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Abstract: After the European Food Safety Authority reviewed reports of methylmercury and
heart rate variability (HRV) in 2012, the panel concluded that, although some studies of cardiac
autonomy suggested an autonomic effect of methylmercury, the results were inconsistent among
studies and the implications for health were unclear. In this study, we reconsider this association by
adding a perspective on the physiological context. Cardiovascular rhythmicity is usually studied
within different frequency domains of HRV. Three spectral components are usually detected; in
humans these are centered at <0.04 Hz, 0.15 Hz (LF), and 0.3 Hz (HF). LF and HF (sympathetic
and parasympathetic activities, respectively) are evaluated in terms of frequency and power. By
searching PubMed, we identified 13 studies examining the effect of methylmercury exposure on
HRV in human populations in the Faroe Islands, the Seychelles and other countries. Considering
both reduced HRV and sympathodominant state (i.e., lower HF, higher LF, or higher LF/HF ratio)
as autonomic abnormality, eight of them showed the significant association with methylmercury
exposure. Five studies failed to demonstrate any significant association. In conclusion, these
data suggest that increased methylmercury exposure was consistently associated with autonomic
abnormality, though the influence of methylmercury on HRV (e.g., LF) might differ for prenatal
and postnatal exposures. The results with HRV should be included in the risk characterization of
methylmercury. The HRV parameters calculated by frequency domain analysis appear to be more
sensitive to methylmercury exposure than those by time domain analysis.

Keywords: heart rate variability; methylmercury neurotoxicity; review; sympathodominant state

1. Introduction

The measurement of heart rate variability (HRV; or, the coefficient of variation of the R-R intervals,
CVRR) using frequency domain analysis is an effective approach for the objective assessment of the
autonomic nervous function [1–3]. In a seminal study, Wheeler and Watkins observed a striking
reduction or absence of beat-to-beat variation during both quiet and deep breathing in diabetic patients
with autonomic neuropathy [4]. In 2012, the European Food Safety Authority (EFSA) reviewed several
reports examining the influence of methylmercury on HRV and concluded that, although some studies
of cardiac autonomy suggested an autonomic nervous effect of methylmercury, the results were
inconsistent across studies and the implications for health were unclear [5]. Gribble et al. [6] reached a
similar conclusion, finding that a major limitation of studies examining the influence of methylmercury
on HRV was a lack of standardized methods for performing and reporting HRV measurements.
Concerning the implications of HRV findings for health, however, the existing data may allow other
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interpretations besides those drawn by the EFSA panel. This study was intended to reconsider the
involvement of methylmercury in HRV by adding a perspective on the physiological context.

2. Materials and Methods

2.1. Data Sources and Extraction

We searched for published papers using a set of keywords (“mercury,” “heart rate variability,” and
“humans”) in PubMed, US National Library of Medicine, and identified 33 citations as of 31 January
2018. We excluded review papers (n = 6), case series (n = 3), studies addressing occupational mercury
exposure (n = 2) or studies in which data for either HRV (n = 3) or mercury biomarkers (n = 6) were not
described. Finally, included were 13 studies of methylmercury exposure and HRV: ten studies [7–16]
that were included in a previous systematic review by Gribble et al. [6] and three new studies [17–19].
In all of the identified studies, the statistical significance was set at p < 0.05.

2.2. Physiological Background

The autonomic nervous system innervates every organ in the body, and its neural organization in
the brain, spinal cord, and periphery is as complex as the somatic nervous system [1]. A vasomotor
center, located in the medulla oblongata, and vagal cardioinhibitory neurons, located primarily
within the ventrolateral subdivision of the nucleus ambiguus, are thought to be especially important
in the regulation of the cardiovascular system. The autonomic nervous system plays a role in
triggering or sustaining malignant ventricular arrhythmias. Higher sympathetic activity, unopposed
by vagal activity, promotes arrhythmia through a variety of mechanisms such as reducing the
ventricular refractory period and the ventricular fibrillation threshold, promoting triggered activity
afterpotentials, and enhancing automaticity [20]. By contrast, vagal stimulation opposes these
changes and reduces the effects of sympathetic stimulation by prolonging refractoriness, elevating the
ventricular fibrillation threshold, and reducing automaticity. For this reason, HRV testing is important
for assessing cardiac autonomic function in clinical applications because of the availability of low-cost
and non-invasive methods.

