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Two-dimensional exterior sound field reproduction
using two rigid circular loudspeaker arrays
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In exterior sound-field reproduction using loudspeaker arrays, such as a single circular array,
there is a trade-off between the reproduction accuracy and the filter gain of the loudspeaker
array. With the aim of reproducing complex sound fields with a lower filter gain, we introduce
an asymmetrical array geometry with reflections between two or more rigid arrays. This
paper proposes a sound field reproduction method using two rigid circular loudspeaker arrays
in a circular harmonic domain. Transfer functions that consider the multiple scattering
between two rigid baffles can be represented in the circular harmonic domain. By repeatedly
transforming the expansion coefficient between two coordinate systems, the circular harmonic
expansion was applied to the reproduced sound field in a mixed coordinate system. Then, the
driving function of the loudspeaker arrays was derived through a mode expansion. Numerical
simulations were conducted to verify the accuracy of the reproduced sound field.
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I. INTRODUCTION

Sound field reproduction using loudspeaker arrays
has been studied for many years.1 This technique re-
produces the sound accurately over a space and allows
every listener inside the space to perceive an immer-
sive sound. Theoretically, a sound field can be syn-
thesized by controlling the sound pressure and parti-
cle velocities on the boundary surface, based on the
Kirchhoff–Helmholtz integral equation. This sound field
reproduction technique is usually implemented with
loudspeaker arrays by giving an individual signal to
each loudspeaker. In recent decades, a variety of ap-
proaches have been proposed. Wave field synthesis is
based on the Rayleigh integral and is the most com-
mon method for sound field reproduction.2–5 Another
well-known spatial-Fourier-transform-based method is
called the mode-matching method,6,7 the spectral divi-
sion method,8 or higher-order ambisonics.9,10 Moreover,
a pressure-matching method based on the simple source
formulation11 has been proposed.12,13

A circular loudspeaker array (CLA) is often used in
sound field reproduction studies. Conventional systems
that reproduce a sound field inside the CLA have a lim-
ited listening area,14,15 which is determined by the size of
the circular array. To achieve a boundless listening area,
methods reproducing exterior sound fields using circular
or spherical loudspeaker arrays have been proposed.16,17

With exterior sound-field reproduction systems,
there is a trade-off between the reproduction accuracy
and the filter gain, which is directly related to the output
level of the loudspeakers. A high output level in a repro-
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duction can cause nonlinear distortion and even physical
damage to the loudspeaker. Therefore, a method to re-
produce a sound field accurately with a sufficiently low
filter gain is desired. For the CLA, there is a fixed mode
strength (at each frequency), which relates the filter gain
to the modes in the circular harmonic expansion. The
more complex the desired field is, the more higher modes
need to be used and the higher the filter gain will then
be. Moreover, exterior sound-field-reproduction is often
used for reproducing a specific radiation directivity or
a focused source, which may have a relatively complex
field. To reproduce such a complex field with a lower
filter gain, we focus on the array geometry. That is, we
consider that the array geometry limits the performance
of a CLA. We suppose that it is possibly easier to re-
produce such a sound field with a complex and irregular
loudspeaker arrangement, including asymmetrical geom-
etry and reflections.

A method using two circular loudspeaker arrays
(2CLA) was proposed in our previous work.18 In that
study, we used two rigid CLAs, with an asymmetric
geometry and multiple scattering between rigid baffles,
to increase the complexity of the transfer function. A
pressure-matching method based on multipoint sound-
field control was then used for the sound field reproduc-
tion. As a result, the 2CLA was able to reproduce the
sound field with higher accuracy, unlike a single CLA, for
the same filter gain.

In this paper, we propose a method based on a cir-
cular harmonic expansion using the same array model.
Instead of matching the sound pressure on the control
points, this method matches the sound-field coefficient
in the circular harmonic domain. Therefore, an analytic
approach could be applied to reproduce the sound field,
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so that the influence of a discrete arrangement of sound
sources and control points can be avoided.

In Sec. II, we describe the conventional mode-
matching method based on a circular harmonic expan-
sion. In Sec. III, we introduce the transfer function for
the 2CLA derived in previous work,18 with adjustments
based on the multiple scattering theory.19 Section IV in-
troduces the proposed method, which is derived using
Graf’s addition theorem.20 We developed a relationship
between the modes of the loudspeaker arrays and the
observation modes. Section V shows how the proposed
method can easily be applied to multiple circular loud-
speaker arrays (MCLA). In Sec. VI, we present the results
of our numerical simulations. The necessity of consid-
ering the effect of multiple scattering is discussed first.
Then we chose virtual source reproduction to test the
reproduction accuracy. We examined the reproduction
accuracy for single frequencies and compared the accu-
racy with that for the conventional CLA method6 and
the 2CLA method.18 A simulation of a practical situa-
tion, in which the filter gain was constrained, was then
conducted. Furthermore, we analyzed and discussed the
mode strength of the 2CLA model.

