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Abstract. Greece produces significant amounts of agricultural and livestock waste. For the needs 

of this study, Greece was divided into a Northern and a Southern part and relevant proposals were 

made for residues that can be used for energy production, through anaerobic digestion. For 

Northern Greece, this study concluded that the most abundant residues and potential substrates 

for anaerobic digestion valorisation are those of maize, inedible vegetables (including greenhouse 

vegetables), cattle manure, as well as the residues of beer and wine industry. For Southern Greece, 

the corresponding substrates are those of maize, inedible vegetables, sheep/goat manure and 

residues of wine, tomato, orange and olive processing, respectively. Based on the 

physicochemical characterization of individual feedstocks, corn silage, tomato husks, 

watermelon, malt, cattle manure, orange, and olive processing residues (olive pomace) were 

considered as the most suitable feedstocks for anaerobic digestion. Biochemical Methane 

Potential (BMP) assays for Northern Greece were also performed, testing the most abundant and 

appropriate residues for anaerobic digestion (of this area), namely corn silage, cattle manure and 

malt, in order to define their BMP yield as well as their prospective optimum mixtures. It was 

concluded that the BMP of the mono-substrates is in accordance with literature, while there were 

no statistically significant differences in the methane yield of all tested mixtures. The residual 

biomass originating from the three main categories of the agricultural sector (crop residues,  

agro-industrial residues, and animal manure) in Northern Greece can be efficiently valorised via 

anaerobic co-digestion, without observing, though, any synergistic effects on methane 

production. 
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INTRODUCTION 

 

Greece is an agricultural country and considerable proportion of its residual 

biomass consists of crop residues and livestock manure (Lais et al., 2017). Almost 70% 

of the total area of Greece is used for agricultural activities. This is the reason why the 

country exhibits a high biomass potential for renewable energy production (Sagani et al., 
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2019). Most European countries use residual biomass as a significant resource for 

electricity and thermal energy production. However, in Greece, only a small percentage 

of it is used to meet the electrical energy needs, as the country still largely depends on 

fossil fuels. In general, 61% of national energy needs are met by fuel imports and the 

rest (39%) through national energy sources such as lignite (77%) and renewable energy 

systems (22%) (Moustakas et al., 2020). Despite their vast availability, huge amounts of 

agricultural residues and animal manures are disposed of uncontrollably in the 

environment or in landfills, while farmers usually proceed to open burning of residual 

biomass in their fields, even though these solutions lead to deterioration of the Greek 

environment (Alatzas et al., 2019). 

Residual biomass from the agricultural sector usually appears in the form of crop 

residues, agro-industrial residues, and animal manure. Vlyssides et al. (2015) have 

recently estimated the total annual residues production in Greece. According to their 

study, the production amounts to 45,957,990 t year-1, taking into consideration the 

estimations for the annual production of agro-industrial residues and livestock manure. 

The theoretical annual potential of agro-industrial residues (such as wheat products, 

potatoes, olives, fruits, dairy products etc.) was found to be 19,005,490 t year-1, while 

the corresponding amount of livestock manure (cattle, chicken, pigs, sheep etc.) was 

26,952,500 t year-1. As the estimated residual biomass could be an energy source with 

essential contribution to the Greek energy balance, studying the energy generation 

potential of these waste streams is of great importance (Vlyssides et al., 2015). The 

choice of the energy conversion process depends on the physicochemical properties of 

biomass, such as its moisture content and the stoichiometric ratio C:N. According to the 

literature, the described residues are characterized by high moisture content (above  

50–55%) and low C:N ratio (below 30), (Skoulou & Zabaniotou, 2007; Vlyssides et al., 

2015). 