The procedure for data sampling and spectral analysis of successive R-R intervals on
electrocardiograph (ECG) is illustrated in Figure 1. The sinus rhythm shows fluctuation around
the mean R-R interval (or heart rate) due to continuous changes in the sympathovagal balance [21].
Rhythmicity is usually studied within different frequency domains. Three major spectral components,
calculated by frequency domain analysis using a fast Fourier transform (FFT) or autoregressive model,
are usually detected. In humans, these are centered at a very low frequency (VLF—below 0.04 Hz),
a low frequency (LF—around 0.15 Hz) and a high frequency (HF—around 0.3 Hz) [1]. Spectral
analysis involves subjecting a time series of R-R intervals to a mathematical transformation which
separates those R-R intervals into individual harmonics which are identifiable through their discrete
frequencies. The LF and HF are evaluated in terms of frequency and amplitude; the latter commonly
assessed by its area (i.e., power spectral density or colloquially “power”). The VLF has been equated
with a thermoregulatory or vasomotor influence, the LF with baroreflex control and arterial pressure
variations, and the HF with respiration [1,21]. Therefore, the LF and HF are thought to be mediated by
sympathetic and parasympathetic pathways, respectively [1,2]. The CVRR was defined as the ratio of
the standard deviation (SD) of the R-R intervals to the average value (RRmean). Likewise, the CVLF

and CVHF were defined as the ratios of the square roots of each component power spectral density
(i.e., LF and HF) to the RRmean, which can be compared between different populations because they
are adjusted for the mean R-R interval of each subject [3]. In addition, the LF/HF ratio and %LF
(= LF/(LF + HF) × 100, %) are used as HRV parameters for frequency domain metrics.
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Figure 1. An example of spectral analysis of ECG R‒R intervals. (A) An examiner confirmed 
waveforms on the electrocardiogram. (B) Electrocardiographic 300 R‒R intervals or 5-min R‒R 
intervals were measured in real time. (C) Spectral analysis using autoregressive model was made for 
consecutive 100 R‒R intervals with the minimal standard deviation (SD) that were automatically 
extracted from the obtained data, and (D) component analysis was made for the data. Finally, a 
coefficient of variation (C.V. or CVRR) was calculated from the mean and SD of the same data. VLF, 
LF, and HF represent very low frequency, low frequency and high frequency bands, respectively. 

2.3. Interpretation of HRV Parameters 

Autonomic abnormality is thought to represent a sympathodominant state of the 
sympathovagal balance during the initial stages and depressed HRV at the severe stage. The latter 
manifests as a reduction in total (e.g., CVRR) and in specific power (i.e., HF, LF, CVHF, and CVLF) of 
spectral components and is observed in patients after acute myocardial infarction [2], and those with 
autonomic neuropathy due to diabetes mellitus [1] or alcoholism [22]. The sympathodominant state 
has three patterns compared with healthy controls: (i) lower HF (with no significant difference in LF); 
(ii) higher LF (with no significant difference in HF); and (iii) higher LF/HF ratio (or %LF). Previous 
studies on the effects of occupational and environmental factors on HRV parameters have primarily 
demonstrated a lower HF pattern (due to lead, styrene, mixed solvents such as n-hexane and toluene; 
local vibration in chain-saw workers [23–30]; exposure to sarin [31]; and long commuting times of 90 
min or more [32]). In addition, Pagani et al. [33] observed a higher LF at rest in patients diagnosed 
with chronic fatigue syndrome in comparison with healthy control subjects (73 ± 11 and 51 ± 10 
normalized units, respectively, p < 0.05), but responsiveness to mental stimuli (mental arithmetic) 
was reduced in the patients compared with the controls. Thus, the above interpretation may be 
applicable for HRV assessment in a static state, but not in an active mode, because the latter cannot 
preserve stationarity of autonomic modulations. 

3. Results 

3.1. Relations of Methylmercury to HRV 

Figure 1. An example of spectral analysis of ECG R-R intervals. (A) An examiner confirmed waveforms
on the electrocardiogram. (B) Electrocardiographic 300 R-R intervals or 5-min R-R intervals were
measured in real time. (C) Spectral analysis using autoregressive model was made for consecutive 100
R-R intervals with the minimal standard deviation (SD) that were automatically extracted from the
obtained data, and (D) component analysis was made for the data. Finally, a coefficient of variation
(C.V. or CVRR) was calculated from the mean and SD of the same data. VLF, LF, and HF represent very
low frequency, low frequency and high frequency bands, respectively.

