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Abstract

Background: The influences of intraocular pressure (IOP) elevations on the pulse waveform in the optic nerve head
(ONH) were evaluated using laser speckle flowgraphy (LSFG) in normal subjects.

Methods: This prospective cross-sectional study was conducted at the Nagoya University Hospital. An
ophthalmodynamometer was pressed on the sclera to increase the IOP by 20 mmHg or 30 mmHg for 1 min
(experiment 1, 16 subjects) and by 30 mmHg for 10 min (experiment 2, 10 subjects). The mean blur rate (MBR) and
the eight pulse waveform parameters determined using LSFG were measured before, immediately after and during
an IOP elevation, and after the IOP returned to the baseline pressure.

Results: A significant elevation in the IOP and a significant reduction in the ocular perfusion pressure (OPP) were
found after applying the ophthalmodynamometer (both, P < 0.001). The blowout score (BOS) reduced significantly
(P < 0.001), and the flow acceleration index (FAI; P < 0.01) and resistivity index (RI; P < 0.001) increased significantly
immediately after increasing the IOP by 20 or 30 mmHg (experiment 1). The BOS reduced significantly (P < 0.001),
and the FAI (P < 0.01) and RI (P < 0.001) increased significantly after the IOP elevation by 30 mmHg in both
experiment 2 and 1. However, the BOS and RI recovered significantly at time 10 compared to that in time 0
(immediately after IOP elevation) during the 10-min IOP elevation (P < 0.001 and P = 0.008, respectively).

Conclusions: In conclusion, the BOS, FAI, and RI of the pulse waveforms changed significantly with an acute
elevation in the IOP. The change should be related to the larger difference between the maximum and minimum
MBRs during the IOP elevation.
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Introduction
One method to study the blood flow regulation has been
to change artificially the ocular perfusion pressure (OPP)
[1–4]. The OPP is defined as the difference between the
arterial and venous pressure in a vascular bed. This re-
duced OPP should then result in a reduction of the ocu-
lar blood flow. In the eye, the venous pressure can reach
high levels when the intraocular pressure (IOP) is ele-
vated, and it has to be slightly higher than the IOP to
maintain sufficient outflow of the blood [5].
The effect of changes in the IOP on the ocular blood

flow has been investigated by various methods mainly in
laboratory experiments on different animal species [6–
9], and the results have shown that the blood supply to
the optic nerve head (ONH) was well autoregulated to
maintain a constant blood flow despite changes in the
IOP and OPP [10–15]. Recently, a study by Popa-
Cherecheanu et al. has investigated the regulation of
ocular blood flow under artificial continuous IOP eleva-
tion using a suction cup and laser Doppler flowmetry
[16]. Earlier, a testing protocol was also established to
examine the response of blood flow on the ONH in-
duced by changes in the OPP induced by an artificial
elevation of the IOP, and the elevated IOP was found to
be stable and reproducible [1, 2].
Laser speckle flowgraphy (LSFG, Softcare, Fukutsu,

Japan) can evaluate the ocular blood flow noninvasively
and quickly [17–20]. An update of the software embed-
ded in the most recent LSFG analyzer (LSFG Analyzer,
v. 3.1.6;) has allowed us to record synchronized images
from each cardiac cycle and determine various pulse
waveform parameters which can be a new biomarker to
detect and evaluate vascular diseases. The results of
earlier studies have shown that the relationship between
these waveform parameters and other variables e.g., age
[21–24], mean intima–media thickness [25], and
normal-tension glaucoma [21]. Accordingly, these pulse
waveform parameters should be able to provide new in-
formation about the ONH autoregulation in response to
OPP changes induced by artificial IOP elevation.
Thus, this study aimed to evaluate the influences of

IOP elevations on the pulse waveform on the ONH
using LSFG in normal subjects. To accomplish this, dif-
ferent parameters of the pulse waveform determined
using LSFG were measured before, immediately after an
elevation of the IOP, and after the IOP was returned to
the baseline level.

