suppressed by the enforcement monitor, then it is assumed to be
removed from the composite system’s behaviour. However, this might not necessar-
ily be the case in bidirectional enforcement, especially since enforcing inputs might
require unconventional use of the monitor’s transformations.

(iv) It is not known whether there exists a static analysis technique that can at
least enforce the same properties as RE pre-deployment. Having a way to attain
the same enforcement result statically is particularly useful in situations where
runtime enforcement is not viable, e.g., when runtime overheads from the monitor
may impact a performance critical system. This, however, requires identifying a
static technique that can correct a SuS prior to deployment, so that the corrected
system becomes —in some sense— equivalent to a monitored version of the SuS.

To the best of our knowledge, the above mentioned issues, (i)− (iv), have not
been studied extensively.

1.1 Our objectives

The setting selected for our study serves a number of purposes. To begin with,
the chosen logic, µHML, is a branching-time logic that allows us to investigate en-
forceability for properties describing computation graphs. Having a way to define
correct system behaviour in view of its different execution branches is especially
useful when investigating enforceability in a bidirectional context. Particularly when
considering systems whose inputs may lead them into taking erroneous branches
that produce invalid outputs, enforcement monitors may harness this branching
time information and modify their inputs in order to steer their execution towards
a more stable state.

Second, the use of a highly expressive logic allows us to achieve a good degree of
generality for our results, and so, by working in relation to logics like µHML (which is
a reformulation of the modal µ-calculus [70]), our work also applies to other widely
used logics (such as LTL and CTL [40]) that are embedded within this logic.

4

Chapter 1. Introduction

Third, unlike logics such as RV-LTL [19] and LTL3 [20] which semantics is defined
specifically for runtime verification, our chosen logic µHML is verification-technique
agnostic since it’s semantics is not defined with respect to a specific verification
technique. It therefore fits better with the realities of software verification in the
present world, where a variety of techniques (such as model-checking and testing)
straddling both pre- and post-deployment phases are used. In such cases, knowing
which properties can be verified statically and which ones can be enforced dynami-
cally is crucial for devising effective multi-pronged verification strategies. Equipped
with such knowledge, one could also employ standard techniques [13, 71, 82] to de-
compose a non-enforceable property into a collection of smaller properties, a subset
of which can then be enforced at runtime.

Throughout this study we thus address the identified issues (i)− (iv) by under-
taking the following research objectives:

1. Modelling: We start addressing issue (i) by developing enforcement models
that differentiate between the monitor’s behaviour and that of the instrumenta-
tion. We first plan to develop a general framework for enforcement monitors that
solely models their runtime behaviour. On top of this model, we can then de-
fine multiple instrumentation models, namely, one that achieves unidirectional
enforcement and another for bidirectional enforcement; modelling the latter en-
tails dealing with issue (ii). This separation of concerns also contributes towards
addressing issue (iii) as it allows us to distinguish between the monitor’s trans-
formations and their resulting effect on the visible behaviour of the composite
system.

2. Correctness: To evaluate our enforcement models we plan to further address
issue (i) by developing formal definitions that specify what is to be expected of
an enforcement monitor to adequately enforce a µHML formula. Since enforce-
ment monitoring must be adequate and optimal irrespective of the applied in-
strumentation (unidirectional and bidirectional) approach, our definitions must
be parametrisable with respect to any instrumentation setup.

3. Expressiveness: Having established the meaning of adequate enforcement in
objective 1, we can use the formal models, alluded to by objective 2, to determine
the type of specifications that can be adequately enforced at runtime. We thus
continue addressing issue (i) by identifying a subset of µHML formulas that
can be mapped to enforcement monitors via a synthesis function. To evaluate
the quality of this mapping, we intend to provide enforceability results proving
that the synthesised monitors adequately and optimally enforce their respective
formula.

5

Chapter 1. Introduction

4. Maximality: To entirely address (i), we also aim to investigate whether the logic
subset identified in objective 3, is in fact the largest enforceable subset that one
can possibly find. This ensures that properties that do not form part of the
identified enforceable subset cannot be enforced at runtime, unless they can be
expressed as a formula pertaining to the identified subset.

5. Static counterpart: We tackle issue (iv) by exploring a static analysis tech-
nique called Controlled System Synthesis [14, 45, 88, 101]. Particularly, we aim
to study how the behaviour of a system that was statically reformulated to sat-
isfy a formula, compares to a monitored system that dynamically enforces the
same formula. This enables us to investigate whether the identified maximally
expressive µHML subset can also be enforced pre-deployment using this static
technique.

We subdivide our study about the enforceability of µHML into two parts. For the
first part we address all the above objectives (i.e., 1-5) in a unidirectional context. We
follow the more traditional, trace-based view of the SuS (as per [24, 49, 50, 68, 78,
79]) and assume that all actions can be treated equally and transformed in the same
way. By contrast, in the second part we show that this assumption is too strong,
and that the unidirectional model might not work as intended for certain actions.
We thus commence our investigation into bidirectional enforcement by adopting a
branching time view of the SuS and by distinguishing explicitly between its input
and output actions. During this investigation we explore the first three objectives
(i.e., 1-3) in a bidirectional context. Although we do not address objectives 4 and 5
in the second part, we conjecture that addressing these objectives entails adopting
similar methodologies to the ones employed when studying them in a unidirectional
setting.

1.2 Document structure and outline of contributions

We structure the rest of the document as follows. We start with Chapter 2 where
we provide preliminary material about how we model systems as labelled transition
systems, and about our touchstone logic µHML. From this point onwards we subdi-
vide the document into two parts, namely Part I exploring unidirectional enforcement
in Chapters 3 to 8, and Part II discussing bidirectional enforcement in Chapters 9
to 12.

We start the investigation of Part I by addressing our first objective in Chap-
ter 3. We thus present a formal model for unidirectional enforcement instrumenta-
tion (Figure 3.2) for which we prove zipping and unzipping results (Propositions 3.1

6

Chapter 1. Introduction

and 3.2). In Chapter 4 we then address the second objective by formalising the in-
terdependent notions of enforceability (Definition 4.1), adequate enforcement (Def-
initions 4.4, 4.6 and 4.8) and optimal enforcement (Definition 4.9). As part of our
investigation we also show how the different definitions of adequate enforcement re-
late to one another (Theorems 4.1 and 4.2 and Corollary 4.1). These notions act as
a foundation for determining the type of µHML specifications that can be enforced
at runtime while addressing objective 3 in Chapter 5. Specifically, in Chapter 5 we
identify a µHML subset (Figure 2.4) that can be enforced by action suppression mon-
itors when composed with a system via the unidirectional instrumentation model of
Chapter 3. We define a synthesis function (Definition 5.2) that maps the formulas
from the identified subset to suppression monitors. We then assess its correctness
by providing enforceability results (Theorems 5.1 and 5.3) and by showing that the
synthesised monitors are optimal (Theorem 5.2).

Having identified a µHML subset that is enforceable via action suppressions,
in Chapter 6 we address our fourth objective. We first establish a notion of well
structured suppression monitors, and show that ill-structured ones are unsound
as they cannot enforce µHML formulas (Theorem 6.1). Using this result we then
show that the µHML formulas that are enforceable via well structured suppression
monitors, are either expressible using the µHML subset identified in Chapter 5, or
else semantically equivalent to formulas that form part of the subset (Theorem 6.2).
In Chapter 7 we finally address the last objective and identify the static analysis
technique called Controlled System Synthesis as being the static counterpart to
suppression enforcement (Theorems 7.2 to 7.4). Chapter 8 discusses related and
future work about unidirectional enforcement and concludes Part I.

We start Part II by presenting a bidirectional instrumentation model of enforce-
ment (Figure 9.2) in Chapter 9. Once again, we prove zipping and unzipping results
(Propositions 9.1 and 9.2) for this new instrumentation model. In Chapter 10 we
then present a sequence of examples to motivate how the enforcement definitions,
introduced in Chapter 4 of Part I, are still relevant even with respect to the bidi-
rectional setting of Chapter 9. Subsequently, in Chapter 11 we show that the same
µHML subset that was identified to be maximally expressive in Part I, is also enforce-
able in a bidirectional context. To obtain this result we define yet another synthesis
function that maps the formulas in the µHML subset to bidirectional enforcement
monitors (Definition 11.2), and prove that the synthesised monitors enforce their
respective formula adequately and optimally (Theorems 11.1 and 11.2). We con-
clude Part II in Chapter 12 and discuss related and future work about bidirectional
enforcement.

Finally, we conclude the dissertation in Chapter 13 with some final remarks that

7

Chapter 1. Introduction

include an overview of the papers published by the author of this thesis during his
PhD studies.

8

2. Preliminaries

In this chapter we give an overview of the preliminary material required to un-
derstand our contributions. In Section 2.1 we explain how we model systems as
Labelled Transition Systems, and define the different notions of system equivalence
that we consider throughout our work. In Section 2.2 we then introduce the syntax
and semantics of the logic µHML.

2.1 Labelled Transition Systems

We assume systems described as labelled transition systems (LTSs) [66]. An LTS
is a triple 〈Sys, (Act∪{τ}),→〉 that consists of: a set of system states s, r, q ∈Sys, a
countably infinite set of observable (visible) actions a, b, . . . , α, β ∈Act along with a
distinguished silent (invisible) action τ /∈Act (where µ∈Act∪{τ}), and a transition
relation, −→ ⊆ (Sys× (Act ∪ {τ})× Sys). Note that apart from the Latin characters
a, b, . . . ∈Act, we only use the Greek symbols α and β to denote observable system
actions. We write s

µ−→ r in lieu of (s, µ, r) ∈→ and use s
α

==⇒ r to denote delayed

transitions [96] representing s(
τ−→)∗· α−→ r; we often refer to the resulting system

state r as the α-derivative of s. For each µ∈Act∪{τ} the notation µ̂ stands for ε if
µ = τ and for µ otherwise.

To concisely describe LTSs, we use the syntax of the regular fragments of CCS
[85] (in Part I) and value-passing CCS [60] (in Part II) defined in Figure 2.1. These
fragments allow for defining systems that are inactive nil, can perform a mutually-
exclusive choice

∑
i∈Isi (which represents s1 + . . . + sn for some 1, . . . , n∈ I), are re-

cursive recX.s, and prefixed by an action µ.s. The prefixing actions µ in CCS can
be any action α or τ , whereas in value passing CCS they can be τ or else represent

s, r ∈ Sys ::= nil | µ.s | ∑i∈ Isi | recX.s | X.

Figure 2.1: The regular fragments of CCS and value-passing CCS.
9

Chapter 2. Preliminaries

the output of a value v on some communication port a i.e., a!v, or the input of some
value x from a port a i.e., a?x.

We assume that traces t, u ∈ Act∗ range over (finite) sequences of visible actions
and write s

t
=⇒ r to denote a sequence of delayed transitions s

α1==⇒ . . .
αn===⇒ r for

t = α1, . . . , αn (where n ≥ 1), but when t = ε, s ε
=⇒ r means s τ−→*r. We also denote the

set of traces executable from system state s as traces(s), meaning that t ∈ traces(s)

iff s
t

=⇒ r for some r. System states that execute the same set of traces are said to
be trace equivalent.

Definition 2.1 (Trace Equivalence). Two LTS states s and r are trace equivalent iff
they produce the same set of traces, i.e., traces(s) = traces(r).

Additionally, we represent system runs as explicit traces that include τ-actions,
tτ , uτ ∈ (Act∪{τ})∗. We abuse notation and write s

tτ−−→ r to denote a sequence of
strong transitions s

µ1−−→ . . .
µn−−→ r when tτ = µ1 . . . µn. Occasionally, we use the

notation tτ ;uτ to denote the concatenation of two traces, and use the function sys(tτ)

to produce a trace system i.e., a system that only executes the sequence of actions
defined in the system run tτ . For instance, sys(α1.τ.α2) produces α1.τ.α2.nil.

Definition 2.2 (Trace System). A trace system sys(tτ) is nil when tτ = ε and µ.sys(t′τ)

when tτ =µ.t′τ .

To denote system equivalence we also assume the notions of strong and delay
bisimilarity [60, 96, 97], where the former is a stronger instance of the latter.

Definition 2.3 (Strong Bisimilarity). A relationR⊆Sys×Sys is a strong bisimulation
iff whenever (s, r) ∈ R for every action µ, the following properties hold:

• s
µ−→ s′ implies there exists a strong transition r

µ−→ r′ such that (s′, r′) ∈ R,

• r
µ−→ r′ implies there exists a strong transition s

µ−→ s′ such that (s′, r′) ∈ R.

System states s and r are strongly bisimilar, denoted by s ∼ r, iff they can be related
by a strong bisimulation.

Definition 2.4 (Delay Bisimilarity). A relation R⊆Sys×Sys is a delay bisimulation
equivalence relation iff whenever (s, r) ∈ R for every action µ, the following transfer
properties hold:

• s
µ−→ s′ implies there exists a delayed transition r

µ̂
==⇒ r′ so that (s′, r′) ∈ R,

• r
µ−→ r′ implies there exists a delayed transition s

µ̂
==⇒ s′ so that (s′, r′) ∈ R.

Two system states s and r are delay bisimilar (a.k.a. observationally equivalent),
denoted by s ≈ r, iff there exists a delay bisimulation that relates them.

10

Chapter 2. Preliminaries

Syntax
ϕ,ψ ∈ µHML ::= tt (truth) |ff (falsehood) |

∨
i∈I ϕi (disjunction)

|
∧
i∈I ϕi (conjunction) | 〈 p, c¡〉ϕ (possibility) | [p, c¡]ϕ (necessity)

|minX.ϕ (least fp.) |maxX.ϕ (greatest fp.) |X (fp. variable)

Semantics
Jtt, ρK def

= Sys Jff, ρK def
= ∅ JX, ρK def

= ρ(X)

J
∧
i∈I ϕi, ρK

def
=
⋂
i∈IJϕi, ρK JmaxX.ϕ, ρK def

=
⋃{

S | S ⊆ Jϕ, ρ[X 7→ S]K
}

J
∨
i∈I ϕi, ρK

def
=
⋃
i∈IJϕi, ρK J minX.ϕ, ρK def

=
⋂{

S | Jϕ, ρ[X 7→ S]K ⊆ S
}

J [p, c¡]ϕ, ρK def
=
{
s | ∀α, r · (s α

=⇒ r and (∃σ ·mtch(p, α)=σ and cσ ⇓ true)) implies r ∈ Jϕσ, ρK
}

J〈 p, c¡〉ϕ, ρK def
=
{
s | ∃α, r, σ · (s α

=⇒ r and mtch(p, α)=σ and cσ ⇓ true and r ∈ Jϕσ, ρK)
}

Figure 2.2: The syntax and semantics for µHML.

Functions bv(p) and fv(c)

bv(p)
def
=
{
x
∣∣∣ x is bound in p.

}
fv(c)

def
=
{
x
∣∣∣ x is free in c.

}
The matching function.

mtch(p, α) def
=


{x/v,y/w} if p = (x)?(y) and α = v?w

{x/v,y/w} if p = (x)!(y) and α = v!w
. . .

Figure 2.3: Auxiliary functions.

2.2 Hennessy Milner Logic with Recursion (µµµµµµµµµHML)

We consider a generalised version of µHML [11, 61, 75] that uses symbolic actions of
the form p, c¡, defining a pattern p and a condition c. Symbolic actions abstract over
visible actions using data variables x, y, z ∈ DVar that occur free in the condition c or
as binders in the pattern p, denoted as (x), where a closed pattern is one without free
variables. Although symbolic actions can define any pattern p, we mainly use two
types of patterns, namely, (x)!(y) and (x)?(y) that respectively denote an output and
input action pattern, each of which binds variables x and y. We also use function
bv(p) to denote the set of binding variables in a pattern p, and fv(c) to represent the
set of free variables referenced in a condition c which we define in Figure 2.3.

We also define a (partial) matching function for closed patterns mtch(p, α) in Fig-
ure 2.3 that (when successful) returns a substitution σ mapping variables in p to
the corresponding values in α i.e., if we instantiate every binder (x) in p with σ(x)

we obtain α. Although we only define this matching function with respect to input,
output actions and patterns, it can easily be extended for other types of actions and
patterns if necessary. The filtering condition, c, may refer to variables bound in p

and is evaluated with respect to the substitutions returned by successful matches,

11

Chapter 2. Preliminaries

written as cσ⇓b (where b∈{true, false}) which follows standard condition evaluation
semantics.

Put differently, a closed symbolic action, p, c¡, is one where p is closed and
fv(c)⊆bv(p); it denotes the set of actions that match pattern p with substitution σ,
and satisfy condition cσ i.e., J p, c¡K def

= {α ∃σ ·mtch(p, α)=σ and cσ ⇓ true }. The use
of symbolic actions allows for more adequate reasoning about LTSs with infinitely
many actions (e.g., actions carrying data from infinite domains).

Example 2.1. Action (x)!(y), y=1¡ is correct since fv(y=1) ⊆ bv((x)!(y)) because
fv(y=1) = {y} and bv((x)!(y)) = {x, y}. However, (x)!y, y = 1¡ and (x)!1, y = 1¡ are
incorrect since fv(y=1) * (bv((x)!y) = {x}).

Two symbolic actions, p1, c1¡ and p2, c2¡, are said to be equivalent when J p1, c1¡K =

J p2, c2¡K, and pattern equivalent when J p1, true¡K = J p2, true¡K.
Figure 2.2 presents the syntax of µHML that assumes a countably infinite set of

logical variables X,Y ∈LVar. It provides standard logical constructs such as truth,
falsehood, conjunctions and disjunctions: where

∧
i∈I ϕi describes a compound con-

junction, ϕ1∧ . . .∧ϕn, where I = {1, .., n} is a finite set of indices, and similarly for
disjunctions. It allows for defining recursive properties using the greatest and least
fixpoints, maxX.ϕ and minX.ϕ, both of which bind free occurrences of X in ϕ. Fix-
point variables, X, are assumed to be guarded by a prefixing modal operator i.e.,
[α¡]X — it is well known that this assumption does not hinder the expressiveness
of the logic (see [16, 102]).

The logic also uses the necessity (universal) and possibility (existential) modal
operators defining symbolic actions, [p, c¡]ϕ and 〈 p, c¡〉ϕ, where the binders bv(p)

bind free data variables in c and ϕ. A formula [p, c¡]ϕ is satisfied by any system
that cannot perform an action α that matches p and satisfies condition c. It is also
satisfied by any system that performs a matching α with substitution σ, provided
that all of the system’s α-derivative states satisfy the continuation ϕσ. By contrast,
a formula 〈 p, c¡〉ϕ is only satisfied by systems that may perform an action α that
matches p with a matching substitution σ so that cσ holds, and that has an α-
derivative that satisfies ϕσ. To improve presentation, in Part II we occasionally use
the notation () to denote “don’t care” binders in the pattern p, whose variables are
not referenced in c and ϕ.

The formulas in µHML are interpreted over the system powerset domain where
S∈P(Sys). The semantic definition of Figure 2.2, Jϕ, ρK, is given for both open and
closed formulas. It employs a valuation from logical variables to sets of states,
ρ ∈ (LVar → P(Sys)), which permits an inductive definition on the structure of the
formulas; ρ′ = ρ[X 7→ S] denotes a valuation where ρ′(X) = S and ρ′(Y) = ρ(Y) for all
other Y 6= X.

12

Chapter 2. Preliminaries

As a shorthand, whenever a condition c in a symbolic action p, c¡ equates a
bound variable to a specific value, we embed the equated value within the pattern,
e.g., (x)!(y), x= a ∧ y= 3¡ becomes a!3, true¡, we also elide the condition when it is
true, and just write a!3¡. We refer to symbolic actions that only define a single
visible action as singleton symbolic actions, e.g., a!3¡ is singleton since J a!3¡K def

= {a!3}.
Unless stated explicitly, we assume closed formulas, i.e., without free logical and
data variables, and write JϕK in lieu of Jϕ, ρK since the interpretation of a closed ϕ is
independent of the valuation ρ. A system s satisfies formula ϕ whenever s∈ JϕK, and
ϕ is satisfiable, whenever there exists a system r such that r ∈ JϕK, i.e., JϕK 6=∅.

Example 2.2. Consider the following µHML formulas.

ϕa
def
= maxX.[a!(x), x> 0¡]X∧〈 b!(y), y > 0¡〉tt ϕb

def
= [a!3¡]ff∧〈 a!3¡〉tt

The recursive formula ϕa states that a system s is correct when it can output a
number x > 0 on port a, and when all the states that are reachable after the system
outputs a number y > 0 on port b (if any), satisfy ϕa as well. For instance, systems
a!1.(b!2.nil + a!1.b!2.nil) + b!2.nil and b!2.nil satisfy ϕa, but a!1.(b!2.nil + a!1.b!2.nil) /∈ JϕaK
since it cannot initially perform action b!2. Since there exists a system that satisfies
ϕa (i.e., b!2.nil and a!1.(b!2.nil + a!1.b!2.nil) + b!2.nil), we know that ϕa is satisfiable.

By contrast, formula ϕb is not satisfiable because it requires that a system can
able perform an action a!3, and at the same time, not be able to perform it. Due to
this contradiction, there does not exist a system that satisfies ϕb.

In [62], Hennessy and Milner proved a powerful result – now known as the
Hennessy-Milner Theorem – that links the notion of strong bisimilarity to µHML.
More specifically, it determines that strong bisimilar image-finite systems (as de-
fined by Definition 2.5) satisfy the same set of µHML properties. A consequence
of this theorem is that non-bisimilar systems can be distinguished by finding a
property that is satisfied by one but not the other.

Definition 2.5 (Image-finite LTS). An LTS state is image-finite if for every action µ

there are a finite number of µ-derivative states. An LTS is image-finite if so are all
of its system states.

Theorem 2.1 (Hennessy-Milner Theorem). Let s and r be two states of an image-
finite LTS such that when s ∼ r then both s and r satisfy exactly the same µHML
formulas.

This result [62] was originally given in relation to the standard Hennessy-Milner
logic i.e., a version of µHML that does not support recursion and only allows for
defining concrete visible actions α in its modal operators (instead of symbolic ac-
tions). However, it still applies for our version of µHML for two reasons. First, since

13

Chapter 2. Preliminaries

ϕ ∈ sHML ::= tt | ff |
∧
i∈I ϕi | [p, c¡]ϕ | X | maxX.ϕ

ψ ∈ cHML ::= tt | ff |
∨
i∈I ψi | 〈 p, c¡〉ψ | X | minX.ψ

Figure 2.4: The safety and co-safety fragments.

symbolic actions represent a set of visible actions i.e., J p, c¡K def
= {α1, α2, . . .}, our

symbolic modal operators can be easily encoded into standard ones e.g., [p, c¡]ϕ′

and 〈 p, c¡〉ϕ′ can be encoded as [α1]ϕ′∧[α2]ϕ′∧ . . . and 〈α1〉ϕ′∨〈α2〉ϕ′∨ . . . respectively.
Second, it was shown in [99, 100] that the proven result also applies when recursion
is supported via greatest and least fixpoints.

In order to use this powerful result in our work, we will limit our study to systems
that can be defined as image-finite LTSs.

2.2.1 Prominent µµµµµµµµµHML fragments in runtime monitoring

Any specification language that is considerably expressive can express properties
that cannot be monitored for at runtime [2, 5, 39, 50, 55, 56, 77, 81, 89] − µHML
is no exception. Several works [2, 5, 56] have focussed on identifying specific µHML
fragments that represent a set of properties that can be verified at runtime using
runtime verification monitors. The most prominent fragments are the safety and
co-safety fragments, known as sHML and cHML respectively (defined in Figure 2.4).
Informally, safety allows for defining a property requiring the system not to execute
some specific behaviour, while co-safety is generally regarded as being the opposite
as it requires that the system is able to exhibit a specific behaviour [46, 48].

The sHML syntax restricts the logic to truth (tt), falsehood (ff), conjunctions
(
∧
i∈I ϕ), the modal necessity ([p, c¡]ϕ) and only allows for recursion to be expressed

through greatest fixpoints (maxX.ϕ) − the semantics for these constructs follows
from that of Figure 2.2. This fragment only allows for expressing safety proper-
ties that define what constitutes incorrect system behaviour. Put differently, these
properties specify the behaviour that a system must not exhibit.

Example 2.3. The sHML formula [a¡][b¡]ff states that a system is correct if it cannot
perform an action a followed by an action b, e.g., systems a.nil and c.nil are correct,
unlike a.b.nil and a.(c.nil + b.nil).

Dually, cHML expresses co-safety properties that define the system’s correct be-
haviour. Specifically, it restricts the logic to truth (tt), falsehood (ff), disjunctions
(
∨
i∈I ϕ), the modal possibility (〈 p, c¡〉ϕ) and recursion via least fixpoints (minX.ϕ).

This means that a cHML formula specifies the behaviour that a system must be
able to perform; failure to do so results in violating the property.

14

Chapter 2. Preliminaries

Example 2.4. The cHML formula 〈 a¡〉〈 b¡〉tt regards a system as being correct if it
can perform an action a followed by an action b, e.g., in this case systems a.b.nil and
a.(c.nil + b.nil) are correct, while a.nil and c.nil are not.

These fragments are known to be monitorable in the sense of runtime verifica-
tion; it is well known [5, 56, 57] that runtime verification monitors can be used
detect systems that satisfy cHML formulas or violate sHML properties. However,
since runtime verification monitors are incapable of modifying the execution of a
system, the enforceability of these µHML fragments and that of the full µHML, has
not yet been explored.

2.2.2 The after function

As we aim to use our logic in conjunction with monitoring, it is sometimes useful
to know the constraint that a system must satisfy after performing a number of
steps. For instance, if α.β.s satisfies formula [α¡][β¡]ψ then its derivative s must
also satisfy formula ψ after it performs actions α and β. We thus adopt an approach
akin to Brzozowski’s derivatives [27] and define the after function to denote how
µHML formulas evolve in reaction to an action µ.

Definition 2.6. We define the function after : (µHML×Act∪{τ})→µHML as:

after(ϕ, α)
def
=



ϕ if ϕ∈
{

tt,ff
}

num

den
after(ϕ′{ϕ/X}, α) if ϕ∈

{
maxX.ϕ′,minX.ϕ′

}∧
i∈I after(ϕi, α) if ϕ=

∧
i∈I ϕi∨

i∈I after(ϕi, α) if ϕ=
∨
i∈I ϕi

ψσ if ϕ= [p, c¡]ψ and ∃σ·(mtch(p, α)=σ ∧ cσ⇓ true)

tt if ϕ= [p, c¡]ψ and @σ·(mtch(p, α)=σ ∧ cσ⇓ true)

ψσ if ϕ= 〈 p, c¡〉ψ and ∃σ·(mtch(p, α)=σ ∧ cσ⇓ true)

ff if ϕ= 〈 p, c¡〉ψ and @σ·(mtch(p, α)=σ ∧ cσ⇓ true)

after(ϕ, τ)
def
= ϕ

When applied to a greatest or least fixpoint, the function unfolds the formula
and reapplies itself to the unfolded equivalent ϕ′{ϕ/X}. Our assumption that for-
mulas are guarded ensures that ϕ′{ϕ/X} has fewer top level occurrences of greatest
and least fixpoint operators than maxX.ϕ′ and minX.ϕ′. In the case of conjunctions
and disjunctions the function recurses for each individual branch. It returns for-
mula ψσ when α matches successfully the symbolic action of a modal necessity or
possibility that precedes ψ (where σ is created by the successful match). However,
on an unsuccessful match, it returns tt when the modal operator is a necessity,
and ff when it is a possibility, thereby signifying a trivial satisfaction and violation
respectively. As no visible system action can alter truth and falsehood, they also

15

Chapter 2. Preliminaries

do not change in the after function. Silent τ actions do not affect the formula ϕ as
well.

In addition to defining the after function, it is crucial to provide some kind of
semantic justification that ensures that the formula produced by after(ϕ, α) truly
reflects the constraint that a system must satisfy after performing action α. We thus
introduce two semantic justifications given by Definitions 2.7 and 2.8 and we deem
the after function to be justified for a sublogic L ⊆ µHML if it adheres to either one
of these definitions.

Definition 2.7. The after function is semantically justified vis-a-vis the semantics
of a logic L ⊆ µHML iff for every state s and s′, formula ϕ∈L and action α, if s α

==⇒ s′

and s∈ JϕK then s′ ∈ Jafter(ϕ, α)K.

Definition 2.8. The after function is also justified vis-a-vis the semantics of a logic
L ⊆ µHML iff for every state r and r′, formula ψ ∈L and action α, if r α

==⇒ r′ and
r′ ∈ Jafter(ψ, α)K then r∈ JψK.

However, as supported by Propositions 2.1 and 2.2, it turns out that for the full
µHML semantics, the after function can neither be semantically justified as per
Definition 2.7 nor per Definition 2.8.

Proposition 2.1. There exist a system state s, µHML formula ϕ and action α so that
s∈ JϕK, s α

==⇒ s′ and s′ /∈ Jafter(ϕ, α)K.

Proof. We prove this proposition by using a counter example. Consider the µHML
formula ϕb

def
= 〈 a¡〉[b¡]ff and system s= a.b.nil+a.c.nil. Although s∈ JϕbK, when s

a
==⇒

b.nil, the function after(ϕb, a) reduces to [b¡]ff where b.nil /∈ J[b¡]ffK.

Proposition 2.2. There exist a system state r, µHML formula ψ and action α so that
r′ ∈ Jafter(ψ, α)K, r α

==⇒ r′ and r /∈ JψK.

Proof. Consider formula ψb
def
= [a]〈b〉tt and system r= a.b.nil+a.c.nil. Although r

a
==⇒ b.nil

and b.nil∈ J〈b〉ttK (where after(ψb, a) = 〈b〉tt), it turns out that r /∈ JψbK.

The after function can, however, be justified for the safety and co-safety subsets
(sHML and cHML). We therefore justify our definition of the after function vis-a-vis
the semantics of Figure 2.2 via Proposition 2.3 for sHML and via Proposition 2.4 for
cHML. The proofs for these propositions are given in Appendix A on page 147.

Proposition 2.3. For every system state s and s′, sHML formula ϕ and action α, if
s

α
==⇒ s′ and s∈ JϕK then s′ ∈ Jafter(ϕ, α)K.

Proposition 2.4. For every system state s and s′, cHML formula ϕ and action α, if
s

α
==⇒ s′ and s′ ∈ Jafter(ϕ, α)K then s∈ JϕK.

16

Chapter 2. Preliminaries

Example 2.5. Consider the sHML formula ϕs
def
= maxX.[a¡]X∧[b¡]ff∧[c¡]X and sys-

tem s = a.c.nil+c.a.nil. Formula ϕs states that a system is incorrect if either the initial
system state or any other state reachable over a sequence of a or c actions, can per-
form an action b. Since s∈ JϕsK, Proposition 2.3 ensures that for every action α and
α-derivative state s′, if s α

==⇒ s′ then s′ ∈ Jafter(ϕs, α)K. This is in fact true since s can

only reduce either via s
a−→ c.nil where c.nil∈ Jafter(ϕs, a)K(= JϕsK), or via s

c−→ a.nil in
which case a.nil∈ Jafter(ϕs, c)K(= JϕsK).

Similarly, consider the cHML formula ϕc
def
= minX.〈 a¡〉tt∨〈 c¡〉X which states that

a system is correct if either the initial state, or a state reachable over a sequence
of c actions, can perform action a. From Proposition 2.4 we know that whenever
s reduces over some α to s′ where s′ ∈ Jafter(ϕc, α)K then s∈ JϕcK as well. In fact,
when s

a−→ c.nil and c.nil∈ Jafter(ϕc, a)K (which is true since after(ϕc, a) = tt), s∈JϕcK
also holds. The same applies in the case when we assume that s c−→ a.nil and
a.nil∈ Jafter(ϕc, c)K.

We abuse notation and lift the after function to (explicit) traces in the obvious
way, i.e., after(ϕ, tτ) is equal to after(after(ϕ, µ), uτ) when tτ = µuτ and to ϕ when
tτ = ε.

17

Part I

Unidirectional Enforcement

18

3. A unidirectional enforcement
model

Monitorα1 α2 α3 β1 τ β4 α3

Figure 3.1: Our unidirectional enforcement setup.

In our unidirectional enforcement approach we follow the seminal work in RE
[23, 46, 50, 78] and adopt a trace based view of the runtime behaviour of the SuS
which can be altered using the conventional monitor transformations, i.e., action
insertion, suppression and replacement. Figure 3.1 shows how the monitor trans-
forms the system run α1.α2.α3 into β1.τ.β4.α3. Specifically, the monitor first replaces
α1 by β1, then suppresses α2 into τ and finally inserts action β4 before allowing
action α3 to go through without any modifications.

In this chapter we formalise this unidirectional instrumentation approach along
with the behaviour of enforcement transducers. We also prove that our instrumen-
tation model supports for unzipping and zipping functionality that permit us to
decompose a monitored execution into two individual executions, and to recompose
them back together as necessary. Beforehand, however, we will present two example
systems that we will be referring to throughout the first part of this dissertation.

Example 3.1. Consider two systems (a good system, sg, and a bad one, sb) imple-
menting a server that repeatedly accepts requests on port a and outputs an answer
on the same port in response; the serviced request is logged by an output on a
special port b. The server terminates once it accepts a close request from port b.

sg = recX.
(
a?req.(a!ans.b!log.X) + b?cls.nil

)
sb = recX.

(
a?req.(a!ans.b!log.X + a!ans.a!ans.b!log.sg) + b?cls.nil

)
19

Chapter 3. A unidirectional enforcement model

More specifically, for every request (a?req), system sg outputs a single answer
(a!ans) and logs it (b!log), whereas sb occasionally produces multiple answers for a
given request before behaving as per sg (see the underlined branch in the description
of sb above). Both systems terminate with b?cls.

3.1 The model

In Figure 3.2, we formalise our operational mechanism for enforcing properties in a
unidirectional setting (that we highlighted in Figure 3.1) in terms of the (symbolic)
transducers m,n ∈ Trn. Transducers are a special kind of monitors that define
symbolic transformation triples, p, c, p′¡, consisting of the action pattern p, the fil-
tering condition c and a transformation pattern p′. Conceptually, the action pattern
and condition determine the range of visible actions upon which the transformation
should be applied, while the transformation pattern specifies the kind of transfor-
mation that should be applied, i.e., a suppression, replacement or insertion.

The symbolic transformation patterns p and p′ are extended versions of those de-
finable in symbolic actions. In addition to describing visible system actions, these
extended patterns may also specify the symbol • and use it as follows. When p= •,
the transformation pattern represents a point where the monitor can act indepen-
dently from the system to insert the action specified by p′, but when p′= •, it repre-
sents the suppression of the action specified by p. For our symbolic transformations
we also assume a well-formedness constraint where, for every p, c, p′¡.m, either p or
p′ is • but not both e.g., •, true,a?v¡ and (x)!(y), true, •¡ are well-formed since only
one of their patterns is •. The matching function is lifted to these patterns in the
obvious way, where mtch(•, •)=∅.

The syntax of our transducers assumes a well-formedness constraint where for
every p, c, p′¡.m, bv(c)∪bv(p′) = ∅. The monitor transition rules in Figure 3.2 assume
closed terms, i.e., for every transformation-prefix transducer of the form p, c, p′¡.m, it
is required that

(
fv(c)∪ fv(p′)∪ fv(m)

)
⊆bv(p)∪V, where V is the set of variables that

are bound by priorly defined transformation prefixes. Each transformation-prefix
transducer yields an LTS with labels of the form γIγ′, where γ, γ′ ∈ (Act∪{•}). Intu-
itively, transition m

γIγ′−−−→ n denotes the way that a transducer in state m transforms
action γ into γ′ and reduces to state n. In this sense, the transducer action αIβ rep-
resents the replacing of α by β, and αIα denotes the identity transformation. Cases
αI• and •Iα respectively encode the suppression and insertion transformations of
action α.

The key transition rule in Figure 3.2 is eTrn. It states that the transformation-
prefix transducer p, c, p′¡.m transforms action γ into a (potentially) different action γ′

20

Chapter 3. A unidirectional enforcement model

Syntax
m,n ∈ Trn ::= p, c, p′¡.m |

∑
i∈Imi (I is a finite index set) | recX.m | X

Dynamics

eSel
mj

γIγ′−−−→ nj∑
i∈Imi

γIγ′−−−→ nj

j∈I eRec
m{recX.m/X}

γIγ′−−−→ n

recX.m γIγ′−−−→ n

eTrn
mtch(p, γ) = σ cσ ⇓ true γ′= p′σ

 p, c, p′¡.m γIγ′−−−→ mσ
Instrumentation

iTrn s
α−→ s′ m

αIβ−−→ n

m[s]
β−→ n[s′]

iSup s
α−→ s′ m

αI•−−→ n

m[s]
τ−→ n[s′]

iIns m
•Iα−−→ n

m[s]
α−→ n[s]

iAsy s
τ−→ s′

m[s]
τ−→ m[s′]

iDef
s
α−→ s′ m 6α−→ m 6 •−→

m[s]
α−→ id[s′]

Figure 3.2: A model for transducers and unidirectional enforcement instrumenta-
tion.

and reduces to state mσ, whenever γ matches pattern p, i.e., mtch(p, γ)=σ, and satis-
fies condition c, i.e., cσ ⇓ true. Action γ′ results from instantiating the free variables
in p′ with the corresponding values mapped by σ, i.e., γ′=pσ. The remaining rules
eSel and eRec respectively define the standard selection and recursion operations.
A sum of transducers

∑
i∈I mi can reduce via eSel to some nj over some action γIγ′,

whenever there exists a transducer mj in the summation that reduces to nj over
the same action. Rule eRec enables a recursion transducer recX.m to reduce to
some n when its unfolded instance m{recX.m/X} reduces to n as well. We encode the
identity monitor, id, as a recursive monitor defining identity transformations that
match every action.

Figure 3.2 also describes an instrumentation relation, which relates the behaviour
of the SuS s with the transformations of a transducer monitor m that agrees with
the (observable) actions Act of s. The term m[s] thus denotes the resulting moni-
tored system whose behaviour is defined in terms of Act∪{τ}. Concretely, rule iTrn
states that when a system s transitions with an observable action α to s′ and the
transducer m can transform α into β and transition to n, the instrumented system
m[s] transitions with action β to n[s′]. Rule iSup states that if the system performs
an action α that the monitor can suppress into •, the composite system transitions
silently over τ .

Dually, with rule iIns the composite system transitions over an action α when the
transducer is able to insert an action α independently of the behaviour of s. Since

21

Chapter 3. A unidirectional enforcement model

the monitor can act independently, action insertion may potentially introduce non-
deterministic behaviour in the resulting composite system. For instance, a monitor
might be required to non-deterministically choose between inserting two or more
actions, e.g., •, α¡.m1 + •, β¡.m2 must non-deterministically insert either action α

and reduce to m1, or β and transition to m2. Due to their potential of introducing
non-determinism, insertions are therefore more complex to understand and work
with when compared to other enforcement transformations and so one should pay
extra care when using them.

Rule iDef is analogous to standard monitor instrumentation rules for premature
termination of the transducer [2, 53, 54, 56], and accounts for underspecification
of transformations. Thus, if a system s transitions with an observable action α to s′,
and the transducer m is neither able to transform it (m 6α−→), nor transition to a new
transducer state by inserting an action (m 6 •−→), the system is still allowed to transition
while the transducer defaults to acting like the identity monitor, id, from that point
onwards (where id is shorthand for recY. (x)!(y), true, x!y¡.Y + (x)?(y), true, x?y¡.Y and
m 6γ−→ means @γ′, n ·m γIγ′−−−→n). Finally, when s transitions with a silent action, rule
iAsy allows it to do so independently of the transducer.

We occasionally use the notation m
κ−→ m′ to represent a sequence of monitor

transformations, i.e., m
γ1Iγ′1−−−−→ . . .

γnIγ′n−−−−−→ m′ where κ is a trace of transformations
(γ1Iγ′1) . . . (γnIγ′n) for some n > 0 (but κ=ε when n = 0).

Example 3.2. Consider the insertion and replacement transducers given below:

mi
def
= (x)?req, true, x?req¡. •, true, x!ans¡.id

mr
def
= recX. ((x)?(y), true,b?y¡.X + (x)!(y), true,b!y¡.X) .

When instrumented with a system, mi inserts action x!ans, after the system in-
puts a request x?req from some port x. It then behaves as the identity transducer.
Concretely, the system mi[sb], where sb is from Example 3.1, can only start the com-
putation as follows:

mi[sb]
a?req−−−−→ •, true,a!ans¡.id[s′b]

a!ans−−−−→ id[s′b]
a!ans−−−−→ . . .

(where s′b = a!ans.b!log.sb + a!ans.a!ans.b!log.sg). By contrast, mr intercepts all the
system’s inputs and outputs and redirects them through the special port b. For
instance, we have that:

mr[sb]
b?req−−−−→ mr[s

′
b]

b!ans−−−−→ mr[b!log.sb]
b?log−−−−→ mr[sb]

b?cls−−−−→ mr[nil].

Consider now the following suppression transducers ms, mt and met for actions

22

Chapter 3. A unidirectional enforcement model

made on any port except b:

ms
def
= recX.

(
 (x)?req, x 6= b, x?req¡.X + (x)!ans, x 6= b, •¡.X + b!log, true,b!log¡.X

)
mt

def
= recX.

(
 (x)?req, x 6= b, x?req¡. x!ans, true, x!ans¡.(

 x!ans, true, •¡.sup + b!log, true,b!log¡.X
))

met
def
= recX.

(
 (x)?req, x 6= b, x?req¡. x!ans, true, x!ans¡.

recY.
(
 x!ans, true, •¡.Y + b!log, true,b!log¡.X

))
where sup is a recursive monitor that recursively suppresses every system action.
Monitor ms suppresses every answer on ports other than b, and continues to do so
after every request on such ports. When instrumented with sb from Example 3.1,
we can observe the following behaviour:

ms[sb]
a?req−−−−→ ms[s′b]

τ−→ ms[b!log.sb]
b!log−−−→ ms[sb]

a?req−−−−→ ms[s′b]
τ−→ ms[b!log.sb] . . .

Note that ms does not specify a transformation behaviour for when the monitored
system inputs a close request. The instrumentation handles this underspecification
by defaulting to the identity transducer; in the case of sb we get ms[sb]

b?cls−−−−→ id[nil].
Monitors mt and met perform slightly more elaborate transformations. Concretely,
for interactions on ports other than b, mt suppresses the first consecutive answer
that is output by the SuS following a serviced request (i.e., a?req followed by a!ans)
and reduces to sup which keeps on suppressing every subsequent action. Hence,
for sb we can observe the following behaviour:

mt[sb]
a?req·a!ans

========⇒
(
 a!ans, true, •¡.sup + b!log, true,b!log¡.mt

)
[a!ans.b!log.sg]

τ−→ sup[b!log.sg]
τ−→ sup[sg]

τ−→ sup[a!ans.b!log.sg] . . .

By contrast, monitor met is more selective when applying its suppressions. In fact,
it only suppresses the redundant consecutive answers that occur after a serviced
request. Hence, when met is instrumented with sb, the resulting composite system
behaves as follows:

met[sb]
a?req·a!ans

========⇒ recY.
(
 a!ans, true, •¡.Y + b!log, true,b!log¡.met

)
[a!ans.b!log.sg]

τ−−−−−−−→ recY.
(
 a!ans, true, •¡.Y + b!log, true,b!log¡.met

)
[b!log.sg]

b!log−−−−−−−→ met[sg]
a?req·a!ans·b!log

===========⇒ met[sg].

In the sequel, we find it convenient to refer to p as the transformation pattern
p where all its binding occurrences are converted to free occurrences, e.g., (x)!(y)

denotes x!y. As shorthand notation, we elide the transformation pattern p′ in a

23

Chapter 3. A unidirectional enforcement model

zip(t, κ) =


ε if t = ε and κ = ε
zip(t′, κ′) if t = αt′ and κ = (αI•)κ′
βzip(t′, κ′) if t = αt′ and κ = (αIβ)κ′

αzip(t, κ′) if κ = (•Iα)κ′

Figure 3.3: The zip function.

transducer p, c, p′¡.m whenever p′=p and simply write p, c¡.m. Similarly, we elide
the filtering condition c whenever it is true. This allows us to express met from
Example 3.2 as recX.

(
 (x)?req, x 6= b¡. x!ans¡.recY.

(
 x!ans, •¡.Y + b!log¡.X

))
.

3.2 Zipping and unzipping

In our forthcoming work on unidirectional enforcement, we find it useful to have
a way to decompose and recompose the behaviour of a composite system − this
is commonly known as unzipping and zipping [7, 42]. Specifically, unzipping de-
composes the composite behaviour m[s]

u
==⇒ m′[s′] into two separate computations,

namely one for the monitor m
κ

==⇒ m′, and one for the system s
t

=⇒ s′. Zipping
can then be used to reconstruct the composite behaviour from these two individual
computations.

In order to prove that zipping and unzipping is supported by our enforcement
model, we first define the zip (partial) function in Figure 3.3. The zip function anal-
yses a system trace t and a monitor transformation trace κ in order to reconstruct
a trace denoting the composite behaviour attained when t is scrutinised and trans-
formed by a monitor that executes κ. In a sense, the zip function mimics the way
the instrumentation rules interpret the transformations of the monitor in respect to
the actions performed by the SuS. For instance, when the system trace is prefixed
by an action α that is suppressed in the monitor’s trace, i.e., t = αt′ and κ = (αI•)κ′,
the function recurses (with the suffixes t′ and κ′) without adding α to the resulting
composite trace. Similarly, if t = αt′ and κ = (αIβ)κ′ it mimics the replacement of
action α into β by adding the latter to the resulting trace before recursing. It also
simulates action insertion by adding α to the composite trace when κ = (•Iα)κ′. The
zip function stops recursing when both t and κ are empty. Since zip is a partial
function, it does not return a value for any other case of t and κ apart from the
specified ones.

Using the zip function we can now show that the following results hold:

Proposition 3.1 (Unzipping). For the monitored instances m[s], m′[s′] and transfor-
mation trace κ, if m[s]

u
==⇒ m′[s′] then either

24

Chapter 3. A unidirectional enforcement model

(a) u = zip(t, κ) and m
κ

==⇒ m′ and s
t

=⇒ s′; or

(b) u = zip(t, κ);αt′ and m
κ

==⇒ m′′ 6αIγ−−−→ and m′′ 6 •−→ and s
t;αt′

====⇒ s′ and m′ = id.

Proposition 3.2 (Zipping). For any monitor m, m′, system s, s′, traces t, u, and
transformation trace κ,

(a) if m κ
==⇒ m′ and s

t
=⇒ s′ and zip(t, κ) = u then m[s]

u
==⇒ m′[s′].

(b) ifm κ
==⇒m′ 6αIγ−−−→ andm′ 6 •−→ and s t;αt′

====⇒ s′ and zip(t, κ) =u thenm[s]
u;αt′

====⇒ id[s′].

On the one hand, Proposition 3.1 states that for a monitored execution m[s]
u

==⇒
m′[s′], there must exists a system trace t and a transformation trace κ so that zip(t, κ)

produces either (a) u exactly, or (b) a prefix of u, i.e., u = zip(t, κ);αt′. In the first
case, (a), the composite behaviour can be elegantly decomposed into m

κ
==⇒ m′ and

s
t

=⇒ s′. In the second case, (b), after executing κ, the monitor m reduces into a state
m′′ from which it can neither transform the system’s visible action α, nor insert an
action, i.e., m κ

==⇒ m′′ 6αIγ−−−→ andm′′ 6 •−→. This indicates that the monitor has defaulted
to id i.e., m′ = id, and hence the remaining composite behaviour αt′ is identical to
that of the SuS, i.e., s t;αt′

====⇒ s′. On the other hand, Proposition 3.2 proves that
the decomposed behaviours of the monitor and the SuS can be recomposed back
together. The proofs for these propositions are given in Appendix B.1 on page 151.

3.3 Summary

In this chapter we have looked into unidirectional enforcement and sought to for-
malise this type of enforcement instrumentation. Particularly, we have presented:

(i) the transducer model m∈Trn of Figure 3.2, defining how enforcement trans-
ducers behave at runtime,

(ii) the instrumentation model m[s] of Figure 3.2, for achieving unidirectional en-
forcement, and

(iii) Propositions 3.1 and 3.2 (unzipping and zipping) proving that the behaviour of
a composite system can be decomposed and recomposed as required.

25

4. Enforceability in a
unidirectional context

In this chapter we investigate what it means for a logic to be enforceable. We start
by introducing the notion of enforceability and define what it takes for a monitor
to adequately enforce a logical formula. In this regard, we give three different def-
initions, namely, Definitions 4.4, 4.6 and 4.8, and show how they vary from one
another. We then present the concept of optimal enforcement that assesses the
level of intrusiveness of a monitor, and assists in finding the least intrusive one.
Although these definitions are parametrisable with respect to any instrumentation
relation, in this chapter we motivate them vis-a-vis the unidirectional enforcement
framework of Figure 3.2 from Chapter 3.

Beforehand, however, we will present two µHML formulas that we will use as a
running example throughout the first part of this thesis.

Example 4.1. Recall the request response server implementations sg and sb of Ex-
ample 3.1 (restated below).

sg = recX.
(
a?req.(a!ans.b!log.X) + b?cls.nil

)
sb = recX.

(
a?req.(a!ans.b!log.X + a!ans.a!ans.b!log.sg) + b?cls.nil

)
Using our logic µHML we can specify that a request on port a cannot be followed by
two consecutive answers on that port.

ϕ0
def
= maxX.[a?req¡][a!ans¡]([a!ans¡]ff∧[b!log¡]X)

Formula ϕ0 thus defines an invariant property (maxX. (. . .)) requiring that whenever
the system interacting on port a outputs an answer following a request, it cannot
output a subsequent answer, i.e., [a!ans¡]ff, unless it logs the response and inputs
another request beforehand, in which case the formula recurses, i.e., [b!log¡]X.

Using symbolic actions, we can generalise ϕ0 by requiring the property to hold
for any interaction happening on any port except b (as this port is assumed to have

26

Chapter 4. Enforceability in a unidirectional context

a special status).

ϕ1
def
= maxX.[(x)?req, x6=b¡][x!ans¡]([x!ans¡]ff∧[b!log¡]X)

In ϕ1, (x)?req binds the free occurrences of x found in x 6=b and in the continuation
formula [x!ans¡]([x!ans¡]ff∧[b!log¡]X). The value of x is later rebound when the for-
mula recurses on X. This means that subsequent references to x in the unfolded
formula are replaced by the (potentially) new value bound to x. Using the seman-
tics in Figure 2.2 of Chapter 2, one can check that sg∈Jϕ1K, whereas sb 6∈Jϕ1K since
sb

a?req−−−−→ · a!ans−−−−→ · a!ans−−−−→ sg.

4.1 Enforceability

The enforceability of a logical formula rests on the relationship between the se-
mantic behaviour specified by the formula on the one hand, and the ability of the
operational mechanism (e.g., the transducers and instrumentation of Chapter 3) to
enforce the specified behaviour on the other. We thus formally define the notion of
enforceability as follows.

Definition 4.1 (Enforceability). A formula ϕ is enforceable iff there exists a trans-
ducerm such thatm adequately enforces ϕ. A logic L is enforceable iff every formula
ϕ∈L is enforceable.

Definition 4.1 relies on the meaning of “m adequately enforces ϕ”. Although
several meanings can be given, it is reasonable to expect that a suitable definition
should be applicable to any system that can be instrumented with monitor m. In
particular, one should at least expect soundness, that is, if the property of interest
ϕ is satisfiable, i.e., JϕK 6=∅, then the composite system, m[s], should satisfy ϕ for
every possible LTS and system state s.

Definition 4.2 (Sound Enforcement). Monitor m soundly enforces a satisfiable for-
mula ϕ, denoted as senf(m,ϕ), iff m[s]∈ JϕK, for all LTSs 〈Sys,Act ∪ {τ} ,→〉 and
system states s∈Sys.

Example 4.2. In general, showing that a monitor m soundly enforces a formula ϕ

requires showing that for every possible system state s, the instrumented system
m[s] satisfies ϕ. However, in this example we give an intuition based on systems sg

and sb from Example 3.1. So recall the monitors presented in Example 3.2 from
Chapter 3 (restated below), and ϕ1 from Example 4.1 where sg ∈ Jϕ1K (hence ϕ1 is
satisfiable) and sb 6∈ Jϕ1K.

27

Chapter 4. Enforceability in a unidirectional context

mi
def
= (x)?req¡. •, x!ans¡.id

mr
def
= recX. ((x)?(y),b?y¡.X + (x)!(y),b!y¡.X)

ms
def
= recX.

(
 (x)?req, x 6= b¡.X + (x)!ans, x 6= b, •¡.X + b!log¡.X

)
mt

def
= recX.

(
 (x)?req, x 6= b¡. x!ans¡.

(
 x!ans, •¡.sup + b!log¡.X

))
met

def
= recX.

(
 (x)?req, x 6= b¡. x!ans¡.recY.

(
 x!ans, •¡.Y + b!log¡.X

))
For monitors mi, mr, ms, mt and met we have that:

• mi[sb]/∈Jϕ1K, since mi[sb]
a?req−−−−→ (•,a!ans¡.id)[s′b]

a!ans−−−−→ id[s′b]
a!ans−−−−→ id[sb]. This

counter-example implies that ¬senf(mi, ϕ1).

• mr[sg]∈Jϕ1K and mr[sb]∈Jϕ1K. Intuitively, this is because the ensuing instru-
mented systems only generate (replaced) actions that are not of concern to ϕ1.
Since this behaviour applies to any system that monitor mr is composed with,
we can conclude that senf(mr, ϕ1).

• ms[sg]∈Jϕ1K and ms[sb]∈Jϕ1K because the resulting instrumented systems never
produce x!ans for any x 6= b. We can thus conclude that senf(ms, ϕ1).

• mt[sg]∈Jϕ1K and mt[sb]∈Jϕ1K, since the monitor starts suppressing every system
action from the point that a system performs a redundant answer. Hence,
since it suppresses the invalid action along with every subsequent action, we
can deduce that senf(mt, ϕ1).

• met[sg]∈Jϕ1K and met[sb]∈Jϕ1K. Since the resulting instrumentation suppresses
consecutive answers (if any) after any number of serviced requests on any port
other than b, we can conclude that senf(met, ϕ1).

By itself sound enforcement is a relatively weak requirement for adequate en-
forcement as it does not regulate the extent of the induced enforcement. More con-
cretely, consider the case of monitor ms from Example 3.2. It manages to suppress
the violating executions of system sb, thereby bringing it in line with property ϕ1.
However, it also needlessly modifies the behaviour of sg, even though it satisfies
ϕ1 (since it suppresses all of its answer actions a!ans). Thus, in addition to sound
enforcement we require a transparency condition for adequate enforcement. This
requirement dictates that whenever a system s already satisfies the property ϕ, the
assigned monitor m should not alter the behaviour of s. Put differently, if the SuS
is correct then the behaviour of the enforced system should be (bisimulation) equiv-
alent to that of the original system.

Definition 4.3 (Transparent Enforcement). A monitor m is transparent when en-
forcing a formula ϕ, written as tenf(m,ϕ), iff for all LTSs 〈Sys,Act ∪ {τ} ,→〉 and

28

Chapter 4. Enforceability in a unidirectional context

system states s ∈ Sys, if s ∈ JϕK then m[s] ∼ s.

Example 4.3. We have already argued—via the counter-example sg—why ms does
not transparently enforce ϕ1. Similarly, we can also argue easily that ¬tenf(mr, ϕ1)

as follows. Although the simple system a?req.a!ans.b!log.nil trivially satisfies ϕ1,
we clearly have the inequality mr[a?req.a!ans.b!log.nil] 6∼ a?req.a!ans.b!log.nil since
mr[a?req.a!ans.b!log.nil] b?req−−−−→ mr[b!log.nil] and a?req.a!ans.b!log.nil 6b?req−−−−→.

It turns out, however, that for ϕ1, monitors mt and met are transparent, i.e.,
both tenf(mt, ϕ1) and tenf(met, ϕ1) hold. Although this property is not as easy to
show—due to the universal quantification over all systems—we can get a fairly good
intuition for why this is the case via the example sg, since this system satisfies ϕ1

and one can easily establish that mt[sg] ∼ sg and also that met[sg] ∼ sg.

Having introduced Definitions 4.2 and 4.3 we can define our first definition for ad-
equate enforcement.

Definition 4.4 (Enforcement). A monitor m adequately enforces property ϕ when-
ever it is (i) sound and (ii) transparent.

4.1.1 Weak Enforcement

The transparency requirement of Definition 4.3, however, only restricts transducers
from modifying the behaviour of satisfying systems i.e., when s∈JϕK. It fails to specify
any enforcement behaviour for the cases when the SuS violates the property.

Example 4.4. Recall ϕ1 and sb from Example 4.1, and also monitorsmt andmet from
Example 3.2. Even though sb /∈ Jϕ1K, not all of its exhibited behaviours constitute vi-
olating traces. For instance, sb

a?req·a!ans·b!log·b?cls
==============⇒ nil is not a violating trace, and so a

system that only executes this trace satisfies ϕ1 e.g., a?req.a!ans.b!log.b?cls.nil ∈ Jϕ1K.
Correspondingly, we have mt[sb]

a?req·a!ans·b!log·b?cls
==============⇒ id[nil] and the same is attained

for met i.e., met[sb]
a?req·a!ans·b!log·b?cls

==============⇒ id[nil].

We thus consider an alternative transparency requirement for a property ϕ that
incorporates the expected enforcement behaviour for both satisfying and violating
systems. More concretely, transparency can be redefined by quantifying over the be-
haviours exhibited by the system i.e., their traces, rather than on the systems them-
selves. This trace-based version of transparency – hereinafter referred to as trace
transparency – resembles the classical definitions that are prevalent in the runtime
enforcement literature [25, 50, 78]. Monitors adhering to trace transparency must
ensure that if an execution trace is correct, regardless of whether it originates from
a valid or invalid system, the monitor should refrain from modifying it.

29

Chapter 4. Enforceability in a unidirectional context

Definition 4.5 (Trace Transparent Enforcement). A monitor m observes trace trans-
parency when enforcing a formula ϕ, denoted as ttenf(m,ϕ) iff for every monitor state
m′ and all traces t, t′ and t′′, when sys(t) ∈ JϕK and m[sys(t)]

t′
==⇒ m′[sys(t′′)] then

t = t′; t′′.

Concretely, in Definition 4.5 we construct a trace system sys(t) (for every trace t)
and check that if sys(t) satisfies ϕ and the instrumented system m[sys(t)] reduces
over trace t′ to some m′[sys(t′′)], then t should be equal to the concatenation of
t′ and t′′. Put differently, this criterion states that every trace t′ executed by the
instrumented system m[sys(t)] should be a prefix of trace t thereby signifying that
monitor m is incapable of modifying trace t and any of its prefixes.

Going back to Example 4.4, a trace transparent monitor m must therefore en-
sure that although sb /∈ Jϕ1K, its valid traces, such as a?req.a!ans.b!log.b?cls, are
not modified at runtime. More precisely, since sys(a?req.a!ans.b!log.b?cls)∈ Jϕ1K, ev-
ery trace u executed by the composite system i.e., m[sys(a?req.a!ans.b!log.b?cls)]

u
==⇒,

must be a prefix of a?req.a!ans.b!log.b?cls. Proving that a monitor adheres to trace-
transparency is, however, not an easy task as a result of the universal quantification
over all possible traces.

Example 4.5. Consider a monitor m1 = a, true¡.recX. b, true, •¡.X and formula ϕ2 =

〈 a¡〉[b¡]ff. To prove that ttenf(m1, ϕ2) holds we must show that for every trace t,
if sys(t)∈ Jϕ2K and m1[sys(t)]

t′
==⇒ m′1[sys(t′′)] then t = t′; t′′. We thus inspect the

following cases for t.

(a) t= ab;u (for any suffix u): This case holds vacuously since sys(ab;u) /∈ Jϕ2K.

(b) t= t′; t′′(6= ab;u): This case also holds since monitor m1 is unable to modify any
trace that is not prefixed by ab, which means that when m1[sys(t)]

t′
==⇒ m′1[sys(t′′)]

then t = t′; t′′ as required.

Hence, from (a) and (b) we can conclude that ttenf(m1, ϕ2) holds.

Definition 4.3 (Transparency) and Definition 4.5 (Trace Transparency) provide
two different ways of defining transparency, and so it is natural to wonder how they
are related. The following result thus shows that trace transparency is in fact a
weaker instance of Definition 4.3.

Theorem 4.1 (ttenf vs. tenf). For every monitor m and µHML formula ϕ,

(i) tenf(m,ϕ) implies ttenf(m,ϕ); and

(ii) ttenf(m,ϕ) does not imply tenf(m,ϕ).

Proof. The proof for (i) follows immediately from Definitions 4.3 and 4.5 since trace
systems are a subset of all the possible system states of LTSs.

30

Chapter 4. Enforceability in a unidirectional context

To prove (ii) it suffices to find a single monitor and formula that adhere to
Definition 4.5 but not to Definition 4.3. Recall the result proven in Example 4.5
which states that ttenf(m1, ϕ2). Using this as a counter example entails showing
that tenf(m1, ϕ2) is false. To this end, consider system s1 = a.b.nil + a.c.nil. We have
that s1 ∈ Jϕ2K and we also know that m1[s1] 6∼ s1 since s1

a−→ · b−→ nil while m1[s1] 6ab==⇒.
This proves that tenf(m1, ϕ2) does not hold as required, and we are done.

With this result we can thus give a weaker definition for “m adequately enforces
ϕ” than the one in Definition 4.4. This in turn gives us a new definition for enforce-
ability for a logic, akin to Definition 4.1.

Definition 4.6 (Weak Enforcement). A monitor m adequately enforces formula ϕ

whenever it adheres to (i) soundness, Definition 4.2, and (ii) trace transparency,
Definition 4.5.

Remark 4.1. Since Definition 4.6 is defined it terms of Definition 4.2 (soundness)
and Definition 4.5 (trace transparency), this definition resembles the most the clas-
sical definitions [25, 50, 78] for adequate enforcement. Therefore, Theorem 4.1 also
suggests that in our setting, the classical definitions are relatively weak.

Although Theorem 4.1 proves that Definition 4.6 is inherently weaker than Defi-
nition 4.4, both definitions may become equally powerful when restricted to particu-
lar subsets of µHML as per the case of the safety subset sHML. As both are defined
in terms of Definition 4.2 (Soundness) and only vary with respect to the trans-
parency definition, to ensure this result it suffices to prove that the Definitions 4.3
(Transparency) and 4.5 (Trace Transparency) coincide with respect to sHML formu-
las.

Theorem 4.2. For every monitorm and sHML formula ϕ, tenf(m,ϕ) iff ttenf(m,ϕ).

Since the if-case of Theorem 4.2 has already been proven to hold for the full µHML
(in Theorem 4.1) this result implicitly applies for sHML, so no additional proofs are
required. For the only-if case we, however, require an additional proof that uses
the following lemmas whose proofs are provided in Appendices B.2.1 and B.2.2
respectively starting on page 158.

Lemma 4.1. For every system state s, sHML formula ϕ and trace t ∈ traces(s) when
s ∈ JϕK then sys(t) ∈ JϕK.

Lemma 4.2. For every action α, sHML formula ϕ and trace t, if sys(t) ∈ Jafter(ϕ, α)K
then sys(αt) ∈ JϕK.

Upon first reading the reader may safely skip the content of this proof and proceed
from 35.

31

Chapter 4. Enforceability in a unidirectional context

Proof. We prove by coinduction that for every system state s, monitor m and sHML
formula ϕ whenever ttenf(m,ϕ) and s ∈ JϕK then m[s] ∼ s. We therefore show that
relation R def

= {(m[s], s) s ∈ JϕK and ttenf(m,ϕ) } is a strong bisimulation relation and
thus satisfies the following transfer properties, i.e., for each (m[s], s)∈R:

(a) if m[s]
µ−→ r′ then s

µ−→ s′ and (r′, s′) ∈ R

(b) if s µ−→ s′ then m[s]
µ−→ r′ and (r′, s′) ∈ R.

To prove (a), assume that

m[s]
µ−→ r′ (4.1)

s ∈ JϕK (4.2)

and that ttenf(m,ϕ) from which by Definition 4.5 we have that

if sys(t) ∈ JϕK and m[sys(t)]
t′

==⇒ m′[sys(t′′)] then t = t′; t′′. (4.3)

We now explore all the possible instrumentation rules by which the reduction in
(4.1) can occur.

• iAsy: From (4.1) and rule iAsy we have that µ = τ and that

s
τ−→ s′ (4.4)

r′ = m[s′]. (4.5)

Since by Proposition B.1 we know that sHML is agnostic of τ-actions, from
(4.2) and (4.4) we also know that s′ ∈ JϕK and so since from (4.5) we know that
m remains unmodified by the transition, from (4.3) and the definition of R we
conclude that

(m′[s′], s′) ∈ R (4.6)

as required. Hence this case holds by (4.4) and (4.6).

• iDef: From (4.1) and rule iDef we have that µ = α and that

s
α−→ s′ (4.7)

r′ = id[s′]. (4.8)

Since id can only apply identity transformations we can simply infer that for
any formula ψ, ttenf(id, ψ), and so we conclude that

ttenf(id,after(ϕ, α)). (4.9)

Finally, by using the semantic justification of after, i.e., Proposition 2.3, from
(4.2) and (4.7) we deduce that s′ ∈ Jafter(ϕ, α)K. Therefore, knowing (4.9) and
by the definition of R we conclude that

(id[s′], s′) ∈ R (4.10)

as required. Hence, this case holds by (4.7) and (4.10).

32

Chapter 4. Enforceability in a unidirectional context

• iTrn (identity): From (4.1) and rule iTrn we have that

s
α−→ s′ (4.11)

m
αIα−−−→ m′′ (4.12)

r′ = m′′[s′] (4.13)

and so by using the semantic justification of after Proposition 2.3, from (4.2)
and (4.11) we can immediately deduce that

s′ ∈ Jafter(ϕ, α)K. (4.14)

Now, assume that for every trace u, we have that

sys(u) ∈ Jafter(ϕ, α)K (4.15)

m′′[sys(u)]
u′

==⇒ m′[sys(u′′)]. (4.16)

Knowing (4.15), by Lemma 4.2 we have that

sys(αu) ∈ JϕK (4.17)

and so from (4.3) and (4.17) we can infer that

if m[sys(αu)]
αu′

===⇒ m′[sys(u′′)] then αu = αu′u′′ (4.18)

and thus from (4.12), (4.16) and (4.18) we can conclude that

u = u′u′′. (4.19)

Hence, from assumptions (4.15), (4.16) and deduction (4.19) we can introduce
an implication so that by Definition 4.5 we conclude that

ttenf(m′′,after(ϕ, α)). (4.20)

Finally, by (4.14), (4.20) and the definition of R we have that

(m′′[s′], s′) ∈ R (4.21)

as required, and so we are done by (4.11) and (4.21).