2.3. Interpretation of HRV Parameters

Autonomic abnormality is thought to represent a sympathodominant state of the sympathovagal
balance during the initial stages and depressed HRV at the severe stage. The latter manifests as
a reduction in total (e.g., CVRR) and in specific power (i.e., HF, LF, CVHF, and CVLF) of spectral
components and is observed in patients after acute myocardial infarction [2], and those with autonomic
neuropathy due to diabetes mellitus [1] or alcoholism [22]. The sympathodominant state has three
patterns compared with healthy controls: (i) lower HF (with no significant difference in LF); (ii) higher
LF (with no significant difference in HF); and (iii) higher LF/HF ratio (or %LF). Previous studies on the
effects of occupational and environmental factors on HRV parameters have primarily demonstrated a
lower HF pattern (due to lead, styrene, mixed solvents such as n-hexane and toluene; local vibration in
chain-saw workers [23–30]; exposure to sarin [31]; and long commuting times of 90 min or more [32]).
In addition, Pagani et al. [33] observed a higher LF at rest in patients diagnosed with chronic fatigue
syndrome in comparison with healthy control subjects (73 ± 11 and 51 ± 10 normalized units,
respectively, p < 0.05), but responsiveness to mental stimuli (mental arithmetic) was reduced in
the patients compared with the controls. Thus, the above interpretation may be applicable for HRV
assessment in a static state, but not in an active mode, because the latter cannot preserve stationarity of
autonomic modulations.
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3. Results

3.1. Relations of Methylmercury to HRV

Table 1 shows the characteristics of epidemiological studies examining the effects of
methylmercury exposure on HRV in chronological order, together with the range of exposure levels
(i.e., minimum and maximum) for the studies that provided this information. In one case-control
study, patients officially certified as having fetal-type Minamata disease (methylmercury poisoning
due to in utero exposure) showed significantly reduced HF compared to age- and sex-matched healthy
controls, but no data on prenatal or postnatal methylmercury exposure were included [7].

Table 1. Human studies addressing the effects of methylmercury exposure on heart rate variability.

Authors (Year) [Ref #] Place Subjects Prenatal Exposure (Total
Mercury Levels) *

Postnatal Exposure (Total
Mercury Levels)

Oka et al. (2003) [7] Minamata, Japan 9 FMD patients
and 13 controls

Grandjean et al. (2004) [8] Faroe Islands,
Denmark

857 children aged 7
years

GM 22.6 µg/L, IQR 13.2~40.8
µg/L in cord blood; GM 4.22
µg/g, IQR 2.55~7.68 µg/g in

maternal hair

GM 2.99 µg/g, IQR 1.69~6.20
µg/g in hair

857 children aged
14 years

GM 0.96 µg/g, IQR 0.45~2.29
µg/g in hair

Murata et al. (2006) [9] Japan 136 children
Med 0.089 µg/g, range

0.017~0.367 µg/g in cord
tissue

Med 1.66 µg/g, range
0.43~6.32 µg/g in hair

Valera et al. (2008) [10] Nunavik, Canada 205 Inuit adults GM 19.6 µg/L, range 0.5~152
µg/L in blood

Choi et al. (2009) [11] Faroe Islands,
Denmark 42 whaling men

GM 7.31 µg/g, IQR 4.52~13.4
µg/g in hair; GM 29.5 µg/L,
IQR 18.7~46.1 µg/L in blood

Yaginuma-Sakurai et al.
(2010) [12] Sendai, Japan

Intervention group
(IG): 27 adults
Control group
(CG): 27 adults

IG: 2.30 ± 1.08 µg/g (Mean ±
SD, 0th week), 8.76 ± 2.01

µg/g (15th week); CG: 2.27 ±
1.2 µg/g (0th week), 2.14 ±

1.03 µg/g (15th week) in hair

Lim et al. (2010) [13] South Korea 1589 adults GM 0.83 µg/g, IQR 0.56~1.28
µg/g in hair

Valera et al. (2011) [14] Quebec, Canada 724 Cree adults Med 5.7 µg/L, IQR 1.2~8.8
µg/L in blood

Valera et al. (2011) [15] French Polynesia 101 teenagers Med 8.5 µg/L, IQR 6.3~11.0
µg/L in blood

180 adults Med 13.5 µg/L, IQR 8.5~22.0
µg/L in blood

Valera et al. (2012) [16] Nunavik, Canada 226 Inuit children Med 16.3 µg/L, IQR 9.0~28.0
µg/L in cord blood

Med 2.9 µg/L, IQR 1.5~5.6
µg/L in blood

Periard et al. (2015) [17] Seychelles 95 adolescents Mean 6.7 µg/g, range 0.7~21.3
µg/g in maternal hair

Mean 9.5 µg/g, range 2.0~28.1
µg/g in hair

Gump et al. (2017) [18] Syracuse, NY, USA 203 children Mean 0.4 µg/L, range
0.01~11.65 µg/L in blood

Miller et al. (2017) [19] Long Island, NY,
USA 94 fish consumers 8.4 ± 8.6 (Mean ± SD) µg/L

in blood

* Methylmercury levels were measured only in cord tissue [26]. Abbreviations: FMD, fetal-type Minamata disease;
GM, geometric mean value; IQR, interquartile range (25th and 75th percentiles); Med, median value.

