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Abstract. The maximum increase in wheat yield (by 67% to the control), associated with a decrease 
in the root rot development by 19%, an increase in the productive bushiness by 18%, the spike 

weight by 26%, in the grains number per spike by 8% was noted when using the Bacillus subtilis 

strain 124-11; the strain effect on leaf diseases was insignificant (2–5%). The plants differed in 

the maximum changes (to control) in the total bushiness by 59%, the plants vegetative part weight 

by 27%, the flag leaf area by 21%, the pre-flag leaf area by 28%, the roots numbers and weight 

by 20% and 62%. After plants treatments with the Pseudomonas fluorescens strain SPB2137, the 

wheat maturation period was reduced by 9% (to the control), wheat yield increased by 58% due 

to a decrease in the development of root rot and septoria by 18%, the yellow rust pustules area by 

44%; the productive bushiness and plant height increased by 25% and 19%, the plant vegetative 

weight by 21%, the spike length by 4%. The most expressed protective and growth-stimulating 

effect was shown by the Sphingomonas sp. K1B, which caused a maximum decrease (to the 
control) in the root rot and yellow rust development by 22% and 7%, the strips length by 22%, 

the pustules number in the strip by 29%, brown rust by 10%, septoria by 11%. Wheat plants were 

characterized by a large number and length of roots by 17% and 13%, root weight by 49%, a 

maximum increase in the nodal roots number and length by 15% and 17%; total bushiness by 

34.5%; a maximum increase in plant vegetative weight by 37%; the spike length by 3%. 

 

Key words: associative rhizobacteria, biocontrol of phytopathogens, productivity, soft wheat, 

yield structure. 

 



INTRODUCTION 

 

The bacteria that stimulate plant growth (Plant Growth Promoting Bacteria - PGPB) 
relate to different groups, with most species belonging to the genera, Azospirillum, 

Bacillus, Enterobacter, Gluconacetobacter, Paenibacillus, Pseudomonas, Rhizobium, 

Streptomyces and Agrobacterium (Kumar et al., 2015; Kalantari et al., 2018; Tabande et 
al., 2020). Stimulating effects of the majority of PGPB are traditionally associated with 

three main mechanisms: phytohormones production, an increasing nutrients availability 

and water for crops, and plant protection from diseases (Asaf et al., 2017a). 

One of the most studied phytohormones, found in a large number of metabolites of 
microorganisms - is auxins (Tsavkelova et al., 2006). Auxins synthesis is a process 

which depends on carbon and nitrogen sources, temperature, pH, and tryptophan 

presence in soils (Mohite, 2013). The application of Bacillus amyloliquefaciens S-134 
with the ability of secreting indolyl-3-acetic acid in an amount of 26 mcg mL, could 

stimulate wheat growth and gave an increase in yield by 34% (Raheem et al., 2018). 

One of the key elements of antagonistic mechanisms of PGPB activity, is the 

synthesis of biologically active compounds of various nature, such as antibiotics, lytic 
enzymes, siderophores and etc. (Sharma et al., 2009; Naseri & Younesi, 2021). A large 

and diverse group of antibiotics that are effective against phytopathogenic 

microorganisms is produced by spore-forming gram-positive bacteria Bacillus subtilis. 
One of the first antibiotics isolated from culture fluid of Bacillus subtilis was subtilin 

(Housusright, 1948), which is a short peptide, then lipopeptide antibiotics of several 

classes were isolated from various strains of B. subtilis: subsporins (Loeffler et al., 1986), 
bacillomycins L and D (Peypoux et al., 1987), phengicins (Loeffler et al., 1986) and 

others, and also Fe3+ siderophores were identified (Hofemeister et al., 2004). 