• iSup, iIns, iTrn (replacement): Knowing (4.2), from Lemma 4.1 we infer that

∀t ∈ traces(s) · sys(t) ∈ JϕK. (4.22)

and so from (4.3) and (4.22) we can conclude that monitor m does not modify
any of the behaviours (traces) of s because

∀t ∈ traces(s) ·m[sys(t)]
t

=⇒ . (4.23)

Therefore, these cases do not apply since these rules modify the trace actions
executed by s, and so if (4.1) is the result of any these rules, it would contradict
with (4.23).

These cases thus allow us to conclude that (a) holds. We now proceed to prove (b).
So let’s assume that

s
µ−→ s′ (4.24)

33

Chapter 4. Enforceability in a unidirectional context

s ∈ JϕK (4.25)

ttenf(m,ϕ) (4.26)

and so since µ ∈ {τ, α} we consider each case separately.

• µ = τ : Since s τ−→ s′, by (4.25) and since sHML is agnostic of τ-actions (Propo-
sition B.1), we know that

s′ ∈ JϕK (4.27)

and by rule iAsy we can also deduce that

m[s]
τ−→ m[s′]. (4.28)

Hence by (4.26), (4.27) and the definition of R we can conclude that

(m[s′], s′) ∈ R (4.29)

as required, and so this case holds by (4.28) and (4.29).

• µ = α: Since s α−→ s′ and knowing (4.25) we can refer to the semantic justifica-
tion of after and immediately deduce that

s′ ∈ Jafter(ϕ, α)K. (4.30)

From (4.26) and by Definition 4.5 we know that for every trace t

if sys(t) ∈ JϕK and m[sys(t)]
t′

==⇒ m′[sys(t′′)] then t = t′; t′′ (4.31)

and by Lemma 4.1 from (4.25) we infer that for every trace u that can be ex-
ecuted by s, i.e., u ∈ traces(s), sys(u) ∈ JϕK and so since s α−→ s′ we know that
sys(αu′) ∈ JϕK where u′ ∈ traces(s′). Hence, from (4.31) we can infer that

if m[sys(αu′)]
αu′′

===⇒ m′[sys(u′′′)] then αu′ = αu′′u′′′ (4.32)

which means that m is unable to modify any of the α-prefixed behaviours of s,
and so since s α−→ s′ we have that

∃m′′ ·m[s]
α−→ m′′[s′] (4.33)

as required. Finally, lets assume that for every trace v,

sys(v) ∈ Jafter(ϕ, α)K (4.34)

m′′[sys(v)]
v′

==⇒ m′[sys(v′′)]. (4.35)

Since by (4.34) and Lemma 4.2 we have that sys(αv) ∈ JϕK, from (4.31) we can
infer that

if m[sys(αv)]
αv′

===⇒ m′[sys(v′′)] then αv = αv′v′′ (4.36)

and thus from (4.35) and (4.36) we can conclude that

v = v′v′′. (4.37)

Hence, from assumptions (4.34), (4.35) and deduction (4.37) we can introduce
an implication so that by Definition 4.5 we conclude that ttenf(m′′,after(ϕ, α))

34

Chapter 4. Enforceability in a unidirectional context

and so by (4.30) and the definition of R we have that

(m′′[s′], s′) ∈ R (4.38)

as required. Hence, this case holds by (4.33) and (4.38).

4.1.2 Strong Enforcement

Theorem 4.1 shows that transparency as defined per Definition 4.3 is stronger than
that of Definition 4.5. However, it turns out that Definition 4.3 is still a relatively
weak constraint as it still disregards the extent of enforcement induced upon the
erroneous systems. For instance, at runtime sb can exhibit the following invalid
behaviour: sb

t1==⇒ b!log.sg where t1
def
= a?req.a!ans.a!ans. In order to bring the invalid

behaviour of sb (shown in t1) in line with our safety specification ϕ1, it suffices to use
some monitor m that omits only one of the answers, a!ans. After correcting t1 into
t′1

def
= a?req.a!ans, no further modifications are required by m since the SuS reaches

a valid point, that is, it reduces into the state b!log.sg that does not violate our prop-
erty. However, when instrumented with mt, this monitor does not only suppress the
invalid answer i.e., mt[sb]

a?req.a!ans.τ−−−−−−−−−→ sup[b!log.sg], but keeps on suppressing every
subsequent action as a result of reducing into sup i.e., sup[b!log.sg]

τ−→ sup[sg]
It thus makes sense that transparency should also start applying whenever an

invalid SuS reaches a valid point while instrumented with the monitor. Put differ-
ently, if a composite system, m[s] (where s/∈JϕK), reduces to some state m′[s′] over a
trace t, where s′ is in agreement with ϕ after following t (i.e., s′ ∈ Jafter(ϕ, t)K), then
the behaviour of m′[s′] should be equivalent to that of s′. Equipped with the after
function of Definition 2.6 defined in Chapter 2, we can now introduce the eventual
transparency constraint.

Definition 4.7 (Eventual Transparent Enforcement). A monitor m is eventual trans-
parent when enforcing ϕ, denoted as evtenf(m,ϕ), iff for all LTSs 〈Sys,Act∪{τ} ,→〉,
system states s, s′, traces t and monitor states m′, m[s]

t
=⇒ m′[s′] and s′ ∈ Jafter(ϕ, t)K

imply that m′[s′]∼ s′ (when after(ϕ, t) can be semantically justified).

Example 4.6. We have already argued, via the counter example sb, why mt does
not adhere to eventual transparency i.e., ¬evtenf(mt, ϕ1); this is not the case for met

because evtenf(met, ϕ1). Although the universal quantification over all systems and
traces make it hard to prove this property, we can get a good intuition as to why
this is the case from sb. Particularly, when met[sb]

a?req.a!ans.τ−−−−−−−−−→ (recY. a!ans, •¡.Y +

 b!log¡)[b!log.sg] we know that at state b!log.sg, the SuS no longer violates whatever
remains of formula ϕ1 i.e., b!log.sg ∈ Jafter(ϕ1,a?req.a!ans)K = J([a!ans]ff∧[b!log¡]ϕ1)K.
We also know that upon reducing to b!log.sg, the monitor performs no further mod-
ifications to its behaviour i.e., b!log.sg∼ (recY. a!ans, •¡.Y + b!log¡.met)[b!log.sg].

35

Chapter 4. Enforceability in a unidirectional context

Although Definition 4.7 (eventual transparency) is yet another way of represent-
ing transparent monitoring, the following result shows that eventual transparency
is in fact stronger than Definition 4.3 (transparency).

Theorem 4.3 (evtenf vs. tenf). For every monitor m and µHML formula ϕ,

(i) evtenf(m,ϕ) implies tenf(m,ϕ); and that

(ii) tenf(m,ϕ) does not imply evtenf(m,ϕ).

Proof. The proof for (i) follows immediately since Definition 4.3 is just an instance
of Definition 4.7 i.e., when after(ϕ, t) can be semantically justified and when t is the
empty trace ε.

To prove (ii) we must show that there exist monitor and a formula that adhere
to Definition 4.3 but not to Definition 4.7. This result therefore holds since in Ex-
ample 4.3 we showed that tenf(mt, ϕ1) but in Example 4.6 we also deduced that
¬evtenf(mt, ϕ1).

Note that by transitivity from Theorems 4.1 and 4.3 we can deduce that Defi-
nition 4.7 (eventual transparency) is also stronger than Definition 4.5 (trace trans-
parency). Moreover, since Definition 4.3 (transparency) is just an instance of Defi-
nition 4.7 (eventual transparency), the latter requirement along with Definition 4.2
(soundness) suffice to provide yet another definition for “m adequately enforces ϕ”.

Definition 4.8 (Strong Enforcement). A monitor m adequately enforces property ϕ
whenever it adheres to (i) soundness, Definition 4.2, and (ii) eventual transparency,
Definition 4.7.

Corollary 4.1. Since Definition 4.8 is defined in terms of eventual transparency
(Definition 4.7) which we proved to be stronger than transparency (Definition 4.3)
in Theorem 4.3, this new definition for “m adequately enforces ϕ” is also stronger
than that of Definition 4.4.

4.1.3 The limits of enforceability

For any reasonably expressive logic, it is usually the case that not every formula can
be enforced − as supported by Theorem 4.4, our logic µHML is not an exception.

Theorem 4.4. There exists a µHML formula ϕ for which one cannot find a monitor
m so that enf(m,ϕ) holds in the sense of Definitions 4.4, 4.6 or 4.8.

In the following proof we thus present a counter example showing the existence
of a particular formula for which there does not exist a monitor that enforces it
adequately as stated by either one of our adequate enforcement definitions.

36

Chapter 4. Enforceability in a unidirectional context

Proof. Consider the µHML property ϕor, together with systems s2, s3 and s4:

ϕor
def
= [a¡]ff ∨ [b¡]ff s2

def
= a.nil s3

def
= b.nil s4

def
= s2 + s3

A system satisfies ϕor if either it cannot produce action a or it cannot produce action
b. Clearly, s4 violates this property as it can produce both, although s2 and s3 are
both correct since s2, s3 ∈ JϕorK. Enforcing this formula on s4 requires suppressing (or
replacing) either one of the actions, or the insertion of some prefixing action c. We
now show that there does not exist an enforcement monitor m that enforces formula
ϕor. Without loss of generality, assume that our monitors may insert, suppress or
replace actions and consider the following 3 cases.

Case 1 (insertions): For starters, an insertion monitor such as m2
def
= •, c¡.id is

able to bring in line invalid systems like s4 by prefixing their execution with an action
c thus causing the trivial satisfaction of ϕor. However, this insertion infringes the
respective transparency criteria of Definitions 4.4, 4.6 and 4.8 when it is performed
for valid systems e.g., s2 and s3.

Case 2 (suppressions): Similarly, the suppression monitor m3
def
= recY.

(
 a, •¡.Y +

 b, •¡.Y
)

can suppress the offending actions produced by s4, thus obtaining m3[s4] ∈
JϕorK. However, it also suppresses the sole actions a and b produced by s2 and
s3 respectively, even though they both satisfy ϕor. Once again, this infringes the
transparency and eventual transparency criteria of Definitions 4.4 and 4.8 since it
needlessly suppresses the actions of s2 and s3, i.e., although s2, s3 ∈ JϕorK we have
m3[s2] 6∼ s2 and same for s3. Note that a weaker version of m3, such as recY. a, •¡.Y
(resp. recY. b, •¡.Y) still breaches these transparency constraints as it modifies s2

(resp. s3) unnecessarily. The intuitive reason for this is that a monitor cannot, in
principle, look into the computation graph of a system, but is limited to the cur-
rent execution trace. Similarly, m3 also violates the weaker requirement of trace-
transparency required by Definition 4.6, i.e., we can deduce that m3[sys(t)] 6 t−→ de-
spite that sys(t) ∈ JϕK (for every trace executable by s2, s3 and s4 i.e., t ∈ {a, b}).

Case 3 (replacements): Proving this case entails following the same argument
as that presented for case 2.

4.2 Optimality

Definitions 4.4, 4.6 and 4.8 define what it means for a monitor to adequately enforce
a formula, but fail to assess whether a monitor is (to some extent) the “best” that
one can find to enforce a property. To define such a notion we must first be able to
compare monitors to one another via some kind of distance measurement. One ideal
measurement is to assess the monitor’s level of intrusion when enforcing a property.

In Figure 4.1 we define function mc that inductively analyses a system run,

37

Chapter 4. Enforceability in a unidirectional context

mc(m, tτ)
def
=


1 + mc(m′, t′τ) if tτ =µt′τ and m[sys(µt′τ)]

µ′−−→ m′[sys(t′τ)] and µ 6=µ′

1 + mc(m′, tτ) if tτ ∈{µt′τ , ε} and m[sys(tτ)]
µ′−−→ m′[sys(tτ)]

mc(m′, t′τ) if tτ =µt′τ and m[sys(µt′τ)]
µ−→ m′[sys(t′τ)]

| tτ | if tτ ∈{µt′τ , ε} and ∀µ′ ·m[sys(tτ)] 6µ
′
−−→

Figure 4.1: Modification Count (mc).

represented as an explicit trace tτ , and counts the number of modifications applied
by the monitor. In each case the function reconstructs a trace system sys(tτ) and
instruments it with the monitor m in order to assess the type of transformations
applied by m. Specifically, in the first case, mc increments the counter when the
monitor replaces or suppresses the prefixing action µ i.e., when it transforms µ into
µ′ where µ 6= µ′. It then recurses to keep on inspecting the continuation trace suffix
t′τ vis-a-vis the subsequent monitor state m′. In the second case, the counter is
incremented when the monitor inserts an action µ′. Since the state of the SuS sys(tτ)

remains unchanged after the insertion (i.e., m[sys(tτ)]
µ′−−→ m′[sys(tτ)]) function mc

recurses vis-a-vis the unmodified continuation trace tτ and the new monitor state
m′.

The third case, specifies that the counter stays unmodified when the monitor
applies an identity transformation i.e., when µ=α, and when the system performs
a τ-action independent of the monitor i.e., when µ= τ . Finally, the last case returns
the length of tτ when m[sys(tτ)] is unable to execute further. This therefore specifies
that if the termination of m[sys(tτ)] is caused due to the (normal) termination of
sys(tτ) i.e., when tτ = ε, then the number of modifications applied to trace tτ is
equal to 0. However, if the monitor m somehow manages to (abnormally) halt or
block the execution of the SuS, then the modification count is equal to the number
of actions that were supposed to execute i.e., | tτ |.

Example 4.7. Recall monitorsmi, mr, ms, mt andmet from Example 3.2 of Chapter 3
and consider the following system run t0τ=a?req.a!ans.a!ans.b!log. For mi and mr,
function mc respectively counts one inserted action, and three replaced actions
(since b!log remains unmodified) i.e., mc(mi, t

0
τ)=1 and mc(mr, t

0
τ)=3. Monitors ms

and mt both score a count of two, since the former suppresses every answer, while
the latter suppresses the first redundant answer along with the log action i.e., b!log.
Finally, mc(met, t

0
τ)=1 since met suppresses only the second answer action.

We can now use function mc to compare monitors to each other in order to
identify the least intrusive one, i.e., the monitor that applies the least amount of
transformations when enforcing a specific property. It is also desirable to be able
to compare transducers based on their enforcement abilities. This would allow us
to determine that a monitor is the least intrusive one that can be found, with a

38

Chapter 4. Enforceability in a unidirectional context

ec(m)
def
=


∅ if m=X⋃

i∈I ec(mi) if m=
∑

i∈I mi

ec(m′) if m= recX.m′ or m= p, c, p¡.m′
{SUP}∪ ec(m′) if m= p, c, •¡.m′
{INS}∪ ec(m′) if m= •, c, p¡.m′
{REP}∪ ec(m′) if m= p, c, p′¡.m′ and p′ 6= p 6= •

Figure 4.2: Enforcement Capabilities (ec).

restricted set of enforcement abilities. For instance, we can compare an adequate
suppression monitor m to all other adequate suppression monitors in order to de-
termine that m is the least intrusive monitor that enforces a property using only
action suppressions. The restriction can then be relaxed to include other enforce-
ment capabilities, such as insertions, in order to determine whether m is still the
least intrusive monitor when compared to a wider range of monitors that can per-
form suppression or insertion transformations (or both).

We determine the enforcement capabilities of a monitor via function ec of Fig-
ure 4.2. It inductively analyses the structure of the monitor and deduces whether it
can insert, suppress and replace actions based on the type of transformation triples
it defines. For instance, if the monitor defines an suppression triple then ec deter-
mines that the monitor can suppress actions SUP, while if it defines an insertion
or replacement transformation then it respectively concludes that the monitor can
insert INS, and replace REP, actions. We represent an arbitrary set of enforcement
capabilities using the metavariable χ.

Example 4.8. Recall the monitors of Example 3.2. With function ec we determine
that ec(mi)={INS}, ec(mr)={REP}, ec(ms)=ec(mt)=ec(met)={SUP}. Monitors may
also have multiple types of enforcement capabilities, for instance, ec(mi + mr +

ms)={INS,REP,SUP}.

With these definitions we now define χ-optimal enforcement where χ restricts the
search space to allow for finding an optimal monitor whose enforcement capabilities
are restricted to those defined by χ.

Definition 4.9 (χ-Optimal Enforcement). A monitor m is χ-optimal when enforcing
ϕ, denoted as oenfχ(m,ϕ), iff it adequately enforces ϕ and if for every state s, system
run tτ and monitor n, if ec(n)⊆χ, enf(n, ϕ) and s

tτ−−→ then mc(m, tτ)≤mc(n, tτ).

Definition 4.9 states that an adequate monitor m is optimal for ϕ, if one cannot find
another adequate monitor n, that has the same (or fewer) enforcement capabilities
as those defined by χ, and that performs fewer modifications than m. We say that a
monitor is the most optimal monitor that enforces ϕ when it is found to be the least
intrusive when compared to every type of monitor, i.e., it is {SUP,REP, INS}-optimal.

39

Chapter 4. Enforceability in a unidirectional context

Example 4.9. Recall formula ϕ1 of Example 4.1 and monitor met of Example 3.2.
Showing that met is the most optimal monitor that enforces ϕ1 is inherently difficult
as it requires comparing met to every kind of monitor. Similarly, showing that met is
SUP-optimal i.e., oenfSUP(met, ϕ1), is still quite difficult. However, from Example 4.7
we already get the intuition that it holds since met imposes the least amount of
modifications compared to the other suppression monitors ms and mt.

Specifically, oenfSUP(met, ϕ1) holds regardless of the chosen adequacy definition.
If we use our strongest definition (Definition 4.8), then only met is considered ade-
quate and so it is optimal by default, whereas if we use Definitions 4.4 or 4.6 it still
holds since mt is more intrusive, while ms is not considered in the comparison as
it is inadequate i.e., ¬enf(ms, ϕ1).

4.3 Summary

In this chapter we have formalised the meaning of adequate and optimal enforce-
ment, which we motivated in the context of the unidirectional enforcement setting of
Figure 3.2 defined in Chapter 3. More specifically, we have presented the following
contributions:

(i) Three different definitions for adequate enforcement, namely, Definitions 4.4,
4.6 and 4.8. They are parametrisable with respect to any instrumentation rela-
tion (an instance of which is given by the unidirectional framework of Figure 3.2
in Chapter 3). We showed that Definition 4.6 is the weakest while Definition 4.8
is the strongest, Theorems 4.1 and 4.3.

(ii) The distance function of Figure 4.1 that measures the level of intrusiveness
of a monitor by counting the number of modifications it applies to the SuS at
runtime.

(iii) The novel definition for optimal enforcement, Definition 4.9, that uses the dis-
tance measurement mentioned in (ii) to assess a monitor’s level of intrusion
and guides the search for the least intrusive one.

40

5. Synthesising suppression
monitors

Despite their merits, the enforcement definitions introduced in Chapter 4 are not
easy to work with. Particularly, the universal quantifications over all possible sys-
tems (of which there could be an infinite amount), make it hard to establish that
a monitor correctly enforces a property. Moreover, as stated by Definition 4.1 (En-
forceability), in order to determine whether a particular property is enforceable or
not, one would need to show the existence of a monitor that correctly enforces it.
Put differently, showing that a property is not enforceable entails another universal
quantification, this time showing that no monitor can possibly enforce the property.
Lifting the question of enforceability to the level of a (sub)logic entails a further uni-
versal quantification, this time on all the formulas of the logic.

We address these problems in two ways. First, we identify a non-trivial syntactic
subset of µHML that is guaranteed to be enforceable. Second, for every formula ϕ in
this enforceable subset, we provide an automated procedure to synthesise a monitor
m from it. We then ensure that when instrumented with an arbitrary system, the
synthesised monitor m enforces ϕ, adequately as defined by Definitions 4.4, 4.6
and 4.8, and optimally as per Definition 4.9. This procedure can then be used as a
basis for constructing tools that automate property enforcement.

Specifically, in this first attempt to study the enforceability of µHML formulas in
the unidirectional setting of Chapter 3, we restrict ourselves to suppression moni-
tors i.e., transducers that are only allowed to intervene by dropping system actions.
Despite being more constrained, suppression monitors are relatively easier to work
with since they side-step problems associated with what data to use in a payload-
carrying action generated by the monitor, as in the case of insertion and replace-
ment monitors. Moreover, suppression monitors are particularly useful for enforc-
ing safety properties, as shown in [23, 50, 78]. Intuitively, a suppression monitor

41

Chapter 5. Synthesising suppression monitors

would suppress the necessary actions as soon as it becomes apparent that a viola-
tion is about to be committed by the SuS. Such an intervention intrinsically relies
on the detection of a violation. To this effect, we refer to the result from [56], which
identified the safety fragment sHML (presented in Figure 2.4 of Chapter 2) as being
the maximally-expressive logical subset of µHML that can be handled by violation-
detecting (runtime verification) monitors. Using this result as a guideline, we limit
our enforceability study to sHML, given that an eventual transparent suppression
monitor cannot judiciously suppress actions without first detecting a (potential) vi-
olation. In Chapter 6 we will then show that sHML is also the maximally-expressive
subset of µHML that can be enforced by suppression monitors.

One way of achieving our aims would be to (i) define a (total) synthesis func-
tion L− M : sHML 7→Trn from sHML formulas to suppression monitors and (ii) then
show that for any ϕ∈ sHML, the synthesised monitor Lϕ M adequately and optimally
enforces ϕ according to Definition 4.8 — which implicitly implies adherence to Def-
initions 4.4 and 4.6 — and Definition 4.9 respectively. Moreover, we would also
require the synthesis function to be compositional, whereby the definition of the
monitor for a composite formula is defined in terms of the monitors obtained for
the constituent subformulas. There are a number of reasons for this requirement.
For one, it would simplify our analysis of the produced monitors and allow us to
use standard inductive proof techniques to prove properties about the synthesis
function, such as the criteria mentioned in (ii). However, a naive approach to such
a scheme is bound to fail, as discussed in the next example.

Example 5.1. Consider an equivalent reformulation of ϕ1 from Example 4.1.

ϕ4
def
= maxX.[(x)?req, x6=b¡]([x!ans¡][x!ans¡]ff ∧ [x!ans¡][b!log¡]X)

At an intuitive level, the monitor that one expects to obtain for the subformula
ϕ′4

def
= [x!ans¡][x!ans¡]ff is x!ans¡.recY. x!ans, •¡.Y (i.e., a transducer that repeatedly

suppresses every output ans that follows a serviced request on the same port),
whereas the monitor for subformula ϕ′′4

def
= [x!ans¡][b!log¡]X is x!ans¡. b!log¡.X. These

monitors would then be combined in the synthesis for ϕ2 as:

mb
def
= recX. (x)?req, x6=b¡.

(
 x!ans¡.recY. x!ans, •¡.Y + x!ans¡. b!log¡.X

)
.

One can easily see that mb does not soundly enforce ϕ4. For instance, for the violat-
ing system a?req.a!ans.a!ans.b!log.nil/∈Jϕ4K(= Jϕ1K) we observe the transition sequence
mb[a?req.a!ans.a!ans.b!log.nil] a?req·a!ans

=======⇒ (b!log¡.mb)[a!ans.b!log.nil] a!ans−−−→ id[b!log.nil].

Instead of complicating our synthesis function to cater for anomalies such as
those presented in Example 5.1—also making it less compositional in the process—
we opted for a two stage synthesis procedure. First, we consider a normalised subset
for sHML formulas, which is amenable to a (straightforward) synthesis function def-

42

Chapter 5. Synthesising suppression monitors

inition that is compositional. This also facilitates the proofs for the criteria that our
synthesised monitors are required to appease in order to be adequate and optimal.
Second, we show that every sHML formula is logically equivalent to some formula
in this normalised form. We are then able to show that our two-stage approach is
expressive enough to show the enforceability for sHML.

5.1 The synthesis function

The following grammar presents the normalised syntactic subset of sHML, which we
refer to as sHMLnf. It combines the modal necessity operators and conjunctions into
one construct

∧
i∈I [pi, ci¡]ϕi, which is written as [p0, c0¡]ϕ0 ∧ . . . ∧ [pn, cn¡]ϕn when

I =
{

0, . . . , n
}

and simply as [p0, c0¡]ϕ when | I | = 1.

Definition 5.1 (sHML normal form). The set of normalised sHML formulas is de-
fined as follows:

ϕ,ψ ∈ sHMLnf ::= tt | ff |
∧
i∈I [pi, ci¡]ϕi | X | maxX.ϕ .

In addition, normalised sHML formulas must satisfy the following conditions:

1. Every branch in
∧
i∈I [pi, ci¡]ϕi, must be disjoint, i.e., #i∈I pi, ci¡ which entails

that for every i, j ∈ I, i 6= j and substitution environment σ, if both pi, ci¡σ and
 pj , ci¡σ are closed, then J pi, ci¡σK∩ J pj , cj¡σK = ∅.

2. For every maxX.ϕ we have X ∈ fv(ϕ).

In a (closed) normalised sHML formula, the basic terms tt and ff can never
appear unguarded unless they are at the top level (e.g., we can never have ϕ∧ff

or maxX0. . . .maxXn.ff). Moreover, in any conjunction of necessity subformulas,∧
i∈I [pi, ci¡]ϕi, the necessity guards are disjoint and at most one necessity guard

can be matched by any particular action. Same as in µHML, fixpoint variables, X,
must be guarded by a modal necessity.

We proceed to define our synthesis function over normalised sHML formulas.

Definition 5.2. Our synthesis L− M : sHMLnf→Trn is defined inductively as:

LX M def
= X L tt M def

= L ff M def
= id L maxX.ϕ M def

= recX.Lϕ M

L
∧
i∈ I

[pi, ci¡]ϕi M
def
= recY.

∑
i∈I

{
 pi, ci, •¡.Y if ϕi=ff
 pi, ci, pi¡.Lϕi M otherwise

The synthesis function is compositional. It assumes a bijective mapping between
formula variables and monitor recursion variables and converts logical variables X
accordingly, whereas maximal fixpoints, maxX.ϕ, are converted into the correspond-
ing recursive monitor. The synthesis also converts truth tt into the identity monitor
id. Intuitively, since every system satisfies tt, the passiveness of monitor id helps

43

Chapter 5. Synthesising suppression monitors

preserve the transparency requirements of Definitions 4.3, 4.5 and 4.7. Similarly,
ff is synthesised into id because a system cannot be altered in any way to satisfy ff.

Normalized conjunctions,
∧
i∈ I [pi, ci¡]ϕi, are synthesised into a recursive sum-

mation of monitors, i.e., recY.
∑

i∈I mi, where Y is fresh, and every branch mi can
be either of the following:

(i) when mi is derived from a branch of the form [pi, ci¡]ϕi where ϕi 6=ff, the syn-
thesis produces a monitor with the identity transformation prefix, pi, ci, pi¡,
followed by the monitor synthesised from the continuation ϕi, i.e., [pi, ci¡]ϕi is
synthesised as pi, ci, pi¡.Lϕi M;

(ii) when mi is derived from a branch of the form [pi, ci¡]ff, the synthesis produces
a suppression transformation, pi, ci, •¡, that drops every action matching pi, ci¡,
followed by the recursive variable of the branch Y , i.e., a branch of the form
[pi, ci¡]ff is translated into pi, ci, •¡.Y .

Once again, (i) helps preserve the transparency requirements by ensuring that the
synthesised monitor does not suppress actions that do not violate the property, i.e.,
those that satisfy [pi, ci¡]ϕi where ϕi 6=ff. In comparison, (ii) employs a recursive
suppression loop to completely incapacitate the composite system from producing
violating actions at runtime, i.e., those that satisfy [pi, ci¡]ff.

Example 5.2. Recall formula ϕ1 from Example 4.1:

ϕ1
def
= maxX.[(x)?req, x6=b¡][x!ans¡]([x!ans¡]ff∧[b!log¡]X).

Using the synthesis function defined in Definition 5.2, we generate monitor

Lϕ1 M = recX. (x)?req, x 6= b¡.recZ.
(
 x!ans¡.recY.

(
 x!ans, •¡.Y + b!log¡.X

))
which can be optimized by removing redundant recursive constructs (e.g., recZ.),
thus obtaining:

recX. (x)?req, x 6= b¡.
(
 x!ans¡.recY.

(
 x!ans, •¡.Y + b!log¡.X

))
= met.

To evaluate the quality of our synthesis, we prove the following results.

Theorem 5.1 (Enforceability). The (sub)logic sHMLnf is suppression enforceable
with respect to Definitions 4.4, 4.6 and 4.8.

Proof. By Definition 4.1, the result follows if we show that for all ϕ∈ sHMLnf, Lϕ M
adequately enforces ϕ in the sense of our strictest definition Definition 4.8. Hence,
by Definition 4.8, this is a corollary of Propositions 5.1 and 5.2 stated below.

Proposition 5.1 (Soundness). For every system state s∈Sys and ϕ∈ sHMLnf then
JϕK 6=∅ implies Lϕ M[s]∈ JϕK.

44

Chapter 5. Synthesising suppression monitors

(s, tt) ∈R implies true
(s,ff) ∈R implies false

(s,
∧
i∈I ϕi) ∈R implies (s, ϕi) ∈ R for all i∈ I

(s, [p, c¡]ϕ) ∈R implies (∀α, r · if s α
==⇒ r,mtch(p, α) = σ and cσ ⇓ true) then (r, ϕσ) ∈ R

(s,maxX.ϕ) ∈R implies (s, ϕ{maxX.ϕ/X}) ∈ R.

Figure 5.1: A satisfaction relation for sHML formulas

Proposition 5.2 (Eventual Transparency). For every system state s∈Sys and for-
mula ϕ∈ sHMLnf, if Lϕ M[s] t

=⇒ m′[s′] and s′ ∈ Jafter(ϕ, t)K then m′[s′] ∼ s′.

To facilitate the proofs for Propositions 5.1 and 5.2 we use the satisfaction se-
mantics for sHML from [10] which are defined in terms of the satisfaction relation,
�. When restricted to sHML, � is the largest relation R satisfying the implications
defined in Figure 5.1. Since in [10] this satisfaction semantics was shown to agree
with the sHML semantics of Figure 2.2, we use s � ϕ in lieu of s ∈ JϕK. We also as-
sume the classic notion of strong similarity, s@∼ r as our touchstone system preorder
for LTSs [85, 97].

Definition 5.3 (Strong Similarity). A relationR over a set of system states is a strong
simulation iff whenever (s, r) ∈ R for every action µ:

• every s µ−→ s′ implies there exists a transition r
µ−→ r′ such that (s′, r′) ∈ R

States s and r are similar, s@∼ r, iff they are related by a strong simulation.

The reader may safely skip these proofs upon first reading and continue on page 49.

Proof for Proposition 5.1. We prove a stronger result stating that for every system r

that can be simulated by Lϕ M[s], i.e., r @∼ Lϕ M[s], if JϕK 6=∅ then r � ϕ. We prove this
result by showing that relation R def

= {(r, ϕ) JϕK 6=∅ and r @∼ Lϕ M[s] } is a satisfaction
relation (�) as defined by the rules in Figure 5.1. We proceed by case analysis on
the structure of ϕ.

Cases ϕ∈{X,ff}. These cases do not apply as when ϕ∈{X,ff} then JϕK =∅.

Case ϕ = tt. This case holds trivially as for every process r @∼ L tt M[s] the pair (r, tt)

is in R since we know that JttK 6=∅.

Case ϕ = maxX.ϕ and X∈fv(ϕ). Lets assume that (r,maxX.ϕ) ∈ R and so we have
that

JmaxX.ϕK 6=∅ (5.1)

r @∼ L maxX.ϕ M[s]. (5.2)

45

Chapter 5. Synthesising suppression monitors

To prove that R is a satisfaction relation we show that (r, ϕ{maxX.ϕ/X}) ∈ R as well.
Hence, since Lϕ{maxX.ϕ/X} M produces monitor Lϕ M{recX.Lϕ M/X} that is the unfolded
equivalent of recX.Lϕ M produced by L maxX.ϕ M, we can conclude that L maxX.ϕ M ∼
Lϕ{maxX.ϕ/X} M and so from (5.2) we have that

r @∼ Lϕ{maxX.ϕ/X} M[s]. (5.3)

Since from (5.1) and JmaxX.ϕK = Jϕ{maxX.ϕ/X}K we have that Jϕ{maxX.ϕ/X}K 6=∅,
by (5.3) and the definition of R we can finally conclude that (r, ϕ{maxX.ϕ/X}) ∈ R
as required.

Case ϕ =
∧
i∈I [pi, ci¡]ϕi and #h∈I ph, ch¡. Start by assuming that (r,

∧
i∈I [pi, ci¡]ϕi) ∈

R and so we have that

J
∧
i∈I [pi, ci¡]ϕiK 6=∅ (5.4)

r @∼ L
∧
i∈I [pi, ci¡]ϕi M[s]. (5.5)

By the definition of L− M we further know that

L
∧
i∈I [pi, ci¡]ϕi M = recY.

(∑
i∈I

{ pi, ci, •¡.Y if ϕi=ff
 pi, ci¡.Lϕi M otherwise

)
= m

which can be further unfolded as

L
∧
i∈I [pi, ci¡]ϕi M =

(∑
i∈I

{ pi, ci, •¡.m if ϕi=ff
 pi, ci¡.Lϕi M otherwise

)
= m∧. (5.6)

In order to prove that R is a satisfaction relation, we must show that for every j ∈ I,
(r, [pj , cj¡]ϕj)∈R as well. In order to show this we inspect the different types of
branches that are definable in sHMLnf and hence we consider the following cases:

(i) A violating branch, [pj , cj¡]ff:

To prove that (r, [pj , cj¡]ff)∈R we must show that the following criteria hold:
(a) J[pj , cj¡]ffK 6=∅, (b) r @∼ L [pj , cj¡]ff M[s], and (c) that for every action α, when
mtch(pj , α) = σ and cjσ ⇓ true, then there does not exist a system r′ such that
r

α
==⇒ r′. From (5.4) and the definition of J−K we can immediately infer that (a)

holds, and so we have that

J[pj , cj¡]ffK 6=∅. (5.7)

We now note that since from (5.6) we know that branch [pj , cj¡]ff is synthesised
into a suppression monitor pj , cj , •¡.m, we infer that this branch can only sup-
press actions matching pj , cj¡, while monitor m = L

∧
i∈I [pi, ci¡]ϕi M can possibly

suppress other actions as well. Hence, the composite system m[s] (for any s)

46

Chapter 5. Synthesising suppression monitors

can at most perform the same actions as L [pj , cj¡]ff M[s] and so from (5.5) we can
deduce that (b) holds since

r @∼ L
∧
i∈I [pi, ci¡]ϕi M[s] @∼ L [pj , cj¡]ff M[s] (5.8)

as required. Finally, from (5.6) we know that monitor m was synthesised from a
normalized conjunction which is disjoint (#h∈I ph, ch¡) from which we conclude
that whenever the system performs action α such that mtch(pj , α) = σ and cjσ ⇓
true, only the suppression branch pj , cj , •¡.m (which is a single branch of m in
(5.6)) can be selected via rule eSel. Once this branch is selected, the action
is suppressed via rules eTrn and iSup which cause the composite system m[s]

to transition over a silent τ action. This therefore means that m[s] 6α==⇒, and so
from (5.5) we can deduce that (c) also holds since

@r′ · r α
==⇒ r′ (5.9)

which means that any modal necessity that precedes ff can never be satisfied
by r, as required. This case thus holds by (5.7), (5.8) and (5.9).

(ii) A non-violating branch, [pj , cj¡]ϕj (where ϕj 6= ff):

To prove that this branch is in R, (r, [pj , cj¡]ϕj) ∈ R, we must show that (a)

J[pj , cj¡]ϕjK 6=∅, (b) r @∼ L [pj , cj¡]ϕj M[s] and then that (c) for every action α and
derivative r′, when mtch(pj , α) = σ, cjσ ⇓ true and r

α
==⇒ r′ then (r′, ϕjσ) ∈ R.

From (5.4) and by the definition of J−K we can immediately determine that (a)

holds, and so that

J[pj , cj¡]ϕjK 6=∅. (5.10)

Since L [pj , cj¡]ϕj M = recY. pj , cj¡.Lϕ M = m′, from (5.6) we deduce that both mon-
itors m′ and m∧ refrain from modifying actions matching pj , cj¡ but m may
suppress more actions. We can thus infer that for all s, m[s]@∼ L [pj , cj¡]ϕj M[s]
and so from (5.5) we can deduce that (b) holds since

r @∼m[s]@∼ L [pj , cj¡]ϕj M[s] (5.11)

as required. We now prove that (c) holds by assuming that

mtch(pj , α) = σ and cjσ ⇓ true (5.12)

r
α

==⇒ r′ (5.13)

47

Chapter 5. Synthesising suppression monitors

and so from (5.5) and (5.13) we can deduce that

m[s]
α

==⇒ q for some q where r′ @∼ q. (5.14)

By the definition of α
==⇒, we know that the delayed transition in (5.14) is com-

posed from zero or more τ-transitions followed by the α-transition i.e.,

m[s]
τ−→*q′ α−→ q. (5.15)

By the rules in our model we know that the τ-reductions in (5.15) could have
been the result of either one of these instrumentation rules, namely iSup or
iAsy. From (5.6) we however know that whenever an action is suppressed (via
iSup) the synthesised monitor m always recurses back to its original form m

and in this case only s changes its state to some s′; the same happens when
rule iAsy is applied. Hence, we know that q′ = m[s′] (for some derivative s′ of s),
and so from (5.15) we have that

m[s′]
α−→ q. (5.16)

From (5.12) we also know that the reduction in (5.16) can only be the result of
rule iTrn, and so we can infer that s′ α−→ s′′ and that

q = m′[s′′] where (5.17)

m
αIα−−−→ m′. (5.18)

Since we know that [pj , cj¡]ϕj and ϕj 6= ff, from (5.6) we know that m defines an
identity branch of the form pj , cj¡.Lϕj M which is completely disjoint from the rest
of the monitors. This is true since m is derived from a normalized conjunction
in which #i∈I pi, ci¡. Hence, from (5.6), (5.12) and (5.18) we can deduce that

m′ = Lϕjσ M. (5.19)

Since from (5.10) and by the definition of J−K we know that JϕjσK 6=∅ and from
(5.14), (5.17) and (5.19) we have that r′ @∼ Lϕjσ M[s′′], by the definition of R we
have that (r′, ϕjσ) ∈ R. From this we can conclude that (c) holds as well, which
means that

∀α, r′ · if mtch(pj , α) = σ, cjσ ⇓ true and r
α

==⇒ r′ then (r′, ϕjσ) ∈ R. (5.20)

This case is therefore done by (5.10), (5.11) and (5.20).

Proof for Proposition 5.2. We must prove that for every formula ϕ∈ sHMLnf if Lϕ M =m

48

Chapter 5. Synthesising suppression monitors

then evtenf(m,ϕ). We then prove that for every ϕ∈ sHMLnf, if Lϕ M[s] t
=⇒ m′[s′] and

s′ ∈ Jafter(ϕ, t)K then m′[s′] ∼ s′. We also refer to Proposition 5.3 and lemma 5.1
whose proofs are provided in Appendices B.3.1 and B.3.2 respectively starting on
page 160.

Proposition 5.3 (Transparency). For every system state s∈Sys and ϕ∈ sHMLnf, if
s∈ JϕK then Lϕ M[s] ∼ s.

Lemma 5.1. For every formula ϕ∈ sHMLnf, system state s and trace t, if Lϕ M[s] t
=⇒

m′[s′] then ∃ψ ∈ sHMLnf · ψ = after(ϕ, t) and Lψ M = m′.

Now, assume that

Lϕ M[s] t
=⇒ m′[s′] (5.21)

s′ ∈ Jafter(ϕ, t)K (5.22)

and so from (5.21) and Lemma 5.1 we have that

∃ψ ∈ sHMLnf · ψ = after(ϕ, t) (5.23)

L after(ϕ, t) M = m′ = Lψ M. (5.24)

Hence, knowing (5.22) and (5.23), by Proposition 5.3 (Transparency) we deduce that

L after(ϕ, t) M[s′] ∼ s′. (5.25)

We are therefore done since from (5.24) and (5.25) we can conclude that m′[s′] ∼ s′

as required.

We now proceed to show that the synthesised monitor Lϕ M is also guaranteed
to be —in some sense— optimal when enforcing ϕ. Recall from Definition 4.9 that
in order to determine that a synthesised monitor Lϕ M is the most optimal monitor
enforcing ϕ, we must compare Lϕ M to all adequate monitors, including those that
perform insertions and replacements. Since we have limited ourselves to studying
the enforceability of unidirectional transducers vis-a-vis action suppressions, we
have not yet explored what properties we can enforce using action insertions and
replacements.

In this first attempt at determining a level of optimality for our synthesised unidi-
rectional transducers, we will limit our comparison to other suppression transduc-
ers only and thus aim to establish that the synthesised monitors are SUP-optimal.
Having already established that Lϕ M adequately enforces ϕ in Theorem 5.1, to prove
that it is also SUP-optimal it suffices to prove the following result.

Theorem 5.2 (SUP-Optimal Enforcement). For every system state s, system run tτ

and monitorm, if ec(m)⊆{SUP}, enf(m,ϕ) and s tτ==⇒ then mc(Lϕ M, tτ)≤mc(m, tτ).

Once again the reader may safely skip this proof and proceed on page 54.

49

Chapter 5. Synthesising suppression monitors

Proof. To simplify this proof we assume that SupTrn represents the set of all sup-
pression monitors, i.e., SupTrn def

= {m ec(m)={SUP} }, and refer to the following
lemmas proven in Appendices B.3.3 to B.3.5 starting on page 174.

Lemma 5.2. For every monitor m∈SupTrn and system run tτ there exists a number
N so that mc(m, tτ) =N .

Lemma 5.3. For every action α and m∈SupTrn, if enf(m,
∧
i∈I [pi, ci¡]ϕi), m

αIα−−−→ m′,
mtch(pj , α) =σ and cjσ ⇓ true for some j∈I then enf(m′, ϕjσ).

Lemma 5.4. For every action α and m∈SupTrn, if enf(m,
∧
i∈I [pi, ci¡]ϕi) and m αI•−−−→

m′ then enf(m′,
∧
i∈I [pi, ci¡]ϕi).

We proceed to prove that for every system state s, system run tτ and monitor m
if ec(m)⊆{SUP}, enf(m,ϕ) and s

tτ==⇒ then mc(Lϕ M, tτ)≤mc(m, tτ). Since we limit our
comparison to suppression monitors only, and since by Lemma 5.2 we know that
for every suppression monitor m, mc(m, tτ) =N , we can instead prove that, for every
monitorm∈SupTrn, system run tτ and state s, if enf(m,ϕ), s tτ==⇒ and mc(Lϕ M, tτ) =N

then N ≤mc(m, tτ). We now proceed by rule induction on the transition step deriva-
tions and thus consider every case for mc(Lϕ M, tτ).

Case mc(Lϕ M, tτ) when tτ =µt′τ and Lϕ M[sys(µt′τ)]
µ−→ m′ϕ[sys(t′τ)]. Assume that

mc(Lϕ M, µt′τ) = mc(m′ϕ, t
′
τ) = N (5.26)

which implies that

Lϕ M[sys(µt′τ)]
µ−→ m′ϕ[sys(t′τ)] (5.27)

and also assume that

enf(m,ϕ) (5.28)

and that s µt′τ===⇒. By the rules in our model we can infer that the reduction in (5.27)
can result from either iAsy when µ= τ or iDef and iTrn when µ=α. We consider
each case individually.

• iAsy: By rule iAsy from (5.27) we know that µ= τ and that

m′ϕ = Lϕ M. (5.29)

Since µ= τ , by rule iAsy any monitor m is bound to allow the prefixing τ action
of sys(τt′τ) to execute, and so we have that

m[sys(τt′τ)]
τ−→ m[sys(t′τ)]. (5.30)

50

Chapter 5. Synthesising suppression monitors

Hence, by (5.26), (5.28) and since s τt′τ===⇒ entails s τ−→ s′ and s′
t′τ==⇒ for some s′,

we can apply the inductive hypothesis and deduce that N ≤mc(m, t′τ) so that
by (5.30) and the definition of mc, we conclude that N ≤mc(m, τt′τ) as required.

• iDef: From (5.27) and rule iDef we know that µ=α, Lϕ M 6α−→ and that m′ϕ = id.
Since id does not modify system actions, we can deduce that mc(m′ϕ, t

′
τ) = 0 and

so by the definition of mc we can infer that mc(Lϕ M, αt′τ) = 0 as well. This means
that we cannot find a monitor that performs fewer transformations, and so we
conclude that 0≤mc(m,αt′τ) as required.

• iTrn: From (5.27) and rule iTrn we know that µ=α and that

Lϕ M αIα−−−→ m′ϕ. (5.31)

We now inspect the cases for ϕ.

– ϕ∈{ff, tt, X}: The case for X does not apply since LX M does not yield a
valid monitor, while the cases when ϕ∈{tt,ff} are vacuously satisfied since
L tt M = L ff M = id and mc(id, αt′τ) = 0.

– ϕ=
∧
i∈I [pi, ci¡]ϕi where #i∈I pi, ci¡: Since ϕ =

∧
i∈I [pi, ci¡]ϕi, by the defi-

nition of L− M we have that

L
∧
i∈I [pi, ci¡]ϕi M = recY.

∑
i∈I

{ pi, ci, •¡.Y if ϕi = ff
 pi, ci¡.Lϕi M otherwise

=
∑
i∈I

{
 pi, ci, •¡.L

∧
i∈I [pi, ci¡]ϕi M if ϕi = ff

 pi, ci¡.Lϕi M otherwise
(5.32)

Since normalized conjunctions are disjoint, i.e., #i∈I pi, ci¡, from (5.32)
we can infer that the identity reduction in (5.31) can only happen when α

matches an identity branch, pj , cj¡.Lϕj M (for some j ∈ I), that is

mtch(pj , α) =σ and cjσ ⇓ true. (5.33)

Hence, knowing (5.31) and (5.33), by rule eTrn we can infer thatm′ϕ = Lϕjσ M
and so from (5.26) we can infer that

mc(m′ϕ, t
′
τ) = N where m′ϕ = Lϕjσ M. (5.34)

Since from (5.34) we also know that the monitor branch pj , cj¡.Lϕj M is
derived from a non-violating modal necessity, i.e., [pj , cj¡]ϕj where ϕj 6= ff,
we can infer that α does not violate the property and so it should not
be modified by any other monitor m, as otherwise it would infringe the
eventual transparency constraint of assumption (5.28) (for every s∈ JϕK).

51

Chapter 5. Synthesising suppression monitors

Therefore, we can deduce that

m
αIα−−−→ m′ (for some m′) (5.35)

and subsequently, knowing (5.35) and that tτ =αt′τ and sys(αt′τ)
α−→sys(t′τ),

by rule iTrn and the definition of mc we infer that

mc(m,αt′τ) = mc(m′, t′τ). (5.36)

Since from (5.28), (5.31), (5.33) and Lemma 5.3 we know that enf(m′, ϕjσ),

by (5.34) and since s αt′τ===⇒ entails that s α−→ s′ and s′
t′τ==⇒ for some s′, we

can apply the inductive hypothesis and deduce that N ≤mc(m′, t′τ) and so
from (5.36) we conclude that N ≤mc(m,αt′τ) as required.

– ϕ= maxX.ϕ′ and X ∈ fv(ϕ′): Since ϕ= maxX.ϕ′, by the syntactic rules of
sHMLnf we can determine that ϕ′ cannot be ff or tt since X /∈ fv(ϕ′) other-
wise, and it cannot be X since every logical variable must be guarded.
Hence, ϕ′ can only have the following form: maxY1 . . . Yn.

∧
i∈I [pi, ci¡]ϕi.

Therefore, by unfolding every fixpoint in maxX.ϕ′ we reduce our formula to
ϕ

def
=
∧
i∈I [pi, ci¡]ϕi{maxX.ϕ′

/X , . . .}. The remainder of this proof is analogous
to that of the subcase when ϕ=

∧
i∈I [pi, ci¡]ϕi.

Case mc(Lϕ M, tτ) when tτ =µt′τ and Lϕ M[sys(µt′τ)]
µ′−−→ m′ϕ[sys(t′τ)] and µ′ 6= µ. As-

sume that

mc(Lϕ M, µt′τ) = 1 +M (5.37)

where M = mc(m′ϕ, t
′
τ) (5.38)

which implies that

Lϕ M[sys(µt′τ)]
µ′−−→ m′ϕ[sys(t′τ)] where µ′ 6= µ. (5.39)

Also, assume that

enf(m,ϕ) (5.40)

and that s µt′τ===⇒. Since we only consider suppression monitors, rule iSup is the only
rule that can transition over µ′ 6= µ in (5.39), and so we have that µ = α and µ′ = τ

and that

Lϕ M αI•−−−→ m′ϕ. (5.41)

We now inspect the cases for ϕ.

52

Chapter 5. Synthesising suppression monitors

• ϕ∈{ff, tt, X}: The case for X does not apply since LX M does not yield a valid
monitor. The cases for tt and ff do not apply as well since L ff M = L tt M = id which
does not perform the reduction in (5.41).

• ϕ=
∧
i∈I [pi, ci¡]ϕi where #i∈I pi, ci¡: Since ϕ =

∧
i∈I [pi, ci¡]ϕi, by the definition

of L− M we have that

L
∧
i∈I [pi, ci¡]ϕi M = recY.

∑
i∈I

{ pi, ci, •¡.Y if ϕi = ff
 pi, ci¡.Lϕi M otherwise

=
∑
i∈I

{
 pi, ci, •¡.L

∧
i∈I [pi, ci¡]ϕi M if ϕi = ff

 pi, ci¡.Lϕi M otherwise
(5.42)

Since normalized conjunctions are disjoint i.e., #i∈I pi, ci¡, from (5.42) we can
infer that the suppression reduction in (5.41) is only possible when αmatches a
suppression branch, pj , cj , •¡.L

∧
i∈I [pi, ci¡]ϕi M (for some j ∈ I), that was derived

from a violating modal necessity [pj , cj¡]ff, and so we can infer that

m′ϕ = L
∧
i∈I [pi, ci¡]ϕi M (5.43)

mtch(pj , α) =σ and cjσ ⇓ true = σ. (5.44)

Knowing (5.44) and that [pj , cj¡]ff we can deduce that α violates the property
and so for the soundness constraint of assumption (5.40) to hold, any other
monitorm is obliged to somehow modify α. Since we only consider suppression
monitors we can infer that

m
αI•−−−→ m′ (for some m′) (5.45)

and so knowing (5.45) and that sys(αt′τ)
α−→ sys(t′τ), by rule iSup and the defi-

nition of mc we have that

mc(m,αt′τ) = 1 + mc(m′, t′τ) (5.46)

Since from (5.40), (5.41) and Lemma 5.4 we know that enf(m′,
∧
i∈I [pi, ci¡]ϕi),

by (5.38), (5.43), (5.46) and since s
µt′τ===⇒ entails that s µ−→ s′ and s′

t′τ==⇒ (for
some s′), we can apply the inductive hypothesis and deduce that M ≤mc(m′, t′τ).
Hence, from (5.37), (5.38) and (5.46) we conclude that 1 + M ≤mc(m,αt′τ) as
required.

• ϕ= maxX.ϕ′ andX ∈ fv(ϕ′): Since ϕ= maxX.ϕ′, by the syntactic rules of sHMLnf

we can determine that ϕ′ cannot be ff or tt since X /∈ fv(ϕ′) otherwise, and it
cannot be X since every logical variable must be guarded. Hence, ϕ′ can only
have the following form, i.e., ϕ def

=
∧
i∈I [pi, ci¡]ϕi{maxX.ϕ′

/X , . . .}. Hence by un-
folding every fixpoint in maxX.ϕ′ we reduce our formula to ϕ def

= ϕ{maxX.ϕ/X}.

53

Chapter 5. Synthesising suppression monitors

We thus omit the remainder of this proof as it becomes identical to that of the
subcase when ϕ=

∧
i∈I [pi, ci¡]ϕi.

Case mc(Lϕ M, tτ) when tτ ∈{µt′τ , ε} and Lϕ M[sys(µt′τ)] 6µ
′
−−→. Assume that

mc(Lϕ M, tτ) = | tτ | (where tτ ∈{µt′τ , ε}) (5.47)

Lϕ M[sys(µt′τ)] 6µ
′
−−→ . (5.48)

Since tτ ∈{µt′τ , ε} we consider both cases individually.

• tτ = ε : This case holds trivially since by (5.47), (5.48) and the definition of mc,
mc(Lϕ M, ε) = | ε | = 0.

• tτ = µt′τ : This case does not apply since rule iDef prevents (5.48) from hap-
pening.

Case mc(Lϕ M, tτ) when tτ ∈{µt′τ , ε} and Lϕ M[sys(tτ)]
µ′−−→ m′ϕ[sys(tτ)]. As we only

consider suppression monitors, this case does not apply since Lϕ M[sys(tτ)]
µ′−−→

m′ϕ[sys(tτ)] can only be achieved via an insertion monitor and rule iIns.

In light of Theorems 5.1 and 5.2, in order to show that sHML is an enforceable
logic, we only need to prove that for every ϕ ∈ sHML there exists a corresponding
ψ ∈ sHMLnf with the same semantic meaning, i.e., JϕK = JψK. In fact, we go a step
further and provide a constructive proof using a transformation 〈〈−〉〉:sHML→sHMLnf

that constructs a semantically equivalent sHMLnf formula from an sHML one. As
a result, from an arbitrary sHML formula ϕ we can then automatically synthesise
a correct monitor using L 〈〈ϕ〉〉 M, which is useful for tool construction.

5.2 The normalisation algorithm

Our normalisation algorithm, 〈〈−〉〉, converts closed sHML formulas to sHMLnf for-
mulas. It is based on Aceto et al.’s work [4] for determinising (possibly open) sHML
formulas defining concrete actions, and on Rabinovich’s work [91] for determinising
systems of equations, both of which rely on the standard powerset construction for
converting NFAs into DFAs. More specifically, the work by Aceto et al. does not
explicitly provide an algorithm, but rather the algorithm is intertwined within the
given proofs. It is also defined with respect to a version of sHML that only allows
for specifying formulas about concrete system actions rather than symbolic ones.

Hence our improvements to Aceto et al.’s work [4] is two fold. First, we alleviate
the process of having to go through the proofs in order to understand their deter-
minisation algorithm. We extract the necessary steps from their proofs and present

54

Chapter 5. Synthesising suppression monitors

them as a stand-alone algorithm that is separate from their respective proofs but
which works for formulas defining concrete system actions (represented as single-
ton symbolic actions). Second, we define additional normalisation steps to allow
for normalising sHML formulas that specify symbolic actions, which we evaluate by
adding the necessary semantic preservation proofs.

In the end, our resulting algorithm does not only provide a procedural way for
normalising sHML formulas with symbolic actions, but also allows us to prove an-
other major result, this time attesting that the normalised sHML subset is equally
expressive to sHML.

Theorem 5.3 (Normalisation Equivalence). For every closed sHML formula ϕ there
exists a formula ψ ∈ sHMLnf such that JϕK=JψK.

5.2.1 Reconstructing sHML into sHMLnf with respect to singleton sym-
bolic actions

We first define the normalization algorithm for sHML formulas that only specify
singleton symbolic actions. Since these type of symbolic actions can only match
a single visible action, they can be easily distinguished statically based on their
syntactic form.

Example 5.3. Consider the following singleton symbolic actions (x)!(y), x=a ∧ y=3¡
and (x)!(y), x=a ∧ y=4¡, or for short a!3¡ and a!4¡. From their appearance one can
immediately tell that these symbolic actions differ both syntactically and semanti-
cally, i.e., a!3¡ 6= a!4¡ implies Ja!3K∩Ja!4K=∅. By contrast, despite differing syntacti-
cally, non-singleton symbolic actions such as (x)!3¡ and a!(y)¡ might not necessarily
be disjoint, i.e., although (x)!3¡ 6= a!(y)¡ we have that J (x)!3¡K∩J a!(y)¡K = {a!ans}.

We define the algorithm in terms of the four constructions given below. As the
first three constructions are derived directly from [4], we rely on the proofs provided
in [4] to ensure their semantic preservation i.e., that the result of each construc-
tion is semantically equivalent to its input. However, the last construction was not
included in [4], and so we include an additional proof that ensures semantic preser-
vation. The construction sequence is as follows:

§1. Equation construction: the formula is reformulated into a system of equa-
tions to enable easier manipulation in later stages (Section 5.2.1.1).

§2. Powerset construction: the resulting system of equations is restructured into
an equivalent system of equations that defines syntactically disjoint conjunc-
tions (Section 5.2.1.2).

55

Chapter 5. Synthesising suppression monitors

ϕ ∈ sHMLeq ::= tt | ff |
∧
i∈I [η]Xi

Figure 5.2: A syntactic restriction for equated formulas.

§3. Formula reconstruction: the system of equations is converted back into an
sHML formula with disjoint conjunctions which may define redundant fixpoints
(Section 5.2.1.3).

§4. Redundant fixpoint removal: redundant fixpoint variable declarations, maxX.ϕ,
are finally removed whenever variable X is not used in ϕ − this produces the
required sHMLnf formula (Section 5.2.1.4).

For conciseness, in the following subsections we refer to symbolic actions by the
abbreviation SAs, and we use notation η to refer to an arbitrary symbolic action
 p, c¡. We also use notation p[x0 . . . xn] to denote an arbitrary pattern that binds
variables x0 . . . xn, and c[x0 . . . xn] for a condition whose evaluation depends on the
values of variables x0 . . . xn.

5.2.1.1 Equation Construction

This construction produces a system of equations from a given sHML formula. Sys-
tems of equations (SoEs) provide an alternative way for defining recursive sHML
formulas without resorting to maximal fixpoints.

Definition 5.4 (System of Equations). A system of equations is defined as a triple
(Eq , X, Y), where X represents the principal logical variable which identifies the
starting equation, Y is a finite set of free logical variables, and Eq is an n-tuple of
equations, i.e.,

{
X1 = ψ1, X2 = ψ2, . . . , Xn = ϕn

}
, where for 1 ≤ i < j ≤ n, Xi is

different from Xj, and each ϕi is a sHMLeq expression as defined in Figure 5.2.

Two systems of equations are equivalent (written as≡) when their largest solution
assigns the same meaning to their principal variable. We abuse notation and use
Eq as a map where Eq(Xi) = ϕi when Xi = ϕi ∈ Eq. A maximal fixpoint maxX.ϕ is
represented in a SoE by the X-component of the greatest solution of the SoE over
(2Sys)n (where n refers to the number of equations in the equation tuple). A SoE is
closed when Y is empty.

Example 5.4. A recursive formula such as maxX0.[a?3¡]([a!4¡]X0∧[a!5¡]ff) can be
represented as a system of four equations (Eq , X0, Y) where X0 is the principal
variable, Eq def

=
{
X0=[a?3¡]X2, X2=[a!4¡]X3∧[a!5¡]X4, X3=[a?3¡]X2, X4=ff

}1, and Y=∅
since all the logical variables defined in the system are bound, i.e., equated to some

1Variable X1 was left out on purpose. The reason why is explained in Example 5.5.

56

Chapter 5. Synthesising suppression monitors

〈〈ϕ〉〉1
def
=



({
Xj = tt

}
, Xj , ∅

)
if ϕ = tt({

Xj = ff
}
, Xj , ∅

)
if ϕ = ff({

Xj = Y
}
, Xj ,

{
Y
})

if ϕ = Y(⋃
i∈I

Eqi ∪
{
Xj =

∧
i∈I

Eqi(Xi)
}
, Xj ,

⋃
i∈I
Yi
) if ϕ =

∧
i∈I ϕi and

∀i∈ I · 〈〈ϕi〉〉1 = (Eqi , Xi, Yi)(
Eq ∪

{
Xj = [η]Xk

}
, Xj , Y

) if ϕ = [η]ψ and
〈〈ψ〉〉1 = (Eq , Xk, Y)({

Y=Eq(Xi)
}
∪
{
Xj=Eq(Xi) if Xj=Y ∈Eq
Xk=ϕk if Xk=ϕk∈Eq

}
, Y, Y\

{
Y
}) if ϕ = maxY.ϕ′ and
〈〈ϕ′〉〉1 = (Eq , Xi, Y)

where variable Xj is fresh in all cases.

Figure 5.3: The conversion algorithm from an sHML formula to a SoE.

sHMLeq formula. Notice how recursion is represented by referring to X2 in the
penultimate equation.

Function 〈〈−〉〉1 : sHML→ (Eq×Var×P(Var)) in Figure 5.3 compositionally anal-
yses a given closed sHML formula ϕ and translates it into an equivalent SoE. Truth,
tt, and falsehood, ff, are respectively translated into equations Xj = tt and Xj = ff,
with j being a fresh index and Xj being the principal variable of the resulting SoE.
Logical variables Y are initially translated into a SoE defining equation Xj = Y , Xj

as the principal variable, and Y =
{
Y
}
, signifying that Y is free. Although equation

Xj = Y does not comply to sHMLeq (and is thus invalid), since we assume closed
formulas, this equation gets fixed when 〈〈−〉〉1 recurses back to the binding fixpoint,
i.e., in the case when ϕ=maxX.ϕ′.

In fact, fixpoints, maxY.ϕ, are converted into equation Y = Eq(Xi), where Xi is the
principal variable of the SoE obtained from the recursive application on the con-
tinuation ϕ′ i.e., 〈〈ϕ′〉〉1 = (Eq , Xi, Y). This is added to the equation set Eq. Variable
Y is then removed from Y, denoting that although Y is free in ϕ′, this is no longer
the case when ϕ= maxY.ϕ′. Equations of the sort Xj = Y in Eq are reformulated
into valid equations as Xj = Eq(Xi) where Xi points to the same equation as Y ; this
ensures that every logical variable remains guarded by a modal necessity.

Example 5.5. Recall formula maxX0.[a?3¡]([a!4¡]X0∧[a!5¡]ff) from Example 5.4. Us-
ing function 〈〈−〉〉1 we start constructing a SoE by analysing the fixpoint maxX0.

However, in order to add the required equation, it must first recursively analyse
the rest of the formula. Hence, after analysing [a?3¡]([a!4¡]X0∧[a!5¡]ff), the function
constructs the SoE (Eq′ , X1, {X0}), where X1 is the principal variable, X0 is open,
and Eq′ def

=
{
X1=[a?3¡]X2, X2=[a!4¡]X3∧[a!5¡]X4, X3=X0, X4=ff

}
.

The function then returns to the initial case and continues analysing the fixpoint,
where it uses the returned equation set Eq′ to add equation X0 = Eq′(X1) where

57

Chapter 5. Synthesising suppression monitors

ϕ ∈ sHML#
eq ::= tt | ff |

∧
i∈I [η]Xi and #i∈I ηi

Figure 5.4: The sHML#
eq syntax.

Eq′(X1) = [a?3¡]X2. It also fixes the invalid equation X3 = X0 by changing it into
X3 = Eq′(X1). As a result we obtain the SoE (Eq , X0, ∅) where the equation set Eq
is defined as

{
X0=[a?3¡]X2, X1=[a?3¡]X2, X2=[a!4¡]X3∧[a!5¡]X4, X3=[a?3¡]X2, X4=ff

}
.

Since variable X1 is not reachable from the principal equation X0=[a?3¡]X2, it be-
comes redundant and can thus be removed. Hence, we end up with the SoE pre-
sented in Example 5.4.

Modal necessities, [η]ϕ, are reformed as a SoE defining equation set {Xj = [η]Xk}∪
Eq, where Xk and Eq are the principal variable and equation set obtained from
〈〈ϕ〉〉1 respectively. Conjunctions,

∧
i∈I ϕi, are converted into a SoE containing the

equations obtained from analysing every conjunct formula ϕi, i.e., Eqi for every i∈I,
along with equation Xj =

∧
i∈I Eqi(Xi), where Xi is the principal variable of every

SoE obtained from 〈〈ϕi〉〉1 (for every i ∈ I). Note that since the introduced variables
are chosen to be fresh, the equation sets Eqi are defined over pairwise disjoint sets
of bound variables.

Example 5.6. Consider a reformulated version of ϕ0 from Example 4.1 of Chapter 4
given by ϕ3

def
= maxX0.([a?req¡]([a!ans¡][a!ans¡]ff∧[a!ans¡][b!log¡]X0). From 〈〈ϕ3〉〉1 we

obtain (Eq , X0, ∅) where

Eq =


X0 = Eq(X1) = [a?req¡]X2, X1 = [a?req¡]X2 , X3 = [a!ans¡]X5 ,

X2 = Eq(X3)∧Eq(X4) = [a!ans¡]X5∧[a!ans¡]X6, X4 = [a!ans¡]X6 ,

X5 = [a!ans¡]X7, X6 = [b!log¡]X0, X7 = ff

 .

The greyed formulas are not reachable from the principal equation and are thus
redundant. We ignore them in forthcoming examples.

Lemma 5.5. For every closed sHML formula ϕ, the SoE obtained from 〈〈ϕ〉〉1 has the
same meaning as ϕ.

Proof. The proof follows from Lemma 10 given in [4]. This lemma was originally
proven in relation to formulas that define concrete visible actions α∈Act. However,
it still applies to formulas defining symbolic actions since the construction is in-
dependent of the type of action (i.e., symbolic or concrete) described in the modal
necessities.

5.2.1.2 Powerset construction

In this step we convert a SoE into an equivalent SoE in which every equated formula
meets the restrictions of sHML#

eq defined in Figure 5.4. Conjunctions in the equated

58

Chapter 5. Synthesising suppression monitors

〈〈(Eq , Xi, Y)〉〉2
def
= (Eq# , X{i}, Y)

Eq#
def
= { XI = ff if I ⊆ I(Eq) and ∃j∈I · Eq(Xj) = ff }
∪
{
XI =

∧
η∈G(I,Eq) [η]XCI(I,Eq,η) if I ⊆ I(Eq) and @j∈I · Eq(Xj) = ff

}
where I(Eq)

def
=

{
i
∣∣∣ (Xi = ϕi) ∈ Eq

}
G(I,Eq)

def
=

⋃
i∈I

{
η
∣∣∣ if Eq(Xi) =

∧
j∈I′ [η]Xj (for some I ′)

}
CI(I,Eq, η)

def
=

⋃
i∈I

{
j
∣∣∣ if Eq(Xi) = [η]Xj∧ϕ (for some ϕ)

}
Figure 5.5: The powerset construction for systems of equations.

sHML#
eq formulas are now required to be guarded by disjoint modal necessities. Fig-

ure 5.5 presents 〈〈−〉〉2 : (Eq×Var×P(Var)) → (Eq#×Var×P(Var)) where for every
logical variable X, Eq#(X)∈ sHML#

eq. This function generates a new SoE contain-
ing the powerset combinations of the equations from the original SoE. Intuitively, it
takes two or more equations and combines the equated formulas with a conjunc-
tion. This technique mimics the classic powerset construction for determinising
automata in automata theory [91].