In the Faroese birth cohort study, cord-blood mercury was associated with decreased LF and
HF in children aged 14 years [8], and there were significant associations between increased mercury
levels in cord blood and hair at 7 years and decreased LF and CVLF in the children aged 7 years. In a
retrospective cohort study using dry cord tissue, methylmercury levels in cord tissue were associated
with increased LF/HF ratio and decreased HF in Japanese children at 7 years of age [9]. The median
mercury level in this population was estimated to be 2.24 (range, 0.43–9.26) µg/g in maternal hair at
parturition according to the equation of Akagi et al. [34]. In 11-year-old Inuit children, blood mercury
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was associated with decreased CVRR (adjusted β = −0.06, p = 0.01) and LF (adjusted β = −0.24, p = 0.02),
though neither cord-blood mercury nor hair mercury at 11 years was significantly associated with
any HRV parameter [16]. The Seychelles child development study found no significant associations
between prenatal or postnatal exposure to methylmercury and HRV parameters [17].

In a cross-sectional study, Lim et al. [13] reported that hair mercury was negatively related
to HF in Korean adults (p < 0.05). In Cree adults, blood and hair mercury levels were positively
related to LF/HF ratio, LF, and HF (p < 0.01) [14]. Similarly, in French Polynesians aged 12–17 years,
significant differences were observed in LF/HF ratio, LF, and HF between the second (7.9–10.0 µg/L)
and third (11.0–26.0 µg/L) tertiles of blood mercury concentration [15]. Among Faroese whaling
men, blood mercury level was associated with increased CVRR, CVHR, and CVLF, but latent mercury
level, estimated from mercury levels in blood, toe nail, and hair (7 years ago) using a structural
equation model, was not significantly associated with any HRV parameter [11]. In Inuit adults,
blood mercury was significantly correlated with CVRR and LF (r = −0.18 and r = −0.18, respectively),
but these significant associations disappeared after adjusting for potential confounders [10]. In avid
fish consumers, either blood total mercury or serum docosahexaenoic acid (DHA) and eicosapentaenoic
acid (EPA) level was not significantly associated with any HRV parameter in a multiple regression
analysis [19]. Gump et al. [18] measured LF, HF, and LF/HF ratio at rest and during stress in children
aged 9–11 years to assess parasympathetic responses to acute stress, but neither blood mercury nor
lead was significantly related to baseline HRV parameters (HRV data not shown).

An intervention study reported that methylmercury exposure of 3.4 µg/kg body weight/week
for 14 weeks via fish consumption induced a temporary sympathodominant state (p = 0.014 for higher
CVLF; p = 0.076 for elevated LF/HF ratio) [12]. Also, age-, sex-, and body mass index-adjusted CVLF

was positively related to hair mercury at the 15th week (p < 0.001), though such significant relations
were not observed at baseline or at the 29th week of follow-up. Table 2 presents a summary of studies
examining the association between mercury levels and HRV parameters. A detailed discussion of
these results follows in Section 4.1.

Table 2. Summary of associations between mercury levels and heart rate variability (HRV) parameters.

Authors (Year) [Ref #] Mean Age at the Time
of Examination

Exposure
Period

HRV Parameters

CVRR
HF-Related
Parameters

LF-Related
Parameters LF/HF Ratio

Oka et al. (2003) [7] Patients 44.3 years,
controls 42.9 years prenatal c(±) c(-) c(±)

Grandjean et al. (2004) [8]
7 years prenatal r(±) r(±) r(-) r(±)

postnatal r(±) r(±) r(-) r(±)

14 years prenatal r(-) r(-) r(-) r(±)
postnatal r(±) r(±) r(±) r(±)

Murata et al. (2006) [9] 6.9 years prenatal r(-) r(±) r(+)
postnatal r(±) r(+) r (±)

Valera et al. (2008) [10] 52.1 years postnatal r(±) r(±) r(±) r(±)

Choi et al. (2009) [11] 58.9 years postnatal r(±) r(±) r(±)

