Crystal structure of a supramolecular lithium complex of p-tert-butylcalix[4]arene

著者	Yamada Manabu, Gandhi Muniyappan Rajiv,
	Akimoto Kazuhiko, Hamada Fumio
journal or	Acta Crystallographica Section E
publication title	
volume	E74
page range	575-579
year	2018
出版者	International Union of Crystallography
関連リンク	https://doi.org/10.1107/S2056989018001834
著作権等	This is an open-access article distributed
	under the terms of the Creative Commons
	Attribution (CC-BY) Licence, which permits
	unrestricted use, distribution, and
	reproduction in any medium, provided the
	original authors and source are cited.
URL	http://hdl.handle.net/10295/00005815

doi: 10.1107/S2056989018001834

Received 19 December 2017 Accepted 30 January 2018

Edited by C. Massera, Università di Parma, Italy

Keywords: crystal structure; calix[4]arene; supramolecular lithium complex; inclusion compound; hydrogen bonding; C—H··· π interactions.

CCDC reference: 1563055

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structure of a supramolecular lithium complex of *p*-tert-butylcalix[4]arene

Manabu Yamada, $^{\rm a*}$ Muniyappan Rajiv Gandhi, $^{\rm b}$ Kazuhiko Akimoto $^{\rm c}$ and Fumio Hamada $^{\rm d}$

^aResearch Center for Engineering Science, Graduate School of Engineering Science, Akita University, 1-1 Tegatagakuenmachi, Akita 010-8502, Japan, ^bGraduate School of International Resource Sciences, Akita University, 1-1 Tegatagakuenmachi, Akita 010-8502, Japan, ^cNissan Chemical Industries, LTD, 6903-1 Ooaza-Onoda, Sanyo-Onoda, Yamaguchi 756-0093, Japan, and ^dEmeritus Professor, Akita University, 1-1 Tegatagakuen-machi, Akita 010-8502, Japan. *Correspondence e-mail: myamada@gipc.akita-u.ac.jp

Crystals of a supramolecular lithium complex with a calix[4]arene derivative, namely tetramethanollithium 5,11,17,23-tetra-tert-butyl-25,26,27-trihydroxy-28oxidocalix[4]arene methanol monosolvate, [Li(CH₃OH)₄](C₄₄H₅₅O₄)·CH₃OH or $[Li(CH_3OH)_4]^+ (calix[4]arene^-)] \cdot CH_3OH$ (where calix[4]arene^- represents a mono-anion species because of deprotonation of one H atom of the calixarene hydroxy groups), were obtained from *p-tert*-butylcalix[4]arene reacted with LiH in tetrahydrofuran, followed by recrystallization from methanol. The asymmetric unit comprises one mono-anionic calixarene molecule, one Li⁺ cation coordinated to four methanol molecules, and one methanol molecule included in the calixarene cavity. The calixarene molecule maintains a cone conformation by intramolecular hydrogen bonding between one phenoxide $(-O^{-})$ and three pendent calixarene hydroxy groups (-OH). The coordinated methanol molecules around the metal cation play a significant role in forming the supramolecular assembly. The crystal structure of this assembly is stabilized by three sets of intermolecular interactions: (i) hydrogen bonds involving the -OH and -O⁻ moieties of the calixarene molecules, the -OH groups of the coordinated methanol molecules, and the -OH group of the methanol molecule included in the calixarene cavity; (ii) $C-H\cdots\pi$ interactions between the calixarene molecules and/or the coordinated methanol molecules; (iii) O- $H \cdots \pi$ interactions between the calibration molecule and the included methanol molecule.

1. Chemical context

Calixarenes are synthetic macrocyclic compounds that are composed of phenol rings, linked with methylene groups at linking positions (Gutsche, 1998). They are versatile molecules for the inclusion of organic and/or inorganic compounds into their flexible cavities and for the coordination of organic/metal ions in molecular recognition phenomena and host-guest chemistry (Vicens & Böhmer, 1991). The coordination chemistry of alkali metal cations, involving conventional calixarenes (and their corresponding functionalized derivatives) as ligands, has been intensively investigated in the past years, as a possible method of selective extraction of this class of cations using calixarenes as extractant. At the same time, the X-ray analysis of alkali metal complexes with p-tertbutylcalix[4]arene in the crystalline state has been reported (Bock et al., 1995; Davidson et al., 1997; Dürr et al., 2006; Gueneau et al., 2003; Guillemot et al., 2002; Hamada et al., 1993; Hanna et al., 2002, 2003; Harrowfield et al., 1991; Lee et

weak interactions in crystals

al., 2009). In the majority of cases, the alkali metal complexes of *p-tert*-butylcalix[4]arene in the solid state show direct coordination of the metal ions to the oxygen atoms belonging to the calixarene hydroxy groups at the lower rim, with the resulting crystal structures stabilized by weak interactions with the lattice solvent molecules.

In the present paper, we report a different type of Li complex with *p-tert*-butylcalix[4]arene, in which no direct coordination of the metal to the oxygen atoms of the calixarene hydroxy groups takes place. The lithium cation is instead surrounded by four methanol solvent molecules, which are in turn connected to the host molecule *via* a series of hydrogen bonds, playing a significant role in the formation of the supramolecular assembly.

Figure 1

ORTEP diagram of the Li complex of *p-tert*-butylcalix[4]arene with displacement ellipsoids at the 20% probability level.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$			
O8−H74···O9	0.67 (3)	2.01 (8)	2.673 (3)	167 (3)			
O2−H68···O1	0.83 (3)	1.66 (4)	2.490 (2)	172 (3)			
O3−H69···O1	0.89 (3)	1.64 (3)	2.520 (2)	169 (3)			
O4−H70···O2	0.90 (3)	1.77 (3)	2.650 (2)	166 (3)			
$O5-H71\cdots O1^{i}$	0.88 (4)	1.87 (4)	2.714 (3)	160 (4)			
$O6-H72\cdots O4^{ii}$	0.94 (5)	1.81 (5)	2.732 (3)	165 (4)			
${\rm O7}{-}{\rm H73}{\cdots}{\rm O3}^{\rm i}$	0.79 (6)	1.91 (6)	2.676 (3)	163 (6)			
$03-H71\cdots01$ $06-H72\cdots04^{ii}$ $07-H73\cdots03^{i}$	0.08(4) 0.94(5) 0.79(6)	1.87(4) 1.81(5) 1.91(6)	2.732 (3) 2.676 (3)	165 (4) 163 (6)			

Symmetry codes: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, $z + \frac{1}{2}$.

Table 2

Conformation of the four aromatic walls of the calix[4]arene host ($^{\circ}$).

A-D are the mean planes passing through the four phenyl moieties of the host. The values reported are the angles formed with the mean plane passing through atoms O1–O4.

Angle
136.01 (6)
136.80 (6)
108.21 (6)
119.02 (6)

2. Structural commentary

Fig. 1 shows the molecular structure of the complex [Li(CH₃OH)₄]⁺·(calix[4]arene⁻)]·CH₃OH, consisting of one mono-deprotonated calix[4]arene unit in a cone conformation, one methanol molecule included in the cavity, and one Li cation coordinated to four methanol molecules. The positive charge of the methanol-lithium complex naturally dictates that the calixarene is in a mono-anionic form. The conformation of the macrocycle is stabilized by intramolecular hydrogen bonding involving one deprotonated -O⁻ and three -OH groups at the lower rim, as shown in Table 1. The geometrical parameters of the cone conformer are given in Table 2, which reports the angle between the mean plane passing through the oxygen atoms O1, O2, O3 and O4, and the four mean planes passing through the aromatic walls (plane A: C1-C6/O1; plane B: C7-C12/O2; plane C: C13-C18/O4; plane D: C19-C24/O3). From these values, it is possible to notice that the two neighboring aromatic rings (C1–C6 and C7–C12) are slightly outward with respect to the other two adjacent aromatic moieties. Selected bond distances and angles for the tetrakis(methanol)-lithium complex are reported in Table 3.

As shown in Fig. 2, one methanol molecule is included in the cavity, displaying a short $O-H\cdots\pi$ interaction involving the hydroxy moiety and π -electrons of the calixarene aromatic ring C1–C6. The $O9\cdots Cg1$ and the $H75\cdots Cg1$ distances are 3.360 (6) and 2.538 (5) Å, respectively, while the angle $O9-H79\cdots Cg1$ is of 166.34 (6)° (Cg1 is the centroid of the C1–C6 ring). On the other hand, there are no $C-H\cdots\pi$ interactions between the embedded methanol and the aromatic- π electrons of the calixarene, hence the included solvent is stabilized inside the calixarene cavity only by the $O-H\cdots\pi$ interaction.

weak interactions in crystals

Figure 2

Hydrogen bonds (blue dotted lines) involving the *p-tert*-butylcalix[4]arene anion, the methanol molecule included in the cavity, and the $[\text{Li}(\text{CH}_3\text{OH})_4]^+$ complex belonging to the asymmetric unit. The centroid of aromatic the ring, Cg1, is represented as a blue sphere. The H atoms of the calixarene host have been omitted for clarity.

3. Supramolecular features

The relevant feature of the title complex is that the lithium cation is not directly coordinated to the hydroxy groups of the lower rim of the calix[4]arene host. On the contrary, the interaction of the $[Li(CH_3OH)_4]^+$ complex with the macrocycle in the asymmetric unit is mediated by the methanol

Figure 3

Hydrogen bonding (blue and green dotted lines) involving the $[\text{Li}(\text{CH}_3\text{OH})_4]^+$ complex and two adjacent calix[4]arene molecules in the crystal structure. [Symmetry codes: (i) $\frac{3}{2} - x$, $\frac{1}{2} + y$, $\frac{3}{2} - z$; (ii) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$.]

