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Abstract: Despite the importance of cyber-security for networked control systems, no suitable cryptosystem exists for
networked control systems that guarantees stability and has low computational complexity. This study proposes a novel
dynamic ElGamal cryptosystem for encrypted control systems. The proposed cryptosystem is a multiplicative homomorphic
cryptosystem, and it updates key pairs and ciphertexts by simple updating rules with modulo operations at every sampling
period. Furthermore, the authors modify the proposed cryptosystem by using a dynamic encoder and decoder so that the
asymptotic stability of the encrypted control systems is guaranteed. Numerical simulations demonstrate that the encrypted
controller with the proposed cryptosystem achieves asymptotic stability while randomly updating key pairs and ciphertexts. The
feasibility of the proposed encrypted control system is evaluated through regulation control with a positioning table testbed. The
processing time of the proposed encrypted control system is on the order of milliseconds, indicating that the system achieves
real-time control.

1 Introduction
The cyber-security of networked control systems is crucial, and
control systems require special countermeasures considering
threats at both the cyber and physical layers [1]. As cyber-attacks
for networked control systems, replay attacks [2], zero-dynamics
attacks [3], and denial-of-service attacks [4] have been reported.
Replay attacks are performed to deceive an anomaly detector or
operator of control systems. Adversaries record sensor
measurements of a target system under normal conditions for a
certain period; then, they alter the sensor measurements to be
transmitted to a controller into recorded signals. The adversaries
disturb or destroy the target system during this time. In zero-
dynamics attacks, adversaries design attack signals based on plant,
controller, and anomaly detector dynamics [1]. By injecting the
designed signals into control inputs, the adversaries stealthily

destabilise a closed-loop system by zero-dynamics. Denial-of-
service attacks interfere with the operation of the target system as
with the attacks on information and communication systems. The
impact of such attacks on control systems is more severe because
the plant becomes out of control.

The controller encryption method is a security-enhancement
method for networked control systems [5]. In this method,
controller parameters and signals over communication links (i.e.
sensor measurements, references, and control inputs) are encrypted
with a multiplicative homomorphic cryptosystem, such as RSA [6]
or ElGamal [7]. Furthermore, control inputs are calculated without
decryption. As shown in Fig. 1, public-key cryptography requires
Bob to share his public key with Alice in advance before sending
ciphertexts of messages. In contrast, public keys and secret keys
are not necessary for the controller side in encrypted control
systems. The controller encryption method reduces the risk of zero-
dynamics attacks due to its prevention of eavesdropping, which
aims to identify the dynamics of control systems. By using the
dynamic key-switching management method [8], encrypted control
systems can detect controller falsification attacks and replay
attacks with control input falsification. Additionally, encrypted
control systems can achieve resilience against controller/signal
falsification using the control-input-switching method [9].

However, the dynamic key-switching management method
must prepare multiple key pairs in advance and continue managing
them while encrypted control systems operate. Furthermore,
encrypted control systems with the conventional ElGamal
cryptosystem cannot achieve asymptotic stability because of
quantisation errors caused by encoding signals into plaintexts.
Stability is the most critical property for control systems, and
asymptotic stability is a typical type of stability where arbitrary
initial state converges to zero at some time in linear systems. The
conventional ElGamal cryptosystem also has a risk to destabilise
closed-loop systems in which the plant is an unstable system (e.g.
airplane, quadcopter, and inverted pendulum).

The stability is not guaranteed due to the changing properties of
the original closed-loop systems by encryption.

Besides, the majority of encryption security measures likely
cause time delays [10]. Servo control systems for mechanical

Fig. 1  Comparison between public-key cryptography and encrypted
control system
(a) Public-key cryptography, (b) Encrypted control system
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systems, such as the positioning stage used for factory automation,
typically must operate within a sampling period of a few
milliseconds to hundreds of microseconds. Meanwhile, it is
sufficient for information on control systems to be protected for a
couple of decades because the systems are replaced. Furthermore,
we do not have to protect all data of signals because adversaries are
interested in eavesdropping time series data for system
identification or designing attack signals. Therefore, the
conventional methodology of cryptography is not suitable for
encrypted control systems. The controller encryption method
requires a lightweight multiplicative homomorphic cryptosystem
that inherits the stability of unencrypted systems.

This study proposes a novel ElGamal-based dynamic
multiplicative homomorphic cryptosystem and an encrypted
control system with the proposed cryptosystem. The characteristics
of the proposed encrypted control systems are as follows:

• Simple updating rules with modulo operations update key pairs
and ciphertexts. Thus, adversaries cannot obtain time-series data
if they do not keep cracking the code at every sampling period.
Adversaries may be not able to decrypt data back towards a past
time, even if they succeed in breaking a key pair at present.

• The proposed dynamic cryptosystem can be expected to achieve
a security level equal to those of conventional methods with a
smaller key because the hardness of cracking ciphertexts
improves by the key pairs and ciphertexts updating. Smaller key
length leads to low computational cost of operations in
encryption and decryption (i.e. a lightweight cryptosystem).

• The encrypted control system modified to use a dynamic
encoder and decoder inherits the asymptotic stability of
unencrypted closed-loop systems.

• The proposed encrypted control system can detect replay attacks
in the same way as that in [8, 9]. Furthermore, it is not necessary
to prepare and manage multiple key pairs, unlike the method in
[8, 9], because key pairs are updated at every sampling period.