II. CIRCULAR HARMONIC EXPANSION

This section presents a spatial-Fourier-transform-
based method for a CLA in conventional sound field re-
production studies. In this method, a two-dimensional
sound field can be produced by reproducing the sound
pressure on a continuous circular boundary of radius r.

The desired sound field p(r, ϕ, ω) is first expanded
using a circular harmonic expansion11 with a basis of
ejνϕ:

p(r, ϕ, ω) =

∞∑
ν=−∞

p̊ν(r, k)e
jνϕ, (1)

where p̊ν(r, k) is the coefficient of the νth mode. ω and
k, which are the angular frequency and wavenumber, re-
spectively, are partially omitted in this paper for simplic-
ity. Note that only a two-dimensional sound field is dis-
cussed in this paper and k = ω/c for this condition. The
sound field generated by continuous secondary sources on
a circle can be expressed by

p̂(r, ϕ) =

∫ 2π

0

G(r, ϕ|r0, ϕ′)d(ϕ′)r0dϕ′, (2)

where r0 is the radius of the circular source, and
G(r, ϕ|r0, ϕ′) and d(ϕ′) are the transfer function and driv-
ing function, respectively. Applying a spatial Fourier
transform to the right-hand side of (2) and using the
orthogonality of the basis:∫ 2π

0

ejνϕe−jν′ϕdϕ = 2πδνν′ , (3)

where δνν′ = 1 only if ν = ν′ and is, otherwise, 0. Thus,
we obtain:

p̂(r, ϕ) =

∞∑
ν=−∞

2πr0G̊ν(r|r0)d̊νejνϕ, (4)

where G̊ν(r|r0) and d̊ν are the circular harmonic expan-
sion coefficients of the transfer function G(r, ϕ|r0, ϕ′) and
the driving function d(ϕ′), respectively.

To make the reproduced sound field the same as the
original sound field, we can equate the circular harmonic

expansion coefficients in (1) and (4). Thus, d̊ν is derived
as

d̊ν =
p̊ν(r)

2πr0G̊ν(r|r0)
. (5)

This is the conventional method and is called the mode-
matching method.21 The driving function in the fre-
quency domain can then be calculated using the inverse
spatial Fourier transform:

d(ϕ′) =

∞∑
ν=−∞

d̊νe
jνϕ′

. (6)

The exterior sound field of a circular source can be re-
produced using this method.

Furthermore, if we consider a CLA with discretely
located loudspeakers, Eq. (2) can be rewritten as

p̂(r, ϕ) =

L∑
l=1

G(r, ϕ|r0, ϕl)d(ϕl), (7)

which implies that Eq. (5) can be written as

d̊ν =
p̊ν(r)

LG̊ν(r|r0)
. (8)

Here, L denotes the number of loudspeakers.

III. TRANSFER FUNCTION FOR TWO RIGID CIRCULAR

ARRAYS

A model with parallel cylindrical rigid baffles has
been discussed in conventional studies.19 The scattering
properties of this model have been explored not only in
acoustics, but also in studies of electromagnetic waves.
Most studies considered that the coordinate systems were
at the center of each cylinder. In our previous work,18

we used this approach to derive the transfer function of
the 2CLA model.

We establish a reference coordinate system at the
center of the sound field with origin O. For the 2CLA
model, we have two other coordinate systems with origins
at the center of the first array O1 and at the center of
the second array O2. Thus, any point in the sound field
can be represented by three sets of coordinates: (r, ϕ),
(r1, ϕ1), and (r2, ϕ2). The configuration for 2CLA is
shown in Fig. 1. The array index is ζ ∈ {1, 2}, the ra-
dius of array ζ is r0,ζ , and its center is at (Rζ ,Φζ) in the
reference coordinate system.

Unlike baffles with a simple shape, such as a cylin-
der or sphere, the wave will reflect between the baffles
infinitely many times, which complicates the derivation
of the transfer function for the two rigid circular arrays.