The study of the genus Pseudomonas as typical representatives of the rhizosphere 

microflora aroused great interest for researchers. In addition to its antagonistic abilities 
against phytopathogenic fungi (Naseri, 2019), the genus Pseudomonas exhibits other 

interesting properties: improving phosphorus nutrition for plants (Satyaprakash et al., 

2017), synthesizing plant growth stimulators (Selvakumar et al., 2011; Pham et al., 
2017), producing siderophores responsible for iron transport (Trapet et al., 2016), as well 

as substances responsible for inducing resistance to phytopathogens (Strunnikova et al., 

2007; Pieterse et al., 2014). Pseudomonads, as typical soil bacteria, are able to synthesize 
a whole complex of antibiotics. The best studied antibiotics are phenazines (Briard et al., 

2015), phloroglucins (Kidarsa et al., 2011), as well as pyoluteorin (Hu HBO et al., 2005) 

and pyrrolnitrin (Park et al., 2011). The protective action of PGPB-based biopreparation 

is also explained by the presence of the enzyme 1-aminocyclopropane-1-carboxylate 
deaminase (ACC-deaminase), which reduces the concentration of ethylene 

phytohormone in plants (Nadeem et al., 2013). 

Inoculation of wheat seeds with a pseudomonas-based preparation leads to increase 
root and stem growths, increase germination energy thus, enhancing yield amount, 

especially under the circumstances of low doses of phosphorous fertilizers (Ali et al., 

2011). Wheat seeds treatment with Pseudomonas putida 108 strain combined with of 

50% phosphorus application caused an increase in wheat yield by 37% (Zabihi et al., 
2011), and with Pseudomonas fluorescens Pf strain - by 16% (Naiman et al., 2009). 



There is little information in the literature about rhizospheric bacteria belonging to 

the genus Sphingomonas. The strain Sphingomonas spiritivorum 38-22 had a high 

growth-stimulating activity, which provided an increase in yield of winter wheat at the 
level of 21% (Pukhaev et al., 2009). The Sphingomonas S11 strain had a greater 

antagonistic activity against eight Fusarium strains that cause wheat diseases 

(Wachowska et al., 2013a). Treating soybean with Sphingomonas sp. LK11 significantly 
increased plant height and biomass, photosynthetic pigments, glutathione, amino acids 

(proline, glycine, and glutamate) and primary sugars, compared to control plants (Asaf 

et al., 2017b). 

The scientific novelty of this work consists in a comprehensive assessment of the 
impact of associative rhizobacteria strains (Bacillus subtilis 124-11, Pseudomonas 

fluorescens SPB2137 and Sphingomonas sp. K1B) on a wide range of indicators that 

characterize morphological characteristics of plants, grain yield and wheat resistance to 
the most dangerous diseases, namely root rot, powdery mildew, brown and yellow rust. 

The purpose of the research is to obtain the data that indicate the possibility of 

developing an environmentally friendly technology for wheat cultivation, which 

provides an increase in its productivity and a decrease in the pathogens’ harmfulness, 
with reducing the cost of plant protection measures. 

 

MATERIALS AND METHODS 
 

The place of experimental work is Laboratory of Rhizosphere Microflora of the 

All-Russian Research Institute of Agricultural Microbiology (ARRIAM, Saint 
Petersburg) and Department of Plant Protection and Quarantine of Saint-Petersburg State  

unpublished data of Laboratory of Rhizosphere Microflora of the ARRIAM) and 

Pseudomonas fluorescens SPB2137 (producer of auxins, contains ACC deaminase, 

growth inhibitor of phytopathogenic fungi (Kravchenko et al., 2003). Strains were 
obtained from the Russian Collection of Agricultural Microorganisms (All-Russia 

Research Institute for Agricultural Microbiology, Saint-Petersburg), and information on 

their properties have not been published. 

Agrarian University SPbGAU (Saint 

Petersburg). The effectiveness of 

associative rhizobacteria strains on 
Triticum aestivum cultivars study was 

carried out in the experimental field of 

Federal research centre «The 

N.I.Vavilov All-Russian Institute of 
Plant Genetic Resources» (VIR) from 

2017 to 2019 (Fig. 1). 

Bacterial samples. The object of 
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subtilis 124-11 (growth inhibitor of 

phytopathogenic fungi according to 

unpublished data of Laboratory of 
Rhizosphere Microflora of the 

ARRIAM), Sphingomonas sp. K1B 

(hyper-producer of auxins according to  

 

 
 

Figure 1. Spring wheat sowing in the 

experimental field of the VIR, 2019. 



