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Abstract. Variations in climatic elements directly affect the productivity of agricultural activities. 

Temperature is one of the climatic elements that varies in space and time.Therefore, 

understanding spatial variations in temperature is essential for many activities. Given the above, 

the objective of this work was to compare the performance of the proposed spatiotemporal 

analysis model with that of purely spatial analysis using temperature data obtained by remote 

sensing. The experimental data were arranged in a grid with 403 spatial locations, with 22 samples 

collected in a 24-hour period. The statistical software R Core Team (2020) was used to perform 

the analysis. The packages used in the analyses were ‘geoR’, ‘CompRandFld’, ‘scatterplot3d’, 

and ‘fields’. For making the maps, the software ArcGIS was used. The behavioural analysis of 

spatiotemporal dependence indicated, through the covariogram graph of the data, that there is a 

strong spatial dependence. For the cases of purely spatial analysis of phenomena, a separate 

spatial model for each time is justified because this type of model presents a smaller prediction 

error and requires simpler processing than the space-time model. It was possible to compare the 

space-time analysis with the purely spatial analysis using temperature data obtained by remote 

sensing images. The data modelled with the purely spatial analysis had, on average, lower error 

than those with the space-time model. 
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INTRODUCTION 

 

Agricultural activities are always susceptible to the variations in climatic elements 

and consequently to risks. Temperature is one of the climatic elements that varies in 

space and time, and this parameter participates in several physiological processes in 
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plants and animals. Thus, understanding this element is important and relevant for 

evaluating studies on crop adaptation and agricultural planning (Coelho et al., 1973; 

Medeiros et al., 2005). Temperature is also important for the indication of the sowing 

time, irrigation, determination of yield potential, credit, and agricultural insurance 

(Cargnelutti Filho et al., 2008). 

According to Viana et al. (2019), the temperature has strong temporal dependence, 

causing the energy received by Earth to vary mainly due to the rotational (variation in 

the day) and translational (variation in the year) movements of the Earth, in addition to 

having spatial variations, depending, for example, on the movements of air masses and 

variations in the surface, such as soil cover, albedo, altitude, and humidity. 

Understanding the spatiotemporal dependence of temperature is essential for many 

activities. However, meteorological data are usually acquired in an ad hoc and 

isolated manner through automatic weather stations (Hartkamp, 1999). According to  

Varejão-Silva (2006), although there are large air temperature data series available for 

some locations in certain regions, there may be no records for the exact location one is 

interested in studying. In addition, according to Medeiros et al. (2015), there are a small 

number of weather stations, making the density of available temperature data low and 

making it difficult to characterize the thermal field. These situations are very common 

in practice and promote the development of techniques that seek to estimate the 

temperature in locations for which there are no data (Medeiros et al., 2015). 

Thus, it is possible to obtain temperature data from satellite images. The series of 

geostationary satellites Meteosat Second Generation (MSG), in orbit since 2002, uses 

the spinning enhanced visible and infrared imager (SEVIRI) sensor and produces images 

in 12 spectral channels with a spatial resolution of 3 km at nadir, a temporal resolution 

of 15 minutes, and a radiometric resolution of 10 bits (Schmetz et al., 2002). MSG is 

useful for data acquisition and subsequent spatialization with good temporal resolution. 

However, satellite image data must be subjected to radiometric corrections to reduce the 

influence of the atmosphere (Geiger et al., 2008). Another factor that interferes with 

image acquisition is the weather conditions. On cloudy days, for example, the passage 

of solar energy is blocked by clouds, with the consequent loss of surface data 

(Honkavaara et al, 2013). 

Given the loss of information, the spatialization of this variable can be performed 

using interpolation techniques in which values are estimated in unsampled locations, and 

maps can be created with continuous data in space; these procedures are part of 

geostatistics. 

Currently, geostatistical methods facilitate the interpretation of data randomness, in 

addition to being an efficient tool for spatializing climatic elements (Pessanha et al., 

2020), predicting noise from agricultural machinery (Santos et al., 2020), and predicting 

data within animal facilities (Curi et al., 2014; Cemek et al., 2016, Ferraz et al., 2016; 

Damasceno et al., 2019; Ferraz et al., 2019; Oliveira et al., 2019), among other 

applications in which the maps generated by this method facilitate data interpretation. 

However, these studies, although working with spatiotemporal data, performed purely 

spatial analyses and did not concomitantly explore the interaction between the spatial 

and temporal components. 