The sound field for the 2CLA can be expressed as the
sum of the direct sound and reflections. Consider a single
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FIG. 1. Two rigid circles in a sound field.

reflection, in which a sound wave scattered by baffle 1 is
incident on baffle 2. Graf’s addition theorem20 can be
used for this transform. Therefore, any wave incident
at baffle 2 that had been scattered by baffle 1 can be
expressed as:

pi2(r2, ϕ2) =

∞∑
µ=−∞

∞∑
ν=−∞

γν,1Hν(kr1)e
jνϕ1Hµ−ν(kr12)e

j(µ−ν)ϕ12Jµ(kr2)e
jµϕ2 .

(9)

The opposite situation in which an incident wave at baffle
1 had been scattered by baffle 2 can be expressed as

pi1(r1, ϕ1) =
∞∑

µ=−∞

∞∑
ν=−∞

γν,2Hν(kr2)e
jνϕ2Hµ−ν(kr21)e

j(µ−ν)ϕ21Jµ(kr1)e
jµϕ1 ,

(10)

where (r12, ϕ12) are the coordinates of the center of baffle
2 in coordinate system 1 and vice versa. Note that r12 =
r21 and e

jϕ12 = −ejϕ21 here. The time dependence in this
study is given by ejωt. Jν(z) and Hν(z) are the Bessel
function of the first kind and the Hankel function of the
second kind, respectively. The field incident at baffle 2
is reflected from its surface. The scattered sound can be
derived with the Neumann boundary condition, which
requires the particle velocity on the baffle to be 0 in the
normal direction.22 Thus, it is possible to calculate all the
reflections between the two rigid baffles, and obviously,
the transfer function is the sum of all these reflections.

Finally, we truncate the order of the circular har-
monic expansion at N as the error is sufficiently small.
The transfer function of the 2CLA model can be ex-

pressed as a matrix product with the T matrix19:

G(r, ϕ|r′, ϕ′) = ψT

( R∑
i=0

Ti

)
γ, (11)

where R denotes the number of reflections and T0 := I.
We have:

ψ =
[
ψT

1 ,ψ
T
2

]T
, (12)

T =

[
0(2N+1)×(2N+1) T12

T21 0(2N+1)×(2N+1)

]
. (13)

If the source is at baffle 1, then

γ = [γT
1 ,01×(2N+1)]

T, (14)

and if the source is at baffle 2, then

γ = [01×(2N+1),γ
T
2 ]

T. (15)

With the index ζ ∈ {1, 2}, we have

γζ = [γ−N,ζ(r
′
ζ), γ−N+1,ζ(r

′
ζ), . . . , γN,ζ(r

′
ζ)]

T, (16)

ψζ = [ψ−N,ζ(rζ), ψ−N+1,ζ(rζ), . . . , ψN,ζ(rζ)]
T, (17)

T12 =


T 12
−N,−N T 12

−N,−N+1 . . . T 12
−N,N

T 12
−N+1,−N T 12

−N+1,−N+1 . . . T 12
−N+1,N

...
...

. . .
...

T 12
N,−N T 12

N,−N+1 . . . T 12
N,N

 ,
(18)

T21 =


T 21
−N,−N T 21

−N,−N+1 . . . T 21
−N,N

T 21
−N+1,−N T 21

−N+1,−N+1 . . . T 21
−N+1,N

...
...

. . .
...

T 21
N,−N T 21

N,−N+1 . . . T 21
N,N

 ,
(19)

where

γν,ζ(r
′
ζ) = − e−jνϕ′

ζ

2πkr0,ζH ′
ν(kr0,ζ)

, (20)

ψν,ζ(rζ) = Hν(krζ)e
jνϕζ , (21)

T 12
ν,µ = −

J ′
µ(kr0,2)

H ′
µ(kr0,2)

Hν−µ(kr12)e
j(ν−µ)ϕ12 , (22)

T 21
ν,µ = −

J ′
µ(kr0,1)

H ′
µ(kr0,1)

Hν−µ(kr21)e
j(ν−µ)ϕ21 . (23)

Note that r′ζ = r0,ζ if the source is at baffle ζ. J ′
ν(z) and

H ′
ν(z) are the differentials of the Bessel function of the

first kind and the Hankel function of the second kind,
respectively. Here, ψ and γ contain position information
for the control points and loudspeakers, respectively, and
T is a matrix that transforms a scattered sound into a re-
flected scattered sound. For computational convenience,
the number of reflections is truncated to a finite num-
ber R.
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IV. PROPOSED METHOD

In our previous study, a pressure-matching method
was used with the 2CLA model for sound field
reproduction.18,23 Pressure matching is a simple method
with a simple source formulation.11 It can be applied to
any array geometry with a known transfer function. On
the other hand, this method needs to match the sound
pressure at every control point on the boundary of the
sound field and is a numerical approach.