Anaerobic digestion (AD) is a biological process through which different organic 

wastes can be converted to biogas (methane and carbon dioxide), under anaerobic 

conditions (Vlyssides et al., 2015; Zhao et al., 2016). AD process can be considered as 

one of the best environmental and low-cost solutions for the treatment of different 

biodegradable wastes, which are generated due to anthropogenic activities (Moustakas 

et al., 2020). The application of AD on single waste streams sometimes implies 

undesirable inhibitory effects due to toxic compounds or metals’ presence. A solution to 

this problem could be the anaerobic co-digestion of two or more waste streams. This 

perspective is considered promising enough for overcoming the inhibition effects and 

thus enhancing the efficiency of the AD process (Dareioti & Kornaros, 2015; Kashi et 

al., 2017). Even if AD has been extensively studied for several years, in Greece there is 

still lack of experience concerning biomass residues’ valorisation from the three main 

categories that are produced in Greece, i.e. crop residues, agro-industrial residues and 

animal manure. 

A reliable and simple method to obtain the extent and the rate of organic wastes 

conversion into methane is the Biochemical Methane Potential (BMP) assays, by which 

information can be derived about the methane potential of each substrate, the operation 

conditions and the anaerobic inoculum efficiency. As BMP assays are characterized as 

a tool for the design optimization and operation of anaerobic digesters, their application 

is mandatory before any large-scale reactor performance (Tsigkou et al., 2019). 



Concerning the aim of this study, Greece was divided into a Northern and a 

Southern part and relevant proposals were made for residues that can be exploited for 

energy production through AD. Following our estimations and detailed survey, samples 

were collected from all promising feedstocks (Northern and Southern Greece) for AD to 

conduct physicochemical characterization. BMP assays of Northern Greece feedstocks 

followed, in order to assess the wastes’ BMP values and define thus the most promising 

mixtures as well as their potential synergistic effects, based on detailed design of 

experiment (DOE). 

 

MATERIALS AND METHODS 

 

Materials 

As Greece was divided into the Northern and the Southern part, relevant proposals 

were made for residues that can be used for energy production through the AD process. 

Briefly, for Northern Greece the most abundant and suitable residues for AD are those 

of maize, inedible vegetables (vegetables characterized by low quality, including 

greenhouse vegetables, as well as their crop residues such as stalks), cattle manure, beer 

and wine industry residues, while for Southern Greece are those of maize, inedible 

vegetables, sheep/goat manure and residues of wine, tomato, orange and olive processing 

(two-phase decanter residues). This information is extracted from the data of the Hellenic 

Statistical Authority (https://www.statistics.gr/en/statistics/agr). The areas where the 

main crops are produced and the main categories of livestock are bred, were determined 

according to the abovementioned statistical data. The areas with the highest crop 

production and breeding activity lead respectively to the highest amount of biomass 

residues. 

Samples were collected from all promising feedstocks for physicochemical 

characterization, followed by BMP assays. Nevertheless, sheep and goat manure 

presents serious difficulties for its collection due to inaccessibility to the livestock farms 

and thus it was not considered as potential feedstock, in this study. The raw residues that 

were evaluated in the current work included (a) crop residues (corn silage, tomato stalks, 

and watermelon), (b) agro-industrial residues (tomato husks, wine marcs, malt, olive 

pomace, and orange processing residues), and (c) animal manure (cattle manure). 

Regarding the crop residues, the corn silage which was used in the current study was 

spoiled animal feed, while the tomato stalks and the unsuitable for human consumption 

watermelons were collected directly from the field. The agro-industrial residues, namely 

tomato husks, wine marcs and malt were collected from the corresponding processing 

plants. Finally, the cattle manure (liquid part) was collected after the separation of the 

solid residue. 

All samples were collected from small local plants in the area of Patras, Western 

Greece. Because of their seasonal availability and high tendency to fermentation, all 

samples were collected fresh and stored in the freezer at -18 °C, before further treatment. 
 

Anaerobic inoculum 

The anaerobic sludge, which was used as inoculum for the BMP assays, was 

obtained from a pilot-scale mesophilic anaerobic digester with working volume of 15 L 

operating at the Laboratory of Biochemical Engineering and Environmental Technology, 

Department of Chemical Engineering, University of Patras (Greece). The digester was 
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fed with a mixture of bread, meat and fruits/vegetables (which does not meet the quality 

and safety standards for human consumption) at an Organic Loading Rate of 0.2 g 

VS·LReactor
-1·d-1. Concerning the characteristics of the anaerobic inoculum, TS were 

measured at 44.02 ± 0.31 g L-1, 53.4 % of which were VS. 
 