Specifically, 〈〈−〉〉2 creates a new equation set in which the index of each equation
is I ⊆ I(Eq), i.e., an element of the powerset of all indices defined by the equation
set Eq of the given SoE. The formula ϕI of a new equation XI = ϕI is constructed
by analysing every equation Xi = ϕi where i ∈ I. If there exists at least one index
j ∈ I such that Xj = ff, then XI is immediately set to ff. This is done since if ff is
used to reconstruct a conjunction along with the other formulas ϕi (where i 6= j),
the resulting conjunction would still be semantically equivalent to ff. Otherwise, XI

is reconstructed as the merged conjunction
∧
η∈G(I,Eq) [η]XCI(I,Eq,η) which is created

using functions G and CI defined in Figure 5.5.
The first function G is used to retrieve the set of all the syntactically unique SAs

η that are defined by the equated formulas ϕi (for each i∈I). The second one CI

returns a set of indices containing the index j of every variable Xj that is guarded
by a modal necessity defining SA η in the equation equated to ϕi. Using these two
functions, every branch in the resulting conjunction

∧
η∈G(I,Eq) [η]XCI(I,Eq,η) becomes

guarded by a syntactically disjoint modal necessity.

Remark 5.1. Function 〈〈−〉〉2 makes a crucial assumption that actions that vary syn-
tactically are also semantically disjoint, and so if η1 6= η2 then no action can match
both SAs. For now, this assumption holds since we are only considering singleton
SAs. In Section 5.2.2 we will see how additional transformations are required to
ensure this for non-singleton SAs.

59

Chapter 5. Synthesising suppression monitors

ϕ ∈ sHML# ::= tt | ff | maxX.ϕ |
∧
i∈I [ηi]ψi (where #

i∈I
ηi and ψ ::= X |ϕ)

Figure 5.6: The sHML# syntax.

Example 5.7. Recall the SoE obtained in Example 5.6, i.e., (Eq , X0, ∅) where

Eq =

{
X0 = [a?req¡]X2, X2 = [a!ans¡]X5∧[a!ans¡]X6,
X5 = [a!ans¡]X7, X6 = [b!log¡]X0, X7 = ff

}
.

Function 〈〈−〉〉2 generates every possible combination and merges the modal necessi-
ties where necessary. From 〈〈(Eq , X0, ∅)〉〉2 we therefore obtain (Eq# , X{0}, ∅) where
Eq# =

{
X{0} = [a?req¡]X{2}, X{2} = [a!ans¡]X{5,6}

}
∪Eq′#. Notice how continuations X5

and X6 in X2 = [a!ans¡]X5∧[a!ans¡]X6 were combined into a single continuation in
X{2} = [a!ans¡]X{5,6}. As the algorithm constructs all combinations, it also includes
those for X{5,6} as per Eq′# =

{
X{5,6} = [a!ans¡]X{7}∧[b!log¡]X{0}, X{7} = ff, . . .

}
. From

the resulting equation set, we omit the redundant combinations that are not reach-
able from the new principal variable X{0}.

Lemma 5.6. For every SoE (Eq , X0, Y) , if 〈〈(Eq , X0, Y)〉〉2 =
(
Eq′ , X{0}, Y

)
then

(Eq , X0, Y) ≡
(
Eq′ , X{0}, Y

)
and for every (Xi = ϕi)∈Eq′, ϕi∈sHML#

eq.

Proof. In [4] the authors present a version of 〈〈−〉〉2 which processes equations that
equate formulas which only specify visible actions i.e., α∈Act. By definition syn-
tactically different visible actions are also disjoint, which is not always the case
with SAs. As for now we are assuming that our formulas can only include singleton
SAs, semantic preservation is ensured by Lemma 11 in [4]. In Section 5.2.2 we will
present the necessary steps for ensuring that this criterion holds for every SA.

5.2.1.3 Formula Reconstruction

With this step we convert the SoE back to a formula that adheres to the restric-
tions imposed by sHML# defined in Figure 5.6. sHML# requires conjunctions to be
guarded by disjoint modal necessities, but allows for defining redundant fixpoint
declarations.

Figure 5.7 presents 〈〈−〉〉3: (Eq# , Var, P(Var))→sHML#, which internally uses the
function σshml:(sHML# × Eq)→sHML# to construct the corresponding sHML# for-
mula. Internally, this function uses fvars to determine the set of free logical vari-
ables of a formula ϕ. Intuitively, fvars adds to the set the logical variable X when
ϕ = X, but removes it if it is bound by a maximal fixpoint i.e., when ϕ = maxX.ψ.
It reapplies recursively for every branch ϕi of conjunction

∧
i∈I ϕi and for every con-

tinuation ψ when ϕ = [p, c¡]ψ. Truth and falsehood do not define free variables and
so the empty set is returned.

60

Chapter 5. Synthesising suppression monitors

〈〈(Eq , Xi, Y)〉〉3
def
= σshml(Xi,Eq)

σshml(ϕ,Eq)
def
=

ϕ if fvars(ϕ)=∅

σshml(ϕσ,Eq) if fvars(ϕ)=S then σ=

{
(maxX.ϕ)/X

(X=ϕ)∈Eq
and X∈S

}

fvars(ϕ)
def
=


∅ if ϕ ∈ {tt,ff}
{X} if ϕ = X

fvars(ψ) \ {X} if ϕ = maxX.ψ⋃
i∈I fvars(ϕi) if ϕ =

∧
i∈I ϕi

fvars(ψ) if ϕ = [p, c¡]ψ

Figure 5.7: Constructing a sHML# formula from a SoE.

Equipped with the fvars function, the σshml function takes as input the principal
variable Xi along with the equation set Eq. Since Xi is an open term, fvars(Xi) =

{Xi}, the function searches for equation Xi=ϕi in Eq and converts it into a substitu-
tion environment which substitutes variable Xi with maxXi.ϕi, i.e., {maxXi.ϕi/Xi}.
This substitution is then applied to Xi and the function recurses with the sub-
stituted value, σshml(maxXi.ϕi,Eq). Recursion stops when the resulting formula ϕ

becomes closed, i.e., fvars(ϕ) = ∅, in which case ϕ is returned as a result.

Example 5.8. Recall the SoE (Eq# , X{0}, ∅) obtained in Example 5.7, where

Eq# =

{
X{0} = [a?req¡]X{2}, X{2} = [a!ans¡]X{5,6},
X{5,6} = [a!ans¡]X{7}∧[b!log¡]X{0}, X{7} = ff

}
.

By applying 〈〈−〉〉3 we obtain ψ4 ∈ sHML# where ψ4 = σshml(X{0},Eq#) which yields
maxX{0}.[a?req¡]maxX{2}.([a!ans¡]maxX{5,6}.([a!ans¡]maxX{7}.ff∧[b!log¡]X{0})).

Lemma 5.7. For every SoE (Eq , X{0}, Y), if 〈〈(Eq , X{0}, Y)〉〉3 = ϕ then ϕ conveys the
same meaning as (Eq , X{0}, Y) and that ϕ∈ sHML#.

Proof. Since construction 〈〈−〉〉3 is independent of the type of actions defined in the
modal necessities of the given SoE, we refer to Lemma 12 from [4] as proof that 〈〈−〉〉3
always produces a semantically equivalent formula ϕ∈sHML#.

5.2.1.4 Removing Redundant Fixpoints

The final construction produces a sHMLnf formula in which every logical variable
X defined by a fixpoint maxX.ϕ, is free in the continuation formula ϕ (i.e., X ∈
fvars(ϕ)), meaning that X is used at least once in ϕ. We formalize this construction
as function 〈〈−〉〉4 : sHML#→ sHMLnf in Figure 5.8. This function compositionally
inspects a given formula ϕ and removes maximal fixpoint declarations whenever
their variable is not free (and so never used) in ϕ.

61

Chapter 5. Synthesising suppression monitors

〈〈ϕ〉〉4
def
=



ϕ if ϕ∈{ff, tt}
〈〈ϕ′〉〉4 if ϕ=maxX.ϕ′ and X /∈ fvars(ϕ′)

maxX.〈〈ϕ′〉〉4 if ϕ=maxX.ϕ′ and X ∈ fvars(ϕ′)∧
i∈I

[ηi]〈〈ϕi〉〉4 if ϕ=
∧
i∈I

[ηi]ϕi

Figure 5.8: Converting sHML# formulas into sHMLnf.

Example 5.9. The redundant fixpoints in ψ4 from Example 5.8, can be removed via
function 〈〈−〉〉4, thus obtaining the following sHMLnf formula:

ψ5
def
= maxX{0}.[a?req¡][a!ans¡]([a!ans¡]ff∧[b!log¡]X{0}).

Notice that the obtained formula ψ5 is identical to ϕ0 (modulo α-renaming) from
Example 4.1 of Chapter 4, and are both definable via the sHMLnf syntax, and thus
in normal form.

Lemma 5.8. For every formula ϕ∈ sHML#, J〈〈ϕ〉〉4K = JϕK.

The proof is provided in Appendix B.3.6 on page 177.
We have presented a sequence of constructions that transform sHML formulas

defining singleton SAs into their normalized equivalent in sHMLnf. We thus con-
clude that when we only consider singleton SAs, Theorem 5.3 holds as a result of
Lemmas 5.5 to 5.8.

5.2.2 Reconstructing sHML into sHMLnf with respect to any Symbolic
Action

Up until now we have only considered normalizing sHML formulas defining single-
ton SAs as these events are easy to statically differentiate from each other which is a
crucial requirement for merging branches in §2. However, as we previously argued
in Example 5.3, modal necessities in general can also describe non-singleton SAs
for which syntactic difference does not necessarily reflect their disjointness. Due to
this issue, normalizing a non-singleton symbolic formula using the algorithm pre-
sented in Section 5.2.1, may sometimes fail to produce a semantically equivalent
formula that is in normal form. The following example shows a specific instance
where our algorithm fails.

Example 5.10. Consider ϕ4 a variant of ϕ2 from Example 5.1.

ϕ4
def
= maxX0.

(
[(x1)?req, true¡]

(
[(x2)!ans, x2 =x1¡][(x4)!ans, x4=x2¡]ff ∧
[(x3)!ans, x3 6=b ∧ x3=x1¡][b!log¡]X0

))
.

By applying §1 we obtain (Eq4 , X0, ∅) where

62

Chapter 5. Synthesising suppression monitors

Eq4 =

{
X0 = [(x1)?req, true¡]X1,

X1 = [(x2)!ans, x2 =x1¡]X2 ∧ [(x3)!ans, x3 6=b ∧ x3=x1¡]X3, . . .

}
.

However, when we apply §2 the algorithm fails to combine SAs (x2)!ans, x2=x1¡ and
 (x3)!ans, x3 6=b ∧ x3=x1¡ as despite not being disjoint, they still differ syntactically.
Hence, the equations defining these actions remain unmerged and we thus end up
with

(
Eq4

, X{0}, ∅
)

where

Eq4
=

{
X{0} = [(x1)?req, true¡]X{1},

X{1} = [(x2)!ans, x2=x1¡]X{2} ∧ [(x3)!ans, x3 6=b ∧ x3=x1¡]X{3}, . . .

}
.

This error propagates through to steps §3 and §4 which produce a formula that
despite being semantically equivalent to the original formula ϕ4, it is still not in
normal form due to its non-disjoint conjunctions. The current algorithm thus fails
in the general case.

When dealing with non-singleton SAs, we must introduce additional construc-
tions to ensure that §2 correctly merges the conjunctions within a formula.

Example 5.11. To give some intuition of the necessary steps, consider again ac-
tions (x1)!(y1), y1 = 5¡ and (x2)!(y2), x2 = a¡. Despite being syntactically different,
these SAs are not disjoint as both can match a!5. The information they convey can
however be encoded into 4 disjoint SAs as follows:

− (x1)!(y1), y1=5¡ becomes (x)!(y), y=5∧x=a¡ and (x)!(y), y=5∧x 6=a¡, while
− (x2)!(y2), x2=a¡ becomes (x)!(y), y=5∧x=a¡ and (x)!(y), y 6=5∧x=a¡

where x and y are fresh variables. Since these newly encoded SAs differ syntacti-
cally and are also disjoint, they can be distinguished via a simple syntactic check.
For instance, (x)?(y), y=5∧x=a¡ and (x)?(y), y 6=5∧x=a¡ are not only syntactically
different, but their contradicting conditions, y=5 and y 6=5, also guarantee their dis-
jointness.

5.2.2.1 Additional steps for normalizing formulas defining any symbolic ac-
tion

We formally define two additional constructions that must be applied between steps
§1 and §2. They convert conjunctions that are guarded by necessities defining non-
disjoint SAs, into equivalent conjunctions guarded by syntactically disjoint modal
necessities, i.e., necessities describing SAs that are both syntactically and seman-
tically different. The additional steps include:

§i. Conversion to uniform SAs: we inspect modal necessities defined at the
same modal depth within a conjunction and substitute their data variables

63

Chapter 5. Synthesising suppression monitors

Traversal Function.

traverse(Eq, I, λ, δ) def
=


traverse(Eq′, I ′, λ, δ′) if Eq6=∅ and I 6=∅ then δ′=λ(Eq, I, δ)

and Eq′=Eq\Eq//I
and I ′=

⋃
j∈I

child(Eq, j)

δ otherwise

child(Eq, i) def
=

{
j
∣∣∣ Eq(Xi)=

∧
j∈I

[ηj]Xj∧ϕ and j 6=i and Xj∈dom(Eq)
}

Eq//I
def
= { Xi=ϕi (Xi=ϕi)∈Eq and i∈I }

Figure 5.9: The breath first traversal algorithm.

with the same fresh variable whenever they define pattern equivalent SAs (Sec-
tion 5.2.2.2).

§ii. Condition reformulation of conjunct SAs: once uniformed, the conjunc-
tions are recomposed to define branches that are prefixed by modal necessities
specifying syntactically disjoint SAs (Section 5.2.2.3).

Example 5.12. Recall (x1)?(y1), y1 = 5¡ and (x2)?(y2), x2 = a¡ from Example 5.11.
Construction §i uniforms the SAs by assigning the same fresh variables to both
SAs, and so they become (x)?(y), y = 5¡ and (x)?(y), x = a¡. Construction §ii then
reformulates the conditions of the resulting SAs to obtain (x)?(y), y=5∧x=a¡ and
 (x)?(y), y 6=5∧x=a¡ which are disjoint.

Internally, constructions §i and §ii both use the traverse function defined in Fig-
ure 5.9 to process the given set of equations in a tree-like manner. The higher order
function traverse : (Eq×P(Index)×Fun×Acc)→Acc takes as input: a set of equa-
tions Eq, a set of indices I, an arbitrary projection function λ, and an accumulator
argument δ. It conducts a breath first traversal on the equation set, starting from
the equation of the principal variable as the root of the tree traversal. For instance,
in Figure 5.10 equation X0=[η1]X1 ∧ [η2]X2 ∧ [η3]X3 is the root of the traversal since
X0 is the principal variable of (Eq , X0, Y).

The children of the root are calculated via the child:(Eq× Index)→P(Index) func-
tion defined in Figure 5.9. It takes as input an equation set Eq along with the index
i of the parent equation, e.g., index 0 for equation X0=[η1]X1 ∧ [η2]X2 ∧ [η3]X3. It then
scans the equated formula Eq(Xi)=

∧
j∈I

[ηj]Xj∧ϕ (where i is the parent’s index) and

returns the set containing the indices j of every prefixed branch [ηj]Xj, defined in
the equated formula. For example, the children of X0=[η1]X1 ∧ [η2]X2 ∧ [η3]X3 in Fig-
ure 5.10 are {1, 2, 3}, and so branches [η1]X1, [η2]X2 and [η3]X3 are siblings as they
are defined at the same modal depth of the conjunction.

64

Chapter 5. Synthesising suppression monitors

traverse(Eq, { 0 }, λ, δ)

traverse(Eq′, {1, 2, 3}, λ, δ′)

traverse(Eq′′, {5}, λ, δ′′)

λ({X0=[η1]X1 ∧ [η2]X2 ∧ [η3]X3} ∪ Eq′, {0}, δ) = δ′

child(Eq, 0) ={1,2,3}

λ

({
X1=[η4]X0, X2=[η5]X5 , X3=[η6]X3

}
∪ Eq′′, {1, 2, 3}, δ′

)
=δ′′

child(Eq′, 1)=∅ child(Eq′, 2)={5} child(Eq′, 3)=∅

λ({ X5=ff }, {5}, δ′′) = δ′′′

Figure 5.10: A pictorial view of an example equation set traversal.

The child function, however, omits adding the index j of logical variables Xj that
are not part of the domain of the equation set i.e., when Xj /∈dom(Eq). In this
way, cycles in the traversal are avoided since the child function is always executed
with respect to a smaller set of equations Eq′=Eq\Eq//I , i.e., one which does not
include the parent equations Eq//I (where I is the set of all parent indices). Moreover,
cycles to the (immediate) parent are also avoided since the child function removes
the parent’s index from the returned set of child indices via the condition that j 6= i

(where i is the index of the parent equation). This guarantees termination.

Example 5.13. While analysing equation X1=[η4]X0 in Figure 5.10, traverse is eval-
uated with respect to Eq′ which does not include the parent equation, i.e., since
Eq′=Eq\Eq//{0} where Eq//{0} = {X0=[η1]X1 ∧ [η2]X2 ∧ [η3]X3}. In this way, when com-
puting the children of X1 (via child(Eq′, 1)) index 0 is not added to the resulting set
of child indices, since X0 /∈ dom(Eq′)’; this avoids cycling back to some (grand) par-
ent equation. Moreover, when evaluating child(Eq′, 3) to retrieve the child indices of
equation X3=[η6]X3, index 3 is removed thus avoiding the creation of a loop in the
traversal.

While traversing the equation set, the traverse function can apply an arbitrary
projection function λ. As mentioned above, despite being an arbitrary function, λ
must adhere to a specific type, namely, λ : (Eq × P(Index) × Acc)→Acc. It must
take three inputs including: the current equation set Eq, a set of indices I and an
accumulator value δ, and must return an updated accumulator δ′.

Upon termination, the traversal returns the latest version of the accumulator.
The traversal terminates when either all the equations in Eq have been processed,
i.e., when Eq=∅, or whenever no further children can be visited i.e., for every branch
i, child(Eq, i)=∅. The latter is an optimization which omits the redundant processing
of equations that are not reachable from the principal equation.

65

Chapter 5. Synthesising suppression monitors

〈〈(Eq , X0, Y)〉〉(i)
def
= (uni(Eq, ζ) , X0, Y)

where ζ=traverse(Eq, {0},partition,∅)

uni(Eq, ζ)
def
=

{
Xi=

∧
j∈I

[ηjζ(j)]Xj∧ϕ
∣∣∣ Xi=

∧
j∈I

[ηj]Xj∧ϕ ∈ Eq
}

partition(Eq, I, ζ)
def
=


j 7→ ζ(i) ∪̇ {z0/x0 . . .

zn/xn}

k 7→ ζ(l) ∪̇ {z0/y0 . . .
zn/yn}

∀i, l ∈ I · if Eq(i)=
∧
j∈I′ [pj [x0 . . . xn], cj¡]Xj∧ϕ′,

Eq(l)=
∧
k∈I′′ [pk[y0 . . . yn], ck¡]Xk∧ϕ′′ and

pj and pkare pattern equiv., (when j 6=k) then
we assign the same fresh variables z0 . . . zn.

 ∪ ζ
where σ ∪̇ {z/y}=σ ∪{z/y} iff y /∈dom(σ).

Figure 5.11: The uniformity algorithm for symbolic actions.

With this mechanism in place, we now define steps §i and §ii in Sections 5.2.2.2
and 5.2.2.3 respectively.

5.2.2.2 Uniformity of Symbolic Actions.

Intuitively, this part of the normalization algorithm renames the data variables of
pattern equivalent sibling modal necessities, to the same variable names. This pro-
duces a uniform system of equations.

Definition 5.5 (Uniform System of Equations). An equation is uniform when the
SAs of pattern equivalent sibling necessities define the exact same variable names.
A system of equations is uniform when all of its equations are uniform.

Example 5.14. Consider X0 = [(x1)?(x2), c1[x1, x2]¡]X1∧[(y1)?(y2), c2[y1, y2]¡]X2. Even
though the sibling modal necessities in the equation define pattern equivalent SAs,
they are not uniform as they do not use the same variable names. Uniformity can
be attained by renaming both x1 and y1 to the same z1 and similarly x2 and y2 to
a fresh variable z2. This therefore produces a uniform version of the equation, i.e.,
X0 = [(z1)?(z2), c1[z1, z2]¡]X1∧[(z1)?(z2), c2[z1, z2]¡]X2.

To automate this process, we thus use the construction defined in Figure 5.11,
namely, 〈〈−〉〉(i) : (Eq , Var, P(Var))→

(
Equni , Var, P(Var)

)
. This construction inter-

nally uses the uni function to create the required uniform set of equations Equni from
a given equation set. Specifically, uni reconstructs the equation set by performing
a linear scan during which it converts equations of the form Xi=

∧
j∈I [ηj]Xj∧ϕ into

Xi=
∧
j∈I [ηjζ(j)]Xj∧ϕ (where ζ : Index→σ is a map that provides a substitution en-

vironment σ for a given index j). For the reconstruction to be correct, the ζ must be
well-formed.

Definition 5.6 (A well-formed ζ Map). We say that ζ is a well-formed map for an
equation set Eq, whenever it provides a set of mappings which allow for

66

Chapter 5. Synthesising suppression monitors

(i) uniformly renaming the data variables of pattern equivalent sibling necessities,
defined in Eq, by setting them to the same set of fresh variables, and for

(ii) renaming any data variable reference that is bound to a renamed parent modal
necessity defined in Eq.

We assume that by default ζ(i) = ∅ when i is the index of the root equation.

Example 5.15. Consider the following system of equations (Eq , X0, ∅) where

Eq =

{
X0=[(x1)?(x2), x1 6=a¡]X1∧[(x3)?(x4), x4 6=3¡]X2, X3=ff,

X1=[(x5)!(x6), true¡]X3, X2=[(x7)!(x8), x7=x3¡]X4, X4=ff

}
.

For convenience, in Figure 5.12 we also represent these equations as a tree starting
with the principal equation X0=[(x1)?(x2), x1 6=a¡]X1∧[(x3)?(x4), x4 6=3¡]X2 as the root.
We also assume the knowledge of a well-formed ζ map:

ζ =

{
0 7→ {∅}, 1 7→ ζ(0) ∪̇ {x1/y1 ,

x2/y2}, 2 7→ ζ(0) ∪̇ {x3/y1 ,
x4/y2},

3 7→ ζ(1) ∪̇ {x5/y3 ,
x6/y4}, 4 7→ ζ(2) ∪̇ {x7/y3 ,

x8/y4}

}
.

As shown by the tree representation in Figure 5.12, actions (x1)?(x2), x1 6=a¡ and
 (x3)?(x4), x4 6=3¡ are pattern equivalent and defined by sibling necessities in the con-
junction of equation X0. For these to be uniformed, the substitution map ζ projects
indices 1 and 2 onto substitutions {x1/y1,

x2/y2} and {x3/y1,
x4/y2} respectively. Once

the substitution is applied to both SAs we obtain (y1)?(y2), y1 6=a¡ and (y1)?(y2), y2 6=3¡.
Notice how the patterns in both of the necessities are now syntactically equal, mean-
ing that the resulting equation X0=[(y1)?(y2), y1 6=a¡]X1∧[(y1)?(y2), y2 6=3¡]X2 is now
uniform.

Since (x5)!(x6), true¡ and (x7)!(x8), x7=x3¡ are pattern equivalent siblings in X0, to
achieve uniformity ζ provides mappings 3 7→ ζ(1)∪̇{x5/y3 ,

x6/y4} and 4 7→ ζ(2)∪̇{x7/y3 ,
x8/y4}

that rename these SAs to (y3)!(y4), true¡ and (y3)!(y4), y3=y1¡. Notice how condition
x7=x3 in (x7)!(x8), x7=x3¡ was also renamed to y3=y1 as variable x3 was substituted
by y1 when its binding SA (x3)?(x4), x4 6=3¡ was uniformed into (y1)?(y2), y2 6=3¡. This
substitution was possible since mapping ζ(4) also includes the substitutions re-
turned by the parent’s index i.e., ζ(2). It therefore allows for applying the substitu-
tions performed upon the parent, to its children, thus keeping the SoE closed.

So far we have assumed the existence of a well-formed ζ map that provides all
the necessary information, without having any knowledge as to how it is created.
The ζ map is created by performing a breath first traversal on the given equation set,
via the traverse function, using the partition function (defined in Figure 5.11) as the
projection function λ. The function partition:(Eq× P(Index)× Acc)→Acc follows the
format dictated by λ, i.e., it takes as input a set of equations Eq, a set of indices I and
an accumulator − in this case ζ − and returns an updated version of ζ as a result.

67

Chapter 5. Synthesising suppression monitors

X0=[(y1)?(y2), y1 6=a¡]X1∧[(y1)?(y2), y2 6=3¡]X2

uni

X1=[(y3)!(y4), true¡]X3

uni

X2=[(y3)!(y4), y3=y1¡]X4

uni

X0=[(x1)?(x2), x1 6=a¡ζ(1)]X1∧[(x3)?(x4), x4 6=3¡ζ(2)]X2

X1=[(x5)!(x6), true¡ζ(3)]X3 X2=[(x7)!(x8), x7=x3¡ζ(4)]X4

X3=ff X4=ff

Figure 5.12: A Tree representation of the uni traversal performed on Eq.

partition({X0=[(x1)?(x2), x1 6=a¡]X1∧[(x3)?(x4), x4 6=3¡]X2} ∪ Eq′, {0},∅) = ζ

child(Eq, 0) ={1,2}

partition
({

X1=[(x5)!(x6), true¡]X3, X2=[(x7)!(x8), x7=x3¡]X4

}
∪ Eq′′, {1, 2}, ζ

)
= ζ ′

child(Eq′, 1)={3} child(Eq′, 2)={4}

partition({X3=ff X4=ff}, {5}, ζ ′) = ζ ′

Figure 5.13: A breath first traversal using partition to obtain ζ.

To update ζ, partition inspects the sibling equations denoted by the indices in I and
as a result creates a substitution environment which renames the variable names of
each pattern equivalent sibling necessity, to the same fresh set of variables.

Example 5.16. Recall (Eq , X0, ∅) from Example 5.15 where

Eq =

{
X0=[(x1)?(x2), x1 6=a¡]X1∧[(x3)?(x4), x4 6=3¡]X2, X3=ff,

X1=[(x5)!(x6), true¡]X3, X2=[(x7)!(x8), x7=x3¡]X4, X4=ff

}
.

Figure 5.13 depicts the breath first traversal performed by the traverse function in
which the projection function partition was applied on each set of siblings. Notice
that when partition is applied on the root equation, the initially empty ζ map gets
extended by two entries, namely ζ=∅∪

{
1 7→∅ ∪̇ {y1/x1 ,

y2/x2}, 2 7→∅ ∪̇ {y1/x3 ,
y2/x4}

}
. As

shown in Example 5.15, this allows for the sibling necessities defined in X0 to be
uniformed. The ζ map is further extended into ζ ′=ζ∪

{
3 7→ ζ(1)∪̇{y3/x5 ,

y4/x6}, 4 7→ ζ(2)∪̇
{y3/x7 ,

y4/x8}
}
, since the partition function recognises that sibling SAs (x5)!(x6), true¡

and (x7)!(x8), x7=x3¡ are also pattern equivalent. It therefore maps variables x5, x7

to the same fresh variable y3, and x6, x8 to y4.

68

Chapter 5. Synthesising suppression monitors

Lemma 5.9. For every SoE (Eq , X0, Y) if 〈〈(Eq , X0, Y)〉〉(i) = (Eq′ , X ′0, Y ′) then
(Eq , X0, Y) ≡ (Eq′ , X ′0, Y ′) and (Eq′ , X ′0, Y ′) is uniform.

Proof. To prove this statement we assume knowledge of Lemmas 5.10 and 5.11
which are proven in Appendices B.3.7 and B.3.8 respectively starting on page 183.

Lemma 5.10. For every equation set Eq if traverse(Eq, {0},partition,∅)=ζ then ζ is a
well-formed map for Eq.

Lemma 5.11. For every ζ map, and equation set Eq, if ζ is a well-formed map for
Eq then uni(Eq, ζ)≡Eq and every equation (Xk=ψk)∈uni(Eq, ζ) is Uniform.

Now assume that 〈〈(Eq , X0, Y)〉〉(i) = (Eq′ , X ′0, Y ′) and so by the definition of 〈〈−〉〉(i) we
have that X ′0 = X0, Y ′ = Y and Eq′ = uni(Eq, ζ) where ζ = traverse(Eq, {0},partition,∅)

from which by Lemma 5.10 we can deduce that ζ is a well-formed map for Eq. This
means that from Lemma 5.11 we can infer that

uni(Eq, ζ)≡Eq (5.49)

every equation (Xk=ψk) ∈ uni(Eq, ζ) is uniform . (5.50)

Hence, since from (5.49) we know that the uniformed equation set conveys the same
meaning as Eq, and since from (5.50) we know that every equation is uniform, we
conclude that

(Eq , X0, Y) ≡ (Eq′ , X ′0, Y ′) and that (Eq′ , X ′0, Y ′) is uniform (5.51)

as required, and so we are done.

5.2.2.3 Condition reformulation of sibling symbolic actions.

By reformulating the conditions of sibling symbolic actions in a uniform SoE we
aim to obtain its equi-disjoint equivalent.

Definition 5.7 (System of Equi-Disjoint equations). An equation is equi-disjoint
when it is uniform, and its sibling necessities cannot be satisfied by the same con-
crete action α, unless they are syntactically equal. A SoE is equi-disjoint when all of
its equations are equi-disjoint.

Example 5.17. As per Definition 5.7, we can thus infer that equation

X0 = [(x)?(y), y>5¡]X1∧[(x)?(y), y>5¡]X2∧[(x)?(y), y≤5¡]X3

is equi-disjoint since there does not exist a system action that can satisfy both
 (x)?(y), y>5¡ and (x)?(y), y≤5¡. The only two branches that are satisfied by com-
mon actions are [(x)?(y), y>5¡]X1 and [(x)?(y), y>5¡]X2 but they are both prefixed by
syntactically equal modal necessities. However, we can immediately conclude that
the modal necessities in equation X1 = [(x1)?(y1), true¡]X4 ∧ [(x1)?(y1), y1 6= 5¡]X5 are
not equi-disjoint.

69

Chapter 5. Synthesising suppression monitors

〈〈(Eq , X0, Y)〉〉(ii)
def
= (traverse(Eq, {0}, cond comb,∅) , X, Y)

cond comb(Eq, I, ω)
def
=

Xi=
∧
ck∈C(j,I′)

[p, ck¡]Xj∧ϕ
(Xi=

∧
j∈I′′

[p, cj¡]Xj∧ϕ)∈Eq//I

and I ′=
⋃
l∈I

child(Eq, l)

such that I ′′ ⊆ I ′

 ∪̇ ω

C(j, I)
def
=

{ cj∧ci . . . ∧cn,
cj∧¬ci . . . ∧cn, . . . ,
cj∧¬ci . . . ∧¬cn

∀i . . . n ∈ I where j 6= i 6= . . . 6= n

such that pj = pi = . . . = pn

}

Figure 5.14: The Conjunction Reformulation Algorithm.

Figure 5.14 presents function 〈〈−〉〉(ii):
(
Equni , Var, P(Var)

)
→ Eqed for recompos-

ing uniform SoEs into equi-disjoint ones. Internally, this function uses the traverse
function to perform a breath first traversal on the given uniform equation set, Equni,
starting from the principal equation, i.e., with I={0}. While conducting the traver-
sal, it applies the cond comb function to reconstruct the uniform conjunctions, de-
fined in (Xi=ϕi) ∈ Equni, into equi-disjoint ones, thereby producing an equi-disjoint
equation set Eqed at the end of the traversal.

The function cond comb:(Equni×P(Index)×Acc)→Acc is a projection function that
takes as input a uniform equation set Equni, a set of indices I, and an accumulator
ω. The accumulator ω contains a partial equi-disjoint set of equations which is
first initialized to ∅ and is constantly extended by recursive cond comb applications
until the traversal is complete, in which case ω is returned as the resulting equi-
disjoint equation set. In order to update ω, the cond comb function inspects the
sibling equations denoted by the indices in I, i.e., (Xi=ϕi) ∈ Eq//I , and computes the
truth combinations of the conditions defined by sibling symbolic necessities defining
syntactically equal patterns.

To compute these truth combinations, the cond comb function starts by com-
puting the child indices of the current sibling equations − denoted by I − by using
the child function, i.e., I ′=

⋃
l∈I child(Eq, l). It then inspects the conjunctions de-

fined in the selected equations, i.e.,
∧
j∈I′′ [pj , cj¡]Xj ∧ϕ, and reconstructs them into∧

ck∈C(j,I′) [pj , ck¡]Xj ∧ϕ. Notice that ck is a truth combination of all the conditions that
are defined by the modal necessities that: guard the branches identified by the in-
dices in I ′, and that specify syntactically equal patterns. For instance, if I ′={1, 2, 3},
then one possible truth combination ck is c1∧¬c2∧c3.

The truth combinations, such as ck, are generated through the combinatorial
function C:(Index × P(Index)). It takes as input the index j of the branch that is
being analysed, along with the indices of all the sibling branches specified in I ′.
As a result, C(j, I ′) returns the truth combinations in which the condition cj of the

70

Chapter 5. Synthesising suppression monitors

branch that is currently being reconstructed i.e., [pj , cj¡]Xj, is true. For instance,
C(1, {1, 2, 3}) issues combinations

{
(c1∧c2∧c3), (c1∧c2∧¬c3), (c1∧¬c2∧c3), (c1∧¬c2∧¬c3)

}
where c1 is always true. These truth combinations are then used to reconstruct the
existing branch into a collection of equi-disjoint branches.

The resulting equations are thus equi-disjoint as the reconstructed conditions
ensure that a visible action α can never satisfy multiple symbolic necessities in the
reconstructed branches, unless they are syntactically equal. Note that the truth
combinations generated by function C(j, I ′) do not include the cases where cj is false.
This is essential to ensure that none of the reconstructed branches can be satis-
fied when the original condition cj is false, thereby preserving the semantics of the
original branch.

Once the traversal completes, the construction outputs the final accumulator
value ω containing the required equi-disjoint equation set.

Example 5.18. Consider equation X0 = [p, c1¡]X1∧[p, c2¡]X2∧[p, c3¡]X3, using the
truth combinations provided by C(1, {1, 2, 3}) we can reconstruct branch [p, c1¡]X1

into [p, c1∧c2∧c3¡]X1∧[p, c1∧c2∧¬c3¡]X1∧[p, c1∧¬c2∧c3¡]X1∧[p, c1∧¬c2∧¬c3¡]X1.

Similarly, with C(2, {1, 2, 3}) and C(3, {1, 2, 3}), we reconstruct branches [p, c2¡]X2

and [p, c3¡]X3 in the same way such that the resulting equation becomes:

X0=


[p, c1∧c2∧c3¡]X1 ∧ [p, c1∧c2∧¬c3¡]X1 ∧ [p, c1∧¬c2∧c3¡]X1 ∧ [p, c1∧¬c2∧¬c3¡]X1 ∧

[p, c1∧c2∧c3¡]X2 ∧ [p, c1∧c2∧¬c3¡]X2 ∧ [p,¬c1∧c2∧c3¡]X2 ∧ [p,¬c1∧c2∧¬c3¡]X2 ∧

[p, c1∧c2∧c3¡]X3 ∧ [p,¬c1∧c2∧c3¡]X3 ∧ [p, c1∧¬c2∧c3¡]X3 ∧ [p,¬c1∧¬c2∧c3¡]X3

 .

Notice that logical variables X1, X2 and X3 can only be evaluated when their prefix-
ing modal necessities are satisfied by some system action. This means that continu-
ation X1 is only reachable when c1 is true, and respectively X2 and X3 when c2 and c3

are true. Hence as argued earlier, the (underlined) conditions in the reconstructed
equation are never negated when prefixing the respective logical variable.

Lemma 5.12. For every system of equations, (Eq , X0, Y), if (Eq , X0, Y) is uniform
then 〈〈(Eq , X0, Y)〉〉(ii) ≡ (Eq , X0, Y) and 〈〈(Eq , X0, Y)〉〉(ii) is equi-disjoint.

Proof. To prove this lemma we assume the knowledge of Lemma 5.13 that is proven
in Appendix B.3.9 on page 71.

Lemma 5.13. If every equation (Xj=ϕj) ∈ Eq is uniform then all equations (Xk=ψk) ∈
traverse(Eq, {0}, cond comb,∅) are equi-disjoint and Eq≡ traverse(Eq, {0}, cond comb,∅).

Now, lets assume that (Eq , X0, Y) is uniform which means that every equation

71

Chapter 5. Synthesising suppression monitors

(Xj=ϕj) ∈ Eq is uniform, and so by Lemma 5.13 we deduce that

Eq≡ traverse(Eq, {0}, cond comb,∅), and that (5.52)

∀(Xk=ψk)∈ traverse(Eq, {0}, cond comb,∅) · eqn (Xk=ψk) is equi-disjoint . (5.53)

Now since 〈〈(Eq , X0, Y)〉〉(ii) = (traverse(Eq, {0}, cond comb,∅) , X0, Y), by (5.52) we
can conclude that 〈〈(Eq , X0, Y)〉〉(ii) ≡ (Eq , X0, Y), and by (5.53) that the resulting
SoE 〈〈(Eq , X0, Y)〉〉(ii) is also equi-disjoint as required, and so we are done.

In Example 5.10 we had shown that the algorithm presented in Section 5.2.1
fails when dealing with non-singleton SAs. This can now be resolved by applying
steps §i and §ii prior to applying §2 − we leave this as an exercise to the reader.

With the extended normalization algorithm we can finally conclude that Theo-
rem 5.3 (Normalisation Equivalence) also holds for any sHML formula (defining any
kind of SAs) as a result of Lemma 5.5 followed by Lemmas 5.9 and 5.12, and then
by Lemmas 5.7 and 5.8.

5.3 Summary

In this chapter we have studied the enforceability of µHML formulas in the con-
text of the unidirectional enforcement model introduced in Figure 3.2 of Chapter 3.
In particular, we have identified the safety subset sHML to be enforceable by sup-
pression monitors. As a result of this investigation we have produced the following
contributions:

(i) A synthesis function that constructs action suppression monitors from nor-
malised sHML formulas, Definition 5.2.

(ii) The proofs for Theorems 5.1 and 5.2 ascertaining that the synthesised sup-
pression monitors enforce their respective formula both adequately and SUP-
optimally as defined by Definitions 4.8 and 4.9. Since Definition 4.8 is the
strictest definition for adequate enforcement, the synthesised monitors are also
guaranteed to be adequate as stated by our weaker definitions 4.4 and 4.6.

(iii) A normalisation procedure that converts sHML formulas into a normalised
sHMLnf formula.

(iv) Semantic preservation proofs for steps §4, §i and §ii of the normalisation pro-
cedure. Along with the proofs presented in [4] for §1 - §3, they allow us to
conclude that sHML and sHMLnf are equally expressive even though sHMLnf

is a syntactic subset of sHML.

72

6. Maximal expressiveness

So far the results of Chapter 5 determine that sHML formulas can be adequately
enforced by optimal suppression monitors. However, they do not answer whether
sHML is maximally expressive, that is, whether it is the largest µHML subset that
can be enforced by these type of monitors. Knowing this result would entail that if
a µHML formula ϕ is enforceable via action suppressions but is not specified using
the sHML syntax, then there must be some sHML formula ψ that conveys the same
meaning as ϕ, i.e., JϕK = JψK

Investigating maximal expressiveness requires establishing a result of expression-
completeness, by showing that, in some sense, every suppression monitor corre-
sponds to a formula in sHML as stated by Definition 4.8 (Strong enforcement). This
approach, however, becomes problematic as for some suppression monitors there
might not exist a µHML formula that they can adequately enforce in the sense of
Definition 4.8.

In this chapter we thus identify a structural criterion that a suppression monitor
must adhere to in order to be able to adequately enforce some µHML formula in the
sense of Definition 4.8. Suppression monitors that do not follow this criterion are
therefore deemed unsound. We then limit ourselves to sound suppression monitors
and proceed to investigate the expression-completeness problem of sHML which
allows us to establish whether sHML is the maximally expressive subset that can
be enforced using suppression monitors.

6.1 Sound suppression monitors

As with any reasonably expressive model, the high expressiveness of the unidirec-
tional enforcement model presented in Figure 3.2 of Chapter 3 allows for defining
suppression monitors that make little sense in view of Definitions 4.4, 4.6 and 4.8.
In particular, we have reason to believe that the ability to persistently suppress

73

Chapter 6. Maximal expressiveness

invalid system actions is one major requirement for a suppression monitor to be
sound.

Definition 6.1 (Persistent Suppression Monitors). A monitor m performs persistent
suppressions, if for every reachable state m′ that performs a suppression transfor-
mation, αI•, it can then suppress α infinitely often from then onwards. Formally,
we say that m is persistent iff for every identity transformation trace κid, monitor
states m′ and m′′ and action α,

if m κid===⇒ m′ and m′
αI•−−−→ m′′ then inf(m′′, α)

where κid ::= ε | (αIα).κid (for every α∈Act) and inf(m′′, α)
def
= ∀N∈Nat, ∃m′′′·m′′ αI•−−−→N

m′′′.
We also define PSupTrn as the set defining all persistent suppression monitors, that
is, PSupTrn def

= {m m is persistent }.

Example 6.1. To get an intuition for why this criterion is important, consider the
following suppression monitor mnp

def
= α, true, •¡.id and formula ϕ5 = [α¡]ff. When in-

strumented with system α.nil, monitormnp successfully prevents the invalid action α

from executing at runtime and so mnp[α.nil]∈ Jϕ5K. However, it does not work for sys-
tem α.α.nil since mnp does not persist in suppressing α and so mnp[α.α.nil] α

==⇒ id[α.nil]
which means that mnp[α.α.nil] /∈ Jϕ5K thus breaching the soundness constraint of our
enforcement adequacy definitions. On the other hand, monitormp

def
= recX. α, true, •¡.X

adequately enforces ϕ5 since it keeps on suppressing the invalid action α infinitely
often.

This example thus demonstrates that suppression monitors that fail to suppress
actions in a persistent manner might be problematic and unsound. For this rea-
son, we now prove that these monitors are necessarily unsound and can therefore
be ignored during our investigation of the maximal expressiveness of sHML. Put
differently, in Theorem 6.1 we prove that when a monitor reaches a point whereby
it suppresses an action α but does not persist in suppressing it, cannot adequately
enforce any formula expressible via µHML.

Theorem 6.1 (Unsound Non-Persistent Suppression Monitors). For all suppression
monitors m∈SupTrn, ¬(∀κid,m

′,m′′, α · if m κid===⇒ m′ and m′
αI•−−−→ m′′ then inf(m′′, α))

implies @ϕ∈µHML · enf(m,ϕ).

To prove Theorem 6.1 we use function systr(−) to extract a system trace from
the transformation trace of a suppression monitor.

Definition 6.2 (System Trace Extraction).

systr(κ)
def
=
{
α.systr(κ′) if κ = (αIγ)κ′

ε if κ = ε

74

Chapter 6. Maximal expressiveness

We also make use of Lemma 6.1 which we prove in Appendix B.4.1 on page 194.

Lemma 6.1. For every formula ϕ, monitors m and m′, transformation trace κid, and
trace u, if m κid===⇒ m′ and sys(u) /∈ JϕK and zip(u, κid) = u then ¬enf(m,ϕ).

Proof for Theorem 6.1. We proceed towards a contradiction. Assume that

¬(∀κid,m
′,m′′, α · if m κid===⇒ m′ and m′

αI•−−−→ m′′ then inf(m′′, α)) (6.1)

≡ ∃κid,m
′,m′′′, α,N ∈ Nat ·m κid===⇒ m′ and m′

αI•−−−→
N+1

m′′′ and m′′′ 6αI•−−−→

(for some N ∈ Nat), and also that

∃ϕ ∈ µHML · enf(m,ϕ) (6.2)

which means that for every system s

senf(m,ϕ)
def
= m[s] ∈ JϕK (6.3)

and that evtenf(m,ϕ) which means that we also know that tenf(m,ϕ) and that

ttenf(m,ϕ)
def
= ∀t, t′, t′′ · if sys(t) ∈ JϕK and m[sys(t)]

t′
==⇒ m′[sys(t′′)] then t = t′; t′′. (6.4)

Let us now extract a trace u;αN+1 from the transformation trace κid(αI•)N+1 of mon-
itor m, via the function systr (defined in Definition 6.2). We then use an extended
version of this trace that is suffixed by an additional α action, u;αN+2 to construct
a trace system. The resultant system, sys(u;αN+2), can thus exhibit the following
behaviour, i.e., that

sys(u;αN+2)
u

==⇒ sys(αN+2)
α−→

N+1 sys(α)
α−→ nil. (6.5)

So far we do not know whether the attained trace system, sys(u;αN+2), actually
satisfies or violates ϕ, we thus inspect both cases.

sys(u;αN+2) ∈ JϕK: In this case, from (6.4) we can immediately deduce that

∀t′, t′′ · if m[u;αN+2]
t′

==⇒ m′[sys(t′′)] then u;αN+2 = t′; t′′. (6.6)

However, since we know that u = systr(κid) and that κid is a trace of identity
transformations, we infer that zip(u, κid) = u and so by (6.1), (6.5) and Propo-
sition 3.2 (zipping) we have that

m[sys(u;αN+2)]
u

==⇒ m′[sys(αN+2)]
τ−→
N+1

m′′′[sys(α)]
α−→ m′′′′[nil] (6.7)

(for some monitor m′′′′). Hence, the monitored execution of (6.7) generates the
run u; τN+1α which is not equal to the original system run of sys(u;αN+2) i.e.,
u; τN+1α 6= u;αN+2. The monitored execution of (6.7) thus infringes the trace
transparency criterion of Equation (6.4) (along with the stronger constraints
of transparency and eventual transparency), and as a result (6.7) contradicts
with (6.6).

sys(u;αN+2) /∈ JϕK: For (6.3) to hold, we can infer that when s = sys(u;αN+2), monitor
m must somehow modify the execution of the system. In fact, when we zip (6.5)

75

Chapter 6. Maximal expressiveness

to (6.1) using Proposition 3.2, we get that

m[sys(u;αN+2)]
u

==⇒ m′[sys(αN+2)]
τ−→
N+1

m′′′[sys(α)]
α−→ m′′′′[nil] (6.8)

(for some monitorm′′′′). As from (6.1) we know thatm κid===⇒ m′ where zip(u, κid) =

u, by Lemma 6.1 we know that if the trace system for u violates ϕ, i.e., sys(u) /∈
JϕK, then ¬enf(m,ϕ) which clearly contradicts with (6.2), and so we can safely
assume that

sys(u) ∈ JϕK. (6.9)

Since in this case we assume that sys(u;αN+2) /∈ JϕK, and since from (6.1) we
know that m suppresses at most N + 1 occurrences of α that happen after
u, we can deduce that if for any arbitrary number M ≤ N + 1 of α’s we have
that sys(u;αM) ∈ JϕK, then the applied suppressions would contradict with
the transparency requirement of (6.4). Hence, knowing (6.9) we are forced to
conclude that an occurrence of an α action after u immediately violates ϕ, and
so every occurrence of α must be suppressed infinitely often in order for m to
enforce ϕ. However, from (6.8) we can also infer thatm fails to do so since action
α is still permitted to execute by the instrumented system, m[sys(u;αN+2)] since
m reduces to m′′′ (after N + 1 suppressions of α), which is unable to suppress
a subsequent occurrence of α. This implies that m[sys(u;αN+2)] /∈ JϕK which
thus contradicts with (6.3).

Since both of the above cases lead to a contradiction, we can thus conclude that
assumption (6.2) is false, as required.

Theorem 6.1 is an important result since it enables us to conclude that if a
property can be enforced via a suppression monitor, then this can only be achieved
using a persistent suppression transducer.

6.2 Expression-completeness and Maximal expressiveness

Thanks to Theorem 6.1, when answering the question of expression-completeness
it thus suffices to focus on persistent suppression monitors that are capable of sup-
pressing an action infinitely often until some other action is performed. In fact,
one can easily verify that the suppression monitors synthesised by the algorithm
of Definition 5.2 (defined in Chapter 5) apply a persistent form of suppression en-
forcement.

Definition 6.3 (Suppression Expression-Completeness). A subset L ⊆ µHML is
expressive-complete with respect to persistent suppression monitors iff for every
m ∈ PSupTrn, there exists some ϕ ∈ L such that enf(m,ϕ).

76

Chapter 6. Maximal expressiveness

We show that the sHML subset is suppression expressive-complete with the aid
of function 〈〈− 〉〉 (Definition 6.4) that maps suppression monitors to a corresponding
sHML formula in a very straight forward manner. Same as per the synthesis in
Definition 5.2, it assumes a bijective mapping between the denumerable sets of
logical variables LVar and the monitor’s recursion variables Var.

Definition 6.4 (Suppression Monitors to sHML Formulas).

〈〈 p, c, p¡.m′ 〉〉 def
= [p, c¡]〈〈m′ 〉〉 〈〈 p, c, •¡.m′ 〉〉 def

= [p, c¡]ff 〈〈X 〉〉 def
= X

〈〈 recX.m′ 〉〉 def
= maxX.〈〈m′ 〉〉 〈〈

∑
i∈I mi 〉〉

def
=
∧
i∈I 〈〈mi 〉〉

Proposition 6.1. sHML is Suppression Expressive-Complete.

The proof for Proposition 6.1 follows from Lemmas 6.2 and 6.3, and the fact that
the co-domain of 〈〈− 〉〉 is that of sHML formulas.

Lemma 6.2. For all m ∈ PSupTrn, m[s] ∈ J〈〈m 〉〉K.

Lemma 6.3. For allm∈PSupTrn, ifm[s]
t

=⇒m′[s′] and s′∈Jafter(〈〈m 〉〉, t)K thenm′[s′]∼s′.

Proof for Lemma 6.2. We prove that for every m ∈ PSupTrn then m[s] ∈ J〈〈m 〉〉K. We
conduct this proof by coinduction. Since the codomain of 〈〈− 〉〉 is sHML we assume
a relation R def

= { (r, ψ) ∀s, r · r @∼m[s] and 〈〈m 〉〉 = ψ } and show that it is a satisfac-
tion relation, i.e., it adheres to the satisfaction semantics of Figure 5.1. The proof
proceeds by case analysis on m.

Case m = X. This case does not apply since X[s] does not constitute a valid
system and so @ϕ · enf(X,ϕ).

Case m =
∑
i∈I
mi. Assume that

r @∼
∑
i∈I
mi[s] (6.10)

and that 〈〈
∑
i∈I
mi 〉〉 =

∧
i∈I
〈〈mi 〉〉 so that we can deduce that

∀j ∈ I, ∃ψ · 〈〈mj 〉〉 = ψj . (6.11)

Since we assume that the summed monitors in
∑
i∈I
mi are only capable of suppres-

sion enforcement, we know that the instrumented system mj [s] (for any j ∈ I) can
simulate

∑
i∈I
mi[s] since mj can suppress (at most) the same behaviours as per

∑
i∈I
mi,

and so from (6.10) we can deduce that

∀j ∈ I · r @∼
∑
i∈I
mi[s]@∼mj [s]. (6.12)

77

Chapter 6. Maximal expressiveness

Therefore, by (6.11), (6.12) and the definition of R we can conclude that ∀j ∈ I ·
(r, ψj) ∈ R as required.

Case m = p, c, p¡.m′. Assume that

〈〈 p, c, p¡.m′ 〉〉 = [p, c¡]〈〈mi 〉〉 (6.13)

r @∼ p, c, p¡.m′[s]. (6.14)

Now, lets assume that

r
α

==⇒ r′ (6.15)

mtch(p, α) =σ and cσ ⇓ true (6.16)

and so from (6.14), (6.15) and (6.16) we can deduce that

 p, c, p¡.m′[s] τ−→*q′ (6.17)

q′
α−→ q (6.18)

r′ @∼ q. (6.19)

Since the reductions in (6.17) could have only been made via rule iAsy we have that
s
τ−→*s′′ and q′ = p, c, p¡.m′[s′′], and so from (6.16) and (6.18) we can infer that s′′ α−→ s′

and that q = m′σ[s′]. Hence, from (6.19) we deduce that

r′ @∼m
′σ[s′]. (6.20)

Finally, from (6.13), (6.16) and by the definition of 〈〈− 〉〉 we have that ∃ψ · 〈〈m′σ 〉〉 = ψ

and so by (6.20) and the definition of R we can conclude that

(r′, ψ) ∈ R. (6.21)

Hence, knowing assumption (6.15) and deduction (6.21) we can introduce an im-
plication so that we know that if r α

==⇒ r′, mtch(p, α) =σ and cσ ⇓ true then (r′, ψ) ∈ R
as required.

Case m = p, c, •¡.m′. Assume that

〈〈 p, c, •¡.m′ 〉〉 = [p, c¡]ff (6.22)

r @∼ p, c, •¡.m′[s]. (6.23)

As we only consider persistent suppression monitors we can immediately deduce
that p, c, •¡.m′ suppresses any action α (where mtch(p, α) =σ and cσ ⇓ true) infinitely
often (until some action β, where mtch(p, β) = undef or ∃σ · cσ ⇓ false, is executed

78

Chapter 6. Maximal expressiveness

instead). This means that we can conclude that

 p, c, •¡.m′[s] 6α==⇒ (where mtch(p, α) =σ and cσ ⇓ true). (6.24)

Hence, knowing (6.23) we can infer that any behaviour that cannot be performed by
the simulating system p, c, •¡.m′[s], such as (6.24), cannot be performed by the sim-
ulated system r as well, and so we conclude that r 6α==⇒ (for all α when mtch(p, α) =σ

and cσ ⇓ true) as required.

Case m = recX.m′. Assume that

〈〈 recX.m′ 〉〉 = maxX.〈〈m′ 〉〉 (6.25)

r @∼ recX.m′[s] (6.26)

and so since JmaxX.〈〈m′ 〉〉K = J〈〈m′ 〉〉{maxX.〈〈m′ 〉〉/X}K, from (6.25) we can deduce that
〈〈 recX.m′ 〉〉 = 〈〈m′ 〉〉{maxX.〈〈m′ 〉〉/X} so that by the definition of R we can conclude that
(r, 〈〈m′ 〉〉{maxX.〈〈m′ 〉〉/X}) ∈ R as required, and so we are done.

Proof for Lemma 6.3. We proceed to prove that for every m ∈ PSupTrn, if m[s]
t

=⇒
m′[s′] and s′ ∈ Jafter(〈〈m 〉〉, t)K then m′[s′] ∼ s′. To simplify our proof we consider t as
an explicit trace tτ and rely on Lemmas 6.4 and 6.5.

Lemma 6.4. For all m ∈ PSupTrn, if s ∈ J〈〈m 〉〉K then m[s] ∼ s.

Lemma 6.5. For every m,m′ ∈ SupTrn, system s and trace t, if m αI•−−−→ m′ and
s ∈ Jafter(〈〈m 〉〉, t)K then s ∈ Jafter(〈〈m′ 〉〉, t)K.

We give the proof for these lemmas in Appendices B.4.2 and B.4.3 starting on page
195. We now proceed by induction on the length of tτ .

Case tτ = ε. Assume that

m[s]
ε−→ m′[s′] (6.27)

s′ ∈ Jafter(〈〈m 〉〉, ε)K = J〈〈m 〉〉K. (6.28)

Since ε is an explicit trace, from (6.27) we can deduce that m′=m and s′= s. There-
fore, from (6.28) and by Lemma 6.4 (transparency) we conclude that m′[s′] ∼ s′ as
required.

Case tτ = µt′τ . Assume that

m[s]
µ−→ m′′[s′′] (6.29)

m′′[s′′]
t′τ−−→ m′[s′] (6.30)

s′ ∈ Jafter(〈〈m 〉〉, µt′τ)K. (6.31)

79

Chapter 6. Maximal expressiveness

We now proceed by analysing the instrumentation rules that permit for (6.29) to
occur, namely, iDef, iTrn, iSup and iAsy.

• iDef: From (6.29) and by rule iDef we know that µ=α, m 6α−→ and that m′′= id.
Hence, since m′′= id and from (6.30) we can infer that m′=m′′= id and so this
case holds trivially since id[s′] ∼ s′ as required.

• iTrn: Since m is a suppression monitor we know that it cannot perform action
replacements, and so from (6.29) and by rule iTrn we infer that µ=α and that

s
α−→ s′′ (6.32)

m
αIα−−−→ m′′. (6.33)

From (6.33) we can infer that m must at least define an identity branch that
matches action α, that is,

m = recY0 . . . Yn.
∑

i∈Imi + p, c, p¡.m′′′ (where mtch(p, α) =σ and cσ ⇓ true)

(6.34)

m′′ = m′′′{m/Y0 , . . . ,
recYn.

∑
i∈Imi+ p,c,p¡.m′′′

/Yn}σ (6.35)

and therefore from (6.31), (6.34) and via the definition of 〈〈− 〉〉 we can infer that
s′ ∈ Jafter(maxX0 . . . Xn.

∧
i∈I 〈〈mi 〉〉∧[p, c¡]〈〈m′′′ 〉〉, αt′τ)K. Since we know (6.35) we

apply the definition of after and deduce that s′ ∈
⋂
i∈IJafter(〈〈mi{. . .}σ 〉〉, αt′τ)K ∩

Jafter(〈〈m′′ 〉〉, t′τ)K which means that

s′ ∈ Jafter(〈〈m′′ 〉〉, t′τ)K. (6.36)

Hence from (6.30), (6.36) and by the inductive hypothesis we can conclude that
m′[s′] ∼ s′ as required.

• iSup: From (6.29) and by rule iSup we know that µ = τ and that

s
α−→ s′′ (6.37)

m
αI•−−−→ m′′. (6.38)

Since µ= τ , from (6.31) and the definition of after we have that s′∈Jafter(〈〈m 〉〉, t′τ)K
and so knowing (6.38) we can apply Lemma 6.5 and deduce that

s′ ∈ Jafter(〈〈m′′ 〉〉, t′τ)K. (6.39)

Finally, by (6.30), (6.39) and by the inductive hypothesis we conclude that
m′[s′] ∼ s′ as required.

80

Chapter 6. Maximal expressiveness

• iAsy: From (6.29) and by rule iAsy we know that µ= τ , s τ−→ s′′ and that

m′′ = m. (6.40)

Since from (6.31) and by the definition of after we know that s′∈Jafter(〈〈m 〉〉, τ t′τ)K
= Jafter(〈〈m′′ 〉〉, t′τ)K, knowing (6.30) and (6.40) we can apply the inductive hy-
pothesis and conclude that m′[s′] ∼ s′ as required, and we are done.

Having established that sHML is suppression expressive-complete, we are now in
a position to prove maximal expressiveness, namely that sHML is the largest µHML
subset that can be enforced by suppression monitors, up to logical equivalence i.e.,
Theorem 6.2.

Theorem 6.2 (Maximal Expressiveness for sHML). If a language L ⊆ µHML is
suppression-enforceable then L cannot (semantically) express more properties than
sHML, i.e., for every formula ϕ ∈ L, there exists ψ ∈ sHML such that JϕK=JψK.

Proof. Assume that every formula ϕ∈L is suppression-enforceable and so we know
that there exists a suppression monitor m that adequately enforces ϕ in the sense
of Definition 4.8, i.e., enf(m,ϕ). Hence, since Definition 4.8 is stronger than Defini-
tion 4.4 we can deduce that

∃m ∈ SupTrn, ∀s ·m[s] ∈ JϕK and (if s∈ JϕK then m[s] ∼ s). (6.41)

By Proposition 6.1 for the monitor m used in (6.41) we also know that there exists
an sHML formula ψ such that enf(m,ϕ) (in the sense of Definition 4.8), and so we
can infer that

∃ψ ∈ sHML, ∀s ·m[s] ∈ JψK and (if s∈ JψK then m[s] ∼ s). (6.42)

Now assume an arbitrary s ∈ JϕK so that from (6.41) we have that m[s] ∼ s and so
since from (6.42) we know that m[s] ∈ JψK, by Theorem 2.1 (i.e., the Hennessy-Milner
Theorem) we can infer that s ∈ JψK and subsequently that JϕK ⊆ JψK. Dually, we can
also conclude that JψK ⊆ JϕK.

Theorem 6.2 represents a significant contribution towards understanding the
enforceability of the µHML branching-time logic. Specifically, it ensures that limit-
ing the set of suppression-enforceable formulas to the syntactic subset sHML, still
allows for expressing all suppression-enforceable properties. Hence, this result can
be used to reduce the problem of checking whether a µHML formula can be enforced
via action suppression, to the problem of finding whether there exists a semanti-
cally equivalent sHML formula. This could be utilised by verification frameworks
to decide whether to enforce a property at runtime or adopt more expressive, yet
expensive, techniques.

81

Chapter 6. Maximal expressiveness

6.3 Summary

In this chapter we have investigated whether sHML is the maximally expressive
subset of µHML that is enforcable by the unidirectional suppression monitors of
Chapter 3. As a result, we have produced the following contributions:

(i) The formulation of a criterion denoting what it means for a suppression monitor
to apply persistent suppressions, i.e., Definition 6.1.

(ii) A proof for Theorem 6.1 denoting that if a µHML formula can be enforced by a
suppression monitor then the monitor must perform persistent suppressions.

(iii) The creation of a mapping function 〈〈− 〉〉 (Definition 6.4) that maps persistent
suppression monitors to sHML formulas. This function played a crucial role in
proving that sHML is suppression expressive-complete, Proposition 6.1.

(iv) A proof for Theorem 6.2 affirming that sHML is the maximally expressive subset
of µHML that is suppression enforceable.

82

7. A static counterpart to
suppression enforcement

A great deal of effort [5, 43, 58, 59, 65] has been made to study the interplay between
static and dynamic techniques, particularly to understand how the two can be used
in unison to minimise their respective weaknesses. However, the work conducted
in this regard has mainly focussed on verification rather than enforcement. It is
therefore unclear whether the maximally expressive fragment sHML (identified in
Chapters 5 and 6), can also be enforced statically. In this chapter we thus aim
to identify a technique that can be considered as being the static counterpart to
suppression enforcement, i.e., a technique that can statically achieve the same (or
equivalent) results as per suppression enforcement.

Definition 7.1 (Static Counterpart). A static verification technique S is the static
counterpart to suppression enforcement when, for every safety formula ϕ and system
s, there exists a transducer m so that m[s] ∈ JϕK iff S(s) ∈ JϕK (where S(s) is a
statically reformulated version of s obtained from applying S).

Identifying such a technique is quite desirable as it would allow for properties to
be enforced statically when dynamic verification is not ideal, e.g., when the moni-
tor’s runtime overheads are infeasible, and vice versa e.g., to avoid state explosions
during static analysis.

One promising static technique that has several things in common with runtime
enforcement is controlled system synthesis (CSS) [14, 45, 88, 101]. This approach
analyses the state space of the SuS and reformulates it pre-deployment to remove
the system’s ability of executing erroneous behaviour. As a result, a restricted (yet
valid) version of the SuS is produced; this is known as a controlled system. Similar
to runtime enforcement, the primary aim of CSS is that the resulting controlled sys-
tem adheres to the respective property − this is known as validity and corresponds

83

Chapter 7. A static counterpart to suppression enforcement

ϕ,ψ ∈ sHMLinv ::= tt | ff | ϕ∧ψ | [α]ϕ | �ϕ

Figure 7.1: The syntax for sHMLinv.

to the notion of soundness (Definition 4.2). In addition, CSS also requires fur-
ther guarantees to ensure minimal disruption to valid systems − this is ensured by
maximal permissiveness in CSS which is conceptually similar to our transparency
constraint (Definition 4.3). Moreover, since CSS aims to correct a SuS by omitting
its invalid behaviours, it is ideal for ensuring safety. These observations, along
with other commonalities, hint at the existence of a relation between suppression
enforcement and controlled system synthesis.

In order to investigate the interplay between CSS and suppression enforcement,
we choose the recent work on CSS by van Hulst et al. [101], and compare it to
our work on suppression enforcement presented in Chapters 5 and 6. Specifically,
we chose the work of [101] since it has several things in common with our work,
including the chosen specification language, modelling of systems, etc. To further
simplify our comparison, we identify a common core setting between our work and
that of [101], and show that in spite of their subtle differences, CSS is in fact a
static counter part to suppression enforcement in the context of safety properties.
Working in respect to a common core entails:

(i) Working with respect to the intersection of the logics used in both works.

(ii) Removing constructs and aspects that are supported by one technique and not
by the other, and by taking into account the assumptions considered in both
bodies of work.

In the case of (i), we standardise the logics used in both works and work with
respect to Safe Hennessy Milner Logic with invariance (sHMLinv), defined in Fig-
ure 7.1. sHMLinv is a strict subset of sHML which results from the intersection of
sHML, used in our work on suppression enforcement, and Hennessy Milner Logic
with invariance and reachability (HMLreach

inv), used for controlled system synthesis
in [101]. Since the HMLreach

inv variant used in [101] only allows for defining visible
actions α∈Act in its modal operators (instead of symbolic actions), we also include
this restriction throughout our comparison.

The primary difference between sHML and sHMLinv is that the latter restricts
recursion to only allow for defining invariance. An invariant property �ϕ requires
every reachable system state to satisfy ϕ. To avoid having to define new semantics
for this operator, we encode it in terms of the sHML syntax as the recursive property
maxX.ϕ∧

∧
β∈Act[β]X where Act is now assumed to be finite.

We address (ii) in a number of ways. First, we acknowledge that unlike our work,

84

Chapter 7. A static counterpart to suppression enforcement

the work on CSS [101] assumes that a SuS does not perform internal τ actions and
that it can have output labels associated to its states. We thus equalise the system
models by working with respect to LTSs that do not associate labels to states, and
do not perform τ actions. Since we do not focus on state-based properties, the
removal of state labels is not a major limitation as we are only forgoing additional
state information from the SuS. Although the removal of τ actions requires the SuS
to be fully observable, this does not impose significant drawbacks as the work on
CSS can easily be extended to allow such actions. We however assume that the
resulting monitored and controlled systems may still perform τ actions.