Selected geometric parameters (Å, °).	

Li1-O5	1.922 (6)	Li1-O7	1.903 (6)
Li1-O6	1.917 (6)	Li1-08	1.922 (6)
O5-Li1-O6	107.2 (3)	O6-Li1-O7	112.3 (3)
O5-Li1-O7	111.3 (3)	O6-Li1-O8	109.9 (3)
O5-Li1-O8	111.0 (3)	O7-Li1-O8	105.3 (3)

molecule embedded in the cavity, which acts as hydrogenbond acceptor for a methanol molecule (C48–O8) coordinated to the lithium cation (Fig. 2 and Table 1).

Moreover, the coordinated methanol molecules of $[\text{Li}(\text{CH}_3\text{OH})_4]^+$ further contribute to the stabilization of the complex in the structure, interacting with two other adjacent calixarene molecules through hydrogen bonds and C-H··· π interactions, as illustrated in Fig. 3 and Table 1. In particular, three of the coordinated methanol molecules (C45–O5, C47–O7 and C46–O6), act as hydrogen-bond donors towards the hydroxy groups at the lower rim of the macrocycle, namely O1ⁱ, O3ⁱ and O4ⁱⁱ, respectively [symmetry codes: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}, -z + \frac{3}{2}$; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$]. In addition, the fourth coordinated methanol molecule C48–O8 interacts with the aromatic- π electrons of a calixareneⁱⁱ via a C-H··· π interaction. The C48···C17ⁱⁱ and C48–H64···C17ⁱⁱ distances are 3.603 (4) and 2.628 Å, respectively, with a C48–H64···C17ⁱⁱ angle of 173.3 (8)°.

Similarly, $C-H\cdots\pi$ interactions are also present between *tert*-butyl groups at the upper rim of the macrocycle and π -electrons of the aromatic walls of adjacent calix[4]arenes. In particular, Fig. 4 shows the spatial arrangement of four symmetry-related host molecules [the C40 \cdots C4ⁱ and C40–H41 \cdots C4ⁱ distances are 3.498 (4) and 2.770 Å, respectively and the C40–H41 \cdots C4ⁱ angle is 131.6 (5)° while the C42 \cdots C10ⁱⁱⁱ and C42–H46 \cdots C10ⁱⁱⁱ distances are 3.770 (5) and 2.828 Å, and the C42–H46 \cdots C10ⁱⁱⁱ angle is 161.7 (8)°; symmetry code: (iii) 1 + *x*, *y*, *z*].

Figure 4

 $C - H \cdots \pi$ interactions involving four adjacent calix[4]arene anions in the crystal structure. [Symmetry codes: (i) $\frac{3}{2} - x, \frac{1}{2} + y, \frac{3}{2} - z$; (iii) 1 + x, y, z.]

4. Database survey

A search in the Cambridge Structural Database (Version 5.38, update May 2017; Groom *et al.*, 2016) based on a fragment comprising alkali metals and unsubstituted *p-tert*-butyl-calix[4]arenes, yielded the structures of several compounds.

In particular, inclusion complexes were found with: (i) lithium (ZESGIN, Bock *et al.*, 1995; RILNOP and RILNUV, Davidson *et al.*, 1997; YEMQIR, Dürr *et al.*, 2006; RUWVIO and RUWVOU, Gueneau *et al.*, 2003; NASWEJ, Hamada *et al.*, 1993; QUBJIH, Lee *et al.*, 2009; BASWEY, Hanna *et al.*, 2003); (ii) sodium (MODYIN, Guillemot *et al.*, 2002; NASSEF, Hamada *et al.*, 1993); (iii) potassium (MODYOT, Guillemot *et al.*, 2002; NASXUA, Hamada *et al.*, 1993; RUWVUA, Gueneau *et al.*, 2003; WUHVUQ and WUHWAX, Hanna *et al.*, 2002); (iv) rubidium (BASTUL, Hanna *et al.*, 2003); (v) cesium (JIVKEE, Harrowfield *et al.*, 1991).

In all the cases reported, the alkali metals interact with the calix[4]arene molecules through the hydroxy groups at the lower rim. The only exception is the complex with cesium, JIVKEE, in which the bare cation is placed well inside the cavity, on the quaternary axis passing through the macrocycle. The metal is involved in a polyhapto coordination with the four phenolate rings of the calix[4]arene, on which the negative charge is delocalized (Harrowfield *et al.*, 1991). This coordination mode is probably possible due to the dimensions of Cs⁺, which matches the cavity in size. In the case of lithium, the cationic radius is much smaller, hence a direct cavity–cation interaction is less favoured, and the metal is either coordinating the hydroxy oxygen atoms, or forming a second-sphere coordination supramolecular complex, like in the title compound.

5. Synthesis and crystallization

To a white suspension of *p-tert*-butylcalix[4]arene (2.00 g, 3.08 mmol) in THF (50 mL) was added LiH (0.245 g, 30.8 mmol), and a yellow suspension was obtained. The suspended mixture was stirred at room temperature for 5 h under a nitrogen atmosphere, after which time, the mixture became a yellow clear solution. After quenching the excess of LiH with methanol, the solvent was removed in vacuo. The resulting yellow solid material was dissolved in methanol (80 mL) and the remaining insoluble matter was filtered off. The clear solution thus obtained was allowed to stand for several weeks to get colorless, thin plate-shaped crystals of the molecular adduct of the title compound. IR (ATR): v 2952.40 (*m*), 1478.65 (*s*), 1360.61 (*m*) cm^{-1} ; ¹H NMR (300 MHz, CDCl₃, TMS): δ 7.04 (s, 8H, Ar-H), 4.25 (s, 4H, -CH₂-), 3.46 $(s, 4H, -CH_2-)$, 3.46 (s, 15H, -CH-), five methanol molecules), 1.21 (m, 36H, tert-butyl).

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4. The C-bound H atoms were placed in calculated positions and refined using a riding model: C-H

Experimental details.	
Crystal data	
Chemical formula	$[Li(CH_3OH)_4](C_{44}H_{55}O_4)\cdot CH_3OH$
M _r	815.03
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	200
a, b, c (Å)	12.8434 (4), 20.0919 (6), 19.3168 (6)
β (°)	92.561 (2)
$V(Å^3)$	4979.7 (3)
Ζ	4
Radiation type	Cu Kα
$\mu \text{ (mm}^{-1})$	0.58
Crystal size (mm)	$0.20\times0.20\times0.10$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker 2006)
T_{\min}, T_{\max}	0.893, 0.945
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	41849, 8251, 6715
R _{int}	0.021
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.588
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.065, 0.203, 1.06
No. of reflections	8251
No. of parameters	557
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	1.46, -0.39

Computer programs: *APEX2* and *SAINT* (Bruker, 2006), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2014* (Sheldrick, 2015*b*), *ORTEP-3 for Windows* (Farrugia, 2012), *Yadokari-XG* (Kabuto *et al.*, 2009) and *Mercury* (Macrae *et al.*, 2008).

= 0.95–0.98 Å with $U_{iso}(H) = 1.5U_{eq}(C-methyl)$ and $1.2U_{eq}(C)$ for other H atoms. H atoms on O atoms were located in the difference-Fourier map and refined with $U_{iso}(H) = 1.5U_{eq}(O)$.

Funding information

Funding for this research was provided by: The Mazda Foundation (award No. 17KK-077); this work was also partially supported by a Postdoctoral Fellowship for an Overseas Researcher of the JSPS (grant No. 16F16353).

References

Table 4

- Bock, H., John, A., Naether, C. & Havlas, Z. (1995). J. Am. Chem. Soc. 117, 9367–9368.
- Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Davidson, M. G., Howard, J. A. K., Lamb, S. & Lehmann, C. W. (1997). *Chem. Commun.* pp. 1607–1608.
- Dürr, S., Bechlars, B. & Radius, U. (2006). Inorg. Chim. Acta, 359, 4215–4226.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gueneau, E. D., Fromm, K. M. & Goesmann, H. (2003). *Chem. Eur. J.* 9, 509–514.
- Guillemot, G., Solari, E., Rizzoli, C. & Floriani, C. (2002). *Chem. Eur. J.* **8**, 2072–2080.
- Gutsche, C. D. (1998). *Calixarenes Revisited*. Cambridge, UK: Royal Society of Chemistry.

weak interactions in crystals

- Hamada, F., Robinson, K. D., Orr, G. W. & Atwood, J. L. (1993). Supramol. Chem. 2, 19–24.
- Hanna, T. A., Liu, L., Angeles-Boza, A. M., Kou, X., Gutsche, C. D., Ejsmont, K., Watson, W. H., Zakharov, L. N., Incarvito, C. D. & Rheingold, A. L. (2003). J. Am. Chem. Soc. 125, 6228–6238.
- Hanna, T. A., Liu, L., Zakharov, L. N., Rheingold, A. L., Watson, W. H. & Gutsche, C. D. (2002). *Tetrahedron*, 58, 9751–9757.
- Harrowfield, J. M., Ogden, M. I., Richmond, W. R. & White, A. H. (1991). J. Chem. Soc. Chem. Commun. pp. 1159–1161.
- Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, **51**, 218–224.
- Lee, D. S., Elsegood, M. R. J., Redshaw, C. & Zhan, S. (2009). Acta Cryst. C65, m291–m295.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Vicens, J. & Böhmer, V. (1991). Editors. *Calixarenes: A Versatile Class* of *Macrocyclic Compounds*, Kluwer Academic Publishers: Dordrecht, The Netherlands.

supporting information

Acta Cryst. (2018). E74, 575-579 [https://doi.org/10.1107/S2056989018001834]

Crystal structure of a supramolecular lithium complex of *p*-tert-butyl-calix[4]arene

Manabu Yamada, Muniyappan Rajiv Gandhi, Kazuhiko Akimoto and Fumio Hamada

Computing details

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT* (Bruker, 2006); program(s) used to solve structure: *SHELXT* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *Yadokari-XG* (Kabuto *et al.*, 2009) and *Mercury* (Macrae *et al.*, 2008).