The application of spatiotemporal geostatistics, through covariance structure 

modelling, is one of the procedures for spatiotemporal data analysis that takes into 

account the interactions between the spatial and temporal components and allows 



interpolations in time and space (Viana et al., 2019). This procedure was proposed by 

Gneiting (2002) and allows the simultaneous performance of spatial and temporal 

analyses. 

Thus, the objective of this study was to compare the performance of the proposed 

spatiotemporal analysis with that of purely spatial analysis using temperature data 

obtained by remote sensing. 

 

MATERIALS AND METHODS 

 

Data Acquisition 

The study area (Fig. 1) is located in the municipality of Lavras, in the state of Minas 

Gerais (MG), in the southeastern region of Brazil between latitude 21° 14' 45' south and 

longitude 45° 00' W of Greenwich, with a maximum altitude of 918 m above sea level 

(ASL). The municipality of Lavras is in an ecotone of the Cerrado and Atlantic Forest 

domains, where remnants of seasonal semideciduous forest, grassland, montane 

savanna, and cerrado (Brazilian savanna) are found (Souza et al., 2003; Dalanesi et al., 

2004; Pereira et al., 2010). The climate of the region, according to the Koppen 

classification, is of the Monsoon-influenced humid subtropical climate (Cwa) type, 

characterized by a dry season in the winter and a rainy season in the summer. The 

average annual precipitation is 1,460 mm, and the average annual temperature is 

20.4 °C, with a minimum of 17.1 °C in July and a maximum of 22.8 °C in February 

(Dantas et al., 2007). 
 

 
 

Figure 1. Location of the municipality of Lavras, MG. 

 



Data were obtained with images from the MSG series of geostationary satellites of 

the European Organization for the Exploitation of Meteorological Satellites 

(EUMETSAT). These satellites have instruments such as the geostationary earth 

radiation budget (GERB) radiometer, communication instruments such as geostationary 

search and rescue (GEOS&R), the data collection system (DCS) data storage platform, 

and the SEVIRI sensor. 

The SEVIRI sensor is equipped with 12 spectral channels, ranging from visible 

wavelengths to far-infrared wavelengths, including absorption bands of water vapor, 

ozone (O3), and carbon dioxide (CO2), with a spatial resolution between 1 km and 3 km 

at nadir (Fensholt et al., 2006). MSG stands out as the first series of geostationary 

satellites in the world with red and near infrared (NIR) bands, which are very useful for 

monitoring the Earth’s surface at high temporal resolution (Schmetz et al., 2002). 

With this temporal resolution, meteorological images can be obtained every 

15 minutes in nominal mode or every 5 minutes in rapid scan mode. Thus, the values 

obtained every 15 minutes by MSG can be acquired 96 times a day. However, in this 

study, we used 22 observations of mean temperature values collected during the 1 July 

2013, thus obtaining the temperature from time 1 to time 22, in which time 1 

corresponded to 00 h and time 22 corresponded to 5 h 15 AM of the chosen day. These 

parameters were randomly selected to test the models under study. 

The images were corrected following the methodology proposed by Geiger et al. 

(2008). The correction of atmospheric effects is important due to the dynamics of 

atmospheric components (aerosols, gases and clouds). For this, the SMAC (Simplified 

Method for Atmospheric Correction) technique is used, which demands less time. The 

data were arranged in a grid with 403 spatial locations spaced 1 km apart. A total of 403 

locations were used to cover the entire study region (Fig. 1). 
 

Space-time random fields 

Let Z (s,t) be a random variable measured at position s in Rd, and at time t in R, Rd 

is the space, R is the time, and Rd x R is the domain of the random field defined in space-

time. In this sense, a space-time random field is defined as Z (s,t), where s is in Rd and 

t is in R. In this article, d = 2 is considered such as in the study by Rodrigues et al. (2019). 

However, note that d can be any positive integer. 
 

Kriging 

The linear kriging predictor is defined as Z (s0,t)= 𝜇𝑧 + 𝜎′Σ−1(𝑍 − 𝜇𝑧). The case 

where μ is constant but unknown denotes ordinary kriging. This estimator must meet the 

following criteria: 

[Z(s0,t0)-Ẑ(s0,t0)]=0; that is, it should be unbiased; 

Var [Z(s0,t0)-Ẑ(s0,t0)]is minimal. 