To find a general solution of the 2CLA model, we
first look for an analytic method. However, applying a
mode-matching method to this model is difficult since
the transfer functions of loudspeakers on different baf-
fles are expressed in different coordinate systems. In re-
cent years, studies of multizone sound reproduction and
higher-order sources24,25 have identified methods for con-
trolling the sound in circular areas that are nonconcen-
tric. There are two main aims for these methods:

• To expand the sound field using orthogonal bases,
such as Bessel and Hankel functions.

• To describe the sound field in a reference coordinate
system using Graf’s addition theorem.

In this study, we aim to design a method that
matches the sound-field coefficient by transforming the
coordinate systems, while taking the multiple scattering
effect (Sec. III) into account.

As in (2) and (6), the reproduced sound field of two
discrete loudspeaker arrays (with Lζ loudspeakers, re-
spectively) can be expressed as:

p̂(r, ϕ) =

L1∑
l=1

G(r, ϕ|rl, ϕl)
N1∑

ν=−N1

d̊ν,1e
jνϕl,1+

L2∑
l′=1

G(r, ϕ|rl′ , ϕl′)
N2∑

ν′=−N2

d̊ν′,2e
jν′ϕl′,2 ,

(24)

where G(r, ϕ|r′, ϕ′) is as in Sec. III. Here, (rl, ϕl) is the
position of the lth loudspeaker in the array. The trunca-
tion order for the circular harmonic expansion is set as
Nζ = ⌊(Lζ − 1)/2⌋. Thanks to the orthogonality of ejνϕ,
(24) can be transformed to:

p̂(r, ϕ) = ψT

( R∑
i=0

Ti

)
Γ̊d̊ (25)

where

Γ̊ =
[
Γ̊T
1 , Γ̊

T
2

]T
, (26)

Γ̊ζ = Lζ

 0(N−Nζ)×(2Nζ+1)

diag(̊γ−Nζ ,ζ , γ̊−Nζ+1,ζ , . . . , γ̊Nζ ,ζ)

0(N−Nζ)×(2Nζ+1)

 , (27)

γ̊ν,ζ = − 1

2πkr0,ζH ′
ν(kr0,ζ)

, (28)

d̊ =
[
d̊T
1 , d̊

T
2

]T
, (29)

d̊ζ = [d̊−Nζ ,ζ , d̊−Nζ+1,ζ , . . . , d̊Nζ ,ζ ]
T. (30)

To derive a relation between the driving functions of
each mode and the sound-field coefficients in the circular
harmonic domain, it is necessary to perform a coordinate
transformation. ψν,ζ expressed in the coordinate system
at the origin Oζ can be transformed to the coordinate
system at O26:

ψν,ζ(rζ) =

∞∑
ν′=−∞

(−1)ν−ν′
Jν−ν′(kRζ)Hν′(kr)ej(ν−ν′)Φζejν

′ϕ. (31)

Here, Graf’s addition theorem20 has been applied; there-
fore, the conditions ν′max ≫ ν and r > Rζ must be satis-
fied. By truncating ψ in (25) for an sufficiently large N ,
it can be transformed to:

ψ = K̃η, (32)

where

η = [η−N (r), η−N+1(r), . . . , ηN (r)]T, (33)

ην(r) = Hν(kr)e
jνϕ, (34)

K̃ =
[
K̃T

1 , K̃
T
2

]T
, (35)

K̃ζ =


κ̃0,ζ κ̃−1,ζ . . . κ̃−2N,ζ

κ̃1,ζ κ̃0,ζ . . . κ̃−2N+1,ζ

...
...

. . .
...

κ̃2N,ζ κ̃2N−1,ζ . . . κ̃0,ζ

 , (36)

κ̃ν,ζ = (−1)νJν(kRζ)e
jνΦζ . (37)

Then the reproduced sound field can be transformed
to

p̂(r, ϕ) = ηTG̃d̊, (38)
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where

G̃ = K̃T

( R∑
i=0

Ti

)
Γ̊. (39)

The desired exterior sound field at the virtual obser-
vation points with a limited order N can be expressed
as

p(r, ϕ) =

N∑
ν=−N

α̃νHν(kr)e
jνϕ (40)

= ηTα̃, (41)

where α̃ν is a sound-field coefficient11:

α̃ = [α̃−N , α̃−N+1, . . . , α̃N ]T. (42)