Tetramethanollithium 5,11,17,23-tetra-*tert*-butyl-25,26,27-trihydroxy-28-oxidocalix[4]arene methanol monosolvate

Crystal data

[Li(CH₃OH)₄](C₄₄H₅₅O₄)·CH₃OH $M_r = 815.03$ Monoclinic, $P2_1/n$ a = 12.8434 (4) Å b = 20.0919 (6) Å c = 19.3168 (6) Å $\beta = 92.561$ (2)° V = 4979.7 (3) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Detector resolution: 8.333 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (SADABS; Bruker 2006) $T_{\min} = 0.893, T_{\max} = 0.945$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.203$ S = 1.068251 reflections 557 parameters 0 restraints F(000) = 1776 $D_x = 1.087 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9823 reflections $\theta = 3.2-63.8^{\circ}$ $\mu = 0.58 \text{ mm}^{-1}$ T = 200 KPlane, colorless $0.20 \times 0.20 \times 0.10 \text{ mm}$

41849 measured reflections 8251 independent reflections 6715 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 65.0^\circ, \ \theta_{min} = 3.2^\circ$ $h = -14 \rightarrow 14$ $k = -22 \rightarrow 23$ $l = -22 \rightarrow 22$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.1063P)^2 + 3.6084P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta \rho_{\rm max} = 1.46 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.39 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 . R-factor (gt) are based on F. The threshold expression of $F^2 > 2.0$ sigma(F^2) is used only for calculating R-factor (gt).

			_	II */II	
	<i>X</i>	y	Z	$U_{\rm iso} / U_{\rm eq}$	
C1	0.76784 (19)	0.08132 (12)	0.95506 (12)	0.0392 (5)	
C2	0.66560 (18)	0.09379 (12)	0.93080 (12)	0.0373 (5)	
H1	0.621091	0.118191	0.959486	0.045*	
C3	0.62623 (17)	0.07212 (11)	0.86666 (11)	0.0337 (5)	
C4	0.69117 (17)	0.03573 (11)	0.82392 (11)	0.0326 (5)	
C5	0.79496 (17)	0.02383 (11)	0.84604 (12)	0.0345 (5)	
C6	0.83058 (18)	0.04662 (12)	0.91089 (12)	0.0380 (5)	
H2	0.900898	0.038046	0.925538	0.046*	
C7	0.45550 (17)	0.26708 (12)	0.78857 (12)	0.0385 (5)	
C8	0.46863 (17)	0.26210 (13)	0.71766 (12)	0.0387 (5)	
Н3	0.457513	0.300562	0.689690	0.046*	
C9	0.49727 (16)	0.20330 (12)	0.68618 (12)	0.0364 (5)	
C10	0.51265 (16)	0.14659 (12)	0.72660 (12)	0.0349 (5)	
C11	0.50132 (16)	0.14914 (12)	0.79826 (11)	0.0344 (5)	
C12	0.47390 (17)	0.20927 (12)	0.82756 (12)	0.0369 (5)	
H4	0.467306	0.211298	0.876300	0.044*	
C13	0.78349 (19)	0.26506 (12)	0.57083 (12)	0.0395 (5)	
C14	0.83391 (19)	0.20539 (12)	0.55992 (12)	0.0390 (6)	
Н5	0.905410	0.206537	0.549319	0.047*	
C15	0.78502 (18)	0.14371 (12)	0.56372 (11)	0.0354 (5)	
C16	0.67899 (18)	0.14313 (12)	0.57703 (11)	0.0354 (5)	
C17	0.62574 (18)	0.20153 (12)	0.59032 (11)	0.0371 (5)	
C18	0.67867 (19)	0.26118 (13)	0.58751 (12)	0.0410 (6)	
H6	0.642613	0.301143	0.597261	0.049*	
C19	1.05823 (18)	0.09337 (12)	0.70485 (13)	0.0418 (6)	
C20	1.01017 (17)	0.05755 (12)	0.75598 (13)	0.0395 (5)	
H7	1.043514	0.054747	0.800787	0.047*	
C21	0.91492 (17)	0.02561 (11)	0.74393 (12)	0.0354 (5)	
C22	0.86546 (17)	0.03069 (11)	0.67883 (12)	0.0337 (5)	
C23	0.90887 (17)	0.06798 (12)	0.62654 (12)	0.0357 (5)	
C24	1.00575 (18)	0.09739 (12)	0.64050 (13)	0.0401 (6)	
H8	1.037292	0.121225	0.604494	0.048*	
C25	0.51496 (17)	0.08751 (12)	0.84342 (12)	0.0372 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H9	0.473547	0.093272	0.885011	0.045*
H10	0.486068	0.048761	0.817385	0.045*
C26	0.51156 (18)	0.20106 (13)	0.60839 (12)	0.0406 (6)
H11	0.477998	0.160327	0.589089	0.049*
H12	0.476077	0.239910	0.586407	0.049*
C27	0.84858 (18)	0.08067 (12)	0.55860 (12)	0.0378(5)
H13	0.897651	0.085075	0.520772	0.045*
H14	0.801769	0.042596	0.547653	0.045*
C28	0.86781 (18)	-0.01488(12)	0.80093(12)	0.0375(5)
H15	0.925062	-0.033610	0.830930	0.045*
H16	0.925002	-0.052668	0.779515	0.045*
C^{20}	0.828803	0.032000 0.10237(14)	1.02850(13)	0.049
C29	0.3047(2) 0.7435(4)	0.10237(14) 0.0613(2)	1.02850(15) 1.08047(17)	0.0491(0)
U17	0.7433 (4)	0.0013(2) 0.067370	1.03047 (17)	0.0999 (13)
П1/ 1110	0.008380	0.007370	1.070738	0.150*
H18	0.761205	0.014078	1.075957	0.150*
H19 C21	0.701885	0.076280	1.127723	0.150^{*}
C31	0.776(3)	0.1/521 (19)	1.0412 (2)	0.0817(11)
H20	0.702438	0.181772	1.033078	0.123*
H21	0.797621	0.187096	1.089159	0.123*
H22	0.815358	0.203520	1.009480	0.123*
C32	0.9206 (3)	0.0945 (2)	1.04151 (19)	0.0893 (13)
H23	0.940253	0.048049	1.033720	0.134*
H24	0.957366	0.123369	1.009797	0.134*
H25	0.939630	0.106944	1.089476	0.134*
C33	0.4217 (2)	0.33149 (13)	0.82393 (14)	0.0483 (6)
C34	0.3259 (3)	0.31832 (16)	0.86617 (17)	0.0646 (8)
H26	0.268945	0.301671	0.835477	0.097*
H27	0.343143	0.285070	0.901997	0.097*
H28	0.304356	0.359772	0.888088	0.097*
C35	0.3903 (3)	0.38581 (16)	0.77120 (18)	0.0744 (10)
H29	0.333490	0.369450	0.740210	0.112*
H30	0.367093	0.425437	0.795745	0.112*
H31	0.450375	0.397248	0.743962	0.112*
C36	0.5101 (3)	0.3574 (2)	0.8719 (2)	0.0909 (12)
H32	0.571635	0.365840	0.844952	0.136*
H33	0.488380	0.398774	0.893783	0.136*
H34	0.527167	0.324072	0.907692	0.136*
C37	0.8372(2)	0.33242 (13)	0.56622 (14)	0.0502 (7)
C38	0.7819 (4)	0.3747(2)	0.5104 (3)	0.1056 (16)
H35	0.816671	0 417941	0 507589	0.158*
H36	0 784179	0 351932	0.465588	0.158*
H37	0.709105	0.381352	0.522014	0.158*
C39	0.9517(3)	0.32673 (16)	0.54956 (18)	0.0671 (9)
H38	0.982208	0.371323	0 547234	0.101*
H30	0.982290	0.371323	0.547254	0.101
H40	0.966990	0.300301	0.505000	0.101*
C40	0.257595	0.30+301 0.36674 (17)	0.507052	0.101
U40 U41	0.0330 (3)	0.30074 (17)	0.0372(2)	0.0704(10) 0.115*
1741	0.007773	0.410103	0.034631	0.113