Numerical simulations of encrypted state-feedback control are
employed to investigate the validity of the proposed cryptosystem.
Additionally, the feasibility of the proposed cryptosystem is
examined through encrypted regulation control with a positioning
table testbed. Control performance and processing time are
evaluated.

1.1 Related works

The encrypted control method with the Paillier cryptosystem [11],
additive homomorphic cryptosystem, was proposed in [12]. This
method achieves practical stability [12] if the key length is
sufficiently large. However, asymptotic stability cannot be
guaranteed due to the effect of quantisation errors. Whereas,
Kishida [13] considered an encrypted state-feedback controller
with a dynamic quantiser proposed in [14] to achieve asymptotic
stability of encrypted control systems. Encrypted control systems
with an additive homomorphic cryptosystem are vulnerable against
eavesdropping attacks on the controller because they cannot
conceal controller parameters. Thus, encrypted control systems
with a multiplicative homomorphic cryptosystem are more secure
than those with an additive homomorphic cryptosystem.

Another encrypted control method with Gentry's fully
homomorphic encryption [15] was proposed in [16]. Although, in
this method, the controller can calculate encrypted control input by
using encrypted controller parameters and encrypted sensor
measurements, it requires vast computational resources compared
to encrypted controllers with a partially homomorphic
cryptosystem [17]. Hence, the encrypted control method with fully
homomorphic encryption is not practical for real-time computation.

In the field of cryptography for information and
communication, the one-time pad technique is well known. This
technique has a similar methodology to the proposed method from
the viewpoint that a new key is used for each communication;
further, encryption schemes based on one-time pad provide perfect
security as long as the schemes are correctly operated [18].
However, the conventional one-time pad schemes do not guarantee

real-time computation and stability of control systems. In contrast,
the proposed cryptosystem guarantees asymptotic stability of a
closed-loop system with real-time updated key pairs.

The proxy re-encryption scheme [19] and bidirectional ElGamal
encryption scheme [20] can translate a ciphertext for Alice into
another ciphertext corresponding to Bob by using a proxy key.
Although these methods are similar to the proposed method, a
proxy server, which is a trustworthy third party, and proxy key are
necessary. Thus, in these methods, we have to manage a proxy
server and an additional key to the translation of ciphertexts
throughout control system operation. Furthermore, Dodis et al. [21]
proposed the key-insulated encryption scheme, which updates a
secret key periodically; however, the updating period is more
extended than in the proposed cryptosystem (one week).

1.2 Outline

The remainder of this paper is organised as follows. Section 2
introduces preliminary information of the ElGamal cryptosystem
and encrypted control systems. Section 3 describes the proposed
ElGamal-based dynamic multiplicative homomorphic
cryptosystem. Section 4 describes an encrypted state-feedback
controller with the proposed cryptosystem and a dynamic encoder
and decoder. Section 5 provides numerical examples for
comparison between the conventional ElGamal cryptosystem and
the proposed cryptosystem. Section 6 presents several experimental
results using a testbed with a regulator. Section 7 presents
conclusions and discusses future works.

2 Preliminaries
2.1 Notation

The sets of real numbers, rational numbers, integers, prime
numbers, public keys, secret keys, plaintexts, and ciphertexts are
denoted by ℝ, ℚ, ℤ, ℙ, Kp, Ks, ℳ, and C, respectively. The set of
key pairs is denoted by K = Kp × Ks. We define the sets of
integers ℤ+ := {z ∈ ℤ ∣ 0 ≤ z}, ℤn := {z ∈ ℤ ∣ 0 ≤ z < n}, and
ℤn

× := ℤn∖{0}. The set of vectors whose sizes are n is denoted by
ℝn, and the set of matrices whose sizes are m × n is denoted by
ℝm × n. The ith element of a vector v = (vi) is denoted by vi, and the
(i,j) entry of a matrix M = (Mi j) is denoted by Mi j. The ℓ2 norm of
v and the induced 2-norm of M are denoted by ∥ v ∥ and ∥ M ∥,
respectively. The minimum eigenvalue of M is denoted by λmin(M).
The cardinality of a set A is denoted by A .
 

Definition 1: Let A be a finite set and X be a random variable. If

Pr(X = a) = 1
A

, ∀a ∈ A,

then we say that X follows the discrete uniform distribution and is
denoted as X ∼ U(A).

2.2 ElGamal cryptosystem

 
Definition 2: An ElGamal cryptosystem ε [7] is a tuple

ε := (Gen, Enc, Dec),

where Gen is a key generation algorithm, Enc is an encryption
algorithm, and Dec is a decryption algorithm

Gen :ℙ ∋ p ↦ (pk, sk) = ((G, q, g, h), s) ∈ K,
Enc :ℳ × Kp ∋ (m, pk) ↦ C = (gr mod p, mhr mod p) ∈ C,
Dec :C × Ks ∋ (C, sk) = ((c1, c2), sk) ↦ c1

−sc2 mod p ∈ ℳ,

p = 2q + 1 is a safe prime, pk is a public key, sk is a secret key, g is
a generator of a cyclic group G = {gi mod p ∣ i ∈ ℤq} = ℳ ⊂ ℤp

×
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such that gq mod p = 1, C = G × G, r, s ∼ U(ℤq), and
h = gs mod p.
 