A relation between each mode of the loudspeaker ar-
rays and the sound-field coefficient can be obtained from
(39). Therefore, we can obtain the driving function in
the circular harmonic domain. However, since this re-
lation is not orthogonal, the driving function cannot be
obtained directly. Therefore, the least-squares method
with a Tikhonov regularization was applied as follows:

d̊ =
G̃Hα̃

G̃HG̃+ λI
, (43)

where λ is a regularization parameter.
As in (6), the driving function for each loudspeaker

can be obtained from

dζ(ϕ
′
ζ) =

Nζ∑
ν=−Nζ

d̊ν,ζe
jνϕ′

ζ . (44)

V. EXTENSION TO MULTIPLE CIRCULAR LOUD-

SPEAKER ARRAYS

In addition, the method proposed in this paper can
be extended to MCLA. As in Sec. III, the transfer func-
tion of an MCLA with rigid baffles can be calculated with
the T-matrix method.19

Consider an MCLA withM rigid circular arrays with
array indexes X ,Y ∈ {1, 2, . . . ,M} and X ̸= Y. The T-
matrix can be expressed as:

T =


0 T12 . . . T1M

T21 0 . . . T2M

...
...

. . .
...

TM1 TM2 . . . 0

 , (45)

TXY =


TXY
−N,−N TXY

−N,−N+1 . . . TXY
−N,N

TXY
−N+1,−N TXY

−N+1,−N+1 . . . TXY
−N+1,N

...
...

. . .
...

TXY
N,−N TXY

N,−N+1 . . . TXY
N,N

 ,
(46)

TXY
ν,µ = −

J ′
µ(kr0,Y)

H ′
µ(kr0,Y)

Hν−µ(krXY)e
j(ν−µ)ϕXY . (47)

The transfer function can be calculated in exactly
the same as way (11), with the index extended to ζ ∈
{1, 2, . . . ,M} and

ψ =
[
ψT

1 ,ψ
T
2 , . . . ,ψ

T
M

]T
, (48)

γ = [0(ζ−1)×(2N+1),γ
T
ζ ,0(M−ζ)×(2N+1)]

T. (49)

Since the transfer function is unchanged, the method
proposed in Sec. IV applies to the MCLA. Thus, we
can reproduce a sound field with MCLA with the same
method as (43), where

K̃ =
[
K̃T

1 , K̃
T
2 , . . . , K̃

T
M

]T
, (50)

Γ̊ =
[
Γ̊T
1 , Γ̊

T
2 , . . . , Γ̊

T
M

]T
, (51)

d̊ =
[
d̊T
1 , d̊

T
2 , . . . , d̊

T
M

]T
. (52)

Intrinsically, this method is similar to meth-
ods with higher-order sources10,24,27 and higher-order
microphones.28–30 The difference in this paper is that the
influence of the multiple scattering between the rigid baf-
fles is taken into account.

VI. NUMERICAL SIMULATIONS

In this section, we verify and evaluate the proposed
method using numerical simulations of the reproduced
sound field.

A. Effects of multiple scattering

First, we verified the necessity of considering the ef-
fects of multiple scattering. Figure 2 shows the relative
amplitude for each reflection for 2CLA, with arrays cen-
tered at (−0.25m, 0) and (0.25m, 0). The radii of both
arrays are 0.15m. The system is driven by a loudspeaker
at (−0.1m, 0). In this type of setup, the reflections have
a conspicuous effect. The relative amplitudes of the first
and the second reflections are −6.9 dB and −13.5 dB,
respectively. Note that, conventionally, the sound field
should be reproduced within an error of −15 dB (about
4%). This indicates that it is necessary to take the effect
of multiple scattering into account, especially for higher
frequencies.

B. Single frequency

To verify the performance in sound field reproduc-
tion, a numerical simulation of reproducing the sound

J. Acoust. Soc. Am. / 27 September 2021 5



FIG. 2. Relative amplitude of each reflection of a 2CLA. The

relative amplitude is evaluated from the sound pressure mea-

sured by a microphone at (0, 2m). The amplitude of the direct

sound (R = 0) is set to 0 dB as a reference. The truncation

order is N = 30.

field of a virtual sound source was conducted. In our pro-
posed method, two loudspeaker arrays with 15 equally
spaced loudspeakers were placed at (−0.25m, 0m) and
(0.25m, 0m), respectively. Both of these were rigid cir-
cular baffles with radii of 0.15m. Up to 12 reflections
were considered, and the maximum order was truncated
at N = 30 when calculating the transfer functions. The
maximum order for the driving function was truncated
to N1 = N2 = ⌊(15 − 1)/2⌋ = 7. To avoid the singular
matrix problem, the regularization parameter was set to
λ = σmax(G̃

HG̃)×10−6 for the simulations above, where
σmax(·) represents the maximum eigenvalue.