Wheat experiment. Plant material of the study were Triticum aestivum cultivars 

Trizo, k-64981 and Sudarynya, k-66407. In the field experiment, seeds were inoculated 

and sprayed with the strains Bacillus subtilis 124-11, Sphingomonas sp. K1B and 
Pseudomonas fluorescens SPB2137. For this purpose, strains were grown for two days 

on a Potato Dextrose Broth (P6685, Sigma-Aldrich, USA). Then, seeds were dipped with 

a suspension of bacteria (108 cells mL-1) at the rate of 2 mL suspension per 10 g seeds 
and kept for an hour as previously described (Kozhemyakov &d Tikhonovich, 1998). 

Prophylactic spraying of plants with a culture liquid of bacteria (109 cells mL-1) was 

carried out in the phases of stem extension and the beginning of flowering. 

The experiments were arranged on a randomized complete block designed with 
four replicates. For one variant of the experiment, plot area was 1.0 m2, treatments for 

plots in replicates were arranged systematically. The experiment samples was sown 

manually on plots in an ordinary way of sowing with a distance between rows of 15 cm 
and the distance between seeds in a row was 1–2 cm. The seeding depth was 5–6 cm. 

Wheat productivity was studied in the phases: development of the germ shoot (stage 

3-leaves), earing-flowering and maturation according to a set of indicators that 

characterize morphological characteristics and yield structure (Kolesnikov et al., 2019). 
In the ear-flowering phase, a complex of plant indicators: productive and total bushiness 

(pieces), plant phase (score, according to the Zadok’s Scale (Zadoks, 1974) flag and pre-

flag leaf area (сm2), plant height (cm), spike length (cm), spikelets number per spike 
(pieces), spike weight (g) was studied. In addition, number and length of roots (main 

embryonic root, embryonic coleoptile and roots) extending from the epicotyl were 

calculated. Number and length of nodal roots, root weight, plants vegetative part weight 
were taken into account. In the maturation phase (stage of full ripeness), structure of 

wheat yield was studied according to the following indicators: spikelets number per 

spike, pieces; spike length, cm; weight of an spike with grain; grains number per spike, 

pieces; grains weight per spike, 1,000 grains weight. The potential (biological) yield of 
a single wheat plant was calculated in accordance with data about reproductive tillering 

and grain weight per an spike of one plant (Kolesnikov, Kremenevskaya et al., 2020; 

Kolesnikov, Novikova et al., 2020). 
Analysis of the development of wheat diseases. Assessment of plants damage 

degree caused by root rot disease was carried out in laboratory in the phases of tillering 

(complete tillering) and earing-flowering in accordance with generally accepted scale 
(Popov, 2011). The flag and pre-flag leaves damage intensity caused by powdery mildew 

(Blumeria graminis Speer.), was calculated according to the generally accepted 

indicator- conditional degree of plant damage (Geshele, 1978), as well as additional 

indicators - number and area of spots with plaque. Affection of wheat flag and pre-flag 
leaves by the causative agent of brown rust (Puccinia recondita Rob. ex Desm. f. sp. tritici 

Eriks.) was taken into account on the R. F. Peterson scale (Geshele, 1978). As additional 

phytopathological parameters, pustules number per leaf and pustule area were used. 
The wheat damage intensity caused by yellow rust pathogen was evaluated 

according to the generally accepted Manners scale, and, also, the pathogenesis indicators 

were used: pustules number (total per leaf), number of stripes with pustules, length of 

stripes with pustules, pustule area and their number in the strip. 
The size of infectious structures of pathogens formed on leaves during pathogenesis 

(spots, pustules, etc.) was determined using an ocular micrometer. The values of pustules 



and spots with plaque area were calculated on the assumption of their elliptical shape 

(Kolesnikov, Kremenevskaya et al., 2020; Kolesnikov, Novikova et al., 2020). 