Generally, sampling is performed with a set of points distributed sparsely 

throughout the region. The objective is to continuously describe the process throughout 

the region. However, for the case of the prediction of space-time random fields, obtaining 

theoretical models of semivariograms can be very complicated. A simpler method is to 

consider theoretical models of the stationary covariance functions that are valid. 
 



Covariance functions 

In geostatistics, for each sampled location spatially and temporally located, there is 

only one realization, and the number of observations is always finite. This condition 

usually makes it impossible to infer the probability distribution of the location. 

Therefore, some hypotheses are necessary, including one commonly called the 

hypothesis of stationarity. Assuming this second-order hypothesis, the covariance is a 

tool that can be used for the autocorrelation between pairs of measured values separated 

by a distance h. According to Sherman (2011), a moments estimator for the covariance 

is defined according to equation (1): 

Ĉ(h,u)=
1

N(h,u)
∑ {[Z(s1,t1)-μ][Z(s2,t2)-μ]}2

N(h,u)

 (1) 

where N(h,u) is the number of points that are within the distance h in each time lag u  

and μ is the mean of the random field. 
 

Gneiting’s model (2002) 

Gneiting (2002) proposes the direct construction of classes of nonseparable 

stationary space-time covariance functions in the space-time domain. Consider two 

conveniently chosen functions 𝜑(𝑟), 𝑟 ≥ 0   and ψ(r). The first is a completely monotone 

function, and the second is a positive function with a completely monotone derivative. 

These definitions can be seen in Gneiting (2002), which presents the following model 

given by Eq. (2): 

C(h,u)=c0+
σ2

(a|u|2α+1)δ+β
exp (-c

‖h‖2γ

(a|u|2α+1)βγ
) (2) 

where ‖h‖ is the spatial distance, |u| is the time lag, 𝜎2 is the variability present in the 

random field, and 𝑐0 =
𝜎𝒉=𝟎

2

𝑎|𝑢|𝛿
 is the nugget effect that is defined as an uncontrollable 

sampling error. Eq. (2) is implemented in the ‘CompRandfld’ package available in the 

R software and is used in the data analysis, where a, c, and 𝜎2 > 0 and α,γ,β ∈(0,1]. Here, 

a and α are the scaling and smoothness parameters of the process in time; c and γ are the 

scale and smoothness parameters of the process in space. The parameter β measures the 

strength of the space-time interaction. 
 

Software used 

The free statistical software R version 3.5.0 (Team, 2020) was used to perform the 

geostatistical analyses. The packages used in the analyses were ‘geoR’ (Ribeiro Júnior 

& Diggle 2020), ‘CompRandFld’ (Padoan & Bevilacqua 2020), ‘scatterplot3d’ (Ligges 

et al., 2020), and ‘fields’ (Nychka et al., 2020); these packages are essential for working 

with spatiotemporal geostatistics. The standard format of a spatiotemporal database has 

coordinates (x, y) of the locations, with values of the attribute (z), in this case, the average 

temperature in addition to the times/dates of the measurements. 

The calculated values of kriging prediction and variance were exported in text 

format (.txt) to ArcGIS to prepare the maps. The universal transverse Mercator (UTM) 

coordinate system, datum WGS 84, zone 23 south, was used with the intention of 

adaptation to the field data. 

 



RESULTS AND DISCUSSION 
 

Spatiotemporal behaviour 

The existence of a spatiotemporal relationship in the data is the key point for the 

use of the space-time covariance function models proposed, as observed in Fig. 2. 
 

 

 
 

Figure 2. Sample covariogram. 

 

Spatiotemporal analysis 

The space-time covariance function model proposed by Gneiting (2002) is given 

by Eq. (3): 

C(h,u)=1.728e-7+
2.002

(2.082|u|7.084e-01+1)1
exp (1.468

0.008634‖h‖6.685e-01

(2.082|u|7.084e-01+1)1
) (3) 

Table 1 shows the estimated parameters for the covariance model according to 

Eq. (3): 
 

Table 1. Estimated parameters of Gneiting’s model (2002) 

C0 2 a  c   

0.0000001728 2.002 2.082 1 1.468 1 1 

C0 is the nugget effect; σ2 is the random field variance, a is the scale parameter in time; α is the smoothness 

parameter in time; c is the scale parameter in space; γ is the smoothness parameter in space, and β is the 

parameter that measures the strength of the space-time interaction. 