Figures 3 and 4 show the results. Figures 3(a)
and 4(a) are the wavefronts of the desired sound fields
and Figs. 3(d) and 4(d) are the wavefronts of the sound
fields reproduced by the proposed method. White crosses
mark the locations of the loudspeakers. The target vir-
tual sound source was an omnidirectional line source at
1000Hz, which was at (0m, 0.5m) for Fig. 3 and at
(0.5m, 0m) for Fig. 4. Since the array geometry is asym-
metric, using two virtual sources here also aims to verify
the asymmetry in the results.

The results of the conventional methods are also
shown. Figures 3(b) and 4(b) are for a CLA with a radius
of 0.15m and 30 loudspeakers, using the mode-matching
method. The maximum order of the driving function was
truncated to ⌊(30−1)/2⌋ = 14. Figures 3(c) and 4(c) are
for the same 2CLA using the pressure-matching method
with 144 microphones on a 2-m-radius circle. The reg-
ularization parameter was set to σmax(G

HG) × 10−6,
where G is the transfer function matrix.

The reproduction errors of each method are shown in
Figs. 3(e)–3(g) and 4(e)–4(g), with respect to Figs. 3(b)–

3(d) and 4(b)–4(d). The errors were calculated using:

ε(x) = 10 log10
|p(x)− p̂(x)|2

|p(x)|2
. (53)

The maximum filter gains in Figs. 3(b)–3(d)
and 4(b)–4(d) were 105.6, 23.1, 23.0, 107.7, 9.2, and
9.2 dB, respectively. This maximum filter gain was eval-
uated using the maximum amplitude of the driving func-
tion for all loudspeakers:

g = 10 log10
max |dζ(ϕ′θ)|2

|A0|2
. (54)

where A0 is the amplitude of the target virtual source.
Comparing the wavefronts and errors in Figs. 3 and 4,

we can see that the proposed method and conventional
methods all reproduced the sound field with an ideal ac-
curacy. This indicates that the proposed method is valid
for sound field reproduction. The results for the pressure-
matching method and mode-matching method are sim-
ilar, although the proposed mode-matching method has
the advantage of being able to analyze and truncate by
the orders. The CLA with the conventional method had
the smallest error. However, the filter gain of CLA was
much higher than that of 2CLA, which will result in a
high output level.

Next, to investigate the reproduction of a complex
field, we conducted a simulation with six random target
virtual sources. All the virtual sources had amplitudes
randomized between 0 and 1, phases randomized between
0 and 2π, positions randomized inside a circle with a ra-
dius of 0.5m, and randomized directivities. Each direc-
tivity was synthesized by a combination of a monopole
and a dipole, in a random direction and with a random
weight. The array configuration and other conditions
were the same as above. The pressure-matching method
was not included in this part.

Figure 5(a)–5(c) are the wavefront of the desired
sound field, the reproduced sound field of CLA, and
the reproduced sound field of 2CLA, respectively. Fig-
ure 5(d) and 5(e) show the reproduction error of CLA
and 2CLA. We evaluted the spatial average error in an
area Ω, which is the ring area between radii of 1m and
4m:

εΩ = 10 log10

∫
Ω
|p(x)− p̂(x)|2dx∫

Ω
|p(x)|2dx

. (55)

The errors of CLA and 2CLA were -54.4 and -37.7 dB,
respectively. The filter gains of CLA and 2CLA were
101.1 and 5.6 dB, respectively. Furthermore, 1000 trails
were taken on randomly generated sources, the average
error of CLA and 2CLA were -50.0 and -20.2 dB where
the average filter gains of CLA and 2CLA were 106.8
and 19.6 dB. From the above, we can know that both
arrays had acceptable reproduction errors while CLA had
significantly higher filter gains than 2CLA.

C. Narrowband

We also conducted another simulation with a narrow-
band signal to investigate the relation between the filter
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(a) (b) (c) (d) (e) (f) (g)

FIG. 3. Comparison of the desired sound field and the reproduced sound field, with a 1000Hz omnidirectional virtual source

at (0m, 0.5m). (a) The desired sound field. (b) Sound field reproduced by a CLA. (c) Sound field from our previous study

reproduced by a 2CLA using the pressure-matching method.18 (d) Sound field reproduced by a 2CLA using the proposed

method. (e)–(g) Reproduction error (in dB) of (b)–(d), respectively.