Second, despite that controlled system synthesis differentiates between system
actions that can be removed (controllable) and those which cannot (uncontrollable),
our work on enforcement does not. This is also not a major limitation since enforce-
ment models can easily be adapted to make such a distinction. However, in our first
attempt at a comparison, we opt to simplify the models as much as possible, and
so to enable our comparison we assume that every system action is controllable
and can be removed and suppressed by the respective techniques. Finally, since
controlled systems are not required to satisfy a correctness criterion similar to our
notion of eventual transparency (Definition 4.7), in this part we work with respect
monitors that adequately enforce formulas in the sense of Definition 4.4 (rather
than Definition 4.8).

7.1 Controlled System Synthesis

In Figure 7.2 we present our simplified (more restricted) version of the synthesis
function presented in [101]. It takes a LTS 〈Sys,Act,→〉 representing a SuS and
a formula ϕ in order to statically construct a controlled version of the system that
satisfies ϕ. The new system is synthesised in two stages. In the first stage, a new
transition relation 7−→⊆ (Sys × sHML) × Act × (Sys × sHML) is constructed over the
state-formula product space, (Sys × sHML). Intuitively, this transition relation as-
sociates a sHML formula to the initial system state and defines how this changes
when the system transitions to other subsequent states. The composite behaviour
of the formula and the system is statically computed using the first five rules of
Figure 7.2.

Rule cBool always adds a transition when the formula is b∈
{

tt,ff
}
. Rules cNec1

and cNec2 add a transition from [α]ϕ to ϕ when s has a transition over α, and to tt

if it reduces over β 6= α. cAnd adds a transition for conjunct formulas, ϕ∧ψ, when
both formulas can reduce independently to some ϕ′ and ψ′, with the formula of the
end state of the new transition being mini(ϕ′∧ψ′). Finally, cMax adds a greatest

85

Chapter 7. A static counterpart to suppression enforcement

Static Composition

cBool
s

α−→ s′ b ∈ {tt,ff}
(s, b)

α7−→ (s′, b)
cNec1 s

α−→ s′

(s, [α]ϕ)
α7−→ (s′, ϕ)

cNec2
s

β−→ s′ β 6= α

(s, [α]ϕ)
β7−→ (s′, tt)

cAnd
(s, ϕ)

α7−→ (s′, ϕ′) (s, ψ)
α7−→ (s′, ψ′)

(s, ϕ∧ψ)
α7−→ (s′,mini(ϕ′∧ψ′))

cMax
(s, ϕ{maxX.ϕ/X}) α7−→ (s′, ψ)

(s,maxX.ϕ)
α7−→ (s′,mini(ψ))

Synthesizability Test

ψ ∈ {tt, X, [α]ϕ}
(s, ϕ) ↓ ψ

(s, ϕ) ↓ ψ1 (s, ϕ) ↓ ψ2

(s, ϕ) ↓ (ψ1∧ψ2)

(s, ϕ) ↓ ψ
(s, ϕ) ↓ maxX.ψ

Invalid Transition Removal

cTr
(s, ϕ)

α7−→ (s′, ϕ′) (s′, ϕ′) ↓ ϕ′

(s, ϕ)
α−→ (s′, ϕ′)

Figure 7.2: The Controlled System Synthesis.

fixpoint maxX.ϕ transition to mini (ψ), when its unfolding can reduce to ψ. In both
cAnd and cMax, mini (ϕ) stands for a minimal logically equivalent formula of ϕ.
This is an oversimplification of the minimisation techniques used in [101] to avoid
synthesising an infinite LTS due to invariant formulas and conjunctions, see [101]
for more details.

Example 7.1. Formulas ϕ′∧tt, ϕ′∧ff and ϕ∧ψ∧ψ are logically equivalent to (and can
thus be minimized into) ϕ′, ff and ϕ∧ψ respectively.

Instead of defining a rule for greatest fixpoint operators, the authors of [101]
define a synthesis rule directly for invariance stating that when (s, ϕ)

α7−→ (s′, ϕ′),
then (s,�ϕ)

α7−→ (s′,mini(�ϕ∧ϕ′)). We, however, opted to generalize this rule to fix-
points to simplify our comparison, while still limiting ourselves to sHMLinv formu-
las. This is possible since by encoding �ϕ as maxX.ϕ∧

∧
β∈Act[β]X, we get that

(s,maxX.ϕ∧
∧
β∈Act[β]X)

α7−→ (s′,mini((maxX.ϕ∧
∧
β∈Act[β]X)∧ϕ′)) when (s, ϕ)

α7−→ (s′, ϕ′)

where mini((maxX.ϕ∧
∧
β∈Act[β]X)∧ϕ′) is the encoded version of mini(�ϕ∧ϕ′).

The second stage of the synthesis involves using rule cTr to remove invalid
transitions that lead to violating states; this yields the required transition func-
tion for the controlled system. This rule relies on the synthesizability test rules
to tell whether a controlled state, (s,ϕ), is valid or not. Intuitively, the test rules
fail whenever the current formula ϕ is semantically equivalent to ff, e.g., formulas
maxX.([α]X∧ff) and ϕ∧ff both fail the synthesizability test rules as they are equiva-

86

Chapter 7. A static counterpart to suppression enforcement

(serr, ϕ5) (s1
err, ϕ5) (s3

err, ϕ5) (s2
err,ff)

(nil, ϕ5) (s2
err, ϕ5∧[a!ans]ff) (s1

err,ff)

(s3
err,ff)

(nil,ff)

a?req

b?cls b!log

a?req

a!ans
a!ans b?cls

a!ans

b!log

a?reqa!ans

where: serr
def
= a?req.s1

err s1
err

def
= a!ans.s2

err + b?cls.nil
s2

err
def
= a!ans.s1

err + b!log.s3
err s3

err
def
= a?req.s1

err.

Figure 7.3: The LTS obtained from controlling sb via ϕ5.

lent to ff. Concretely, the test is vacuously satisfied by truth, tt, logical variables, X,
and guarded formulas, [α]ϕ, as none of them are logically equivalent to ff. Conjunct
formulas, ψ1∧ψ2, pass the test when both ψ1 and ψ2 pass independently. A fixpoint,
maxX.ϕ′, is synthesisable if ϕ′ passes the test.

Transitions leading to a state that fails the test are therefore removed, and tran-
sitions outgoing from failing states become redundant as they are unreachable. The
resulting transition function is then used to construct the controlled LTS 〈(Sys ×
sHMLinv),Act,→〉.

Remark 7.1. Since we do not liberally introduce constructs that are not present in
the original models of [101], the simplified model is just a restricted version of the
original one. Hence, the results proven with respect to this simplified model should
either apply to the original one or extend easily to the more general setting.

Example 7.2. Recall the request-response server setting of Example 3.1 from Chap-
ter 3. Now consider the following sHMLinv formula stating that at every system state,
two consecutive answers on port a always indicate invalid behaviour.

ϕ5
def
= � [a!ans][a!ans]ff

Now consider the following erroneous server implementation that similar to sb from
Example 3.1 of Chapter 3, it may occasionally produce multiple answers for a given
request (see the underlined branch in the description of serr below).

serr
def
= a?req.recX.(a!ans.(a!ans.X + b!log.a?req.X) + b?cls.nil)

Using the synthesis function of Figure 7.2 we can synthesise a controlled version
of serr that satisfies ϕ5. The synthesis is conducted in two stages. In the first stage
we compose them together and generate the LTS of Figure 7.3. The (grey) a!ans
transition leading to the test failing state (s1

err,ff), is then removed in the second stage
along with the unreachable system states and transitions. Hence, this produces the
required (black) controlled system.

87

Chapter 7. A static counterpart to suppression enforcement

7.2 Establishing a static counterpart to enforcement

Establishing that CSS is the static counterpart to suppression enforcement (as
stated by Definition 7.1) is inherently difficult as it requires showing that every
sHMLinv formula (of which there is an infinite amount) can be enforced using both
techniques. It is, however, a well known fact that trace equivalent systems satisfy
the same set of safety properties. As the (recursion-free) subset of sHML charac-
terises safety properties [56], this means that systems sharing the same traces also
satisfy the same sHML formulas.

Theorem 7.1. Let s and r be system states in an LTS. Then traces(s) = traces(r) iff
s and r satisfy exactly the same sHML formulas.

A proof for this result is provided in Appendix B.5 on page 203. Although we prove
this for the recursion free subset it still applies to the full sHML (see [99, 100]).

Hence, since trace equivalent systems satisfy the same set of safety properties
(Theorem 7.1), it suffices to conclude that the controlled LTS can produce the same
set of traces as that generated by a monitored one at runtime.

Theorem 7.2 (Trace Equivalence). For every LTS 〈Sys,Act,→〉, formula ϕ ∈ sHMLinv

and s∈Sys, there exists a monitor m such that traces(m[s]) = traces((s, ϕ)).

The existential quantification on the monitorm in Theorem 7.2 entails the need of
using some sort of mapping that maps sHMLinv formulas to suppression monitors.
One possible candidate is to use the synthesis function of Definition 5.2 introduced
in Chapter 5. Although our synthesis function is defined for sHMLnf formulas, it is
still valid since sHMLinv is a (strict) subset of sHML and so Theorem 5.3 ensures that
for every sHMLinv formula we can always find a logically equivalent sHMLnf formula.
However, as shown in the following example, the composite system obtained from
instrumenting the synthesised monitor with the SuS might not always be trace
equivalent to the controlled system obtained using the rules of Figure 7.2.

Example 7.3. Recall formula ϕ5 from Example 7.2 which can be normalised as:

ϕ5
def
= maxX.([a!ans]([a!ans]ff∧[a?req]X∧[b!log]X∧[b?cls]X))∧[a?req]X∧[b!log]X∧[b?cls]X.

Using the synthesis function of Definition 5.2 from Chapter 5 we produce the fol-
lowing monitor:

Lϕ5 M = recX.(a!ans¡.mϕ5) + a?req¡.X + b?cls¡.X + b!log¡.X

where mϕ5 = (recY. a!ans, •¡.Y + a?req¡.X + b?cls¡.X + b!log¡.X).

When instrumented with serr from Example 7.2 we obtain the composite system

88

Chapter 7. A static counterpart to suppression enforcement

msup[serr] msup[s1
err]

m′sup[s2
err]msup[nil]

msup[s3
err] sup[nil] sup[s3

err]

sup[s1
err] sup[s2

err]

a?req

b?cls
τ

τ τ
τ

τ

τ

a!ans b!log

a?req

Figure 7.4: The runtime execution graph of the monitored system.

Lϕ5 M[serr] that can execute the trace a?req.a!ans.b?cls, since

Lϕ5 M[serr]
a?req.a!ans−−−−−−−→ recY. a!ans, •¡.Y + a?req¡.Lϕ5 M + b?cls¡.Lϕ5 M[s2

err]
τ−−−−−−−−→ recY. a!ans, •¡.Y + a?req¡.Lϕ5 M + b?cls¡.Lϕ5 M[s1

err]

b?cls−−−−−−−→ Lϕ5 M[nil].
However, this trace cannot be generated by the controlled system (serr, ϕ5) of Fig-
ure 7.3.

On the other hand, instrumenting serr with monitor msup (defined below) pro-
duces the composite system msup[serr] that is trace equivalent to the controlled sys-
tem (serr, ϕ5). This can easily be verified by comparing the composite behaviour of
msup[serr] shown in Figure 7.4, to that of the controlled LTS illustrated in Figure 7.3.

msup
def
= recX.(a!ans¡.m′sup + a?req¡.X + b?cls¡.X + b!log¡.X

m′sup
def
= a!ans, •¡.sup + a?req¡.X + b?cls¡.X + b!log¡.X

where sup def
= recY.

∑
β∈Act β, true, •¡.Y

Intuitively, the composite system msup[serr] is trace equivalent to (serr, ϕ5) since,
unlike Lϕ5 M, monitor msup is — in some sense — mimicking dynamically the static
modifications applied by the rules of Figure 7.2. Specifically, by suppressing the first
redundant (invalid) a!ans action, it mimics the case where the CSS rules remove
this invalid action. As a consequence of this removal, the CSS rules make every
subsequent state and transition unreachable. This is also simulated at runtime
by mt since it persists in suppressing every action that the SuS executes after the
invalid a!ans action.

To be able to prove Theorem 7.2, we thus define a new synthesis function that
maps sHMLinv formulas to enforcement transducers. Once again, we reduce the
complexity of this mapping by defining it over the normalised sHML formulas as
follows.

Definition 7.2. We define our mapping − : sHMLnf 7→Trn inductively as:

X
def
= X tt

def
= id maxX.ϕ

def
= recX. ϕ∧

i∈ I
[αi]ϕi

def
=
∑
i∈I
mi where mi

def
=
{ αi, αi¡. ϕi if ϕi 6=ff

 αi, •¡.sup otherwise

The new synthesis function is almost identical to that of Definition 5.2 from

89

Chapter 7. A static counterpart to suppression enforcement

Chapter 5 as it only differs in the way it handles the normalized conjunctions,∧
i∈ I [αi]ϕi. They are mapped into a summation of monitors,

∑
i∈I mi, where every

branch mi can either be prefixed by an identity transformation when ϕi 6= ff, or
otherwise by the suppression branch αi, •¡.sup that suppresses the invalid action
αi along with every subsequent action. Notice that the requirement that, ϕi 6= ff, is
in some sense analogous to the synthesisability test applied by the CSS rule cTr
of Figure 7.2 to retain the valid transitions only. In this mapping function, this
requirement is essential to ensure that only the valid actions remain unsuppressed
by the resulting monitor.

Example 7.4. Recall the normalised version of formula ϕ5 from Example 7.3.

ϕ5
def
= maxX.([a!ans]([a!ans]ff∧[a?req]X∧[b!log]X∧[b?cls]X))∧[a?req]X∧[b!log]X∧[b?cls]X.

Using the mapping function specified in Definition 7.2, we generate monitor

ϕ5 = recX.(a!ans¡.m′sup + a?req¡.X + b?cls¡.X + b!log¡.X

where m′sup
def
= a!ans, •¡.sup + a?req¡.X + b?cls¡.X + b!log¡.X

and so ϕ5 is identical to msup from Example 7.3.

Corollary 7.1 (Enforcement adequacy). The new synthesis function of Definition 7.2
applies adequate enforcement in the sense of Definition 4.4 from Chapter 4 since
it produces monitors that adhere to soundness (Definition 4.2) and transparency
(Definition 4.3). This claim can be easily justified using Proposition 5.1 and Propo-
sition 5.3 (respectively proven in Chapter 5 on page 41 and Appendix B.3 given on
page 160). Although these results are proven for the synthesis function of Def-
inition 5.2 from Chapter 5, the proofs remain identical when recast to the new
synthesis function of Definition 7.2.

However, the new function sometimes fails to produce monitors that satisfy the
eventual transparency constraint (Definition 4.7). For instance, when given formula
ϕ0 (from Example 4.1), the new synthesis produces monitor mt (from Example 3.2)
whose failure to adhere to Definition 4.7 was shown in Example 4.6 of Chapter 4.

With this new mapping function in hand, we are now able to prove Theorem 7.2
as a corollary of Proposition 7.1. The proof for this proposition is given in Ap-
pendix B.5.2 on page 204.

Proposition 7.1. For every sHMLnf formula ϕ, system s and trace t, when ϕ = m

then t ∈ traces(m[s]) iff t ∈ traces((s, ϕ)).

Having concluded the proof of Theorem 7.2 and knowing Theorem 7.1, we can
finally obtain our main result with respect to Definition 7.1.

Theorem 7.3. Controlled system synthesis is the static counterpart of suppression
enforcement in the context of safety properties.

90

Chapter 7. A static counterpart to suppression enforcement

7.3 Distinguishing between Suppression Enforcement and
CSS

Despite concluding that CSS is the static counterpart to suppression enforcement,
there are still a number of subtle differences between these two techniques. For one,
since suppression enforcement is a dynamic technique, the monitor and the system
still remain two separate entities, and the instrumentation between them is merely a
way for the monitor to interact with the SuS. In general, the monitor does affect the
execution of the SuS itself, but rather modifies its observable trace of actions, such
as its inputs and outputs [51]. By contrast, when a controlled system is synthesised,
an existing system is paired up with a formula and statically reconstructed into a
new (correct) system that is incapable of executing the erroneous behaviour.

By removing invalid transitions entirely, controlled system synthesis is more
ideal to guarantee the property compliance of the internal (less observable) be-
haviour of a system. For example, this can be useful to ensure that the system
does not use a shared resource before locking it. By contrast, the invalid actions
are still executed by the system in suppression enforcement, but their effect is ren-
dered invisible to any external observer. This makes suppression enforcement more
suitable to ensure that the external (observable) behaviour of the system complies
with a desired property. For instance, one can ensure that the system does not per-
form an output that is innocuous to the system itself, but may be providing harmful
information to the external environment.

Moreover, it turns out that although both techniques produce composite systems
that are trace equivalent to each other, an external observer may still be able to tell
them apart by merely observing them. One way of formally assessing this is to use
observational equivalence (characterised by delay bisimilarity) as a yardstick, thus:

∀ϕ ∈ sHML, s ∈ Sys,∃m ∈ Trn ·m[s] ≈ (s, ϕ). (7.1)

We show by means of a counter example that (7.1) is in fact false and as a result
prove Theorem 7.4.

Theorem 7.4 (Non Observational Equivalence). There exist an sHMLinv formula ϕ,
an LTS 〈Sys,Act,→〉 and a system state s∈Sys such that for every monitor m∈Trn,
m[s]6≈(s, ϕ).

Proof sketch. Recall the controlled LTS with initial state (serr, ϕ5) obtained in Exam-
ple 7.2. To prove Theorem 7.4 we must show that for every action suppression mon-
itor m, one cannot find a delay bisimulation relation R so that (m[serr], (serr, ϕ5)) ∈ R.
An elegant way of showing this claim, is by using bisimulation game characterisation
[11] starting from the pair (m[serr], (serr, ϕ5)), for every possible m. The game is played

91

Chapter 7. A static counterpart to suppression enforcement

between two players, namely, the attacker and the defender. The attacker wins the
game by finding a sequence of moves from the monitored state m[serr] (or the con-
trolled state (serr, ϕ5)), which the defender cannot counter, i.e., the move sequence
cannot be performed by the controlled state (serr, ϕ5) (resp. monitored state m[serr]).
Note that the attacker is allowed to play a transition from either the current moni-
tored state or the controlled state at each round of the game. A winning strategy for
the attacker entails that the composite systems are not observationally equivalent.

We start playing the game from the initial pair (m[serr], (serr, ϕ5)) for every monitor
m. Pick any monitor that suppresses any action other than a second consecutive
a!ans, such as m0

def
= a?req, •¡.m′0. In this case, it is easy to deduce that the defender

always loses the game, that is, if the attacker attacks with (serr, ϕ5)
a?req−−−−→ (s1

err, ϕ5)

the defender is defenceless since m0[serr] 6a?req
====⇒. This remains true regardless of the

“depth” at which the suppression of a?req transitions occur.

On the one hand, using the same game characterisation one can also deduce
that by picking a monitor that fails to suppress the second consecutive a!ans action,
such as m1

def
= a?req¡. a!ans¡. a!ans¡.m′1, also prevents the defender from winning. If

the attacker plays with m1[serr]
a?req.a!ans.a!ans

===========⇒ m′1[s1
err], the defender loses since it

can only counter the first two transitions, i.e., (serr, ϕ5)
a?req.a!ans

========⇒ 6a!ans
====⇒. Again, this

holds regardless of the “depth” of such a failed suppression.

On the other hand, any monitor that actually suppresses the second consecutive
a!ans action, such as m2

def
= a?req¡. a!ans¡. a!ans, •¡.m′2, still negates a win for the

defender. In this case, the attacker can play (serr, ϕ5)
a?req.a!ans

========⇒ (s2
err, ϕ5∧[a!ans]ff) to

which the defender must reply withm2[serr]
a?req.a!ans

========⇒ a!ans, •¡.m′2[s2
err]. The attacker

can subsequently play a!ans, •¡.m′2[s2
err]

τ−→ m′2[s1
err], which can only be countered by

an inaction on behalf of the defender, i.e., the controlled system remains in state
(s2

err, ϕ5∧[a!ans]ff).

Since we do not know the form ofm′2, we consider the following two cases, namely,
when m′2 suppresses b?cls, and the case when it does not. In the first case, the
attacker can attack with m′2[s1

err]
τ−→ m′′2[nil] (for some m′′2) where τ represents the

suppression of the b?cls action. Once again the defender can only counter with an
inaction and stay in state (s2

err, ϕ5∧[a!ans]ff). At this point the attacker wins the play
by attacking with (s2

err, ϕ5∧[a!ans]ff)
b!log−−−→ (s3

err, ϕ5) since m′′2[nil] 6b!log
====⇒. In the second

case, the attacker also wins by attacking with m′2[s1
err]

b?cls−−−−→ m′′′2 [nil] (for some m′′′2)
since (s2

err, ϕ5∧[a!ans]ff) 6b?cls
====⇒ .

These cases therefore suffice to deduce that for every possible monitor the at-
tacker always manages to win the game, and hence we conclude that Theorem 7.4
holds as required.

92

Chapter 7. A static counterpart to suppression enforcement

This result is important since it proves that powerful external observers, such as
the ones presented by Abramsky in [1], can still distinguish between the resulting
monitored and controlled systems.

7.4 Summary

In this chapter we have looked into a static technique called Controlled System Syn-
thesis (CSS), and compared it to suppression enforcement. As a result of this com-
parison we identified CSS as being the static counterpart to suppression enforce-
ment in the context of safety properties, as defined by Definition 7.1. In spite of this
relationship, we also studied the intricate differences between the two techniques
and concluded that an Abramsky-type external observer [1] can tell the difference
between a monitored and controlled system resulting from the same formula and
SuS. As a result of this work, we have produced the following contributions:

(i) A new synthesis function that produces sound and transparent monitors, Def-
inition 7.2. This allowed us to prove that for every controlled system, there
exists a trace equivalent monitored system, Theorem 7.2.

(ii) A proof confirming that when restricted to safety properties, controlled system
synthesis is the static counterpart (Definition 7.1) to suppression enforcement,
Theorem 7.3.

(iii) Another proof that ensures that the monitored system obtained from instru-
menting a synthesised suppression monitor, and the controlled version of the
same system, might not always be observationally equivalent, Theorem 7.4.

To our knowledge this is the first formal comparison to be made between these two
techniques.

93

8. End of Part I

In the first part of this thesis we have presented a preliminary investigation of the
enforceability of µHML properties in a unidirectional context. Specifically, we have
focussed on studying the ability to enforce µHML properties via suppression-based
enforcement monitors. We concluded that the safety subset sHML is the maximally
expressive fragment of µHML that is enforceable via these kind of monitors. To
show this, we adopted a trace-based view of the SuS and defined the unidirectional
enforcement framework of Chapter 3. In Chapter 4 we then defined enforceabil-
ity for logics and system descriptions interpreted over labelled transition systems
which we motivated vis-a-vis our enforcement framework. Although enforceability
builds upon soundness and transparency requirements that have been considered
in other work, we developed more stringent definitions for these requirements, and
also introduced new constraints, namely, eventual transparency and optimality. We
also contend that the definitions that we develop for our enforcement framework are
fairly modular: e.g., the instrumentation relation is independent of the specific lan-
guage constructs defining our transducer monitors and it functions as expected as
long as the transition semantics of the transducer and the system are in agreement.

Based on our notion of enforcement, in Chapter 5 we thus devised a two-phase
procedure to synthesise correct suppression monitors from safety properties ex-
pressed via the safety fragment of µHML i.e., sHML. We first identified a syntactic
subset of our target sublogic sHML that affords certain structural properties and
permits a compositional definition of the synthesis function. We then showed that,
by augmenting existing rewriting techniques to our setting, we can convert any
sHML formula into this syntactic subset. In Chapter 6 we then showed that the
identified enforceable fragment sHML is also the maximally expressive subset of
µHML that can be enforced via suppression monitors. To achieve this we devised a
mapping that maps sound suppression monitors to sHML formulas which allowed
us to prove that sHML is suppression expressive complete, i.e., that every sound

94

Chapter 8. End of Part I

suppression monitor can enforce at least one sHML formula. This in turn allowed
us to determine that sHML is the maximally expressive subset of µHML that is
suppression enforceable.

In Chapter 7 we finally presented a novel comparison between suppression en-
forcement and controlled system synthesis − two verification techniques that au-
tomate system correction for erroneous systems. As a catalyst for conducting this
comparison we chose the work by van Hulst et al. [101] on controlled system syn-
thesis, and compared it to our work on suppression enforcement. This investigation
allowed us to conclude that controlled system synthesis is the static counterpart to
suppression enforcement in the context of safety, which means that safety formulas
can be enforced both statically and dynamically. To achieve this, we developed a
function that maps logic formulas to suppression monitors and proved inductively
that for every system and formula, one can obtain a monitored and a controlled
system that execute the same set of traces at runtime. As trace equivalent systems
satisfy the same safety properties, this result was enough to reach our conclusion.
However, using a counter-example we also determined that these two techniques are
different modulo observational equivalence. This means that an external observer
can still tell the difference between a monitored and controlled system in spite of
being trace equivalent.

As stated earlier, our unidirectional enforcement approach assumes a trace-
based view of the SuS and that every action can be freely modified via the monitor’s
transformations. When we lift this assumption and start differentiating between
certain kinds of actions (such as inputs and outputs), the results obtained so far
might, however, not always apply. As several works (such as [69, 87, 103]) have used
similar unidirectional approaches to enforce properties about the system’s output
behaviour, we are confident that our results will still apply for these properties after
our assumption is lifted. This is further explored (and confirmed) in the second part
of this thesis when we explore bi-directional enforcement.

8.1 Related Work

In his seminal work [98], Schneider adopts a trace-based view of the SuS and re-
gards a property to be enforceable if its violation can be detected and subsequently
prevented by a truncation automaton which terminates the system. By preventing
misbehaviour, these automata can only enforce safety properties. Ligatti et al. [78]
extended this work via edit automata—an enforcement mechanism capable of sup-
pressing and inserting system actions. A property is thus enforceable if it can be
expressed as an edit automaton that transforms invalid executions into valid ones

95

Chapter 8. End of Part I

via suppressions and insertions. Edit automata are capable of enforcing instances
of safety and liveness properties, along with other properties such as infinite re-
newal properties [23, 78]. As a means to assess the correctness of these automata,
the authors introduced soundness and transparency where the latter corresponds
to our notion of trace transparency, Definition 4.5, which we showed to be weaker
than Definitions 4.3 and 4.7. Moreover, in both of Ligatti’s and Schneider’s set-
tings, there is no clear separation between the specification and the enforcement
mechanism, and properties are encoded in terms of the languages accepted by the
enforcement model itself, i.e., as edit/truncation automata. By contrast, we keep
the specification and verification aspects of the logic separate.

Bielova and Massacci [23, 25] remark that, on their own, soundness and trans-
parency fail to specify the extent in which a transducer should modify invalid run-
time behaviour and thus introduce a predictability criterion. A transducer is pre-
dictable if one can predict the edit-distance between an invalid execution and a valid
one. With this criterion, adequate monitors are further restricted by setting an up-
per bound on the number of transformations that a monitor can apply to correct
invalid traces. Although this is similar to our notion of optimality, we however use it
to compare an adequate (sound and eventual transparent) monitor to all the other
adequate monitors and determine whether it is the least intrusive monitor that can
enforce the property of interest.

Könighofer et al. [69] present a synthesis algorithm that produces unidirectional
action replacement transducers called shields from safety properties encoded as
automata-based specifications. By definition, shields should adhere to two desired
properties, namely correctness and minimum deviation which are, in some sense,
analogous to soundness and transparency respectively. Although shields analyse
both the inputs and outputs of a reactive system, they can only enforce properties
by modifying the system’s output actions whenever it deviates from the specified be-
haviour. This is similar to the enforcement approach that we adopt in Example 3.2
of Chapter 3, i.e., although our suppression monitors analyse both the (input) re-
quests and the (output) answers, they only modify the latter.

Falcone et al. [47, 50, 52], also propose synthesis procedures to translate prop-
erties − expressed as Streett automata − into the respective enforcement automata.
The authors show that most of the property classes defined within the safety-
progress hierarchy [90] are enforceable, as they can be encoded as Streett automata
and subsequently converted into enforcement automata. As opposed to Ligatti et al.,
both Könighofer et al. and Falcone et al. separate the specification of the property
from the enforcement mechanism, but unlike our work they do not study the en-
forceability of a logic.

96

Chapter 8. End of Part I

Lanotte et al. [72, 73] adopt a formal approach to model and enforce security-
oriented properties on industrial control systems (ICSs). ICSs are made of a set of
distributed programmable logic controllers (PLCs) that perform a specific sequence
of actions, called the scan cycle, to control a physical device. The authors represent
PLCs as processes expressed in a variant of the TPL calculus [63] and assume that
malware may execute alongside them to compromise their behaviour. To counter
security attacks, the authors instrument monitors that suppress the injected mali-
cious behaviour and define two functions that synthesise suppression monitors. In
their first function, the monitors are synthesised from uncompromised PLCs, while
in their second one they are synthesised from a subset of regular properties that
are defined using linear-time semantics. The synthesised monitors suppress any
behaviour that is not specified by the PLC or regular property it was derived from,
as this is assumed to be introduced by a malware. The monitors are also proven to
satisfy several criteria including soundness and transparency. Contrary to this set-
ting, in our work we take a more general stance and do not make any assumptions
about the system’s behaviour, in fact, we consider any system that can be expressed
as an LTS. Our primary aim also differs from that of [72, 73] since in our work we
strived to understand the enforceability of a highly expressive branching-time logic,
and as a result we identified a maximally expressive fragment that is enforceable
via suppression transducers.

More similar to our work, Beauquier et al. [21] identify a subclass of regular ex-
pressions and prove that it is the largest subclass that is enforceable using Ligatti’s
edit automata [78]. Due to the similarities with our work it would be interesting
to investigate whether sHML is strictly contained in their identified class of regular
expressions.

Francalanza et al. [56] study the monitorability of µHML, but in the sense of
runtime verification. They identify the maximally expressive subset of µHML that
syntactically characterises the µHML formulas that are verifiable via detection (RV)
monitors. By contrast, in our work we identify sHML as being the maximal expres-
sive fragment of µHML in the context of suppression-based enforcement monitoring.

To the best of our knowledge, the only other work that tackles enforceability for
the modal µ-calculus [70] (a reformulation of µHML) is that of Martinelli and Mat-
teucci [83, 84]. Their approach is, however, different from ours. Instead of defin-
ing a compositional synthesis function that constructs a monitor from a formula,
they reduce the synthesis problem to satisfiability. Specifically, their synthesis re-
quires finding a system that satisfies the formula under certain conditions that vary
according to whether the formula is enforced using suppressions, insertions or a
mixture of both. The existence of a satisfying system can (at worst) be decided in

97

Chapter 8. End of Part I

exponential time according to the length of the formula. By contrast our synthesis
produces a monitor in linear time (unless normalisation is required). If a satisfy-
ing system exists, it is used as a monitor to transform the actions of the SuS as
required. Their work therefore dictates that a µ-calculus formula is enforceable if
there exists a system that satisfies the formula under the conditions we alluded to
above. Put differently, they do not explicitly identify a maximally expressive logic
subset that is enforceable via their enforcement mechanisms. Moreover, they only
focus on synthesising sound monitors and do not assess their transparency and
optimality.

Bocchi et al. [26] adopt multi-party session types to project the global protocol
specifications of distributed networks to local types defining a local protocol for ev-
ery process in the network that are then either verified statically via typechecking
or enforced dynamically via suppression monitors. To implement this enforcement
strategy, the authors define a dynamic monitoring semantics for the local types that
suppress process interactions so as to conform to the assigned local specification.
They prove local soundness and transparency for monitored processes that, in turn,
imply global soundness and transparency by construction. Their local enforcement
is closely related to the suppression enforcement studied in our work with the follow-
ing key differences: (i) well-formed branches in a session type are, by construction,
explicitly disjoint via the use of distinct choice labels (i.e., similar to our normalised
subset sHMLnf), whereas we can synthesise enforcers for every sHML formula using
a normalisation procedure; (ii) they give an LTS semantics to their local specifica-
tions (which are session types) which allows them to state that a process satisfies
a specification when its behaviour is bisimilar to the operational semantics of the
local specification—we do not change the semantics of our formulas, which is left
in its original denotational form; (iii) our monitor descriptions sit at a lower level of
abstraction than theirs using a dedicated language, whereas theirs have a session-
type syntax with an LTS semantics (e.g., repeated suppressions have to be encoded
in our case using the recursion construct while this is handled by their high-level
instrumentation semantics).

Castellani et al. [36] adopt session types to define reading and writing privi-
leges amongst processes in a network as global types for information flow purposes.
These global types are projected into local monitors capable of preventing read and
write violations by adapting certain aspects of the network. Although their work is
pitched towards adaptation [30, 55], rather than enforcement, in certain instances
they adapt the network by suppressing messages or by replacing messages with
messages carrying a default nonce value. As our enforcement mechanism provides
the necessary suppression and replacement mechanisms, it is possible to investi-

98

Chapter 8. End of Part I

gate whether our monitor correctness criteria could be adapted or extended to this
information-flow setting.

Similar to our work in Chapter 7, several works can be found comparing formal
verification techniques. Van Hulst et al. [101] explore the relationship between
their work on controlled system synthesis and the synthesis problem in Ramadge
and Wonham’s Supervisory Control Theory (SCT) [92]. The aim in SCT is to generate
a supervisor controller from the SuS and its specification (e.g., a formal property).
If successfully generated, the synchronous product of the SuS and the controller
is computed to obtain a supervised system. To enable the investigation, van Hulst
et al. developed language-based notations akin to that used in [92], and proved that
Ramadge and Wonham’s work can be expressed using their theory.

Ehlers et al. [45] establish a connection between SCT and reactive synthesis −
a formal method that attempts to automatically derive a valid reactive system from
a given specification. To form this connection, the authors first equalise both fields
by using a simplified version of the standard supervisory control problem and focus
on a class of reactive synthesis problems that adhere to the requirements imposed
by SCT. They then show that the supervisory control synthesis problem can be
reduced to a reactive synthesis problem. In this work Ehlers et al. focussed on
properties expressed as CTL formulas [41] and modelled their systems as descrete
event systems.

Basile et al. [17] explore the gap between SCT and coordination of services, which
describe how control and data exchanges are coordinated in distributed systems.
This was achieved via a new notion of controllability that allows one to reduce the
classical SCT synthesis algorithms to produce orchestrations and choreographies
describing the coordination of services as contract automata. Falcone et al. [51]
also made a brief, comparison between runtime enforcement and SCT in the context
of K-step opacity, but established no formal results that relate these two techniques.

8.2 Future Work

We plan to extend the work of this part in several ways. For one, we aim to ex-
tend the enforceable fragment of µHML. Since we have already determined that
the suppression enforceable subset sHML is maximally expressive, enlarging the
enforceable fragment requires studying more expressive enforcement mechanisms,
such as action insertions and replacements.

The co-safety fragment cHML, is generally regarded as being the dual of sHML,
namely because, cHML formulas specify the (valid) behaviour that a SuS must ad-
here to, whereas sHML formulas define the (invalid) behaviour that the SuS must

99

Chapter 8. End of Part I

not exhibit. In fact, several work [4, 5, 28, 55–57] conducted vis-a-vis sHML claims
to be easily adapted to apply for cHML (and vice versa). For instance in [56], Fran-
calanza et al. elucidate this duality when exploring the monitorability of µHML
properties in the sense of runtime verification. Specifically, they determine that
sHML formulas can be verified at runtime by monitors that detect their violation,
and dually cHML formulas are verifiable by monitors that detect their satisfaction.

We are, however, uncertain if this duality exists in the case of runtime enforce-
ment. Recall that when dealing with safety properties, our suppression monitors
adopt a late enforcement approach that allows a system to execute unhindered un-
til it attempts to perform an action α that leads to a violation ff e.g., [α]ff, in which
case α gets suppressed. However, this late enforcement approach might fail when
applied to cHML properties, specifically since, any system that is unable to execute
the exact behaviour specified by the property is by default erroneous. This means
that a (replacement or insertion) monitor must constantly steer the execution of
the SuS to ensure that every action it executes, conforms to the action sequence
specified by the co-safety formula. It is also unclear whether cHML formulas can
be adequately enforced in the sense of Definitions 4.4, 4.6 and 4.8 as shown by the
following example.

Example 8.1. Consider the cHML formula ϕcs stating that each server request must
always be followed by a single answer until the server terminates with a close action.

ϕcs
def
= minX.〈a?req〉〈a!ans〉(〈b?cls〉tt∨X)

To soundly enforce ϕcs (as defined by Definition 4.2) it suffices to ensure that the
composite system executes the specified behaviour. This can be easily achieved
using a monitor that immediately inserts the required behaviour, such as:

 •,a?req¡. •,a!ans¡. •,b?cls¡.id.
In fact, when instrumented with an invalid system such as a?req.nil /∈ JϕcsK yields
a valid system that satisfies ϕcs and similarly, when composed to a well-behaved
system such as sg ∈ JϕcsK from Example 4.1 of Chapter 3. It, however, fails to ad-
equately enforce ϕcs since it breaches transparency (as stated by Definitions 4.3
and 4.5) when it unnecessarily modifies well-behaved systems such as sg. Action
replacement also runs into similar issues.

Extending the enforceable subset to include cHML thus requires a thorough
investigation of a completely different enforcement approach. This might either
require developing less stringent definitions for enforceability, or else studying more
elaborate instrumentation setups to enforce these type of properties. Such setups
may include the ones explored in [2], that can reveal refusals in addition to the
actions performed by the system.

100

Chapter 8. End of Part I

Second, having established a connection between suppression enforcement and
control system synthesis with respect to safety properties, it is worth exploring how
runtime enforcement and controlled system synthesis are related with respect to
properties other than those representing safety. This would first require expanding
our work on enforceability and then investigate whether controlled system synthesis
is still able to statically achieve the same results vis-a-vis the wider set of enforce-
able properties. We also aim to study how runtime enforcement relates to other
verification techniques such as supervisory control theory [92], reactive synthesis
[45], etc. The connection established by van Hulst et al. in [101] between control
system synthesis and supervisory control theory is a plausible starting point for
conducting this future investigation.

Finally, we also plan to study the implementability and feasibility of our unidi-
rectional enforcement framework. We will consider target languages for our monitor
descriptions that are closer to an actual implementation (e.g., an actor-based lan-
guage along the lines of [57]). We could then employ refinement analysis techniques
and use our existing monitor descriptions as the abstract specifications that are re-
fined by the concrete monitor descriptions. This work can then be used to guide tool
construction. To further ease the construction of a tool, we have also developed in
advanced an aspect oriented programming framework called eAOP1 [31, 34]. This
framework has already been used successfully by the tools detectEr [15, 28, 35] and
adapterEr [29, 30] to instrument runtime verification and adaptation monitors in
Erlang programs.

1The eAOP framework is open-source and available from: https://github.com/casian/eaop.

101

Part II

Bidirectional Enforcement

102

9. A bidirectional enforcement
model

In the second part of this thesis we start investigating bidirectional enforcement.
We thus lift the assumption of Part I and instead of viewing the SuS as a trace
of actions that can be freely modified, we adopt a branching time view of the SuS
and start differentiating between its input and output actions. Therefore, the set of
system actions (Act) now consists of the union of its input (iAct) and output (oAct)
actions, i.e., Act = iAct∪oAct.

Recall that unlike outputs, input actions are instigated by the environment and
not the SuS itself. The system’s control over its inputs thus depends only on whether
it provides an input port on which the environment can supply a payload value. As
systems have no control over the data values supplied in its inputs, we make the
following updates to our logic specifications and system representations:

• In our examples, we concisely represent LTSs using the regular fragment of
value-passing CCS [60] (instead of CCS). Unlike CCS, value-passing CCS does
not permit for defining systems that accept specific input values. For instance,
the CCS system a?2.a!3.nil cannot be defined in its value-passing variant since
it defines the input action a?2 which entails that the input is only made when
the payload value is 2. Instead, value-passing CCS requires input values to be
symbolic, this is achieved by introducing variables that bind the input data and
process it accordingly, e.g., a?x.a!(x+1).nil where x binds any value provided by
the environment at runtime. For more details about value passing CCS we
refer the reader to consult [60].

• When specifying logic formulas, we assume that the condition c of a symbolic
action that defines an input pattern (x)?(y), c¡ may not restrict the values of
the payload binder y, i.e., y /∈ fv(c). Put differently, for a closed input symbolic
action (x)?(y), c¡, if σ and σ′ are substitutions that agree on x, then cσ ⇓ true

103

Chapter 9. A bidirectional enforcement model

iff cσ′ ⇓ true. With this restriction, our version of µHML becomes a variant of
the value-passing µHML introduced in [61, 93].

This lack of control over inputs means that the unidirectional enforcement ap-
proach developed in Part I is not powerful enough to transform input actions. This
therefore restricts the type of properties that the enforcement framework can en-
force. For instance, not every safety property is enforceable, particularly, those that
are violated when the system inputs an invalid payload. This happens because it
may be too late for the monitor to prevent the violation if it allows the SuS to input
a value that then turns out to be invalid. Hence, it is questionable whether the
monitor can intercept and suppress (or replace) an invalid input that has already
been provided by the environment. The monitor must therefore exploit the system’s
limited control over its inputs and resort to unconventional methods when enforcing
properties that require transforming input actions.

In this chapter we thus develop a formal model for bidirectional enforcement
that adopts a different enforcement approach then the ones conventionally used for
enforcing behaviour in unidirectional settings. We introduce the proposed bidirec-
tional enforcement approach in Section 9.1 and then formalise the approach as a
new enforcement instrumentation model in Section 9.2. Beforehand, however, we
will first present the running example that we will be referring to throughout the
second part of this dissertation.

Example 9.1. Consider a property stating that for every input request that is made
on a specific port, the server should not input another request in succession. It
may, however, output a single answer on the same port in response, and then log
the serviced request by outputting a notification on a dedicated port b. Due to the
special status of port b, this property does not apply to requests that are input from
this port. Using our logic we can formalise this property as the sHML formula ϕ1

(recall from Chapter 2 that () represents a “don’t care” binder).

ϕ1
def
= maxX.[(x)?(y1), x6=b¡]([x?()¡]ff ∧ [x!(y2)¡]ϕ′1)

ϕ′1
def
= ([x!()¡]ff ∧ [b!(y3), y3=(log, y1, y2)¡]X)

This formula defines an invariant property maxX.(..) and uses binder (x) to bind
the port on which the request is input, and binders (y1), (y2) and (y3) to bind the
input and output payloads. The values bound to y1 and y2 are later referenced in
condition y3 = (log, y1, y2). The formula is violated by two consecutive inputs on the
same port x, and when a request is serviced with multiple answers. An answer
output followed by a log action on port b is normal, and thus the formula recurses.

104

Chapter 9. A bidirectional enforcement model

Now consider systems sa, sb and sc (where scls
def
= (b?z.if z=cls then nil else X)).

sa
def
= recX.((a?x.y := ans(x).a!y.b!(log, x, y).X) + scls) sc

def
= a?y.sa

sb
def
= recX.((a?x.y := ans(x).a!y.(a!y.b!(log, x, y).sa + b!(log, x, y).X)) + scls)

sa implements a request-response server that repeatedly inputs values (for some
domain Val) on port a, a?x, for which it internally computes an answer and assigns
it to the data variable y, y := ans(x). It then outputs the answer on port a in response
to each request, a!y, and finally logs the serviced request by outputting the triple
(log, x, y) on port b, b!(log, x, y). It terminates whenever it inputs a close request cls
from port b, i.e., b?z when z= cls.

Systems sb and sc are similar to sa but define additional behaviour. In fact, sc
is initialised in a suspended state that requires an extra (unused) input, a?y, to
start working as sa, whereas sb may occasionally provide a redundant (underlined)
answer prior to logging the serviced request. Using the semantics of Figure 2.2,
one can check that sa ∈ Jϕ1K whereas sc /∈ Jϕ1K since sc

a?v1.a?v2=======⇒, and sb /∈ Jϕ1K since

sb
a?v1.a!ans(v1).a!ans(v1)

================⇒ (for some input values v1 and v2).

9.1 The proposed approach

In bidirectional enforcement we seek to transform the entire (input and output)
behaviour of the SuS; this contrasts with unidirectional approaches that only sup-
port for transforming its output behaviour. When modifying the entire behaviour
of a system (and not just a single trace) it makes sense to distinguish between the
transformations performed by the monitor (i.e., insertions, suppressions and re-
placements), and the way they can be used to affect the resulting behaviour of the
composite system. In particular, we say that an action that can be performed by the
SuS has been disabled when it is no longer visible in the resulting composite sys-
tem. Similarly, a visible action is enabled when the composite system can execute it
unlike the SuS. Actions are adapted when either the payload of an action in the SuS
differs from that of the composite system, or when the action is rerouted through
a different port. However, since inputs and outputs are fundamentally different,
the type of the action itself cannot be adapted, that is, an input cannot become an
output, and vice versa.

Implementing action enabling, disabling and adaptation differs according to
whether the action is an input or an output. In Figure 9.1 we illustrate our pro-
posed instrumentation setup that implements them by using the monitor’s existing
transformations. As the instrumented monitor can only fully control the actions
instigated by the SuS, enforcing its outputs is more intuitive. In fact, (a), (b) and (c)

105

Chapter 9. A bidirectional enforcement model

MonitorSystem Environment

(a)
(b)
(c)
(d)
(e)
(f)
(g)

suppress output

modify output

insert output

block input

block and insert input

modify input

suppress input

output

output

input

enabled input

disabled output

no output

no input disabled input

disabled input

no input

modified output

enabled output

default input

modified input

Figure 9.1: Our bi-directional enforcement setup.

in Figure 9.1 respectively show that to disable an output it suffices to suppress it, to
adapt it the monitor may replace the output data and forward it to the environment
on a (potentially) different port, while to enable an output it suffices to produce the
required data via an insertion transformation. In essence, this is the exact same
approach that we used for the unidirectional enforcement setting of Part I.

Since the SuS enjoys limited control over its inputs, working with these actions
is less straightforward. In our setup, we propose that to disable an input, item (d)

in Figure 9.1, it suffices that the monitor conceals the system’s input port so to
prevent the environment from forwarding a value as input to the system. As this
technique may block the system’s execution from progressing, the instrumented
monitor may additionally insert a default input that unblocks the system1, item
(e) in Figure 9.1. Input adaptation, item (f) in Figure 9.1, is also attained via a
replacement transformation, but unlike in the case of outputs, it is applied in the
reverse direction. In fact, it modifies the data received by the monitor over some
port, and forwards it to the SuS over the same (or a different) port. Inputs can
also be enabled, item (g), by allowing the monitor to accept the required input on a
desired port and then suppress it. To an external viewer, the input has been made,
yet discarded internally.

9.2 The model

In Figure 9.2 we now formalise the novel bidirectional instrumentation setup of
Figure 9.1 using the same (symbolic) transducers m,n∈Trn that we introduced
priorly in Chapter 3. Recall that transducers are monitors that define symbolic
transformation triples, p, c, p′¡, where pattern p and condition c determine the range
of system (input or output) actions upon which the transformation dictated by p′

should be applied. Also, recall that the transformation patterns p and p′ may also
1The added benefits of this mechanism are further discussed in the forthcoming sections.

106

Chapter 9. A bidirectional enforcement model

Transducer syntax
m,n ∈ Trn ::= p, c, p′¡.m |

∑
i∈Imi (I is a finite index set) | recX.m | X

Transducer dynamics

eSel
mj

γIγ′−−−→ nj∑
i∈Imi

γIγ′−−−→ nj

j∈I eRec
m{recX.m/X}

γIγ′−−−→ n

recX.m γIγ′−−−→ n

eTrn
mtch(p, γ) = σ cσ ⇓ true γ′= p′σ

 p, c, p′¡.m γIγ′−−−→ mσ

Bidirectional enforcement instrumentation

biTrnO s
b!w−−−→ s′ m

(b!w)I(a!v)−−−−−−−→ n

m[s]
a!v−−→ n[s′]

biTrnI m
(a?v)I(b?w)−−−−−−−→ n s

b?w−−−→ s′

m[s]
a?v−−−→ n[s′]

biDisO s
a!v−−→ s′ m

(a!v)I•−−−−−→ n

m[s]
τ−→ n[s′]

biDisI m
•I(a?v)−−−−−→ n s

a?v−−−→ s′

m[s]
τ−→ n[s′]

biEnO m
•I(a!v)−−−−−→ n

m[s]
a!v−−→ n[s]

biEnI m
(a?v)I•−−−−−→ n

m[s]
a?v−−−→ n[s]

biAsy s
τ−→ s′

m[s]
τ−→ m[s′]

biDef
s

a!v−−→ s′ m 6a!v−−→ ∀ b∈Port, w∈Val ·m 6•Ib!w−−−−→

m[s]
a!v−−→ id[s′]

where id is shorthand for recY. (x)!(y), true, x!y¡.Y + (x)?(y), true, x?y¡.Y and m 6γ−→
means @γ′, n·m γIγ′−−−→n.

Figure 9.2: A bi-directional instrumentation model for enforcement monitors.

specify p= •, to specify the insertion of the action defined by p′, and p′= • to represent
the suppression of the action specified by p. In addition to the well-formedness
constraint stating that for every p, c, p′¡.m, either p or p′ is • (but not both), we now
also require that if neither p nor p′ is •, then both patterns must be of the same type
i.e., both must be input or output patterns. For instance, symbolic transformations
 •, true,a?v¡ and (x)!(y), true, •¡ are valid since only one of their patterns is •, and
so is (x)!(y), true,a!v¡ since both patterns are output patterns. This new constraint
ensures that input actions cannot be adapted into outputs and vice versa. It is
crucial since inputs and outputs are instigated by different entities, namely, the
environment and the SuS respectively.

The monitor transition rules in Figure 9.2 are the same as those presented in
Figure 3.2 of Chapter 3. Recall that they assume closed terms and that each trans-
ducer m yields an LTS that transitions with labels of the form γIγ′, i.e., m γIγ′−−−→ n

where γ, γ′ ∈ (Act∪{•}). This denotes the transformation of γ into γ′ whilst reduc-

107

Chapter 9. A bidirectional enforcement model

ing into state n, and allows for transducers to replace, suppress and insert actions,
e.g., (a?3)I(b?4), (a?3)I• and •I(a?3). These transitions are made possible by the key
transition rule eTrn restated in Figure 3.2. It states that the transformation-prefix
transducer p, c, p′¡.m transforms action γ into γ′ and (where γ′=pσ) and reduces to
state mσ, whenever γ matches pattern p, i.e., mtch(p, γ)=σ, and satisfies condition c,
i.e., cσ ⇓ true. The rules for recursion (eRec) and selection (eSel) are standard.

The primary contribution of this enforcement model lies in the new bidirectional
enforcement instrumentation relation of Figure 9.2. This relation links the behaviour
of the SuS s with the transformations of a monitor m. The term m[s] thus denotes
the resulting monitored system whose behaviour is defined in terms of Act∪{τ}.
Concretely, rule biTrnO states that if the SuS s transitions with an output b!w to
s′ and the transducer m can replace b!w with a!v and reduce to n, the adapted
output can be externalised so that the composite system m[s] transitions over a!v

to n[s′]. Rule biDisO states that if s performs an output a!v that can be suppressed
into •, the instrumentation withholds this output and so the composite system
transitions silently over τ thereby disabling it. Dually, rule biEnO enables and
augments the composite system m[s] with an output a!v whenever m is able to insert
a!v independently of the behaviour of s. Rules biDisO, biTrnO and biEnO therefore
correspond to items (a), (b) and (c) in Figure 9.1 respectively.

Rule biDef is analogous to standard rules for premature monitor termination
[2, 53, 54, 56], and accounts for underspecification of transformations. We, how-
ever, restrict defaulting (termination) exclusively to output actions performed by the
SuS. A monitor therefore defaults to id when it cannot react to or enable a system
output. By forbidding the monitor from defaulting upon unspecified inputs, the
monitor is able to block them from becoming part of the composite system’s be-
haviour. Hence, any input that the monitor is unable to react to i.e., m 6a?v−−−→, is
by default considered as being invalid and blocked. This technique is thus used to
implement item (d) of Figure 9.1. To avoid disabling valid inputs unnecessarily, the
monitor must explicitly define symbolic transformations that specify all the valid
inputs of the SuS. For instance, the symbolic transformation a?(x), true,a?x¡ allows
values to be input on port a only, while (y)?(), y 6=b, •¡ allows inputs on any port
except b; any other input is invalid and thus blocked. By including such symbolic
transformations, rules biTrnI and biEnI can be applied.

With rule biTrnI any value v that is input on some port a by the instrumented
system is adapted into a (potentially) different value w and forwarded to the SuS over
port b, provided the SuS is willing to accept that input. As far as the environment
is concerned, the SuS accepted the input provided by the environment on port a.
Similarly, rule biEnI enables an input on a port a by allowing the composite system

108

Chapter 9. A bidirectional enforcement model

to accept a value v which is then suppressed by the monitor and concealed from
the SuS. Although unspecified inputs on a port a are implicitly disabled (since the
monitor cannot react to them, i.e., m 6a?v−−−→), rule biDisI prevents the monitor from
blocking systems that require the blocked input in order to progress. Specifically,
this rule allows the monitor to generate a default input value v and forward it to
the SuS on a port a, thereby unblocking it by allowing the composite system to
silently move on to the next state. Hence, rules biDisI, biTrnI and biEnI respectively
implement items (e), (f) and (g) of Figure 9.1. Finally, rule biAsy allows the SuS s

to internally transition with a silent action τ to some state s′ independent of m.
Once again, we find it convenient to elide the transformation pattern p′ in a

transducer p, c, p′¡.m and write p, c¡.m when all the binding occurrences (x) of p
are defined as free occurrences x in p′, thus denoting an identity transformation.
Similarly, we elide c whenever c=true.

Example 9.2. Consider the following action disabling transducer md:

md
def
= recY. b?()¡.Y + ()!(), •¡.Y

It is a recursive transducer, recY. , that repeatedly disables every output performed
by the system via the branch (x)!(y), •¡.Y . Moreover, by only defining the input
branch b?()¡.Y it also restricts the composite system by allowing it to only input
values from port b. Concretely, inputs from other ports are disabled since none
of the instrumentation rules in Figure 9.2 can be applied to allow the composite
system to transition over these input actions. For instance, when instrumented
with sc from Example 9.1, md blocks its initial input so that for every action α,
md[sc] 6α−→. For sb, the composite system md[sb] can only input termination requests
on port b, i.e., md[sb]

b?cls−−−−→ md[nil].
Now consider the more elaborate transducer mdt.

mdt
def
= recX.((x)?(y1), x6=b¡.((x1)?(), x1 6= x¡.id+ x!(y2)¡.m′dt)+ b?()¡.id)

m′dt
def
= x!(),•¡.md + ()?()¡.id + b!(y3), y3=(log, y1, y2)¡.X

On the one hand, by defining branch b?()¡.id, monitor mdt allows the SuS to imme-
diately input a termination request on port b and defaults to id. On the other hand,
the branch prefixed by (x)?(y1), x6=b¡ permits the system to input the first request
via any port x 6= b. It then blocks subsequent inputs on the same port x (without
deterring inputs on other ports) by defining the input branch (x1)?(), x1 6= x¡.id. In
conjunction to this input branch, mdt defines x!(y2)¡.m′dt to allow the SuS to per-
form an output on the port bound to variable x. The continuation monitor m′dt then
defines the suppression branch x!(),•¡.md by which it disables every redundant re-
sponse that is output following the first one. However, as it also defines branches
 b!(y3), y3=(log, y1, y2)¡.X and ()?()¡.id, it refrains from modifying log events and

109

Chapter 9. A bidirectional enforcement model

blocking further inputs that occur immediately after the first response.
When instrumented with sc from Example 9.1, mdt allows the composite system

to perform the first input but then blocks the second one which means that it can
only input termination requests, i.e., mdt[sc]

a?v−−→ · b?cls−−−→ id[nil]. It also disables the
first redundant response of sb, and as a result, it reduces to md which carries on to
suppress every subsequent output (even log actions) and blocks every port except b,
i.e., mdt[sb]

a?v−−−→ · a!w
===⇒ · τ−→ md[b!(log, v, w).sb]

τ−→ md[sb] 6a?v−−−→ (for every port a where
a 6=b and value v). Moreover, it resorts to defaulting to handle unspecified outputs
e.g., for system b!(log, v, w).sa although mdt 6b!(log,v,w)−−−−−−−→, using rule iDef the composite
system can still perform the output, i.e., mdt[b!(log, v, w).sa]

b!(log,v,w)−−−−−−→ id[sa].
Monitor mdet (below) is similar to mdt but instead of reducing to md after sup-

pressing the first redundant response, it employs a loop of suppressions (under-
lined in m′′det) that only disables further responses until a log or termination input
is made.

mdet
def
= recX.((x)?(y1), x6=b¡.m′det + b?()¡.id)

m′det
def
= recY1. •, x?vdef¡.Y1 + x!(y2)¡.m′′det + (x1)?(), x1 6= x¡.id

m′′det
def
= recY2.

(
 x!(),•¡.Y2+ b!(y3), y3=(log, y1, y2)¡.X+ ()?()¡.id

)
Hence, contrary to mdt, after detecting and disabling the redundant response

of sb, monitor mdet only attempts to disable further responses via the suppression
loop of m′′det, and thus allows the subsequent log action to go through, as follows:

mdet[sb]
a?v−−−→ · a!w

===⇒ · τ−→ m′′det[b!(log, v, w).sb]
b!(log,v,w)−−−−−−−→ mdet[sb].

It also defines a branch prefixed by the insertion transformation •, x?vdef¡ (under-
lined in m′det) where vdef is a default input domain value. This permits the instru-
mentation to silently unblock the SuS when this is waiting for a request following
an unanswered one. In fact, when instrumented with sc, mdet not only forbids in-
valid input requests, but it also (internally) unblocks sc by supplying the required
input via the added insertion branch. This allows the composite system to proceed
silently, i.e.,

mdet[sc]
a?v−−−→ recY.(•,a?vdef¡.Y + a!(y2)¡.m′′det + b?()¡.id)[sa]

τ−−−→ recY.(•,a?vdef¡.Y + a!(y2)¡.m′′det + b?()¡.id)[s′a]

a!ans(vdef).b!(log,vdef,y)
===============⇒ mdet[sa]

where s′a
def
= y := ans(vdef).a!y.b!(log, vdef, y).sa.

Although in the rest of this dissertation we will mainly focus on action disabling
monitors, using our model one can also define action enabling and adaptation mon-
itors.

110

Chapter 9. A bidirectional enforcement model

zipbi(t, κ) =



ε if t = ε and κ = ε
zipbi(t

′, κ′) if t = (a!v)t′ and κ = ((a!v)I•)κ′, or
if t = (a?v)t′ and κ = (•I(a?v))κ′

(a!v)zipbi(t
′, κ′) if t = (b!w)t′ and κ = ((b!w)I(a!v))κ′

(a?v)zipbi(t
′, κ′) if t = (b?w)t′ and κ = ((a?v)I(b?w))κ′

(a!v)zipbi(t, κ
′) if κ = (•I(a!v))κ′

(a?v)zipbi(t, κ
′) if κ = ((a?v)I•)κ′

Figure 9.3: The zipbi function.

Example 9.3. Consider now transducers me and ma below:

me
def
= (x)?(y), x6=b, •¡. •, x!ans(y)¡. •,b!(log, y, ans(y))¡.id

ma
def
= recX. b?(y),a?y¡.X + (x)!(y),b!y¡.X.

Once instrumented with a system, me first uses a suppression transformation to
enable an input that may come from any port x 6= b (but then gets discarded), e.g.,
port c. It then automates a response by inserting an answer followed by a log action.
Concretely, when composed with r∈{sb, sc} from Example 9.1, the execution of the
composite system can only start as follows:

me[r]
c?v−−→ •, c!w¡. •,b!(log, v, w)¡.id[r]

c!w
==⇒ •,b!(log, v, w)¡.id[r]

b!(log,v,w)−−−−−−→ id[r].

for some values v and w= ans(v). By contrast, ma uses action adaptation to redirect
the inputs and outputs of the SuS through port b. Specifically, the monitor allows
the composite system to input values only from port b and forwards them to the SuS
on its input port a. Similarly, outputs from the SuS on port a are rerouted to port
b. As a result, the composite system is only able to interact on port b. For instance,
ma[sc]

b?v1−−−→ ma[sa]
b?v2.b!w2.b!(log,v2,w2)
==============⇒ ma[sa] and ma[sb]

b?v1.b!w1.b!(log,v1,w1)
==============⇒ ma[sb].

9.3 Zipping and Unzipping

Once again we introduce the notions of zipping and unzipping, this time for our
bidirectional enforcement model. Recall that unzipping permits us to decompose
the composite system’s behaviour, m[s]

u
==⇒ m′[s′] into the monitor’s computation

m
κ

==⇒ m′ and the computation of the SuS, s t−→ s′. The original composite behaviour
can then be reconstructed by zipping back the computations of the monitor and the
SuS. Proving that our new bidirectional enforcement model supports zipping and
unzipping requires defining a relation that relates the composite behaviour to the
behaviours of the monitor and the SuS. We define this relation as the zipbi function
that satisfies the rules of Figure 9.3.

The zipbi function mimics the way the bidirectional instrumentation rules of
Figure 9.2 interpret the transformations of the monitor in respect to the actions

111

Chapter 9. A bidirectional enforcement model

performed by the SuS. In this way, when analysing the system trace t and the mon-
itor transformation trace κ, the zipbi function reconstructs a trace representing the
composite behaviour that one would obtain if the SuS and the monitor were to ex-
ecute traces t and κ respectively, while instrumented via the rules of Figure 9.2.
Similar to the instrumentation rules of bidirectional enforcement, when defining
the zipbi function we differentiate between inputs and outputs and define different
cases to handle them accordingly.

More specifically, if the system trace t is prefixed by an output action that gets
suppressed in the monitor’s transformation trace u, i.e., t= (a!v)t′ and κ= ((a!v)I•)κ′,
the zipbi function denotes the disabling of this output by recursing without adding
it to the resulting composite trace. Similarly, if the prefixing action is an input i.e.,
t = (a?v)t′, the same result is achieved if the transformation trace is prefixed by the
insertion of that input, i.e., κ= (•I(a?v))κ′. The output action (b!w) is adapted into
(a!v) and added to the resulting composite trace, if it prefixes the system’s trace t,
i.e., t= (b!w)t′ and if the monitor’s transformation trace κ replaces the former into the
latter, i.e., κ = ((b!w)I(a!v))κ′. Likewise, if the system’s prefixing action is an input
(b?w), this gets adapted into (a?v) whenever the latter is replaced by the former,
i.e., κ = ((a?v)I(b?w))κ′. This implies that although the composite system has input
value v from port a, this has internally been adapted into w and forwarded to the
underlying SuS on port b. Finally, the zipbi function adds the output action (a!v)

to the composite trace if the monitor’s trace κ inserts it, i.e., κ = (•I(a!v))κ′, and it
similarly adds (a?v) when κ = ((a?v)I•)κ′. The zipbi function stops recursing when t

and κ are both empty.
With the zipbi function we can now show that our bidirectional enforcement

model also supports for zipping and unzipping the behaviour of a composite system.

Proposition 9.1 (Unzipping). For the monitored instances m[s], m′[s′] and transfor-
mation trace κ, if m[s]

u
==⇒ m′[s′] then either

(a) u = zipbi(t, κ) and m
κ

==⇒ m′ and s
t

=⇒ s′; or

(b) u = zipbi(t, κ) and m
κ

==⇒m′′ 6(a!v)−−−→ and m′′ 6 •−→ and s
t;(a!v)t′

======⇒ s′ and m′ = id.

Proposition 9.2 (Zipping). For any monitor m, m′, system s, s′, traces t, u, and
transformation trace κ,

(a) if m κ
==⇒ m′ and s

t
=⇒ s′ and zipbi(t, κ) = u then m[s]

u
==⇒ m′[s′].

(b) if m κ
==⇒m′ 6a!v−−→ and m′ 6 •−→ and s

t;(a!v)t′
======⇒ s′ and zipbi(t, κ) =u

then m[s]
u;(a!v)t′

======⇒ id[s′].

112

Chapter 9. A bidirectional enforcement model

Propositions 9.1 and 9.2 are conceptually similar to Propositions 3.1 and 3.2
from Chapter 3 respectively, but recast vis-a-vis our bidirectional setting. Specif-
ically, Proposition 9.1 states that for a monitored execution m[s]

u
==⇒ m′[s′], there

must exists a system trace t and a transformation trace κ so that zipbi(t, κ) pro-
duces either (a) u exactly, or (b) a prefix of u, i.e., u = zipbi(t, κ); (a!v)t′ (for some
output action (a!v)). In the first case, (a), the composite behaviour can be elegantly
decomposed into m

κ
==⇒ m′ and s

t
=⇒ s′. In the second case, (b), after executing κ,

monitor m reaches a point m′′ from which it can neither transform the system’s cur-
rent output action a!v, nor insert an action, i.e., m κ

==⇒ m′′ 6(a!v)−−−→ and m′′ 6 •−→. This
indicates that the monitor has defaulted to id i.e., m′= id, and hence the remaining
composite behaviour (a!v)t′ is identical to that of the SuS, i.e., s t;(a!v)t′

======⇒ s′. With
Proposition 9.2 we then prove that the decomposed behaviours of the monitor and
the SuS can be recomposed back together to obtain the composite behaviour. We
provide the necessary proofs for these propositions in Appendix C.1 given on page
212.

9.4 Summary

In this chapter we have investigated bidirectional enforcement and formalised a
novel instrumentation model for this enforcement setting. Specifically, we have pre-
sented the following:

(i) the instrumentation model rules of Figure 9.2 that use the same transducers
that we originally introduce in Figure 3.2 of Chapter 3, to achieve bidirectional
enforcement, and

(ii) the unzipping and zipping propositions, i.e., Propositions 9.1 and 9.2 respec-
tively, for decomposing and recomposing the behaviour of a monitored system
that was composed using the bidirectional enforcement rules of Figure 9.2.

113

10. Enforceability in a
bidirectional context

In this chapter we show that the notion of enforceability and the parametrisable
definitions for adequate and optimal enforcement introduced in Chapter 3, are still
relevant for the bidirectional enforcement setting of Figure 9.2 from Chapter 9.

10.1 Enforceability

Recall Definition 4.1 from Chapter 4 (restated below as Definition 10.1). This defini-
tion states that the enforceability of a logic depends on the existence of a relationship
between the meaning of a logic formula and the transducer’s ability to adequately
enforce the behaviour specified by the formula.

Definition 10.1 (Enforceability). A formula ϕ is enforceable iff there exists a trans-
ducerm such thatm adequately enforces ϕ. A logic L is enforceable iff every formula
ϕ∈L is enforceable.

In Chapter 4 we gave several meanings for the requirement that “m adequately
enforces ϕ”, namely, Definitions 4.4, 4.6 and 4.8. The strongest meaning is defined
by Definition 4.8 (restated below as Definition 10.2).