Statistical analyses. The algorithm for statistical processing of field experiment 
data was based on the creation of an electronic database, first in Microsoft Excel 

spreadsheets, then in IBM SPSS Statistics software platform was utilized. Methods of 

parametric statistics based on calculation of mean and standard errors (SEM), 95% 
confidence intervals, and the Student's t-test were used in the calculations. In addition, 

methods of ANOVA using the Scheffe test to compare and verify the likeness of sample 

variances were applied (Lemeshko & Ponomarenko, 2006). 

 

RESULTS AND DISCUSSION 

 

At the first stage of study, wheat productivity indicators were compared in the 
experimental variants: when plants were treated with associative rhizobacteria strains 

and without treatment (control group). 

Yield is an integral feature that depends on the values of wheat productivity and the 

grains weight per one spike. Table 1 shows the data of multivariate analysis of wheat 
yield variance from inoculants, wheat cultivars, replicates, years. A significant effect of 

the inoculants and the years of research on wheat yield was revealed. A significant 

change in the wheat yield was defined from the interaction of Inoculant * Year factors 
was determined* Wheat cultivar* Replicate. 

 
Table 1. Multivariate analysis of variance wheat yield, the 2017–2019 

Source 

Тype III 

Sum of 

Squares 

Df 
Mean 

Square 
F Sig. 

Corrected Model 1,601.24 55 29.11 16.40 0.000 

Intercept 2,179.83 1 2,179.83 1,228.26 0.000 

Inoculant 138.81 3 46.27 26.07 0.000 

Year 901.55 2 450.78 254.00 0.000 

Wheat cultivar 5.70 1 5.70 3.21 0.074 

Replicate 8.03 2 4.02 2.26 0.105 
Inoculant * Year 143.72 6 23.95 13.50 0.000 

Inoculant* Wheat cultivar 16.64 3 5.55 3.13 0.025 

Inoculant* Replicate 53.53 6 8.92 5.03 0.000 

Year * Wheat cultivar 35.51 2 17.76 10.00 0.000 

Year* Replicate 14.41 2 7.21 4.06 0.018 

Wheat cultivar* Replicate 21.70 2 10.85 6.11 0.002 

Inoculant* Year * Wheat cultivar 60.22 5 12.04 6.79 0.000 

Inoculant * Year * Replicate 17.24 6 2.87 1.62 0.139 

Inoculant* Wheat cultivar* Replicate 42.02 6 7.00 3.95 0.001 

Year * Wheat cultivar* Replicate 18.67 2 9.33 5.26 0.005 

Inoculant * Year* Wheat cultivar* Replicate 54.56 6 9.09 5.12 0.000 
Error 990.30 558 1.77   

Total 6,077.10 614    

Corrected Total 2,591.53 613    

R Squared = 0.62      

 



Based on the calculation of 95% confidence intervals for average statistically 

significant differences in wheat yield in the experimental variants were revealed in 2018 

and 2019. In 2017, the wheat yield changed insignificantly. The greatest impact on wheat 
yield in 2019 was exerted by B. subtilis 124-11 and Ps. fluorescens SPB2137 (Fig. 2). 

When using B. subtilis 124-11, yield of wheat cultivars Sudarynya, k-66407 and  

Trizo, k-64981 in 2019 significantly increased (P < 0.05) in comparison with the control 
by 50% - t-test = 3.8 (on average for the period 2017–2019 - by 88%, t-test = 4.7)  

and by 52% - t-test = 3.4 (2017–2019 - by 46%, t-test = 2.7), respectively. With the 

application of Ps. fluorescens SPB2137 in 2019, there was a significant increase 

(P < 0.05) in the yield of Sudarynya, k-66407 cultivar by 95% - t-test = 5.7 (on average 
for the period 2017–2019 - by 122%, t-test = 5.3). While the yield of Trizo, k-64981 

cultivar in 2019 was not significantly affected by this strain (in 2019, the yield increased 

by 5%, for the period 2017–2019 - by 9%). 
  

 

 
Figure 2. Changes in wheat yield of cultivars Sudarynya, k-66407 and Trizo, k-64981 when 

using associative rhizobacteria, the 2017 and 2019. Inoculation treatments: Control - water, 124-

11 – B. subtilis 124-11, K1B – Sphingomonas sp. K1B, SPB2137 – Ps. fluorescens SPB2137. 