Yaginuma-Sakurai et al.
(2010) [12]

Intervention 25.2 years;
control 23.7 years postnatal c(±) c(±) c(+) c(±)

r(±) r(±) r(+) r(±)
Lim et al. (2010) [13] 33 years postnatal r(-) r(±)

Valera et al. (2011) [14] 35 years postnatal r(+) r(+) r(+)

Valera et al. (2011) [15]
14.2 years postnatal c(-) c(+) c(+)
48.6 years postnatal c(±) c(±) c(±)

Valera et al. (2012) [16] 11.3 years prenatal r(±) r(±) r(±) r(±)
postnatal r(-) r(±) r(-) r(±)

Periard et al. (2015) [17] 19.5 years prenatal r(±) r(±)
postnatal r(±) r(±)

Gump et al. (2017) [18] 10.6 years postnatal r(±) r(±) r(±)

Miller et al. (2017) [19] 48.9 years postnatal r(±) r(±) r(±)

Notes: c(-), significantly low in comparison; c(+), significantly high in comparison; c(±), not significant in comparison;
r(-), significantly negative relation; r(+), significantly positive relation; r(±), no significant relation. Gray areas show
a sympathodominant state or autonomic hypofunction.
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3.2. Measurement of HRV

HRV has been analyzed using a Holter monitoring system [10,14–16,19], an ECG analyzer with
analog-to-digital converter [7–9,12], or other ECG measuring instruments [11,13,17,18]. ECG signals
for R-R intervals were digitalized at 128 Hz [10,14–16], 200 Hz [17], 250 Hz [7], 500 Hz [18], and
1000 Hz [8,9,12]. Three reports did not mention the sampling frequency [11,13,19]. Most of the
study subjects were examined in a supine position [7–9,11,12,17] after subjects lay quietly for two
min or longer, but the subjects examined by Lim et al. [13] were sitting in a quiet and dark room.
The remaining reports did not provide any detailed information [10,14–16,18,19].

To examine the effect of sampling frequency on LF and HF, 128 consecutive R-R intervals with the
minimal SD in 61 male students aged 18–26 years [35] were reanalyzed using FFT spectral analysis,
as shown in Figure 2. The original R-R intervals were measured at a sampling frequency of 1000 Hz
after each subject rested in a supine position for 10 min, and data for lower sampling frequencies
(500 Hz, 250 Hz, 200 Hz, 125 Hz, and 100 Hz) were generated from the original data taking into
account random error. Table 3 presents the HRV parameters calculated by the spectral analysis. All the
HRV parameters were significantly different among six frequency-band groups. In particular, most
of significant differences were observed between sampling frequency bands of less than 200 Hz and
200–1000 Hz.
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Figure 2. Results of spectral analysis of 128 consecutive R-R intervals using a fast Fourier transform in
a male student. The original R-R intervals were measured at the sampling frequency of 1000 Hz after
a subject rested in the supine position for 10 min, and data for lower sampling frequencies (500 Hz,
250 Hz and 100 Hz) were generated from the original data taking into account random error. LF and
HF represent low frequency and high frequency bands, respectively.
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Table 3. Mean +/- SD values of HRV parameters measured at different sampling frequencies in 61
male students of reference [35].

Parameters
Sampling Frequency

1000 Hz 500 Hz 250 Hz 200 Hz 125 Hz 100 Hz

RRmean (msec) 965.1 ± 162.9 965.1 ± 162.9 965.1 ± 162.9 965.1 ± 162.9 965.2 ± 162.9 * 965.2 ± 162.9
RRSD (msec) 51.74 ± 21.35 51.75 ± 21.35 51.75 ± 21.34 51.75 ± 21.33 51.82 ± 21.29 * 51.80 ± 21.27 *

CVRR (%) 5.321 ± 1.902 5.322 ± 1.903 5.323 ± 1.903 5.323 ± 1.902 5.330 ± 1.896 * 5.328 ± 1.896 *
log10 [LF (msec2)] 4.862 ± 0.480 4.862 ± 0.480 4.863 ± 0.478 4.863 ± 0.478 4.864 ± 0.478 4.858 ± 0.486 *
log10 [HF (msec2)] 4.931 ± 0.537 4.931 ± 0.537 4.932 ± 0.534 4.932 ± 0.533 4.936 ± 0.525 4.938 ± 0.521 *

%LF (%) 46.91 ± 20.01 46.89 ± 20.00 46.88 ± 19.95 46.88 ± 19.96 46.68 ± 20.06 46.33 ± 20.14 *
log10 [LF/HF ratio] −0.069 ± 0.416 −0.069 ± 0.416 −0.069 ± 0.415 −0.069 ± 0.415 −0.073 ± 0.416 −0.081 ± 0.420 *

Notes: LF (low frequency) and HF (high frequency) powers were calculated by spectral analysis shown in Figure
2; * shows p < 0.05 of significance levels obtained by two-way analysis of variance (F test) adding data of a lower
sampling-frequency band stepwise.

