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Original Article
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Background: Establishing the efficacy of novel photosensitizers (PSs) for phototherapy of lung cancer 
requires in vivo study prior to clinical evaluation. However, previously described animal models are not ideal 
for assessing transbronchial approaches with such PSs.
Methods: An ultra-small parallel-type composite optical fiberscope (COF) with a 0.97 mm outer diameter 
tip. The integration of illumination and laser irradiation fibers inside the COF allows simultaneous white-
light and fluorescence imaging, as well as real-time monitoring of tip position during laser phototherapy. An 
orthotopic lung cancer mouse model was created with three human lung cancer cell lines transbronchially 
inoculated into athymic nude mice. The COF was inserted transbronchially into a total of 15 mice for tumor 
observation. For in vivo fluorescence imaging, an organic nanoparticle, porphysome, was used as a PS. Laser 
excitation through the COF was performed at 50 mW using a 671 nm source.
Results: The overall success rate for creating orthotopic lung tumors was 71%. Transbronchial white light 
images were successfully captured by COF. Access to the left main bronchus was successful in 87% of mice 
(13/15), the right main bronchus to the cranial lobe bronchus level in 100% (15/15), and to the right basal 
trifurcation of the middle lobe, caudal lobe and accessory lobe in 93% (14/15). For transbronchial tumor 
localization of orthotopic lung cancer tumors, PS-laden tumor with the strong signal was clearly contrasted 
from the normal bronchial wall.
Conclusions: The ultra-small COF enabled reliable transbronchial access to orthotopic human lung 
cancer xenografts in vivo. This method could serve as a versatile preclinical research platform for PS 
evaluation in lung cancer, enabling transbronchial approaches in in vivo survival models inoculated with 
human lung cancer cells.
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Introduction

Using photosensitizers (PSs) for tumor localization and 
phototherapy, such as photodynamic therapy (PDT) or 
photothermal therapy (PTT), has shown promising results 
in a variety of cancers including lung, bladder, brain, 
esophageal, cervical, and ovarian cancers (1-6). In lung 
cancer specifically, fluorescence imaging has been used for 
the detection of centrally located tumors (1,7,8) and for 
assessment of visceral pleural invasion (9). Fluorescence 
imaging can be conducted for both the detection of cancer 
and for guiding phototherapy delivery. PDT has been 
performed clinically for lung cancer using porfimer sodium 
(Photofrin®) or talaporfin sodium (Laserphyrin®); to date 
there has been no clinical trial of PTT for lung cancer. 
Phototherapy for lung cancer has several advantages over 
conventional treatment approaches. First, with many of the 
PSs established or under investigation, PS accumulation 
preferentially occurs in malignant tissue via the enhanced 
permeability and retention (EPR) effect (10,11); active 
transport is an alternative mechanism that has been recently 
discussed in some nanoparticles (12). The activation of 
PSs to generate reactive oxygen species or heat (PDT and 
PTT, respectively) is limited only to the area irradiated by 
light at the appropriate wavelength. The combination of 
preferential PS accumulation and directed light application 
can reduce injury to otherwise normal tissue. Compared 
with thoracic surgery, phototherapy can be far less invasive; 
unlike radiotherapy, there are no total-dose limitations. 
Accordingly, lung cancer phototherapy can be repeatedly 
performed if necessary (1,7). The lower laser energy 
generally required for PDT may also offer a better safety 
profile compared to other laser-based treatment modalities, 
such as Nd:YAG laser (13).

Despite their efficacy, a major barrier to wider adoption 
of PDT is phototoxicity. The persistence of PSs in the skin 
and the associated photosensitization requires prolonged 
light avoidance after PS administration. New PSs with 
a higher efficacy and less phototoxicity are needed; an 
ideal agent would rapidly clear from normal tissues and 
also yield reduced skin accumulation, reducing the need 
for light avoidance. Identifying a candidate PS worthy 
for clinical practice, whereby it is both efficacious and 