Proposition 1: ε holds multiplicative homomorphism

Dec(Enc(m1, pk) ∗ Enc(m2, pk) mod p, sk) = m1m2,

where ∗ is the Hadamard product (i.e. element-wise
multiplication).
 

Proposition 2: The security level of ε is indistinguishability
against chosen-plaintext attacks under the decisional Diffie-
Hellman assumption.

2.3 Encrypted control system

A plant P is given as follows:

P: x(t + 1) = Ax(t) + Bu(t),
y(t) = Cx(t),

where x(t) ∈ ℝn is a state, u(t) ∈ ℝm is an input, y(t) ∈ ℝl is an
output, and A, B, and C are plant parameters.

A controller f is given as follows:

f :
xc(t + 1) = Acxc(t) + Bcv(t),

u(t) = Ccxc(t) + Dcv(t),

where xc(t) ∈ ℝnc is a controller state, v(t) ∈ ℝmc is a controller
input, which consists of sensor measurements and a reference, and
Ac, Bc, Cc, and Dc are controller parameters. f can be rewritten as a
product of a controller parameter matrix and a signal vector

ψ(t) = Φξ(t) =: f (Φ, ξ(t)),

ψ(t) :=
xc(t + 1)

u(t)
, Φ :=

Ac Bc

Cc Dc
, ξ(t) :=

xc(t)
v(t)

.

The ElGamal cryptosystem allows multiplication to be the only
calculation in the ciphertext. Thus, summation cannot be conducted
in the ciphertext. f cannot be executed in ciphertext because a
product of a matrix and a vector contains multiplication and
summation. To avoid this problem, we divide f into f × and f + as
follows [5]:

f = f + ∘ f ×,
f × : ((Φi j), (ξj)) ↦ (Φi jξj) =: Ψ,
f + : (Ψi j) ↦ Σ jΨi j = ψ .

f × performs only element-wise multiplication of a matrix and
vector, not adding up each row. Thus, we can execute f × in the
ciphertext.

 
Definition 3: Let CΦ, Cξ(t), and CΨ(t) be ciphertexts of Φ, ξ(t),

and Ψ(t) at time t ∈ ℤ+, respectively. Suppose a controller f is
given as f = f + ∘ f × [5], and ε is modified to
ε⋆ = (Gen, Enc, Dec+, Ecdγ, Dcdγ), where Ecdγ and Dcdγ are an
encoder and decoder, respectively [22]. Then,

Ecdγ :ℝ ∋ x ↦ x̌ = ⌈γx + α(γx)⌋ ∈ ℳ,

α(γx) := p, γx < 0,
0, γx ≥ 0,

Dcdγ :ℳ ∋ x̌ ↦ x̄ = x̌ − β(x̌)
γ

∈ ℚ,

β(x̌) := p, x̌ > q,
0, x̌ ≤ q,

γ ∈ ℝ is a scaling parameter, ⌈ ⋅ ⌋ is a function, which rounds to
the nearest element in ℳ, and Dec+ = f + ∘ Dec . Then, an
encrypted controller f ε⋆

×  is defined as follows:

f ε⋆
× : (CΦ, Cξ(t)) ↦ CΨ(t) = (CΦi j ∗ Cξj(t) mod p),

where

(pk, sk) = Gen(p),
CΦ = Enc(Ecdγc(Φ), pk),

Cξ(t) = Enc(Ecdγp(ξ(t)), pk),
ψ̄(t) = Dcdγc × γp(Dec+(CΨ(t), sk)),

and for a vector or matrix, Enc, Dec, Ecdγ, and Dcdγ perform
element-wise operations.

 
Remark 1: In encrypted control systems, the following

homomorphism holds:

Dec(Enc(Ecdγc(Φ), pk) ∗ Enc(Ecdγp(ξ(t)), pk) mod p, sk)
= f ×(Ecdγc(Φ), Ecdγp(ξ(t))) .

 
Remark 2: An encoder and decoder are essential for controller

encryption because control systems address real numbers, while the
ElGamal cryptosystem can be applied to only a subset of integers.
Note that Dcdγ(Dec(Enc(Ecdγ(x), pk), sk)) is not equal to x, and

Dcdγ(Dec(Enc(Ecdγ(x), pk), sk)) = Dcdγ(Ecdγ(x)),

= ⌈γx + α(γx)⌋ − β(x̌)
γ

,

= γx + α(γx) + δ − β(x̌)
γ

,

= x + δ
γ

,

where δ/γ is the quantisation error. Quantisation errors are critical
for control systems because these errors may destabilise control
systems or degrade the control performance [14]. In this regard, the
following result was revealed [23].

 
Proposition 3: Let e and k be quantisation errors caused by

encryption and key length, respectively. Then, e → 0 as k → ∞.
This proposition claims that quantisation errors can be ignored

when the key length is sufficiently large, while the conventional
encrypted control systems cannot achieve asymptotic stability as
long as the key length is finite. After this, we denote quantisation
error of x as x~ = Dcdγ(Ecdγ(x)) − x for convenience.

3 Dynamic ElGamal cryptosystem
 

Definition 4: Dynamic ElGamal cryptosystem εdyn(t) at time t is
a tuple

εdyn(t) := (Gen, Enc, Dec, TK, TC),

where TK and TC are transition maps

TK : ((G, q, g, h), s) ↦ ((G, q, g, hgw(t) mod p), s + w(t) mod q),
TC : (c1, c2) ↦ (c1, c1

w(t)c2 mod p),

and w(t) ∼ U(ℤq).
 