Vertical line – standard error of mean; * – significant values of the indicator, different from the 
control, according to the Scheffe criterion at a certain significance level; F – Fisher criterion 

according to the single-factor analysis of variance. 

 

Figs. 3, 4 summarize data on biological yield of soft wheat, averaged over above-

mentioned wheat cultivars and calculated based on the results of field experiment in 

2019, also for the period 2017–2019. Using strains of B. subtilis 124-11 and  
Ps. fluorescens SPB2137 showed a statistically significant increase in wheat yield in 

2019 at P < 0.05 by 51% (t-test = 5.1) and 45% (t-test = 4.2), and for the time  

2017–2019 - by 67% (t-test = 5.2) and 58% (t-test = 4.6), respectively. 

Sudarynya, k-66407 Trizo, k-64981 

F = 7.5;  
P = 0.002** 

F = 2.1; P = 0.136 

F = 22.5; P = 0.0003 F = 5.2; P = 0.002 

2
0
1

7
 

*(P = 0.004) 

*(P = 0.043) 

*(P = 0.011) 

*(P = 0.003) 

*(P = 0.007) 

 

Cultivar 

Experimental variants 

 Control       124-11          K1B      SPB2137             Control       124-11        K1B       SPB2137 

10.00 

 
8.00 

 
6.00 

 
4.00 

 
2.00 

 
.00 

10.00 
 

8.00 

 
6.00 

 
4.00 

 
2.00 

 

.00 

Y
e
a
r 

Y
ie

ld
 (

g
 p

la
n

t)
 

2
0
1

9
 



  

 
 

Figure 3. Average yield of soft wheat when using associative rhizobacteria, the 2017–2019. 

Variants of inoculation: Control – water, 124-11 – B. subtilis 124-11, K1B – Sphingomonas sp. 

K1B, SPB2137 – Ps. fluorescens SPB2137. The graphs show the average values of the indicators 

and 95% confidence intervals, * the same letters mark the values of the indicator that are not 
significantly different. 

 

In 2019, the use of B. subtilis 124-11 strain caused an increase in the values 

comparing with the control (P < 0.05) in the indicators: rate of plant development in the 

phases of ontogenesis (by 11%; t-test = 2.2), plant height (by 22%; t-test = 2.8), the number 

of roots (by 25%; t-test = 2.7), pre-
flag leaf area (by 31%; t-test = 3.3). 

In the experimental variant, where 

Sphingomonas sp. K1B was applied, 
an increase in the values of following 

indicators (P < 0.05) were noticed: 

rate of plant development in the phases 

of ontogenesis (by 11%; t-test = 2.6), 
plant height (by 16%; t-test = 2.2), 

roots number (by 23%; t-test = 2.9), 

root length (35%; t-test = 3.7), nodal 
root length (21%; t-test = 2.8). The 

use of Ps. fluorescens SPB2137 

influenced plant development rate in 
the phases of ontogenesis (by 12%;  

t-test = 3.0), plant height (by 24%;  

t-test = 3.8), number of roots (by 

20%; t-test = 2.8), pre-flag leaf area 
(by 29%; t-test = 3.3). 

The strains of associative 

bacteria had the greatest impact on 
the wheat productive and total 

bushiness (Fig. 4). In particular, for the 

period 2017–2019, it was noticed that 

the application of B. subtilis 124-11 

 

 

 

 
Figure 4. Total and productive bushiness of soft 

wheat when using associative rhizobacteria,

the 2017–2019. Variants of inoculation: 

Control – water, 124-11 –B. subtilis 124-11, 

K1B – Sphingomonas sp. K1B, SPB2137 – Ps. 

fluorescens SPB2137. Vertical line – standard 

error of mean; * – significant values of the 

indicator, different from the control, according to 

the Scheffe criterion at a certain significance level; 

F – Fisher criterion according to the single-factor 

analysis of variance. 
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and Sphingomonas sp. K1B strains resulted in a significant increase in the total bushiness 

at P < 0.05 by 59% (t-test = 5.2) and 35% (t-test = 4.1). Using Ps. fluorescens SPB2137 

led to an increase in the productive bushiness by 25% (t-test = 2.6). Strains of B. subtilis 
124-11 and Sphingomonas sp. K1B did not significantly affect the productive bushiness 

(the change to the control was 18% and 10%, respectively, P > 0.05). 