safe, requires in vivo laboratory investigation. Various 
preclinical animal models have been developed to evaluate 
PSs that preferentially accumulate in tumors (14).  
However, dedicated animal models for evaluation of 
tumor localization and phototherapy of lung cancer have 
not been fully developed. Previous research of PSs has 
extensively relied on mouse subcutaneous tumor models 
with human lung cancer cell line xenografts (15). This 
animal model has been extensively applied for oncology 
studies because of its low cost and reliability for creation, 
monitoring, and treatment delivery. However, it is well-
documented that the tumor biology of subcutaneous 
xenografts differs from clinical human tumors (16,17). 
Microenvironment differences alter tissue structure and 
thus fail to recapitulate the clinical phenotype. To overcome 
these limitations, orthotopic tumor models have been 
developed (16). Orthotopic implantation is defined as tumor 
implantation in the site where the original carcinoma grew, 
creating a more appropriate microenvironment to evaluate 
normal tumor behavior. In mid-sized animals, a common 
orthotopic lung tumor model is the VX2 rabbit model. 
VX2 tumor-bearing models are able to form large primary 
tumors that closely imitate human lung cancer growth and 
metastasis (18). However, VX2 cells are not human lung 
cancer, instead being derived from a rabbit virus-induced 
papilloma (19). Conversely, immunodeficient mouse or 
rat orthotopic models rely on implantation of human lung 
cancer cells into the lung (20,21). These smaller animals 
make studying transbronchial approaches more challenging. 
Transbronchial assessment for efficacy of PSs in orthotopic 
mouse/rat models with human lung cancer cells is not 
possible by conventional methods. 

To overcome the size limitations of mice, we evaluated 
whether an ultra-small fiberscope could be used to create 
a preclinical platform for evaluating transbronchial-
dependent PS approaches in orthotopic human lung cancer 
xenograft models. We have previously reported on an ultra-
small parallel-type composite optical fiberscope (COF) 
with a 0.97-mm outer diameter tip that was developed in 
collaboration with OK Fiber Technology (Kyoto, Japan). 
Its small size and tip flexibility enable insertion into ultra-
small airways (22). The integration of illumination and 
laser irradiation fibers inside the COF allows simultaneous 
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white-light and fluorescence imaging, as well as real-time 
monitoring of tip position during laser phototherapy. A 
platform utilizing the ultra-small COF with orthotopic 
lung cancer mouse models would allow for performance 
of transbronchial imaging and phototherapy, evaluation 
of various human lung cancer subtypes, and prospective 
evaluation of phototherapy efficacy via survival analysis. 
We present the following article in accordance with the 
ARRIVE reporting checklist (available at http://dx.doi.
org/10.21037/tlcr-20-813).

Methods

Parallel-type ultra-small COF

The outer membrane of the COF’s insertable section 
is made from polytetrafluoroethylene and coated with 
additional hydrophilic material to reduce frictional forces 
when in contact with the bronchial wall for smooth 
insertion. The minimum bend radius of the COF is 
approximately 15 mm. This flexibility reduces excessive 
mechanical forces when pushed against the bronchial 
wall, reducing the risk for bronchial wall injury. The COF 
bundles a laser transmission fiber (120 µm diameter), 
approximately 300 illumination optical fibers and 9,000 
imaging optical fibers (with a final resolution of 1 pixel per 
fiber). The COF was connected to a charge-coupled device 
camera system with an integrated notch filter which reduces 
glare from the direct reflection of laser light.

Orthotopic mouse lung cancer model for transbronchial 
fluorescence imaging

All animal studies were performed under an animal use 
protocol (AUP 4151) approved by the Animal Care 
Committee of the University Health Network, Toronto, 
Canada. Female athymic nude mice (NCr-Foxn1nu) were 
purchased from Taconic Farms Inc. Eight-to-12-week-
old mice were kept (five per cage) in a climate-controlled 
room (temperature: 23–25 ℃, humidity: 50%±5%) with 
a 12-h light/dark cycle and fed with autoclaved chow diet 
and water. As we previously reported (21), athymic nude 
mice were anesthetized and inoculated with human lung 
cancer cells transbronchially. Human lung cancer cell lines 
included A549 (adenocarcinoma), NCI-H2170 (squamous 
cell carcinoma), and NCI-H82 (small cell lung cancer). A 
total of 100 µL cell mixture [70% cell suspension of 1.0× 

106 cells in phosphate-buffered saline, 30% extracellular 
matrix (Matrigel, Corning, NY, USA)] was inoculated. 
Starting at 3 weeks after inoculation, weekly computed 
tomography (CT) scans were performed to evaluate 
lung tumor growth. Mice with tumors more than 5 mm 
in diameter on axial CT images were selected for PS 
administration and fluorescence imaging. 