Methods
All the study participants were asked to abstain from al-
coholic and caffeinated beverages on the morning of the
examination. The pupil was dilated using 0.4% tropica-
mide/phenylephrine (Mydrin P; Santen Pharmaceutical
Co., Ltd., Osaka, Japan) 30 min before the examinations,

and the subjects rested in a quiet dark room for 10–15
min before the measurements to achieve stable
hemodynamic conditions. All examinations were per-
formed in the sitting position at approximately 12:00 h
to avoid diurnal variations [26, 27]. The axial lengths
were measured using partial optical coherence interfer-
ometry (IOLMaster; Carl Zeiss Meditec, La Jolla, CA),
and the IOP was measured using a handheld tonometer
(Icare; TiolatOy, Helsinki, Finland). The systolic blood
pressure (SBP) and diastolic blood pressure (DBP) were
measured using an automatic sphygmomanometer (CH-
483C; Citizen, Tokyo, Japan). The mean arterial blood
pressure (MAP) and OPP were calculated as follows:

MAP =DBP + 1/3(SBP – DBP);
OPP = 2/3MAP – IOP.

Exclusion criteria
The exclusion criteria included the following: the best-
corrected visual acuity of the eyes was less than 20/20, a
history of ophthalmic or systemic disorders including
glaucoma, diabetes, hypertension, and arrhythmia; a
history of treatment, e.g., ocular laser or incisional sur-
gery in both eyes; SBP of more than 150 mmHg; DBP of
more than 90 mmHg; axial length of more than 27.0
mm; medical conditions that could influence the
hemodynamics of the eye, e.g., vascular diseases, and a
regular smoking habit.

Experimental elevation of IOP
An ophthalmodynamometer (Inami, Tokyo, Japan) was
used to apply pressure on the eye to increase the IOP
after a topical anesthesia (0.4% Benoxil ophthalmic solu-
tion; Santen pharmaceutical co. ltd, Osaka, Japan). The
device was pressed perpendicularly to the globe to make
a fixed external pressure on the sclera [1]. Only the right
eye was used for the experiment. The scale on the
ophthalmodynamometer showed the force applied to the
eye to increase the IOP. The IOP was measured during
the application of the pressure using the Icare tonometer
(Icare®; Tiolat Oy, Helsinki, Finland) before, during, and
after the application of the pressure.

Experiment 1
One experimenter placed the ophthalmodynamometer
on the temporal sclera and another experimenter re-
corded the LSFG images (Fig. 1). First, the IOP was in-
creased by 20mmHg from the baseline for 1 min. After
taking a rest for approximately 20 min, the IOP was in-
creased by 30mmHg from the baseline for 16 subjects.
The LSFG images were recorded at 1 min before the
IOP elevation (time − 1), 1 min after the elevation of the
IOP by 20 mmHg (time 1), 18 min after the release of
the pressure (time 19), 1 min after the elevation of the
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IOP by 30 mmHg (time 21), and 18min after the release
of the pressure (time 39) (Fig. 2).

Experiment 2
The IOP was elevated by 30mmHg from the baseline
for 10 min using completely different subjects. The
LSFG images were recorded before, immediately after
the IOP elevation (time 0), and at 1 min (time 1), 3 min
(time 3), 5 min (time 5), 7 min (time 7), and 10 min
(time 10) while the IOP was elevated. Additionally, the
LSFG images were recorded at 1 min (time 11), 3 min
(time 13), and 5 min (time 15) after the release of the
pressure on the eye (Fig. 2).