Corollary 1: The codomains of TK and TC are K and C,
respectively.
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Proof: From the definition, h, c2, gw(t) mod p, c1
w(t) mod p ∈ G.

Therefore, hgw(t) mod p ∈ G and c1
w(t)c2 mod p ∈ G. Additionally,

s + w(t) mod q ∈ ℤq because ℤq is a group with respect to addition
modulo q. □
 

Theorem 1: Let pk(t) and sk(t) be a public key and secret key at
time t, respectively. If (pk(0), sk(0)) = Gen(p) with a safe prime p
and (pk(t + 1), sk(t + 1)) = TK(pk(t), sk(t)), then

Dec(Enc(m, pk(t)), sk(t))
= Dec(Enc(m, pk(t + 1)), sk(t + 1)), ∀t ∈ ℤ+ .

(1)

 
Proof: We prove the proposition through mathematical

induction. When t = 0

Dec(Enc(m, pk(0)), sk(0)) = c1
−s(0)c2 mod p,

= g−rs(0)m(h(0))r mod p,
= g−rs(0)mgrs(0) mod p,
= m .

Assume that Dec(Enc(m, pk(t)), sk(t)) = m. Then

Dec(Enc(m, pk(t + 1)), sk(t + 1))
= c1

−s(t + 1)c2 mod p,
= g−rs(t + 1)m(h(t + 1))r mod p,
= g−r(s(t) + w(t))m(h(t)gw(t))r mod p,
= g−rs(t)g−rw(t)mgrs(t)grw(t) mod p,
= m .

Therefore, (1) holds for all t ∈ ℤ+. □
 

Corollary 2: If (pk(t + 1), sk(t + 1)) = TK(pk(t), sk(t)) for all
t ∈ ℤ+, then sk(t) follows a discrete uniform distribution

sk(t) ∼ U(ℤq) . (2)
 

Proof: ℤq is a group with respect to addition modulo q. Define
Ts:w(t) ↦ s(t) + w(t) mod q. For s(t), s′(t), w(t) ∈ ℤq, if
s(t) + w(t) = s′(t) + w(t) mod q, then

s(t) + w(t) + (q − w(t)) = s′(t) + w(t) + (q − w(t)) mod q,
s(t) + q = s′(t) + q mod q,

s(t) = s′(t) mod q .

Thus, Ts is bijective. Therefore, if w(t) ∼ U(ℤq), then
s(t) + w(t) mod q ∼ U(ℤq). □
 

Theorem 2: Let C(t) be a ciphertext at time t. Suppose
C(0) = Enc(m, pk(0)), C(t + 1) = TC(C(t)),
(pk(0), sk(0)) = Gen(p), and
(pk(t + 1), sk(t + 1)) = TK(pk(t), sk(t)). Then

Dec(Enc(m, pk(t)), sk(t)) = Dec(C(t), sk(t)), ∀t ∈ ℤ+ . (3)
 

Proof: From Theorem 1, if Dec(C(t), sk(t)) = m for all t ∈ ℤ+,
then the proposition is true

Dec(C(t), sk(t))
= c1

−s(t)c2(t) mod p,
= c1

−s(t)c1
w(t − 1)c2(t − 1) mod p,

= g−rs(t)grw(t − 1)m(h(t − 1))r mod p,
= g−r(s(t − 1) + w(t − 1))grw(t − 1)mgrs(t − 1) mod p,
= m .

□

 
Lemma 1: G is isomorphic to ℤq.

 
Proof: We prove that there exists an isomorphism from ℤq to G.

From Lagrange's theorem, G = q. Define the map
ϕ:ℤq ∋ x ↦ gx mod p ∈ G. Then, ϕ is bijective. Additionally, for
a, b ∈ ℤq,

ϕ(a + b) = ga + b mod p = gagb mod p = ϕ(a)ϕ(b) .

Therefore, ϕ is an isomorphism. □
 

Corollary 3: If C(t + 1) = TC(C(t)) for all t ∈ ℤ+, then c2(t)
follows a discrete uniform distribution

c2(t) ∼ U(G) . (4)
 

Proof: From Lemma 1, TC can be a bijection from w(t) to
c1

w(t)c2 mod p. Therefore, if w(t) ∼ U(ℤq), then c2(t) ∼ U(G). □
 

Corollary 4: εdyn(t) holds multiplicative homomorphism

Dec(Enc(m1, pk(t)) ∗ Enc(m2, pk(t)) mod p, sk(t))
= m1m2, ∀t ∈ ℤ+ .

 
Proof: From Theorem 1, Proposition 1 holds for all t ∈ ℤ+. □

 
Remark 3: We use the same random number w(t) to update key

pairs and ciphertexts of controller parameters. Thus, in practice, we
have to share w(t) securely or use an identical random number
generator with the same seed. In this paper, we focus on the
proposed cryptosystem's properties from the control-theoretic
viewpoint under the assumption that w(t) is appropriately shared.

4 Encrypted control system with dynamic
ElGamal cryptosystem
This section describes the main result of this study. The proposed
encrypted controller with the dynamic ElGamal cryptosystem
achieves asymptotic stability. Furthermore, key pairs and
ciphertexts of controller parameters are updated at every sampling
period. Thus, the security level of the proposed encrypted control
system may be higher than that of the conventional one.