4. Discussion

4.1. Assessment of Methylmercury Neurotoxicity

With regard to the interpretation of HRV at rest, depressed HRV (e.g., CVRR of less than 2%) takes
precedence of a sympathodominant state because it indicates cardiac autonomic hypofunction while
other readouts reflect a result of disrupted sympathovagal balance [21,36]. Empirically, reduced HF
precedes elevated LF and LF/HF ratio, as mentioned in Section 2.3. Furthermore, elevated LF may
precede high LF/HF ratio because the ratio is a relative measure of sympathetic and parasympathetic
nerve activities and is not always suggestive of autonomic dysfunction [37]. Of course, data that
did not achieve statistical significance (c(±) or r(±)) are no longer discussed because any marginal
association was likely attributable to chance. In light of these criteria, some commonalities can be
observed across the 13 studies examined here, though Gribble et al. [6] judged the above evidence
was too limited to draw causal inferences. Namely, increased mercury levels were associated with
autonomic abnormality as shown in Table 2 (especially, gray areas). In addition, some fetal-type
and child Minamata disease patients showed vegetative symptoms including dizziness, orthostatic
syncope, palpitation, breathlessness, and nausea [38], along with hypersalivation and ileus [7].

Of the eight studies showing significant associations in Table 2, three demonstrated a potential
causal link between prenatal exposure level of methylmercury and autonomic hypofunction [7–9]; this
finding is similar to some results for cognitive deficits [39,40] and mental retardations [41]. Likewise,
five studies suggested a significant relationship existed between postnatal exposure levels and HRV
parameters analyzed using the frequency domain method. It is relatively straightforward to infer
causal relations from cohort studies [8,9] and an intervention study [12]. Contrariwise, it is difficult
to discriminate the effects of postnatal exposure to methylmercury from those of prenatal exposure
based on cross-sectional studies with no information about prenatal exposure levels [13–15], inasmuch
as there is evidence that mercury levels at 7 years of age reflect the prenatal exposure levels to some
extent [42]. In cases of this nature, it would be necessary to develop a plan estimating prenatal
exposure levels: For example, current mercury levels in hair of mothers, who had not changed their
dietary habits, might be used as a proxy for mercury exposure during pregnancy [43,44]. This method
cannot be applicable to subjects aged more than 7 years, as mentioned above. Insignificant findings
may have been attributable to extremely low exposure levels [18,19], measurements of different HRV
parameters [17] or subjects more than 45 years of average age [10,11,15,19].

Only one report seemed to show complicated findings [8]. In this study, cord blood mercury was
associated with reduced CVRR, CVHF, HF, and LF in 14-year-old children, but the 7-year-old children
showed only a significant association between cord blood mercury and lower LF. There are at least two
possible explanations for this paradox. First, since hair mercury levels at 7 years were higher than those
at 14 years (Table 1), the effect of prenatal methylmercury exposure on HRV may have been distorted
by postnatal exposure. Thereafter, as postnatal exposure levels decreased with age, the influence of
the prenatal exposure may have become predominant in the 14-year-old children. In support of this
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possibility, patients with fetal-type Minamata disease showed autonomic hypofunction approximately
45 years after the onset of the disease [7]. Second, short sleep duration in preschool children aged 5
and 6 years was associated with reduced HRV [45,46]; children who slept less than 10 h per weekday
showed significantly lower CVRR, CVLF, CVHF, LF, and HF than those who slept 10 h per weekday or
more, but no significant difference in LF/HF ratio was observed between the two groups. By contrast,
in 150 students aged 18–26 (mean 20) years, weekday sleep duration was not significantly associated
with any HRV parameter [35]; whereas, white-collar workers with commuting times of 90 min or
more showed decreased CVHF compared to those with commuting time of 60–89 min or less than
60 min (2.10 ± 1.17%, 2.25 ± 1.10%, 2.58 ± 1.33%, respectively) [32]. Thus, it is possible that sleep
duration may have confounded the HRV data for the 7-year-old children. Regrettably, the Faroes
study did not examine the participants’ sleep durations. Taken together, the data suggest that prenatal
methylmercury exposure consistently affected HRV parameters in response to the exposure dose,
i.e., ranging from a sympathodominant state to autonomic dysfunction. Nevertheless, HRV parameters
are susceptible to physiological conditions such as sleep duration in young children [45,46] and mental
stimuli [33], in addition to recent methylmercury exposure at relatively high levels.