 

In the analysis of the behaviour of the spatiotemporal dependence between the data, 

a covariogram plot is a useful tool. Fig. 3 shows the spatiotemporal covariogram fitted 

to the data. Strong spatial dependence is perceived because β = 1, and this parameter 

measures the strength of the space-time interaction. 

With classical statistics, the interaction between space and time cannot be obtained; 

i.e., the variability in the space and time dimensions cannot be collectively captured 

(Bicalho, 2008). With the spatiotemporal model, the covariogram shows that the 

spatiotemporal dependence is short-range. This means that this dependence is strong, 

Space-time covariance 

h(s) 

u(t) 

C(h,u) 



indicating that the influence between the points ceases to exist within short distances in 

space and time in the study area; that is, when travelling 1.48 km in space and 34.7 hours 

in time, there is no longer a dependence. 
 

 
 

Figure 3. Spatiotemporal covariogram fitted to the data. 

 

The ordinary kriging technique is a linear predictor that requires continuity in the 

study area to be applied, which assumes that there is a mean in the random field studied 

but that it is unknown. This provides the maps that generally serve as a visual information 

instrument to continuously investigate patterns of occurrence of some phenomena in the 

study area. The maps obtained over the period of the studied day show the temperature 

variation and the interaction that occurs between the phenomenon in space and time. 

was proposed in this study to help identify the thermal sensation at the study site 

(Table 2). This table classified temperature ranging from 0 °C to 7 °C as very cold; from 

7 °C to 13 °C as cool; from 13 °C to 18 °C as mild; from 18 °C to 24 °C as pleasant; 

from 24 °C to 29 °C as warm; from 29 °C to 35 °C, as hot, and above 35 °C as scorching. 

The maps show the daily evolution of the 

temperature of the city of Lavras, MG, over a 

day. Fig. 4 shows that the temperature ranged 

from a minimum of 9.5 °C to 18 °C because it 

considers a winter day, in which the 

temperature ranges from 11 °C to 25 °C. In 

addition, the analyses and maps were prepared 

with temperature data from 00:00 to 05:15 AM 

in the morning of the studied day. Thus, the 

resulting temperature is characterized as mild in 

this period. A temperature classification table 

 

Table 2. Characterization of the mean 

hourly temperatures 

C
la

ss
es

 

Temperature (°C) Characterization 

0 to 7 Very cold 

7 to 13 Cool 

13 to 18 Mild 

18 to 24 Pleasant 

24 to 29 Warm 

29 to 35 Hot 

>35 Scorching 
 

Space-time covariance 



 
 

Figure 4. Interpolation maps of the mean air temperature using ordinary kriging from time 1 to 

time 22 for the studied day. 
 



Fig. 4 shows that from time 1 (00 h) to time 3 (00 h 30), the temperature can be 

classified according to Table 2 as mild, as most of the area stayed between 13 °C and 

18 °C. From time 4 (00 h 45) to time 22 (5 h 15 AM), the temperature can be classified 

according to Table 2 as cool, ranging from 7 °C to 13 °C, showing some transition 

regions with mild temperature. 

The warmest zones, i.e., the red- and orange-coloured areas of the maps, especially 

at times 2, 3, and 18, were observed in the central region where the highest population 

density is found. The boundary regions are farm regions with greater vegetation, so the 

temperature in these areas were predominantly shaded green. 

The maps presented in Fig. 4 may contain errors, and a way to assess whether the 

proposed model fits the data well is to evaluate its residuals (Fig. 5). They should be 

well-behaved with minimum values. The residual is defined as 𝐸[𝑍(𝑠,𝑡)̂ − 𝑍(𝑠,𝑡)], where 

𝑍(𝑠,𝑡)̂ is the value estimated by the model and 𝑍(𝑠,𝑡) is the real value. 
 

 
Figure 5. Residuals map. 

 

When the error maps are presented, they are consistent, which indicates little 

variation in errors between the measured times. This is a great result. The intention is 

not to determine if this is the best model for these data but to compare the performance 

of this model with another model and to determine which is the best option for data 

analysis: stationary space-time covariance functions or a purely spatial model, separated 

by each time. 
 

Purely spatial analysis 

In this study, we did not seek to produce kriging maps but rather a descriptive 

analysis of the standard deviations of the prediction errors. It is reasonable to assume 

that the model with the smallest prediction error is the best choice. The purely spatial 

dependence model with best fit to the data was the exponential model, taking into 



account the criterion of greater range, the nugget effect, and the spatial contribution. 