Analytical Methods 

Physicochemical parameters such as pH, humidity, total solids (TS), volatile solids 

(VS), total suspended solids (TSS), and volatile suspended solids (VSS), total and 

soluble chemical oxygen demand (t-COD and d-COD), total and soluble carbohydrates 

(t-CHO and d-CHO), soluble phenolic compounds (d-phenols), total Kjeldahl nitrogen 

(TKN), proteins, ammonia/ammonium nitrogen (NH3-N), fats/oils, total and soluble 

phosphorus (t-P and d-P) were measured according to the Standard Methods for the 

Examination of Water and Wastewater (APHA AWWA WEF, 2012). The lignin, 

cellulose, and hemicellulose content was determined using freeze-dried material from 

each feedstock according to the protocol of NREL (Sluiter et al., 2011). The biogas 

composition analysis was conducted using a gas chromatograph (Agilent Technologies 

7890A) with a thermal conductivity detector (TCD), as described in detail by  

Dareioti et al. (2014). 
 

Biochemical Methane Potential Assay 

BMP refers to the experimental procedure developed to determine the maximum 

methane potential of a given organic substrate during its anaerobic decomposition 

(Owen et al., 1979; Chynoweth et al., 1993). In this study, the ΒMP assays were carried 

out concerning Northern Greece residual biomass and more specifically the most 

abundant residues that are produced during winter and summer, in this area. Both 

seasons, share the same feedstocks, such as corn silage, malt (main by-product of 

brewery), and cattle manure. 

The experimental design of BMP assays was realized according to DOE (Design 

of Experiments) for mixtures with a design degree 3 in Minitab, 2019. In DOE for 

mixtures, the proportions of the constituents are variable, while their total amount 

remains unchanged. Such DOEs, try to model the blending surface with mathematical 

equation forms based on data that are procured for the set of mixture compositions. 

Afterwards the system’s response can be estimated for any other desired mixture 

composition by the developed model (Kashi et al., 2017). 

The biogas volume produced is usually expressed in standard pressure (1 atm) and 

temperature (0 °C) conditions (STP conditions) (Dareioti, 2015). The BMP protocol 

followed in this study was based on the principles described by Angelidaki et al. (2009). 

Each test was conducted in duplicate. Known amounts of substrate (2 g VS L-1) and 

active anaerobic inoculum (20% v v-1) were added to 160-mL closed serum vials. 

Nutrient medium containing macro-micronutrients, vitamins etc., as described in detail 

by Angelidaki et al. (2009), was also added to the vessels in order to ensure the optimal 

function of the anaerobic inoculum. Two serum vials with the abovementioned 

composition (without substrate addition) were used as blank (control) in order to subtract 

the endogenous methane production of the inoculum. The assay vessels were flushed 

continuously with N2/CO2 (80/20% as volume) for about 5 min, after transferring the 

substrate, the medium, and the inoculum followed by the sealing of the vessels with a 

thick butyl-rubber stopper and an aluminum crimp (Angelidaki et al., 2009). Once 



sealed, the bottles were placed in an orbital shaking water bath at approximately 90 rpm 

and maintained at a constant mesophilic temperature at 37 °C. The produced biogas was 

measured daily for the first 6 days of the experiment, while for the remaining 

experimentation period (34 days) measurements were taken every 2–7 days, depending 

on the produced biogas volume. A precision gas syringe (50 mL volume) was used for 

the collection and quantification of the produced biogas. Concerning the final biogas 

composition, corrections were occurred for the conversion to dry biogas (STP 

conditions) as well as for water loss during biogas quantification, according to Tsigkou 

et al. (2019). The final BMP of each sample represents the sum of the total methane 

produced and released via the gas syringe, as well as the methane contained in the 

headspace volume. Concerning the evaluation of possible synergistic effects during  

co-digestion of tested feedstocks, the equation (1) was used, as described in detail by 