Definition 10.2 (Strong Enforcement). A monitor m adequately enforces property
ϕ whenever it adheres to soundness, transparency and eventual transparency.

It states that a monitor m adequately enforces ϕ when it is sound, transparent
and eventual transparent as defined by Definitions 4.2, 4.3 and 4.7 respectively (all
of which are restated below as Definitions 10.3 to 10.5 respectively).

Definition 10.3 (Sound Enforcement). Monitor m soundly enforces a satisfiable
formula ϕ, denoted as senf(m,ϕ), iff m[s]∈ JϕK, for every state s∈Sys.

114

Chapter 10. Enforceability in a bidirectional context

Definition 10.4 (Transparent Enforcement). A monitor m is transparent when en-
forcing a formula ϕ, written as tenf(m,ϕ), iff for all system states s ∈ Sys, if s ∈ JϕK
then m[s] ∼ s.

Definition 10.5 (Eventual Transparent Enforcement). A monitorm adheres to even-
tual transparency when enforcing ϕ, denoted as evtenf(m,ϕ), iff for all system states
s, s′, trace t and monitor m′, m[s]

t
=⇒m′[s′] and s′ ∈ Jafter(ϕ, t)K imply that m′[s′]∼ s′.

In what follows, we use the bidirectional enforcement transducers of Example 9.2
from Chapter 9 to motivate why these definitions are also relevant in our bidirec-
tional enforcement setting. We therefore start by showing which of the bidirectional
enforcement transducers of Example 9.2 are considered to be sound.

Example 10.1. Showing that a monitor soundly enforces a formula requires show-
ing this for every possible system. However, we give an intuition based on systems
sa, sb, sc and formula ϕ1 (restated below) from Example 9.1.

ϕ1
def
= maxX.[(x)?(y1), x6=b¡]([x?()¡]ff ∧ [x!(y2)¡]ϕ′1)

ϕ′1
def
= ([x!()¡]ff ∧ [b!(y3), y3=(log, y1, y2)¡]X)

Recall that sa ∈ Jϕ1K (hence Jϕ1K 6=∅) and sb, sc /∈ Jϕ1K along with the transducers of
Example 9.2 (restated below):

me
def
= (x)?(y), x6=b, •¡. •, x!ans(y)¡. •,b!(log, y, ans(y))¡.id

ma
def
= recX. b?(y),a?y¡.X + (x)!(y),b!y¡.X.

md
def
= recY. b?()¡.Y + ()!(), •¡.Y

mdt
def
= recX.((x)?(y1), x6=b¡.((x1)?(), x1 6= x¡.id+ x!(y2)¡.m′dt)+ b?()¡.id)

mdet
def
= recX.((x)?(y1), x6=b¡.m′det + b?()¡.id)

where the continuations m′dt, m
′
det and m′′det are defined as follows:

m′dt
def
= x!(),•¡.md + ()?()¡.id + b!(y3), y3=(log, y1, y2)¡.X

m′det
def
= recY1. •, x?vdef¡.Y1 + x!(y2)¡.m′′det + (x1)?(), x1 6= x¡.id

m′′det
def
= recY2.

(
 x!(),•¡.Y2+ b!(y3), y3=(log, y1, y2)¡.X+ ()?()¡.id

)
.

When assessing the soundness of these transducers in relation to ϕ1, we have that:

• me is unsound as it allows invalid behaviour such as me[sb]
t1e==⇒ id[sb] where

t1e
def
= c?v1.c!ans(v1).b!(log, v1,ans(v1)).a?v2.a!w2.a!w2. This shows that the compos-

ite system me[sb] can still make two consecutive output replies (underlined),
and so me[sb]/∈Jϕ1K. Similarly, me[sc]/∈Jϕ1K since the me[sc] executes the erro-
neous trace c?v1.c!ans(v1).b!(log, v1,ans(v1)).a?v2.a?v3. This demonstrates that
me[sc] can still input two consecutive requests on port a (underlined). Either
one of these counter examples suffice to prove that ¬senf(me, ϕ1).

115

Chapter 10. Enforceability in a bidirectional context

• ma is sound because once instrumented, the resulting composite system is
adapted to only interact on port b, and so its actions are not of concern to ϕ1.
As ma applies this enforcement strategy to any SuS, we can safely conclude
that senf(ma, ϕ1), in fact ma[sa],ma[sb],ma[sc]∈Jϕ1K. Monitors md, mdt and mdet

are also sound. Intuitively, md prevents the violation of ϕ1 by blocking all input
ports except b, whereas mdt and mdet achieve the same goal by disabling the
invalid consecutive requests and answers that occur on any port (except b).

Although sound enforcement is a fundamental aspect of enforceability, in Chap-
ter 4 we had found it to be relatively weak to solely define adequate enforcement
because it does not regulate the extent of the applied enforcement. We thus re-
strict ourselves to the sound transducers identified in Example 10.1 and assess
their adherence to Definition 10.4 (transparency) which dictates that, whenever a
system s already satisfies the property ϕ, the assigned monitor m should not alter
the behaviour of s.

Example 10.2. Consider md from Example 9.2. Although it successfully prevents
the violating behaviour of sb and sc, it needlessly modifies the behaviour of sa even
though sa satisfies ϕ1. By blocking the initial input of sa, md causes it to block
indefinitely. This counter-example thus suffices to prove that ¬tenf(md, ϕ1). Monitor
ma from Example 9.3 also fails to meet this requirement: although sa satisfies ϕ1, we
have that ma[sa]6∼sa since for any value v and w, ma[sa]

b?v−−−→ · b!w−−−→ but sa
b?v−−−→ · 6b!w−−−→.

By contrast, monitors mdt and mdet follow this criterion as they only intervene when
it becomes apparent that a violation will occur. For instance, they only disable
inputs on a specific port, as a precaution, following an unanswered request on the
same port, and they only disable the redundant responses that are produced after
the first response to a request. The universal quantification over all systems makes it
difficult to show that tenf(mdt, ϕ1) and tenf(mdet, ϕ1). However, since both monitors
do not modify valid systems such as sa, i.e., sa ∈ Jϕ1K and mdt[sa] ∼ sa ∼ mdet[sa],
and only modify invalid ones, such as sb and sc (see Example 10.1), we get a good
intuition for why this is the case.

Now recall that the addition of the transparency constraint still yields an enforce-
ment adequacy definition that is relatively weak. More specifically, it only restricts
the enforcement applied to well-behaved systems, and disregards the extent of en-
forcement induced upon the erroneous ones. Transparency should therefore apply
in cases when an invalid SuS eventually reaches a valid point while instrumented
with the monitor. Showing adherence to eventual transparency is thus also re-
quired to ensure the strong adequate enforcement imposed by Definition 10.2. We
therefore assess which of the transparent transducers identified in Example 10.2

116

Chapter 10. Enforceability in a bidirectional context

mc(m, tτ)
def
=


1 + mc(m′, t′τ) if tτ =µt′τ and m[sys(µt′τ)]

µ′−−→ m′[sys(t′τ)] and µ 6=µ′

1 + mc(m′, tτ) if tτ ∈{µt′τ , ε} and m[sys(tτ)]
µ′−−→ m′[sys(tτ)]

mc(m′, t′τ) if tτ =µt′τ and m[sys(µt′τ)]
µ−→ m′[sys(t′τ)]

| tτ | if tτ ∈{µt′τ , ε} and ∀µ′ ·m[sys(tτ)] 6µ
′
−−→

Figure 10.1: Modification Count (mc).

also adhere to Definition 10.5 (eventual transparency).

Example 10.3. Consider monitor mdt from Example 9.2 and system sb from Exam-
ple 9.1. At runtime sb can exhibit the following invalid behaviour: sb

t1==⇒ b!(log, v, w).sa

where t1
def
= a?v.a!w.a!w. In order to bring the invalid behaviour of sb (shown in t1) in

line with our specification ϕ1, it suffices to use some monitor m that only disables
one of its responses, a!w. After correcting t1 into t′1

def
= a?v.a!w, no further modifi-

cations are required by m since the SuS reaches a valid point, that is, it reduces
into a state that does not violate the rest of the property. In this case, the SuS
reduces into b!(log, v, w).sa where b!(log, v, w).sa∈Jafter(ϕ1, t

′
1)K. However, when in-

strumented with mdt, this monitor does not only disable the invalid response, i.e.,
mdt[sb]

a?v.a!w
=====⇒ md[b!(log, v, w).sa], but keeps on disabling every subsequent action

as a result of reducing into md, md[b!(log, v, w).sa]
τ−→ md[sa].

Hence, this counter example suffices to deduce that ¬evtenf(mdt, ϕ1); this is not
the case formdet because evtenf(mdet, ϕ1). Although the universal quantification over
all systems and traces make it hard to prove this property, we can get a good intuition
of why this is the case from sb, as when mdet[sb]

a?v1.a!w1=======⇒ · τ−→ m′′det[b!(log, v1, w1).sa]

we have that b!(log, v1, w1).sa ∈ Jafter(ϕ1,a?v1.a!w1)K and that m′′det[b!(log, v1, w1).sa] ∼
b!(log, v1, w1).sa.

In Examples 10.1 to 10.3 we used the constraints of Definitions 10.3 to 10.5 as
guidance to identify mdet as being an adequate transducer that enforces formula
ϕ1 from Example 9.1 of Chapter 9. Since Definition 10.2 helped us filter out the
non-adequate transducers from those that are, confirms that this definition is still
relevant in our current bidirectional setting.

10.2 Optimality

Recall that optimal enforcement aims to assess whether an adequate monitor is (to
some extent) the “best” that one can find. This notion thus requires the use of a
distance measurement to tell whether one monitor is —in some sense— better than
another one. In Chapter 4 we posited that function mc (restated in Figure 10.1) is
one ideal measurement that assesses the monitor’s level of intrusiveness when it

117

Chapter 10. Enforceability in a bidirectional context

ecbi(m)
def
=


∅ if m=X⋃

i∈I ecbi(mi) if m=
∑

i∈I mi

ecbi(m
′) if m= recX.m′ or m= p, c, p¡.m′

{DIS}∪ ecbi(m
′) if m= (x)!(y), c, •¡.m′ or m= •, c,a?v¡.m′

{EN}∪ ecbi(m
′) if m= (x)?(y), c, •¡.m′ or m= •, c,a!v¡.m′

{ADPT}∪ ecbi(m
′) if m= p, c, p′¡.m′ and p′ 6= p 6= •

Figure 10.2: Enforcement Capabilities (ecbi).

enforces a property. In fact this function inductively analyses a system run tτ , and
counts the number of modifications applied by the monitor while instrumented with
the SuS— further details about this function are given in Section 4.2 of Chapter 4.

Although the transformations of the instrumented transducer are now applied
in a bidirectional context, the following example demonstrates that this function
still correctly counts the applied modifications.

Example 10.4. Recall the monitors of Example 9.2 and consider the following sys-
tem run t0τ=a?v1.a?v2.τ.a!w2.a!w2.b!(log, v2, w2). For me and ma, function mc respec-
tively counts three enabled actions, i.e., mc(me, t

0
τ)=3, and four adapted actions, i.e.,

mc(ma, t
0
τ)=4 (since b!(log, v2, w2) remains unmodified). The maximum count of 5 is

attained by md as it immediately blocks the first input a?v1, and so none of the ac-
tions in t0τ can be executed by the composite system i.e., ∀µ · md[sys(t0τ)] 6µ−→ hence
mc(md, t

0
τ)=5. Similarly, mc(mdt, t

0
τ)=4 since mdt allows the first request to be made,

but blocks the second erroneous one, and as a result it also forbids the execution
of the subsequent actions, i.e., ∀µ · mdt[sys(t0τ)]

a?v1−−−→ · 6µ−→. Finally, mdet performs
the least number of modifications, namely mc(mdet, t

0
τ)=2. The first modification is

caused when the monitor blocks the second erroneous input and internally inserts
a default input value that allows the composite system to proceed over a τ-action.
This contrasts with md and mdt which fail to perform this insertion step thereby
contributing to their high intrusiveness score. The second modification is attained
when mdet suppresses the redundant response.

Although the mc function allows us to compare monitors in order to identify the
least intrusive one, in Chapter 4 we had determined that for this comparison to be
fair, we must also compare like with like. It is reasonable to expect that monitors
with more enforcement capabilities are likely to be better than those with fewer
capabilities. For instance, a monitor that can enforce a property by replacing and
disabling actions might be less intrusive than one that can only disable actions.

As in our bidirectional setting we reason in terms of action enabling, disabling
and adaptation, the function ec of Figure 4.2 (given in Chapter 4) is no longer
ideal for determining the enforcement capabilities of bidirectional enforcement mon-
itors. We therefore redefine this function into the variant ecbi presented in Fig-

118

Chapter 10. Enforceability in a bidirectional context

ure 10.2. Function ecbi inductively analyses the structure of a monitor and deduces
whether it can enable, disable and adapt actions based on the type of transforma-
tion triples it defines. For instance, if the monitor defines an output suppression
triple, (x)!(y), c, •¡.m′, or an input insertion branch, •, c,a?v¡.m′, then ecbi determines
that the monitor can disable actions DIS, while if it defines an input suppression,
 (x)?(y), c, •¡.m′, or an output insertion branch, •, c,a!v¡.m′, then it concludes that
the monitor can enable actions, EN. Similarly, if a monitor defines a replacement
transformation, it infers that the monitor can adapt actions, ADPT. Once again we
use the metavariable χ to denote an arbitrary set of enforcement capabilities.

Example 10.5. Recall the monitors of Example 9.2. With function ecbi we deter-
mine that ecbi(me)={EN}, ecbi(ma)={ADPT}, ecbi(md)=ecbi(mdt)=ecbi(mdet)={DIS}.
Monitors may also have multiple types of enforcement capabilities, for instance,
ecbi(recX. (x)?(y), •¡.X + (x)!(y), •¡.X)={EN,DIS}.

With these definitions we now show how Definition 4.9 from Chapter 4 (restated
below as Definition 10.6) can guide in identifying an adequate monitor that performs
the least number of modifications and is thus the least intrusive.

Definition 10.6 (Optimal Enforcement). A monitor m is χ-optimal when enforcing
ϕ, denoted as oenfχ(m,ϕ), iff it adequately enforces ϕ and when for every system
run s

tτ−−→ and monitor n, if ecbi(n)⊆χ and enf(n, ϕ) then mc(m, tτ)≤mc(n, tτ).

Once again we refer to a monitor m as being the most optimal for enforcing ϕ when
it is found to be the least intrusive after being compared to all types of monitors i.e.,
it is found to be {DIS,EN,ADPT }-optimal.

Example 10.6. Recall formula ϕ1 of Example 9.1 and monitormdet of Example 10.3.
Showing thatmdet is the most optimal monitor for enforcing ϕ1 is inherently difficult.
However, if we limit our comparison to other action disabling monitors only, from
Example 10.4 we can get the intuition that oenfDIS(mdet, ϕ1) holds sincemdet imposes
the least amount of modifications compared to the other action disabling monitors
of Examples 9.2 and 9.3. We further reaffirm this intuition using systems sb and
sc from Example 9.1. In fact, when considering the following invalid system runs
t1τ

def
= a?v1.τ.a!w1.a!w1.b!(log, v1, w1) of sb, and t2τ

def
= a?v1.a?v2.τ.a!w2.b!(log, v2, w2) of sc, one

can easily deduce that no other adequate action disabling monitor can enforce ϕ1

with fewer modifications than those imposed bymdet i.e., mc(mdet, t
1
τ)=mc(mdet, t

2
τ)=1.

Furthermore, consider the invalid traces t1τ{c/a} and t2τ{c/a} that are respectively pro-
duced by versions of sb and sc that interact on some port c instead of a (for any port
c 6= a). Since mdet binds the port c to its data binder x and uses this information in
its insertion branch, •, x?vdef¡.Y , the same modification count is achieved for these
traces, as well i.e., mc(mdet, t

1
τ{c/a}) = mc(mdet, t

2
τ{c/a}) = 1.

119

Chapter 10. Enforceability in a bidirectional context

Example 10.6 describes the case where formula ϕ is DIS-optimally enforced by
a finite-state and finitely-branching monitor i.e., mdet. However, this is not always
possible in the general case.

Example 10.7. Consider formula ϕ2 stating that an initial input on port a followed
by another input from some other port x2 6=a constitutes invalid system behaviour.
Also consider monitor m1 where enf(m1, ϕ2).

ϕ2
def
= [a?()¡][(x2)?(), x2 6=a¡]ff

m1
def
= a?()¡.recY.(•,b?vdef¡.Y + a?()¡.id)

When enforcing a system that generates the run t3τ
def
= a?v1.b?v2.a!w1.u

3
τ , monitor m1

modifies the trace only once. Although it disables the input b?v2, it subsequently un-
blocks the SuS by inserting b?vdef and so trace t3τ is transformed into a?v1.τ.a!w1.u

3
τ .

However, for a slightly modified version of t3τ , e.g., t3τ{c/b}, m1 scores a modification
count of 2 + |u3

τ |, as despite blocking the invalid input on port c, it fails to insert
the default value that unblocks the SuS. A more expressive version of m1, such
as m2

def
= a?()¡.recY.(•,b?vdef¡.Y + •, c?vdef¡.Y + a?()¡.id), circumvents this problem

by defining an extra insertion branch (underlined), but still fails to be DIS-optimal
in the case of t3τ{d/b}. In this case, there does not exist a way to finitely define a
monitor that can insert a default value on every possible input port x2 6= a. Hence,
it means that the optimal monitor mopt for ϕ1 would be an infinite branching one,
i.e., it requires a countably infinite summation that is not expressible in Trn, such
as a?()¡.(recY.

∑
b∈Port and a6=b •,b?vdef¡.Y + a?()¡.id). Alternatively, the same mon-

itor can also be expressed a?()¡.(recY.
∑

b∈Port •,a 6=b,b?vdef¡.Y + a?()¡.id) where
the condition a6=b is evaluated at runtime instead.

Unlike Example 10.6, Example 10.7 presents a case where a level of optimal-
ity (specifically DIS-optimality) can only be attained by a monitor that defines an
infinite number of branches; this is problematic since monitors are required to be
finitely described. As it is not always possible to find a finite monitor that enforces
a formula using the least amount of transformation for every possible system, this
indicates that Definition 10.6 is too strict. We thus mitigate this issue by weaken-
ing Definition 10.6 and redefine it in terms of the set of system states SysΠ, i.e.,
the set of states that can only perform inputs using the ports specified in a finite
Π⊂Port. Although this weaker version does not guarantee that the monitor m χ-
optimally enforces ϕ on all possible systems, it ensures optimal enforcement for all
the systems that input values via the ports specified in Π.

Definition 10.7 (Weak Optimal Enforcement). A monitor m is weakly χ-optimal
when enforcing ϕ, denoted as oenfχ(m,ϕ,Π), iff it adequately enforces ϕ and when

120

Chapter 10. Enforceability in a bidirectional context

for every state s∈SysΠ, explicit trace tτ and monitor n, if ecbi(n)⊆χ, enf(n, ϕ) and
s

tτ−−→ then mc(m, tτ)≤mc(n, tτ).

Example 10.8. Monitor m1 from Example 10.7 ensures that ϕ2 is DIS-optimally en-
forced on systems that interact on ports a and b, i.e., when Π = {a,b}, while monitor
m2 guarantees it when Π = {a,b, c}.

10.3 Summary

In this chapter we have shown via a number of examples that the definitions of en-
forceability, adequate enforcement and optimality that we had introduced in Chap-
ter 4 and motivated vis-a-vis the unidirectional setting of Chapter 3, are still relevant
when applied to the bidirectional setting of Chapter 9. More specifically, we have
shown that:

(i) The constraints imposed by Definition 10.2 are still sufficient to assess the
adequacy of enforcement monitors even when these are instrumented using
the bidirectional enforcement rules of Chapter 9.

(ii) We showed in certain cases, Definition 4.9 (restated as Definition 10.6) can
be too strict when assessing the optimality of transducers in a bidirectional
enforcement setting. However, we also proposed Definition 10.7 as a weaker
version that guarantees optimal enforcement under certain assumptions about
the SuS. In this way, instead of finding a monitor that is the least intrusive
possible (which may be unattainable), Definition 10.7 guides in finding the a
monitor that is the least intrusive under the stated assumptions.

121

11. Synthesising action disabling
monitors

The investigation carried out in Part I allowed us to look into the enforceability
of our logic with respect to the unidirectional setting of Chapter 3. As a result,
we determined that the omission of actions (via suppressions) from the resulting
behaviour of a composite system can be used to adequately and optimally enforce
safety properties. Intuitively, safety is ensured when actions are omitted as soon
as it becomes apparent that a violation is about to be committed by the SuS. Even
though the work relating action omission to safety explored in Chapter 5 was set in
a unidirectional enforcement context, we are confident that similar results can be
attained in the case of a bi-directional one.

In this chapter we thus focus on studying the enforceability of safety proper-
ties in a bidirectional setting. We explore how action disabling monitors can ade-
quately and optimally enforce safety properties expressed as sHML formulas. Re-
call, however, that the universal quantifications in Definitions 10.2 and 10.7 (i.e.,
strong enforcement and weak optimality from Chapter 4) make it difficult to en-
sure that bidirectional transducers can adequately and optimally enforce sHML
properties. Particularly, establishing that a formula is enforceable, in the sense
of Definition 10.2, requires finding a monitor that satisfies the constraints imposed
by soundness (Definition 10.3), transparency (Definition 10.4) and eventual trans-
parency (Definition 10.5). This monitor must then be scrutinised vis-a-vis Defi-
nition 10.7 to determine whether it is (weak) optimal under certain assumptions
about the system’s ports. Establishing the enforceability of a logic, Definition 10.1,
is even harder, as it entails yet another universal quantification on all the formulas
in the logic.

To address these problems we follow a similar approach to that of Chapter 5 and
develop an automated synthesis procedure that produces action disabling monitors.

122

Chapter 11. Synthesising action disabling monitors

We then prove that for every sHML formula ϕ, our synthesis can produce a monitor
m that adequately enforces ϕ as stated by Definition 10.2, and is (weak) optimal in
the sense of Definition 10.7. As learnt from our prior work in Chapter 3 of Part I,
it is imperative for the synthesis function to be compositional. This is desirable, as
it simplifies our analysis of the produced monitors, and allows us to use standard
inductive proof techniques to prove properties about the synthesis function, such
as proving adherence to Definitions 10.2 and 10.7. However, recall from Chapter 5
that a naive approach to such a scheme is bound to fail, and that normalisation
provides an effective way for preserving the compositionality and simplicity of our
synthesis while circumventing the problems of a naive approach. We thus work with
respect to the normalised syntactic subset of sHML known as sHMLnf (restated in
Definition 11.1 below) which we showed to be as expressive as sHML and even
presented an algorithmic translation procedure in Section 5.2 of Chapter 5.

Definition 11.1 (sHML normal form). The set of sHMLnf formulas is defined by the
following grammar:

ϕ,ψ ∈ sHMLnf ::= tt | ff |
∧
i∈I [pi, ci¡]ϕi | X | maxX.ϕ .

In addition, normalised sHML formulas are required to satisfy the following condi-
tions:

1. Every branch in
∧
i∈I [pi, ci¡]ϕi, must be disjoint, #i∈I pi, ci¡, which entails that

for every i, j ∈ I, i 6= j implies J pi, ci¡K∩ J pj , cj¡K = ∅.

2. For every maxX.ϕ we have X ∈ fv(ϕ).

In a (closed) sHMLnf formula, the basic terms tt and ff can never appear un-
guarded unless they are at the top level. Modal operators are combined with con-
junctions into one construct

∧
i∈I [pi, ci¡]ϕi where the conjunct modal guards must

be disjoint so that at most one necessity guard can satisfy any particular visible
action. Along with these restrictions, sHMLnf also inherits the assumptions that
fixpoint variables are guarded, and that for every input symbolic action (x)?(y), c¡,
the condition c does not restrict the input payload data bound to y, i.e., y /∈ fv(c).

Example 11.1. Consider the following formula ϕ3. It defines a recursive property
that is violated when a system outputs a value of 4 on any port, after inputting any
value from port a. It also recurses if the output is made on port a with a value that
is not equal to 3.

ϕ3
def
= maxX.[(x1)?(y1), x1=a¡]

(
[(x2)!(y2), x2=a ∧ y2 6=3¡]X ∧ [(x3)!(y3), y3=4¡]ff

)
It turns out that ϕ3 /∈sHMLnf since the conjunction it defines is not disjoint, i.e.,
J (x2)!(y2), x2=a ∧ y2 6=3¡K∩J (x3)!(y3), y3=4¡K={a!4}. Using the normalisation procedure

123

Chapter 11. Synthesising action disabling monitors

presented in Section 5.2 of Chapter 5, we can reformulate ϕ3 into ϕ′3∈sHMLnf:

ϕ′3
def
= maxX.[(x1)?(y1), x1=a¡]

(
[(x4)!(y4), x4=a ∧ y4 6=4¡]X∧[(x4)!(y4), x4=a ∧ y4=4¡]ff

)
where x4 and y4 are fresh variables.

Moreover, recall from Example 10.7 that certain formulas, such as ϕ2 (restated
below in Example 11.2), one cannot find an image finite monitor (i.e., a monitor with
a finite number of insertion branches) that enforces them optimally in the sense of
Definition 10.6. However, in Example 10.8 we determined that one can still find a
monitor that ensures (weak) optimal enforcement under certain assumptions about
the ports used by the SuS, i.e., as defined by Definition 10.7. Therefore, for our
synthesis to produce weak optimal enforcement monitors it must also be aware of
these assumptions.

Example 11.2. Recall formula ϕ2 and monitors m1 and m2 from Example 10.7 of
Chapter 10 (restated below).

ϕ2
def
= [a?()¡][(x2)?(), x2 6=a¡]ff

m1
def
= a?()¡.recY.(•,b?vdef¡.Y + a?()¡.id)

m2
def
= a?()¡.recY.(•,b?vdef¡.Y + •, c?vdef¡.Y + a?()¡.id)

Synthesising m1 from ϕ2 the SuS can be unblocked when a value is inserted on port
b. This information can be supplied to the synthesis via the set of ports Π = {b}
which in turn uses this information to add the insertion branch •,b?vdef¡.Y in m1.
If Π = {b, c} is supplied instead, monitor m2 is synthesised.

11.1 The synthesis function

We now proceed to define the synthesis function in Definition 11.2. It defines a
compositional mapping that converts an sHMLnf formula ϕ into a transducer m. As
motivated by Example 11.2, this new synthesis also requires information regarding
the input ports of the SuS, as this is used to add the necessary insertion branches
that silently unblock the SuS at runtime. This information must be supplied in
the form of a finite set of input ports Π⊂Port. The synthesis then relays this
information to the resulting monitor.

Definition 11.2. The synthesis function L− M : sHMLnf×Pfin(Port) 7→Trn is defined
inductively as follows:

LX,Π M def
= X L tt,Π M def

= L ff,Π M def
= id L maxX.ϕ,Π M def

= recX.Lϕ,Π M

Lϕ=
∧
i∈ I

[pi, ci¡]ϕi,Π M def
= recY.

(∑
i∈I

{
dis(pi, ci, Y,Π) if ϕi=ff
 pi, ci¡.Lϕi,Π M otherwise

)
+ def(ϕ)

124

Chapter 11. Synthesising action disabling monitors

where dis(p, c,m,Π)
def
=

{ p, c, •¡.m if p = (x)!(y)∑
b∈Π

 •, c{b/x},b?vdef¡.m if p = (x)?(y)

and def(
∧
i∈ I [(xi)?(yi), ci¡]ϕi∧ψ)

def
=

{
 ()?()¡.id when I=∅
 (x)?(y),

∧
i∈I(¬ci{x/xi, y/yi})¡.id otherwise

where ψ has no conjuncts starting with an input modality, variables x and y are
fresh, and vdef is a default value.

The above definition shares some similarities to Definition 5.2 of Chapter 5 that
synthesises unidirectional suppression monitors. For one, it assumes a bijective
mapping between formula variables and monitor recursion variables which it uses
to convert logical variables X and maximal fixpoints, maxX.ϕ, accordingly. It also
converts truth, tt, and falsehood, ff, formulas into the identity monitor id. The main
difference lies in how it handles normalized conjunctions,

∧
i∈ I [pi, ci¡]ϕi. They are

synthesised into a recursive summation of monitors, i.e., recY.
∑

i∈I mi, where Y is
fresh, and every branch mi can be one of the following:

(i) whenmi is derived from a branch of the form [pi, ci¡]ϕi where ϕi 6= ff, the synthe-
sis produces a monitor with the identity transformation prefix, pi, ci¡, followed
by the monitor synthesised from the continuation ϕi, i.e., [pi, ci¡]ϕi is synthe-
sised as pi, ci¡.Lϕi,Π M;

(ii) when mi is derived from a violating branch of the form [pi, ci¡]ff, the synthesis
produces an action disabling transformation via dis(pi, ci, Y,Π).

Specifically, in (ii) the dis function produces either a suppression transforma-
tion, pi, ci, •¡, when pi is an output pattern, (xi)!(yi), or a summation of insertions,∑

b∈Π •, ci{b/xi},b?vdef¡.mi, when pi is an input pattern, (xi)?(yi). The former signi-
fies that the monitor must react to and suppress every matching (invalid) system
output thus stopping it from reaching the environment. By not synthesising moni-
tor branches that react to the erroneous input, the latter allows the monitor to hide
the input handshake from the environment. However, the synthesised insertion
branches additionally allow the resulting monitor to insert a default domain value
vdef on every port b∈Π whenever the branch condition ci{b/xi} evaluates to true
at runtime. This stops the monitor from blocking the runtime progression of the
resulting composite system.

This blocking mechanism can, however, block unspecified inputs, i.e., those that
do not satisfy any modal necessity in the normalised conjunction. This is undesir-
able since unspecified actions do not contribute towards a safety violation and, on
the contrary, lead to its trivial satisfaction. To prevent this, the default monitor def(ϕ)

is also added to the resulting summation. The def function produces a ‘catch-all’
identity monitor that forwards an input to the SuS whenever it satisfies the nega-

125

Chapter 11. Synthesising action disabling monitors

tion of all the conditions associated to modal necessities defining an input pattern
in the normalized conjunction. Put differently, the default monitor allows inputs
to reach the system whenever they satisfy the condition

∧
i∈I ¬ci. This condition is

constructed when the normalised conjunction is
∧
i∈I [(xi)?(yi), ci¡]ϕi ∧ψ (assuming

that ψ does not include further input modalities). Otherwise, if none of the conjunct
modalities define an input pattern, every input is allowed, i.e., the default monitor
becomes ()?()¡.id. Upon matching a system action, the default monitor transitions
to id after forwarding the input to the SuS.

Example 11.3. Consider the following unshortened version of formula ϕ1 from Ex-
ample 9.1 of Chapter 9.

ϕ1
def
= maxX.[(x)?(y1), x6=b¡]([(x1)?(), x1=x¡]ff ∧ [(x2)!(y2), x2=x¡]ϕ′1)

ϕ′1
def
= ([(x3)!(), x3=x¡]ff ∧ [(x4)!(y3), x4=b ∧ y3=(log, y1, y2)¡]X)

For any set of ports Π, the synthesis function of Definition 11.2 produces the fol-
lowing monitor.

mϕ1

def
= recX.recZ.((x)?(y1), x6=b¡.recY1.m

′
ϕ1

) + (xdef)?(), xdef = b¡.id

m′ϕ1

def
=
∑

a∈Π •,a=x,a?vdef¡.Y1+ (x2)!(y2), x2=x¡.recY2.m
′′
ϕ1

+ (xdef)?(), xdef 6=x¡.id

m′′ϕ1

def
= (x3)!(), x3=x,•¡.Y2+ (x4)!(y3), x4=b ∧ y3=(log, y1, y2)¡.X+ ()?()¡.id

The synthesised monitor mϕ1 can be further optimized by removing redundant re-
cursive constructs such as recZ. .

Notice that monitor mϕ1 (synthesised via Lϕ1,Π M in Example 11.3) has essen-
tially the same structure as mdet of Example 9.2 in Chapter 9. It mainly varies
in how it defines its insertion branches for unblocking the SuS. For instance if
Π = {b, c}, Lϕ1,Π M would synthesise two insertion branches, namely, •,b = x,b?vdef¡
and •, c = x, c?vdef¡, whereas if Π also includes d, it would add another branch. By
contrast, the manually defined mdet attains the same result more elegantly via the
single insertion branch •, x?vdef¡. As argued in Example 10.7 of Chapter 10, it is
not always possible to define a monitor like mdet, especially when the formula de-
fines complex conditions in its violating modal necessities, such as in the case of
ϕ2. Despite this, the following results, namely, Theorems 11.1 and 11.2, show that
our synthesis still guarantees enforceability and weak optimality.

Theorem 11.1 (Enforceability). The logic sHML is enforceable in a bi-directional
setting.

Proof. Since sHML is logically equivalent to sHMLnf, by Definition 10.1 the result
follows from showing that for every ϕ∈ sHMLnf and Π⊆Port, Lϕ,Π M adequately en-
forces ϕ (for every Π). By Definition 10.2, this claim comes as a result of the below

126

Chapter 11. Synthesising action disabling monitors

stated Propositions 11.1 and 11.2 which entail that the synthesised monitors en-
force their respective sHMLnf formula and are correct by construction. Recall from
Corollary 4.1 (of Chapter 4) that Definition 10.4 (transparency) is a special instance
of Definition 10.5 (eventual transparency). Hence, adherence to the latter implicitly
entails adherence to the former.

Proposition 11.1 (Soundness). For every input port set Π, system state s∈Sys and
ϕ∈ sHMLnf, if JϕK 6=∅ then Lϕ,Π M[s]∈ JϕK.

Proposition 11.2 (Eventual Transparency). For every input port set Π, sHML for-
mula ϕ, system states s, s′ ∈Sys, action disabling monitorm′ and trace t, if Lϕ,Π M[s] t

=⇒
m′[s′] and s′ ∈ Jafter(ϕ, t)K then m′[s′] ∼ s′.

The proofs of these propositions are given in Appendices C.2.1 and C.2.2 on pages
216 and 222 respectively.

We now proceed to show that the synthesised monitor Lϕ,Π M also ensures a
degree of optimality when enforcing formula ϕ. Recall from Example 10.7 of Chap-
ter 10 that optimal enforcement as stated by Definition 10.6 can at times be too
strict for our bidirectional setting. For this reason, we aim to prove that our syn-
thesis function Lϕ,Π M at least produces monitors that are weak optimal (as stated
by Definition 10.7) when enforcing ϕ on a set of system states s whose input ports
are specified by Π, i.e., s∈SysΠ.

Moreover, recall that in order to determine that a synthesised monitor is the
most optimal one, we must compare it to all adequate monitors i.e., including those
that disable, enable and adapt actions. As so far we have focussed on exploring
the enforceability of action disabling monitors, we opt to restrict our comparison
to other action disabling transducers. We thus aim to prove that the synthesised
monitors are weakly DIS-optimal.

Theorem 11.2 (Weak DIS-Optimal Enforcement). For every sHMLnf formula ϕ, sys-
tem state s∈SysΠ, explicit trace tτ and monitor m, if ecbi(m)⊆{DIS}, enf(m,ϕ) and
s

tτ−−→ then mc(Lϕ,Π M, tτ)≤mc(m, tτ).

This result therefore ensures that one cannot find a less intrusive action dis-
abling (finite) monitor that: has the same information portrayed by Π and has less
impact on the original behaviour of the SuS, than the ones we synthesise. However,
it does not exclude that a monitor with different, or additional, transformation ca-
pabilities and port information might be more optimal when enforcing ϕ. The full
proof for this theorem is given in Appendix C.2.3 on page 237.

127

Chapter 11. Synthesising action disabling monitors

11.2 Summary

In this chapter we have explored the enforceability of µHML formulas in a bidi-
rectional setting. Particularly, we have investigated how sHML formulas can be
adequately and (weak) optimally enforced using action disabling monitors defined
via the bidirectional enforcement model of Figure 9.2 from Chapter 9. The outcome
of this study led to the following contributions:

(i) The synthesis function of Definition 11.2 which converts normalized sHML for-
mulas into bidirectional action disabling monitors.

(ii) The proofs for Theorems 11.1 and 11.2 which ensure that the synthesised mon-
itors adequately and optimally enforce the formula they were derived from, as
stated by Definitions 10.2 and 10.7 respectively.

These results thus suffice to conclude that the sHML fragment is also enforceable
in a bidirectional enforcement setting via action disabling transducers.

128

12. End of Part II

In the second part of this thesis we have studied the enforceability of the µHML
branching time logic in a bidirectional enforcement setting. Unlike in Part I we have
adopted a branching time view of the SuS rather than a trace based view, and lifted
the assumption that every action can be freely modified by the monitor’s transforma-
tions in the same way. To enable this study, it was therefore required to differentiate
between the system’s input and output behaviour. As a result, we conceptualised
a novel distinction between the transformations (suppression, insertions and re-
placements) performed by the monitor, and the way the instrumentation interprets
these transformations to enable, disable or adapt the actions of the SuS at run-
time. Based on this distinction, in Chapter 9 we thus developed a bidirectional
enforcement instrumentation model.

In order to study enforceability vis-a-vis this new model, in Chapter 10 we have
explored whether the enforceability definitions of adequate and optimal enforce-
ment, introduced in Chapter 4 of Part I, are still relevant for our new setting. Specif-
ically, we showed how the criteria of soundness, transparency and eventual trans-
parency can still be used to filter out inadequate transducers, and to guide into
finding adequate ones. However, we also showed that the optimality criterion of
Chapter 4 can at times be too strict. For this reason, we introduced a weaker ver-
sion of this constraint that only guarantees optimal enforcement when the formula
is enforced upon systems that use a specific set of communication ports.

Based on these notions of enforcement and using the work of Part I as guidance,
in Chapter 11 we showed that sHML properties can also be enforced by omitting
violating (input and output) actions using action disabling monitors. We thus de-
vised a synthesis function that produces action disabling monitors that are correct
and optimal by construction. Similar to the approach used in Part I, we defined
the new synthesis function in a compositional manner by working with respect to a
normalised sHML syntactic subset, given that it was shown to be equally expressive

129

Chapter 12. End of Part II

to sHML. To ensure adherence to the weak optimality criterion, the new synthesis
was developed with the capability of accepting the necessary port information and
which it uses to produce weak optimal monitors.

As a result, this synthesis function allowed us to conclude that sHML is enforce-
able via action disabling in a bidirectional setting.

12.1 Related Work

Most work in runtime enforcement [25, 50, 69, 78, 82, 98] assume that every system
action can be freely modified regardless of its type, e.g., input, output, function call,
etc. However, in our work we found out that some actions must be treated differently
especially in a bidirectional setting. Similarly, Khoury and Hallé [67] remarked that
for certain types of actions, the monitor might fail to suppress or insert them, and
that certain actions are only observable, as no transformations are applicable in
practice. As a result, they introduce a lattice of different classes of actions starting
with the class of observable actions at the bottom. Side-by-side on top of this class
lie the (non-intersecting) classes of suppressable and insertable actions, and at the
top of the lattice lies the class of controllable actions, i.e., actions that can be both
suppressed or inserted. The work by Khoury and Hallé extends a prior investigation
by Basin et al. [18], where the authors generalised Schneider’s work on security
automata [98] and proposed a dichotomy of observable and controllable actions.
In the work by Basin et al. [18], actions are classified as controllable when their
execution can be prevented by aborting the system at runtime, otherwise they are
classified as being observable.

Ligatti et al. [44, 80] proposed an extension to their work on edit automata
[78] by introducing an enforcement mechanism called Mandatory Results Automata
(MRAs). MRAs were specifically designed to enforce properties about the interac-
tions between two parties. The MRA-based monitor is placed in between the two
entities in order to scrutinise their interactions by transforming their actions as nec-
essary. Specifically, the monitor can only transform the output behaviour of each of
the two entities and, unlike our work, it does not deal directly with the problem of
enforcing properties about their input behaviour by transforming the input actions
themselves. Moreover, in their work Ligatti et al. do not explore how MRAs can be
used to enforce properties expressed using a logic, and so they do not address the
problem of enforceability.

Pinisetty et al. [86, 87] conduct a preliminary investigation of RE in a bidirec-
tional setting. They, however, model the behaviour of the SuS as a trace of input
and output pairs, a.k.a. reactions, and focus on enforcing properties by modifying

130

Chapter 12. End of Part II

the payloads exchanged by these reactions. This way of modelling system behaviour
is, however, quite restrictive as it only applies to synchronous reactive systems that
output a value in reaction to an input. This differs substantially from the way we
model systems as LTSs, particularly since we can model more complex systems that
may opt to collect data from multiple inputs, or supply multiple outputs in response
to an input. The enforcement abilities studied by Pinisetty et al. [86, 87], are also
confined to action replacement that only allows the monitor to modify the data ex-
changed by the system in its reactions. Therefore, their monitors are unable to
disable and enable an individual (input or output) action itself. Due to their trace
based view of the SuS, their correctness specifications do not allow for defining
correct system behaviour in view of its different execution branches. This is par-
ticularly useful when considering systems whose inputs may lead them into taking
erroneous computation branches that produce invalid outputs. Moreover, since
their systems do not model communication ports, their monitors cannot influence
directly the control structure of the SuS, e.g., by opening, closing or rerouting data
through different ports.

12.2 Future Work

We plan to expand on our current work on bidirectional enforcement along differ-
ent avenues. First, we intend to study the maximality results for action disabling
enforcement along the lines of the work by Aceto et al. [3, 56]. We are confident
that sHML is the maximally expressive fragment of µHML that can be enforced by
action disabling monitors, because in Part I we have already established that sHML
is maximally expressive when enforced by suppression monitors in a unidirectional
setting. We thus conjecture that the work conducted in Part I can be used as a
guide during this future investigation.

Second, we intend to identify a static analysis technique that achieves the same
result as our bidirectional action disabling monitors. Although in Part I we showed
that controlled system synthesis is the static counterpart to suppression enforce-
ment, it is unclear whether this is the case for bidirectional monitors. The main
point of concern revolves around input actions. In controlled system synthesis, in-
puts are generally regarded as being uncontrollable, which means that they should
remain untouched. By contrast, our disabling monitors can at times block cer-
tain inputs as necessary. Understanding how this technique relates to bidirectional
enforcement thus merits an in depth investigation.

Third, we want to expand our exploration into bidirectional enforcement by study-
ing the enforceability of a µHML fragment that is larger than sHML. This requires

131

Chapter 12. End of Part II

understanding how the capabilities of the other enforcement instrumentation mech-
anisms (action enabling and adaptation) can be fully harnessed to enforce properties
that cannot be expressed via sHML. As explained in Section 8.2 at the end of Part I,
expanding the set of enforceable properties is not a trivial task. For instance, it is
unclear whether our work on enforcing sHML properties can guide in identifying a
set of monitors that enforce the co-safety dual of sHML i.e., cHML.

Finally, we would also like to explore the implementability and feasibility of our
instrumentation model for bidirectional enforcement. This would require looking
into channel-based programming languages (such as GO) that can be used to im-
plement bidirectional monitors that can block inputs by closing channels, thereby
preventing invalid input interactions with the environment.

132

13. Concluding Remarks

Throughout the course of this thesis, we investigated the enforceability of the logic
µHML. Put simply, our main aim was to answer the following question:

Q: Which µHML formulas can be adequately enforced by a monitor at runtime?

Our investigation gave rise to several other questions. The following five ques-
tions thus became our fundamental objectives throughout this thesis.

Q1 (modelling): What is an enforcement monitor, and how should we instrument
it with the SuS?

Q2 (correctness): What are the criteria for adequate enforcement?

Q3 (expressiveness): Can all µHML formulas be adequately enforced? If no, then
which µHML fragment is actually enforceable?

Q4 (maximality): Is the identified µHML fragment the largest fragment that one
can enforce?

Q5 (static counterpart): Is the identified fragment only dynamically enforceable?
Are there static alternatives that achieve an equivalent result?

As different enforcement instrumentation setups exist, answering objective Q1
required us to choose a specific instrumentation setup. In this thesis, we con-
sidered two instrumentation setups, namely, a unidirectional and a bidirectional
enforcement setup. For this reason, we subdivided this thesis into two parts.

In Part I we aimed to answer objectives Q1 - Q5 in a unidirectional context. To
answer Q1, in Chapter 3 we adopted a trace-based view of the SuS and defined an
instrumentation model for unidirectional enforcement. As a result, we now have a
formal model that defines how enforcement monitors behave at runtime and how
they should be instrumented with the SuS to attain unidirectional enforcement.
Having a way to define monitor behaviour, in Chapter 4 we addressed question Q2
by introducing three different definitions for adequate enforcement (Definitions 4.4,

133

Chapter 13. Concluding Remarks

4.6 and 4.8) where Definition 4.8 is the strictest and Definition 4.6 is the weakest.
Moreover, since in certain cases a variety of monitors may be considered adequate
for enforcing a single formula, we also introduced the notion of optimal enforcement
which guides the search for the least intrusive one. These definitions are a crucial
contribution as they define what it takes for a monitor to bring a system in line with
a property while being minimally intrusive.

Based on these notions, in Chapter 5 we focussed on studying objective Q3. We
thus devised a synthesis function that allowed us to determine that every sHML for-
mula can be adequately and optimally enforced in a unidirectional setting via sup-
pression monitors. This therefore implies that every safety property is enforceable
in a unidirectional setting. In Chapter 6 we then focussed on answering question Q4
and showed that sHML is also the maximally expressive subset of µHML that can
be enforced via suppression monitors. This is an important result since we now
know that in a unidirectional setting, suppression monitors can only adequately
enforce safety properties.

In Chapter 7 we finally addressed Q5 where we identified the static analysis
technique called Controlled System Synthesis as being the static counterpart to
suppression enforcement in the context of safety. This result thus entails that safety
formulas can be enforced both dynamically via suppression monitors or statically
by synthesising a controlled system. We also determined that in certain cases an
external observer may still be able to tell the difference between a monitored and a
controlled version of a system even though they enforce the same behaviour.

In Part II we addressed once again objectives Q1 - Q3, but this time, in a bidi-
rectional enforcement setting. Unlike in Part I we have: adopted a branching time
view of the SuS rather than a trace based one, differentiated between the system’s
input and output behaviour, and lifted the assumption that every action can be
freely modified by the monitor’s transformations. We also introduced a novel dis-
tinction between the transformations (suppression, insertions and replacements)
performed by the monitor, and the instrumentation’s resulting effects (action en-
abling, disabling and adaptation) on the composite system’s behaviour. Using this
distinction as a foundation, in Chapter 9 we developed a new instrumentation model
for bidirectional enforcement. This work thus served to address question Q1 from
a bidirectional enforcement perspective. As a result, we now have another formal
model that defines how monitors must be instrumented to achieve bidirectional
enforcement.

To address objective Q2 from a bidirectional perspective, in Chapter 10 we moti-
vated why the enforcement definitions introduced in Part I, are still relevant for the
bidirectional setting of Chapter 9. We also showed that the optimality criterion in-

134

Chapter 13. Concluding Remarks

troduced in Part I can sometimes be too strict, and so we defined a weaker version.
This implies that our enforcement definitions are general enough to remain relevant
for different enforcement settings.

Having shown the relevance of our enforcement definitions, we then addressed
objective Q3 in Chapter 11. In particular, we showed that in a bidirectional set-
ting, sHML properties can still be enforced by disabling violating (input and output)
actions. This result strengthens that of Chapter 5 as we now know that safety
properties are enforceable in a bidirectional setting via action disabling monitors.
To show this, we defined another synthesis function that produces action disabling
monitors that are adequate and weak optimal by construction. Due to time restric-
tions, the study of objectives Q4 and Q5 in a bidirectional context were left to future
investigations.

Although the work in this thesis was conducted in respect to the logic µHML,
our findings can be easily applied to other (more popular) logics such as LTL and
CTL. This is permitted since µHML embeds a wide range of logics due to its high
expressiveness. In fact, to apply our results to other logics one can simply encode
the syntax of that logic in terms of the µHML syntax e.g., an encoding of this sort was
given in [5]. Moreover, despite that we describe systems as CCS (and value-passing
CCS) processes, our transducers can enforce properties on any system that can be
described as a LTS. Hence, to apply our work to systems other than CCS processes
such as cyber-physical systems [76], one only requires providing LTS semantics for
this kind of systems; in the case of cyber-physical systems, this has already been
achieved [74, 94].

13.1 Overview of published work

We now give an overview of the research papers that the author of this thesis has
contributed to during the course of his PhD.

Our core study about the enforceability of µHML in a unidirectional context was
published in the 29th international conference on Concurrency Theory (CONCUR
2018), in the paper cited below. It contained most of the core results and contribu-
tions presented in Chapters 3 to 5 of Part I.

• L. Aceto, I. Cassar, A. Francalanza, and A. Ingólfsdóttir. On runtime enforce-
ment via suppressions. In 29th International Conference on Concurrency The-
ory, CONCUR 2018, pages 34:1–34:17, 2018.

The author formulated the formal models and proofs presented in the paper under
the supervision of the co-authors i.e., his PhD advisers. He was also extensively

135

Chapter 13. Concluding Remarks

involved in writing up the paper; this included writing up an initial draft which was
then revised and edited based on the co-authors’ feedback. An extended journal
version of this conference paper is currently under review.

Another conference paper presenting the work of Chapter 7 has also been pub-
lished in the 19th international conference on Runtime Verification (RV 2019), as
cited below.

• L. Aceto, I. Cassar, A. Francalanza, and A. Ingólfsdóttir. Comparing controlled
system synthesis and suppression enforcement. In Runtime Verification: 19th
International Conference, RV 2019, pages 148–164. Springer, 2019.

Once again, the author formulated the presented mathematics and wrote the con-
tent of the paper with the assistance of the co-authors who provided continuous
reviews to improve the quality of the content. At the time of writing, an extended
journal version of this paper is being finalised to be submitted for review. In addi-
tion, most of the work presented in Part II has also been adapted into a research
paper and submitted to a conference for review.

Besides publishing papers related to the work described in this thesis, the au-
thor of this thesis contributed to several other research results during his PhD
studies. For starters, the following publications were made in relation to runtime
verification and the Erlang RV tool detectEr.

• I. Cassar, A. Francalanza, D. Attard, L. Aceto, and A. Ingolfsdottir. A suite
of monitoring tools for Erlang. In RV-CuBES 2017. An International Workshop
on Competitions, Usability, Benchmarks, Evaluation, and Standardisation for
Runtime Verification Tools, volume 3 of Kalpa Publications in Computing, pages
41–47. EasyChair, 2017.

• A. Francalanza, L. Aceto, A. Achilleos, D. P. Attard, I. Cassar, D. Della Monica,
and A. Ingólfsdóttir. A Foundation for Runtime Monitoring. In Runtime Verifi-
cation: 17th International Conference, RV 2017, pages 8–29. Springer, 2017.

• I. Cassar, A. Francalanza, L. Aceto, and A. Ingólfsdóttir. A survey of runtime
monitoring instrumentation techniques. In PrePost2017, pages 15–28, 2017.

• D. P. Attard, I. Cassar, A. Francalanza, L. Aceto, and A. Ingolfsdottir. A Run-
time Monitoring Tool for Actor-Based Systems., chapter 3, pages 49–74. River
Publishers, 2017.

To facilitate the development of monitoring tools for Erlang systems, the author also
developed an aspect oriented programming framework for Erlang called eAOP1. As a
result, the following papers were published containing implementation details and

1The eAOP framework is open-source and available from: https://github.com/casian/eaop.

136

Chapter 13. Concluding Remarks

use cases of how this framework has been used for developing runtime verification
and adaptation tools.

• I. Cassar, A. Francalanza, L. Aceto, and A. Ingólfsdóttir. eAOP: An Aspect
Oriented Programming Framework for Erlang. In Erlang, ACM SIGPLAN, 2017.

• I. Cassar, A. Francalanza, D. P. Attard, L. Aceto, and A. Ingolfsdottir. A generic
instrumentation tool for Erlang. In RV-CuBES 2017. An International Workshop
on Competitions, Usability, Benchmarks, Evaluation, and Standardisation for
Runtime Verification Tools, volume 3 of Kalpa Publications in Computing, pages
48–54. EasyChair, 2017.

137

Bibliography

[1] S. Abramsky. Observation equivalence as a testing equivalence. Theoretical
Computer Science, 53:225–241, 1987.

[2] L. Aceto, A. Achilleos, A. Francalanza, and A. Ingólfsdóttir. A framework for
parameterized monitorability. In Foundations of Software Science and Com-
putation Structures, pages 203–220. Springer, 2018.

[3] L. Aceto, A. Achilleos, A. Francalanza, and A. Ingólfsdóttir. Monitoring for
silent actions. In FSTTCS 2017: Foundations of Software Technology and The-
oretical Computer Science, volume 93 of LIPIcs, pages 7:1–7:14, 2018.

[4] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, and S. Ö. Kjartans-
son. Determinizing Monitors for HML with Recursion. Journal of Logical and
Algebraic Methods in Programming, 111, 2016.

[5] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, and K. Lehtinen. Ad-
ventures in Monitorability: From Branching to Linear Time and Back Again.
Proceedings of the ACM Programing Languages, pages 52:1–52:29, 2019.

[6] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, and K. Lehtinen. An
Operational Guide to Monitorability. In Software Engineering and Formal
Methods, pages 433–453. Springer, 2019.

[7] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, and K. Lehtinen. Test-
ing equivalence vs. runtime monitoring. In Models, Languages, and Tools for
Concurrent and Distributed Programming: Essays Dedicated to Rocco De Nicola
on the Occasion of His 65th Birthday, pages 28–44. Springer, 2019.

[8] L. Aceto, I. Cassar, A. Francalanza, and A. Ingólfsdóttir. On runtime en-
forcement via suppressions. In 29th International Conference on Concurrency
Theory, CONCUR 2018, pages 34:1–34:17, 2018.

[9] L. Aceto, I. Cassar, A. Francalanza, and A. Ingólfsdóttir. Comparing controlled

138

Bibliography

system synthesis and suppression enforcement. In Runtime Verification: 19th
International Conference, RV 2019, pages 148–164. Springer, 2019.

[10] L. Aceto and A. Ingólfsdóttir. Testing Hennessy-Milner logic with recursion.
In Foundations of Software Science and Computation Structures, pages 41–55.
Springer, 1999.

[11] L. Aceto, A. Ingólfsdóttir, K. G. Larsen, and J. Srba. Reactive Systems: Mod-
elling, Specification and Verification. Cambridge University Press, 2007.

[12] R. Alur and P. Černý. Streaming transducers for algorithmic verification of
single-pass list-processing programs. In Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
599–610. ACM, 2011.

[13] H. R. Andersen. Partial model checking. In Proceedings of Tenth Annual IEEE
Symposium on Logic in Computer Science, pages 398–407. IEEE, 1995.

[14] A. Arnold and I. Walukiewicz. Nondeterministic controllers of nondeterminis-
tic processes. In Logic and Automata, volume 2 of Texts in Logic and Games,
pages 29–52. Amsterdam University Press, 2008.

[15] D. P. Attard, I. Cassar, A. Francalanza, L. Aceto, and A. Ingolfsdottir. A Run-
time Monitoring Tool for Actor-Based Systems., chapter 3, pages 49–74. River
Publishers, 2017.

[16] B. Banieqbal and H. Barringer. Temporal logic with fixed points. In Temporal
Logic in Specification, pages 62–74, 1989.

[17] D. Basile, M. H. ter Beek, and R. Pugliese. Bridging the gap between super-
visory control and coordination of services: Synthesis of orchestrations and
choreographies. In COORDINATION 2019 - 21st International Conference on
Coordination Models and Languages, 2019.

[18] D. Basin, V. Jugé, F. Klaedtke, and E. Zălinescu. Enforceable security policies
revisited. In Principles of Security and Trust, pages 309–328. Springer, 2012.

[19] A. Bauer, M. Leucker, and C. Schallhart. Comparing LTL semantics for run-
time verification. Journal of Logic and Computation, 20(3):651–674, 2010.

[20] A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for LTL
and TLTL. ACM Transactions on Software Engineering and Methodology,
20(4):14:1–14:64, 2011.

139

Bibliography

[21] D. Beauquier, J. Cohen, and R. Lanotte. Security policies enforcement us-
ing finite edit automata. Electronic Notes in Theoretical Computer Science,
229(3):19–35, 2009.

[22] J. Berstel and L. Boasson. Transductions and context-free languages. Ed.
Teubner, pages 1–278, 1979.

[23] N. Bielova. A theory of constructive and predictable runtime enforcement mech-
anisms. PhD thesis, University of Trento, 2011.

[24] N. Bielova and F. Massacci. Do you really mean what you actually enforced?-
edited automata revisited. International Journal of Information Security,
10(4):239–254, 2011.

[25] N. Bielova and F. Massacci. Predictability of enforcement. In Interna-
tional Symposium on Engineering Secure Software and Systems, pages 73–86.
Springer, 2011.

[26] L. Bocchi, T.-C. Chen, R. Demangeon, K. Honda, and N. Yoshida. Monitoring
networks through multiparty session types. Theoretical Computer Science,
669:33 – 58, 2017.

[27] J. A. Brzozowski. Derivatives of regular expressions. Journal of the ACM,
11(4):481–494, 1964.

[28] I. Cassar and A. Francalanza. On synchronous and asynchronous monitor
instrumentation for actor-based systems. In Proceedings 13th International
Workshop on Foundations of Coordination Languages and Self-Adaptive Sys-
tems, FOCLASA 2014, pages 54–68, 2014.

[29] I. Cassar and A. Francalanza. Runtime adaptation for actor systems. In
Runtime Verification - 6th International Conference, RV 2015, volume 9333 of
Lecture Notes in Computer Science, pages 38–54. Springer, 2015.

[30] I. Cassar and A. Francalanza. On implementing a monitor-oriented program-
ming framework for actor systems. In International Conference on Integrated
Formal Methods, pages 176–192. Springer, 2016.

[31] I. Cassar, A. Francalanza, L. Aceto, and A. Ingólfsdóttir. eAOP: An Aspect Ori-
ented Programming Framework for Erlang. In Erlang, ACM SIGPLAN, 2017.

[32] I. Cassar, A. Francalanza, L. Aceto, and A. Ingólfsdóttir. A survey of runtime
monitoring instrumentation techniques. In PrePost2017, pages 15–28, 2017.

140

Bibliography

[33] I. Cassar, A. Francalanza, D. Attard, L. Aceto, and A. Ingolfsdottir. A suite
of monitoring tools for Erlang. In RV-CuBES 2017. An International Workshop
on Competitions, Usability, Benchmarks, Evaluation, and Standardisation for
Runtime Verification Tools, volume 3 of Kalpa Publications in Computing, pages
41–47. EasyChair, 2017.

[34] I. Cassar, A. Francalanza, D. P. Attard, L. Aceto, and A. Ingolfsdottir. A generic
instrumentation tool for Erlang. In RV-CuBES 2017. An International Work-
shop on Competitions, Usability, Benchmarks, Evaluation, and Standardisation
for Runtime Verification Tools, volume 3 of Kalpa Publications in Computing,
pages 48–54. EasyChair, 2017.

[35] I. Cassar, A. Francalanza, and S. Said. Improving runtime overheads for de-
tecter. In Proceedings 12th International Workshop on Formal Engineering ap-
proaches to Software Components and Architectures, FESCA 2015., pages 1–8,
2015.

[36] I. Castellani, M. Dezani-Ciancaglini, and J. A. Pérez. Self-adaptation and
secure information flow in multiparty communications. Formal Aspects of
Computing, 28(4):669–696, 2016.

[37] E. Chang, Z. Manna, and A. Pnueli. The safety-progress classification. In
Logic and Algebra of Specification, pages 143–202. Springer, 1993.

[38] T.-C. Chen, L. Bocchi, P.-M. Deniélou, K. Honda, and N. Yoshida. Asyn-
chronous Distributed Monitoring for Multiparty Session Enforcement. In
Trustworthy Global Computing, pages 25–45. Springer, 2012.

[39] C. Cini and A. Francalanza. An LTL proof system for runtime verification.
In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 581–595. Springer, 2015.

[40] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In 25 Years of Model Checking,
pages 196–215. Springer, 2008.

[41] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT press, 1999.

[42] E. de Vries, V. Koutavas, and M. Hennessy. Communicating transactions. In
CONCUR 2010 - Concurrency Theory, pages 569–583. Springer, 2010.

[43] A. Desai, T. Dreossi, and S. A. Seshia. Combining Model Checking and Run-
time Verification for Safe Robotics. In Runtime Verification: 17th International
Conference, RV 2017, LNCS, pages 172–189. Springer, 2017.

141

Bibliography

[44] E. Dolzhenko, J. Ligatti, and S. Reddy. Modeling runtime enforcement with
mandatory results automata. International Journal of Information Security,
14(1):47–60, 2015.

[45] R. Ehlers, S. Lafortune, S. Tripakis, and M. Y. Vardi. Bridging the gap be-
tween supervisory control and reactive synthesis: Case of full observation
and centralized control. In WODES, pages 222–227. International Federation
of Automatic Control, 2014.

[46] U. Erlingsson and F. B. Schneider. SASI enforcement of security poli-
cies: A retrospective. In Proceedings of the 1999 Workshop on New Security
Paradigms, NSPW ’99, pages 87–95. ACM, 1999.

[47] Y. Falcone. You Should Better Enforce Than Verify. In Runtime Verification:
First International Conference, RV 2010, pages 89–105. Springer, 2010.

[48] Y. Falcone, J.-C. Fernandez, and L. Mounier. Synthesizing enforcement mon-
itors wrt. the safety-progress classification of properties. In Information Sys-
tems Security. Springer, 2008.

[49] Y. Falcone, J.-C. Fernandez, and L. Mounier. Enforcement monitoring wrt.
the safety-progress classification of properties. In Proceedings of the 2009
ACM Symposium on Applied Computing, SAC ’09, pages 593–600. ACM, 2009.

[50] Y. Falcone, J.-C. Fernandez, and L. Mounier. What can you verify and enforce
at runtime? International Journal on Software Tools for Technology Transfer,
14(3):349, 2012.

[51] Y. Falcone and H. Marchand. Runtime enforcement of k-step opacity. In 52nd
IEEE Conference on Decision and Control, pages 7271–7278, 2013.

[52] Y. Falcone, L. Mounier, J.-C. Fernandez, and J.-L. Richier. Runtime enforce-
ment monitors: composition, synthesis, and enforcement abilities. Formal
Methods in System Design, 38(3):223–262, 2011.

[53] A. Francalanza. A Theory of Monitors. In International Conference on Foun-
dations of Software Science and Computation Structures, pages 145–161.
Springer, 2016.

[54] A. Francalanza. Consistently-Detecting Monitors. In 28th International Con-
ference on Concurrency Theory (CONCUR 2017), volume 85 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 8:1–8:19. Schloss Dagstuhl,
2017.

142

Bibliography

[55] A. Francalanza, L. Aceto, A. Achilleos, D. P. Attard, I. Cassar, D. Della Mon-
ica, and A. Ingólfsdóttir. A Foundation for Runtime Monitoring. In Runtime
Verification: 17th International Conference, RV 2017, pages 8–29. Springer,
2017.

[56] A. Francalanza, L. Aceto, and A. Ingólfsdóttir. Monitorability for the Hennessy-
Milner logic with recursion. Formal Methods in System Design, 51(1):87–116,
2017.

[57] A. Francalanza and A. Seychell. Synthesising correct concurrent runtime
monitors. Formal Methods in System Design, 46(3):226–261, 2015.

[58] K. Havelund and T. Pressburger. Model checking java programs using java
pathfinder. International Journal on Software Tools for Technology Transfer,
2(4):366–381, 2000.

[59] K. Havelund and G. Roşu. An overview of the runtime verification tool java
pathexplorer. Formal methods in system design, 24(2):189–215, 2004.

[60] M. Hennessy and H. Lin. Proof systems for message-passing process algebras.
Formal Aspects of Computing, 8(4):379–407, 1996.

[61] M. Hennessy and X. Liu. A modal logic for message passing processes. Acta
Informatica, 32(4):375–393, 1995.

[62] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concur-
rency. Journal of the ACM, 32(1):137–161, 1985.

[63] M. Hennessy and T. Regan. A process algebra for timed systems. Information
and Computation, 117(2):221 – 239, 1995.

[64] L. Jia, H. Gommerstadt, and F. Pfenning. Monitors and blame assignment for
higher-order session types. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 582–594,
2016.

[65] K. Kejstová, P. Ročkai, and J. Barnat. From Model Checking to Runtime
Verification and Back. In Runtime Verification: 17th International Conference,
RV 2017. Springer, 2017.

[66] R. M. Keller. Formal Verification of Parallel Programs. Communications of the
ACM, 19(7):371–384, 1976.

[67] R. Khoury and S. Hallé. Runtime enforcement with partial control. Founda-
tions and Practice of Security, 2016.

143

Bibliography

[68] R. Khoury and N. Tawbi. Which security policies are enforceable by runtime
monitors? a survey. Computer Science Review, 6(1):27–45, 2012.

[69] B. Könighofer, M. Alshiekh, R. Bloem, L. Humphrey, R. Könighofer, U. Topcu,
and C. Wang. Shield synthesis. Formal Methods in System Design, 51(2):332–
361, 2017.

[70] D. C. Kozen. Results on the propositional µ-calculus. Theoretical Computer
Science, 27:333–354, 1983.

[71] F. Lang and R. Mateescu. Partial model checking using networks of labelled
transition systems and boolean equation systems. In 18th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS 2012, pages 141–156. Springer, 2012.

[72] R. Lanotte, M. Merro, and A. Munteanu. A process calculus approach to
correctness enforcement of plcs. In Proceedings of the 21st Italian Conference
on Theoretical Computer Science (ICTCS 2020), pages 81–94, 2020.

[73] R. Lanotte, M. Merro, and A. Munteanu. Runtime enforcement for control sys-
tem security. In Proceedings of the 33rd IEEE Computer Security Foundations
Symposium, CSF 2020, pages 246–261, 2020.

[74] R. Lanotte, M. Merro, A. Munteanu, and L. Viganò. A formal approach to
physics-based attacks in cyber-physical systems (extended version). CoRR,
abs/1902.04572, 2019.

[75] K. G. Larsen. Proof systems for satisfiability in Hennessy-Milner logic with
recursion. Theoretical Computer Science, 72(2):265–288, 1990.

[76] E. A. Lee and S. A. Seshia. Introduction to Embedded Systems: A Cyber-
Physical Systems Approach. The MIT Press, 2nd edition, 2016.

[77] M. Leucker and C. Schallhart. A brief account of runtime verification. The
Journal of Logic and Algebraic Programming, 78(5):293–303, 2009.