Laser speckle flowgraphy (LSFG)
The principles of LSFG have been described in detail
[28–31]. The LSFG analyzer software separates the vas-
cular and the tissue areas. Only the tissue area of the
ONH was cross-sectionally analyzed for the pulse wave-
form analysis. Moreover, the LSFG analyzer software en-
ables the recording of synchronized images from each
cardiac cycle (Fig. 1B, C) and determines the values of
various heartbeat waveform parameters. Eight pulse

waveform parameters were evaluated, which include the
skew, blowout score (BOS), blowout time (BOT), rising
rate (RR), falling rate (FR), flow acceleration index (FAI),
acceleration time index (ATI), and resistivity index (RI)
(Fig. 3).
The eight pulse waveform parameters are calculated

with the following equation:

C∙
Z N

0
x−Aveð Þ=Stdevf g3∙p xð Þdx ðSkew ¼Þ

Z N

0
x∙p xð Þdx ðAve ¼Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ N

0
x−Aveð Þ2∙p xð Þdx

s
ðStdev ¼Þ

Where C is the constant of proportion, the variable N
represents the frame number, and the changing mean
blur rate (MBR) waveform of a beat is divided into N
frames. The variable m(k) is the average of MBR in the
k-th frame. Max represents the maximum MBR value
and min is the minimum MBR value.

Fig. 1 Analysis of the pulse waveform at the optic nerve head (ONH) using laser speckle flowgraphy (LSFG). Representative color-coded
composite map (a). The ONH, the mean blur rate (MBR), and other waveform parameters can be measured within the marked circle. Pulse waves
showing MBR changes due to the cardiac cycle for 4 s. The total number of frames is 118 in 1 scan (b). The change of the MBR in one
heartbeat (c)
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C∙ 2− MBRmax−MBRminð Þ=meanf g=2½ � ðBOS ¼Þ
mean ¼

XN

k¼1
m kð Þ

� �
=N

BOT ¼ C∙
XN

k¼1
h kð Þ

n o
=N

h kð Þ ¼ 1 m kð Þ > MBRmax þMBRminð Þ=2
0 otherwise

�

RR ¼ C∙
X f max

k¼1
m kð Þ

� �
−MBRmin∙ f max

n o
= MBRmax−MBRminð Þ∙ f max

� �

FR ¼ C∙ MBRmax∙ N− f max þ 1
� 	

−
XN

k¼ f max
m kð Þ

n o
= MBRmax−MBRminð Þ∙ N− f max þ 1

� 	� �

FAI =MAX {m(k + 1) −m(k)} k = 1, 2, …,N-1

ATI ¼ 100∙ f max=N

resistivity index ¼ MBRmax−MBRminð Þ=MBRmax

The LSFG was measured two times at each time point
using the follow-up mode in all of the eyes. The average
of values was used for the statistical analyses.

Statistical analyses
We evaluated the pulse waveforms using a linear mixed
model to incorporate possible correlations between re-
peated measured values of the parameters for each eye
over time within a subject, which was the same statistical
method as previously reported [1, 2]. Briefly, we as-
sumed the following model,
yij = ai + f (tj:b) + ε i j.
i (subject) = 1, ….,10, j (time) = before, 0, 1, 3, 5, 7, 10,

11, 13,15 (min) where yij is the pulse waveform parame-
ters at time j of subject i and ai is a subject-specific ran-
dom effect. The function f (tj:b), which represents a
fixed effect of time on the refraction, was specified as a

Fig. 2 Illustration of the time course of the experiments
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Fig. 3 Pulse waveform analysis of the eight waveform parameters. The skewed shape shows the asymmetry of the waveform (a). If the shape of
the waveform is symmetrical, the skew is 0 and if the peak comes earlier than that, the degree of skewness increases and the peak slower, and
the degree of skewness decreases. The blowout score (BOS) indicates the amount of the blood flow volume in one heartbeat (width of a
heartbeat) (b). The blowout time (BOT) represents the length of time that the wave maintained more than half of the mean of the maximum and
minimum MBR in a heartbeat (c). The half-width is the duration of the time that the MBR is higher than (MBR max – MBR min)/2. The rising rate
(RR) is the relationship of the area of the S1 to that of S all (d). S all is the square area before the peak and the S1 is the increasing area (d). The
falling rate (FR) is the proportion of the area of the S2 to the S all (e). S all is the area of the square after the peak and the S2 is the decreasing
area (e). The flow acceleration index (FAI) is the maximum change of the increasing MBR in 1/30 s (f). The acceleration time index (ATI) is the
ratio of the duration of the time to reach peak (width to reach peak) in one heartbeat (width of a heartbeat) (g). The resistivity index (RI) is
calculated by dividing the difference of MBR max and the MBR min by the MBR max (h)
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polynomial function. The b parameters represent the
fixed time effects and interaction between the time and
group effects, respectively. The order of polynomials in f
(tj:b) was selected on the basis of the Akaike information
criteria.
The level for statistical significance was 0.05. The stat-