Tsigkou et al. (2021). 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐵𝑀𝑃 (𝑚𝑙 𝐶𝐻4 g VSadded
 −1 ) = 

(𝑉𝑆1 ∗ 𝑉𝑆𝑆1 ∗ 𝐵𝑀𝑃𝑆1) + (𝑉𝑆2 ∗ 𝑉𝑆𝑆2 ∗ 𝐵𝑀𝑃𝑆2) + (𝑉𝑆3 ∗ 𝑉𝑆𝑆3 ∗ 𝐵𝑀𝑃𝑆3)

𝑉𝑆1 ∗ 𝑉𝑆𝑆1 + 𝑉𝑆2 ∗ 𝑉𝑆𝑆2 + 𝑉𝑆3 ∗ 𝑉𝑆𝑆3

 
(1) 

where V, VS and BMP are the volume, volatile solids and experimental BMP, 

respectively for each tested mono-substrate. 

 

RESULTS AND DISCUSSION 

 

Physicochemical characterization 

The results obtained from the physicochemical characterization of raw feedstocks 

are presented in Table 1. The characterization of samples showed that almost all raw 

residues have high moisture content, which is above 50%, except from wine marc 

residues (30%). In addition, the fats/oils content (especially for the case of olive pomace, 

wine marcs and tomato husks) are quite high, while the protein content is of the same 

order of magnitude for all tested substrates. The aforementioned characteristics indicate 

the potential suitability of these substrates for treatment via anaerobic digestion (Zhao et 

al., 2016). However, taking into account both the physicochemical analysis as well as 

visual observation of tomato stalks, it was realized that these crop residues are very 

fibrous, which could cause serious operating problems (blocking of pumps, valves etc.) 

in the subsequent anaerobic digestion experiments. 

Even though wine marcs are characterized by sufficient amounts of carbohydrates, 

proteins and lipids, low anaerobic biodegradability is reported in literature (compared to 

other agro-industrial materials) (Nikolaidou et al., 2016), probably due to the extremely 

high percentage of lignin (42.64% in our study), which is a limiting factor for the 

anaerobic digestion process (Zhao et al., 2016). Therefore, corn silage, tomato husks, 

watermelon, malt, cattle manure, orange and olive pomace were chosen for the anaerobic 

digestion process due to various limitations of the non-selected substrates (such as high 

fiber content, low biodegradability etc.). 

 

 

 



Table 1. Physicochemical characteristics of raw feedstocks 

Parameters 

Animal manure Crop residues Agro-industrial residues 

Cattle manure 

(g L-1) 

Corn silage 

(g kg-1) 

Tomato stalks 

(g kg-1) 

Watermelon 

(g kg-1) 

Tomato husks 

(g kg-1) 

Wine marcs 

(g kg-1) 

Malt 

(g kg-1)  

Olive pomace 

(g kg-1)5 

Orange peels 

(g kg-1 d.b.)6 

Average ± SD min-max 

pH 7.02 ± 0.01 4.95 ± 0.01 6.37 ± 0.03 4.55 ± 0.01 4.44 ± 0.01 4.09 ± 0.03 6.50 ± 0.03 4.86–6.45 3.42–4.47 

Alkalinity1 11.18 ± 0.01 n.d. ± n.d. 0.18 ± 0.01 n.d. n.d. n.d.  n.d. 1,950–2,062 

t-COD 60.80 ± 2.25 332.96 ± 30.93 125.04 ± 36.31 75.64 ± 0.21 90.63 ± 25.58 184.21 ± 17.44 60.74 ± 0.99 n.d. 1,030–1,140 

d-COD 20.97 ± 0.74 n.d. n.d. 67.93 ± 0.94 n.d. n.d. ± n.d. n.d. n.d. 

TS 45.83 ± 3.87 413.95 ± 7.78 274.56 ± 15.65 50.12 ± 5.49 320.82 ± 2.00 693.48 ± 3.43 250.11 ± 2.01 n.d. 151–281.60 

VS 33.20 ± 2.92 394.29 ± 7.40 216.31 ± 16.37 44.17 ± 3.21 309.65 ± 1.77 619.06 ± 11.73 240.22 ± 1.65 n.d. 146–203.90 

TSS 17.18 ± 1.09 n.d. n.d. 7.56 ± 0.50 n.d. n.d. n.d. n.d. n.d. 