For the period 2017–2019, a significant effect of the studied strains (P < 0.05) on 
the increase in the plants vegetative weight was noted (B. subtilis 124-11 - by 27%;  

t-test = 2.6, Sphingomonas sp. K1B - by 37%; t-test = 3.1, Ps. fluorescens SPB2137 - by 

21%; t-test = 2.3). 

The greatest influence on grain number per spike increasing by 8% (t-test = 2.5), 
compared with control, for the period 2017–2019 was exerted by B. subtilis 124-1 strain. 

In the variant of the experiment, where the strain Sphingomonas sp. K1B was tested, a 

decrease in grain number per spike by 12% was noticed (t-test = 3.9). 
Fig. 5 shows the positive changes (P > 0.05) and significantly positive changes 

(P < 0.05) in the values of wheat cultivars productivity indicators (Sudarynya, k-66407 

and Trizo, k-64981) when using strains of associative rhizobacteria comparing with the 

control. In 2019, the greatest number of significant positive changes in productivity 
indicators (32%) was registered in the variant of experiment where Ps. fluorescens 

SPB2137 strain was used on the Sudarynya, k-66407 cultivar. Also, B. subtilis 124-11 

strain had highest efficiency in relation to the productivity of Trizo, k-64981 cultivar 
(22% of significant positive changes in productivity indicators). 

 
Sudarynya, k-66407 

 
 

 
Trizo, k-64981 

 

Figure 5. The number of changes (%) in the values of wheat productivity indicators when using 

strains of associative rhizobacteria comparing with control. 2019 Inoculation variants: 124-

11 – B. subtilis 124-11, K1B – Sphingomonas sp. K1B, SPB2137 – Ps. fluorescens SPB2137. 

 

For the period 2017–2019, the greatest number of significant positive changes in 
productivity indicators (47% of the total number of indicators) were registered in the 

experimental variants where Sphingomonas sp. K1B and Ps. fluorescens SPB2137 

strains were used (Fig. 6). 
At the second stage of study, influences of associative rhizobacteria strains on 

wheat pathogens development intensity were studied. 

0

20

40

60

80

100

 124-11  K1B  SPB2137

The number of positive significant 
changes to the control (2019 г.)

The number of positive changes to the 
control (2019 г.)

0

20

40

60

80

100

 124-11  K1B  SPB2137

The number of positive significant 
changes to the control (2019 г.)
The number of positive changes to 
the control (2019 г.)

The number of positive significant changes 

to the control (2019) 

The number of positive changes to the 

control (2019) 

The number of positive significant changes 

to the control (2019) 

The number of positive changes to the 

control (2019) 



In 2019, the Trizo, k-64981 and Sudarynya, k-66407 cultivars were almost equally 

affected by root rot (Rg = 40%). The fungus Bipolaris sorokiniana (Sacc.) Shoem as the 

causative agent of wheat helminthosporium root rot, was identified by microscopic analysis. 
 

 
 
Figure 6. The number of changes (%) in the values of productivity indicators of two wheat cultivars 

(Sudarynya, k-66407 and Trizo, k-64981) when using strains of associative rhizobacteria 

comparing with control, the 2017–2019. Inoculation variants: 124-11 – B. subtilis 124-11, 

K1B – Sphingomonas sp. K1B, SPB2137 – Ps. fluorescens SPB2137. 

 

In 2019, the most pronounced statistically significant decrease in disease 
development P < 0.05 was recorded on Sudarynya, k-66407 cultivar in the experimental 

variants when using B. subtilis 124-11 - by 21%, t-test = 6.6 and Ps. fluorescens 

SPB2137 - by 27%, t-test = 2.5. 