These results were used in the construction of Table 3. This choice is usually made ‘by 

feeling’ because there are no statistical tests that indicates which model should be fitted. 

The respective parameters were estimated using the least squares method. 

 
Table 3. Comparison between the two models, where the descriptive measures of the minimum, 

mean, and maximum were evaluated for the standard deviations of the prediction errors 

Time 
Space-time Purely Spatial 

Minimum Mean Maximum Minimum Mean Maximum 

Time 01 0.0381 0.0488 0.0828 0.0003 0.0139 0.0657 

Time 02 0.0381 0.0422 0.0827 0.0003 0.0149 0.0675 

Time 03 0.0381 0.0477 0.0820 0.0003 0.0155 0.0701 

Time 04 0.0381 0.0477 0.0817 0.0002 0.0089 0.0457 

Time 05 0.0381 0.0477 0.0816 0.0002 0.0094 0.0470 

Time 06 0.0381 0.0477 0.0816 0.0003 0.0141 0.0712 

Time 07 0.0381 0.0477 0.0815 0.0005 0.0234 0.1035 

Time 08 0.0381 0.0477 0.0815 0.0004 0.0199 0.0922 

Time 09 0.0381 0.0477 0.0815 0.0003 0.0153 0.0723 

Time 10 0.0381 0.0477 0.0815 0.0005 0.0214 0.0802 

Time 11 0.0381 0.0477 0.0815 0.0005 0.0224 0.0838 

Time 12 0.0381 0.0477 0.0815 0.0003 0.0164 0.0728 

Time 13 0.0381 0.0477 0.0815 0.0004 0.0177 0.0764 

Time 14 0.0381 0.0477 0.0815 0.0003 0.0157 0.0740 

Time 15 0.0381 0.0477 0.0815 0.0003 0.0164 0.0758 

Time 16 0.0381 0.0477 0.0815 0.0003 0.0135 0.0744 

Time 17 0.0381 0.0477 0.0815 0.0003 0.0137 0.0655 

Time 18 0.0381 0.0477 0.0815 0.0003 0.0133 0.0660 

Time 19 0.0381 0.0477 0.0815 0.0002 0.0093 0.0493 

Time 20 0.0381 0.0477 0.0816 0.0001 0.0079 0.0424 

Time 21 0.0381 0.0477 0.0816 0.0019 0.0099 0.0509 

Time 22 0.0381 0.0477 0.0817 0.0002 0.0084 0.0443 

 
According to Table 3, one can opt for purely spatial modelling because, on average, 

this type of modelling has the smallest error. However, it is necessary to consider that 

the space-time model of Gneiting (2002) takes into account both the existing spatial 

dependence and temporal dependence, in addition to the possibility of making 

predictions for unsampled times. Table 1 shows that choosing the model of Gneiting 

(2002) does not result in much loss of information in the process of predicting values, 

which is the goal of geostatistics. 

The space-time model is extremely useful for predicting unsampled values and is 

advantageous for obtaining missing data in the case of sensor failures or even cloud 

cover, showing a low magnitude of prediction error. The interpolation of unknown 

values is associated with the prediction, whereas the forescast is associated with the 

extrapolation of unknown values, so with the model proposed by Gneiting (2002), it is 

possible to forecast and predict these temperature values as a tool to concomitantly 

monitor the behaviour of phenomena over time and space. However, because this model 

is complex and requires software with the capacity to store and process complex and 

intense calculations, its use must be analysed, and resources for this processing should 

be obtained. 



For the cases of the pure spatial analysis of phenomena, a separate spatial model 

for each time is justified by the fact this type of model yields a smaller prediction error 

and requires a simpler processing than the space-time model. 

Most studies found in the literature for temperature spatialization used multiple 

linear regression (Medeiros et al., 2005; Bardin et al., 2010; Castro et al., 2010; Lyra et 

al., 2011, Gomes et al., 2014), which is a low-accuracy model for estimating values, 

showing the potential of both the purely spatial model and the space-time model for the 

spatialization of climatic elements, where the former has lower error and the latter has 

forecasting and prediction abilities. 

 

CONCLUSIONS 

 

It was possible to compare the space-time analysis with the purely spatial analysis 

using temperature data obtained by remote sensing images. The data modelled with the 

purely spatial analysis had, on average, lower error than those with the space-time model. 
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