VSS 14.09 ± 0.75 n.d. n.d. 7.27 ± 0.37 n.d. n.d. n.d. n.d. n.d. 

Humidity2  95.42 ± 0.39 58.60 ± 0.78 72.54 ± 1.57 94.99 ± 0.55 67.92 ± 0.20 30.65 ± 0.34 74.99 ± 0.20 48.20–64.50 71.84–84.90 

t-CHO3 9.23 ± 1.41 221.96 ± 36.75 25.99 ± 2.40 58.05 ± 5.52 39.62 ± 1.16 55.04 ± 5.65 18.77 ± 2.97 46–146 n.d. 

d-CHO3 0.55 ± 0.01 n.d. n.d. 54.83 ± 2.56 n.d. n.d. n.d. n.d. n.d. 

d-phenols4 1.01 ± 0.00 n.d. n.d. 0.31 ± 0.02 n.d. n.d. n.d. 0.5–12.20 n.d. 

TKN 3.21 ± 0.23 3.80 ± 0.06 3.85 ± 0.20 1.11 ± 0.18 10.45 ± 0.74 8.19 ± 0.85 6.53 ± 0.03 n.d. 11.67–13 

Proteins 20.07 ± 1.46 23.76 ± 0.35 24.06 ± 1.23 6.91 ± 1.11 65.31 ± 4.62 51.20 ± 5.30 40.79 ± 0.17 n.d. 65.40–69.40 

NH3-N 1.97 ± 0.02 0.58 ± 0.10 0.49 ± 0.03 0.07 ± 0.00 0.65 ± 0.02 1.04 ± 0.15 0.71 ± 0.03 n.d. 1.49–1.87 

Fats and oils 1.67 ± 0.01 6.60 ± 0.49 5.47 ± 0.12 0.51 ± 0.11 13.98 ± 0.44 32.63 ± 0.29 5.96 ± 2.36 142–262 n.d. 

t-P 4.05 ± 0.09 6.01 ± 0.09 6.85 ± 0.22 1.12 ± 0.07 6.79 ± 0.02 12.92 ± 0.18 6.57 ± 0.15 0.50–2.75 1.15–1.21 

d-P 0.22 ± 0.01 n.d. n.d. 1.12 ± 0.05 n.d.  n.d. n.d. n.d. n.d. 

Cellulose2 n.d. 19.48 ± 1.73 11.11 ± 0.31 n.d. 7.45 ± 0.80 16.51 ± 0.01 7.34 ± 0.68 16.50–22.80 20.03–22.43 

Hemicellulose2 n.d. 5.16 ± 0.94 8.93 ± 0.49 n.d. 4.67 ± 2.02 16.72 ± 0.01 5.76 ± 0.29 19.10–38.70 11.65–12.50 

Lignin2 n.d. 4.97 ± 0.08 6.49 ± 0.93 n.d. 12.53 ± 1.42 42.64 ± 0.69 3.35 ± 0.09 19.60–47.50 13.02–15.52 

n.d.: not determined; 1g CaCO3 L-1 or g CaCO3 kg-1; 2expressed as percentage; 3measured as equivalent glucose; 4measured as equivalent syringic acid;  

5values from Cayuela et al. (2006); López-Piñeiro et al. (2008); Ntougias et al. (2013); 6values from Martin et al. (2018); Zema et al. (2018); Rokaya et al. (2019); 

Jiménez-Castro et al. (2020). 

 

 

 



Biochemical Methane Potential assays 

The results of the BMP assays (expressed as mL CH4 g VSadded
 −1 ) concerning the 

Northern part of Greece (namely the feedstocks of corn silage, cattle manure and malt) 

are presented in Table 2. The ratios of fresh matter and the corresponding VS ratios of 

the tested substrates, which were added to the vials after the DOE, are also presented in 

the same Table. In addition, the results of the BMP assays are illustrated in Fig. 1. 