H42	0.763233	0.372949	0.650028	0.115*
H43	0.872446	0.339017	0.672132	0.115*
C41	1.1651 (2)	0.12642 (17)	0.71726 (16)	0.0569 (7)
C42	1.2390 (3)	0.0983 (4)	0.6681 (3)	0.152 (3)
H44	1.245849	0.050269	0.675822	0.228*
H45	1.212602	0.106484	0.620456	0.228*
H46	1.307207	0.119585	0.675508	0.228*
C43	1.2088 (3)	0.1184 (3)	0.7914 (2)	0.0982 (14)
H47	1.159602	0.137049	0.823511	0.147*
H48	1.219424	0.070991	0.801543	0.147*
H49	1.275553	0.141857	0.796839	0.147*
C44	1.1537 (4)	0.2011 (2)	0.7058 (3)	0.1234 (19)
H50	1.104797	0.219191	0.738495	0.185*
H51	1.221716	0.222572	0.713330	0.185*
H52	1.127111	0.209471	0.658278	0.185*
C45	1.0638 (3)	0.4028 (2)	0.7522 (2)	0.0873 (12)
H53	1.055124	0.421695	0.705518	0.131*
H54	1.121242	0.425519	0.777618	0.131*
H55	1.079539	0.355241	0.748939	0.131*
C46	1.1121 (3)	0.48291 (18)	0.92075 (18)	0.0740 (9)
H56	1.158468	0.496325	0.959936	0.111*
H57	1.153669	0.471653	0.881086	0.111*
H58	1.064767	0.519665	0.908156	0.111*
C47	0.7645 (3)	0.3692 (2)	0.9612 (2)	0.0964 (13)
H59	0.693686	0.387179	0.962822	0.145*
H60	0.761040	0.320979	0.953826	0.145*
H61	0.802949	0.378616	1.005018	0.145*
C48	1.0529 (3)	0.2521 (2)	0.9146 (2)	0.0881 (12)
H62	1.036956	0.204507	0.910682	0.132*
H63	1.114548	0.262203	0.888369	0.132*
H64	1.066664	0.263650	0.963430	0.132*
C49	0.7898 (4)	0.2062 (3)	0.7671 (2)	0.1036 (15)
H65	0.742500	0.244404	0.763110	0.18 (3)*
H66	0.751149	0.165274	0.755859	0.28 (5)*
H67	0.846004	0.211673	0.734910	0.18 (3)*
Li1	0.9522 (4)	0.3821 (3)	0.8811 (3)	0.0634 (13)
01	0.65262 (12)	0.01180 (8)	0.76275 (8)	0.0357 (4)
O2	0.53575 (13)	0.08851 (9)	0.69430 (8)	0.0407 (4)
H68	0.572 (3)	0.0638 (16)	0.7202 (17)	0.061*
03	0.77306 (13)	-0.00130 (9)	0.66416 (9)	0.0417 (4)
H69	0.736 (3)	0.0003 (15)	0.7021 (17)	0.063*
04	0.62688 (13)	0.08283 (9)	0.57403 (9)	0.0423 (4)
H70	0.589 (3)	0.0795 (16)	0.6120 (18)	0.063*
05	0.97040 (17)	0.41161 (11)	0.78777 (11)	0.0619 (6)
H71	0.933 (3)	0.440 (2)	0.762 (2)	0.093*
06	1.05402 (19)	0.42743 (12)	0.93941 (12)	0.0702 (6)
H72	1.069 (3)	0.420 (2)	0.987 (3)	0.105*
O7	0.8138 (2)	0.39801 (16)	0.90840 (17)	0.0986 (10)

supporting information

H73	0.783 (5)	0.430 (3)	0.894 (3)	0.148*
08	0.9716 (3)	0.28755 (14)	0.8890 (2)	0.1247 (15)
H74	0.937 (6)	0.269 (4)	0.870 (4)	0.187*
09	0.8315 (5)	0.2023 (2)	0.8336 (3)	0.196 (3)
H75	0.804567	0.170190	0.854065	0.295*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0394 (13)	0.0415 (13)	0.0365 (12)	0.0012 (10)	-0.0019 (10)	0.0006 (10)
C2	0.0352 (12)	0.0438 (13)	0.0331 (12)	0.0029 (10)	0.0024 (10)	0.0002 (10)
C3	0.0304 (11)	0.0381 (12)	0.0330 (11)	-0.0005 (9)	0.0043 (9)	0.0051 (9)
C4	0.0317 (12)	0.0350 (12)	0.0310 (11)	-0.0035 (9)	0.0007 (9)	0.0032 (9)
C5	0.0328 (12)	0.0364 (12)	0.0346 (12)	0.0008 (9)	0.0029 (9)	0.0034 (9)
C6	0.0309 (12)	0.0435 (13)	0.0392 (13)	-0.0001 (10)	-0.0021 (10)	0.0043 (10)
C7	0.0274 (11)	0.0481 (14)	0.0400 (13)	-0.0041 (10)	0.0021 (9)	0.0018 (10)
C8	0.0270 (11)	0.0491 (14)	0.0398 (13)	0.0001 (10)	0.0013 (9)	0.0074 (11)
C9	0.0224 (11)	0.0543 (14)	0.0325 (12)	0.0006 (10)	-0.0007 (9)	0.0037 (10)
C10	0.0209 (10)	0.0475 (14)	0.0363 (12)	-0.0020 (9)	-0.0003 (9)	-0.0004 (10)
C11	0.0198 (10)	0.0486 (14)	0.0348 (12)	-0.0016 (9)	0.0011 (9)	0.0038 (10)
C12	0.0266 (11)	0.0516 (14)	0.0326 (12)	-0.0015 (10)	0.0019 (9)	0.0025 (10)
C13	0.0439 (13)	0.0453 (14)	0.0296 (11)	0.0006 (11)	0.0045 (10)	-0.0008 (10)
C14	0.0356 (12)	0.0508 (15)	0.0310 (12)	-0.0005 (11)	0.0063 (9)	-0.0014 (10)
C15	0.0376 (12)	0.0441 (13)	0.0245 (10)	-0.0011 (10)	0.0031 (9)	-0.0027 (9)
C16	0.0358 (12)	0.0468 (14)	0.0235 (10)	-0.0020 (10)	-0.0003 (9)	-0.0011 (9)
C17	0.0351 (12)	0.0513 (14)	0.0249 (11)	0.0026 (10)	0.0000 (9)	0.0042 (10)
C18	0.0431 (14)	0.0479 (14)	0.0325 (12)	0.0077 (11)	0.0059 (10)	0.0022 (10)
C19	0.0285 (12)	0.0463 (14)	0.0510 (14)	-0.0005 (10)	0.0053 (10)	-0.0066 (11)
C20	0.0293 (12)	0.0465 (14)	0.0425 (13)	0.0035 (10)	0.0002 (10)	-0.0060 (11)
C21	0.0304 (12)	0.0363 (12)	0.0397 (12)	0.0032 (9)	0.0042 (9)	-0.0043 (10)
C22	0.0285 (11)	0.0342 (12)	0.0387 (12)	-0.0005 (9)	0.0038 (9)	-0.0062 (9)
C23	0.0313 (12)	0.0395 (13)	0.0370 (12)	0.0020 (10)	0.0074 (9)	-0.0058 (10)
C24	0.0321 (12)	0.0433 (13)	0.0458 (14)	-0.0014 (10)	0.0102 (10)	-0.0015 (10)
C25	0.0289 (12)	0.0491 (14)	0.0341 (12)	-0.0010 (10)	0.0059 (9)	0.0044 (10)
C26	0.0321 (12)	0.0570 (15)	0.0326 (12)	0.0068 (11)	-0.0011 (9)	0.0064 (11)
C27	0.0365 (12)	0.0457 (13)	0.0319 (12)	-0.0014 (10)	0.0083 (10)	-0.0067 (10)
C28	0.0332 (12)	0.0403 (13)	0.0390 (12)	0.0046 (10)	0.0020 (10)	0.0017 (10)
C29	0.0502 (15)	0.0572 (16)	0.0391 (14)	0.0016 (13)	-0.0063 (11)	-0.0075 (12)
C30	0.142 (4)	0.117 (3)	0.0401 (17)	-0.036 (3)	-0.008(2)	-0.0003 (19)
C31	0.073 (2)	0.081 (2)	0.088 (2)	0.0166 (19)	-0.0279 (19)	-0.039 (2)
C32	0.066 (2)	0.129 (3)	0.069 (2)	0.030 (2)	-0.0309 (18)	-0.043 (2)
C33	0.0541 (16)	0.0450 (14)	0.0459 (14)	-0.0036 (12)	0.0046 (12)	-0.0010 (11)
C34	0.073 (2)	0.0594 (18)	0.0626 (18)	0.0134 (16)	0.0228 (16)	0.0010 (15)
C35	0.105 (3)	0.0514 (18)	0.069 (2)	0.0131 (18)	0.0228 (19)	0.0064 (15)
C36	0.085 (3)	0.084 (3)	0.102 (3)	-0.010 (2)	-0.015 (2)	-0.036 (2)
C37	0.0540 (16)	0.0452 (15)	0.0522 (15)	-0.0020 (12)	0.0103 (12)	0.0011 (12)
C38	0.103 (3)	0.078 (3)	0.134 (4)	-0.023 (2)	-0.020 (3)	0.058 (3)
C39	0.068 (2)	0.0579 (18)	0.078 (2)	-0.0197 (15)	0.0283 (17)	-0.0135 (16)