[78] J. Ligatti, L. Bauer, and D. Walker. Edit automata: enforcement mechanisms
for run-time security policies. International Journal of Information Security,
4(1):2–16, 2005.

[79] J. Ligatti, L. Bauer, and D. Walker. Run-time enforcement of nonsafety
policies. ACM Transactions on Information and System Security., 12(3):19:1–
19:41, 2009.

144

Bibliography

[80] J. Ligatti and S. Reddy. A theory of runtime enforcement, with results. In
Computer Secutity - European Symposium on Research in Computer Security,
CESORICS 2010, pages 87–100. Springer, 2010.

[81] Z. Manna and A. Pnueli. Completing the temporal picture. Theoretical Com-
puter Science, 83(1):91–130, 1991.

[82] F. Martinelli and I. Matteucci. Partial model checking, process algebra opera-
tors and satisfiability procedures for (automatically) enforcing security prop-
erties. In Foundations of Computer Security, pages 133–144, 2005.

[83] F. Martinelli and I. Matteucci. Through modeling to synthesis of security
automata. Electronic Notes in Theoretical Computer Science, 179:31–46, 2006.

[84] F. Martinelli and I. Matteucci. An approach for the specification, verification
and synthesis of secure systems. Electronic Notes in Theoretical Computer
Science, 168:29–43, 2007.

[85] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I. Infor-
mation and computation, 100(1):1–40, 1992.

[86] S. Pinisetty, P. S. Roop, S. Smyth, N. Allen, S. Tripakis, and R. V. Hanxle-
den. Runtime enforcement of cyber-physical systems. ACM Transactions on
Embedded Computing Systems, 16(5):178:1–178:25, 2017.

[87] S. Pinisetty, P. S. Roop, S. Smyth, S. Tripakis, and R. von Hanxleden. Run-
time enforcement of reactive systems using synchronous enforcers. CoRR,
abs/1612.05030, 2016.

[88] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings
of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’89, pages 179–190. ACM, 1989.

[89] A. Pnueli and A. Zaks. PSL model checking and run-time verification via
testers. In International Symposium on Formal Methods, pages 573–586.
Springer, 2006.

[90] Z. M. A. Pnueli. A hierarchy of temporal properties. Proceedings of the 2th
symph. ACM of principle of distributed computer, 1990.

[91] A. M. Rabinovich. A complete axiomatisation for trace congruence of finite
state behaviors. In Proceedings of the 9th International Conference on Math-
ematical Foundations of Programming Semantics, pages 530–543. Springer-
Verlag, 1994.

145

Bibliography

[92] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete
event processes. SIAM Journal on Control and Optimization, 25(1):206–230,
1987.

[93] J. Rathke and M. Hennessy. Local model checking for value-passing processes
(extended abstract). In Theoretical Aspects of Computer Software, pages 250–
266. Springer, 1997.

[94] W. C. Rounds and H. Song. The ö-calculus: A language for distributed control
of reconfigurable embedded systems. In Hybrid Systems: Computation and
Control, pages 435–449. Springer, 2003.

[95] J. Sakarovitch. Elements of Automata Theory. Cambridge University Press,
2009.

[96] D. Sangiorgi. A theory of bisimulation for the pi-calculus. Acta Informatica,
33(1):69–97, 1996.

[97] D. Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge Uni-
versity Press, 2011.

[98] F. B. Schneider. Enforceable security policies. ACM Transactions on Informa-
tion and System Security (TISSEC), 3(1):30–50, 2000.

[99] C. Stirling. Handbook of logic in computer science (vol. 2). chapter Modal and
Temporal Logics, pages 477–563. Oxford University Press, Inc., 1992.

[100] C. Stirling. Model checking and other games. In Notes for Mathfit Workshop
on finite model theory, University of Wales, Swansea, 1996.

[101] A. C. van Hulst, M. A. Reniers, and W. J. Fokkink. Maximally permissive
controlled system synthesis for non-determinism and modal logic. Discrete
Event Dynamic Systems, 27(1):109–142, 2017.

[102] I. Walukiewicz. Completeness of Kozen’s axiomatisation of the propositional
µ-calculus. Information and Computation, 157(1):142–182, 2000.

[103] M. Wu, H. Zeng, C. Wang, and H. Yu. Invited: Safety guard: Run-
time enforcement for safety-critical cyber-physical systems. In 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, 2017.

146

A. Missing Proofs from Chapter 2

In this brief chapter we provide the proofs for Propositions 2.3 and 2.4 which justify

the after function for the safety and cosafety fragments of µHML.

A.1 Proving Proposition 2.3

We need to prove that for every system transition s
α

==⇒ s′ and sHML formula ϕ,

if s ∈ JϕK then s′ ∈ Jafter(ϕ, α)K. We prove the contrapositive, i.e., if s α
==⇒ s′ and

s′ /∈ Jafter(ϕ, α)K then s /∈ JϕK.

Proof. As we assume that logical variables are guarded (refer to Section 2.2 on

Page 11), we can proceed by rule induction on after.

Case after(ff, α). This case holds trivially since s /∈ JffK.

Case after(tt, α). This case does not apply since after(tt, α) = tt and so the

assumption that s′ /∈ Jafter(tt, α)K is invalid.

Case after(
∧
i∈I ϕi, α). Assume that

s
α

==⇒ s′ (A.1)

and that s′ /∈ Jafter(
∧
i∈I ϕi, α)K from which by the definition of after we have that

s′ /∈ J
∧
i∈I

after(ϕi, α)K ≡ ∃j ∈ I · s′ /∈ Jafter(ϕj , α)K. (A.2)

147

Appendix A. Missing Proofs from Chapter 2

Hence, by (A.1) and (A.2) we can apply the inductive hypothesis and deduce that

there exists a j ∈ I such that s /∈ JϕjK which means that s /∈
⋂
i∈I

JϕiK = J
∧
i∈I ϕiK as

required.

Case after(maxX.ϕ, α). Assume that

s
α

==⇒ s′ (A.3)

and that s′ /∈ Jafter(maxX.ϕ, α)K from which, by the definition of after, we have that

s′ /∈ Jafter(ϕ{maxX.ϕ/X}, α)K. (A.4)

By (A.3), (A.4) and the inductive hypothesis we have that s /∈ Jϕ{maxX.ϕ/X}K. Since

Jϕ{maxX.ϕ/X}K = JmaxX.ϕK, we can conclude that s /∈ JmaxX.ϕK as required.

Case after([p, c¡]ϕ, α). Assume that

s
α

==⇒ s′ and (A.5)

s′ /∈ Jafter([p, c¡]ϕ, α)K. (A.6)

Now consider the following two cases:

• mtch(p, α) = σ and cσ ⇓ true (for some σ): By (A.6) and the definition of after we

know that

s′ /∈ JϕσK (A.7)

and so from (A.5), (A.7) and by the definition of J−K we can infer that s /∈

J[p, c¡]ϕK since there exists a transition, i.e., (A.5), that leads to a violation, i.e.,

(A.7).

• Otherwise: This case does not apply since after([p, c¡]ϕ, α) = tt which contra-

dicts assumption (A.6).

148

Appendix A. Missing Proofs from Chapter 2

A.2 Proving Proposition 2.4

We need to prove that for every system transition s
α

==⇒ s′ and cHML formula ϕ,

if s′ ∈ Jafter(ϕ, α)K then s ∈ JϕK. We prove the contrapositive, i.e., if s α
==⇒ s′ and

s′ ∈ Jafter(ϕ, α)K then s ∈ JϕK.

Proof. As we assume that logical variables are guarded, we can once again by rule

induction on after.

Case after(ff, α). This case does not apply since after(ff, α) = ff and so the

assumption that s′ ∈ Jafter(ff, α)K is invalid.

Case after(tt, α). This case holds trivially since s ∈ JttK.

Case after(
∨
i∈I ϕi, α). Assume that

s
α

==⇒ s′ (A.8)

and that s′ ∈ Jafter(
∨
i∈I ϕi, α)K from which by the definition of after we have that

s′ ∈ J
∨
i∈I

after(ϕi, α)K ≡ ∃j ∈ I · s′ ∈ Jafter(ϕj , α)K. (A.9)

Hence, by (A.8) and (A.9) we can apply the inductive hypothesis and deduce that

there exists a j ∈ I such that s ∈ JϕjK which means that s ∈
⋃
i∈I

JϕiK = J
∨
i∈I ϕiK as

required.

Case after(minX.ϕ, α). Assume that

s
α

==⇒ s′ (A.10)

and that s′ ∈ Jafter(minX.ϕ, α)K from which, by the definition of after, we have that

s′ ∈ Jafter(ϕ{minX.ϕ/X}, α)K. (A.11)

By (A.10), (A.11) and the inductive hypothesis we have that s ∈ Jϕ{minX.ϕ/X}K.

Since Jϕ{minX.ϕ/X}K = JminX.ϕK, we can conclude that s ∈ JminX.ϕK as required.

149

Appendix A. Missing Proofs from Chapter 2

Case after(〈 p, c¡ϕ〉, α). Assume that

s
α

==⇒ s′ and (A.12)

s′ ∈ Jafter(〈 p, c¡ϕ〉, α)K. (A.13)

Now consider the following two cases:

• mtch(p, α) = σ and cσ ⇓ true (for some σ): By (A.13) and the definition of after

we know that

s′ ∈ JϕσK (A.14)

and so from (A.12), (A.14) and by the definition of J−K we can infer that s ∈

J〈 p, c¡ϕ〉K since there exists a transition, i.e., (A.12), that leads to a satisfaction,

i.e., (A.14).

• Otherwise: This case does not apply since after(〈 p, c¡ϕ〉, α) = ff which contra-

dicts assumption (A.13).

150

B. Missing Proofs from Part I

In this appendix chapter we provide the proofs for the theorems, propositions and

lemmas that were omitted from the chapters that form Part I of the main text.

B.1 Missing proofs from Chapter 3

This section provides the proofs for Propositions 3.1 and 3.2 that were omitted from

the main text of Chapter 3.

B.1.1 Proving Proposition 3.1 (Unzipping)

We prove that for every instrumented transition m[s]
u

==⇒ m′[s′] we can conclude:

(a) u = zip(t, κ) and m
κ

==⇒ m′ and s
t

=⇒ s′; or

(b) u = zip(t, κ);αt′ and m
κ

==⇒m′′ 6αIγ−−−→ and m′′ 6 •−→ and s
t;αt′

====⇒ s′ and m′ = id.

Proof. We proceed by induction on the number of µ reductions in m[s]
u

==⇒ m′[s′].

Case 0 reductions. Since we assume 0 reductions we know that m[s]
u

==⇒ m′[s′] is

equivalent to m[s]
µ−→0
m′[s′] and so this means that m′ = m, s′ = s and u = ε so that

by the definition of ε
=⇒ we can conclude that

s
ε

=⇒ s′ (B.1)

m
ε

=⇒ m′ (B.2)

as required. Hence, this case holds by (B.1) and (B.2) since u = ε = zip(ε, ε).

151

Appendix B. Missing Proofs from Part I

Case k + 1 reductions. As we now assume k + 1 reductions we have that

m[s]
µ−→ m′′[s′′] (B.3)

m′′[s′′]
µ−→k
m′[s′] (≡ m′′[s′′]

u
==⇒ m′[s′]) (B.4)

and so by (B.4) and the inductive hypothesis we can immediately deduce either that

u = zip(t, κ) and m′′
κ

==⇒ m′ and s′′
t

=⇒ s′; or thatu = zip(t, κ);αt′ and m′′
κ

==⇒ m′′′ 6αIγ−−−→ and m′′′ 6 •−→

and s′′
t;αt′

====⇒ s′ and m′ = id

 .
(B.5)

Since the reduction in (B.3) can be the result of any instrumentation rule, we must

consider each eventuality.

• iSup: In this case from (B.3) we can deduce that µ = τ and that

m
βI•−−−→ m′′ (B.6)

s
β−→ s′′ (B.7)

and so since zip(βt, (βI•)κ) = u = zip(t, κ), if we combine (B.6) and (B.7) to the

respective reductions in (B.5) we can conclude that

u=zip(βt, (βI•)κ) and m
(βI•)κ

=====⇒ m′ and s
βt

==⇒ s′; or thatu = zip(βt, (βI•)κ);αt′ and m
(βI•)κ

=====⇒ m′′′ 6αIγ−−−→ and

m′′′ 6 •−→ and s
βt;αt′

====⇒ s′ and m′ = id


as required.

• iDef: As we now assume that (B.3) results from rule iDef we thus have that

µ = α and that

s
α−→ s′′ (B.8)

m 6αIγ−−−→ and m 6 •−→ (B.9)

m′′ = id. (B.10)

Since we know (B.10) we can deduce that during the remaining reductions

(shown in (B.4)) the identity monitor m′′ can only follow the actions of the

152

Appendix B. Missing Proofs from Part I

system without modifying them or transitioning to some state other than id,

and so we have that

s′′
t

=⇒ s′ (B.11)

m′ = id. (B.12)

Since by the definition of ε
=⇒ we know that s ε

=⇒ s, we can combine it with

(B.8) and (B.11) to conclude that

s
ε;αt

===⇒ s′. (B.13)

and similarly, by the definition of ε
=⇒ from (B.9) we deduce that

m
ε

=⇒ m 6αIγ−−−→ and m 6•Iα−−−→ . (B.14)

Since we know (B.10), we can deduce that the identity monitor m′′ in (B.4) can

only follow the system actions via rule eId and so we have that

u = αt = ε;αt (B.15)

and hence, this case holds since zip(ε, ε) = ε, which means that by (B.12),

(B.13), (B.14) and (B.15) we can deduce thatu = zip(ε, ε);αt and m
ε

=⇒ m 6αIγ−−−→ and m 6 •−→

and s
ε;αt

===⇒ s′ and m′ = id


as required.

• iIns: From (B.3) we can now deduce that µ = α and that

m
•Iα−−−→ m′′ (B.16)

s′′ = s′ (B.17)

and so by the definition of zip we deduce that zip(t, (•Iα)κ) = αu where zip(t, κ),

153

Appendix B. Missing Proofs from Part I

so that by (B.16), (B.17) and (B.5) we conclude that

αu=zip(t, (•Iα)κ) and m
(•Iα)κ

=====⇒ m′ and s
t

=⇒ s′; or thatαu = zip(t, (•Iα)κ);αt′ and m
(•Iα)κ

=====⇒ m′′′ 6αIγ−−−→ and

m′′′ 6 •−→ and s
t;αt′

====⇒ s′ and m′ = id


as required.

• iTrn: When considering rule iTrn, from (B.3) we infer that µ = β and that

m
αIβ−−−→ m′′ (B.18)

s
α

==⇒ s′′ (B.19)

and hence since zip(αt, (αIβ)κ) = βu where u = zip(t, κ), by combining (B.18)

and (B.19) to the respective reductions in (B.5) we can conclude that

βu=zip(αt, (αIβ)κ) and m
(αIβ)κ

=====⇒ m′ and s
αt

==⇒ s′; or thatβu = zip(αt, (αIβ)κ);αt′ and m
(αIβ)κ

=====⇒ m′′′ 6αIγ−−−→ and

m′′′ 6 •−→ and s
αt;αt′

====⇒ s′ and m′ = id


as required.

• iAsy: We now assume that (B.3) results from rule iAsy and so we have that

µ = τ , s τ−→ s′′ and m′′ = m, and so since τu = u and τt = t from (B.5) we can

conclude that

u=zip(t, κ) and m
κ

==⇒ m′ and s
t

=⇒ s′; or thatu = zip(t, κ);αt′ and m
κ

==⇒ m′′′ 6αIγ−−−→ and

m′′′ 6 •−→ and s
t;αt′

====⇒ s′ and m′ = id


as required, and so we are done.

B.1.2 Proving Proposition 3.2 (Zipping)

We must prove Proposition 3.2 by ensuring that

(a) m κ
==⇒ m′ and s

t
=⇒ s′ and zip(t, κ) = u imply m[s]

u
==⇒ m′[s′], and that

154

Appendix B. Missing Proofs from Part I

(b) m κ
==⇒m′′ 6αIγ−−−→ and m′′ 6 •−→ and s

t;αt′
====⇒ s′ and zip(t, κ) = u imply m[s]

u;αt′
====⇒ id[s′].

Proof for (a). We proceed by rule induction on zip(t, κ).

Case zip(ε, ε). We initially assume that zip(ε, ε) = ε and that

s
ε

=⇒ s′ (B.20)

m
ε

=⇒ m′. (B.21)

Since from (B.21) and by the definition of ε
=⇒ we know that m′ = m, and since

ε
=⇒ def

=
τ−→* we can apply rule iAsy for zero or more times on (B.20) to deduce that

m[s]
ε

=⇒ m′[s′] as required.

Case zip(αt, (αI•)κ). We start by assuming that zip(αt, (αI•)κ) = u because

zip(t, κ) = u (B.22)

and that s αt
==⇒ s′ and m

(αI•)κ
=====⇒ m′ from which by the definitions of t

=⇒ and κ
==⇒

respectively we can infer that

s
α

==⇒ s′′ (B.23)

s′′
t

=⇒ s′ (B.24)

m
αI•−−−→ m′′ (B.25)

m′′
κ

==⇒ m′. (B.26)

Since α
==⇒ def

=
τ−→* α−→ from (B.23) we have that s τ−→* s′′′ and that s′′′ α−→ s′′, and so

knowing the former we can apply rule iAsy for zero or more times, and subsequently

rule iSup, since we know (B.25) and the latter, to deduce that

m[s]
ε

=⇒ m′′[s′′]. (B.27)

Finally, since we know (B.22), (B.24) and (B.26) we can invoke the inductive hypoth-

esis and deduce that m′′[s′′] u
==⇒ m′[s′], which when combined with (B.27) we are able

to conclude that m[s]
u

==⇒ m′[s′] as required.

155

Appendix B. Missing Proofs from Part I

Case zip(t, (•Iα)κ). We start by assuming that zip(t, (•Iα)κ) = αu because

u = zip(t, κ) (B.28)

and that s
t

=⇒ s′ (B.29)

m
(•Iα)κ

=====⇒ m′ (B.30)

and so by applying the definition κ
==⇒ to (B.30) we have that

m′′
κ

==⇒ m′. (B.31)

and that m •Iα−−−→ m′′ from which by rule iIns we can infer that

m[s]
α

==⇒ m′′[s]. (B.32)

Finally, since we know (B.28), (B.29) and (B.31) we can apply the inductive hypoth-

esis and deduce that m′′[s] u
==⇒ m′[s′], which we can combine with (B.32) to conclude

that m[s]
αu

===⇒ m′[s′] as required.

Case zip(αt, (αIβ)κ). We first assume that zip(αt, (αIβ)κ) = βu since

zip(t, κ) = u (B.33)

and that s αt
==⇒ s′ and m

(αIβ)κ
=====⇒ m′ on which we can apply the definitions of t

=⇒ and
κ

==⇒ respectively to infer that

s
α

==⇒ s′′ (B.34)

s′′
t

=⇒ s′ (B.35)

m
αIβ−−−→ m′′ (B.36)

m′′
κ

==⇒ m′. (B.37)

Since α
==⇒ def

=
τ−→* α−→, from (B.34) we have that s τ−→* s′′′ and that s′′′ β−→ s′′, and so

knowing the former we can apply rule iAsy for zero or more times, and subsequently

156

Appendix B. Missing Proofs from Part I

rule iTrn since we know (B.36) and the latter, thus deducing that

m[s]
β

==⇒ m′′[s′′]. (B.38)

Finally, since we know (B.33), (B.35) and (B.37) we apply the inductive hypothesis

and deduce thatm′′[s′′] u
==⇒ m′[s′], which when combined with (B.38) we can conclude

that m[s]
βu

==⇒ m′[s′] as required, and so we are done.

Proof for (b). Initially we assume that

zip(t, κ) = u (B.39)

m
κ

==⇒ m′′ (B.40)

m′′ 6αIγ−−−→ and m′′ 6 •−→ (B.41)

and that s t;αt′
====⇒ s′ which can be further subdivided as

s
t

=⇒ s′′ (B.42)

s′′
τ−→* s′′′ (B.43)

s′′′
α−→ s′′′′ (B.44)

s′′′′
t′′

==⇒ s′ (B.45)

and so by the Proposition 3.2 (a), from (B.39), (B.40) and (B.42) we deduce that

m[s]
u

==⇒ m′′[s′′]. (B.46)

We also apply rule iAsy to (B.43) from which we infer that m′′[s′′] τ−→* m′′[s′′′], and by

applying rule iDef to (B.41) and (B.44) we deduce that m′′[s′′′] α−→ id[s′′′′], and so by

combining these two results we thus conclude that

m′′[s′′]
α

==⇒ id[s′′′′]. (B.47)

Finally, since id only defines identity transformations and always recurses back to

the same state, from (B.45) we can infer that

id[s′′′′]
t′

==⇒ id[s′]. (B.48)

Finally, by combining (B.46), (B.47) and (B.48) we conclude that id[s]
u;αt′

====⇒ id[s′] as

required, and so we are done.

157

Appendix B. Missing Proofs from Part I

B.2 Missing proofs from Chapter 4

We now provide the proofs for the supporting lemmas used in Theorem 4.2 i.e.,

Lemmas 4.1 and 4.2.

B.2.1 Proving Lemma 4.1

We need to prove that for every system s, sHML formula ϕ and trace t ∈ traces(s)

when s ∈ JϕK then sys(t) ∈ JϕK. Recall that when restricted to sHML s ∈ JϕK can be de-

fined in terms of the coinductive satisfaction rules of Figure 5.1 given in Chapter 5.

We therefore prove that R def
= { (sys(t), ϕ) s � ϕ and t ∈ traces(s) } is a satisfation

relation that follows the rules of Figure 5.1.

Proof. We proceed by case analysis on ϕ.

Cases ϕ ∈
{

ff, X
}

. These cases do not apply since s 6� ϕ when ϕ ∈
{

ff, X
}
.

Case ϕ = tt. This case is satisfied trivially since ϕ = tt.

Case ϕ =
∧
i∈I ϕi. Assume that s �

∧
i∈I ϕi from which by the definition of � we

have that for every i ∈ I, s � ϕi and so by applying the definition of R for every i ∈ I

we get that ∀i ∈ I · (sys(t), ϕi) ∈ R as required.

Case ϕ = maxX.ϕ. Assume that s � maxX.ϕ from which by the definition of �

we have that s � ϕ{maxX.ϕ/X} and so by applying the definition of R we get that

(sys(t), ϕ{maxX.ϕ/X}) ∈ R as required.

Case ϕ = [p, c¡]ϕ. Assume that

t ∈ traces(s) (B.49)

and that s � [p, c¡]ϕ from which by the definition of � we have that

s
α

==⇒ s′ (B.50)

mtch(p, α) = σ and cσ ⇓ true (B.51)

s′ � ϕσ. (B.52)

158

Appendix B. Missing Proofs from Part I

Since from (B.50) we know that s transitions to s′ over α, from (B.49) we can infer that

αt′ ∈ traces(s) where t′ ∈ traces(s′) which means that by (B.52) and the definition of

R we have that

(sys(t′), ϕσ) ∈ R. (B.53)

Therefore, this case holds by (B.51), (B.53) and since sys(αt′)
α

==⇒ sys(t′) and so we

are done.

B.2.2 Proving Lemma 4.2

We need to prove that for every action α, sHML formula ϕ and trace t, if sys(t) ∈

Jafter(ϕ, α)K then sys(αt) ∈ JϕK.

Proof. We proceed by rule induction on after.

Case after(ff, α). This case does not apply since after(ff, α) = ff and so the

assumption that sys(t) ∈ Jafter(ff, α)K is invalid.

Case after(tt, α). This case holds trivially since sys(αt) ∈ JttK.

Case after(
∧
i∈I ϕi, α). Assume that sys(t) ∈ Jafter(

∧
i∈I ϕi, α)K from which by the

definition of after we have that

sys(t) ∈ J
∧
i∈I after(ϕi, α)K = ∀i ∈ I · sys(t) ∈ Jafter(ϕi, α)K. (B.54)

Hence, knowing (B.54) we can apply the inductive hypothesis for every i ∈ I and

deduce that sys(αt) ∈ JϕiK which means that sys(αt) ∈
⋂
i∈IJϕiK = J

∧
i∈I ϕiK as re-

quired.

Case after(maxX.ϕ, α) where X is guarded in ϕ. Now let’s assume that sys(t) ∈

Jafter(maxX.ϕ, α)K so that by the definition of after we infer that

sys(t) ∈ Jafter(ϕ{maxX.ϕ/X}, α)K (B.55)

and since by (B.55) and the inductive hypothesis we have that sys(αt)∈Jϕ{maxX.ϕ/X}K

and Jϕ{maxX.ϕ/X}K = JmaxX.ϕK we can conclude that sys(αt)∈ JmaxX.ϕK as required.

159

Appendix B. Missing Proofs from Part I

Case after([p, c¡]ϕ, α). Assume that

sys(t) ∈ Jafter([p, c¡]ϕ, α)K (B.56)

and consider the following two cases:

• mtch(p, α) = σ and cσ ⇓ true: By (B.56) and the definition of after we have that

sys(t) ∈ JϕσK. (B.57)

Since sys(αt) is a trace process that can only perform α and transition to sys(t),

i.e., sys(αt)
α

==⇒ sys(t), and since from (B.57) we know that sys(t) satisfies ϕσ, by

the definition of J−K we can thus conclude that sys(αt) ∈ J[p, c¡]ϕK as required.

• Otherwise: This case is trivially satisfied since knowing that sys(αt)
α

==⇒ sys(t)

and that mtch(p, α) = undef or that ∃σ · cσ ⇓ ff, by the definition of J−K we can

immediately conclude that sys(αt) ∈ J[p, c¡]ϕK as required.

B.3 Missing proofs from Chapter 5

In this section we provide the proofs for the supporting lemmas that were omitted

from the main text of Chapter 5. Specifically, we prove Proposition 5.3 and lem-

mas 5.1 to 5.4, 5.8, 5.10, 5.11 and 5.13 along with their auxiliary lemmas. At

certain points we also refer to the τ-closure property of sHML, Proposition B.1,

that was proven in [10].

Proposition B.1. if s τ−→ s′ and s � ϕ then s′ � ϕ.

B.3.1 Proving Proposition 5.3

We must prove that for every state s and sHMLnf formula ϕ if s∈ JϕK then Lϕ M[s] ∼ s.

Proof. To prove this proposition we show that relation R def
= {(s, Lϕ M[s]) s�ϕ } is a

strong bisimulation relation by showing that it satisfies the following transfer prop-

erties for each (s, Lϕ M[s])∈R:

(a) if s µ−→ s′ then Lϕ M[s] µ−→ S′ and (s′, S′) ∈ R

160

Appendix B. Missing Proofs from Part I

(b) if Lϕ M[s] µ−→ S′ then s
µ−→ s′ and (s′, S′) ∈ R.

We prove (a) and (b) separately by assuming that s�ϕ in both cases as defined by

relation R. We now proceed to prove (a) by case analysis on ϕ.

Cases ϕ ∈
{

ff, X
}

. Both cases do not apply since @s · s � ff and similarly since X

is an open-formula and so @s · s � X.

Case ϕ = tt. We now assume that s � tt and that

s
µ−→ s′ (B.58)

and since µ ∈ {τ, α}, we must consider both cases.

• µ = τ : Since µ = τ , we can apply rule iAsy on (B.58) and get that

L tt M[s] τ−→ L tt M[s′] (B.59)

as required. Also, since we know that every system state satisfies tt, we know

that s′ � tt, which by the definition of R we conclude that

(s′, L tt M[s′]) ∈ R (B.60)

as required, which means that this case is done by (B.59) and (B.60).

• µ = α: Since id encodes the ‘catch-all’ monitor recY. (x)!(y)¡.Y + (x)?(y)¡.Y , by

rules eRec and eTrn we deduce that id αIα−−−→ id. Hence, since L tt M = id, from

(B.58) and by rule iTrn we conclude that

L tt M[s] α−→ L tt M[s′] (B.61)

as required. Once again since s′ � tt, by the definition of R we have that

(s′, L tt M[s′]) ∈ R (B.62)

as required, and so this case is done by (B.61) and (B.62).

161

Appendix B. Missing Proofs from Part I

Case ϕ =
∧
i∈I [pi, ci¡]ϕi. Now assume that

s �
∧
i∈I [pi, ci¡]ϕi (B.63)

s
µ−→ s′ (B.64)

and so by the definition of � and (B.63) we have that for every index i ∈ I and action

β ∈ Act,

s
β

==⇒ s′,mtch(pi, β) =σ and ciσ ⇓ true implies s �
∧
i∈I [pi, ci¡]ϕi. (B.65)

Since µ ∈ {τ, α}, we must consider both possibilities for (B.64).

• µ = τ : Since µ = τ , we can apply rule iAsy on (B.64) and obtain

L
∧
i∈I [pi, ci¡]ϕi M[s]

τ−→ L
∧
i∈I [pi, ci¡]ϕi M[s′] (B.66)

as required. Since µ =τ , and since we know that sHML is τ-closed, from (B.63),

(B.64) and Proposition B.1, we can deduce that s′ �
∧
i∈I [pi, ci¡]ϕi, so that by

the definition of R we conclude

(s′, L
∧
i∈I [pi, ci¡]ϕi M[s′]) ∈ R (B.67)

as required. This subcase is therefore done by (B.66) and (B.67).

• µ = α: Since µ = α, from (B.64) we know that

s
α−→ s′ (B.68)

and by the definition of L− M we can immediately deduce that

L
∧
i∈I [pi, ci¡]ϕi M = recY.

(∑
i∈I

{ pi, ci, •¡.Y if ϕi = ff
 pi, ci¡.Lϕi M otherwise

)
. (B.69)

Since the branches in the conjunction are all disjoint, #i∈I pi, ci¡, we know that

at most one of the branches can match the same action α. Hence, we consider

two cases, namely:

– No matching branches (i.e., @j ∈ I · mtch(pj , α) =σ and cjσ ⇓ true): Since

none of the symbolic transformations in (B.69) can match action α and

162

Appendix B. Missing Proofs from Part I

since we do not synthesise insertion monitors, we know that the monitor

can only default to id (via rule iDef) and so from (B.68) we have that

L
∧
i∈I [pi, ci¡]ϕi M[s]

α−→ L tt M[s′] (since id =L tt M) (B.70)

as required. Also, since every system state satisfies tt, we know that s′ � tt,

and so by the definition of R we conclude that

(s′, L tt M[s′]) ∈ R (B.71)

as required. This case is therefore done by (B.70) and (B.71).

– One matching branch (i.e., ∃j ∈ I ·mtch(pj , α) =σ and cjσ ⇓ true): From (B.69)

we infer that the synthesised monitor can only suppress actions that are

defined by violating necessities. However, from (B.65) we also deduce that

s is incapable of executing such an action as otherwise would contradict

assumption (B.63). Hence, since we now assume that there exists some

index j ∈ I so that mtch(pj , α) =σ and cjσ ⇓ true, from (B.69) we deduce

that this action can only be transformed by an identity transformation

and so by rule eTrn we have that

 pj , cj¡.Lϕj M αIα−−−→ Lϕjσ M. (B.72)

By applying rules eSel, eRec on (B.72) and by (B.68), (B.69) and iTrn we

get that

L
∧
i∈I [pi, ci¡]ϕi M[s]

α−→ Lϕjσ M[s′] (B.73)

as required. By (B.65), (B.68) and since we assume that there exists some

index j ∈ I so that mtch(pj , α) =σ and cjσ ⇓ true, we have that s′ � ϕjσ, and

so by the definition of R we conclude that

(s′, Lϕjσ M[s′]) ∈ R (B.74)

as required. Hence, this subcase is done by (B.73) and (B.74).

163

Appendix B. Missing Proofs from Part I

Case ϕ = maxX.ϕ and X ∈ fv(ϕ). Now, lets assume that

s
µ−→ s′ (B.75)

and that s � maxX.ϕ from which by the definition of � we have that

s � ϕ{maxX.ϕ/X}. (B.76)

Since ϕ{maxX.ϕ/X}∈ sHMLnf, by the restrictions imposed by sHMLnf we know that:

ϕ cannot be X because (bound) logical variables are required to be guarded, and it

also cannot be tt or ff since X is required to be defined in ϕ, i.e., X ∈ fv(ϕ). Hence,

we know that ϕ can only have the following form, that is

ϕ = maxY0. . . .maxYn.
∧
i∈I

[pi, ci¡]ϕi (B.77)

and so by (B.76), (B.77) and the definition of � we have that

s � (
∧
i∈I [pi, ci¡]ϕi){··} where (B.78)

{··} = {maxX.ϕ/X, (maxY0. . . .maxYn.
∧
i∈I

[pi, ci¡]ϕi)/Y0, . . . , (maxYn.
∧
i∈I

[pi, ci¡]ϕi)/Yn}.

Since we know (B.75) and (B.78), from this point onwards the proof proceeds as per

the previous case. We thus omit this part of the proof and immediately deduce that

∃m′ · L (
∧
i∈I [pi, ci¡]ϕi){··} M[s] µ−→ Lm′ M[s′] (B.79)

(s′, Lm′ M[s′]) ∈ R (B.80)

and so since L (
∧
i∈I [pi, ci¡]ϕi){··} M produces the unfolded equivalent of Lϕ{maxX.ϕ/X} M,

from (B.79) we can conclude that

∃m′ · Lϕ{maxX.ϕ/X} M[s] µ−→ Lm′ M[s′] (B.81)

as required, and so this case holds by (B.80) and (B.81).

These cases thus allow us to conclude that (a) holds. We now proceed to prove (b)

164

Appendix B. Missing Proofs from Part I

using the same case analysis approach.

Cases ϕ ∈
{

ff, X
}

. Both cases do not apply since @s · s � ff and similarly since X

is an open-formula and @s · s � X.

Case ϕ = tt. Assume that s � tt and that

L tt M[s] µ−→ r′. (B.82)

Since µ ∈ {τ, α}, we must consider each case.

• µ = τ : Since µ = τ , the transition in (B.82) can be performed either via iSup,

or iAsy. We must therefore consider these cases.

– iAsy: From rule iAsy and (B.82) we thus know that r′ = L tt M[s′] and that

s
τ−→ s′ as required. Also, since every system state satisfies tt, we know

that s′ � tt as well, and so we are done since by the definition of R we

know that (s′, L tt M[s′]) ∈ R.

– iSup: This case does not apply since from rule iSup and (B.82) we know

that: r′ = m′[s′], s α−→ s′ and that L tt M αI•−−−→ m′ which is a false assumption

as L tt M = id.

• µ = α: Since µ = α, the transition in (B.82) can be performed either via iDef,

iIns or iTrn. We consider each case.

– iDef: This case does not apply since L tt M = id which cannot ever reach a

state n where n 6α−→ and n 6 •−→.

– iIns: This case does not apply since from (B.82) and by the definition of L− M

we know that the synthesised monitor does not include action insertions.

– iTrn: By applying rule iTrn on (B.82) we know that r′=m′[s′] such that

s
β−→ s′ (B.83)

L tt M αIβ−−−→ m′. (B.84)

Since L tt M = id = recY. (x)!(y), true, x!y¡.Y + (x)?(y), true, x?y¡.Y , by applying

rules eRec, eSel and eTrn to (B.84) we know that α = β, m′ = id = L tt M,

meaning that r′ = L tt M[s′]. Hence, since every system state satisfies tt we

165

Appendix B. Missing Proofs from Part I

know that s′ � tt, so that by the definition of R we conclude that

(s′, L tt M[s′]) ∈ R. (B.85)

Hence, we are done by (B.83) and (B.85) since we know that α = β.

Case ϕ =
∧
i∈I [pi, ci¡]ϕi. We now assume that

s �
∧
i∈I [pi, ci¡]ϕi (B.86)

L
∧
i∈I [pi, ci¡]ϕi M[s]

µ−→ r′. (B.87)

From (B.86) and by the definition of � we can deduce that

∀i ∈ I, α ∈ Act · s α
==⇒ s′,mtch(pi, α) =σ and ciσ ⇓ true implies s′ � ϕiσ (B.88)

and from (B.87) and by the definition of L− M we have that(
recY.

∑
i∈I

{ pi, ci, •¡.Y if ϕi = ff
 pi, ci¡.Lϕi M otherwise

)
[s′]

µ−→ r′. (B.89)

From (B.89) we know that the synthesised monitor can only suppress an action

β when this satisfies a violating necessity. However, we can also infer that s is

incapable of performing β as otherwise it would contradict with assumption (B.88)

since s′ � ff does not hold. Hence, we can safely conclude that the synthesised

monitor in (B.89) does not suppress any actions of s, and so we conclude that

∀α ∈ Act, s′ ∈ Sys · s α−→ s′ implies L
∧
i∈I [pi, ci¡]ϕi M 6αI•−−−→ . (B.90)

Since µ ∈ {τ, α}, we must consider each case.

• µ = τ : Since µ = τ , from (B.87) we know that

L
∧
i∈I [pi, ci¡]ϕi M[s]

τ−→ r′ (B.91)

The τ-transition in (B.91) can be the result of rules iAsy or iSup; we thus

consider each eventuality.

– iAsy: As we assume that the reduction in (B.91) is the result of rule iAsy,

166

Appendix B. Missing Proofs from Part I

we know that r′ = L
∧
i∈I [pi, ci¡]ϕi M[s′] and that

s
τ−→ s′ (B.92)

as required. Also, since sHML is τ-closed, by (B.86), (B.92) and Proposi-

tion B.1 we deduce that s′ �
∧
i∈I [pi, ci¡]ϕi as well, so that by the definition

of R we conclude that

(s′, L
∧
i∈I [pi, ci¡]ϕi M[s′]) ∈ R (B.93)

and so we are done by (B.92) and (B.93).

– iSup: As we now assume that the reduction in (B.91) results from iSup,

we have that r′ = m′[s′] and that

s
α−→ s′ (B.94)

L
∧
i∈I [pi, ci¡]ϕi M

αI•−−−→ m′. (B.95)

This case does not apply since by (B.90) and (B.94) we can deduce that

L
∧
i∈I [pi, ci¡]ϕi M 6αI•−−−→ which contradicts with (B.95).

• µ = α: When µ = α, the transition in (B.89) can be performed via rules iDef,

iIns or iTrn, we consider both possibilities.

– iDef: If (B.89) results from iDef, we have that

r′ = L tt M[s′] (since L tt M = id) (B.96)

s
α−→ s′. (B.97)

Consequently, as every system state satisfies tt, we know that s′ � tt and

so by the definition of R we have that (s′, L tt M[s′]) ∈ R, so that from (B.96)

we can conclude that

(s′, r′) ∈ R (B.98)

as required. Hence this case is done by (B.97) and (B.98).

– iIns: This case does not apply since from (B.89) and by the definition of L− M

167

Appendix B. Missing Proofs from Part I

we know that the synthesised monitor does not include action insertions.

– iTrn: By assuming that (B.89) is obtained from rule iTrn we know that

(recY.
∑
i∈I

{ pi, ci, •¡.Y if ϕi = ff
 pi, ci¡.Lϕi M otherwise)

βIα−−−→ m′ (B.99)

s
β−→ s′ (B.100)

r′ = m′[s′]. (B.101)

Since from (B.90) we know that the synthesised monitor in (B.99) does not

suppress any action performable by s, and since from the definition of L− M

we know that the synthesis cannot produce action replacing monitors, we

can deduce that

α = β. (B.102)

With the knowledge of (B.102), from (B.100) we can thus deduce that

s
α−→ s′ (B.103)

as required. Knowing (B.102) we can also deduce that in (B.99) the mon-

itor can only transform action β via an identity transformation synthe-

sised from one of the disjoint conjunction branches, i.e., from a branch

 pj , cj¡.Lϕj M for some j ∈ I. Hence, when we apply rules eRec, eSel and

eTrn on (B.99) we deduce that

∃j ∈ I ·mtch(pj , α) =σ and cjσ ⇓ true (B.104)

m′ = Lϕjσ M. (B.105)

and so from (B.103), (B.104) and (B.88) we infer that s′ � ϕjσ from which

by the definition of R we have that (s′, Lϕjσ M[s′]) ∈ R, and so from (B.101)

and (B.105) we can conclude that

(s′, r′) ∈ R (B.106)

as required, and so this case is done by (B.103) and (B.106).

168

Appendix B. Missing Proofs from Part I

Case ϕ = maxX.ϕ and X ∈ fv(ϕ). Now, lets assume that

L maxX.ϕ M[s] µ−→ r′ (B.107)

and that s � maxX.ϕ from which by the definition of � we have that

s � ϕ{maxX.ϕ/X}. (B.108)

Since ϕ{maxX.ϕ/X}∈ sHMLnf, by the restrictions imposed by sHMLnf we know that:

ϕ cannot be X because (bound) logical variables are required to be guarded, and it

also cannot be tt or ff since X is required to be defined in ϕ, i.e., X ∈ fv(ϕ). Hence,

we know that ϕ can only have the following form, that is

ϕ = maxY0. . . .maxYn.
∧
i∈I

[pi, ci¡]ϕi (B.109)

and so by (B.108), (B.109) and the definition of � we have that

s � (
∧
i∈I [pi, ci¡]ϕi){··} where (B.110)

{··} = {maxX.ϕ/X, (maxY0. . . .maxYn.
∧
i∈I

[pi, ci¡]ϕi)/Y0, . . . , (maxYn.
∧
i∈I

[pi, ci¡]ϕi)/Yn}.

Since L (
∧
i∈I [pi, ci¡]ϕi){··} M synthesises the unfolded equivalent of L maxX.ϕ M, from

(B.107) we know that

L (
∧
i∈I [pi, ci¡]ϕi){··} M[s] µ−→ r′. (B.111)

Hence, since we know (B.110) and (B.111), from this point onwards the proof pro-

ceeds as per the previous case. We thus omit showing the remainder of this proof.

From the above cases we can therefore conclude that (b) holds as well.

B.3.2 Proving Lemma 5.1

We now prove that for every formula ϕ∈ sHMLnf, if we assume that Lϕ M[s] t
=⇒ m′[s′]

then there must exist sHMLnf some formula ψ, such that ψ = after(ϕ, t) and Lψ M =

m′. This proof relies on the following lemma whose proof is given in ?? B.3.2.1.

169

Appendix B. Missing Proofs from Part I

Lemma B.1. For every formula of the form
∧
i∈I [pi, ci¡]ϕi and system states s and

r, if L
∧
i∈I [pi, ci¡]ϕi M[s]

τ−→*r then ∃s′, u · s u
==⇒ s′ and r = L

∧
i∈I [pi, ci¡]ϕi M[s′].

Proof. We proceed by induction on the length of t.

Case t = ε. This case holds vacuously since when t= ε then m′= Lϕ M and

ϕ= after(ϕ, ε).

Case t = αu. Assume that Lϕ M[s] αu
===⇒ m′[s′] from which by the definition t

=⇒ we

can infer that

Lϕ M[s] τ−→*r (B.112)

r
α−→ r′ (B.113)

r′
u

==⇒ m′[s′]. (B.114)

We now proceed by case analysis on ϕ.

• ϕ∈{ff, X}: These cases do not apply since L ff M and LX M do not yield a valid

monitor.

• ϕ= tt: Since L tt M = id we know that the τ-reductions in (B.112) are only possible

via rule iAsy which means that s τ−→*s′′ and r= L tt M[s′′]. The latter allows us to

deduce that the reduction in (B.113) is only possible via rule iTrn and so we

also know that s′′ α−→*s′′′ and r′= L tt M[s′′′]. Hence, by (B.114) and the inductive

hypothesis we conclude that

∃ψ ∈ sHMLnf · ψ = after(tt, u) (B.115)

Lψ M = m′. (B.116)

As by the definition of after we know that after(tt, αu) = after(after(tt, α), u) and

after(tt, α) = tt, from (B.115) we can conclude that

∃ψ ∈ sHMLnf · ψ = after(tt, αu) (B.117)

and so this case holds by (B.116) and (B.117).

• ϕ=
∧
i∈I [pi, ci¡]ϕi and #i∈I pi, ci¡: Since ϕ=

∧
i∈I [pi, ci¡]ϕi, by the definition of

170

Appendix B. Missing Proofs from Part I

L− M we know that

L
∧
i∈I [pi, ci¡]ϕi M = recY.

∑
i∈I

{ pi, ci, •¡.Y if ϕi = ff
 pi, ci¡.Lϕi M otherwise

=
∑
i∈I

{
 pi, ci, •¡.L

∧
i∈I [pi, ci¡]ϕi M if ϕi = ff

 pi, ci¡.Lϕi M otherwise
(B.118)

and so by (B.112), (B.118) and Lemma B.1 we conclude that ∃s′′ · s u
==⇒ s′′ and

r = L
∧
i∈I [pi, ci¡]ϕi M[s′′]. (B.119)

Hence, by (B.118) and (B.119) we know that the reduction in (B.113) can only

happen if ∃s′′′ · s′′ α−→ s′′′ and α matches an identity transformation pj , cj¡.Lϕj M

(for some j ∈ I) which was derived from [pj , cj¡]ϕj (6= ff). Hence we can deduce

that

r′ = Lϕjσ M[s′′′] (B.120)

mtch(pj , α) = σ and cjσ ⇓ true (B.121)

and so by (B.114), (B.120) and the inductive hypothesis we deduce that

∃ψ ∈ sHMLnf · ψ = after(ϕjσ, u) (B.122)

Lψ M = m′. (B.123)

Now since we know (B.121), by the definition of after we infer that

after(
∧
i∈I [pi, ci¡]ϕi, αu) = after(after(

∧
i∈I [pi, ci¡]ϕi, α), u) = after(ϕjσ, u)

(B.124)

and so from (B.122) and (B.124) we conclude that

∃ψ ∈ sHMLnf · ψ = after(
∧
i∈I [pi, ci¡]ϕi, αu). (B.125)

Hence, this case is done by (B.123) and (B.125).

• ϕ= maxX.ψ and X ∈ fv(ψ): Since ϕ= maxX.ψ, by the syntactic rules of sHMLnf

we know that ψ /∈{ff, tt} since X /∈ fv(ψ), and that ψ 6=X since logical variables

171

Appendix B. Missing Proofs from Part I

must be guarded, hence we know that ψ can only be of the form

ψ = maxY1. . . .maxYn.
∧
i∈I [pi, ci¡]ϕi. (B.126)

where maxY1. . . .maxYn. denotes an arbitrary number of fixpoint declarations,

possibly none. Hence, knowing (B.126), by unfolding every fixpoint in maxX.ψ

we reduce the formula to
∧
i∈I [pi, ci¡]ϕi{maxX.maxY1....maxYn.

∧
i∈I [pi, ci¡]ϕi/X , . . .}.

This implies that from this point onwards, the proof proceeds as per that of

case ϕ=
∧
i∈I [pi, ci¡]ϕi which allows us to deduce that

∃ψ′ ∈ sHMLnf · ψ′= after(
∧
i∈I [pi, ci¡]ϕi{. . .}, αu) (B.127)

Lψ′ M = m′. (B.128)

From (B.126), (B.127) and the definition of after we can thus conclude that

∃ψ′ ∈ sHMLnf · ψ′= after(maxX.ψ, αu) (B.129)

and so this case holds by (B.128) and (B.129).

Hence, the above cases suffice to show that the case for when t = αu holds.

B.3.2.1 Proving Lemma B.1

To prove this lemma we must show that for every formula of the form
∧
i∈I [pi, ci¡]ϕi

and system states s and r, if L
∧
i∈I [pi, ci¡]ϕi M[s]

τ−→*r then there must exist some state

s′ and trace u such that s u
==⇒ s′ and r = L

∧
i∈I [pi, ci¡]ϕi M[s′].

Proof. The proof proceeds by mathematical induction on the number of τ transi-

tions.

Case 0 transitions. This case holds trivially since s ε
=⇒ s and r = L

∧
i∈I [pi, ci¡]ϕi M[s′].

Case k+ 1 transitions. Assume that L
∧
i∈I [pi, ci¡]ϕi M[s]

τ−→k+1
r and so we infer that

L
∧
i∈I [pi, ci¡]ϕi M[s]

τ−→ r′ (for some r’) (B.130)

r′
τ−→k

r. (B.131)

172

Appendix B. Missing Proofs from Part I

By definition of L− M we know that L
∧
i∈I [pi, ci¡]ϕi M = recY.

∑
i∈I

{ pi, ci, •¡.Y if ϕ=ff
 pi, ci¡.Lϕi M otherwise

which can be unfolded into

L
∧
i∈I [pi, ci¡]ϕi M =

∑
i∈I

{
 pi, ci, •¡.L

∧
i∈I [pi, ci¡]ϕi M if ϕ=ff

 pi, ci¡.Lϕi M otherwise (B.132)

and so from (B.132) we know that the τ-reduction in (B.130) can be the result of

rule iAsy or iSup. We therefore inspect both cases.

• iAsy: By rule iAsy, from (B.130) we can deduce that

∃s′′ · s τ−→ s′′ (B.133)

r′ = L
∧
i∈I [pi, ci¡]ϕi M[s′′] (B.134)

and so by (B.131), (B.134) and the inductive hypothesis we know that

∃s′, u · s′′ u
==⇒ s′ and r = L

∧
i∈I [pi, ci¡]ϕi M[s′]. (B.135)

Hence, by (B.133) and (B.135) we conclude that there exists a system state s′

and trace u so that s u
==⇒ s′ and r = L

∧
i∈I [pi, ci¡]ϕi M[s′].

• iSup: By rule iSup and from (B.130) we infer that

∃s′′ · s α−→ s′′ (B.136)

L
∧
i∈I [pi, ci¡]ϕi M

αI•−−−→ m′ (B.137)

r′ = m′[s′′] (B.138)

and from (B.132) we know that the reduction in (B.137) occurs when αmatches

a suppression transformation which then reduces back to L
∧
i∈I [pi, ci¡]ϕi M al-

lowing us to infer that

m′ = L
∧
i∈I [pi, ci¡]ϕi M. (B.139)

Hence, by (B.131), (B.138) and (B.139) we can apply the inductive hypothesis

and deduce that

∃s′, u · s′′ u
==⇒ s′ and r = L

∧
i∈I [pi, ci¡]ϕi M[s′] (B.140)

173

Appendix B. Missing Proofs from Part I

so that by (B.136) and (B.140) we finally conclude that ∃s′, u ·s αu
===⇒ s′ and that

r = L
∧
i∈I [pi, ci¡]ϕi M[s′] as required, and so we are done.

B.3.3 Proving Lemma 5.2

This lemma proves that for every suppression monitor m∈SupTrn and explicit trace

tτ , mc(m, tτ) =N .

Proof. The proof proceeds by induction on the length of tτ .

Case tτ = ε. As we assume that tτ = ε, we must consider the following two cases:

• ∀µ ·m[sys(ε)] 6µ−→: This case holds trivially since by the definition of mc we have

that mc(m, ε) = | ε | = 0.

• ∃µ,m′, s ·m[sys(ε)]
µ−→ m′[s]: Since sys(ε) = nil 6µ−→, by the rules in our model we

can infer that such a transition is only possible when the monitor inserts an

action β via rule iIns, and so this case does not apply since m /∈SupTrn.

Case tτ = µt′τ . Since we assume that tτ = µt′τ , we consider the following two

cases:

• ∀µ · m[sys(µt′τ)] 6µ−→: This case does not apply since rule iDef prevents the

monitor from blocking the composite system.

• ∃µ′,m′, s ·m[sys(µt′τ)]
µ′−−→ m′[s]: When considering only suppression monitors,

by the rules in our model we can infer that this instrumented reduction over

action µ′ can be attained via rules iDef, iAsy, iSup and iTrn. We thus consider

each case.

– iSup: Since by rule iSup we know that µ=α, µ′= τ and s= sys(t′τ), by the

definition of mc we deduce that mc(m,αt′τ) = mc(m′, t′τ)+1 and since by the

inductive hypothesis we know that mc(m′, t′τ) =N , then we conclude that

mc(m,αt′τ) =N + 1 as required.

– iDef: Since by rule iDef we know that µ=µ′=α, m′= id and s= sys(t′τ), by

the definition of mc we deduce that mc(m,αt′τ) = mc(id, t′τ) and since by the

inductive hypothesis we know that mc(id, t′τ) =N , then we can conclude

that mc(m,αt′τ) =N .

174

Appendix B. Missing Proofs from Part I

– iAsy and iTrn: We omit the proofs for these cases as they are very similar

to that of case iDef, and so we are done.

B.3.4 Proving Lemma 5.3

The aim of this proof is to show that for every action α and suppression monitors

m,m′ ∈SupTrn, if enf(m,
∧
i∈I [pi, ci¡]ϕi), m

αIα−−−→ m′, mtch(pi, α) =σ and ciσ ⇓ true (for

some j ∈ I) then enf(m′, ϕjσ).

Proof. We start this proof by assuming that

m
αIα−−−→ m′ (B.141)

∃j ∈ I ·mtch(pi, α) =σ and ciσ ⇓ true. (B.142)

and also that enf(m,
∧
i∈I [pi, ci¡]ϕi) from which we can infer that

senf(m,
∧
i∈I [pi, ci¡]ϕi)

def
= ∀s ·m[s] �

∧
i∈I [pi, ci¡]ϕi (B.143)

evtenf(m,
∧
i∈I [pi, ci¡]ϕi)

def
= ∀s, s′′, t · if m[s]

t
=⇒ m′′[s′′] and s′′ � after(

∧
i∈I [pi, ci¡]ϕi, t)

then m′′[s′′] ∼ s′′. (B.144)
Since both (B.143) and (B.144) quantify on every s, we must consider the following

two cases, namely, when m[s] transitions over α and reach m′, i.e., m[s]
α−→ m′[s′] (for

some system state s′), and when m[s] does not reach m′ over α, i.e., m[s] 6α−→ m′[s′].

• m[s] 6α−→ m′[s′]: This case does not apply since, as stated by assumption (B.141),

we only consider the cases where the instrumented system causes the monitor

to perform the identity transformation of (B.141) via rule iTrn.

• m[s]
α−→ m′[s′]: Since m[s]

α−→ m′[s′], from (B.143), (B.142) and by the definition

of � we get that

senf(m′, ϕjσ)
def
= ∀s′ ·m′[s′] � ϕjσ (B.145)

as required. Now, lets assume that

∀s′′′, u ·m′[s′] u
==⇒ m′′′[s′′′] (B.146)

s′′′ � after(ϕjσ, u) (B.147)

and since m[s]
α−→ m′[s′] when combined with (B.146) we know that m[s]

αu
===⇒

m′′′[s′′′] and so from (B.144) and (B.147) we can deduce that

m′′′[s′′′] ∼ s′′′. (B.148)

175

Appendix B. Missing Proofs from Part I

Hence, from assumptions (B.146), (B.147) and conclusion (B.148) we can in-

troduce the implication and conclude that

evtenf(m′, ϕjσ)
def
= ∀s′, s′′, u · if m′[s′] u

==⇒ m′′′[s′′′] and s′′′ � after(ϕjσ, u)

then m′′′[s′′′] ∼ s′′′.

(B.149)

Therefore, by (B.145) and (B.149) we can finally conclude that enf(m′, ϕjσ)

holds as required, and so we are done.

B.3.5 Proving Lemma 5.4

We now show that for every action α and suppression monitors m,m′ ∈SupTrn, if

enf(m,
∧
i∈I [pi, ci¡]ϕi) and m

αI•−−−→ m′ then enf(m′,
∧
i∈I [pi, ci¡]ϕi).

Proof. We start this proof by assuming that

m
αI•−−−→ m′ (B.150)

and also that enf(m,
∧
i∈I [pi, ci¡]ϕi) from which we infer that

senf(m,
∧
i∈I [pi, ci¡]ϕi)

def
= ∀s ·m[s] �

∧
i∈I [pi, ci¡]ϕi (B.151)

evtenf(m,
∧
i∈I [pi, ci¡]ϕi)

def
= ∀s, s′′, t · if m[s]

t
=⇒ m′′[s′′] and s′′ � after(

∧
i∈I [pi, ci¡]ϕi, t)

then m′′[s′′] ∼ s′′. (B.152)

We now consider the following two cases, namely, when m[s] transitions over τ and

reaches m′, i.e., m[s]
τ−→ m′[s′] (for some arbitrary state s′), and when m[s] does not

reach m′ via action τ , i.e., m[s] 6 τ−→ m′[s′].

• m[s] 6 τ−→ m′[s′]: This case does not apply since, as stated by assumption (B.150),

we only consider the cases where the instrumented system causes the monitor

to perform the suppression transformation of (B.150) via rule iSup.

• m[s]
τ−→ m′[s′]: Since m[s]

τ−→ m′[s′], from (B.151) and by Proposition B.1 we

deduce that

senf(m′,
∧
i∈I [pi, ci¡]ϕi)

def
= ∀s′ ·m′[s′] �

∧
i∈I [pi, ci¡]ϕi (B.153)

176

Appendix B. Missing Proofs from Part I

as required. We now assume that

∀s′′′, u ·m′[s′] u
==⇒ m′′′[s′′′] (B.154)

s′′′ � after(
∧
i∈I [pi, ci¡]ϕi, u) (B.155)

and since m[s]
τ−→ m′[s′], by (B.154) and the definition of u

==⇒ we have that

m[s]
u−→ m′′′[s′′′] and so from (B.152) and (B.155) we can deduce that

m′′′[s′′′] ∼ s′′′. (B.156)

Hence, from assumptions (B.154), (B.155) and conclusion (B.156) we can in-

troduce the implication and conclude that

evtenf(m′,
∧
i∈I [pi, ci¡]ϕi)

def
= ∀s′, s′′, u · if m′[s′] u

==⇒ m′′′[s′′′] and

s′′′ � after(
∧
i∈I [pi, ci¡]ϕi, u) then m′′′[s′′′] ∼ s′′′.

(B.157)

Hence, by (B.153) and (B.157) we can finally conclude that enf(m′,
∧
i∈I [pi, ci¡]ϕi)

as required, and so we are done.

B.3.6 Proving Lemma 5.8

To prove this lemma we must show that for every ϕ ∈ sHML#, J〈〈ϕ〉〉4K = JϕK. To

simplify the proof we instead prove the following two results:

(a) ∀s∈Sys, if s � 〈〈ϕ〉〉4 then s � ϕ; and that

(b) ∀s∈Sys, if s � ϕ then s � 〈〈ϕ〉〉4.

The proofs for (a) and (b) also rely on the following lemmas which we prove in

?? B.3.6.1?? B.3.6.2 respectively.

Lemma B.2. For all ϕ∈ sHML#, if X ∈ fvars(ϕ) then X ∈ fvars(〈〈ϕ〉〉4).

Lemma B.3. For all ϕ∈ sHML#, ifX ∈ fvars(ϕ) and X ∈ fvars(〈〈ψ〉〉4) then 〈〈ϕ{maxX.ψ/X}〉〉4
= 〈〈ϕ〉〉4{

maxX.〈〈ψ〉〉
4/X}.

Proof for (a). Let R def
= { (s, ϕ) s � 〈〈ϕ〉〉4 }, we must prove that R is a satisfaction rela-

tion by showing that it obeys the rules of Figure 5.1. We conduct this proof by case

analysis on ϕ.

Cases ϕ ∈
{

ff, X
}

. These cases do not apply since 〈〈ϕ〉〉4 = ϕ and so the assumption

that s � 〈〈ϕ〉〉4 does not hold when ϕ ∈
{

ff, X
}
.

177

Appendix B. Missing Proofs from Part I

Case ϕ = tt. This case is satisfied trivially since any process satisfies tt which

confirms that (s, tt)∈R.

Case ϕ =
∧
i∈I [pi, ci¡]ϕi. In this case we must prove that (s,

∧
i∈I [pi, ci¡]ϕi)∈R

by showing that for every α and i∈ I, if s α
==⇒ s′ so that mtch(pi, α) =σ and ciσ ⇓ true

then (s′, 〈〈ϕiσ〉〉4)∈R. Hence we assume that s � 〈〈
∧
i∈I [pi, ci¡]ϕi〉〉4 and since by the

definition of 〈〈−〉〉4 we know that s �
∧
i∈ I [pi, ci¡]〈〈ϕi〉〉4 then by the definition of � we

have that

∀i∈ I, α∈Act · if s α
==⇒ s′ s.t. mtch(pi, α) =σ and ciσ ⇓ true then s′ � 〈〈ϕiσ〉〉4. (B.158)

Hence by (B.158) and the definition of R we can finally conclude that

∀i∈ I, α∈Act · if s α
==⇒ s′ s.t. mtch(pi, α) =σ and ciσ ⇓ true then (s′, ϕiσ)∈R

as required.

Case ϕ = maxX.ϕ. In order to prove this case we must confirm that (s,maxX.ϕ)∈R

by showing that (s, ϕ{maxX.ϕ/X})∈R as well. Hence we assume that

s � 〈〈maxX.ϕ〉〉4 (B.159)

and consider the following two subcases for 〈〈maxX.ϕ〉〉4.

• when X ∈ fvars(ϕ): Since X ∈ fvars(ϕ), from (B.159) and the definition of 〈〈−〉〉4
we have that s � maxX.〈〈ϕ〉〉4 and so by the definition of � we can deduce that

s � 〈〈ϕ〉〉4{
maxX.〈〈ϕ〉〉

4/X}. (B.160)

Since X ∈ fvars(ϕ) and by Lemma B.2 we have that X ∈ fvars(〈〈ϕ〉〉4) and therefore

by Lemma B.3, from (B.160) we deduce that

s � 〈〈ϕ{maxX.ϕ/X}〉〉4. (B.161)

Hence, by (B.161) and the definition of R we deduce that

(s, ϕ{maxX.ϕ/X})∈R

178

Appendix B. Missing Proofs from Part I

as required.

• X /∈ fvars(ϕ): Since X /∈ fvars(ϕ), we know that the maximal fixpoint in (B.159)

is redundant, and so from (B.159) and the definition of 〈〈−〉〉4 we have that

s � 〈〈ϕ〉〉4. (B.162)

Since X /∈ fvars(ϕ), from (B.162) we infer that 〈〈ϕ〉〉4 is logically equivalent to

〈〈ϕ{maxX.ϕ/X}〉〉4 since X is unused in ϕ which means that from (B.162) we

can deduce that

s � 〈〈ϕ{maxX.ϕ/X}〉〉4. (B.163)

Hence from (B.163) and the definition of R we conclude that

(s, ϕ{maxX.ϕ/X})∈R

as required, and so we are done.

Proof for (b). Let R def
= { (s, 〈〈ϕ〉〉4) s � ϕ }, once again we must prove that R is a sat-

isfaction relation and conduct this proof by case analysis on ϕ.

Cases ϕ ∈
{

ff, X
}

. These cases do not apply since the assumption that s � ϕ does

not hold when ϕ ∈
{

ff, X
}
.

Case ϕ = tt. This case holds trivially since 〈〈tt〉〉4=tt and since all systems satisfy

tt. Hence, we affirm that (s, 〈〈tt〉〉4)∈R.

Case ϕ =
∧
i∈I [pi, ci¡]ϕi. To prove this case we confirm that (s, 〈〈

∧
i∈I [pi, ci¡]ϕi〉〉4)∈R.

Since 〈〈
∧
i∈I

[pi, ci¡]ϕi〉〉4 =
∧
i∈ I

[pi, ci¡]〈〈ϕi〉〉4, we instead prove that (s,
∧
i∈ I

[pi, ci¡]〈〈ϕi〉〉4)∈R

by showing that for every α and i∈ I, if s α
==⇒ s′ s.t. mtch(pi, α) =σ and ciσ ⇓ true

then (s′, 〈〈ϕiσ〉〉4)∈R. Hence we start by assuming that s �
∧
i∈I [pi, ci¡]ϕi and so by

the definition of � we have that

∀i∈ I, α∈Act · if s α
==⇒ s′ s.t. mtch(pi, α) =σ and ciσ ⇓ true then s′ � ϕiσ (B.164)

179

Appendix B. Missing Proofs from Part I

and so by (B.164) and the definition of R we conclude that

∀i∈ I, α∈Act · if s α
==⇒ s′ s.t. mtch(pi, α) =σ and ciσ ⇓ true then (s′, 〈〈ϕiσ〉〉4)∈R

as required.

Case ϕ = maxX.ϕ. To prove this case we must confirm that (s, 〈〈maxX.ϕ〉〉4)∈R

and so we start by assuming that s � maxX.ϕ from which by the definitions of � and

R we deduce that

(s, 〈〈ϕ{maxX.ϕ/X}〉〉4)∈R. (B.165)

We now consider two subcases for 〈〈maxX.ϕ〉〉4.

• 〈〈maxX.ϕ〉〉4 = maxX.〈〈ϕ〉〉4 when X ∈ fvars(ϕ): To confirm that (s, 〈〈maxX.ϕ〉〉4)∈R,

in this case we must affirm that (s,maxX.〈〈ϕ〉〉4)∈R. This can be achieved

by showing that (s, 〈〈ϕ〉〉4{
maxX.〈〈ϕ〉〉

4/X})∈R as well. Hence, since we assume

that X ∈ fvars(ϕ), by Lemma B.2 we deduce that X ∈ fvars(〈〈ϕ〉〉4) and so by

Lemma B.3 and from (B.165) we can conclude that (s, 〈〈ϕ〉〉4{
maxX.〈〈ϕ〉〉

4/X})∈R

as required.

• 〈〈maxX.ϕ〉〉4 = 〈〈ϕ〉〉4 when X /∈ fvars(ϕ): To confirm that (s, 〈〈maxX.ϕ〉〉4)∈R, we

must now affirm that (s, 〈〈ϕ〉〉4)∈R. Since we now assume that X /∈ fvars(ϕ), we

know that ϕ{maxX.ϕ/X} ≡ ϕ and so from (B.165) we confirm that (s, 〈〈ϕ〉〉4)∈R

as required.

B.3.6.1 Proving Lemma B.2

We now prove that for every ϕ∈ sHML#, if X ∈ fvars(ϕ) then X ∈ fvars(〈〈ϕ〉〉4).

Proof. We carry out this proof by structural induction on ϕ.

Cases ϕ∈
{

ff, tt
}

. These cases do not apply since X /∈ fvars(ϕ) when ϕ∈
{

ff, tt
}
.

Case ϕ =
∧
i∈I [pi, ci¡]ϕi. We first assume that X ∈ fvars(

∧
i∈I [pi, ci¡]ϕi) and so by

the definition of fvars we know that for every i∈ I we have that X ∈ fvars(ϕi). Hence,

by applying the inductive hypothesis for every i∈ I we infer that X ∈ fvars(〈〈ϕi〉〉4).

With this result and by the definitions of fvars and 〈〈−〉〉4, we thus conclude that

X ∈ fvars(〈〈
∧
i∈I [pi, ci¡]ϕi〉〉4) as required, and so we are done.

180

Appendix B. Missing Proofs from Part I

Case ϕ = Y . We start by assuming that X ∈ fvars(ϕ) and consider the following

cases:

• when Y = X: This case holds trivially since 〈〈Y 〉〉4 = Y = X and so since

X ∈ fvars(X) we can infer that X ∈ fvars(〈〈Y 〉〉4) as required.