(a) (b) (c) (d) (e) (f) (g)

FIG. 4. Comparison of the desired sound field and the reproduced sound field, with a 1000Hz omnidirectional virtual source

at (0.5m, 0m). (a) The desired sound field. (b) Sound field reproduced by a CLA. (c) Sound field from our previous study

reproduced by a 2CLA using the pressure-matching method.18 (d) Sound field reproduced by a 2CLA using the proposed

method. (e)–(g) Reproduction error (in dB) of (b)–(d), respectively.

gain and the performance. We used the frequency band
200–1500Hz and compared the proposed method with
2CLA to that with CLA. The arrays used in this simula-
tion were the same as those used for Figs. 3 and 4. The
original field was also produced with an omnidirectional
virtual source at (0m, 0.5m) or (0.5m, 0m). For the
CLA, the results do not vary by direction because of the
symmetric geometry. Here, we show only the result for
the virtual source at (0m, 0.5m) for CLA. For the 2CLA,
φ is the direction of the virtual source. Thus, φ = 0◦ and
φ = 90◦ are for the virtual source at (0.5m, 0m) and
(0m, 0.5m), respectively. Figure 6 shows the maximum
filter gain and the error of the proposed method for the
CLA. The filter gain was calculated by (54). and the er-
ror was evaluated by (55) in the ring area between radii
of 1m and 4m.

In this paper, as noted in Sec. VIA, we consider
−15 dB as a threshold for the reproduction error. For
frequencies over 1500Hz, none of these methods could
reproduce the sound field well. Therefore, higher fre-
quencies are not discussed in this paper. Although CLA
had the best accuracy (with a reproduction error of less
than−50 dB), the filter gain was more than 100 dB higher
than 2CLA at lower frequencies. Moreover, 2CLA gave
acceptable results. It had a reproduction error of less
than −15 dB for φ = 0◦ and a relatively low filter gain.
Note that it is also a disadvantage of 2CLA once higher
accuracy is needed. On the other hand, we found that
the results for 2CLA vary with direction, and φ = 0◦

performed best here. One can infer that 2CLA achieved
lower filter gain at the expense of the accuracy. Consid-

ering a trade-off between the reproduction accuracy and
the filter gain may exist, we had a further comparison at
a certain filter gain in Sec. VID.

D. Constrained filter gain

To evaluate the proposed method in a practical sit-
uation in which the loudspeakers have a lower output
level, we conducted a numerical simulation of a filter gain
controlling method. For a least-squares method with
Tikhonov regularization, it is possible to constrain the
L2-norm with the regularization parameter.31 Besides,

the L2-norm in (43), ||̊d||2, is related to the filter gain.
Therefore, we used the regularization parameter λ in (43)
to constrain the filter gain to 0 dB. We compared the
results for CLA and 2CLA. The simulation conditions
were similar to those used for Fig. 6. The only differ-
ence was that we tested four values of φ (the direction
of the virtual source) for 2CLA to see how φ is related
to the performance. As shown in Fig. 7, 2CLA performs
better than CLA for the same filter gain. This means
that the 2CLA model can reproduce a sound field more
easily than CLA with a higher radiation efficiency. More-
over, the results indicate that there is a relation between
the performance of 2CLA and the direction of the vir-
tual source, since 2CLA performs better for smaller φ
(φ ∈ [0◦, 90◦] because of reflectional symmetry).
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(a) (b) (c) (d) (e)

FIG. 5. Results on reproducing a complex field with six random target virtual sources. (a) The desired sound field. (b) Sound

field reproduced by a CLA. (c) Sound field reproduced by a 2CLA. (d) and (e) Reproduction error (in dB) of (b) and (c),

respectively.

FIG. 6. Filter gain and normalized reproduction error (in dB)

for 2CLA and CLA using the mode-matching method. Note

the break in the y-axis between 15 and 90 dB.

E. Temporal response

We also checked the temporal response at listening
positions to assess whether there are any temporal errors
caused by the reflections between the two rigid arrays.
A monopole virtual source was set at (0m, 0.5m). The
target signal was a pulse (the amplitude at the source
location was 1) and we applied a band-pass filter to the
signal, ranged from 200–1500Hz. The other simulation
conditions were the same as in Sec. VID. The filter gain
was constrained to 0 dB. Figure 8 shows the results at the
listening position (0m, 1.5m), which is in front of the tar-

FIG. 7. Normalized reproduction error of 2CLA and CLA

with a filter gain of 0 dB.

get source. The reproduced signal matched the impulse
response of the target source at the listening position.
This indicates that the multiple scattering between the
arrays has little negative effect on the reproduction.