In vivo fluorescence imaging of lung cancer in mice

The PS used in this study was porphysome, an organic 
nanoparticle whose multimodality properties (fluorescence, 
PDT,  PTT)  we  have  prev ious ly  descr ibed  (23) . 
Porphysomes were synthesized as previously reported (24). 
For fluorescence imaging, laser excitation was performed at 
50 mW using a 671-nm source (22). Fluorescence images 
were acquired through a 700-nm long-pass filter. A dose 
of 10 mg/kg porphysome was injected intravenously into 
the tail vein 48 h prior to transbronchial evaluation. On 
the procedure date, mice were anesthetized by isoflurane 
inhalation followed by an insertion protocol (Figure 1). The 
irradiation laser was active while the COF was advanced. 
After completing all procedures, mice were recovered from 
anesthesia and observed clinically for 1 h. Autopsy was 
performed on all mice that died during the COF procedure.

Ex vivo fluorescence imaging

After euthanizing the mice, the lungs and trachea were 
resected en bloc for ex vivo evaluation of PS distribution 
using a spectral imaging system (Maestro, Cambridge 
Research and Instrumentation, MA, USA) with red filter 
(615–665 nm excitation, 700 nm long-pass emission, 
500 ms exposure time). Transpleural evaluation of tumor 
fluorescence was performed using the COF at a distance of 
10–15 mm from the tumor surface. The same laser power 
settings for in vivo fluorescence imaging were employed.

Statistical analysis

The success rate for creating orthotopic models was 
calculated for each cell line over two years’ experience by 
three researchers (T Ishiwata, M Aragaki, and Y Motooka; 
2018 and 2019). The success rate of COF insertion into the 
orthotopic lung cancer mouse model was also calculated. All 
statistical analysis was carried out using GraphPad Prism 7 
(GraphPad Software, San Diego, CA, USA).

http://dx.doi.org/10.21037/tlcr-20-813
http://dx.doi.org/10.21037/tlcr-20-813


246 Ishiwata et al. A platform for fluorescence imaging of lung cancer

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2021;10(1):243-251 | http://dx.doi.org/10.21037/tlcr-20-813

Figure 1 Transbronchial COF insertion into a mouse: the COF is fitted in an 18G intravenous catheter (Becton Dickinson, NJ, USA) 
to serve as a guide sheath (A). After the mouse is anesthetized, the tongue is extended out and held gently by an adjusted bulldog clip. A 
mosquito clamp is used to gently open the mouth to visualize the vocal cords (B). The COF is inserted into the mouse mouth under direct 
vision. After passing the vocal cords (C), the fiberscope is removed keeping the intravenous catheter within the trachea (D). The intubated 
mouse is placed in a prepared plastic bag filled with 3% isoflurane/97% oxygen on a heating pad (E). The plastic bag is punctured and the 
COF inserted into the 18G endotracheal sheath. The 18G sheath is then removed from the trachea to maximize space around the COF 
during tumor localization. The direction of COF advancement can be altered through gentle manipulation of the mouse thorax position (F). 
COF, composite optical fiberscope. 

B

E
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Results

COF insertion in orthotopic lung cancer mouse models

The overall success rate for creating orthotopic lung tumors 
was 71% [62/87]; this differed slightly between cell types 
(Figure S1). To assess the feasibility of transbronchial 
insertion, the COF was inserted into 15 orthotopic lung 
cancer mice with an average weight of 23.3 g (range, 
19.2–26.2 g). White light observation of the bronchial 
lumen is shown in Figure 2A and Video 1. Access to the left 