C40	0.083 (2)	0.0604 (19)	0.087 (2)	-0.0145 (17)	0.0283 (19)	-0.0277 (17)
C41	0.0343 (14)	0.073 (2)	0.0632 (18)	-0.0130 (13)	0.0023 (12)	-0.0065 (15)
C42	0.043 (2)	0.264 (7)	0.151 (5)	-0.049 (3)	0.038 (3)	-0.105 (5)
C43	0.054 (2)	0.143 (4)	0.096 (3)	-0.033 (2)	-0.0148 (19)	-0.004 (3)
C44	0.106 (4)	0.096 (3)	0.164 (5)	-0.055 (3)	-0.042 (3)	0.019 (3)
C45	0.064 (2)	0.102 (3)	0.096 (3)	0.032 (2)	0.003 (2)	0.001 (2)
C46	0.085 (2)	0.074 (2)	0.062 (2)	-0.0032 (19)	-0.0116 (17)	0.0150 (17)
C47	0.083 (3)	0.114 (3)	0.091 (3)	-0.004 (2)	-0.010 (2)	0.039 (3)
C48	0.104 (3)	0.086 (3)	0.074 (2)	0.034 (2)	0.000 (2)	0.003 (2)
C49	0.115 (4)	0.113 (4)	0.080 (3)	-0.023 (3)	-0.024 (3)	0.025 (2)
Li1	0.057 (3)	0.058 (3)	0.073 (3)	0.007 (2)	-0.015 (2)	0.014 (2)
01	0.0329 (8)	0.0413 (9)	0.0329 (8)	-0.0036 (7)	0.0006 (6)	-0.0022 (6)
O2	0.0393 (9)	0.0495 (10)	0.0330 (9)	0.0039 (8)	-0.0017 (7)	0.0001 (7)
O3	0.0363 (9)	0.0506 (10)	0.0387 (9)	-0.0126 (7)	0.0052 (7)	-0.0054 (7)
O4	0.0384 (9)	0.0508 (10)	0.0376 (9)	-0.0085 (8)	0.0012 (7)	-0.0047 (7)
05	0.0633 (13)	0.0662 (13)	0.0553 (12)	0.0252 (10)	-0.0069 (10)	0.0018 (10)
O6	0.0821 (16)	0.0774 (15)	0.0493 (12)	-0.0152 (12)	-0.0174 (11)	0.0159 (11)
O7	0.0702 (16)	0.105 (2)	0.122 (2)	0.0284 (15)	0.0196 (15)	0.0684 (19)
08	0.109 (2)	0.0535 (15)	0.203 (4)	0.0076 (15)	-0.082 (2)	0.0104 (19)
09	0.273 (6)	0.114 (3)	0.191 (4)	-0.084 (3)	-0.111 (4)	0.046 (3)

Geometric parameters (Å, °)

C1—C6	1.387 (3)	C33—C34	1.529 (4)
C1—C2	1.397 (3)	C33—C35	1.535 (4)
C1—C29	1.535 (3)	C34—H26	0.9800
C2—C3	1.387 (3)	C34—H27	0.9800
С2—Н1	0.9500	C34—H28	0.9800
C3—C4	1.405 (3)	С35—Н29	0.9800
C3—C25	1.511 (3)	С35—Н30	0.9800
C4—O1	1.349 (3)	С35—Н31	0.9800
C4—C5	1.402 (3)	С36—Н32	0.9800
C5—C6	1.392 (3)	С36—Н33	0.9800
C5—C28	1.521 (3)	С36—Н34	0.9800
С6—Н2	0.9500	C37—C39	1.524 (4)
С7—С8	1.391 (3)	C37—C38	1.524 (5)
C7—C12	1.399 (3)	C37—C40	1.536 (4)
C7—C33	1.535 (4)	С38—Н35	0.9800
C8—C9	1.386 (3)	С38—Н36	0.9800
С8—Н3	0.9500	С38—Н37	0.9800
C9—C10	1.390 (3)	С39—Н38	0.9800
C9—C26	1.523 (3)	С39—Н39	0.9800
C10—O2	1.362 (3)	C39—H40	0.9800
C10—C11	1.399 (3)	C40—H41	0.9800
C11—C12	1.386 (3)	C40—H42	0.9800
C11—C25	1.520 (3)	C40—H43	0.9800
С12—Н4	0.9500	C41—C42	1.484 (5)
C13—C14	1.383 (3)	C41—C44	1.522 (6)

supporting information

C13-C18	1400(3)	$C_{41} - C_{43}$	1 523 (5)
C13 - C37	1.400(3) 1 524(4)	C42 - H44	0.9800
$C_{13} = C_{15}$	1.324(4) 1.303(3)	C_{42} H45	0.9800
C14 H5	0.9500	$C_{42} = H_{45}$	0.9800
C_{14} C_{15} C_{16}	1,307(3)	C_{42} H_{47}	0.9800
$C_{15} = C_{10}$	1.597(5)	$C_{43} = 1147$	0.9800
C15 - C27	1.312(3)	С43—П46	0.9800
C16 - 04	1.364(3)	C43—H49	0.9800
	1.388 (3)	C44—H50	0.9800
	1.380 (4)	C44—H51	0.9800
C17—C26	1.522 (3)	С44—Н52	0.9800
С18—Н6	0.9500	C45—O5	1.420 (4)
C19—C20	1.389 (4)	C45—H53	0.9800
C19—C24	1.390 (4)	C45—H54	0.9800
C19—C41	1.534 (4)	C45—H55	0.9800
C20—C21	1.392 (3)	C46—O6	1.397 (4)
С20—Н7	0.9500	C46—H56	0.9800
C21—C22	1.387 (3)	C46—H57	0.9800
C21—C28	1.516 (3)	C46—H58	0.9800
C22—O3	1.368 (3)	C47—O7	1.354 (5)
C22—C23	1.394 (3)	С47—Н59	0.9800
C23—C24	1.393 (3)	С47—Н60	0.9800
C23—C27	1.515 (3)	C47—H61	0.9800
С24—Н8	0.9500	C48—O8	1.340 (5)
С25—Н9	0.9900	С48—Н62	0.9800
C25—H10	0.9900	C48—H63	0.9800
C26—H11	0.9900	C48—H64	0.9800
C26—H12	0 9900	C49—O9	1 370 (6)
C27—H13	0 9900	C49—H65	0.9800
C27—H14	0.9900	C49—H66	0.9800
C28—H15	0.9900	C49—H67	0.9800
C28—H16	0.9900	Li1_05	1,922 (6)
C_{20} C_{32}	1.507(4)		1.922(0) 1.017(6)
$C_{29} = C_{32}$	1.507(4)	Lii 07	1.917(0) 1.003(6)
$C_{29} = C_{31}$	1.527(4) 1.542(5)		1.903(0) 1.022(6)
$C_{29} = C_{30}$	1.342(3)		1.922(0)
C30_H17	0.9800	$LII - \pi/4$	2.29(8)
C30—H18	0.9800	02—H68	0.85(3)
C30—H19	0.9800	03—H69	0.89(3)
C31—H20	0.9800	04—H70	0.90 (3)
C31—H21	0.9800	05—H/I	0.88 (4)
C31—H22	0.9800	O6—H72	0.94 (5)
C32—H23	0.9800	О7—Н73	0.79 (6)
С32—Н24	0.9800	O8—H74	0.68 (8)
С32—Н25	0.9800	O9—H75	0.8400
C33—C36	1.524 (5)		
C6—C1—C2	116.5 (2)	C34—C33—C7	110.0 (2)
C6—C1—C29	122.9 (2)	C35—C33—C7	112.0 (2)
C2—C1—C29	120.5 (2)	C33—C34—H26	109.5

C3—C2—C1	122.9 (2)	С33—С34—Н27	109.5
C3—C2—H1	118.6	H26—C34—H27	109.5
C1—C2—H1	118.6	C33—C34—H28	109.5
C2—C3—C4	119.1 (2)	H26—C34—H28	109.5
C2—C3—C25	120.2 (2)	H27—C34—H28	109.5
C4—C3—C25	120.7 (2)	С33—С35—Н29	109.5
O1—C4—C5	120.9 (2)	С33—С35—Н30	109.5
O1—C4—C3	119.7 (2)	H29—C35—H30	109.5
C5—C4—C3	119.4 (2)	С33—С35—Н31	109.5
C6-C5-C4	119.2 (2)	H29—C35—H31	109.5
C6-C5-C28	119.9 (2)	H30—C35—H31	109.5
C4—C5—C28	120.9 (2)	С33—С36—Н32	109.5
C1-C6-C5	122.8 (2)	С33—С36—Н33	109.5
C1—C6—H2	118.6	H32—C36—H33	109.5
C5-C6-H2	118.6	C33—C36—H34	109.5
C8-C7-C12	116.5 (2)	H32—C36—H34	109.5
C8-C7-C33	1232(2)	H33—C36—H34	109.5
$C_{12} - C_{7} - C_{33}$	120.2(2) 120.3(2)	C_{13} C_{37} C_{39}	109.5 112.9(2)
C9-C8-C7	120.5(2) 122.6(2)	C_{13} C_{37} C_{38}	109.8(3)
C9-C8-H3	118 7	C_{39} C_{37} C_{38}	109.0(3) 108.5(3)
C7-C8-H3	118.7	C_{13} C_{37} C_{40}	108.8(3)
C_{8} C_{9} C_{10}	119.1 (2)	$C_{39} - C_{37} - C_{40}$	105.0(2) 105.9(3)
C8-C9-C26	120.3(2)	$C_{38} = C_{37} = C_{40}$	100.9(3)
C10-C9-C26	120.5(2) 120.6(2)	C_{37} C_{38} H_{35}	109.5
02-C10-C9	120.0(2) 118.2(2)	C37—C38—H36	109.5
02-C10-C11	121.3(2)	H35-C38-H36	109.5
$C_{2} = C_{10} = C_{11}$	121.5(2) 120.5(2)	C_{37} C_{38} H_{37}	109.5
C_{12} C_{11} C_{10}	120.3(2) 1184(2)	H_{35} $-C_{38}$ H_{37}	109.5
C12 - C11 - C25	1200(2)	H36-C38-H37	109.5
C10-C11-C25	120.0(2) 121.6(2)	C37—C39—H38	109.5
$C_{11} - C_{12} - C_{7}$	122.9(2)	C37—C39—H39	109.5
C11—C12—H4	118 5	H38—C39—H39	109.5
C7-C12-H4	118.5	C_{37} C_{39} H_{40}	109.5
C_{14} C_{13} C_{18}	116.6 (2)	H38—C39—H40	109.5
C_{14} C_{13} C_{37}	123.0(2)	H39—C39—H40	109.5
C18 - C13 - C37	120.4(2)	C37—C40—H41	109.5
C13 - C14 - C15	123.2(2)	C37—C40—H42	109.5
C13—C14—H5	118.4	H41 - C40 - H42	109.5
C15—C14—H5	118.4	C_{37} C_{40} H_{43}	109.5
C_{14} C_{15} C_{16}	117.6 (2)	H41 - C40 - H43	109.5
C14-C15-C27	1197(2)	H42—C40—H43	109.5
$C_{16} - C_{15} - C_{27}$	122.6 (2)	C42-C41-C44	110.0 (4)
O4—C16—C17	120.4 (2)	C42—C41—C43	110.0 (4)
O4—C16—C15	118.2 (2)	C44—C41—C43	105.7 (3)
C17—C16—C15	121.3 (2)	C42—C41—C19	109.2 (3)
C18—C17—C16	118.6 (2)	C44—C41—C19	108.9 (3)
C18—C17—C26	119.7 (2)	C43—C41—C19	113.0 (3)
C16—C17—C26	121.7 (2)	C41—C42—H44	109.5
		-	