• when Y 6= X: This case does not apply since X /∈ fvars(Y) when Y 6= X.

Case ϕ = maxY.ϕ. We assume that

X ∈ fvars(maxY.ϕ) (B.166)

and consider the following cases:

• when Y = X: This case does not apply since X /∈ fvars(maxY.ϕ) when Y = X.

• when Y 6= X: From (B.166) and by the definition of fvars we can deduce that

X ∈ fvars(ϕ) (B.167)

and so by the inductive hypothesis we have that X ∈ fvars(〈〈ϕ〉〉4) from which we

can deduce that

X ∈ fvars(maxY.〈〈ϕ〉〉4). (B.168)

Finally, since Y ∈ fvars(〈〈ϕ〉〉4) from (B.168) and the definition of 〈〈−〉〉4 we can

conclude that X ∈ fvars(〈〈maxY.ϕ〉〉4) as required, and so we are done.

B.3.6.2 Proving Lemma B.3

This proof determines that for every ϕ∈ sHML#, if X ∈ fvars(ϕ) and X ∈ fvars(〈〈ψ〉〉4)

then 〈〈ϕ{maxX.ψ/X}〉〉4 = 〈〈ϕ〉〉4{
maxX.〈〈ψ〉〉

4/X}.

Proof. We conduct this proof by structural induction on ϕ.

Cases ϕ∈
{

ff, tt
}

. These cases do not apply since X /∈ fvars(ϕ) when ϕ∈
{

ff, tt
}
.

181

Appendix B. Missing Proofs from Part I

Case ϕ =
∧
i∈I [pi, ci¡]ϕi. Assume that

X ∈ fvars(
∧
i∈I [pi, ci¡]ϕi) (B.169)

X ∈ fvars(〈〈ψ〉〉4). (B.170)

By (B.169) and the definition of fvars we know that ∀i∈ I · X ∈ fvars(ϕi), and so by

(B.170) we can apply the inductive hypothesis for every i∈ I and infer that

∀i∈ I · 〈〈ϕi{maxX.ψ/X}〉〉4 = 〈〈ϕi〉〉4{
maxX.〈〈ψ〉〉

4/X}. (B.171)

Finally, by (B.171) and the definition of 〈〈−〉〉4 we thus conclude that

〈〈
∧
i∈I [pi, ci¡]ϕi{maxX.ψ/X}〉〉4 = 〈〈

∧
i∈I [pi, ci¡]ϕi〉〉4{

maxX.〈〈ψ〉〉
4/X}

as required.

Case ϕ = Y . We start by assuming that

X ∈ fvars(Y) (B.172)

X ∈ fvars(〈〈ψ〉〉4) (B.173)

and consider the following cases:

• when Y 6= X: This case does not apply since (B.172) does not hold when Y 6= X.

• when Y = X: Since Y = X we can thus unfold Y {maxX.ψ/X} into maxX.ψ such

that we have that

〈〈Y {maxX.ψ/X}〉〉4 = 〈〈X{maxX.ψ/X}〉〉4 = 〈〈maxX.ψ〉〉4. (B.174)

Since 〈〈Y 〉〉4 = Y and Y = X we can deduce that

〈〈Y 〉〉4{
maxX.〈〈ψ〉〉

4/X} = X{maxX.〈〈ψ〉〉
4/X} = maxX.〈〈ψ〉〉4. (B.175)

Since by (B.173) and the definition of 〈〈−〉〉4 we know that 〈〈maxX.ψ〉〉4 = maxX.〈〈ψ〉〉4
and so from (B.174) and (B.175) we can conclude that

〈〈Y {maxX.ψ/X}〉〉4 = 〈〈Y 〉〉4{
maxX.〈〈ψ〉〉

4/X}.

182

Appendix B. Missing Proofs from Part I

as required.

Case ϕ = maxY.ϕ. We assume that

X ∈ fvars(maxY.ϕ) (B.176)

X ∈ fvars(〈〈ψ〉〉4) (B.177)

and consider the following cases:

• when Y = X: This case does not apply since X /∈ fvars(maxY.ϕ) when Y = X.

• when Y 6= X: From (B.176) and by the definition of fvars we can deduce that

X ∈ fvars(ϕ) and so by (B.177) and the inductive hypothesis we have that

〈〈ϕ〉〉4{
maxX.〈〈ψ〉〉

4/X} = 〈〈ϕ{maxX.ψ/X}〉〉4. (B.178)

Hence, by applying the definition of 〈〈−〉〉4 on both sides of equation (B.178) we

get that 〈〈maxY.ϕ{maxX.ψ/X}〉〉4 = 〈〈maxY.ϕ〉〉4{
maxX.〈〈ψ〉〉

4/X} as required, and so we

are done.

B.3.7 Proving Lemma 5.10.

We now need to prove that for every equation set Eq, if traverse(Eq, {0},partition,∅)=ζ

then ζ is a well-formed map for Eq. In our proof, we rely on Lemma B.4 which we

subsequently prove in ?? B.3.7.1.

Lemma B.4. For every set of indices I, ζ map, and equation sets Eq and Eq′, if

Eq′ ⊆ Eq and traverse(Eq′, I,partition, ζ)=ζ ′ and ζ is a well-formed map for Eq//dom(ζ)

then ζ ′ is a well-formed map for Eq.

Proof. Assume that

traverse(Eq, {0},partition,∅)=ζ (B.179)

and since by the definition of Eq//I we know that Eq//dom(∅) = ∅ by the definition of

a well-formed map we infer that

∅ is a Well-formed map for Eq//dom(∅) (B.180)

and hence by (B.179), (B.180) and Lemma B.4 we can conclude that

ζ is a well-formed map for Eq

183

Appendix B. Missing Proofs from Part I

as required.

B.3.7.1 Proving Lemma B.4

Proof. We proceed by induction on the structure of Eq′.

Case Eq′ = ∅. Initially we assume that ∅ ⊆ Eq and that

traverse(∅, I,partition, ζ)=ζ ′ (B.181)

ζ is a well-formed map for Eq//dom(ζ). (B.182)

Since Eq′=∅, by (B.181) and the definition of traverse we have that ζ = ζ ′ and so

from (B.182) we can deduce that

ζ ′ is a well-formed map for Eq//dom(ζ′). (B.183)

From (B.181) and the definition of traverse, we know that the traversal starts from

the full equation set, i.e., Eq′= Eq, using an empty ζ map. With every recursive

application of traverse, the equation set Eq′ becomes smaller since when traverse

recurses it does so with respect to Eq′′, i.e., a smaller version of the current Eq′

which is computed via Eq′′=Eq′ \Eq′//I . By contrast, with every recursive application

of traverse, the ζ accumulator becomes larger as it is updated with new mappings

for each index specified by the set of indices I i.e., with the indices of the equations

that are removed from Eq′ when creating Eq′′. Hence, when the traverse function

is recursively applied with respect to some Eq′′′=∅, it means that all the equations

specified in Eq have been analysed by the traversal and their indices were thus

added as maps in the resultant ζ ′. Hence, since the map ζ ′ was created as a result

of traversing every equation in Eq, than we can deduce that dom(ζ ′) contains the

index of every equation in Eq and so we can deduce that

Eq//dom(ζ′) = Eq (B.184)

Therefore, from (B.183) and (B.184) we can conclude that

ζ ′ is a well-formed map for Eq

184

Appendix B. Missing Proofs from Part I

as required.

Case Eq′ 6= ∅. Now, assume that

traverse(Eq′, I,partition, ζ)=ζ ′ (B.185)

ζ is a well-formed map for Eq//dom(ζ) (B.186)

Eq′ ⊆ Eq (B.187)

and consider the following two subcases for the set of indices I.

––– I = ∅ :I = ∅ :I = ∅ : Since I=∅, by (B.185) and the definition of traverse we know that ζ = ζ ′

and so from (B.186) we can deduce that

ζ ′ is a well-formed map for Eq//dom(ζ′). (B.188)

Since I=∅, this means that the traversal has reached a point where no more

children can be computed, which means that all the relevant equations (i.e.,

those reachable from the principle variable) have been analysed. This means

that any other equation in Eq (that is not in Eq//dom(ζ′), if any) is redundant

and irrelevant. Hence, since from (B.188) we know that ζ ′ is a well-formed

map for the relevant subset of equations in Eq, i.e., Eq//dom(ζ′), then it is also

well-formed for the full blown subset of equations Eq (i.e., including any un-

reachable, redundant equations). Therefore, we can conclude that

ζ ′ is a well-formed map for Eq

as required.

––– I 6=∅ :I 6=∅ :I 6=∅ : By the definition of traverse and from (B.185) we can infer that

ζ ′′ = partition(Eq′, I, ζ) (B.189)

Eq′′ = Eq′ \ Eq′//I (B.190)

I ′ =
⋃
j∈I

child(Eq′, j) (B.191)

traverse(Eq′′, I ′,partition, ζ ′′)=ζ ′ (B.192)

By (B.186) and the definition of a well-formed map we know that ζ provides a

185

Appendix B. Missing Proofs from Part I

set of mappings which allow for:

• renaming the data variables of each pattern equivalent sibling necessity,

defined in Eq//dom(ζ), to the same set of fresh variables. (B.193)

• renaming any reference to a data variable that is bound by a renamed

parent necessity defined in Eq//dom(ζ) (B.194)

and by the definition of partition from (B.189) we have that

ζ ′′ = ζ ∪̇


j 7→ ζ(i) ∪̇ {z0/x0 . . .

zn/xn}

k 7→ ζ(l) ∪̇ {z0/y0 . . .
zn/yn}

∀i, l ∈ I · if Eq(i)=
∧
j∈I′ [pj [x0 . . . xn], cj¡]Xj∧ϕ′,

Eq(l)=
∧
k∈I′′ [pk[y0 . . . yn], ck¡]Xk∧ϕ′′ and

pj and pkare pattern equiv., (when j 6=k) then
we assign the same fresh variables z0 . . . zn.


(B.195)

From (B.195) we know that ζ ′′ includes a mapping for each sibling branch that

defines a pattern equivalent SA. The added mappings map the child indices

of the conjunction branches (i.e., j, k∈I ′ since from (B.191) we know that I ′′

and I ′′′ are subsets of I ′) that are defined by the equations identified by the

parent indices (i.e., i∈I) specified in I, to a substitution environment. This

mapped substitution renames the resp. variable names of these conjunct pat-

tern equivalent sibling necessities, to the same fresh set of variable names,

thereby making the equivalent sibling patterns, syntactically equal. Hence,

from (B.193) we can deduce that ζ ′′ provides a set of mappings which allow for

• renaming the data variables of each pattern equivalent sibling necessity,

defined in Eq//dom(ζ)∪I′, to the same set of fresh variables. (B.196)

Similarly, from (B.195) we also know that the mappings in ζ ′′ include the sub-

stitutions performed upon the parent necessities. This means that in each

mapping j 7→σj, the mapped substitution environment σj also includes ζ(i)

where i ∈ I is the parent index of j ∈ I ′. Hence, from (B.194) we can deduce

186

Appendix B. Missing Proofs from Part I

that the mappings provided by ζ ′′ also allow for

• renaming any reference to a data variable that is bound by a renamed

parent necessity defined in Eq//dom(ζ)∪I′ . (B.197)

By (B.196), (B.197) and the definition of a well-formed map we thus infer that

ζ ′′ is a well-formed map for Eq//dom(ζ)∪I′ . (B.198)

From (B.195) we know that ζ ′′ includes a mapping for each child branch, iden-

tified by j ∈ I ′′ and k ∈ I ′′′ (where I ′′ and I ′′′ are both subsets of I ′), that is

defined in the equation identified by index i ∈ I and which defines a pattern

equivalent necessity. Hence, we know that the domain of ζ ′′ is an extension

of the domain of ζ which additionally contains the child indices defined in I ′,

such that we can deduce that dom(ζ ′′) = dom(ζ) ∪ I ′. Hence, from (B.198) we

can infer that

ζ ′′ is a well-formed map for Eq//dom(ζ′′). (B.199)

Finally, since from (B.190) and (B.187) we have that Eq′′ ⊆ Eq, by (B.192),

(B.199) and the inductive hypothesis we can conclude that

ζ ′ is a well-formed map for Eq

as required, and so we are done.

B.3.8 Proving Lemma 5.11.

In this lemma we must show that for every ζ map, and equation set Eq, if ζ is a

well-formed map for Eq then uni(Eq, ζ)≡Eq and every equation (Xk=ψk)∈uni(Eq, ζ)

is Uniform.

Proof. We conduct this proof by induction on the structure of Eq.

Case Eq = ∅. This case holds trivially since Eq = ∅ = uni(∅, ζ).

187

Appendix B. Missing Proofs from Part I

Case Eq =
{
Xi=

∧
j∈I [ηj]ϕj ∧ϕ

}
∪̇ Eq′. We start by assuming that

ζ is a well-formed map for Eq (B.200)

and so by (B.200) and the definition of a well-formed map we know that ζ provides

a set of mappings which allow for

• renaming the data variables of each pattern equivalent sibling necessity,

defined in Eq, to the same set of fresh variables. (B.201)

• renaming any reference to a data variable that is bound by a renamed

parent necessity defined in Eq. (B.202)

By applying the uni function on Eq and ζ we obtain

uni(
{
Xi=

∧
j∈I [ηj]ϕj ∧ϕ

}
∪̇ Eq′, ζ)

=
{
Xi=

∧
j∈I [ηjζ(j)]ϕj ∧ϕ

}
∪̇ uni(Eq′, ζ)

. (B.203)

Now if we assume that ηj defines an arbitrary pattern pj [x0 . . . xn] (where x0 . . . xn are

newly bound variables), along with some condition cj [x0 . . . xn, y
m
<i] whose evaluation

depends on x0 . . . xn and the values of m variables ym<i that are bound by parent

modal necessities. Hence, from (B.201) we can deduce that mapping ζ(j) in (B.203)

produces a substitution environment which renames the data bindings x0 . . . xn to

some fresh variables z0 . . . zn, which are the same for all the other conjunct sibling

necessities that are pattern equivalent to ηj. From (B.202) we can also deduce that

any reference being made to some variable ym<i will also be renamed accordingly by

ζ(j). Hence, by the definition of a uniform equation, we can deduce that

equation Xi=
∧
j∈I [ηj]ϕj ∧ϕ is uniform . (B.204)

Moreover, from (B.201) and (B.202) we can deduce that equation Xi=
∧
j∈I [ηj]ϕj ∧ϕ

is semantically equivalent to the equation reconstructed by the uni function in (B.203),

i.e., Xi=
∧
j∈I [ηjζ(j)]ϕj ∧ϕ. This holds since when the substitution environment, re-

turned by ζ(j), is applied to the equated formula, it only substitutes the variable

names in ηj and so if ηj has an arbitrary form pj [x0 . . . xn], cj [x0 . . . xn, y
m
<i]¡ this will be-

188

Appendix B. Missing Proofs from Part I

come pj [z0 . . . zn], cj [z0 . . . zn, z
m
<i]¡. Notice that the new pattern pj [z0 . . . zn] is equivalent

to the original one pj [x0 . . . xn] since it only varies by the name of the data variables

it binds. The new condition cj [z0 . . . zn, z
m
<i] is also equivalent to cj [x0 . . . xn, y

m
<i] since

by (B.202) we know that ζ(j) (where ζ(j) also contains ζ(i) where i is the parent of

j) renames x0 . . . xn to z0 . . . zn and ym<i to the variable names, zm<i, that are bound by

the renamed parent necessities. This preserves the semantics of the equation by

keeping it closed with respect to data variables. Hence, we can deduce

Xi=
∧
j∈I [ηj]ϕj ∧ϕ

≡ Xi=
∧
j∈I [pj [x0 . . . xn], cj [x0 . . . xn, y

m
<i]¡]ϕj ∧ϕ

≡ Xi=
∧
j∈I [pj [z0 . . . zn], cj [z0 . . . zn, z

m
<i]¡]ϕj ∧ϕ

≡ Xi=
∧
j∈I [pj [x0 . . . xn], cj [x0 . . . xn, y

m
<i]¡ζ(j)]ϕj ∧ϕ

≡ Xi=
∧
j∈I [ηjζ(j)]ϕj ∧ϕ.

(B.205)

Now since Eq′ ⊂ Eq from (B.200) we can infer that ζ is also a well-formed map for

Eq′ which allows us to apply the inductive hypothesis and deduce that

every equation (Xk=ψk) ∈ uni(Eq′, ζ) is uniform , and that (B.206)

uni(Eq′, ζ)≡Eq′. (B.207)

Hence, by (B.203), (B.206) and (B.204) we can conclude that

every equation (Xk=ψk) ∈ uni(Eq, ζ) is uniform (B.208)

and by (B.203), (B.207) and (B.205) we can conclude

{
Xi=

∧
j∈I [ηj]ϕj ∧ϕ

}
∪̇ Eq′ ≡

{
Xi=

∧
j∈I [ηjζ(j)]ϕj ∧ϕ

}
∪̇ uni(Eq′, ζ) (B.209)

as required, and so this case is done by (B.208) and (B.209).

B.3.9 Proving Lemma 5.13.

As a result of this lemma we prove that for every equation (Xj=ϕj) ∈ Eq, if Xj=ϕj is

uniform then Eq≡ traverse(Eq, {0}, cond comb,∅) and that every equation (Xk=ψk) ∈

traverse(Eq, {0}, cond comb,∅) is equi-disjoint.

The proof for Lemma 5.13 depends on the following which is proven in ?? B.3.9.1.

189

Appendix B. Missing Proofs from Part I

Lemma B.5. For every index set I, equi-disjoint set ω and equation sets Eq and

Eq′, if Eq′ ⊆ Eq and traverse(Eq′, I, cond comb, ω)=ω′ and Eq//domind(ω)≡ω and every

equation (Xj=ϕj)∈Eq′ is uniform and every equation (Xk=ψk)∈ω is equi-disjoint

then every equation (Xk=ψk)∈ω′ is equi-disjoint and Eq≡ω′.

Proof. Assume that

∀(Xj=ϕj) ∈ Eq · equation Xj=ϕj is uniform . (B.210)

By applying the traverse function on Eq starting from I={0} and ω=∅ we know that

traverse(Eq, {0}, cond comb, ω) = ω′ (B.211)

and so since ω=∅, by the definition of Eq//I we have that Eq//dom(∅) = ∅ = ω which

means that we can also deduce that every equation (Xk=ψk) ∈ ω is equi-disjoint.

With this new information along with (B.210) and (B.211) we can use Lemma B.5

to infer that

Eq ≡ ω′ and that every equation (Xk=ψk) ∈ ω′ is equi-disjoint

as required, and so we are done.

B.3.9.1 Proving Lemma B.5.

This lemma states that one can obtain an equi-disjoint equation set, ω′, that is se-

mantically equivalent to the original equation set Eq, by conducting a traversal upon

a uniform subset of Eq (i.e., Eq′). This traversal is conducted with respect to an equi-

disjoint accumulator equation set ω, where ω must be semantically equivalent to a

subset of Eq that is restricted to the indices associated to the logical variables spec-

ified by the domain of ω, i.e., ω ≡ Eq//domind(ω), where domind(ω)
def
= { i Xi ∈ dom(ω) }.

Proof. We proceed by induction on the structure of I.

Case I =∅. Lets start by assuming that

Eq′ ⊆ Eq, (B.212)

traverse(Eq′,∅, cond comb, ω)=ω′, (B.213)

Eq//domind(ω)≡ω, (B.214)

every equation (Xj=ϕj) ∈ Eq′ is uniform , andthat (B.215)

every equation (Xk=ψk) ∈ ω is equi-disjoint. (B.216)

190

Appendix B. Missing Proofs from Part I

By (B.213) and the definition of traverse we know that ω = ω′ and so from (B.214)

and (B.216) we can deduce that

every equation (Xk=ψk) ∈ ω′ is equi-disjoint (B.217)

Eq//domind(ω′)≡ω′. (B.218)

Since I=∅, by the definition of traverse and (B.213) we know the traversal has

reached a point where no more children can be computed, which means that all

the relevant equations (i.e., those reachable from the principle variable) have been

analysed. This implies that any other equation in Eq (if any) is redundant and irrel-

evant. Hence, since from (B.218) we know that the equations in ω′ are equivalent to

the relevant subset of equations in Eq, i.e., Eq//domind(ω′), and so we can conclude that

ω′ ≡ Eq (B.219)

as required, and so this case is done by (B.217) and (B.219).

Case I 6=∅. Let us now assume that

Eq′ ⊆ Eq (B.220)

traverse(Eq′, I, cond comb, ω)=ω′ (B.221)

Eq//domind(ω)≡ω (B.222)

every equation (Xj=ϕj) ∈ Eq′ is uniform (B.223)

every equation (Xk=ψk) ∈ ω is equi-disjoint (B.224)

and let’s proceed by case analysis on Eq′.

– Eq′ = ∅ : Since Eq′ = ∅, by (B.221) and the definition of traverse we know that

ω = ω′ and so from (B.222) and (B.224) we can deduce that

Eq//domind(ω′)≡ω′, and that (B.225)

every equation (Xk=ψk) ∈ ω′ is equi-disjoint . (B.226)

By (B.221) and the definition of traverse we know that the traversal starts from

the full equation set, i.e., Eq′ = Eq, using an empty accumulator, i.e., ω=∅,

191

Appendix B. Missing Proofs from Part I

that would eventually contain the resultant equi-disjoint equation set. Every

recursive application of the traverse function is then performed with respect

to: a smaller version Eq, i.e., Eq′=Eq\Eq//I , and a larger accumulator ω′ con-

taining the reformulated, equi-disjoint equations whose indices are defined in

I (and which where removed from Eq′). Hence, when Eq′ becomes ∅ it means

that domind(ω′) = domind(Eq) and so by the definition of Eq//I we can deduce

that Eq//domind(ω) = Eq//domind(Eq) = Eq which means that from (B.225) we can

conclude that

Eq ≡ ω′ (B.227)

as required, and so this case holds by (B.226) and (B.227).

– Eq′ 6= ∅ : By (B.221) and the definition of traverse we have that

cond comb(Eq′, I, ω)=ω′′ (B.228)

Eq′′ = Eq′ \ Eq′//I (B.229)

I ′ =
⋃
l∈I

child(Eq, l) (B.230)

traverse(Eq′′, I ′, cond comb, ω′′) = ω′, (B.231)

By applying definition of cond comb to (B.228) we deduce that

ω′′ = ω ∪̇

Xi=
∧
ck∈C(j,I′)

[p, ck¡]Xj∧ϕ(= ψi)

(Xi=
∧
j∈I′′

[p, cj¡]Xj∧ϕ)∈Eq//I

and I ′=
⋃
l∈I

child(Eq, l)

such that I ′′ ⊆ I ′

 . (B.232)

Now from (B.232) and the definition of C(j, I ′), we know that the conjunc-

tions in the reformulated equations (i.e., in every ψi) now include an additional

branch for each condition ck ∈ C(j, I ′) where ck is a compound condition e.g.,

c0∧c1∧. . .∧cn or c0∧¬c1∧. . .∧¬cn. These compound conditions consist in a truth

combination of the filtering conditions of the sibling SAs which specify syntac-

tically equal patterns. This is guaranteed since from (B.223) we know that the

equations in Eq′ are uniform, meaning that all sibling pattern equivalent SAs

are guaranteed to be syntactically equal as well.

192

Appendix B. Missing Proofs from Part I

Hence, the reconstructed SAs in these new branches are unable to match the

same concrete event α unless they are define the same pattern and condition.

This is so as despite their pattern being syntactically equal, only one compound

filtering condition can at most be satisfied by the matching concrete event α.

Therefore, from (B.232) and the definition of equi-disjoint, we can deduce that

every equation (Xk=ψk)∈

Xi=
∧
ck∈C(j,I′)

[p, ck¡]Xj∧ϕ(= ψi)

(Xi=
∧
j∈I′′

[p, cj¡]Xj∧ϕ)∈Eq//I

and I ′=
⋃
l∈I

child(Eq, l)

such that I ′′ ⊆ I ′


is equi-disjoint . (B.233)

This means that from (B.224), (B.232) and (B.233) we can conclude that

every equation (Xk=ψk) ∈ ω′′ is equi-disjoint (B.234)

as required. We also argue that the reconstructed equations in (B.232) (i.e.,

Xi=ψi) are in fact semantically equivalent to the original ones (i.e., (Xi=ϕi)∈Eq//I),

since whenever a guarded branch, [p, ci¡]Xi, is reconstructed into (possibly)

multiple branches, [p, ci∧cj . . .ck¡]Xi∧[p, ci∧¬cj . . .ck¡]Xi∧ . . .∧[p, ci∧¬cj . . .¬ck¡]Xi,

via the truth combination function C(i, I ′), the condition, ci, of the original

branch is never negated. This guarantees that continuation Xi can only be

reached when the original condition ci is true, and thus preserves the original

semantics of the branch. Therefore, we conclude thatXi=
∧
ck∈C(j,I′)

[p, ck¡]Xj∧ϕ(= ψi)

(Xi=
∧
j∈I′′

[p, cj¡]Xj∧ϕ)∈Eq//I

and I ′=
⋃
l∈I

child(Eq, l)

such that I ′′ ⊆ I ′

 ≡ Eq//I

which means that from (B.222) and (B.232) we can infer that

Eq//domind(ω′′) ≡ ω′′. (B.235)

Finally, since from (B.220) and (B.229) we know that Eq′′ ⊆ Eq, from (B.223) we

can infer that every equation (Xj=ϕj) ∈ Eq′′ is uniform. Hence, with this result

along with (B.231), (B.234) and (B.235) we can apply the inductive hypothesis

193

Appendix B. Missing Proofs from Part I

and conclude that Eq ≡ ω′ and that every equation (Xk=ψk) ∈ ω′ is equi-disjoint

as required, and so we are done.

B.4 Missing proofs from Chapter 6

In this section we provide the necessary proofs for Lemmas 6.1, 6.4 and 6.5 as these

were omitted from the main text of Chapter 6.

B.4.1 Proving Lemma 6.1

We must prove that for every µHML formula ϕ, suppression monitors m,m′, identity

transformation trace κid, and trace u if m κid===⇒ m′ and sys(u) /∈ JϕK and zip(u, κid) = u

then ¬enf(m,ϕ).

Proof. We proceed by induction on the length of u.

Case u = ε. This case holds trivially since sys(ε) = nil /∈ JϕK and so since we

assume that our monitors cannot perform insertions we can infer that m[nil] ∼ nil

and so by the Hennessy-Milner Theorem we have that m[nil] /∈ JϕK which means that

¬enf(m,ϕ) as required.

Case u = tα. Let’s start by assuming that

m
κid===⇒ m′ (B.236)

sys(tα) /∈ JϕK (B.237)

zip(tα, κid) = tα (B.238)

and consider the following two cases for the trace system of t.

sys(t) /∈ JϕK: Since κid is a trace of identity transformations, from (B.238) we can

deduce that κid = κ′id(αIα) and that zip(t, κ′id) = t. Hence, since from (B.236)

we know that m κ′id===⇒ m′′ (for some m′′) and since sys(t) /∈ JϕK, by the inductive

hypothesis we can deduce that ¬enf(m,ϕ) as required.

sys(t) ∈ JϕK: Let us now assume that

enf(m,ϕ) (B.239)

194

Appendix B. Missing Proofs from Part I

so that we can immediately infer that for every system s,

m[s] ∈ JϕK (B.240)

if s ∈ JϕK then m[s] ∼ s. (B.241)

Since we assume that sys(t) ∈ JϕK, from (B.241) we can therefore infer that

m[sys(t)] ∼ sys(t) and so, as stated by (B.236), monitor m does not modify

the executions of sys(t), and so we are guaranteed that trace t remains in-

tact. Hence, since we know (B.237), we can also infer that α is the action that

causes ϕ to be violated, and so in order to ensure soundness, i.e., (B.240), m

is required to somehow modify trace tα. Since m is a suppression monitor, it

must therefore suppress the trailing α and transform trace tα into t. However,

from (B.236) and (B.238) we know that κid = κ′id(αIα) and that zip(t, κ′id) = t

which means that m might not always suppress α, and so this means that

m[sys(tα)] /∈ JϕK which contradicts with (B.240). This contradiction allows us to

conclude that our initial assumption (B.239) was false and thus that ¬enf(m,ϕ)

as required, and so we are done.

B.4.2 Proving Lemma 6.4

To prove this lemma we must show that for every m ∈ PSupTrn, if s ∈ J〈〈m 〉〉K

then m[s] ∼ s. We adopt a coinductive approach in which we show that relation

R def
= { (m[s], s) s ∈ J〈〈m 〉〉K } is a bisimulation relation, and so we prove the following

results:

(a) if m[s]
µ−→ q then s

µ−→ s′ and (q, s′) ∈ R

(b) if s µ−→ s′ then m[s]
µ−→ q and (q, s′) ∈ R

Proof for (a). We proceed by case analysis on m.

Case m = X. This case does not apply since s /∈ J〈〈X 〉〉K = JXK.

195

Appendix B. Missing Proofs from Part I

Case m =
∑

i∈I mi. Assume that

∑
i∈I

mi[s]
µ−→ q (B.242)

s ∈ J〈〈
∑
i∈I

mi 〉〉K = J
∧
i∈I
〈〈mi 〉〉K. (B.243)

Since µ ∈ {τ, α} we consider both cases.

• µ = τ : In this case we can infer that the reduction in (B.242) can be caused by

either rules iSup or iAsy, we thus consider both cases.

– iAsy: By rule iAsy from (B.242) we have that

s
τ−→ s′ (B.244)

and that q =
∑

i∈I mi[s
′] and since the µHML semantics are agnostic of

τ-actions, by (B.243) and (B.244) we have that s′ ∈ J〈〈
∑

i∈I mi 〉〉K so that by

the definition of R we conclude that

(
∑
i∈I

mi[s
′], s′) ∈ R (B.245)

as required, and so this case holds by (B.244) and (B.245).

– iSup: In this case from (B.242) we know that

s
α−→ s′ (B.246)

and that q = m′[s′] and by rule eSel we have that

∃j ∈ I ·mj
αI•−−−→ m′ (B.247)

and so we can deduce that mj must have the following structure, i.e.,

mj = recX0, . . . Xn. pj , cj , •¡.m′j (where recX0, . . . Xn. represents an arbitrary

number of rec . statements, possibly none) so that by rules eRec and eTrn

196

Appendix B. Missing Proofs from Part I

from (B.247) we have that

mtch(pj , α) =σ and cjσ ⇓ true (B.248)

m′ = m′jσ{
recX0,...Xn. pj ,cj ,•¡.m′

j/X0
, . . .} (B.249)

Since from (B.243) we infer that s∈ J〈〈mj 〉〉K=J〈〈 pj , cj , •¡.m′j{. . .} 〉〉K and sub-

sequently by the definition of 〈〈− 〉〉 that s∈ J[pj , cj¡]ffK, we can thus deduce

that for every action β such that mtch(pj , β) =σ and cjσ ⇓ true then s 6β−→

as otherwise (B.243) would not hold, which means that this case does not

apply since (B.246) and (B.248) contradict with (B.243).

• µ = α: In this case we can deduce that (B.242) can be the result of rules iDef

or iTrn and so we inspect both eventualities.

– iDef: By rule iDef from (B.242) we have that

s
α−→ s′ (B.250)

q = id[s′] (B.251)∑
i∈I

mi 6
α−→ (B.252)

and since id def
= recY. (x)!(y), true, x!y¡.Y + (x)?(y), true, x?y¡.Y , knowing that

〈〈 id 〉〉 produces maxX.[(x)?(y)]X∧[(x)!(y)]X which is logically equivalent to

tt, we can deduce that s′ ∈ JttK = J〈〈 id 〉〉K and so by the definition of R we

have that

(id[s′], s′) ∈ R (B.253)

as required. Therefore, this case is done by (B.250) and (B.253).

– iTrn: By rule iTrn from (B.242) we have that

s
α−→ s′ (B.254)

and that q = m′[s′] and (by rule eSel) that

∃j ∈ I ·mj
αIα−−−→ m′ (B.255)

197

Appendix B. Missing Proofs from Part I

and so we can deduce that mj must have the following structure, i.e.,

mj = recX0, . . . Xn. pj , cj , pj¡.m′j (where recX0, . . . Xn. represents an arbi-

trary number of rec . statements, possibly none) so that by rules eRec

and eTrn from (B.255) we know that

mtch(pj , α) =σ and cjσ ⇓ true (B.256)

m′ = m′jσ{
recX0,...Xn. pj ,cj ,•¡.m′

j/X0
, . . .}. (B.257)

Since from (B.243) we infer that s∈ J〈〈mj 〉〉K = J〈〈 pj , cj , pj¡.m′j{. . .} 〉〉K which

is equal to J[pj , cj¡]〈〈m′j{
recX0,...Xn. pj ,cj ,•¡.m′

j/X0
, . . .} 〉〉K, knowing (B.254) and

(B.256) we can thus conclude that s′ ∈ J〈〈m′jσ{. . .} 〉〉K. This means that by

the definition of R we can conclude that

(〈〈m′jσ{
recX0,...Xn. pj ,cj ,•¡.m′

j/X0
, . . .} 〉〉[s′], s′) ∈ R (B.258)

as required. Hence, this case holds by (B.254) and (B.258).

Case m = recX.m′. Assume that

recX.m′[s] µ−→ q (B.259)

s ∈ J〈〈 recX.m′ 〉〉K = JmaxX.〈〈m′ 〉〉K (B.260)

and so from the monitor syntax we can deduce that m′ must have the following

structure, i.e., m′ = recY0 . . . Yn.
∑

i∈I mi where recY0 . . . Yn. represents an arbitrary

number of rec . statements, while | I | can range from 1 to n. Hence, as by rule

eRec we know that the monitor in (B.259) is unfolded prior to reducing, we infer

that (
∑

i∈I mi{recX.m′
/X , . . . ,

recYn.
∑
i∈I mi/Yn})

µ−→ q and so from (B.260) we deduce

that s∈ J〈〈 recX.m′ 〉〉K = J
∑

i∈I mi{recX.m′
/X , . . .}K. From this point onwards the proof

proceeds as per case m=
∑

i∈I mi and so we omit the remainder of this proof.

Cases m ∈ { p, c, p¡.m′, p, c, •¡.m′}. We omit the proof of these two cases as they are

special cases of case m =
∑
i∈I
mi.

The above cases thus suffice to prove that (a) holds.

Proof for (b). Once again, we carry out this proof by case analysis on m.

198

Appendix B. Missing Proofs from Part I

Case m = X. This case does not apply since s /∈ J〈〈X 〉〉K = JXK.

Case m =
∑

i∈Imi. Assume that

s
µ−→ s′ (B.261)

s ∈ J〈〈
∑

i∈Imi 〉〉K = J
∧
i∈I 〈〈mi 〉〉K (B.262)

and since µ ∈ {τ, α} we inspect both cases.

• µ = τ : By (B.261) and rule iAsy we have that

∑
i∈Imi[s]

τ−→
∑

i∈Imi[s
′] (B.263)

and since the µHML semantics abstract over τ-actions, by (B.261) and (B.262)

we can infer that s′ ∈ J〈〈
∑

i∈Imi 〉〉K and so by the definition of R we conclude that

(
∑

i∈Imi[s
′], s′) ∈ R (B.264)

as required, and so this case holds by (B.263) and (B.264).

• µ = α: When µ = α, the monitor can react to (B.261) via different instrumen-

tation rules, namely rules iDef, iSup or iTrn. We inspect each eventuality.

– iDef: By (B.261) and rule iDef we have that

∑
i∈Imi[s]

α−→ id[s′] (B.265)

and since 〈〈 id 〉〉 = tt and so s′ ∈ J〈〈 id 〉〉K, by the definition of R we have that

(id[s′], s′) ∈ R (B.266)

as required. Therefore, this case is done by (B.265) and (B.266).

– iTrn: By rule iTrn, from (B.261) we have that

∑
i∈Imi[s]

α−→ m′[s′] (B.267)∑
i∈Imi

βIα−−−→ m′ (B.268)

and since we assume that our monitors can only suppress actions from

199

Appendix B. Missing Proofs from Part I

(B.268) we can deduce that β = α and so by rule eSel we can also deduce

that

∃j ∈ I ·mj
αIα−−−→ m′. (B.269)

By the reduction rules in our model we can infer that in order for mj to

perform the reduction in (B.269) it must have a specific form, that is

mj = recX0, . . . , Xn. pj , cj , pj¡.m′j (B.270)

where recX0, . . . Xn. represents an arbitrary number of rec . statements,

possibly none. Knowing (B.270) we can apply rules eRec and eTrn to

(B.269) and deduce that

∃j ∈ I ·m′j{
recX0,...Xn. pj ,cj ,pj ¡.m′

j/X0
, . . .} αIα−−−→ m′ (B.271)

m′ = m′jσ{
recX0,...Xn. pj ,cj ,pj ¡.m′

j/X0
, . . .} (B.272)

mtch(pj , α) =σ and cjσ ⇓ true. (B.273)

Now, since from (B.262) we know that s∈ J〈〈mj 〉〉K, from (B.270) we can

deduce that s∈ J〈〈 pj , cj , pj¡.m′j{. . .} 〉〉K = J[pj , cj¡]〈〈m′j{. . .} 〉〉K, and so knowing

(B.261), (B.273) and that µ=α we can thus deduce that s′ ∈ J〈〈m′jσ{. . .} 〉〉K.

Hence, by the definition of R we can conclude that

(m′[s′], s′) ∈ R (B.274)

as required. Therefore, this case holds by (B.267) and (B.274).

– iSup: By rule iSup, from (B.261) we have that
∑

i∈I
αI•−−−→ m′ and so by rule

eSel we know that ∃j ∈ I·mj
αI•−−−→ m′ wheremj = recX0, . . . , Xn. pj , cj , •¡.m′j.

Hence, by applying rules eRec and eTrn we can deduce that

mj = pj , cj , •¡.m′j{
recX0,...Xn. pj ,cj ,•¡.m′

j/X0
, . . .} (B.275)

mtch(pj , α) =σ and cjσ ⇓ true. (B.276)

Now, since from (B.262) we have that s∈ J〈〈mj 〉〉K, from (B.275) we know

200

Appendix B. Missing Proofs from Part I

that s ∈ J[pj , cj¡]ffK which means that for every action β where mtch(pj , β) =σ

and cjσ ⇓ true, then s 6β−→. Hence, this case does not apply since this result

contradicts with (B.261) and (B.276).

Cases m∈{ p, c, p¡.m′, p, c, •¡.m′}. These cases are a special case of case m =
∑
i∈I
mi,

i.e., when | I | = 1 and mi ∈ { p, c, p¡.m′, p, c, •¡.m′}. We thus omit the proof for these

two cases.

Case m = recX.m′. Assume that

s
µ−→ s′ (B.277)

s ∈ J〈〈 recX.m′ 〉〉K = JmaxX.〈〈m′ 〉〉K (B.278)

and since from the monitor’s syntax we can infer that m′ must adhere to the follow-

ing structure, i.e., m′ = recY0 . . . Yn.
∑

i∈I mi where recY0 . . . Yn. represents an arbi-

trary number of rec . statements, and | I | can range from 1 to n. Hence, since from

(B.278) we know that s∈ J〈〈 recX,Y0, . . . , Yn.
∑

i∈I mi 〉〉K = JmaxX,Y0, . . . , Yn.〈〈
∑

i∈I mi 〉〉K

which is equal to J〈〈
∑

i∈I mi 〉〉{maxX,Y0,...,Yn.〈〈∑i∈I mi 〉〉/X , . . .}K. From this point onwards

the proof proceeds as per case m =
∑

i∈I mi and so we elide the remainder of this

proof.

B.4.3 To prove Lemma 6.5.

We prove that for every m,m′ ∈ PSupTrn, system s and trace t, if m αI•−−−→ m′ and s ∈

Jafter(〈〈m 〉〉, t)K then s ∈ Jafter(〈〈m′ 〉〉, t)K. To simplify this proof, we refer to Lemma B.6

whose proof is given in ?? B.4.3.1.

Lemma B.6. For every suppression monitor m, m′ ∈ PSupTrn, system action α, and

system state r, if there exists an action β, a monitor m′′ and system state r′ so that

m
αI•−−−→ m′, m′ βI•−−−→ m′′ and r

β−→ r′ then there cannot exist a µHML formula ϕ so

that r′ ∈ JϕK and enf(m,ϕ).

Proof. Assume that

m
αI•−−−→ m′ (B.279)

s ∈ Jafter(〈〈m 〉〉, t)K (B.280)

201

Appendix B. Missing Proofs from Part I

and consider the following cases, namely, the case when there exists an action β so

that s β−→ s′ and m′
βI•−−−→ m′′, and the case when such an action does not exist. The

latter can be further subdivided into two cases, namely, the case when for every

action β, s 6β−→, and when s
β−→ s′ and m′ 6βI•−−−→.

• ∃β · s β−→ s′ and m′
βI•−−−→ m′′: Since s

β−→ s′ and m′
βI•−−−→ m′′, by (B.279) and

Lemma B.6 we know that, in this case, there does not exist a µHML formula ϕ

that is both satisfied by s (such as 〈〈m 〉〉 in (B.280)) and that is also enforceable

by m, and hence this case does not apply.

• ∀β · s 6β−→: This case holds trivially since if s cannot perform any action, then it

cannot violate the safety property after(〈〈m′ 〉〉, t) ∈ sHML, and so we can simply

conclude that s ∈ Jafter(〈〈m′ 〉〉, t)K as required.

• ∀β · s β−→ s′ and m′ 6βI•−−−→: In this case we assume that

∀β · s β−→ s′ and m′ 6βI•−−−→ . (B.281)

Since we only consider suppression monitors that are persistent, i.e., m,m′ ∈

PSupTrn, from (B.279) we know that α is a violating action and that m′ is also

able to suppress it. From (B.281) we thus infer that any action β that can

be performed by s is not a violating action since m′ is unable to suppress it.

Hence, since m′ does not attempt to suppress more actions than m, and by

the definition of 〈〈− 〉〉 (since 〈〈 p, c, •¡.m 〉〉 = [p, c¡]ff), we can infer that 〈〈m 〉〉 and

〈〈m′ 〉〉 define the same violating modal necessities, [p, c¡]ff, and so since we

know (B.280) we can infer that s ∈ Jafter(〈〈m′ 〉〉, βt′)K (where t = βt′, for all β) as

required, and we are done.

B.4.3.1 Proving Lemma B.6

We prove that for every suppression monitor m, m′ ∈ PSupTrn, system action α, and

system state r, if there exists an action β, a monitor m′′ and system state r′ so that

m
αI•−−−→ m′, m′ βI•−−−→ m′′ and r

β−→ r′ then there cannot exist a µHML formula ϕ so

that r′ ∈ JϕK and enf(m,ϕ).

202

Appendix B. Missing Proofs from Part I

Proof. Assume that

m
αI•−−−→ m′ (B.282)

∃β ·m′ βI•−−−→ m′′ (B.283)

r
β−→ r′ (B.284)

and additionally assume that

∃ϕ ∈ µHML · enf(m,ϕ) and r ∈ JϕK (B.285)

from which we can deduce that

evtenf(m,ϕ)
def
= ∀s, t · if m[s]

t
=⇒ n[s′] and s′∈Jafter(ϕ, t)K then n[s′] ∼ s′. (B.286)

Consider a system state r′′ that performs α and reduces to s, i.e., r′′ α−→ r and so

from (B.282) and by rule iSup we know that

m[r′′]
τ−→ m′[r.] (B.287)

Since after(ϕ, τ) = ϕ, and knowing (B.287) and (from (B.285)) that r ∈ JϕK, from

(B.286) we infer that

m′[r] ∼ r. (B.288)

However, by (B.283), (B.284) and iSup we also know that m′[r] τ−→ m′′[X ′], and so

from (B.284) we can infer that m′[r]6∼r which contradicts with (B.288). This means

that assumption (B.285) is false, and so we conclude that there does not exist a

µHML formula ϕ such that enf(m,ϕ) and r ∈ JϕK, as required.

B.5 Missing proofs from Chapter 7

In this section we present the proofs for Theorem 7.1 and Proposition 7.1 which

were omitted from Chapter 7.

B.5.1 Proving Theorem 7.1

To prove this theorem we must show that for all system states s and r, traces(s) =

traces(r) iff s and r satisfy the same set of safety properties.

The proof for this theorem, however, relies on the work on detection (runtime

verification) monitors by Francalanza et al. in [56]. Detection monitors mrv in [56]

can reject a trace t at runtime by issuing the verdict no, whenever they detect that an

203

Appendix B. Missing Proofs from Part I

sHML formula has been violated by t, i.e., mrv
t

=⇒ no. In respect to these detection

monitors, they prove the following results.

• Detection Soundness: For every formula ϕ, system s, trace t and detection

monitor mrv, if s t
=⇒ and mrv

t
=⇒ no then s /∈ JϕK.

• Detection Completeness: For every formula ϕ, system s, if s /∈ JϕK then there

exists a trace t and a detection monitor mrv such that s t
=⇒ and mrv

t
=⇒ no.

Detection soundness states that if a system state s executes a trace t that gets

rejected by a detection monitor mrv, then s violates ϕ. Completeness states the

opposite. Using this framework we can now easily prove Theorem 7.1 as follows.

Proof. Assume that

traces(s) ⊆ traces(r) and that (B.289)

s /∈ JϕK. (B.290)

Knowing (B.290) and Detection Completeness from [56], we can infer that there exists

a trace t, and runtime verification monitor mrv, such that when s executes t, mrv

rejects it for being invalid, i.e., mrv
t

=⇒ no. Hence, since from (B.289) we know that

the invalid trace t can also be executed by r, in which case by Detection Soundness

from [56] we can also conclude that r /∈ JϕK as required, and we are done.

B.5.2 Proving Proposition 7.1

We must prove that for every sHMLnf formula ϕ, system s and trace t, when ϕ =m

then t ∈ traces(m[s]) iff t ∈ traces((s, ϕ)). We thus prove the if case and only-if case

separately. As an aide for our proofs we rely on Lemma B.7 which is proven in

?? B.5.2.1.

Lemma B.7. For every system s and r, sHMLnf formula ϕ and action α, if ϕ [s]
α

==⇒ r

then ϕ [s]
α−→ r.

Proof for the only-if case. We proceed by induction on the length of t.

Case t = ε. This case holds trivially since the empty trace can be executed by

every system, that is, ε ∈ traces((s, ϕ)) as required.

204

Appendix B. Missing Proofs from Part I

Case t = αt′. Assume that αt′ ∈ traces(ϕ [s]) and so by the definition of traces

we know that there exists a system r such that

t′ ∈ traces(r) (B.291)

and that ϕ [s]
α

==⇒ r. Hence, by Lemma B.7 we get that

ϕ [s]
α−→ r. (B.292)

We now proceed by case analysis on ϕ.

• ϕ ∈ {X,ff}: These cases do not apply since they contradict assumption (B.292),

namely since @m · X = m, and since ∀t ∈ Act · ff [s] 6 t=⇒ where ff = sup.

• ϕ = tt: Since tt = id, by rule iTrn, from (B.292) we get that

s
α−→ s′ (B.293)

and that r = id[s′] = tt [s′] which in conjunction with (B.291) and the inductive

hypothesis we can deduce that

t′ ∈ traces((s′, tt)). (B.294)

Since ϕ = tt and knowing (B.293) we can synthesise the controlled transition

(s, tt)
α−→ (s′, tt) so that from (B.294) we conclude that αt′ ∈ traces((s, tt)) as

required.

• ϕ =
∧
i∈I [αi]ϕi: Since

∧
i∈I [αi]ϕi =

(∑
i∈I

{ αi, αi¡. ϕi if ϕi 6= ff
 αi, •¡. ff otherwise

)
we must

explore the instrumentation rules that permit for reduction in (B.292).

– iTrn: By applying rule iTrn to (B.292) we have that

s
α−→ s′ (B.295)

r = m[s′] (B.296)

and that
(∑
i∈I

{ αi, αi¡. ϕi if ϕi 6= ff
 αi, •¡. ff otherwise

)
αIα−−−→ m so that by rules eSel and

205

Appendix B. Missing Proofs from Part I

eTrn we know that

∃j ∈ I · αj = α (B.297)

m = ϕj (where ϕj 6= ff). (B.298)

Knowing (B.295), (B.297) and that ϕj 6= ff we can synthesise the controlled

transition

(s, [αj]ϕj)
α7−→ (s′, ϕj). (B.299)

Moreover, since the conjunct modal necessities are pairwise disjoint, from

(B.297) we infer that for every i ∈ I \ {j}, αi 6= α and so we can synthesise

the controlled transition (s, [αi]ϕi)
α7−→ (s′, tt) which in conjunction with

(B.299) can be synthesised as the transition

(s,
∧
i∈I [αi]ϕi)

α−→ (s′, ϕj) (B.300)

since mini(ϕj∧
∧
i∈I\{j} tt) = ϕj. Finally, since by (B.291), (B.296), (B.298)

and the inductive hypothesis we have that t′ ∈ traces((s′, ϕj)), from (B.300)

we conclude that αt′ ∈ traces((s,
∧
i∈I [αi]ϕi)) as required.

– iDef: By rule iDef we get that

s
α−→ s′ (B.301)

r = id[s′] (B.302)

and that
(∑
i∈I

{ αi, αi¡. ϕi if ϕi 6= ff
 αi, •¡. ff otherwise

)
6α−→ from which we can infer that

for every i ∈ I, αi 6= α. With this result, from (B.301) we can thus

synthesise the controlled transition (s,
∧
i∈I [αi]ϕi)

α−→ (s′, tt) and so since

tt = id and by (B.291), (B.302) and the inductive hypothesis we have that

t′ ∈ traces((s′, tt)). Hence, we can conclude that αt′ ∈ traces((s,
∧
i∈I [αi]ϕi))

as required.

• ϕ = maxX.ϕ′: Since X ∈ fv(ϕ′) we can deduce that ϕ′ /∈ {tt,ff}, and also that

ϕ′ 6= X since logical variables are required to be guarded in sHMLnf. We can

206

Appendix B. Missing Proofs from Part I

thus infer that ϕ′ adheres to a specific structure, that is, maxY0...Yn.
∧
i∈I [αi]ϕi

(where maxY0...Yn. is an arbitrary number of fixpoint declarations, possibly

none). Hence, since from (B.292) we infer maxX.maxY0...Yn.
∧
i∈I [αi]ϕi [s]

α−→ r,

and since fixpoint unfolding preserves semantics, we get that

∧
i∈I [αi]ϕi{maxXY0...Yn.

∧
i∈I [αi]ϕi/X, . . .} [s]

α−→ r. (B.303)

After reaching the point where we know (B.303), the proof proceeds as per the

previous case (i.e., when ϕ =
∧
i∈I [αi]ϕi). We thus skip this part of the proof and

simply deduce that αt′ ∈ traces((s,
∧
i∈I [αi]ϕi{maxXY0...Yn.

∧
i∈I [αi]ϕi/X, . . .})).

Since unfolded recursive formulas are equivalent to their folded versions, and

since ϕ′= maxY0...Yn.
∧
i∈I [αi]ϕi, we deduce that αt′ ∈ traces((s,maxX.ϕ′)) as re-

quired, and so we are done.

Proof for the if case. We again proceed by induction on the structure of t.

Case t = ε. This case holds trivially since the empty trace can be executed by

every system, i.e., ε ∈ traces(ϕ [s]) as required.

Case t = αt′. Assume that αt′ ∈ traces((s, ϕ)) and so by the definition of traces we

know that there exists a system r such that

(s, ϕ)
α−→ r (B.304)

t′ ∈ traces(r). (B.305)

We proceed by case analysis on ϕ.

• ϕ ∈ {ff, X}: These cases do not apply because state (s,ϕ) is invalid.

• ϕ = tt: Since (s, tt)
α−→ (s′, tt) this case holds trivially since r = (s′, tt) and so by

(B.305) and the inductive hypothesis we get that t′ ∈ traces(tt [s′]) and since

tt = id, by rules iTrn and eTrn we have that tt [s]
α−→ tt [s′] which allows us

to conclude that αt′ ∈ traces(tt [s]).

• ϕ =
∧
i∈I [αi]ϕi and #i∈I αi: In this case we have that

(s,
∧
i∈I [αi]ϕi)

α7−→ r (B.306)

∃ψ · r = (s′,mini(ψ)) (B.307)

207

Appendix B. Missing Proofs from Part I

and so since the branches of the conjunction are disjoint, we only need to

further investigate the following cases:

– ∀i∈ I ·αi 6=α: Hence, from (B.306) we can infer that for every i ∈ I we have

that (s, [αi]ϕi)
α7−→ (s′, tt) and that

s
α−→ s′ (B.308)

mini(ψ) = tt (since ψ =
∧
i∈I tt). (B.309)

Therefore, as we know (B.308) and that for every i ∈ I then αi 6= α, by

rules eTrn and eSel we can infer that
(∑
i∈I

{ αi, αi¡. ϕi if ϕi 6= ff
 αi, •¡. ff otherwise

)
6α−→

and so by the definition of − and rule iDef we conclude that

∧
i∈I [αi]ϕi [s]

α−→ tt [s′]. (B.310)

Finally, from (B.305), (B.307), (B.309) and by the inductive hypothesis

we have that t′ ∈ traces(tt [s′]) and so knowing (B.310), we can infer that

αt′ ∈ traces(
∧
i∈I [αi]ϕi [s]).

– ∃j ∈ I · ηj =α but ∀i∈ I \ {j} · αi 6=α: In this case, from the controlled

synthesis rules and from (B.306) and (B.307) we can infer that ∃j ∈ I ·

(s, [αj]ϕj)
α7−→ (s′, ϕj) and that ∀i ∈ I \ {j} · (s, [αi]ϕi)

α7−→ (s′, tt) and finally

that

s
α−→ s′ (B.311)

mini(ψ) = mini(ϕj∧
∧
i∈I tt) = ϕj (B.312)

where ϕj 6= ff as otherwise the resulting state (s′,mini(ff)) would be invalid

and thus removed by the synthesis along with any transitions leading to

it (including (B.306)). Knowing that there exists j ∈ I so that αj 6= α and

by rule eTrn we can also deduce that αj , αj¡. ϕj
αIα−−−→ ϕj and so by rule

eSel we have that
(∑
i∈I

{ αi, αi¡. ϕi if ϕi 6= ff
 αi, •¡. ff otherwise

)
αIα−−−→ ϕj . This means

that by (B.311), rule iTrn and the definition of − we conclude that

∧
i∈I [αi]ϕi [s]

α−→ ϕj [s′]. (B.313)

208

Appendix B. Missing Proofs from Part I

Finally, since from (B.305), (B.307), (B.312) and the inductive hypothesis

we know that t′ ∈ traces(ϕj [s′]), from (B.313) we can subsequently infer

that αt′ ∈ traces(
∧
i∈I [αi]ϕi [s]) as required.

• ϕ = maxX.ϕ′ and X ∈ fv(ϕ′): We now have that (s,maxX.ϕ′)
α−→ (s′, ψ) because

(s, ϕ′{maxX.ϕ′
/X})

α7−→ (s′, ψ) (B.314)

and so since ϕ′ can neither be X (since sHMLnf requires fixpoint variables to be

guarded) nor ff or tt (sinceX ∈ fv(ϕ′)) we can deduce that ϕ′ must have the form

maxY0...Yn.
∧
i∈I [αi]ϕi. Since fixpoint unfolding preserves formula semantics,

from (B.314) we can then deduce that

(s,
∧
i∈I [αi]ϕi{maxXY0...Yn.

∧
i∈I [αi]ϕi/X, . . .})

α7−→ (s′, ψ). (B.315)

From this point onwards the proof proceeds as per the previous case (ϕ =∧
i∈I [αi]ϕi), we thus skip this part of the proof and safely conclude that

αt′ ∈ traces(
∧
i∈I [αi]ϕi{maxXY0...Yn.

∧
i∈I [αi]ϕi/X, . . .} [s]). (B.316)

Since fixpoint folding preserves semantics and ϕ′ = maxY0...Yn.
∧
i∈I [αi]ϕi, from

(B.316) we thus conclude that αt′ ∈ traces(maxX.ϕ′ [s]) as required, and so

we are done.

B.5.2.1 Proving Lemma B.7

We must prove that for every system state s and r, sHMLnf formula ϕ and action α,

if ϕ [s]
α

==⇒ r then ϕ [s]
α−→ r.

Since we assume that the SuS s does not perform τ actions, by the rules in

our enforcement model we know that the only case when a τ reduction is part of a

monitored execution occurs when the monitor suppresses a (visible) action of s.

Proof. We proceed by case analysis on ϕ.

Case ϕ ∈ {X,ff}. These cases do not apply since @m · X = m and since ff = sup

and so @β ∈ Act · sup[s]
β

==⇒.

209

Appendix B. Missing Proofs from Part I

Case ϕ = tt. Since tt = id cannot suppress any action, we can deduce that the

delayed transition in (tt , s)
α

==⇒ r is in fact a strong one and so that (tt , s)
α−→ r

as required.

Case ϕ =
∧
i∈I [αi]ϕi. Assume that

(
∑
i∈I

{ αi¡. ϕi if ϕi 6= ff
 αi, τ ¡. ff otherwise)[s]

α
==⇒ r. (B.317)

From the delayed transition in (B.317) we infer that the system must perform some

action β which is then suppressed by one of the monitor’s branches, and so there

must exist an index j ∈ I so that αj = β and αj , τ ¡. ff
βIτ

===⇒ ff . However, since

ff = sup, we know that if any invalid action β were to be executed by s and, as a

consequence, suppressed by the monitor, any subsequent action (including α) would

also be suppressed by sup, in which case the instrumented system in (B.317) would

be unable to eventually execute α and thus yield a contradiction. Therefore, the only

way that transition (B.317) can happen is when the monitor does not suppress any

action prior to executing α, which thus means that the delayed transition in (B.317)

is in fact a strong one, i.e., (
∑
i∈I

{ αi¡. ϕi if ϕi 6= ff
 αi, τ ¡. ff otherwise)[s]

α−→ r as required.

Case ϕ = maxX.ϕ′ where X ∈ fv(ϕ′). Assume that maxX.ϕ′ [s]
α

==⇒ r and so since

JmaxX.ϕ′K = Jϕ′{maxX.ϕ′
/X}K we can deduce that

ϕ′{maxX.ϕ′
/X} [s]

α
==⇒ r. (B.318)

Since ϕ′{maxX.ϕ′
/X} ∈ sHMLnf, by the restrictions imposed by sHMLnf we know that

ϕ′ cannot be X because (bound) logical variables are required to be guarded, and it

also cannot be tt or ff since X is required to be defined in ϕ, i.e., X ∈ fv(ϕ′). Hence,

we know that ϕ′ can only have the form of

ϕ′ = maxY0...Yn.
∧
i∈I [αi]ϕi (B.319)

where maxY0 . . . Yn. . . . represents an arbitrary number of fixpoint declarations, pos-

sibly none. Hence, since Jϕ′K = J
∧
i∈I [αi]ϕi{maxXY0...Yn.

∧
i∈I [αi]ϕi/X, . . .}K, from

210

Appendix B. Missing Proofs from Part I

(B.318) and (B.319) we have that

∧
i∈I [αi]ϕi{maxXY0...Yn.

∧
i∈I [αi]ϕi/X, . . .} [s]

α
==⇒ r. (B.320)

Having reached the point where we know (B.320), the proof becomes identical as

per the previous case (ϕ =
∧
i∈I [αi]ϕi), we thus skip this part of the proof and safely

conclude that
∧
i∈I [αi]ϕi{maxXY0...Yn.

∧
i∈I [αi]ϕi/X, . . .} [s]

α−→ r. Hence, knowing

(B.319) and that Jϕ′K = J
∧
i∈I [αi]ϕi{maxXY0...Yn.

∧
i∈I [αi]ϕi/X, . . .}K, from (B.318) and

(B.319) we conclude that maxX.ϕ′ [s]
α−→ r as required, and so we are done.

211

C. Missing Proofs from Part II

In this chapter we present the proofs for any result that was omitted from the main

text of Part II.

C.1 Missing proofs from Chapter 9

In this section we prove Propositions 9.1 and 9.2 as these proofs were omitted from

the main text of Chapter 9.

C.1.1 Proving Proposition 9.1

Since these proofs are very similar to the ones proven for Propositions 3.1 and 3.2

in Appendix B.1, we omit the similar cases and focus on showing the differing ones.

We thus prove that for every instrumented transition m[s]
u

==⇒ m′[s′] we can deduce:

(a) u = zipbi(t, κ) and m
κ

==⇒ m′ and s
t

=⇒ s′; or

(b) u = zipbi(t, κ); (a!v)t′ and m
κ

==⇒m′′a!v and m′′ 6 •−→ and s
t;(a!v)t′

======⇒ s′ and m′ = id.

Proof. We proceed by induction on the number of µ reductions in m[s]
u

==⇒ m′[s′]. We

omit showing the base case (for 0 reductions) as it is identical to that of Proposi-

tion 3.1.

Case k + 1 reductions. As we now assume k + 1 reductions we have that

m[s]
µ−→ m′′[s′′] (C.1)

m′′[s′′]
µ−→k
m′[s′] (≡ m′′[s′′]

u
==⇒ m′[s′]) (C.2)

212

Appendix C. Missing Proofs from Part II

and so by (C.2) and the inductive hypothesis we can immediately deduce either that

zipbi(t, κ) = u and m′′
κ

==⇒ m′ and s′′
t

=⇒ s′; or thatu = zipbi(t, κ); (a!v)t′ and m′′
κ

==⇒ m′′′ 6a!v−−→ and m′′′ 6 •−→

and s′′
t;(a!v)t′

======⇒ s′ and m′ = id

 .
(C.3)

Since the reduction in (C.1) can be the result of any instrumentation rule, we must

consider each eventuality. We omit showing the cases for rules iAsy and iDef as

these are identical to those proven for Proposition 3.1, and the cases for iDisO,

iEnO and iTrnO/I as these are very similar to those of rules iSup, iIns and iTrn

respectively in Proposition 3.1.

• iDisI: In this case from (C.1) we can deduce that µ = τ and that

m
•Ib?w−−−−−→ m′′ (C.4)

s
b?w−−−→ s′′ (C.5)

and so since zipbi((b?w)t, (•Ib?w)κ) = u = zipbi(t, κ), if we combine (C.4) and

(C.5) to the respective reductions in (C.3) we can conclude that

zipbi((b?w)t, (•Ib?w)κ)=u and m
(•Ib?w)κ

=======⇒ m′ and s
(b?w)t

=====⇒ s′; or thatu = zipbi((b?w)t, (•Ib?w)κ); (a!v)t′ and m
(•Ib?w)κ

=======⇒ m′′′ 6a!v−−→ and

m′′′ 6 •−→ and s
(b?w)t;(a!v)t′

=========⇒ s′ and m′ = id


as required.

• iEnI: From (C.1) we can now deduce that µ = b?w and that

m
(b?w)I•−−−−−−→ m′′ (C.6)

s′′ = s′ (C.7)

and so by the definition of zipbi we deduce that zipbi(t, (b?wI•)κ) = (b?w)u where

213

Appendix C. Missing Proofs from Part II

zipbi(t, κ) =u, so that by (C.6), (C.7) and (C.3) we conclude that

zipbi(t, (b?wI•)κ)=(b?w)u and m
(b?wI•)κ

=======⇒ m′ and s
t

=⇒ s′; or that(b?w)u = zipbi(t, (b?wI•)κ); (a!v)t′ and m
(b?wI•)κ

=======⇒ m′′′ 6a!v−−→ and

m′′′ 6 •−→ and s
t;(a!v)t′

======⇒ s′ and m′ = id


as required, and so we are done.

C.1.2 Proving Proposition 9.2

To prove Proposition 9.2 we must show that the following implications hold.

(a) if m κ
==⇒ m′, s t

=⇒ s′ and zipbi(t, κ) = u then m[s]
u

==⇒ m′[s′], and that

(b) if m κ
==⇒m′′ 6a!v−−→, m′′ 6 •−→, s t;(a!v)t′

======⇒ s′ and zipbi(t, κ) = u then m[s]
u;(a!v)t′

======⇒ id[s′].

We omit showing the proof for (b) as it is almost identical to Proposition 3.2 (b).

Proof for (a). We proceed by rule induction on zipbi(t, κ). We omit case zipbi(ε, ε) as it

is identical to the one proven for Proposition 3.2 (a). We also elide the following cases:

(i) zipbi((a!v)t′, ((a!v)I•)κ′), (ii) zipbi(t, (•I(a!v))κ′), (iii) zipbi((b!w)t′, ((b!w)I(a!v))κ′) and

zipbi((b?w)t′, ((a?v)I(b?w))κ′). Cases (i) and (ii) are respectively similar to the cases

zipbi(αt
′, (αI•)κ′) and zipbi(t, (•Iα)κ′) from Proposition 3.2 (a), and the cases in (iii)

are both similar to case zipbi(βt
′, (βIα)κ′) of the same proof.

Case zipbi((b?w)t, (b?wI•)κ). Assume that zipbi((b?w)t, (•Ib?w)κ) = u where

zipbi(t, κ) = u (C.8)

and that s (b?w)t
=====⇒ s′ and m

(•Ib?w)κ
=======⇒ m′ from which by the definitions of t

=⇒ and
κ

==⇒ respectively, we can infer that

s
b?w

===⇒ s′′ (C.9)

s′′
t

=⇒ s′ (C.10)

m
•Ib?w−−−−−→ m′′ (C.11)

m′′
κ

==⇒ m′. (C.12)

214

Appendix C. Missing Proofs from Part II

Since b?w
===⇒ def

=
τ−→* b?w−−−→ from (C.9) we have that s τ−→* s′′′ and that s′′′ b?w−−−→ s′′, and so

knowing the former we can apply rule iAsy for zero or more times, and subsequently

rule iDisI, since we know (C.11) and the latter, to deduce that

m[s]
ε

=⇒ m′′[s′′]. (C.13)

Finally, since we know (C.8), (C.10) and (C.12) we can invoke the inductive hypothe-

sis and deduce that m′′[s′′] u
==⇒ m′[s′], which when combined with (C.13) we are able

to conclude that m[s]
u

==⇒ m′[s′] as required.

Case zipbi(t, (b?wI•)κ). Now assume that zipbi(t, (b?wI•)κ) = (b?w)u where

u = zipbi(t, κ) (C.14)

and that

s
t

=⇒ s′ (C.15)

m
(b?wI•)κ

=======⇒ m′. (C.16)

Therefore, by applying the definition κ
==⇒ to (C.16) we have that

m′′
κ

==⇒ m′. (C.17)

and that m (b?w)I•−−−−−−→ m′′ from which by rule iEnI we can infer that

m[s]
b?w

===⇒ m′′[s]. (C.18)

Finally, since we know (C.14), (C.15) and (C.17) we can apply the inductive hypoth-

esis and deduce that m′′[s] u
==⇒ m′[s′], which we can combine with (C.18) to conclude

that m[s]
(b?w)u

=====⇒ m′[s′] as required, and so we are done.