The Seychelles child development study, which used time domain metrics, failed to find a
significant association between hair mercury levels and HRV in a cohort of 19-year-olds [7]. Likewise,
Faroese whaling men showed no significant associations between indicators of latent exposure
to methylmercury and HRV parameters [11]. In subjects of these studies, recent exposure levels
(total mercury in hair) were considerably higher (mean 9.5 µg/g for the former study and geometric
mean 7.31 µg/g for the latter study) than those in the general population of other countries. Thus,
comparison of HRV parameters between high/frequent and low/infrequent fish consumers should
probably have been made. Autonomic function may have been affected by prenatal methylmercury
exposure (though not so drastically as fetal-type Minamata disease patients [7]) and recent exposure
levels, different from prenatal ones, may have changed greatly due to diversity in habits (for instance,
consumption of methylmercury-contaminated fish). In two studies examining the same HRV
parameters, the CVRR and CVHF of the above Faroese whaling men were 2.99% and 1.30%, respectively,
which were lower than those of 23 Japanese healthy men aged 30–63 (mean 49) years (3.75% and
1.79%, respectively) [22]. The Seychelles child development study did not employ comparable HRV
parameters. Thus, not only dose-effect relationships but also comparison between subgroups of the
study population should have been attempted during the data analysis, as Varela and coworkers
did [15].

In reports demonstrating a significant relationship between methylmercury exposure and HRV
parameters, prenatal mercury levels showed a geometric mean 4.22 µg/g [8] and an equivalent
median of 2.24 µg/g [9] in maternal hair at parturition; postnatal mercury levels were 0.83 µg/g
in hair [13], 5.7 µg/L in blood [14] and 2.9 µg/L in blood [16] at the time of testing, whereas two
reports except one [16] did not describe prenatal exposure levels. It would not be straightforward
to estimate the critical concentration of methylmercury from these data. Valera et al. [15] and
Yaginuma-Sakurai et al. [12] observed significant differences in HRV parameters between comparable
subgroups with different mercury levels; specifically, the latter study indicated that a 14-week
methylmercury exposure caused significant changes in some HRV parameters. Taken together, the
data suggest that the average mercury level reported in the study by Yaginuma-Sakurai et al. [12]
(8.76 µg/g in hair) is a reasonable estimate of a critical dose of total mercury likely to affect HRV.
The EFSA panel regarded the point of departure (POD) as 11.5 µg/g for maternal mercury levels in
hair and 46 µg/L for those in blood by applying a hair-to-blood ratio of 250 [5]. Since the value of
8.76 µg/g in hair corresponds to 35 µg/L in blood, the results suggest a reference dose ranging from
10 to 20 µg/L in blood after taking uncertainty factor into account; whereas, the average mercury level
in whole blood of the same subjects measured after the 14-week exposure was 26.9 µg/L [47]. In such
cases, intake of n-3 polyunsaturated fatty acids (PUFA) and selenium resulting from fish consumption
should be considered in each country [12,48–50].
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The effect of methylmercury on cardiac autonomic function was suggested to be reversible by
an intervention study [12], separately from a cohort study by Grandjean et al. [8]. The adverse effects
in the former study disappeared after 14-week wash-out period following cessation of the exposure.
Recent mercury levels in hair of Faroese children aged 14 years were associated with a prolonged
latency between the pons and midbrain of the auditory pathway [51], and the brainstem auditory
evoked potential latency showed clear negative associations with LF and CVLF [8]. Moreover, all the
HRV parameters were largely reduced in comatose children with brainstem dysfunction [52], implying
that impairment in the higher center of cardiac autonomic function can lead to decrease both in HF
and LF power. Therefore, the pathology of autonomic imbalance due to methylmercury appears to
differ for prenatal and postnatal exposures, hypothesizing that prenatal methylmercury exposure can
readily impair the higher center of cardiac autonomic function and the postnatal exposure does the
same in the periphery. In this case, the directionality of LF would differ, with reduced LF for prenatal
exposures [8] and elevated LF for postnatal exposure [9,12,14,15].