A state-feedback controller is one of the basic controllers and
determines control inputs as u(t) = Fx(t). In this case, we can
interpret that Φ = F, ξ(t) = x(t), and ψ(t) = u(t). Two lemmas on a
quantised state-feedback controller, which were discussed in our
previous conference paper [22], should be introduced before we
present the main result. The lemmas give the method of choosing a
scaling parameter for the encoder/decoder to achieve asymptotic
stability.

Note that in encrypted control systems, a state-feedback gain is
quantised as well as a plant state because the cryptosystem can
handle only an element of G. A closed-loop system with a
quantised state-feedback gain is not necessarily stable even if an
original state-feedback gain stabilises a plant. Therefore, we must
choose proper encoder/decoder scaling parameters for the state-
feedback gain and state, respectively.

 
Lemma 2: Let dmax be the maximum width of ℳ. Let

F̄ = Dcdγc(Ecdγc(F)) be a quantised state-feedback gain. Assume
that A + BF is a Schur matrix [22], and u(t) = F̄x(t). If γc satisfies

γc > 1
Ω(P, Q)

dmax,

Ω(P, Q) := 2
mn ∥ B⊤PB ∥

− ∥ (A + BF)⊤PB ∥

+ ∥ (A + BF)⊤PB ∥2 + λmin(Q) ∥ B⊤PB ∥ ,
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for a given matrix Q = Q⊤ > 0 and the corresponding matrix
P = P⊤ > 0 satisfying (A + BF)⊤P(A + BF) − P = − Q, then
A + BF̄ is a Schur matrix.

 
Proof: From the assumption, the closed-loop system with the

quantised state-feedback gain is given as follows:

x(t + 1) = Ax(t) + BF̄x(t) = (A + BF)x(t) + BF
~
x(t),

and there exists P = P⊤ > 0 for any Q = Q⊤ > 0 such that

(A + BF)⊤P(A + BF) − P = − Q .

Let V(x, t) = x⊤(t)Px(t) be a Lyapunov function candidate. Then

V(x, t + 1) − V(x, t)
= ((A + BF)x + BF

~
x)⊤P((A + BF)x + BF

~
x) − x⊤Px,

= ((A + BF)x + BF
~
x)⊤P((A + BF)x + BF

~
x)

−x⊤((A + BF)⊤P(A + BF) + Q)x,
= x⊤(A + BF)⊤PBF

~
x + x⊤F

~⊤B⊤P(A + BF)x
+x⊤F

~⊤B⊤PBF
~
x − x⊤Qx,

≤ ∥ B⊤PB ∥ ∥ x ∥2 ∥ F
~ ∥2 + 2 ∥ (A + BF)⊤PB ∥ ∥ x ∥2 ∥ F

~ ∥
−λmin(Q) ∥ x ∥2 .

By using the notations

a := ∥ B⊤PB ∥ ∥ x ∥2 ,
b := 2 ∥ (A + BF)⊤PB ∥ ∥ x ∥2 ,
c := − λmin(Q) ∥ x ∥2 ,

the solution for the quadratic equation a ∥ F
~ ∥2 + b ∥ F

~ ∥ + c = 0
is given as follows:

∥ F
~ ∥ = 1

2a
−b ± b2 − 4ac ,

= 1
∥ B⊤PB ∥

− ∥ (A + BF)⊤PB ∥

+ ∥ (A + BF)⊤PB ∥2 + λmin(Q) ∥ B⊤PB ∥ .

Therefore, V(x, t + 1) − V(x, t) is negative when γc satisfies the
abovementioned condition because F

~
 is bounded from above as

follows [22]:

∥ F
~ ∥ ≤ mn

2
dmax

γc
.

A system matrix is a Schur matrix if the difference value of a
Lyapunov function is negative for all t ∈ ℤ+. □

 
Lemma 3: Let dmax be the maximum width of ℳ. Let

F̄ = Dcdγc(Ecdγc(F)) and x̄(t) = Dcdγp(t)(Ecdγp(t)(x(t))) be a quantised
state-feedback gain and quantised state, respectively. Assume that
A + BF is a Schur matrix, and u(t) = F̄x̄(t). If γc satisfies Lemma 2
and γp(t) satisfies

γp(t) > Θ(P̄, Q̄)
∥ x(t) ∥

dmax,

Θ(P̄, Q̄) := n
2λmin(Q̄)

∥ (A + BF̄)⊤P̄BF̄ ∥

+ ∥ (A + BF̄)⊤P̄BF̄ ∥2 + λmin(Q̄) ∥ F̄⊤B⊤P̄BF̄ ∥ ,

for a given matrix Q̄ = Q̄⊤ > 0 and the corresponding matrix
P̄ = P̄⊤ > 0 satisfying (A + BF̄)⊤P̄(A + BF̄) − P̄ = − Q̄, then the
closed-loop system achieves asymptotic stability [22].

 
Proof: From Lemma 2, we can choose γc such that A + BF̄

becomes a Schur matrix. Then, the closed-loop system with the
quantised state-feedback gain and quantised state is given as
follows:

x(t + 1) = Ax(t) + BF̄x̄(t) = (A + BF̄)x(t) + BF̄x~(t),

and there exists P̄ = P̄⊤ > 0 for any Q̄ = Q̄⊤ > 0 such that

(A + BF̄)⊤P̄(A + BF̄) − P̄ = − Q̄ .