 
Table 2. Volume and VS ratios of mixtures, experimental and expected BMP values, expressed 

as mL CH4 g VSadded
-1 

Corn 

silage 

Cattle 

manure 
Malt 

Corn 

silage 

Cattle 

manure 
Malt Measured BMP Expected BMP 

(%w/w fresh matter) (%VS) 
(mL CH4 g VSadded

 −1  

± SD) 

(mL CH4 g 

VSadded
 −1 ) 

0 0 100 0 0 100 255.23 ± 16.40 - 

100 0 0 100 0 0 262.40 ± 34.37 - 

0 100 0 0 100 0 236.08 ± 3.36 - 

0 50 50 0 12.14 87.86 239.35 ± 11.17 252.90 

50 0 50 62.14 0 37.86 259.25 ± 10.04 259.68 

50 50 0 92.23 7.77 0 254.60 ± 7.28 260.36 

33.33 33.33 33.33 59.05 4.97 35.98 238.60 ± 5.87 258.51 

16.67 16.67 66.67 28.40 2.39 69.21 232.65 ± 10.96 256.81 

66.67 16.67 16.67 85.22 1.79 12.98 226.70 ± 32.53 260.99 

16.67 66.67 16.67 51.39 17.31 31.31 243.03 ± 8.94 255.60 

 

The BMP assays for Northern Greece using residues of corn silage, malt and cattle 

manure indicate that the BMP of the mono-substrates are in agreement to other published 

works in literature. Specifically for corn silage, other values found in literature range 

from 204 to 410 mL CH4 g VSadded
 −1  (Bruni et al., 2010; Labatut et al., 2011; Mayer et 

al., 2014; Menardo et al., 2015; Roj-Rojewski et al., 2018), with the highest value being 

presented for experiments in which whole corn grains are used. Concerning the results 

of the current study, the spoilage of the corn silage combined with its long storage 

duration might have led to partial degradation of the easily biodegradable organic 

compounds, resulting thus in a decreased BMP yield. In addition, the literature values 

for malt varied from 64 mL CH4 g VSremoved
 −1  to 366 mL CH4 g VSadded

 −1  (Peces et al., 

2015; Diego- Díaz et al., 2018), with the values of the present study being close enough 

to the aforementioned yields (approximately 255 mL CH4 g VSadded
 −1 ). Regarding the 

experimental yield of cattle manure, the value of 236 mL CH4 g VSadded
 −1 , obtained in 

this study, is in accordance with other references (Krishania et al., 2013; Strömberg et 

al., 2014; Thygesen et al., 2014; Cu et al., 2015; Diaz et al., 2016; Wijaya et al., 2020). 

As can be seen in Table 2 and Fig. 1, corn silage and malt exhibited the maximum 

BMP value. However, there are no statistically significant differences in the produced 

methane between the tested substrates, as described by the P values (P > 0.05) in 

Table 3. For this reason, these residues can be used in practice, either as mono-substrates 

or in mixtures, taking into account only their regional availability and the reactor’s 

operating conditions, such as wet, semi-dry or dry anaerobic digestion, high-rate or 

conventional operation etc. These results further indicate that co-digestion of residues 

from the three main agro-waste categories produced in Northern Greece, i.e. crop and 

https://www.researchgate.net/scientific-contributions/Slawomir-Roj-Rojewski-2125898732


industrial residues as well as animal manure, can be performed and be beneficial for the 

process performance in terms of process parameter adjustment (such as moisture content 

or nutrients ratio), without, however, observing any synergistic effects as the expected 

BMP values of the feedstock mixtures were equal or less to the mono-substrates’ 

performance (Table 2); moreover, the highest BMP values were observed nearly to 

100% malt or corn silage (Fig. 1). 
 

 

Figure 1. Results of the BMP assays according to dry matter (left) and volatile solids percentage 

(right). 