C.2 Missing proofs from Chapter 11

This appendix chapter presents the proofs for the main results omitted from the

main text of Chapter 11. Specifically, we prove Propositions 11.1 and 11.2 (sound-

215

Appendix C. Missing Proofs from Part II

ness and eventual transparency) and Theorem 11.2 (optimality) along with their

supporting lemmas. Once again, to facilitate these proofs, we occasionally use the

satisfaction semantics for sHML [10, 61] presented in Figure 5.1 of Chapter 5 which

allows us to use s � ϕ in lieu of s ∈ JϕK. We also refer to the τ-closure property of

sHML, Proposition B.1 (restated below as Proposition C.1), that was proven in [10].

Proposition C.1. if s τ−→ s′ and s � ϕ then s′ � ϕ.

C.2.1 Proving Proposition 11.1 (soundness)

To prove that for every system s, formula ϕ and set of ports Π

if JϕK 6=∅ then Lϕ,Π M[s]�ϕ

we must prove a stronger result stating that for every system r simulated by Lϕ,Π M[s],

if JϕK 6=∅ and r @∼ Lϕ,Π M[s] then r �ϕ.

We prove this by showing that relation R (below) is a satisfaction relation (�) and so

that it abides by the rules in Figure 5.1 of Chapter 5.

R def
=
{

(r, ϕ)
∣∣∣ JϕK 6=∅ and r @∼ Lϕ,Π M[s]

}
.

Proof. We thus proceed by case analysis on the structure of ϕ.

Cases ϕ∈{X,ff}. These cases do not apply since JffK =∅ and LX,Π M does not yield

a valid monitor.

Case ϕ = tt. This case holds trivially as for every process r @∼ L tt,Π M[s] the pair

(r, tt) is in R since we know that JttK 6=∅.

Case ϕ = maxX.ϕ and X∈fv(ϕ). Lets assume that (r,maxX.ϕ) ∈ R and so we have

that

JmaxX.ϕK 6=∅ (C.1)

r @∼ L maxX.ϕ,Π M[s]. (C.2)

To prove that R is a satisfaction relation we show that (r, ϕ{maxX.ϕ/X}) ∈ R as well.

Hence, since Lϕ{maxX.ϕ/X},Π M produces a monitor that is the unfolded equivalent

of L maxX.ϕ,Π M we can conclude that L maxX.ϕ,Π M ∼ Lϕ{maxX.ϕ/X},Π M and so from

216

Appendix C. Missing Proofs from Part II

(C.2) we have that

r @∼ Lϕ{maxX.ϕ/X},Π M[s]. (C.3)

Finally, since JmaxX.ϕK = Jϕ{maxX.ϕ/X}K, from (C.1) we have that Jϕ{maxX.ϕ/X}K 6=∅,

and so by (C.3) and the definition of R we conclude that (r, ϕ{maxX.ϕ/X}) ∈ R as

required.

Case ϕ=
∧
i∈I

[pi, ci¡]ϕi and #h∈I ph, ch¡. Assume that (r,
∧
i∈I

[pi, ci¡]ϕi) ∈ R and so we

have that

J
∧
i∈I [pi, ci¡]ϕiK 6=∅ (C.4)

r @∼ L
∧
i∈I [pi, ci¡]ϕi,Π M[s]. (C.5)

By the definition of L− M we further know that L
∧
i∈I [pi, ci¡]ϕi,Π M produces the fol-

lowing monitor m,

m = recY.
(∑
i∈I

{
dis(pi, ci, Y,Π) if ϕi=ff
 pi, ci¡.Lϕi,Π M otherwise

)
+ def(

∧
i∈I

[pi, ci¡]ϕi)

which can be further unfolded as

L
∧
i∈I

[pi, ci¡]ϕi,Π M =
(∑
i∈I

{
dis(pi, ci,m,Π) if ϕi=ff
 pi, ci¡.Lϕi,Π M otherwise

)
+ def(

∧
i∈I

[pi, ci¡]ϕi). (C.6)

In order to prove thatR is a satisfaction relation, for this case we must show that for

every j ∈ I, (r, [pj , cj¡]ϕj)∈R as well. We thus inspect the different types of branches

that are definable in sHMLnf and hence we consider the following cases:

(i) A violating output branch, [(x)!(y), cj¡]ff:

To prove that (r, [(x)!(y), cj¡]ff)∈R we must show that (a) J[(x)!(y), cj¡]ffK 6=∅, (b)

r @∼ L [(x)!(y), cj¡]ff,Π M[s], and finally that (c) for every port a and payload value v,

if mtch((x)!(y),a!v) =σ and cjσ ⇓ true then there does not exist a system r′ such

that r a!v
===⇒ r′. From (C.4) and the definition of J−K we can immediately infer

that (a) holds, and so we have that

J[(x)!(y), cj¡]ffK 6=∅. (C.7)

217

Appendix C. Missing Proofs from Part II

We now note that since from (C.6) we know that branch [(x)!(y), cj¡]ff is synthe-

sised into dis((x)!(y), cj ,m,Π) in m, by the definition of dis we can infer that one

of the summed monitors in (C.6) is a suppression monitor of the form

dis((x)!(y), cj ,m,Π) = (x)!(y), cj , •¡.m. (C.8)

Since L[(x)!(y), cj¡]ff,Π M def
= recY. (x)!(y), cj , •¡.Y+ (x)?(y), true¡.id we know that this

monitor can only disable actions matching (x)!(y), cj¡. By contrast, from (C.8)

we infer that m= L
∧
i∈I [pi, ci¡]ϕi,Π M can additionally disable other actions as

well. Hence, the composite system m[s] (for any s) can perform at most the

same actions as L [(x)!(y), cj¡]ff,Π M[s] and so from (C.5) we can deduce that (b)

holds since

r @∼ L
∧
i∈I

[pi, ci¡]ϕi,Π M[s]@∼ L [(x)!(y), cj¡]ff,Π M[s] (C.9)

as required. Finally, from (C.6) we know that monitor m was synthesised from a

normalized conjunction which is disjoint (since #h∈I ph, ch¡) and that the syn-

thesised monitors def(
∧
i∈I [pi, ci¡]ϕi) can only transform actions that do not

satisfy the conditions of the other monitors in m. This enables us to conclude

that whenever the system performs action a!v such that mtch((x)!(y),a!v) =σ

and cjσ ⇓ true only the suppression branch presented in (C.8) (which is a sin-

gle branch of m in (C.6)) can be selected via rule eSel. Once this branch is

selected, the action is suppressed via rule eTrn and as a result disabled via

rule iDisO which causes the composite system m[s] to transition over a silent

τ action to its recursive derivative m. This means that m[s] 6a!v
===⇒ and so from

(C.5) we can also deduce that (c) also holds since

@r′ · r a!v
===⇒ r′ (C.10)

which means that any output modal necessity that precedes ff can never be

satisfied by r as required. This case thus holds by (C.7), (C.9) and (C.10).

(ii) A violating input branch, [(x)?(y), cj¡]ff where Y /∈fv(cj):

To prove that (r, [(x)?(y), cj¡]ff) ∈ R we show that: (a) J[(x)?(y), cj¡]ffK 6=∅, (b)

r @∼ L [(x)?(y), cj¡]ff,Π M[s] and finally that (c) for every port a and payload value v,

218

Appendix C. Missing Proofs from Part II

if mtch((x)?(y),a?v) =σ and cjσ ⇓ true, then there does not exist a system r′ such

that r a?v
===⇒ r′.

By (C.4) and the definition of J−K we can infer that (a) holds, and so that

J[(x)?(y), cj¡]ffK 6=∅. (C.11)

Now, from (C.6) we can infer that the summation of monitors in m includes a

summation of insertion monitors and so by the definition of dis we have that

dis((x)?(y), cj ,m,Π) =
∑
b∈Π

 •, cj{b/x},b?w¡.m. (C.12)

Therefore from (C.12) we can deduce that monitor

L [(x)?(y), cj¡]ff,Π M = recY.
∑
b∈Π

 •, cj{b/x},b?w¡.m+ def([(x)?(y), cj¡]ff)

where def([(x)?(y), cj¡]ff)
def
= (x)?(y),¬cj []¡.id (C.13)

can only block and disable erroneous input actions satisfying [(x)?(y), cj¡]ff,

while monitor m in (C.6) can possibly disable additional actions. Hence the

monitored system m[s] can only perform either a subset or exactly the same

action as per L [(x)?(y), cj¡]ff,Π M[s] and so from (C.5) we can deduce that (b)

holds, and so that

r @∼ L
∧
i∈I

[pi, ci¡]ϕi,Π M[s]@∼ L [(x)?(y), cj¡]ff,Π M[s] (C.14)

as required. Finally, to show that (c) holds, recall that every system s is un-

able perform an input unless the environment provides it, and that the monitor

cannot allow an input to go through unless it has an identity (or replacement)

branch that forwards the environment’s input to the system. From (C.12) and

(C.13) we thus know that the synthesised monitor m does not include such an

identity (or replacement) branch for [(x)?(y), cj¡]ff, and unless Π = ∅, it instead

provides a summation of insertion transformations that allow the monitor to

insert a default domain value w on every port b in Π whenever cj{b/x} evaluates

to true at runtime. In this way, whenever the system is expecting to erroneously

procure an input from the environment, the monitor blocks and disables the

219

Appendix C. Missing Proofs from Part II

input and unless Π=∅ it also (non-deterministically) selects one of the synthe-

sised branches in (C.12) via rule eSel and performs the insertion via rule eTrn

which subsequently allows the instrumentation to proceed via rule iDisI that

forwards the generated input to the system. This causes the composite system

m[s] to transition over a silent τ action to the recursive derivative m. Since the

erroneous input is blocked regardless of whether the monitor inserts a value

or not, we can infer that m[s] 6a?v
===⇒ and so from (C.5) we can also deduce that

@r′ · r a?v
===⇒ r′ (C.15)

and so the violating input modalities cannot ever be satisfied by r as required.

Therefore, this case holds by (C.11), (C.14) and (C.15).

(iii) A non-violating branch, [pj , cj¡]ϕj (where ϕj 6= ff):

To prove that this branch is inR, (r, [pj , cj¡]ϕj)∈R, we show that (a) J[pj , cj¡]ϕjK 6=∅,

(b) r @∼ L [pj , cj¡]ϕj ,Π M[s] and then that (c) for every action α and derivative r′,

when mtch(pj , α) =σ, cjσ ⇓ true and r
α

==⇒ r′ then (r′, ϕjσ)∈R.

From (C.4) and by the definition of J−K we can immediately determine that (a)

holds, and so that

J[pj , cj¡]ϕjK 6=∅ (C.16)

and since by the definition of L− M we know that monitor

L [pj , cj¡]ϕj ,Π M = recY. pj , cj¡.Lϕ,Π M + def([pj , cj¡]ϕj)

from (C.6) we can infer that both monitors m and L [pj , cj¡]ϕj ,Π M refrain from

modifying actions matching pj , cj¡ but m may disable more actions. Hence we

can infer that for all s, m[s]@∼ L [pj , cj¡]ϕj ,Π M[s] and so from (C.5) we can deduce

that (b) holds since

r @∼m[s]@∼ L [pj , cj¡]ϕj ,Π M[s] (C.17)

220

Appendix C. Missing Proofs from Part II

as required. We now prove that (c) holds by assuming that

mtch(pj , α) =σ and cjσ ⇓ true (C.18)

r
α

==⇒ r′ (C.19)

and so from (C.5) and (C.19) we can deduce that

m[s]
α

==⇒ q (where r′ @∼ q). (C.20)

Hence, by the definition of α
==⇒ we know that the delayed transition in (C.20) is

composed of zero or more τ-transitions followed by the α-transition, i.e.,

m[s]
τ−→*q′ α−→ q. (C.21)

By the rules in our model we know that the τ-reductions in (C.21) could have

been the result of either one of these instrumentation rules, namely iDisI, iDisO

or iAsy. From (C.6) we however know that whenever an action is disabled (via

rules iDisO/I) the synthesised monitor m always recurses back to its original

form m and in this case only s changes its state to some s′; the same effect

occurs if rule iAsy is applied instead. Hence we know that q′ = m[s′] (for some

derivative s′ of s), and so from (C.21) we thus have that

m[s′]
α−→ q. (C.22)

From (C.18) we also know that the reduction in (C.22) can be the result of either

iTrnI or iTrnO, and so we consider both cases.

(i) iTrnI: By assuming that (C.22) is the result of rule iTrnI we infer that

α = a?v and that

m
a?vIb?w−−−−−−→ m′ (C.23)

s′
b?w−−−→ s′′ (C.24)

q = m′[s′′]. (C.25)

Since we know that [pj , cj¡]ϕj and ϕj 6= ff, from (C.6) we know that m de-

221

Appendix C. Missing Proofs from Part II

fines an identity branch of the form pj , cj¡.Lϕj ,Π M which is completely dis-

joint from the rest of the monitors. This is true since m is derived from

a normalized conjunction in which #i∈I pi, ci¡, and the default monitors,

def(
∧
i∈I [pi, ci¡]ϕi), can only match actions that do not match with any

other monitor. Hence from (C.18) and (C.23) we can deduce that

m′ = Lϕjσ,Π M. (C.26)

Since from (C.16) and by the definition of J−K we know that JϕjσK 6=∅ and

from (C.20), (C.25) and (C.26) we have that r′ @∼ Lϕjσ,Π M[s′′], by the definition

of R we can conclude that (r′, ϕjσ) ∈ R as required.

(ii) iTrnO: We omit this proof due to its strong resemblance to that of case

iTrnI.

Therefore from (i) and (ii) we can conclude that (c) holds as well, which means

that

∀α, r′ · if mtch(pj , α) =σ, cjσ ⇓ true and r
α

==⇒ r′ then (r′, ϕjσ) ∈ R. (C.27)

Hence this case is done by (C.16), (C.17) and (C.27).

C.2.2 Proving Proposition 11.2 (eventual transparency)

We must prove that for every formula ϕ∈ sHMLnf if Lϕ,Π M =m then evtenf(m,ϕ).

Since sHMLnf is equally expressive as sHML we prove that for every ϕ∈ sHMLnf, if

Lϕ,Π M[s] t
=⇒ m′[s′] and s′ � after(ϕ, t) then m′[s′] ∼ s′. We also refer to Proposition C.2

(Transparency) and Lemma C.1, defined below, and whose proofs are provided in

?? C.2.2.1?? C.2.2.2 respectively.

Proposition C.2 (Transparency). For every state s∈Sys and ϕ∈ sHMLnf, if s∈ JϕK

then Lϕ,Π M[s]∼ s.

Lemma C.1. For every formula ϕ∈ sHMLnf, state s and trace t, if Lϕ,Π M[s] t
=⇒ m′[s′]

then ∃ψ ∈ sHMLnf · ψ = after(ϕ, t) and Lψ,Π M = m′.

222

Appendix C. Missing Proofs from Part II

Proof. Assume that

Lϕ,Π M[s] t
=⇒ m′[s′] (C.28)

s′ � after(ϕ, t) (C.29)

and so from (C.28) and Lemma C.1 we have that

∃ψ ∈ sHMLnf · ψ = after(ϕ, t) (C.30)

L after(ϕ, t),Π M = m′ = Lψ,Π M. (C.31)

Hence, knowing (C.29) and (C.30), by Proposition C.2 (Transparency) we conclude

that L after(ϕ, t),Π M[s′] ∼ s′ as required, and so we are done.

C.2.2.1 Proving Proposition C.2 (transparency)

We need to prove that for every system s, if s∈ JϕK then m[s] ∼ s. Since s∈ JϕK

is analogous to s�ϕ we prove that relation R def
= { (s, Lϕ,Π M[s]) s�ϕ } is a strong

bisimulation relation that satisfies the following transfer properties:

(a) if s µ−→ s′ then Lϕ,Π M[s] µ−→ r′ and (s′, r′) ∈ R

(b) if Lϕ,Π M[s] µ−→ r′ then s
µ−→ s′ and (s′, r′) ∈ R

We prove (a) and (b) separately by assuming that s�ϕ in both cases as defined by

relation R and conduct these proofs by case analysis on ϕ.

Proof for (a). We now proceed to prove (a) by case analysis on ϕ.

Cases ϕ ∈
{

ff, X
}

. Both cases do not apply since @s · s � ff and similarly since X

is an open-formula and so @s · s � X.

Case ϕ = tt. We now assume that

s � tt (C.32)

s
µ−→ s′ (C.33)

and since µ ∈ {τ, α}, we must consider both cases.

• µ = τ : Since µ = τ , we can apply rule iAsy on (C.33) and get that

L tt,Π M[s] τ−→ L tt,Π M[s′] (C.34)

223

Appendix C. Missing Proofs from Part II

as required. Also, since we know that every process satisfies tt, we know that

s′ � tt, and so by the definition of R we conclude that

(s′, L tt,Π M[s′]) ∈ R (C.35)

as required. This means that this case is done by (C.34) and (C.35).

• µ = α: Since L tt,Π M = id encodes the ‘catch-all’ monitor, recY. (x)!(y), true, x!y¡.Y+

 (x)?(y), true, x?y¡.Y , by rules eRec and eTrn we can apply rule iTrnI/O and de-

duce that id αIα−−−→ id, which we can further refine as

L tt,Π M[s] α−→ L tt,Π M[s′] (C.36)

as required. Once again since s′ � tt, by the definition of R we can infer that

(s′, L tt,Π M[s′]) ∈ R (C.37)

as required, and so this case is done by (C.36) and (C.37).

Case ϕ =
∧
i∈I [pi, ci¡]ϕi. We assume that

s �
∧
i∈I [pi, ci¡]ϕi (C.38)

s
µ−→ s′ (C.39)

and by the definition of � and (C.38) we have that for every index i∈ I and action

β ∈Act,

if s β
==⇒ s′,mtch(pi, β) =σ and ciσ ⇓ true then s �

∧
i∈I [pi, ci¡]ϕi. (C.40)

Since µ ∈ {τ, α}, we must consider both possibilities.

• µ = τ : Since µ = τ , we can apply rule iAsy on (C.39) and obtain

L
∧
i∈I [pi, ci¡]ϕi,Π M[s] τ−→ L

∧
i∈I [pi, ci¡]ϕi,Π M[s′] (C.41)

as required. Since µ =τ , and since we know that sHML is τ-closed, from (C.38),

(C.39) and Proposition C.1, we can deduce that s′ �
∧
i∈I [pi, ci¡]ϕi, so that by

224

Appendix C. Missing Proofs from Part II

the definition of R we conclude that

(s′, L
∧
i∈I [pi, ci¡]ϕi,Π M[s′]) ∈ R (C.42)

as required. This subcase is therefore done by (C.41) and (C.42).

• µ = α: Since µ = α, from (C.39) we know that

s
α−→ s′ (C.43)

and by the definition of L− M we can immediately deduce that

Lϕ∧,Π M = recY.
(∑
i∈I

{
dis(pi, ci, Y,Π) if ϕi = ff
 pi, ci¡.Lϕi,Π M otherwise

)
+ def(ϕ∧) (C.44)

where ϕ∧
def
=
∧
i∈I [pi, ci¡]ϕi. Since the branches in the conjunction are all dis-

joint, #i∈I pi, ci¡, we know that at most one of the branches can match the

same (input or output) action α. Hence, we consider two cases, namely:

– No matching branches (i.e., @j ∈ I ·mtch(pj , α) =σ and cjσ ⇓ true): Since none

of the symbolic actions in (C.44) can match action α, we can infer that if

α is an input, i.e., α = a?v, then it will match the default monitor def(ϕ∧)

and transition via rule iTrnI, while if it is an output, i.e., α = a!v, rule iDef

handles the underspecification. In both cases, the monitor reduces to id.

Also, notice that rules iDisO and iDisI cannot be applied since if they do,

it would mean that s can also perform an erroneous action, which is not

the case since we assume (C.38). Hence, we infer that

L
∧
i∈I [pi, ci¡]ϕi,Π M[s] α−→ L tt,Π M[s′] (since id =L tt,Π M) (C.45)

as required. Also, since any process satisfies tt, we know that s′ � tt, and

so by the definition of R we conclude that

(s′, L tt,Π M[s′]) ∈ R (C.46)

as required. This case is therefore done by (C.45) and (C.46).

– One matching branch (i.e., ∃j ∈ I ·mtch(pj , α) =σ and cjσ ⇓ true): From (C.44)

225

Appendix C. Missing Proofs from Part II

we can infer that the synthesised monitor can only disable the (input or

output) actions that are defined by violating modal necessities. However,

from (C.40) we also deduce that s is incapable of executing such an action

as otherwise would contradict assumption (C.38). Hence, since we now

assume that branch pj , cj¡ matches α, from (C.44) we deduce that this

action can only be transformed by an identity transformation and so by

rule eTrn we have that

 pj , cj¡.Lϕj ,Π M αIα−−−→ Lϕjσ,Π M. (C.47)

By applying rules eSel, eRec on (C.47) and by (C.43), (C.44) and iTrnI/O

(depending on whether α is an input or output action) we get that

L
∧
i∈I [pi, ci¡]ϕi,Π M[s] α−→ Lϕjσ,Π M[s′] (C.48)

as required. By (C.40), (C.43) and since we assume that pj , cj¡ matches α

we have that s′ � ϕjσ, and so by the definition of R we conclude that

(s′, Lϕjσ,Π M[s′]) ∈ R (C.49)

as required. Hence, this subcase holds by (C.48) and (C.49).

Case ϕ = maxX.ϕ and X ∈ fv(ϕ). Now, lets assume that

s
µ−→ s′ (C.50)

and that s � maxX.ϕ from which by the definition of � we have that

s � ϕ{maxX.ϕ/X}. (C.51)

Since ϕ{maxX.ϕ/X}∈ sHMLnf, by the restrictions imposed by sHMLnf we know that:

ϕ cannot be X because (bound) logical variables are required to be guarded, and it

also cannot be tt or ff since X is required to be defined in ϕ, i.e., X ∈ fv(ϕ). Hence,

we know that ϕ can only have the following form, that is

ϕ = maxY0. . . .maxYn.
∧
i∈I

[pi, ci¡]ϕi (C.52)

226

Appendix C. Missing Proofs from Part II

and so by (C.51), (C.52) and the definition of � we have that

s � (
∧
i∈I [pi, ci¡]ϕi){··} where (C.53)

{··} = {maxX.ϕ/X, (maxY0. . . .maxYn.
∧
i∈I [pi, ci¡]ϕi)/Y0, . . .}.

Since we know (C.50) and (C.53), from this point onwards the proof proceeds as per

the previous case. We thus omit this part of the proof and immediately deduce that

∃m′ · L (
∧
i∈I [pi, ci¡]ϕi){··},Π M[s] µ−→ Lm′,Π M[s′] (C.54)

(s′, Lm′,Π M[s′]) ∈ R (C.55)

and so since L (
∧
i∈I [pi, ci¡]ϕi){··},Π M synthesises a monitor that is the unfolded

equivalent of that synthesised by Lϕ{maxX.ϕ/X},Π M, from (C.54) we can conclude

that

∃m′ · Lϕ{maxX.ϕ/X},Π M[s] µ−→ Lm′,Π M[s′] (C.56)

as required, and so this case holds by (C.55) and (C.56).

Proof for (b). To prove (b) we proceed by using the same case analysis approach as

the one we used for (a).

Cases ϕ ∈
{

ff, X
}

. Both cases do not apply since @s · s � ff and similarly since X

is an open-formula and @s · s � X.

Case ϕ = tt. Assume that

s � tt (C.57)

L tt,Π M[s] µ−→ r′ (C.58)

Since µ ∈ {τ,a?v,a!v}, we must consider each case.

• µ = τ : Since µ = τ , the transition in (C.58) can be performed via iDisI, iDisO

or iAsy. We must therefore consider these cases.

– iAsy: From rule iAsy and (C.58) we thus know that r′ = L tt,Π M[s′] and that

s
τ−→ s′ as required. Also, since every process satisfies tt, we know that

227

Appendix C. Missing Proofs from Part II

s′ � tt as well, and so we are done since by the definition of R we know

that (s′, L tt,Π M[s′]) ∈ R.

– iDisI: From rule iDisI and (C.58) we know that: r′ = m′[s′], s a?v−−−→ s′ and

that

L tt,Π M
•I(a?v)−−−−−→ m′. (C.59)

Since L tt,Π M = id we can deduce that (C.59) is false and hence this case

does not apply.

– iDisO: The proof for this case is analogous as to that of case iDisI.

• µ = a?v: Since µ = a?v, the transition in (C.58) can be performed either via

iTrnI or iEnI. We consider both cases.

– iEnI: This case also does not apply since if the transition in (C.58) is

caused by rule iEnI we would have that L tt,Π M a?vI•−−−−→ m which is false

since L tt,Π M = id = recY. (x)!(y), true, x!y¡.Y + (x)?(y), true, x?y¡.Y and rules

eRec, eSel and eTrn state that for every a?v, id a?vIa?v−−−−−−→ id, thus leading

to a contradiction.

– iTrnI: By applying rule iTrnI on (C.58) we know that r′ = m′[s′] such that

L tt,Π M a?vIb?w−−−−−−→ m′. (C.60)

s
b?w−−−→ s′ (C.61)

Since L tt,Π M = id = recY. (x)!(y), true, x!y¡.Y + (x)?(y), true, x?y¡.Y , by ap-

plying rules eRec, eSel and eTrn to (C.60) we know that a?v = b?w,

m′ = id = L tt,Π M, meaning that r′ = L tt,Π M[s′]. Hence, since every pro-

cess satisfies tt we know that s′ � tt, so that by the definition of R we

conclude

(s′, L tt,Π M[s′]) ∈ R. (C.62)

Hence, we are done by (C.61) and (C.62) since we know that a?v = b?w.

• µ = a!v: When µ = a!v, the transition in (C.58) can be performed via iDef,

228

Appendix C. Missing Proofs from Part II

iTrnO or iEnO. We omit this proof as it is very similar to that of case µ = a?v.

Case ϕ =
∧
i∈I [pi, ci¡]ϕi. We now assume that

s �
∧
i∈I [pi, ci¡]ϕi (C.63)

L
∧
i∈I [pi, ci¡]ϕi,Π M[s] µ−→ r′. (C.64)

From (C.63) and by the definition of � we can deduce that

∀i ∈ I, β ∈ Act · if s β
==⇒ s′,mtch(pi, β) =σ and ciσ ⇓ true then s′ � ϕiσ (C.65)

and from (C.64) and the definition of L− M we have that(
recY.

(∑
i∈I

{
dis(pi, ci, Y,Π) if ϕi = ff
 pi, ci¡.Lϕi,Π M otherwise

)
+ def(

∧
i∈I

[pi, ci¡]ϕi)
)

[s′]
µ−→ r′. (C.66)

From (C.66) we can deduce that the synthesised monitor can only disable an (input

or output) action β when this satisfies a violating modal necessity. However, we also

know that s is unable to perform such an action as otherwise it would contradict

assumption (C.65). Hence, we can safely conclude that the synthesised monitor in

(C.66) does not disable any (input or output) actions of s, and so by the definition

of dis we conclude that

∀a?v,a!v ∈ Act, s′ ∈ Sys·(
s

a?v−−−→ s′ implies L
∧
i∈I [pi, ci¡]ϕi,Π M 6•Ia?w−−−−−→ (for all w) and

s
a!v−−→ s′ implies L

∧
i∈I [pi, ci¡]ϕi,Π M 6a?vI•−−−−→

)
.

(C.67)

Since µ ∈ {τ,a?v,a!v}, we must consider each case.

• µ = τ : Since µ = τ , from (C.64) we know that

L
∧
i∈I [pi, ci¡]ϕi,Π M[s] τ−→ r′ (C.68)

The τ-transition in (C.68) can be the result of rules iAsy, iDisI or iDisO; we

thus consider each eventuality.

– iAsy: As we assume that the reduction in (C.68) is the result of rule iAsy,

229

Appendix C. Missing Proofs from Part II

we know that r′ = L
∧
i∈I [pi, ci¡]ϕi,Π M[s′] and that

s
τ−→ s′ (C.69)

as required. Also, since sHML is τ-closed, by (C.63), (C.69) and Proposi-

tion C.1 we deduce that s′ �
∧
i∈I [pi, ci¡]ϕi as well, so that by the definition

of R we conclude that

(s′, L
∧
i∈I [pi, ci¡]ϕi,Π M[s′]) ∈ R (C.70)

and so we are done by (C.69) and (C.70).

– iDisI: By assuming that reduction (C.68) results from iDisI, we have that

r′ = m′[s′] and that

L
∧
i∈I [pi, ci¡]ϕi,Π M •Ia?v−−−−→ m′ (C.71)

s
a?v−−−→ s′ (C.72)

By (C.67) and (C.72) we can, however, deduce that for every value w,

L
∧
i∈I [pi, ci¡]ϕi,Π M 6•Ia?w−−−−−→. This contradicts with (C.71) and so this case

does not apply.

– iDisO: As we now assume that the reduction in (C.68) results from iDisO,

we have that r′ = m′[s′] and that

s
a!v−−→ s′ (C.73)

L
∧
i∈I [pi, ci¡]ϕi,Π M a!vI•−−−−→ m′. (C.74)

Again, this case does not apply since from (C.67) and (C.73) we can deduce

that L
∧
i∈I [pi, ci¡]ϕi,Π M 6a!vI•−−−−→ which contradicts with (C.74).

• µ = a?v: When µ = a?v, the transition in (C.66) can be performed via rules iEnI

or iTrnI, we consider both possibilities.

– iEnI: This case does not apply since from (C.66) and by the definition of L− M

we know that the synthesised monitor does not include action enabling

transformations.

230

Appendix C. Missing Proofs from Part II

– iTrnI: By assuming that (C.66) is obtained from rule iTrnI we know that

recY.
(∑
i∈I

{
dis(pi, ci, Y,Π) if ϕi = ff
 pi, ci¡.Lϕi,Π M otherwise

)
+ def(

∧
i∈I

[pi, ci¡]ϕi)
a?vIb?w−−−−−−→m′

(C.75)

s
b?w−−−→ s′ (C.76)

r′ = m′[s′]. (C.77)

Since from (C.67) we know that the synthesised monitor in (C.75) does

not disable any action performable by s, and since from the definition of

L− M we know that the synthesis is incapable of producing action replacing

monitors, we can deduce that

a?v = b?w. (C.78)

With the knowledge of (C.78), from (C.76) we can thus deduce that

s
a?v−−−→ s′ (C.79)

as required. Knowing (C.78) we can also deduce that in (C.75) the monitor

transforms an action a?v either (i) via an identity transformation that was

synthesised from one of the disjoint conjunction branches, i.e., from a

branch pj , cj¡.Lϕj ,Π M for some j ∈ I, or else (ii) via the default monitor

synthesised by def(
∧
i∈I [pi, ci¡]ϕi). We consider both eventualities.

(i) In this case we apply rules eRec, eSel and eTrn on (C.75) and deduce

that

∃j ∈ I ·mtch(pj ,a?v) =σ and cjσ ⇓ true (C.80)

m′ = Lϕjσ,Π M. (C.81)

and so from (C.79), (C.80) and (C.65) we infer that s′ � ϕjσ from which

by the definition of R we have that (s′, Lϕjσ,Π M[s′]) ∈ R, and so from

231

Appendix C. Missing Proofs from Part II

(C.77) and (C.81) we can conclude that

(s′, r′) ∈ R (C.82)

as required, and so this case is done by (C.79) and (C.82).

(ii) When we apply rules eRec, eSel and eTrn we deduce that m′ = id

and so by the definition of L− M we have that

m′ = L tt,Π M. (C.83)

Consequently, as every process satisfies tt, we know that s′ � tt and

so by the definition of R we have that (s′, L tt,Π M[s′]) ∈ R, so that from

(C.77) and (C.83) we can conclude that

(s′, r′) ∈ R (C.84)

as required. Hence this case is done by (C.79) and (C.84).

• µ = a!v: When µ = a!v, the transition in (C.66) can be performed via iDef,

iTrnO or iEnO. We omit the proof for this case due to its strong resemblance

to that of case µ = a?v.

Case ϕ = maxX.ϕ and X ∈ fv(ϕ). Now, lets assume that

L maxX.ϕ,Π M[s] µ−→ r′ (C.85)

and that s � maxX.ϕ from which by the definition of � we have that

s � ϕ{maxX.ϕ/X}. (C.86)

Since ϕ{maxX.ϕ/X}∈ sHMLnf, by the restrictions imposed by sHMLnf we know that:

ϕ cannot be X because (bound) logical variables are required to be guarded, and it

also cannot be tt or ff since X is required to be defined in ϕ, i.e., X ∈ fv(ϕ). Hence,

we know that ϕ can only have the following form, that is

ϕ = maxY0. . . .maxYn.
∧
i∈I

[pi, ci¡]ϕi (C.87)

232

Appendix C. Missing Proofs from Part II

and so by (C.86), (C.87) and the definition of � we have that

s �
∧
i∈I [pi, ci¡]ϕi{··} where (C.88)

{··} = {maxX.ϕ/X, (maxY0. . . .maxYn.
∧
i∈I [pi, ci¡]ϕi)/Y0, . . .}.

Since L
∧
i∈I [pi, ci¡]ϕi{··},Π M synthesises the unfolded equivalent of L maxX.ϕ,Π M, from

(C.85) we know that

L
∧
i∈I [pi, ci¡]ϕi{··},Π M[s] µ−→ r′. (C.89)

Hence, since we know (C.88) and (C.89), from this point onwards the proof proceeds

as per the previous case. We thus omit showing the remainder of this proof.

C.2.2.2 Proving Lemma C.1

We need to prove that for every formula ϕ∈ sHMLnf, if we assume that Lϕ,Π M[s] t
=⇒

m′[s′] then there must exist some formula ψ, such that ψ = after(ϕ, t) and Lψ,Π M =

m′. This proof relies on the following lemma whose proof is given following the end

of the current one.

Lemma C.2. For every formula of the form
∧
i∈I [pi, ci¡]ϕi and system states s and

r, if L
∧
i∈I [pi, ci¡]ϕi,Π M[s] τ−→*r then there exists some state s′ and trace u such that

s
u

==⇒ s′ and r = L
∧
i∈I [pi, ci¡]ϕi,Π M[s′].

Proof. We now proceed by induction on the length of t.

Case t = ε. This case holds vacuously since when t= ε then m′= Lϕ,Π M and

ϕ= after(ϕ, ε).

Case t = αu. Assume that Lϕ,Π M[s] αu
===⇒ m′[s′] from which by the definition t

=⇒

we can infer that

Lϕ,Π M[s] τ−→*r (C.90)

r
α−→ r′ (C.91)

r′
u

==⇒ m′[s′]. (C.92)

We now proceed by case analysis on ϕ.

233

Appendix C. Missing Proofs from Part II

• ϕ∈{ff, X}: These cases do not apply since L ff,Π M and LX,Π M do not yield a

valid monitor.

• ϕ= tt: Since L tt,Π M = id we know that the τ-reductions in (C.90) are only possi-

ble via rule iAsy which means that s τ−→*s′′ and r= L tt,Π M[s′′]. The latter allows

us to deduce that the reduction in (C.91) is only possible via rule iTrn and

so we also know that s′′ α−→*s′′′ and r′= L tt,Π M[s′′′]. Hence, by (C.92) and the

inductive hypothesis we conclude that

∃ψ ∈ sHMLnf · ψ = after(tt, u) (C.93)

Lψ,Π M = m′. (C.94)

Since from the definition of after we know that after(tt, αu) equates to after(after(tt, α), u)

and after(tt, α) = tt, from (C.93) we can conclude that ψ = after(tt, αu) and so

this case holdssince we also know (C.94).

• ϕ=
∧
i∈I [pi, ci¡]ϕi and #i∈I pi, ci¡: Since ϕ=

∧
i∈I [pi, ci¡]ϕi, by the definition of

L− M we know that recY.
∑
i∈I

{
dis(pi, ci, Y,Π) if ϕ=ff
 pi, ci¡.Lϕi,Π M otherwise which can be unfolded

into

L
∧
i∈I

[pi, ci¡]ϕi,Π M =
∑
i∈I

{
dis(pi, ci,m,Π) if ϕ=ff
 pi, ci¡.Lϕi,Π M otherwise (C.95)

and so by (C.90), (C.95) and Lemma C.2 we conclude that ∃s′′ · s u
==⇒ s′′ and

that

r = L
∧
i∈I [pi, ci¡]ϕi,Π M[s′′]. (C.96)

Hence, by (C.95) and (C.96) we know that the reduction in (C.91) can only

happen if ∃s′′′·s′′ α−→ s′′′ and αmatches an identity transformation pj , cj¡.Lϕj ,Π M

(for some j ∈ I) which was derived from [pj , cj¡]ϕj (where ϕj 6= ff). We can thus

deduce that

r′ = Lϕjσ,Π M[s′′′] (C.97)

mtch(pj , α) = σ and cjσ ⇓ true (C.98)

234

Appendix C. Missing Proofs from Part II

and so by (C.92), (C.97) and the inductive hypothesis we deduce that

∃ψ ∈ sHMLnf · ψ = after(ϕjσ, u) (C.99)

Lψ,Π M = m′. (C.100)

Now since we know (C.98), by the definition of after we infer that

after(
∧
i∈I [pi, ci¡]ϕi, αu) = after(after(

∧
i∈I [pi, ci¡]ϕi, α), u)

= after(ϕjσ, u)
(C.101)

and so from (C.99) and (C.101) we conclude that

ψ = after(
∧
i∈I [pi, ci¡]ϕi, αu). (C.102)

Hence, this case is done by (C.100) and (C.102).

• ϕ= maxX.ψ and X ∈ fv(ψ): Since ϕ= maxX.ψ, by the syntactic rules of sHMLnf

we know that ψ /∈{ff, tt} since X /∈ fv(ψ), and that ψ 6=X since logical variables

must be guarded, hence we know that ψ can only be of the form

ψ = maxY1. . . .maxYn.
∧
i∈I [pi, ci¡]ϕi. (C.103)

where maxY1. . . .maxYn. denotes an arbitrary number of fixpoint declarations,

possibly none. Hence, knowing (C.103), by unfolding every fixpoint in maxX.ψ

we reduce the formula to

ϕ =
∧
i∈I [pi, ci¡]ϕi{maxX.maxY1....maxYn.

∧
i∈I [pi, ci¡]ϕi/X , . . .}

and so from this point onwards the proof proceeds as per when ϕ=
∧
i∈I [pi, ci¡]ϕi.

This therefore allows us to deduce that

∃ψ′ ∈ sHMLnf · ψ′= after(
∧
i∈I [pi, ci¡]ϕi{. . .}, αu) (C.104)

Lψ′,Π M = m′. (C.105)

From (C.103), (C.104) and the definition of after we can therefore conclude

235

Appendix C. Missing Proofs from Part II

that

∃ψ′ ∈ sHMLnf · ψ′= after(maxX.ψ, αu) (C.106)

and so this case holds by (C.105) and (C.106).

Hence, the above cases suffice to show that the case for when t = αu holds.

C.2.2.3 Proving Lemma C.2

We must now prove that for every formula of the form
∧
i∈I [pi, ci¡]ϕi and states s and

r, if L
∧
i∈I [pi, ci¡]ϕi,Π M[s] τ−→*r then there exists some state s′ and trace u such that

s
u

==⇒ s′ and r = L
∧
i∈I [pi, ci¡]ϕi,Π M[s′].

Proof. We proceed by mathematical induction on the number of τ transitions.

Case 0 transitions. This case holds vacuously given that s ε
=⇒ s and so that

r = L
∧
i∈I [pi, ci¡]ϕi,Π M[s].

Case k + 1 transitions. Assume that L
∧
i∈I [pi, ci¡]ϕi,Π M[s] τ−→k+1

r and so we can

infer that

L
∧
i∈I [pi, ci¡]ϕi,Π M[s] τ−→ r′ (for some r′) (C.107)

r′
τ−→k

r. (C.108)

By the definition of L−M we know that L
∧
i∈I [pi, ci¡]ϕi,Π M synthesises the monitor

recY.
∑
i∈I

{
dis(pi, ci, Y,Π) if ϕ=ff
 pi, ci¡.Lϕi,Π M otherwise which can be unfolded into

L
∧
i∈I

[pi, ci¡]ϕi,Π M =
∑
i∈I

{
dis(pi, ci,m,Π) if ϕ=ff
 pi, ci¡.Lϕi,Π M otherwise (C.109)

and so from (C.109) we know that the τ-reduction in (C.107) can be the result of

rules iAsy, iDisO or iDisI. We therefore inspect each case.

• iAsy: By rule iAsy, from (C.107) we can deduce that

∃s′′ · s τ−→ s′′ (C.110)

r′ = L
∧
i∈I [pi, ci¡]ϕi M[s′′] (C.111)

236

Appendix C. Missing Proofs from Part II

and so by (C.108), (C.111) and the inductive hypothesis we know that

∃s′, u · s′′ u
==⇒ s′ and r = L

∧
i∈I [pi, ci¡]ϕi M[s′]. (C.112)

Finally, by (C.110) and (C.112) we can thus conclude that ∃s′, u · s u
==⇒ s′ and

r = L
∧
i∈I [pi, ci¡]ϕi M[s′].

• iDisI: By rule iDisI and from (C.107) we infer that

∃s′′ · s (a?v)−−−−→ s′′ (C.113)

L
∧
i∈I [pi, ci¡]ϕi,Π M

•I(a?v)−−−−−→ m′ (C.114)

r′ = m′[s′′] (C.115)

and from (C.109) and by the definition of dis we can infer that the reduction

in (C.114) occurs when the synthesised monitor inserts action a?v and then

reduces back to L
∧
i∈I [pi, ci¡]ϕi,Π M allowing us to infer that

m′ = L
∧
i∈I [pi, ci¡]ϕi,Π M. (C.116)

Hence, by (C.108), (C.115) and (C.116) we can apply the inductive hypothesis

and deduce that

∃s′, u · s′′ u
==⇒ s′ and r = L

∧
i∈I [pi, ci¡]ϕi,Π M[s′] (C.117)

so that by (C.113) and (C.117) we finally conclude that ∃s′, u · s (a?v)u
=====⇒ s′ and

that r = L
∧
i∈I [pi, ci¡]ϕi,Π M[s′] as required, and so we are done.

• iDisO: We omit showing the proof for this case as it is very similar to that of

case iDisI.

C.2.3 Proving Theorem 11.2 (weak DIS-optimal enforcement)

To simplify our proof we represent the set of action disabling monitors as DisTrn

which is defined as DisTrn def
= {n if ecbi(n)⊆{DIS}}. We also refer to the following

lemmas that are proven in ?? C.2.3.1–C.2.3.4.

Lemma C.3. For every m∈DisTrn and explicit trace tτ , mc(m, tτ) =N .

237

Appendix C. Missing Proofs from Part II

Lemma C.4. For every (input/output) action α and monitorm∈DisTrn, ifm αIα−−−→m′,

enf(m,
∧
i∈I

[pi, ci¡]ϕi), mtch(pj , α) =σ and cjσ⇓ true (for some j∈I) then enf(m′, ϕjσ).

Lemma C.5. For every port a, value v and monitorm∈DisTrn, if enf(m,
∧
i∈I [pi, ci¡]ϕi)

and m
(a!v)I•−−−−−→ m′ then enf(m′,

∧
i∈I [pi, ci¡]ϕi).

Lemma C.6. For every port a, value v and monitorm∈DisTrn, if enf(m,
∧
i∈I [pi, ci¡]ϕi)

and m
•I(a?v)−−−−−→ m′ then enf(m′,

∧
i∈I [pi, ci¡]ϕi).

Since from Lemma C.3 we know that for every m∈DisTrn, mc(m, tτ) =N , we can

prove that for every monitor m∈DisTrn, if enf(m,ϕ), s tτ==⇒ and mc(Lϕ,Π M, tτ) =N then

N ≤mc(m, tτ).

Proof. We thus proceed by rule induction on mc(Lϕ,Π M, tτ).

Case mc(Lϕ,Π M, tτ) when tτ =µt′τ and Lϕ,Π M[sys(µt′τ)]
µ−→ m′ϕ[sys(t′τ)]. Assume

that

mc(Lϕ,Π M, µt′τ) = mc(m′ϕ, t
′
τ) = N (C.118)

which implies that

Lϕ,Π M[sys(µt′τ)]
µ−→ m′ϕ[sys(t′τ)] (C.119)

and also assume that

enf(m,ϕ) (C.120)

and that s µt′τ===⇒. By the rules in our model we can infer that the reduction in (C.119)

can result from rule iAsy when µ= τ , iDef and iTrnO when µ= a!v, or iTrnI when

µ= a?v. We consider each case individually.

• iAsy: By rule iAsy from (C.119) we know that µ= τ and that

m′ϕ = Lϕ,Π M. (C.121)

Since from (C.120) we know that m is sound and eventual transparent, we can

thus deduce that m does not hinder internal τ-actions from occurring and so

238

Appendix C. Missing Proofs from Part II

the composite system Lϕ,Π M[sys(τt′τ)] can always transition over τ via rule iAsy,

that is,

m[sys(τt′τ)]
τ−→ m[sys(t′τ)]. (C.122)

Hence, by (C.118), (C.120) and since s
τt′τ===⇒ entails s

τ−→ s′ and s′
t′τ==⇒ we

can apply the inductive hypothesis and deduce that N ≤mc(m, t′τ) so that by

(C.122) and the definition of mc, we conclude that N ≤mc(m, τt′τ) as required.

• iDef: From (C.119) and rule iDef we know that µ= a!v, Lϕ,Π M 6a!v−−→ and that

m′ϕ = id. Since id does not modify actions, we can deduce that mc(m′ϕ, t
′
τ) = 0

and so by the definition of mc we know that mc(Lϕ,Π M, (a!v)t′τ) = 0 as well. This

means that we cannot find a monitor that performs fewer transformations, and

so we conclude that 0≤mc(m, (a!v)t′τ) as required.

• iTrnI: From (C.119) and rule iTrnI we know that µ= a?v and that

Lϕ,Π M
(a?v)I(a?v)−−−−−−−−→ m′ϕ. (C.123)

We now inspect the cases for ϕ.

– ϕ∈{ff, tt, X}: The cases for ff andX do not apply since L ff,Π M and LX,Π M do

not yield a valid monitor, while the case when ϕ= tt gets trivially satisfied

since L tt,Π M = id and mc(id, (a?v)t′τ) = 0.

– ϕ=
∧
i∈I [pi, ci¡]ϕi where #i∈I pi, ci¡: Since ϕ =

∧
i∈I [pi, ci¡]ϕi, by the defi-

nition of L− M we have that

Lϕ∧ =
∧
i∈I [pi, ci¡]ϕi,Π M

= recY.
(∑
i∈I

{
dis(pi, ci, Y,Π) if ϕi = ff
 pi, ci¡.Lϕi,Π M otherwise

)
+ def(

∧
i∈I

[pi, ci¡]ϕi)

=

(∑
i∈I

{
dis(pi, ci, Lϕ∧,Π M,Π) if ϕi = ff
 pi, ci¡.Lϕi,Π M otherwise

)
+ def(

∧
i∈I

[pi, ci¡]ϕi)

(C.124)

Since normalized conjunctions are disjoint, i.e., #i∈I pi, ci¡, from (C.124)

we can infer that the identity reduction in (C.123) can only happen when

a?v matches an identity branch, pj , cj¡.Lϕj ,Π M (for some j ∈ I), and so we

239

Appendix C. Missing Proofs from Part II

have that

mtch(pj ,a?v) = σ and cjσ ⇓ true. (C.125)

Therefore, from (C.123), (C.125) and by rule eTrn we infer thatm′ϕ=Lϕjσ,Π M

and so by (C.118) we can infer that

mc(m′ϕ, t
′
τ) = N where m′ϕ = Lϕjσ,Π M. (C.126)

Since from (C.124) we also know that the monitor branch pj , cj¡.Lϕj ,Π M is

derived from a non-violating modal necessity, i.e., [pj , cj¡]ϕj where ϕj 6= ff,

we can infer that a?v is not a violating action and so it should not be mod-

ified by any other monitor m, as otherwise it would infringe the eventual

transparency constraint of assumption (C.120) and so we know that

m
(a?v)I(a?v)−−−−−−−−→ m′ (for some m′). (C.127)

Hence, knowing that tτ = (a?v)t′τ and also that sys((a?v)t′τ)
a?v−−−→sys(t′τ), from

(C.127) and by rule iTrnI and the definition of mc we infer that

mc(m, (a?v)t′τ) = mc(m′, t′τ). (C.128)

As by (C.120), (C.123), (C.125) and Lemma C.4 we know that enf(m′, ϕjσ),

by (C.126) and since s
(a?v)t′τ=====⇒ entails that s a?v−−−→ s′ and s′

t′τ==⇒, we can

apply the inductive hypothesis and deduce that N ≤mc(m′, t′τ) and so from

(C.128) we conclude that N ≤mc(m, (a?v)t′τ) as required.

– ϕ= maxX.ϕ′ and X ∈ fv(ϕ′): Since ϕ= maxX.ϕ′, by the syntactic restric-

tions of sHMLnf we infer that ϕ′ cannot be ff or tt since X /∈ fv(ϕ′) other-

wise, and it cannot be X since every logical variable must be guarded.

Hence, ϕ′ must be of a specific form, i.e., maxY1 . . . Yn.
∧
i∈I [pi, ci¡]ϕi, and

so by unfolding every fixpoint in maxX.ϕ′ we reduce our formula to ϕ
def
=∧

i∈I [pi, ci¡]ϕi{maxX.ϕ′
/X , . . .}. We thus omit the remainder of this proof as

it becomes identical to that of the subcase when ϕ=
∧
i∈I [pi, ci¡]ϕi.

• iTrnO: We elide the proof for this case as it is very similar to that of iTrnI.

240

Appendix C. Missing Proofs from Part II

Case mc(Lϕ,Π M, tτ) when tτ=µt′τ and Lϕ,Π M[sys(µt′τ)]
µ′−−→m′ϕ[sys(t′τ)] and µ′ 6=µ.

Assume that

mc(Lϕ,Π M, µt′τ) = 1 +M (C.129)

where M = mc(m′ϕ, t
′
τ) (C.130)

which implies that

Lϕ,Π M[sys(µt′τ)]
µ′−−→ m′ϕ[sys(t′τ)] where µ′ 6= µ (C.131)

and also assume that

enf(m,ϕ) (C.132)

and that s µt′τ===⇒. Since we only consider action disabling monitors, the µ′ reduction

of (C.131) can only be achieved via rules iDisO or iDisI. We thus explore both cases.

• iDisI: From (C.131) and by rule iDisI we have that µ = a?v and µ′ = τ and that

Lϕ,Π M •Ia?v−−−−→ m′ϕ. (C.133)

We now inspect the cases for ϕ.

– ϕ∈{ff, tt, X}: These cases do not apply since L ff,Π M and LX,Π M do not

yield a valid monitor, while L tt,Π M = id does not perform the reduction in

(C.133).

– ϕ=
∧
i∈I [pi, ci¡]ϕi where #i∈I pi, ci¡: Since ϕ =

∧
i∈I [pi, ci¡]ϕi, by the defi-

nition of L− M we have that

Lϕ∧ =
∧
i∈I [pi, ci¡]ϕi,Π M

= recY.
(∑
i∈I

{
dis(pi, ci, Y,Π) if ϕi = ff
 pi, ci¡.Lϕi,Π M otherwise

)
+ def(

∧
i∈I

[pi, ci¡]ϕi)

=

(∑
i∈I

{
dis(pi, ci, Lϕ∧,Π M,Π) if ϕi = ff
 pi, ci¡.Lϕi,Π M otherwise

)
+ def(

∧
i∈I

[pi, ci¡]ϕi)

(C.134)

Since normalized conjunctions are disjoint i.e., #i∈I pi, ci¡, and since s µt′τ===⇒

where µ = (a?v), by the definition of dis, from (C.134) we can deduce that

241

Appendix C. Missing Proofs from Part II

the reduction in (C.133) can only be performed by an insertion branch of

the form, •, cj{a/x},a?v¡.L
∧
i∈I [pi, ci¡]ϕi,Π M that can only be derived from

a violating modal necessity [pj , cj¡]ff (for some j ∈ I). Hence, we can infer

that

m′ϕ = L
∧
i∈I [pi, ci¡]ϕi,Π M (C.135)

pj = (x)?(y) and cj{a/x} ⇓ true. (C.136)

Knowing (C.136) and that [pj , cj¡]ff we can deduce that any input on port

a is erroneous and so for the soundness constraint of assumption (C.132)

to hold, any other monitor m is obliged to somehow block this input port.

As we consider action disabling monitors, i.e., m∈DisTrn, we can infer

that monitor m may block this input in two ways, namely, either by not

reacting to the input action, i.e., m 6a?v−−−→, or by additionally inserting a

default value v, i.e., m •I(a?v)−−−−−→ m′. We explore both cases.

∗ m 6a?v−−−→: Since sys((a?v)t′τ)
a?v−−−→ sys(t′τ) and since m 6a?v−−−→, by the rules

in our model we know that for every action µ′, m[sys((a?v)t′τ)] 6µ
′
−−→ and so

by the definition of mc we have that mc(m, (a?v)t′τ) = | (a?v)t′τ | meaning

that by blocking inputs on a, m also blocks (and thus modifies) every

subsequent action of trace t′τ . Hence, this suffices to deduce that at

worst 1 +M is equal to | (a?v)t′τ |, that is 1 +M ≤ | (a?v)t′τ |, and so from

(C.129) we can deduce that 1 +M ≤mc(Lϕ,Π M, µt′τ) as required.

∗ m
•I(a?v)−−−−−→ m′: Since sys((a?v)t′τ)

a?v−−−→ sys(t′τ) and since m •I(a?v)−−−−−→ m′,

by rule iDisI we know that m[sys((a?v)t′τ)]
τ−→ m[sys(t′τ)] and so by the

definition of mc we have that

mc(m, (a?v)t′τ) = 1 + mc(m′, t′τ). (C.137)

Since we know (C.132), (C.133) from Lemma C.6 we can infer that

enf(m′,
∧
i∈I [pi, ci¡]ϕi). Hence, by (C.130), (C.137) and since s (a?v)t′τ=====⇒

entails that s (a?v)−−−−→ s′ and s′
t′τ==⇒, we can apply the inductive hypothe-

sis and deduce that M ≤mc(m′, t′τ) and so from (C.129), (C.130) and

242

Appendix C. Missing Proofs from Part II

(C.137) we conclude that 1 +M ≤mc(m, (a?v)t′τ) as required.

– ϕ= maxX.ϕ′ and X ∈ fv(ϕ′): We omit showing this proof as it is a special

case of when ϕ=
∧
i∈I [pi, ci¡]ϕi.

• iDisO: We omit showing the proof for this subcase as it is very similar to

that of case iDisI. Apart from the obvious differences (e.g., a!v instead of a?v),

Lemma C.5 is used instead of Lemma C.6.

Case mc(Lϕ,Π M, tτ) when tτ ∈{µt′τ , ε} and Lϕ,Π M[sys(µt′τ)] 6µ
′
−−→. Assume that

mc(Lϕ,Π M, tτ) = | tτ | (where tτ ∈{µt′τ , ε}) (C.138)

Lϕ,Π M[sys(µt′τ)] 6µ
′
−−→ (C.139)

enf(m,ϕ) (C.140)

Since tτ ∈{µt′τ , ε} we consider both cases individually.

• tτ = ε : This case holds trivially since by (C.138), (C.139) and the definition of

mc, mc(Lϕ,Π M, ε) = | ε | = 0.

• tτ = µt′τ : Since tτ = µt′τ we can immediately exclude the cases when µ∈{τ,a!v}

since rules iAsy and iDef make it impossible for (C.139) to be attained in

such cases. Particularly, rule iAsy always permits the SuS to independently

perform an internal τ-move, while rule iDef allows the monitor to default to

id whenever the system performs an unspecified output a!v. However, in the

case of inputs, a?v, the monitor may completely block inputs on a port a and

as a consequence cause the entire composite system Lϕ,Π M[sys(µt′τ)] to block,

thereby making (C.139) a possible scenario. We thus inspect the cases for ϕ

vis-a-vis µ= a?v.

– ϕ∈{ff, tt, X}: These cases do not apply since L ff,Π M and LX,Π M do not yield

a valid monitor and since L tt,Π M = id is incapable of attaining (C.139).

– ϕ=
∧
i∈I

[pi, ci¡]ϕi where #i∈I pi, ci¡: Since ϕ=
∧
i∈I

[pi, ci¡]ϕi, by the definition of

243

Appendix C. Missing Proofs from Part II

L− M we have that

Lϕ∧ =
∧
i∈I [pi, ci¡]ϕi,Π M

= recY.
(∑
i∈I

{
dis(pi, ci, Y,Π) if ϕi = ff
 pi, ci¡.Lϕi,Π M otherwise

)
+ def(

∧
i∈I

[pi, ci¡]ϕi)

=

(∑
i∈I

{
dis(pi, ci, Lϕ∧,Π M,Π) if ϕi = ff
 pi, ci¡.Lϕi,Π M otherwise

)
+ def(

∧
i∈I

[pi, ci¡]ϕi)

(C.141)

Since µ = a?v, from (C.141) and by the definitions of dis and def we can

infer that the only case when (C.139) is possible is when the inputs on

port a satisfy a violating modal necessity, that is, there exists some j ∈ I

such that [pj , cj¡]ff and for every v ∈Val, mtch(pj ,a?v) =σ and cjσ ⇓ true.

At the same time, the monitor is also unaware of the port on which the

erroneous input can be made, i.e., a /∈Π. Hence, this case does not apply

since we limit ourselves to SysΠ, i.e., states of system that can only input

values via the ports specified in Π.

– ϕ= maxX.ϕ′: As argued in previous cases, this subcase is a special case

of ϕ=
∧
i∈I [pi, ci¡]ϕi and so we omit this part of the proof.

Case mc(Lϕ,Π M, tτ) when tτ ∈{µt′τ , ε} and Lϕ,Π M[sys(tτ)]
µ′−−→ m′ϕ[sys(tτ)]. As we

only consider monitors that can only disable actions, this case does not apply since

Lϕ,Π M[sys(tτ)]
µ′−−→ m′ϕ[sys(tτ)] can only be achieved via action enabling and rules

iEnO and iEnI.

C.2.3.1 Proving Lemma C.3

We must prove that for every monitor m∈DisTrn and explicit trace tτ , mc(m, tτ) =N .

Proof. We proceed by induction on the length of tτ .

Case tτ = ε. As we assume that tτ = ε, we must consider the following two cases:

• ∀µ ·m[sys(ε)] 6µ−→: This case holds trivially since by the definition of mc we have

that mc(m, ε) = | ε | = 0.

• ∃µ,m′, s · m[sys(ε)]
µ−→ m′[s]: Since sys(ε) = nil 6µ−→, by the rules in our model

we can infer that such a transition is only possible when the monitor enables

244

Appendix C. Missing Proofs from Part II

an action β via rules iEnO and iEnI, and so this case does not apply since

m /∈DisTrn.

Case tτ = µt′τ . Since we assume that tτ = µt′τ , we consider the following two

cases:

• ∀µ · m[sys(µt′τ)] 6µ−→: Since µ∈{τ,a?v,a!v}, we start by immediately exclud-

ing the cases when µ∈{τ,a!v} since rules iAsy and iDef prevent the mon-

itor from blocking the composite system. However, in the case of inputs,

µ= a?v, the monitor may block the input port by not reacting to the input,

i.e., m 6a?v−−−→. In this case, however, by the definition of mc we can still deduce

that mc(m, (a?v)tτ) = | (a?v)tτ | as required.

• ∃µ′,m′, s · m[sys(µt′τ)]
µ′−−→ m′[s]: When considering only the action disabling

monitors defined in DisTrn, by the rules in our model we can infer that this

instrumented reduction over action µ′ can be attained via rules iDef, iAsy,

iDisI, iDisO, iTrnI and iTrnO. We thus consider each case.

– iDisO: Since by rule iDisO we know that µ= a!v, µ′= τ and s= sys(t′τ), by

the definition of mc we deduce that mc(m, (a!v)t′τ) = mc(m′, t′τ)+1 and since

by the inductive hypothesis we know that mc(m′, t′τ) =N , then we conclude

that mc(m, (a!v)t′τ) =N + 1 as required.

– iDisI: We elicit this proof as it is identical to that of iDisO.

– iDef: Since by rule iDef we know that µ=µ′= a!v,m′= id and s= sys(t′τ), by

the definition of mc we deduce that mc(m, (a!v)t′τ) = mc(id, t′τ) and since by

the inductive hypothesis we know that mc(id, t′τ) =N , then we can conclude

that mc(m, (a!v)t′τ) =N .

– iAsy, iTrnO and iTrnI: We omit the proofs for these cases as they are very

similar to that of case iDef, and so we are done.

C.2.3.2 Proving Lemma C.4

The aim of this proof is to show that for every action α and monitors m,m′ ∈DisTrn,

if enf(m,
∧
i∈I [pi, ci¡]ϕi), m

αIα−−−→ m′, mtch(pi, α) =σ and ciσ ⇓ true (for some j ∈ I) then

we have that senf(m′, ϕjσ) and evtenf(m′, ϕjσ).

245

Appendix C. Missing Proofs from Part II

Proof. We therefore start this proof by assuming that

m
αIα−−−→ m′ (C.142)

∃j ∈ I ·mtch(pi, α) =σ and ciσ ⇓ true (C.143)

and that enf(m,
∧
i∈I

[pi, ci¡]ϕi) which means that

senf(m,
∧
i∈I

[pi, ci¡]ϕi)
def
= ∀s ·m[s] �

∧
i∈I

[pi, ci¡]ϕi (C.144)

evtenf(m,
∧
i∈I [pi, ci¡]ϕi)

def
= ∀s, s′′, t · if m[s]

t
=⇒ m′′[s′′] and

s′′ � after(
∧
i∈I

[pi, ci¡]ϕi, t) then m′′[s′′] ∼ s′′.
(C.145)

Since both (C.144) and (C.145) quantify on every s, we must consider the following

two cases, namely, when m[s] transitions over α and reach m′, i.e., m[s]
α−→ m′[s′] (for

some system state s′), and when m[s] does not reach m′ via action α, i.e., m[s] 6α−→

m′[s′].

• m[s] 6α−→ m′[s′]: This case does not apply since, as stated by assumption (C.142),

we only consider the cases where the instrumented system causes the monitor

to perform the identity transformation of (C.142) via rules iTrnI when α=a?v

and iTrnO when α=a!v.

• m[s]
α−→ m′[s′]: Since m[s]

α−→ m′[s′], from (C.144), (C.143) and by the definition

of � we get that

senf(m′, ϕjσ)
def
= ∀s′ ·m′[s′] � ϕjσ (C.146)

as required. Now, lets assume that

∀s′′′, u ·m′[s′] u
==⇒ m′′′[s′′′] (C.147)

s′′′ � after(ϕjσ, u) (C.148)

and since m[s]
α−→ m′[s′] when combined with (C.147) we know that m[s]

αu
===⇒

m′′′[s′′′] and so from (C.145) and (C.148) we can deduce that

m′′′[s′′′] ∼ s′′′. (C.149)

Hence, from assumptions (C.147), (C.148) and conclusion (C.149) we can in-

troduce the implication and conclude that

evtenf(m′, ϕjσ)
def
= ∀s′, s′′, u · if m′[s′] u

==⇒ m′′′[s′′′] and s′′′ � after(ϕjσ, u)

then m′′′[s′′′] ∼ s′′′
(C.150)

246

Appendix C. Missing Proofs from Part II

and so we are done by (C.146), (C.150) and the definition of enf.

C.2.3.3 Proving Lemma C.5

In this proof we show that for every port a, value v and monitors m,m′ ∈DisTrn, if

enf(m,
∧
i∈I [pi, ci¡]ϕi) and m

(a!v)I•−−−−−→ m′ then enf(m′,
∧
i∈I [pi, ci¡]ϕi).

Proof. Therefore, let’s assume that

m
(a!v)I•−−−−−→ m′ (C.151)

and that enf(m,
∧
i∈I [pi, ci¡]ϕi), which means that

senf(m,
∧
i∈I [pi, ci¡]ϕi)

def
= ∀s ·m[s] �

∧
i∈I [pi, ci¡]ϕi (C.152)

evtenf(m,
∧
i∈I [pi, ci¡]ϕi)

def
= ∀s, s′′, t · if m[s]

t
=⇒ m′′[s′′] and

s′′ � after(
∧
i∈I [pi, ci¡]ϕi, t) then m′′[s′′] ∼ s′′

. (C.153)

We now consider the following two cases, namely, when m[s] transitions over τ and

reaches m′, i.e., m[s]
τ−→ m′[s′] (for some arbitrary state s′), and when m[s] does not

reach m′ via action τ , i.e., m[s] 6 τ−→ m′[s′].

• m[s] 6 τ−→ m′[s′]: This case does not apply since, as stated by assumption (C.151),

we only consider the cases where the instrumented system causes the monitor

to perform the suppression transformation of (C.151) via rule iDisO.

• m[s]
τ−→ m′[s′]: Since m[s]

τ−→ m′[s′], from (C.152) and by Proposition C.1 we

deduce that

senf(m′,
∧
i∈I [pi, ci¡]ϕi)

def
= ∀s′ ·m′[s′] �

∧
i∈I [pi, ci¡]ϕi (C.154)

as required. We now assume that

∀s′′′, u ·m′[s′] u
==⇒ m′′′[s′′′] (C.155)

s′′′ � after(
∧
i∈I [pi, ci¡]ϕi, u) (C.156)

and since m[s]
τ−→ m′[s′], by (C.155) and the definition of u

==⇒ we have that

m[s]
u−→ m′′′[s′′′] and so from (C.153) and (C.156) we can deduce that

m′′′[s′′′] ∼ s′′′. (C.157)

Hence, from assumptions (C.155), (C.156) and conclusion (C.157) we can in-

247

Appendix C. Missing Proofs from Part II

troduce the implication and conclude that

evtenf(m′,
∧
i∈I [pi, ci¡]ϕi)

def
= ∀s′, s′′, u · if m′[s′] u

==⇒ m′′′[s′′′] and

s′′′ � after(
∧
i∈I [pi, ci¡]ϕi, u) then m′′′[s′′′] ∼ s′′′

(C.158)

and so we are done by (C.154) and (C.158).

C.2.3.4 Proving Lemma C.6

We elide the proof for this lemma as it is very similar to Lemma C.5. In fact, it

can be easily derived by replacing the references to rule iDisO and the assumption

that m (a!v)I•−−−−−→ m′ from Lemma C.5, by rule iDisI and assumption m
•I(a?v)−−−−−→ m′

respectively.

248