C17—C18—C13	122.5 (2)	C41—C42—H45	109.5
С17—С18—Н6	118.7	H44—C42—H45	109.5
С13—С18—Н6	118.7	C41—C42—H46	109.5
C20—C19—C24	116.9 (2)	H44—C42—H46	109.5
C20-C19-C41	122.4 (2)	H45—C42—H46	109.5
C24—C19—C41	120.6 (2)	C41—C43—H47	109.5
C19—C20—C21	122.4 (2)	C41—C43—H48	109.5
С19—С20—Н7	118.8	H47—C43—H48	109.5
С21—С20—Н7	118.8	C41—C43—H49	109.5
C22—C21—C20	118.8 (2)	H47—C43—H49	109.5
C22—C21—C28	121.1 (2)	H48—C43—H49	109.5
C20—C21—C28	120.1 (2)	C41—C44—H50	109.5
O3—C22—C21	120.7 (2)	C41—C44—H51	109.5
O3—C22—C23	118.3 (2)	H50—C44—H51	109.5
C21—C22—C23	121.0 (2)	C41—C44—H52	109.5
C24—C23—C22	118.1 (2)	H50—C44—H52	109.5
C24—C23—C27	120.9 (2)	H51—C44—H52	109.5
C22—C23—C27	120.8 (2)	O5—C45—H53	109.5
C19—C24—C23	122.8 (2)	O5—C45—H54	109.5
С19—С24—Н8	118.6	H53—C45—H54	109.5
С23—С24—Н8	118.6	O5—C45—H55	109.5
C3—C25—C11	114.87 (18)	H53—C45—H55	109.5
С3—С25—Н9	108.6	H54—C45—H55	109.5
С11—С25—Н9	108.6	O6—C46—H56	109.5
C3—C25—H10	108.6	O6—C46—H57	109.5
C11—C25—H10	108.6	H56—C46—H57	109.5
H9—C25—H10	107.5	O6—C46—H58	109.5
С17—С26—С9	112.70 (18)	H56—C46—H58	109.5
C17—C26—H11	109.1	H57—C46—H58	109.5
С9—С26—Н11	109.1	O7—C47—H59	109.5
C17—C26—H12	109.1	O7—C47—H60	109.5
С9—С26—Н12	109.1	H59—C47—H60	109.5
H11—C26—H12	107.8	O7—C47—H61	109.5
C15—C27—C23	109.92 (18)	H59—C47—H61	109.5
C15—C27—H13	109.7	H60—C47—H61	109.5
С23—С27—Н13	109.7	O8—C48—H62	109.5
C15—C27—H14	109.7	O8—C48—H63	109.5
C23—C27—H14	109.7	H62—C48—H63	109.5
H13—C27—H14	108.2	O8—C48—H64	109.5
C21—C28—C5	114.67 (19)	H62—C48—H64	109.5
C21—C28—H15	108.6	H63—C48—H64	109.5
C5—C28—H15	108.6	O9—C49—H65	109.5
C21—C28—H16	108.6	O9—C49—H66	109.5
C5—C28—H16	108.6	H65—C49—H66	109.5
H15—C28—H16	107.6	O9—C49—H67	109.5
C32—C29—C31	107.7 (3)	Н65—С49—Н67	109.5
C32—C29—C1	112.8 (2)	Н66—С49—Н67	109.5
C31—C29—C1	110.5 (2)	O5—Li1—O6	107.2 (3)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C32—C29—C30	111.3 (3)	O5—Li1—O7	111.3 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C31—C29—C30	106.4 (3)	O5—Li1—O8	111.0 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C29—C30	108.0 (2)	O6—Li1—O7	112.3 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С29—С30—Н17	109.5	O6—Li1—O8	109.9 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С29—С30—Н18	109.5	07—Li1—08	105.3 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H17—C30—H18	109.5	07—Li1—H74	97 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C29—C30—H19	109.5	06—Li1—H74	126(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H17—C30—H19	109.5	08—Li1—H74	16(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H18 - C30 - H19	109.5	05—Li1—H74	10(2) 103(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{29} C_{31} H_{20}	109.5	$C_{10} - O_{2} - H_{68}$	100(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{29} C_{31} H_{21}	109.5	$C_{22} = 0_{3} = H_{69}$	108(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H_{20} C_{31} H_{21}	109.5	$C_{22} = O_{3} = H_{0}$	108(2) 108(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{20} C_{31} H_{22}$	109.5	$C_{10} = 04 = 1170$	100(2) 123 8(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_{20} = C_{21} = H_{22}$	109.5	C45 = 05 = 171	125.8(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_{20} = C_{31} = H_{22}$	109.5	$C_{43} = 05 = 171$	103(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121 - C31 - 122	109.5	LII = 05 = H/1	130(3) 1258(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{29} = C_{32} = H_{23}$	109.5	C40-00-L11	123.8(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C29—C32—H24	109.5	C40-O6-H/2	107 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_{23} - C_{32} - H_{24}$	109.5	L11 - 06 - H/2	127(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C29—C32—H25	109.5	C4/-O/-L11	127.7 (3)
H24-C32-H25 109.5 $L11-O/-H/3$ $C36-C33-C34$ 109.3 (3) $C48-O8-Li1$ $C36-C33-C35$ 109.1 (3) $C48-O8-H74$ $C34-C33-C35$ 106.5 (3) $L11-O8-H74$ $C36-C33-C7$ 109.9 (2) $C49-O9-H75$ $C6-C1-C2-C3$ 1.2 (4) $C20-C21-C22-O3$ $C29-C1-C2-C3$ -175.8 (2) $C28-C21-C22-C23$ $C1-C2-C3-C4$ 0.3 (4) $C20-C21-C22-C23$ $C1-C2-C3-C4-O1$ 177.1 (2) $O3-C22-C23-C24$ $C2-C3-C4-O1$ 177.1 (2) $O3-C22-C23-C24$ $C2-C3-C4-C5$ -1.9 (3) $O3-C22-C23-C24$ $C2-C3-C4-C5$ -1.9 (3) $O3-C22-C23-C24$ $C2-C3-C4-C5$ -1.9 (3) $O3-C22-C23-C24$ $C2-C3-C4-C5$ -1.9 (3) $O3-C22-C23-C24$ $C2-C3-C4-C5$ 178.2 (2) $C21-C22-C23-C27$ $C3-C4-C5-C6$ -197.0 (2) $C20-C19-C24-C23$ $C3-C4-C5-C6$ 19.9 (3) $C41-C19-C24-C23$ $C3-C4-C5-C6$ 179.5 (2) $C27-C23-C24-C19$ $C3-C4-C5-C6$ -179.5 (2) $C27-C23-C24-C19$	H23-C32-H25	109.5	C4/	111 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H24—C32—H25	109.5	L11—O/—H/3	120 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C36—C33—C34	109.3 (3)	C48—O8—L11	130.6 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C36—C33—C35	109.1 (3)	C48—O8—H74	113 (7)
C36-C33-C7 109.9 (2) C49-09-H75 C6-C1-C2-C3 1.2 (4) C20-C21-C22-O3 C29-C1-C2-C3 -175.8 (2) C28-C21-C22-O3 C1-C2-C3-C4 0.3 (4) C20-C21-C22-C23 C1-C2-C3-C4 0.3 (4) C20-C21-C22-C23 C2-C3-C4-O1 177.1 (2) O3-C22-C23-C24 C2-C3-C4-O1 -2.8 (3) C21-C22-C23-C24 C2-C3-C4-C5 -1.9 (3) O3-C22-C23-C24 C2-C3-C4-C5 178.2 (2) C21-C22-C23-C27 C25-C3-C4-C5 178.2 (2) C21-C22-C23-C27 C3-C4-C5-C6 -177.0 (2) C20-C19-C24-C23 C3-C4-C5-C6 1.9 (3) C41-C19-C24-C23 O1-C4-C5-C68 1.9 (3) C41-C19-C24-C23 O1-C4-C5-C28 1.6 (3) C22-C3-C24-C19 C3-C4-C5-C28 -179.5 (2) C27-C23-C24-C19 C29-C1-C6-C5 175.7 (2) C4-C3-C25-C11 C4-C5-C6-C1 -0.4 (4) C12-C11-C25-C3 C28-C5-C6-C1 -0.7 (3) C18-C17-C26-C9 C33-C7-C8-C9 -178.8 (2) C16-C17-C26-C9 C33-C7-C8-C9 -178.8 (2) C16-C17-C26-C17	C34—C33—C35	106.5 (3)	Li1—O8—H74	115 (7)
C6-C1-C2-C3 $1.2 (4)$ $C20-C21-C22-03$ $C29-C1-C2-C3$ $-175.8 (2)$ $C28-C21-C22-03$ $C1-C2-C3-C4$ $0.3 (4)$ $C20-C21-C22-C23$ $C1-C2-C3-C4$ $0.3 (4)$ $C20-C21-C22-C23$ $C1-C2-C3-C4$ $0.3 (4)$ $C20-C21-C22-C23$ $C2-C3-C4-01$ $177.1 (2)$ $03-C22-C23-C24$ $C2-C3-C4-01$ $-2.8 (3)$ $C21-C22-C23-C24$ $C2-C3-C4-C5$ $-1.9 (3)$ $03-C22-C23-C24$ $C2-C3-C4-C5$ $-1.9 (3)$ $03-C22-C23-C24$ $C2-C3-C4-C5$ $-1.9 (3)$ $03-C22-C23-C24$ $C2-C3-C4-C5$ $-1.9 (3)$ $03-C22-C23-C24$ $C2-C3-C4-C5$ $-1.9 (3)$ $C21-C22-C23-C24$ $C3-C4-C5-C6$ $-1.9 (3)$ $C41-C19-C24-C23$ $C3-C4-C5-C6$ $-1.9 (3)$ $C41-C19-C24-C23$ $C3-C4-C5-C28$ $1.6 (3)$ $C22-C23-C24-C19$ $C2-C1-C6-C5$ $-1.1 (4)$ $C2-C3-C25-C11$ $C29-C1-C6-C5$ $-1.5 (2)$ $C27-C23-C24-C19$ $C28-C5-C6-C1$ $-0.4 (4)$ $C12-C11-C25-C3$ $C28-C5-C6-C1$ $-0.4 (4)$ $C12-C11-C25-C3$ $C28-C5-C6-C1$ $-179.0 (2)$ $C10-C11-C25-C3$ $C33-C7-C8-C9$ $0.7 (3)$ $C8-C9-C26-C17$ $C7-C8-C9-C10$ $0.7 (3)$ $C8-C9-C26-C17$ $C7-C8-C9-C26$ $-179.4 (2)$ $C10-C9-C26-C17$ $C7-C8-C9-C26$ $-179.4 (2)$ $C10-C9-C26-C17$ $C8-C9-C10-O2$ $176.83 (19)$ $C14-C15-C27-C23$	C36—C33—C7	109.9 (2)	C49—O9—H75	109.5