Let V(x, t) = x⊤(t)P̄x(t) be a Lyapunov function candidate. Then

V(x, t + 1) − V(x, t)
= ((A + BF̄)x + BF̄x~)⊤P̄((A + BF̄)x + BF̄x~) − x⊤P̄x,
= ((A + BF̄)x + BF̄x~)⊤P̄((A + BF̄)x + BF̄x~)

−x⊤((A + BF̄)⊤P̄(A + BF̄) + Q̄)x,
= x⊤(A + BF̄)⊤P̄BF̄x~ + x~⊤F̄⊤B⊤P̄(A + BF̄)x

+x~⊤F̄⊤B⊤P̄BF̄x~ − x⊤Q̄x,
≤ − λmin(Q̄) ∥ x ∥2 + ∥ (A + BF̄)⊤P̄BF̄ ∥ ∥ x~ ∥ ∥ x ∥

+ ∥ F̄⊤B⊤P̄BF̄ ∥ ∥ x~ ∥2 .

By using the notations

a := − λmin(Q̄),
b := ∥ (A + BF̄)⊤P̄BF̄ ∥ ∥ x~ ∥ ,
c := ∥ F̄⊤B⊤P̄BF̄ ∥ ∥ x~ ∥2 ,

the solution for the quadratic equation a ∥ x ∥2 + b ∥ x ∥ + c = 0
is given as follows:

∥ x ∥ = 1
2a

−b ± b2 − 4ac ,

= ∥ x~ ∥
λmin(Q)

∥ (A + BF̄)⊤P̄BF̄ ∥

+ ∥ (A + BF̄)⊤P̄BF̄ ∥2 + λmin(Q̄) ∥ F̄⊤B⊤P̄BF̄ ∥ .

Therefore, V(x, t + 1) − V(x, t) is negative outside the ball

x ∥ x ∥ ≤ Θ(P̄, Q̄)
γp(t)

dmax .

Furthermore, the closed-loop system is Lyapunov stable when γp(t)
satisfies the abovementioned condition. Define
Δ(t + 1) := γp(t + 1) −1 − γp(t) −1. Then, Δ(t) < 0 because the
closed-loop system is Lyapunov stable. Therefore, γp(t) −1 → 0
and ∥ x(t) ∥ → 0 as t → ∞. □

 
Theorem 3: Let CF(t), Cx(t), and CΨ(t) be ciphertexts of F, x(t),

and Ψ(t) at time t ∈ ℤ+, respectively. Suppose a state-feedback
controller f is given as f = f + ∘ f × such that a closed-loop system is
asymptotically stable, and εdyn(t) is modified to
εdyn

⋆ (t) := (Gen, Enc, Dec+, TK, TC, Ecdγ(t), Dcdγ(t)). Then, there
exists the following encrypted state-feedback controller that
achieves asymptotic stability while concealing a state-feedback
gain F, plant state x(t), and control input u(t) with dynamic key
pairs (pk(t), sk(t)):
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f εdyn
⋆ (t)

× : (CF(t), Cx(t)) ↦ CΨ(t) = (CFi j(t) ∗ Cx j(t) mod p),

where

(pk(0), sk(0)) = Gen(p),
CF(0) = Enc(Ecdγc(F), pk(0)),

(pk(t + 1), sk(t + 1)) = TK(pk(t), sk(t)),
CF(t + 1) = TC(CF(t)),

Cx(t) = Enc(Ecdγp(t)(x(t)), pk(t)),
u(t) = Dcdγc × γp(t)(Dec+(CΨ(t), sk(t))),

γc = 1
Ω(P, Q)

dmax + μc,

γp(t) = Θ(P̄, Q̄)
∥ x(t) ∥

dmax + μp,

dmax is the maximum width of ℳ, Q, and Q̄ are any positive
definite matrices, P and P̄ are the corresponding matrices for Q and
Q̄, respectively, and μc > 0 and μp > 0 are design parameters.

 
Proof: An encrypted state-feedback controller with εdyn

⋆ (t) can
be transformed as follows:

Dcdγc × γp(t)(Dec+(Enc(Ecdγc(F), pk(t))
∗ Enc(Ecdγp(t)(x(t)), pk(t)) mod p, sk(t)))

= Dcdγc × γp(t)( f +( f ×(Ecdγc(F), Ecdγp(t)(x(t))))),
= Dcdγc × γp(t)( f (Ecdγc(F), Ecdγp(t)(x(t)))),
= f (F̄, x̄(t)),
= F̄x̄(t) .

Then, the closed-loop system with the encrypted state-feedback
controller is given as follows:

x(t + 1) = Ax(t) + BF̄x̄(t) .

This closed-loop system is the same as the system discussed in
Lemma 3. Therefore, the closed-loop system with the encrypted
state-feedback controller achieves asymptotic stability when γc and
γp(t) satisfy Lemmas 2 and 3, respectively. □

 

Remark 4: In encrypted state-feedback control systems, the
following homomorphism holds:

Dec(Enc(Ecdγc(F), pk(t)) ∗ Enc(Ecdγp(t)(x(t)), pk(t)) mod p, sk(t))
= f ×(Ecdγc(F), Ecdγp(t)(x(t))) .
 
Remark 5: ℳ is a finite set. Therefore, μc and μp should be

chosen such that encoded values do not overflow or underflow
[22].