The results of a comparative analysis of root rot development for the period  
2017–2019 in the experiment variants with using of strains of associative rhizobacteria 

and without using (control), on average on two wheat cultivars (Trizo, k-64981 and 

Sudarynya, k-66407) are shown in Fig. 7. 
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Figure 7. Development of wheat root rot in experimental variants with using associated 

rhizobacteria strains and without using (control) on wheat cultivars (Trizo, k-64981 and 

Sudarynya, k-66407) 2017–2019. Variants of inoculation: Control – water, 124-11 – B. subtilis 
124-11, K1B – Sphingomonas sp. K1B, SPB2137 – Ps. fluorescens SPB2137. The graphs show 

average values of the indicator and 95% confidence intervals; * – the same letters mark values of 

the indicator that are not significantly different. 
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In accordance with the Fischer criterion (F), the strongest differences in the 

experimental variants were revealed in 2018. The Sphingomonas sp. K1B had the 

greatest effectiveness against wheat root rot, in 2018 it caused the disease development 
significant decreasing - by 86.8% compared to the control (from 34.2 ± 5.6% - in the 

control to 4.5 ± 2.7%). In 2017 and 2019, in this experimental variant, the root rot 

development decreased by 68.0% and 39.8%, respectively. The greatest decrease in the 
disease development - by 80% compared to the control, when using the Pseudomonas 

fluorescens SPB2137 was revealed in 2017, and in the variant with the 124-11 Bacillus 

subtilis strain - in 2019 (by 59.6%). 

Powdery mildew is one of the most common and harmful diseases in wheat, causing 
significant losses in its yield. The causative agent of this disease is the microscopic 

fungus Blumeria graminis (DC.) Speer f. sp. tritici March (Fig. 8). 

 

 
 

Figure 8. Symptoms of mixed infection on leaves of Trizo wheat cultivar, k-64981:  

A – spots with plaque of powdery mildew (1) and uredopustule of brown rust (2), an increase of 16X;  

B – conidia of the causative agent of powdery mildew, an increase of 800X (orig.). 

 

In 2019, only Sphingomonas sp. K1B strain had an insignificant effectiveness in 
reducing intensity development of powdery mildew. In this variant of experiment, the 

decrease in disease development was 6% and the number of spots with plaque decreased 

by 27%. However, for the period 2017–2019, a significant decrease in the area of spots 
with plaque of powdery mildew after the treatments of Sudarynya, k-66407 cultivar was 

marked (with Sphingomonas sp. K1B. - by 58%, t-test = 2.3; with Ps. fluorescens 

SPB2137 - by 60%, t-test = 2.3; with B. subtilis 124-11 - by 64%; t-test = 2.5). 
The causative agent of wheat brown rust, Puccinia recondita Rob. ex Desm f. sp. 

tritici, which causes the formation of many uredopustules on leaves during the growing 

season (Fig. 10). In 2019, the most significant plants damage caused by brown rust was 

registered on the Trizo cultivar, k-64981 (Rb = 28.8 ± 6.9%, pustules number 
Np = 295.8 ± 126.3). The intensity of disease affection of wheat cultivar Sudarynya,  

k-66407 was: Rb = 6.9 ± 1.8%, pustules number Np = 48.0 ± 20. A small decrease in 

disease development from 7% to 8% comparing with a control, was recorded in the 
experimental variants where strains of B. subtilis 124-11, Sphingomonas sp. K1B. and 



Ps. fluorescens SPB2137 where used. While for the period 2017–2019, a significant 

decrease in brown rust development on average for both wheat cultivars when using 

Sphingomonas sp. K1B strain (by 10%, t-test = 2.6), in comparison with the control, was 
revealed. 