main bronchus was successful in 87% of mice [13/15], the 
right main bronchus to the cranial lobe bronchus level in 
100% [15/15], and to the right basal trifurcation of the 
middle lobe, caudal lobe and accessory lobe in 93% [14/15]  
(Figure 2B). Thirteen mice survived a continuous 15 min 
insertion of the COF for localizing the tumor. Two mice 
died during the procedure, with dyspnea first noted at 
around 10 min. Autopsy of the two mice revealed no 
obvious airway injury or edema. A representative case of 
COF insertion and white-light observation of an orthotopic 

https://cdn.amegroups.cn/static/public/TLCR-20-813-supplementary.pdf
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Figure 2 Bronchoscopy in the orthotopic lung cancer mouse model using the COF. (A) Anatomy of the mouse lung and corresponding 
white light camera images of the trachea and bronchi. The mouse right lung contains four lobes: cranial, middle, caudal, and accessory. The 
left lung is a single lobe. The COF can approach the entrance of each lobe bronchus. (B) The success rate of COF insertion was generally 
excellent but decreased as the COF was advanced more distally. All insertions were successful to the right cranial lobe bronchus level (zone I, 
red), 93% [14/15] to the trifurcation of the basal bronchi (zone II, orange) and 87% [13/15] from the carina to the left main bronchus (zone 
III, blue). (C) Representative fluoroscopic and white light images of the COF when approaching an orthotopic NCI-H82 lung cancer tumor 
made in the caudal lobe (yellow arrow). COF, composite optical fiberscope.
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lung cancer tumor is shown in Figure 2C.

Transbronchial tumor localization of orthotopic lung 
cancer tumors

Representative cases of tumor fluorescence detection are 
shown in Figure 3 and Video 2. The normal bronchial wall 
showed slight fluorescence during laser irradiation, but this 
was clearly contrasted from the strong signal seen in the 
tumor proper. 

Discussion

This was the first study to establish a preclinical platform 
using mouse for in vivo evaluation of PSs for transbronchial 
tumor localization for human lung cancer cells. The 
ultra-small COF enabled reliable transbronchial access 
to orthotopic human lung cancer xenografts in vivo, 

despite the small size of the mouse hosts. In vivo tumor 
fluorescence was successfully detected transbronchially. 
This preclinical animal model platform can readily be 
employed for evaluating other PSs for lung cancer diagnosis 
and treatment; the COF can be modified to irradiate and 
capture light at a variety of wavelengths.

From a safety perspective, transbronchial approaches 
for fluorescence imaging or phototherapy are favored in 
the clinical setting due to a reduced risk for complications 
including major hemorrhage or air embolism (25,26). 
The accumulation of PS in adjacent normal tissues (e.g., 
bronchial mucosa) must be considered for transbronchial 
tumor localization, as this may reduce the ability of the 
clinician to delineate the tumor from normal background 
and thus compromise accurate phototherapy light delivery. 
Parameters that may be critical for optimal contrast, 
including PS concentration and the drug injection-light 
delivery interval, can be readily modified in our platform. 



248 Ishiwata et al. A platform for fluorescence imaging of lung cancer

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2021;10(1):243-251 | http://dx.doi.org/10.21037/tlcr-20-813

Mouse 1
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                               Mouse 2
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Figure 3 Representative mouse cases for fluorescence detection of orthotopic lung tumors. (A) Transbronchial fluorescence imaging of 
porphysome-laden tumors. Mice were injected with 10 mg/kg porphysome 48 h prior to observation. The COF used a 671-nm laser source 
at 50 mW. Clear contrast from the adjacent normal bronchial mucosa can be appreciated. (B) Gross evaluation of the lungs revealed tumors 
consistent with the COF findings (yellow broken lines denote the tumor margins); ex vivo evaluation by a spectral imaging system (Maestro) 
confirmed increased accumulation of porphysome in neoplastic tissue. (C) Ex vivo transpleural fluorescence observation of the orthotopic 
tumors by the COF similarly reveals contrast between the neoplastic and adjacent normal tissue. The distance between the tip of the 
fiberscope and the tumors was 10–15 mm. COF, composite optical fiberscope.

Our platform could enable longitudinal fluorescence 
imaging, greatly facilitating the identification of the optimal 
drug-light interval for imaging. 