C6-C1-C2-C3 $1.2 (4)$ $C20-C21-C22-03$ $C29-C1-C2-C3$ $-175.8 (2)$ $C28-C21-C22-03$ $C1-C2-C3-C4$ $0.3 (4)$ $C20-C21-C22-C23$ $C1-C2-C3-C25$ $-179.8 (2)$ $C28-C21-C22-C23$ $C2-C3-C4-01$ $177.1 (2)$ $03-C22-C23-C24$ $C2-C3-C4-01$ $-2.8 (3)$ $C21-C22-C23-C24$ $C2-C3-C4-C5$ $-1.9 (3)$ $03-C22-C23-C24$ $C2-C3-C4-C5$ $-1.9 (3)$ $03-C22-C23-C27$ $C2-C3-C4-C5$ $-1.9 (3)$ $03-C22-C23-C27$ $C2-C3-C4-C5$ $-1.9 (3)$ $03-C22-C23-C27$ $C2-C3-C4-C5$ $-178.2 (2)$ $C21-C22-C23-C27$ $C2-C3-C4-C5$ $178.2 (2)$ $C21-C22-C23-C27$ $C3-C4-C5-C6$ $-177.0 (2)$ $C20-C19-C24-C23$ $C3-C4-C5-C6$ $1.9 (3)$ $C41-C19-C24-C23$ $C3-C4-C5-C28$ $-16 (3)$ $C22-C23-C24-C19$ $C2-C1-C6-C5$ $-179.5 (2)$ $C27-C23-C24-C19$ $C2-C1-C6-C5$ $-179.5 (2)$ $C27-C23-C25-C11$ $C2-C1-C6-C5$ $-179.0 (2)$ $C10-C11-C25-C3$ $C2-C7-C8-C9$ $0.7 (3)$ $C18-C17-C26-C9$ <				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C1—C2—C3	1.2 (4)	C20—C21—C22—O3	178.3 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C29—C1—C2—C3	-175.8 (2)	C28—C21—C22—O3	-0.6(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—C3—C4	0.3 (4)	C20—C21—C22—C23	-1.1(3)
C2-C3-C4-O1 $177.1 (2)$ $O3-C22-C23-C24$ $C25-C3-C4-O1$ $-2.8 (3)$ $C21-C22-C23-C24$ $C2-C3-C4-C5$ $-1.9 (3)$ $O3-C22-C23-C27$ $C25-C3-C4-C5$ $178.2 (2)$ $C21-C22-C23-C27$ $O1-C4-C5-C6$ $-177.0 (2)$ $C20-C19-C24-C23$ $C3-C4-C5-C6$ $1.9 (3)$ $C41-C19-C24-C23$ $O1-C4-C5-C6$ $1.9 (3)$ $C41-C19-C24-C23$ $O1-C4-C5-C28$ $1.6 (3)$ $C22-C23-C24-C19$ $C3-C4-C5-C28$ $-179.5 (2)$ $C27-C23-C24-C19$ $C2-C1-C6-C5$ $-1.1 (4)$ $C2-C3-C25-C11$ $C29-C1-C6-C5$ $175.7 (2)$ $C4-C3-C25-C11$ $C4-C5-C6-C1$ $-0.4 (4)$ $C12-C11-C25-C3$ $C28-C5-C6-C1$ $-179.0 (2)$ $C10-C11-C25-C3$ $C12-C7-C8-C9$ $0.7 (3)$ $C18-C17-C26-C9$ $C7-C8-C9-C10$ $0.7 (3)$ $C8-C9-C26-C17$ $C7-C8-C9-C26$ $-179.4 (2)$ $C10-C9-C26-C17$ $C7-C8-C9-C26$ $-179.4 (2)$ $C10-C9-C26-C17$ $C8-C9-C10-O2$ $176.83 (19)$ $C14-C15-C27-C23$	C1—C2—C3—C25	-179.8 (2)	C28—C21—C22—C23	179.9 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—C4—O1	177.1 (2)	O3—C22—C23—C24	-176.5(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C25—C3—C4—O1	-2.8 (3)	C21—C22—C23—C24	3.0 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—C4—C5	-1.9 (3)	O3—C22—C23—C27	8.3 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C25—C3—C4—C5	178.2 (2)	C21—C22—C23—C27	-172.2 (2)
C3-C4-C5-C6 $1.9 (3)$ $C41-C19-C24-C23$ $1.6 (3)$ $O1-C4-C5-C28$ $1.6 (3)$ $C22-C23-C24-C19$ $-1.79.5 (2)$ $C3-C4-C5-C28$ $-179.5 (2)$ $C27-C23-C24-C19$ $1.6 (3)$ $C2-C1-C6-C5$ $-1.1 (4)$ $C2-C3-C25-C11$ $9.6 (2)$ $C29-C1-C6-C5$ $175.7 (2)$ $C4-C3-C25-C11$ $9.6 (2)$ $C4-C5-C6-C1$ $-0.4 (4)$ $C12-C11-C25-C3$ $9.6 (2)$ $C28-C5-C6-C1$ $-179.0 (2)$ $C10-C11-C25-C3$ $9.6 (2)$ $C12-C7-C8-C9$ $0.7 (3)$ $C18-C17-C26-C9$ $9.6 (2)$ $C7-C8-C9-C10$ $0.7 (3)$ $C8-C9-C26-C17$ $1.6 (2)$ $C7-C8-C9-C26$ $-179.4 (2)$ $C10-C9-C26-C17$ $1.6 (2)$ $C7-C8-C9-C10-O2$ $176.83 (19)$ $C14-C15-C27-C23$ $7.6 (2)$ $C14-C15-C27-C23$ $2.1 (2)$ $C14-C15-C27-C23$ $7.6 (2)$	O1—C4—C5—C6	-177.0 (2)	C20—C19—C24—C23	0.6 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4—C5—C6	1.9 (3)	C41—C19—C24—C23	179.7 (2)
C3-C4-C5-C28 $-179.5(2)$ $C27-C23-C24-C19$ $I12-C19$ $C2-C1-C6-C5$ $-1.1(4)$ $C2-C3-C25-C11$ $I12-C11-C25-C3$ $C29-C1-C6-C5$ $175.7(2)$ $C4-C3-C25-C11$ $I12-C11-C25-C3$ $C28-C5-C6-C1$ $-0.4(4)$ $C12-C11-C25-C3$ $I12-C11-C25-C3$ $C28-C5-C6-C1$ $-179.0(2)$ $C10-C11-C25-C3$ $I12-C7-C8-C9$ $C12-C7-C8-C9$ $0.7(3)$ $C18-C17-C26-C9$ $I12-C7-C8-C9$ $C7-C8-C9-C10$ $0.7(3)$ $C8-C9-C26-C17$ $I12-C7-C8-C9$ $C7-C8-C9-C10$ $0.7(3)$ $C8-C9-C26-C17$ $I12-C7-C8-C9$ $C7-C8-C9-C10$ $0.7(3)$ $C8-C9-C26-C17$ $I12-C25-C3$ $C7-C8-C9-C10$ $0.7(3)$ $C8-C9-C26-C17$ $I12-C25-C3$ $C7-C8-C9-C10$ $0.7(3)$ $C8-C9-C26-C17$ $I12-C25-C3$ $C7-C8-C9-C10$ $0.7(3)$ $C8-C9-C26-C17$ $I12-C25-C3-C3$ $C7-C8-C9-C26$ $-179.4(2)$ $C10-C9-C26-C17$ $I12-C25-C23$ $C8-C9-C10-O2$ $176.83(19)$ $C14-C15-C27-C23$ $I12-C25-C23-C23$	O1—C4—C5—C28	1.6 (3)	C22—C23—C24—C19	-2.8 (4)
C2-C1-C6-C5 -1.1 (4) $C2-C3-C25-C11$ 92 $C29-C1-C6-C5$ 175.7 (2) $C4-C3-C25-C11$ -175.7 (2) $C4-C5-C6-C1$ -0.4 (4) $C12-C11-C25-C3$ -179.0 (2) $C28-C5-C6-C1$ -179.0 (2) $C10-C11-C25-C3$ -179.0 (2) $C12-C7-C8-C9$ 0.7 (3) $C18-C17-C26-C9$ -178.8 (2) $C7-C8-C9-C10$ 0.7 (3) $C8-C9-C26-C17$ -179.4 (2) $C7-C8-C9-C26$ -179.4 (2) $C10-C9-C26-C17$ -176.83 (19) $C14-C15-C27-C23$ -21.6 -21.6 -21.6	C3—C4—C5—C28	-179.5 (2)	C27—C23—C24—C19	172.4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C1-C6-C5	-1.1 (4)	C2—C3—C25—C11	95.4 (3)
C4-C5-C6-C1 -0.4 (4) $C12-C11-C25-C3$ -0.4 (4) $C12-C11-C25-C3$ -0.4 (4) $C28-C5-C6-C1$ -179.0 (2) $C10-C11-C25-C3$ -0.4 (2) $C10-C11-C25-C3$ -0.4 (2) $C12-C7-C8-C9$ 0.7 (3) $C18-C17-C26-C9$ -0.4 (2) $C16-C17-C26-C9$ -0.4 (2) $C33-C7-C8-C9$ -178.8 (2) $C16-C17-C26-C9$ -0.4 (2) $C16-C17-C26-C9$ -0.4 (2) $C7-C8-C9-C10$ 0.7 (3) $C8-C9-C26-C17$ -0.4 (2) $C10-C9-C26-C17$ -0.4 (2) $C7-C8-C9-C10-O2$ 176.83 (19) $C14-C15-C27-C23$ -0.4 (2) $C14-C15-C27-C23$ -0.4 (2)	C29—C1—C6—C5	175.7 (2)	C4—C3—C25—C11	-84.7 (3)
C28 - C5 - C6 - C1 $-179.0 (2)$ $C10 - C11 - C25 - C3$ 8 $C12 - C7 - C8 - C9$ $0.7 (3)$ $C18 - C17 - C26 - C9$ $-178.8 (2)$ $C16 - C17 - C26 - C9$ $-178.8 (2)$ $C7 - C8 - C9 - C10$ $0.7 (3)$ $C8 - C9 - C26 - C17$ $-179.4 (2)$ $C10 - C9 - C26 - C17$ $-176.83 (19)$ $C7 - C8 - C9 - C10 - O2$ $176.83 (19)$ $C14 - C15 - C27 - C23$ $-232 - C23$	C4—C5—C6—C1	-0.4 (4)	C12—C11—C25—C3	-97.4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C28—C5—C6—C1	-179.0 (2)	C10-C11-C25-C3	84.6 (3)
C33-C7-C8-C9 -178.8 (2) $C16-C17-C26-C9$ 920 $C7-C8-C9-C10$ 0.7 (3) $C8-C9-C26-C17$ 100 $C7-C8-C9-C26$ -179.4 (2) $C10-C9-C26-C17$ 100 $C8-C9-C10-O2$ 176.83 (19) $C14-C15-C27-C23$ 1000	C12—C7—C8—C9	0.7 (3)	C18—C17—C26—C9	-83.1 (3)
C7-C8-C9-C10 $0.7 (3)$ $C8-C9-C26-C17$ $12000000000000000000000000000000000000$	C33—C7—C8—C9	-178.8 (2)	C16—C17—C26—C9	96.4 (3)
C7—C8—C9—C26 -179.4 (2) C10—C9—C26—C17 C8—C9—C10—O2 176.83 (19) C14—C15—C27—C23 C26 C10 O2	C7—C8—C9—C10	0.7 (3)	C8—C9—C26—C17	102.9 (3)
C8-C9-C10-O2 176.83 (19) C14-C15-C27-C23 C26-C9-C10-O2 2.1 (2)	C7—C8—C9—C26	-179.4 (2)	C10-C9-C26-C17	-77.1 (3)
	C8—C9—C10—O2	176.83 (19)	C14—C15—C27—C23	76.7 (3)
$C_{26} - C_{9} - C_{10} - O_{2} - 3.1 (3) - C_{16} - C_{15} - C_{27} - C_{23} - C_$	C26—C9—C10—O2	-3.1 (3)	C16—C15—C27—C23	-98.7 (2)