The international scientific name of the causative agent of yellow rust is Puccinia 

striiformis West. f. sp. tritici. In 2019, the most significant damage caused by yellow rust 
was registered on Sudarynya, k-66407 cultivar (Rb = 21.7 ± 6.6%, pustules number 

Np = 857.2 ± 242.5). The intensity of disease affection of Trizo, k-64981 cultivar was: 

Rb = 8.0 ± 4.0%, pustules number Np = 242.0 ± 122.4. The greatest decrease in the wheat 

damage by yellow rust in comparison with the control was registered in Sudarynya,  
k-66407 cultivar when using Sphingomonas sp. K1B strain (unreliable for disease 

development at P > 0.05 - by 12%; strips number - by 13% and reliable at P < 0.05, 

pustules number in the strip - by 34%, t-test = 2.7; pustules number per leaf - by 35%,  
t-test = 3.0). No symptoms of yellow rust were detected in 2019 after the treatments by 

B. subtilis 124-11 on Trizo, k-64981 cultivar. Using Ps. fluorescens SPB2137 on Trizo, 

k-64981cultivar caused a slight (P > 0.05) decrease in the disease development intensity 

by 7%, the stripes number by 13%, and a significant decrease (P < 0.05) in the stripe 
length by 50% (t-test = 2.2), the pustules number per stripe by 75%, (t-test = 2.5) the 

pustules number per leaf - by 80% (t-test = 2.7). On average, for the above-mentioned 

cultivars for the period 2017–2019, the strain Sphingomonas sp. K1B had the highest 
efficiency against yellow rust, the use of which led to a decrease in the strip length at 

P < 0.05 by 22% (t-test = 2.6), the pustules number per strip by 29% (t-test = 2.5). A 

significant decrease in the pustule area by 44% (t = 4.7) was marked in the experiment 
variant with the using Ps. fluorescens SPB2137. 

 

CONCLUSIONS 

 
The greatest potential yield of wheat in 2019 was revealed in the experimental 

variants with using B. subtilis 124-11 strains (Yr = 4.2 ± 0.2 g plant, when recalculated 

per 1 ha Y = 6.19 ± 0.33 t ha) and Ps. fluorescens SPB213 (Yr = 4.0 ± 0.2 g plant, 
Y = 5.9 ± 0.4 t ha), and for the period 2017–2019 - when using B. subtilis 124-11 

(Yr = 3.0 ± 0.2 g plant, Y = 6.2 ± 0.3 t ha). At the same time, in 2019, the maximum 

number of significant positive changes in productivity indicators was recorded when 
using Ps. fluorescens SPB2137 (32%), and for the period 2017–2019 when using 

Sphingomonas sp. K1B and Ps. fluorescens SPB2137 (47%). For the period 2017–2019, 

it was noticed that only with the application of Ps. fluorescens SPB2137 revealed a 

significant increase in the productive bushiness by 25% (t-test = 2.6, P < 0.05). 
Although, the treatments with B. subtilis 124-11 and Sphingomonas sp. K1B strains did 

not significantly affect the productive bushiness, but had a protective effect against the 

pathogens of wheat, particularly helminthosporium root rot. The maximum decrease in 
the disease development intensity by 26% was registered in 2017–2019 on Trizo  

k-64981 cultivar when using Sphingomonas sp. K1B. The strain of Sphingomonas sp. 

K1B showed the greatest effectiveness against the complex of leaf diseases. 

The rhizobacteria high efficiency revealed in our research caused due to their 
growth-stimulating effect on plants and an increase in their adaptive potential to 

environmental factors, which is consistent with the results of studies presented in a 

number of scientific papers in this field (Araujo et al., 1994; Belimov et al., 2014; 



Hashem et al., 2019; Naseri, 2019). The antagonistic activity of rhizobacteria against 

phytopathogenic fungi, its dependence on environmental factors and application 

methods, as well as the bacterium ability to cause induced plant resistance are widely 
discussed in various works (Araujo et al., 1994; Matzen et al., 2019; Wachowska et al., 

2013b). Perhaps, the high efficiency of our rhizobacteria in wheat cultivation is 

associated with their combined application during sowing and throughout the entire 
growing season, as well as the diseases development inhibiting by plants preventive 

spraying before the first signs of disease development appearance. 

The obtained data indicate the possibility of more effective cultivation and wheat 

protection from diseases when using bacterial strains (B. subtilis 124-11, Ps. fluorescens 
SPB2137, Sphingomonas sp. K1B), which can increase the wheat yield and its resistance 

to the main pathogens. 
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