There  are  a  l imi ted  number  of  report s  about 
bronchoscopy in living mice to date. Figueiredo et al. 
acquired intratracheal images via a flexible fiberscope with a 
10,000-pixel resolution (27), and Dames et al. demonstrated 
intratracheal observation and bronchoalveolar lavage using 
a miniaturized semirigid bronchoscope with a 3,000-pixel 
resolution (28). To our knowledge, our work is the first 
to report the success rate of bronchoscopic access to 
each major lobar branch. With the COF, even relatively 

peripheral parts of the bronchi (e.g., the right trifurcation 
of the basal bronchi) were accessible with a high success 
rate (93%) because of its small size and flexibility. One 
of the advantages of the animal model in this study is 
its ability to simulate small nodules in narrow airways. 
There are few reports on using PSs for peripheral lung 
cancer via transbronchial approaches; rather, clinical 
practice employs fluorescence imaging and phototherapy 
for centrally located lung cancers almost exclusively. 
This is in part related to challenges accessing peripheral 
nodules. However, ongoing technological advances are 
making the peripheral bronchial tree more accessible. 
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Robotic bronchoscopy, which enables access to peripheral 
lung lesions with high tip stability (29-31), has begun 
early phase clinical evaluation. The ability to reliably and 
safely access the peripheral lung may make phototherapy 
through robotic bronchoscopy a promising new approach 
for small peripheral cancers (32). The small airways of 
mice closely replicate the airway diameters seen in the 
peripheral human lung. The mouse trachea is less than  
1.5 mm in internal diameter, which is equivalent to the 
small peripheral airways in the human lung. Furthermore, 
the cellular composition and organization of the mouse 
trachea is generally more similar to the distal human airway 
than the human central airways (33). 

This study evaluated fluorescence imaging. A key next 
step will be performing phototherapy (PDT or PTT) 
following fluorescence-based tumor localization; the COF 
allows this to be done without exchanging the fiberscope. 
This model has some limitations, however. First, while 
subcutaneous tumors can be easily assessed by physical 
exam, lung orthotopic tumors rely on serial CT scans. 
Moreover, although the COF has excellent reach within the 
mouse bronchial tree, lung tumors can still be inadvertently 
inoculated in sites beyond its reach (see Figure 2B). Second, 
prolonged COF placement is not without risks; 13% [2/15] 
of mice died during the 15 min period of tumor localization 
and imaging. On autopsy, we found no obvious airway 
injuries. The cause of death remains unclear; possible causes 
include aspiration of secretions or laryngeal edema/spasm 
from mechanical stimulation. Distal airway injury by the tip 
of the fiberscope could also have been potentially missed 
on autopsy. Especially for the study of PDT, a survival 
model is essential due to the delay between laser irradiation 
and maximal treatment effect. This delay is due to the 
complex mechanisms of PDT, including direct anti-tumor 
effects (highly reactive oxygen species causing necrosis 
and/or apoptosis) (34) and indirect anti-tumor effects by 
vasculature disruption (35). Creating a model with a higher 
survival rate even with prolonged fiberscope insertion would 
be invaluable. One potential solution would be fractionated 
PDT irradiation, with pauses allowing for animal recovery. 
Further investigation will be required.

In conclusion, we have demonstrated that a novel 
ultra-small COF enabled intrabronchial observation and 
transbronchial fluorescence imaging of lung cancer in 
orthotopic mouse models with a high success rate. This 
animal model may serve as a preclinical platform for 
evaluating new PSs for transbronchial fluorescence imaging 
and phototherapy for lung cancer.
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Figure S1 Mouse orthotopic lung cancer models. (A) Representative mouse orthotopic lung cancer models using human cell lines of 
adenocarcinoma (Ad, A549), squamous cell carcinoma (Sq, NCI-H2170) and small cell lung cancer (Sm, NCI-H82) are shown. Computed 
tomography multiplanar reconstructions (top row) and gross inspections of the lungs after sacrifice (bottom row) demonstrate successful 
tumor inoculation (yellow stars). Scale bar represents 10 mm. (B) The success rate for creating orthotopic lung cancer tumors was calculated 
based on our group’s experience from 2018 to 2019. Mice that immediately died during the cell-inoculation procedure are included in the 
denominator. Success did vary somewhat between cancer subtypes.
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