istical analyses were performed with SAS9.3 MIXED
procedure (SAS Inc., Cary).

Results
Subjects’ dispositions, demographics, and baseline
characteristics
For the two experiments, 30 healthy Japanese individuals
were recruited, and the demographics of the participating
volunteers are shown in Tables 1 and 2 for experiments 1
and 2, respectively. Two subjects could not complete the
examination and dropped out of experiment 1 because
they could not tolerate the application of the ophthalmo-
dynamometer on the sclera. Additionally, two subjects
were excluded from experiment 2 because their SBP was
> 150mmHg. In the end, 16 volunteers with an average
age of 33.1 ± 8.6-years completed all phases of the exami-
nations in experiment 1. Ten volunteers with an average
age of 28.6 ± 1.0-years completed all phases of experiment
2. No adverse events were observed during and after the
measurements in any of the participants.

Changes in IOP and OPP in experiment 1
A stable and significant increase in the IOP by 30mmHg
was caused by the application of the ophthalmodynam-
ometer for 10 min (P < 0.001; Fig. 5a), and the MAP did
not change significantly (Fig. 5b). As a result, the OPP
decreased significantly during the IOP elevation (Fig.
5c). After the release of the pressure, the IOP and OPP
returned to pressures that did not differ significantly
from the baseline pressures. No significant change in the
heart rate was observed during the experiment.

Changes in pulse waveform parameters on ONH in
experiment 1
The MBR reduced significantly from 11.9 ± 1.9 AU to
9.8 ± 2.3 AU (− 18.3%) after increasing the IOP by 20

mmHg and to 9.1 ± 2.5 AU (− 25.0%) after increasing the
IOP by 30mmHg (both, P < 0.001), and returned to
12.2 ± 2.7 AU after the release of the pressure. The IOP
returned to the baseline after the pressure was released.
Of the eight waveform parameters, three parameters

mentioned below changed significantly after the IOP ele-
vation and they recovered to their baseline after the re-
lease of the pressure (Fig. 4). The BOS (P < 0.001)
decreased significantly, and the FAI (P < 0.01) and RI
(P < 0.001) increased significantly. No significant change
was observed in the Skew, BOT, RR, FR, and the ATI
after the IOP elevation by both 20 and 30 mmHg.

Changes in IOP and OPP in experiment 2
A stable and significant increase in the IOP by 30mmHg
was caused by the application of the ophthalmodynam-
ometer for 10 min (P < 0.001; Fig. 5a), and the MAP did
not change significantly (Fig. 5b). As a result, the OPP
decreased significantly during the IOP elevation (Fig.
5c). After the pressure was released, the IOP and OPP
returned to pressures that did not differ significantly
from the baseline pressures. No significant change in the
heart rate was observed during the experiment.

Changes in pulse waveform parameters on ONH in
experiment 2
The MBR reduced significantly from 10.4 ± 2.0 AU to
7.4 ± 2.3 AU immediately after the 30-mmHg IOP eleva-
tion (time 0) and remained significantly reduced until 7
min after the IOP elevation compared to the baseline
(P < 0.001, Fig. 5d). During the 30-mmHg IOP elevation,
the MBR increased significantly from time 1 (P < 0.05) to
time 10 (P < 0.01) compared to time 0 (immediately after
IOP elevation). After the release of the pressure, the
MBR returned to the baseline level.
The changes in the eight waveform parameters on the