4.2. Factors Affecting the Assessment of Cardiac Autonomic Function

The Task Force of the European Society of Cardiology and the North American Society of Pacing
and Electrophysiology recommended either a 5-min recording for frequency domain metrics or a 24-h
recording for time domain metrics [2]. The latter is useful for clarifying the pathophysiology of cardiac
autonomic function in clinical medicine—however, whether it is useful for toxicological studies in
human populations remains disputable. It would be not feasible to examine a large number of subjects
with 24-h monitor, and for time domain parameters, the longer the R-R interval sample, the greater
the natural variation of the signal due to heterogeneous influences on heart rate [1]. Moreover, time
domain variables provide no information about the sympathetic activity [2]. None of the studies in
this review used 24-h ECG monitoring. Instead, posture during measurement of R-R intervals and
sampling frequency in digitizing ECG signals differed among these studies. Subject posture during
measurement (supine rest, upright tilt, or sitting) affects the LF/HF ratio and the power of each
component directly [2,53], and spectral signal is readily distorted by movement artifacts and ectopic
beats [1]. For this reason, it is important to retain posture across measurement. Valera et al. [10,14–16],
using ambulatory 2-h Holter monitoring, excluded R-R intervals whose duration was less than 80% or
more than 120% of the running R-R average before performing frequency domain analysis; therefore,
their data might not represent a time series of successive R-R intervals. In addition, as Table 3 shows,
the data precision of R-R intervals depends on the sampling frequency [2,54]. A sampling frequency of
200 Hz or higher, in disagreement with the report by Merri et al. [54], appears to be required to preserve
measurement precision. Clearly, research in human toxicology will not progress unless researchers
employ comparable (and, if possible, R-R interval-adjusted) endpoints for HRV such as the CVRR,
CVHF, and CVLF.

When assessing a causal influence on HRV in humans, many potential confounders (age, sex,
drinking and smoking habits, sleep duration, and mental stimuli) should be considered [3,55,56].
In the data analysis, since it is difficult to control for the effect of age in subjects at an extremely
wide range of age (e.g., 5–83 years old [13]), such analyses have to be made in some age-specific
groups separately. Likewise, consumption of n-3 PUFA such as DHA and EPA is suggested to affect
HRV parameters [6,12,57], while body mass index and body fat percentage seem to be associated
with corrected Q-T (QTc) intervals on ECG and heart rate, but not with HRV parameters [35].
Several disorders have been suggested to affect HRV parameters, including: Acute myocardial
infarction, congestive heart failure, coronary artery disease, coronary atherosclerosis, myocardial
dysfunction, cardiac transplantation, Shy-Drager syndrome, Parkinsonism, Guillain-Barre syndrome,
tetraplegia, spinocerebellar degeneration, diabetic neuropathy, renal failure, chronic alcoholism, and
essential hypertension [2,3]. In addition, although levels of environmental pollutants such as PCBs and
lead are low in developed countries [58], concurrent exposure models would be necessary to consider
the interactive effects of substances other than methylmercury [59,60]. For that reason, special attention
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should be paid to subjects with such disorders, as well as potential confounders and exposure to other
neurotoxic substances, when conducting toxicological studies in humans.

Apart from HRV, using spectral analysis, QTc intervals are frequently used as another method for
assessing autonomic nervous function [35,61–66], inasmuch as Q-T interval on ECG represents the
duration between ventricular depolarization and subsequent repolarization [67]. QTc prolongation
is suggested to be associated with elevated risk of heart disease and sudden cardiac death [68–71].
Therefore, the QTc interval may be a more promising indicator than HRV parameters for investigating
the pathophysiology of cardiovascular events involved in methylmercury exposure, though it was
not significantly associated with prenatal or postnatal methylmercury exposures at relatively low
levels [9,19].

5. Conclusions

The HRV parameters analyzed using the frequency domain method, as well as CVRR, appear
to be more sensitive to methylmercury exposure than those using the time domain method. Most of
the studies addressed in this review suggested that increased mercury levels were associated with
autonomic dysfunction including a sympathodominant state, though the effect of methylmercury on
HRV (e.g., LF) might differ for prenatal and postnatal exposures. In an intervention study carried
out by Yaginuma-Sakurai et al., a significant difference in LF analyzed using spectral analysis was
observed between the experimental group (mean mercury levels of 8.76 µg/g in hair and 26.9 µg/L
in blood) and control group. Exposures near this dose may have critical effect on cardiac autonomic
function. Therefore, the POD to inform a new tolerable weekly intake should be based on this critical
concentration because it is lower than that established by the EFSA panel (11.5 µg/g in maternal hair).
This result could probably be applicable for the general population, including pregnant women and
unborn children.
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