 
Remark 6: In general, not all elements of x(t) are directly

observable. Thus, we should use an observer [24]. Theorem 3
should be extended to consider an observer state when we use an
observer unless a plant state can be approximated sufficiently to the
observer state.

Fig. 2 shows a flow of the proposed encrypted state-feedback
control system with εdyn

⋆ (t). 

5 Numerical simulation
Consider the following continuous-time plant:

ẋ(τ) = 1 −1
0 2 x(τ) + 0

1 u(τ),

y(τ) = 1 0
0 1 x(τ),

where τ is continuous time. This plant is discretised as follows:

x(t + 1) = 1.01005 −0.01015
0 1.02020 x(t) + −5.05029 × 10−5

1.01007 × 10−2 u(t),

y(t) = 1 0
0 1 x(t),

where the sampling period is set to be 10 ms. The following state-
feedback gain is employed:

F = 6.57458 −6.20107 .

We select p = 1, 128, 503, and then the key pair at initial time t = 0
is given as follows:

pk(0) = ({1, …, 1, 128, 498}, 564, 251, 2, 1, 004, 992),
sk(0) = 97, 859.

Fig. 2  Flow of encrypted state-feedback control with dynamic ElGamal cryptosystem
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Furthermore, the scaling parameters are given as follows:

γc = 20.28758, γp(0) = 130.44016,

where Q = Q̄ = diag(1, 1), μc = μp = 0.01, and dmax = 19.
Fig. 3 shows the results of encrypted state-feedback control

with the conventional ElGamal cryptosystem ε and the proposed
dynamic ElGamal cryptosystem εdyn

⋆ (t). Fig. 4 is the enlarged graph
of Fig. 3. Figs. 5 and 6 show sequences of keypair and ciphertext
of controller gain. 

Figs. 4b and c demonstrate the encrypted controller with the
dynamic encoder and decoder achieves asymptotic stability. Figs. 5
and 6 demonstrate that the key pair and ciphertext of controller
gain in the conventional ElGamal cryptosystem each keep their
initial values. In contrast, those in the proposed dynamic ElGamal
cryptosystem are randomly updated at every time step.
Furthermore, Fig. 7 shows histograms of the secret key and
ciphertext in the proposed encrypted control system for 500 s. It
can be said that the secret key and ciphertext in the proposed
cryptosystem follow a discrete uniform distribution because the
distributions of the histograms are almost flat.

6 Experimental verification
6.1 Experimental testbed

The testbed shown in Fig. 8 consists of a DC motor, a table
operated by the DC motor through a belt with a pulley, a rotary
encoder to measure the position of the table, and two Raspberry
Pi3s that are connected via an ethernet cable. The DC motor is
driven by a motor driver with its input and output as voltages. The
operating system of the Raspberry Pi3s is Raspbian with Xenomai.
One of the Raspberry Pi3s is for processing on the encrypted
controller, and the other is for encrypting, decrypting, reading
sensors, and inputting control commands to the DC motor. The
Raspberry Pi3s communicate with TCP/IP. See [25] for
specifications of the testbed.

A model of the testbed is obtained by system identification as
follows:

A = 0.99984 −0.00089
0 0.39985 , B = 0.03624

4.42333 , C = 0.17778 0 ,

Fig. 3  Comparison of signals between an encrypted control system with the conventional cryptosystem and that with the proposed one
(a) Control input, (b) First element of state, (c) Second element of state

 

Fig. 4  Enlarged graphs of Fig. 3
(a) Control input, (b) First element of state, (c) Second element of state

 

Fig. 5  Comparison of key pairs between an encrypted control system with
the conventional cryptosystem and that with the proposed one
(a) Public key, (b) Secret key

 

Fig. 6  Comparison of ciphertexts of the state-feedback gain between an
encrypted control system with the conventional cryptosystem and that with
the proposed one
(a) First element of controller gain in ciphertext, (b) Second element of controller gain
in ciphertext

 

Fig. 7  Histograms of secret key and ciphertext in the proposed
cryptosystem within 0 to 500 s (number of bins = 100)
(a) Histogram of secret key, (b) Histogram of first element of controller gain in
ciphertext
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where the input is a voltage to the motor driver, the output is a
position of the table, and the sampling period is set to be 10 ms.

6.2 Controller design

In this study, we use a regulator that is a basic controller in the field
of control engineering. An observer for P is given as follows:

x^(t + 1) = Ax^(t) + Bu(t) + L(y(t) − y^(t)),

where x^(t) ∈ ℝn is an estimated state, y^(t) = Cx^(t) ∈ ℝl is an
estimated output, and L ∈ ℝn × l is an observer gain.

Then, a regulator is given as follows:

x^(t + 1) = (A + BF − LC)x^(t) + Ly(t),
u(t) = Fx^(t),

where F is state-feedback gain. In this case, the elements of Φ and
ξ(t) are given as follows:

Ac = A + BF − LC, Bc = L, Cc = F, Dc = O,
xc(t) = x^(t), v(t) = y(t) .

For simplicity of regulator design, we use the discrete-time
linear quadratic regulator problem [26] with the cost function

J = ∑
t = 0

∞
(x(t)⊤Qx(t) + u(t)⊤Ru(t)),

where Q is a state weight, and R is an input weight. The state
weights for the observer and controller are, respectively, set to be

Qo = diag(1, 1), Qc = diag(1, 1),

and the input weights are set to be

Ro = 1, Rc = 1.