F. Three-dimensional time-domain simulation

To explore the suitability of the proposed method
with rigid cylindrical arrays, we conducted time-domain
simulations in a three-dimensional field. A finite-
difference time-domain32 method was used for the sim-
ulations. We conducted two simulations at 500 and
1000Hz. Sinusoidal waves were used as the source sig-
nal. We applied the filter gain suppression method of
Sec. VID. According to the results in Fig. 7, a virtual
source at (0m, 0.5m) and at a frequency under 500Hz
can be reproduced in ideal conditions. We, therefore, set
a virtual source at (0m, 0.5m) for simulation at 500Hz
and a virtual source at (0m, 0.3m), which is easier to
reproduce, for simulation at 1000Hz. We used the same
2CLA model as in the previous simulations except that
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FIG. 8. Temporal response at listening position (0m, 1.5m).

The gray line is the target signal and the black line is the

reproduced signal.

the rigid circular baffles were two rigid cylindrical baffles
with a finite height of 0.576m. The loudspeakers were
modeled as point sources on a horizontal surface in the
three-dimensional field. We set the size of the space grid
to 0.01m for all axes and the time step to 1.0 × 10−5 s.
A method based on perfectly matched layers33 was used
to avoid redundant reflections from boundaries.

(a) (b)

FIG. 9. Wavefronts in the horizontal surface of the reproduced

sound field in the three-dimensional time-domain simulation:

(a) 500Hz target source at (0m, 0.5m) and (b) 1000Hz target

source at (0m, 0.3m).

Figure 9 shows the wavefronts in the horizontal sur-
face of the reproduced sound field. Note that we show
a 2 × 2m2 area in Fig. 9(a) for clarity. In this simula-
tion, the conditions were mismatched. The filter were
obtained in the two-dimensional assumption while the
simulation was conducted in a three-dimensional sound
field with a finite-height cylinder. Therefore, an exactly
matched results can not be expected. However, the re-
sults show that there was no significant deformation of
the wavefronts and the reproduced sound field was sim-
ilar to the desired sound field. This indicates that the
proposed method is, to some extent, suitable for cylin-
drical arrays.

G.Mode strength

The numerical simulations of Secs. VIB to VID indi-
cate that 2CLA can reproduce virtual sources more easily
than CLA. Here, we investigate the general properties of
2CLA. In (43) for the transfer function in the circular

harmonic domain, G̃ is the primary factor affecting the
difficulty in achieving a reproduction. Here, we focus on
the power of G̃, which represents the mode strength in
CLA, to see how the array geometry actually affects the
sound field reproduction.

(a) 250Hz (b) 500Hz

(c) 1000Hz (d) 2000Hz

FIG. 10. Power of G̃ (in dB).

The power of G̃ is shown in Fig. 10. The x-axis rep-
resents the driving modes of 2CLA and the y-axis rep-
resents the observation modes for the secondary sound
field. A driving mode is the mode used for driving loud-
speakers, whereas an observation mode is the mode ob-
served on the circle centered at the origin O. The results
show how an observation mode can be synthesized from
the driving modes. A high mode strength indicates that
the driving mode can easily be used to synthesize the
observation mode.
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We found that driving a single mode of the 2CLA
generates multiple modes in the field. On the other hand,
each mode of a CLA is usually related to only one obser-
vation mode. Thus, we obtained two properties of 2CLA:

1. The lower modes of a driving function can be used
to synthesize higher modes in the field. This indi-
cates that 2CLA has good potential for reproducing
complex fields.

2. Conversely, higher driving modes are needed in syn-
thesizing lower modes. If only lower modes are
used, there will be errors and the amplitudes will
depend on the frequency. Therefore, 2CLA can be
less useful for reproducing simple fields.

VII. CONCLUSION

In this paper, we proposed an exterior sound-field
reproduction method using 2CLA with rigid baffles in a
circular harmonic domain. To obtain an analytic repro-
duction method, we used a harmonic circular expansion
to remove the influence of the discrete arrangement of
sound sources and control points. We derived the rela-
tion between each mode of the loudspeaker arrays and
the sound-field coefficient of the reproduced sound field
by applying a coordinate transformation. Computer sim-
ulations were conducted and the results show that the
proposed method can reproduce the sound field. More-
over, the mode strength of 2CLA was discussed. It was
inferred that 2CLA has good potential for reproducing
complex fields. In addition, this method can be easily
extended to multiple circular arrays.
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