ONH are shown in Fig. 6. The BOS reduced significantly
after the IOP elevation throughout the 10min (P <
0.001), and the FAI (P < 0.001) and RI (P < 0.001) in-
creased significantly compared to the baseline (before
IOP elevation). Of the three parameters with significant
changes during the IOP elevation, the degree of decrease

Table 1 Baseline Characteristics of Subject (Experiment 1)

Characteristics (n = 16) mean ± SD

Age (years) 33.1 ± 8.6

IOP (mmHg) 15.2 ± 3.0

Axial length (mm) 25.7 ± 0.96

Refractive error (diopter) −4.19 ± 2.60

Systolic blood pressure (mmHg) 116.9 ± 14.3

Diastolic blood pressure (mmHg) 72.6 ± 11.0

Heart rate (BPM) 70.1 ± 6.9

Table 2 Baseline Characteristics of Subject (Experiment 2)

Characteristics (n = 10) mean ± SD

Age (years) 28.6 ± 1.0

IOP (mmHg) 12.7 ± 2.5

Axial length (mm) 25.8 ± 1.16

Refractive error (diopters) −4.84 ± 2.74

Systolic blood pressure (mmHg) 110.6 ± 7.9

Diastolic blood pressure (mmHg) 67.7 ± 6.6

Heart rate (BPM) 72.6 ± 10.4
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in the BOS and increase in the RI at time 10 decreased
significantly compared to those at time 0 (immediately
after IOP elevation) (P < 0.001 and P = 0.008, respect-
ively). All three parameters returned to the baseline after
the pressure was released.
No significant changes in the skew, BOT, RR, FR, and

ATI were observed during the IOP elevation.
The changes in the mean maximum and minimum

MBRs in a heartbeat are shown in Fig. 7. The difference

between the maximum and minimum MBRs was signifi-
cantly greater at some time points during the IOP
elevation.

Discussion
This study investigated the influences of IOP elevations
on the pulse waveform parameters determined using
LSFG in the ONH evaluated in normal subjects. Our
study had two arms. In experiment 1, the pulse

Fig. 4 Changes in the eight waveform parameters of the blood flow on the ONH are shown (a-h). Of the eight pulse waveform parameters, the
BOS (b) was significantly decreased during IOP elevation, and the FAI (f) and the resistivity index (h) were significantly increased after the
elevation of the IOP by 20 and 30 mmHg, respectively. The values of three parameters returned to the baseline after IOP release. No significant
changes were observed in the Skew (a), BOT (c), rising rate (d), falling rate (e) and ATI (g) after the IOP elevation. *** P < 0.001, ** P < 0.01,
* P < 0.05
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waveform parameters were measured during the transi-
ent IOP elevation by 20 and 30 mmHg from the baseline.
In experiment 2, the pulse waveform parameters were
measured during the 10-min IOP elevation by 30 mmHg
from the baseline. The results showed that the BOS,
FAI, and RI of the pulse waveforms changed significantly
in response to changes in the OPP induced by an eleva-
tion of the IOP by 20 or 30mmHg. The three parame-
ters changed significantly during the 10-min IOP
elevation by 30mmHg from the baseline, and the degree
of decrease in the BOS and increase in the RI at time 10
decreased significantly compared to those at time 0 dur-
ing the IOP elevation in experiment 2. Additionally, the
difference between the maximum and minimum MBRs
was significantly greater during the IOP elevation.
The BOS demonstrates the constancy of the blood

flow during a beat, and the RI indicates the resistance to
flow in the vessels. Considering the formula to calculate

the BOS and RI, the greater difference between the max-
imum and the minimum MBR becomes a lower BOS
and a higher RI during IOP elevation, and these parame-
ters should have a strong inverse relationship [20, 32].
Our results showed the opposite changes in the two
waveforms, for example, the BOS reduced and the RI in-
creased after IOP elevation. Additionally, the degree of
the BOS decrease and the RI increase was greater with
the higher elevation of the IOP in experiment 1. These
results indicate clearly that blood flow on the ONH is
suppressed because of the higher resistance to flow by
IOP elevation.
Kiyota et al. reported similar significant changes in

these parameters, the BOS, RI, and FAI on the ONH
and the choroid after artificial experimental IOP eleva-
tion [33]. Pappelis et al. also reported that the RI in-
creased significantly after IOP elevation [34]. Moreover,
Takeshima et al. reported the changes in the MBR after