C8 C0 C10 C11	-1.2(2)	C24 C22 C27 C15	-955(2)
	-1.2(3)	$C_{24} = C_{23} = C_{27} = C_{13}$	-85.5(5)
C26-C9-C10-C11	1/8.8 (2)	C22—C23—C27—C15	89.5 (3)
O2—C10—C11—C12	-177.59 (19)	C22—C21—C28—C5	-89.8 (3)
C9—C10—C11—C12	0.4 (3)	C20—C21—C28—C5	91.3 (3)
O2—C10—C11—C25	0.4 (3)	C6—C5—C28—C21	-100.5 (3)
C9—C10—C11—C25	178.4 (2)	C4—C5—C28—C21	81.0 (3)
C10—C11—C12—C7	1.0 (3)	C6-C1-C29-C32	12.1 (4)
C25—C11—C12—C7	-177.0 (2)	C2-C1-C29-C32	-171.1 (3)
C8—C7—C12—C11	-1.6 (3)	C6-C1-C29-C31	132.7 (3)
C33—C7—C12—C11	177.9 (2)	C2-C1-C29-C31	-50.6 (4)
C18—C13—C14—C15	1.1 (3)	C6-C1-C29-C30	-111.3 (3)
C37—C13—C14—C15	-179.7 (2)	C2-C1-C29-C30	65.4 (4)
C13—C14—C15—C16	2.1 (3)	C8—C7—C33—C36	-113.7 (3)
C13—C14—C15—C27	-173.5 (2)	C12—C7—C33—C36	66.8 (3)
C14—C15—C16—O4	173.58 (19)	C8—C7—C33—C34	125.9 (3)
C27—C15—C16—O4	-10.9 (3)	C12—C7—C33—C34	-53.5 (3)
C14—C15—C16—C17	-4.0 (3)	C8—C7—C33—C35	7.8 (4)
C27-C15-C16-C17	171.6 (2)	C12—C7—C33—C35	-171.7 (3)
O4—C16—C17—C18	-175.0 (2)	C14—C13—C37—C39	-0.9 (4)
C15—C16—C17—C18	2.5 (3)	C18—C13—C37—C39	178.4 (2)
O4—C16—C17—C26	5.6 (3)	C14—C13—C37—C38	120.3 (3)
C15—C16—C17—C26	-176.9 (2)	C18—C13—C37—C38	-60.5 (4)
C16—C17—C18—C13	0.9 (3)	C14—C13—C37—C40	-118.2 (3)
C26—C17—C18—C13	-179.6 (2)	C18—C13—C37—C40	61.1 (3)
C14—C13—C18—C17	-2.7 (3)	C20-C19-C41-C42	120.0 (4)
C37—C13—C18—C17	178.1 (2)	C24—C19—C41—C42	-58.9 (5)
C24—C19—C20—C21	1.3 (4)	C20-C19-C41-C44	-119.8 (4)
C41—C19—C20—C21	-177.7 (2)	C24—C19—C41—C44	61.2 (4)
C19—C20—C21—C22	-1.1 (3)	C20—C19—C41—C43	-2.7 (4)
C19—C20—C21—C28	177.8 (2)	C24—C19—C41—C43	178.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H··· A
08—H74…O9	0.67 (3)	2.01 (8)	2.673 (3)	167 (3)
O2—H68…O1	0.83 (3)	1.66 (4)	2.490 (2)	172 (3)
O3—H69…O1	0.89 (3)	1.64 (3)	2.520 (2)	169 (3)
O4—H70···O2	0.90 (3)	1.77 (3)	2.650 (2)	166 (3)
O5—H71…O1 ⁱ	0.88 (4)	1.87 (4)	2.714 (3)	160 (4)
O6—H72…O4 ⁱⁱ	0.94 (5)	1.81 (5)	2.732 (3)	165 (4)
O7—H73…O3 ⁱ	0.79 (6)	1.91 (6)	2.676 (3)	163 (6)

Symmetry codes: (i) -x+3/2, y+1/2, -z+3/2; (ii) x+1/2, -y+1/2, z+1/2.