 
Table 3. ANOVA table for the cumulative methane yields 

Source DF Seq SS Adj SS Adj MS F-Value P-Value 

Regression 5 499.22 499.22 99.84 0.47 0.78 

Linear 2 265.55 192.40 96.20 0.45 0.66 

Quadratic 3 233.67 233.67 77.89 0.37 0.78 

Corn silage*Manure 1 7.41 8.13 8.13 0.04 0.85 

Corn silage*Malt 1 89.41 90.76 90.76 0.43 0.55 

Manure*Malt 1 136.85 136.85 136.85 0.65 0.47 

Residual Error 4 846.63 846.63 211.66     

Total 9 1345.85         

 

According to literature, feedstocks such as manure or maize silage have already 

been co-digested with other waste streams like food wastes, whey or other agro-industrial 

residues, exhibiting various results (Hidalgo & Martín-Marroquín, 2015; Cárdenas-Cleves 

et al., 2018; Valenti et al., 2018; Vivekanand et al., 2018). It is widely hypothesized that 

co-digestion could lead to higher methane yields and thus synergistic effects, if higher 

buffering capacity, more balanced C/N ratio or higher readily biodegradable organic 

fraction could be achieved (Xie et al., 2017). In our study, even if the buffering capacity 

or the C/N ratio are improved due to the presence of manure, the absence of easily 

biodegradable compounds, such as monomers, is considered to be equally important for 

the lack of synergistic effects. The recalcitrant lignocellulosic content combined with the 

monomers limitation of the tested mixtures can strongly affect the bacterial community 

functions. The most possible explanation is that, as the hydrolytic bacteria exhibit 

  



notably higher growth rates comparing to the methanogens (Lim et al., 2020), the 

presence of easily biodegradable monomers could lead to the hydrolytic microbial 

community enrichment and therefore to prospective increased yields. 

The quadratic equation fitting to the experimental methane yields resulted in the 

regression equation described in Eq. 2. This equation simulates the productivity of 

methane for any proportion of the aforementioned substrates (fresh matter). The 

nonlinear terms in this equation indicate whether a substrate is affected by the other. 

Since these terms present low values, no statistically significant differences between the 

substrates were obtained. 

𝑌 (𝑚𝑙 𝐶𝐻4/𝑔 𝑉𝑆𝑎𝑑𝑑𝑒𝑑) = 2.58𝐶𝑜𝑟𝑛 𝑠𝑖𝑙𝑎𝑔𝑒 + 2.41𝑀𝑎𝑛𝑢𝑟𝑒 + 2.55𝑀𝑎𝑙𝑡 − 

0.001𝐶𝑜𝑟𝑛 𝑠𝑖𝑙𝑎𝑔𝑒 ∗ 𝑀𝑎𝑛𝑢𝑟𝑒 − 0.004𝐶𝑜𝑟𝑛 𝑠𝑖𝑙𝑎𝑔𝑒 ∗ 𝑀𝑎𝑙𝑡 − 0.005𝑀𝑎𝑛𝑢𝑟𝑒 ∗ 𝑀𝑎𝑙𝑡 
(2) 

where Y is the expected BMP (mL CH4 g VSadded
 −1 ) and Corn silage, Manure, Malt refer 

to the percentage (% of fresh mater) of corn silage, manure, and malt, respectively. 

 

CONCLUSIONS 

 

Greece generates significant amounts of agricultural residues. Even if there are 

many promising valorisation methods, the anaerobic digestion process has been proven 

not only an environmentally friendly, but also a feasible renewable energy production 

method, over the recent years. Concerning the available residues examined, corn silage, 

malt and cattle manure seemed to be the most suitable feedstocks for anaerobic digestion, 

in the case of Northern Greece. The BMP results obtained in this study are in agreement 

with the methane potential of the tested mono-substrates reported in the existing 

literature. There were no statistically significant differences in the produced methane nor 

any synergistic effects on methane production during co-digestion of the tested 

feedstocks, in various ratios; as a result, the decision for energy valorisation of these 

residues, via anaerobic co-digestion, has to be based on their regional availability and 

the digester’s operating conditions. More studies are yet required to unravel the potential 

of all available feedstocks, remaining still unexploited in Greek fields and agro-

industries, for energy production through anaerobic co-digestion. 
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