Fig. 5 Changes in the systemic and ocular parameters before IOP increased, when 30mmHg IOP increased for 10 min, and after IOP returned to
baseline pressure. The IOP significantly increased (a), the MAP was not changed (b), and the OPP (c) significantly decreased during the
application of the pressure, using the ophthalmodynamometer. The MBR was significantly reduced immediately after the IOP elevation and
remained significantly reduced until 7 min after the IOP elevation (d). The MBR significantly increased from time 1 through time 10 compared to
time 0. After the release of the pressure, the MBR returned to the baseline level immediately. *** P < 0.001, ** P < 0.01, * P < 0.05
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Fig. 6 The changes in the eight waveform parameters on the ONH are shown. The BOS was significantly reduced during the IOP elevation
throughout the 10min, and the FAI and RI significantly increased. Of the three parameters with significant changes during the IOP elevation, the
BOS and RI significantly returned to the baseline level at time 10 compared to that at time 0
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the IOP decrease with glaucoma surgery trabeculectomy,
which was an inverse change in IOP when compared to
our experiment [32]. Their results showed the inverse
response as a significant increase in the BOS and a sig-
nificant decrease in the RI. Our results corroborate those
previous reports [32–34]. These results using LSFG are
in good agreement with the earlier color Doppler
imaging-derived findings that the retrobulbar central ret-
inal artery blood flow velocity decreased and the RI in-
creased during the IOP elevation [35].
Interestingly, our results have shown that the differ-

ence between the maximum and minimum MBRs be-
came greater during the IOP elevation. Considering the
characteristics of the MBR, the maximum and minimum
MBRs would reflect responses of the artery and the vein
in a beat, respectively. The response of the retinal arter-
ial and venous diameters to an experimental increase in
the IOP has been reported to be different [36, 37]. The
arteries are dilated in response to increased IOP, which
is an autoregulatory response to keep the blood flow
constant, but the diameter of veins decreases because
the veins probably reflect a passive compression effect
owing to the weaker wall construction of the retinal
veins than that of the arteries [36, 37]. The difference of
response between the artery and the vein would result in
a greater difference for experimental IOP elevation.
The degree of decrease in the BOS and increase in the

RI at time 10 decreased significantly compared to those
at time 0 (immediately after IOP elevation) during the
IOP elevation. Conversely, the IOP and the OPP did not
change. These results suggest that the decreased blood
flow recovered gradually even during stable IOP eleva-
tion, because the increased resistance was decreased.

This response implies the presence of an autoregulatory
response to supply blood flow even though the OPP
remained reduced in our experiment.
The ATI was derived from a ratio of the length of

time before reaching the peak to the length of time
for the entire heartbeat. A lower ATI indicates a
more rapid increase in the MBR to the peak. Our re-
sult showed that the ATI did not change after the
IOP elevation. This result is in good agreement with
the previous report [33]. In the present study, the
ATI and heart rate did not change after the IOP ele-
vation, meaning that the time to the peak in a beat
did not change after the IOP elevation.
Representative MBR changes in a beat of the ONH be-

fore (a), immediately after (b), and 10 min after the IOP
elevation are shown in Fig. 8. These changes show that
the MBR reduced throughout a beat during IOP eleva-
tion. Moreover, as mentioned above, the minimum MBR
was more reduced than the maximum MBR, resulting in
a large difference between the maximum and minimum
MBRs, and the peak did not change after the IOP
elevation.
The FAI increased during the IOP elevation, and it

was calculated from the maximum change of all frames
(1/30 s) in a rising curve [20, 38]. This result should be
because of the large difference between the maximum
and minimum MBRs and not a significant difference in
time reaching the peak in a heartbeat. This result is in
good agreement with the previous report [33, 34].
The skew quantifies the asymmetry of the waveform

distribution, varying with the bias of the waveform
shape. It is an indicator of asymmetry of the MBR wave-
form. A negative value indicates a rightward shift of the