Then, L and F are designed as follows:

L = 0.91423
−0.00004 , F = −0.21067 −0.08517 .

The controller parameter Φ of the regulator is given as follows:

Φ = A + BF − LC L
F O

=
0.82969 −0.00398 0.91423

−0.93186 0.02311 −0.00004
−0.21067 −0.08517 0

.

Then, an encrypted parameter with a 33-bit key at initial time t = 0
is given as follows:

CΦ(0) =
158D57DA2 9A053022 6E9FF885
100071917 1EDF60174 69DC9B2F
1C564BB44 10EC81D5C 6017DDE2

,

173E5ECBF 109542ED3 141B148E6
2061B8FB F28330DB 12CF7EDDC

1558F4EAE 1C5568353 F48DF955
,

where the elements of CΦ(0) are displayed as hexadecimal
numbers.

6.3 Signals, controller parameters, and key pairs

Figs. 9a and b demonstrate the results of regulation control, and
Figs. 10a and b are the second element of ciphertexts of control
input and output, respectively. Fig. 9c shows the transition of γp(t)
at this time. These results confirm that the encrypted controller
conceals the signals over network links, and the scaling parameter
is tuned with the signals. Fig. 10c demonstrates the transition of a
second element of the (2, 2) entry of controller parameter in the
ciphertext. Figs. 11a and b show the transitions of the public key
and secret key, respectively. These results confirm that key pairs
and ciphertexts are updated randomly. From the above, adversaries
cannot obtain a time series of input/output data and controller
parameters if they do not solve a discrete logarithm problem at
every sampling period.

6.4 Static and dynamic encoder/decoder

An encrypted controller with a static encoder and decoder cannot
achieve asymptotic stability, while that with a dynamic one can
achieve asymptotic stability. In this subsection, the effect of
dynamic encoder and decoder is examined.

Figs. 12a and b show the control input and output of encrypted
control systems with a static or dynamic encoder/decoder in the
same control of Section 6.3, respectively. Figs. 12c and d are
enlarged graphs of Figs. 12a and b, respectively. These results
show that a steady-state error of an encrypted control system with a
dynamic encoder/decoder is small in comparison with that of static

Fig. 8  Experimental testbed [25]
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ones. Thus, it is confirmed that a dynamic encoder/decoder
improves the control performance of encrypted control systems,
while the output of the encrypted control system with a dynamic
encoder/decoder does not perfectly converge to zero. This result
may be caused by a non-linearity such as friction.

6.5 Processing time

Control operation must be completed within a sampling period
because behaviour and stability are not guaranteed if processing
time is more than the sampling period. In this subsection, the
processing time of the proposed encrypted control system is
investigated.

Table 1 shows the maximum, mean, and minimum processing
times of the proposed encrypted control system in the experiment
of Section 6.3. The results confirm that the processes of the
proposed encrypted control system finished within the sampling
period, and the system operates in real-time. However, the
processing time of the encrypted control system is exponentially
increased with key length [27]. Therefore, we conjecture that the
selection of key length is a critical issue for the proposed
cryptosystem as well as for conventional ones.

7 Conclusion
This study proposed a novel ElGamal-based dynamic
multiplicative homomorphic cryptosystem with a dynamic encoder
and decoder for encrypted control systems. Key pairs and
ciphertexts are updated randomly at every sampling period, and an
encrypted state-feedback controller with the proposed
cryptosystem achieves asymptotic stability. The feasibility of the
proposed encrypted control system was examined through several
experiments with the positioning table testbed. The experimental
results confirmed that key pairs, controller parameters, and signals
are concealed against adversaries. Furthermore, it was shown to
improve the control performance of encrypted control systems by
using a dynamic encoder and decoder.

In this paper, we did not discuss the decision problem of proper
or optimal key length. The key length should be chosen by
considering the trade-off between security level and computational
latency; however, the security index of encrypted control systems
has not yet been established. We considered the dynamic
cryptosystem methodology and its properties from the control-
theoretic perspective rather than information security, and thus, the
proposed cryptosystem requires security proof so that the security
level of it is evaluated quantitatively. Moreover, the proposed
method may be secure for information leakage, such as leakage of

Fig. 9  Signals and scaling parameter
(a) Control input, (b) Output, (c) Scaling parameter for signals

 

Fig. 10  Signals and controller parameter in ciphertext
(a) Control input in ciphertext, (b) Output in ciphertext, (c) Controller parameter in ciphertext

 

Fig. 11  Key pairs
(a) Public key, (b) Secret key
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a secret key at a certain time, and adversaries may not be able to
estimate a secret key from the previous/following one. We plan to
address these issues in future work.

Encrypted control under network constraints, such as
transmission channel noises [28, 29] and packet dropouts [30], is
also an open issue. We must give a theoretical foundation for
implementing encrypted control systems using actual networks.
The network constraints in encrypted control systems may be
addressed as with those in unencrypted control systems because a
closed-loop system with an encrypted controller is the same as an
unencrypted closed-loop system. Encrypted model predictive
control is one of the schemes expected to be effective for encrypted
control under constraints [31, 32].

Additionally, we will modify the proposed cryptosystem not to
use the same random number for updating key pairs and
ciphertexts of controller parameters. We will also analyse the
resilience of the proposed cryptosystem against major cyber-
attacks and consider the proposed cryptosystem in terms of
information security.
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