Fig. 7 The changes in the maximum and minimum MBR (a) and in the difference between the maximum and minimum MBR are shown (b). The
difference between the maximum and minimum MBR significantly increased during the IOP elevation. ** P < 0.01, * P < 0.05
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MBR waveform and/or a gentler slope after the peak.
Our results showed a significant difference between the
maximum and minimum MBRs and no difference in
time to the peak of a heartbeat. This result should cause
a gentler slope after the peak, leading a negative value of
the skew from the calculation. However, the skew did
not change after the IOP elevation in our experiments.
Conversely, previous reports have shown that the skew
was reduced significantly after the IOP elevation [33,
34]. The exact reasons for the difference between their
results and ours are unknown, but one of the reasons
may be the sample size.
The BOT is the ratio of the duration of the MBR being

maintained for more than half of the mean of the max-
imum and minimum MBRs to the duration of one heart-
beat. A higher BOT indicates that a high level of MBR is
maintained for a larger proportion of a single heartbeat.
The FR is defined as the ratio of the falling area to the

total area after the peak. A higher FR value indicates a
more sudden decrease in the MBR. A gentler slope after
the peak should cause a lower BOT and FR from the cal-
culation. Actually, a previous report has shown a lower
BOT and FR after the IOP elevation [33]. However, the
degree of change in the skew, BOT, and FR were lower
than that in the BOS, RI, and FAI in their results [33]. Elu-
cidating the actual reasons of some differences between
their results and ours by increasing the sample size.
The strength of our study is that the change in pulse

waveforms was evaluated during a relatively long period
of 10 min. A transient response for the acute elevation
of the IOP has been examined in previous reports [32–
34]. The degree of significant change in the BOS, RI,
and FAI decreased during 10min in our results, indicat-
ing the presence of some autoregulation on the ONH.
This study has several limitations. First, the variables

were measured only with 20- and 30-mmHg elevations.

Fig. 8 Representative MBR pulse waveforms on the ONH before (a), immediately (time 0) (b), and 10min after the IOP elevation (time 10) (c).
Additionally, a comparison highlighting the changes that occurred over a heartbeat is shown (d). The observed MBR after IOP elevation was
lower throughout the time of a heartbeat than that before the IOP elevation, but the difference at the peak of the MBR (maximum MBR)
between before and after the IOP elevation was relatively lower than that in the bottom of the MBR (minimum MBR). Additionally, MBR pulse
waveform at time 10 was higher than that at time 10 in a heartbeat
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Several studies have reported on the effects of stepwise
elevations of the IOP [15, 39–43]. Second, the ONH
blood flow largely recovered probably because of auto-
regulation after 10 min of the IOP elevation, but it did
not return completely to the baseline levels. A longer
period of IOP elevation measurements is needed to de-
termine whether the ONH blood flow recovers fully.
However, the application of pressure for durations lon-
ger than 10min was painful, and it could not be ex-
tended for ethical reasons. Third, our study participants
had several myopic eyes. The morphological features of
the optic disc of myopic and nonmyopic eyes are differ-
ent [44], which might affect the results. Fourth, only
relatively young subjects were studied, and the results
cannot be extrapolated to elderly subjects. Fifth, our
sample size was relatively small. Further studies with a
larger number of subjects, including nonmyopic subjects,
a wider range of ages, and IOP elevations in a step-by-
step manner, are needed.

Conclusion
In conclusion, the BOS, FAI, and RI of the pulse wave-
forms on the ONH-tissue changed significantly by an
acute elevation of the IOP. The change should be related
to the greater difference between the maximum and
minimum MBRs during the IOP elevation.
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