Università degli Studi di Salerno

Dipartimento di Chimica e Biologia "Adolfo Zambelli"

PhD Thesis in Chemistry
XXXI Ciclo

Synthesis and Properties of
 New Macrocyclic Derivatives

Tutor:
Prof. Carmine Gaeta
Ph.D. Student
Paolo Della Sala
$\underline{8800100019}$
Coordinatore:
Prof. Gaetano Guerra

"The only easy day was yesterday"

Navy SEALs's motto
1 Introduction 7
1.1 Supramolecular Chemistry 7
1.2 Macrocycles in Supramolecular Chemistry 18
2 Supramolecular Properties of Larger Resorcin[6]arene Macrocycles 22
2.1 Synthesis of Larger Resorcinarenes: An Overview 22
2.2 Solid State Self-Assembly of Resorcin[6]arene 26
2.3 Synthesis of a Tetrasulfate-Resorcin[6]arene Cavitand 34
2.4 Biomolecular Recognition with Larger Resorcin[6]arene Derivatives 48
3 Synthesis of New CycloParaPhenylene Macrocycles and Studies of Their Properties 63
3.1 Carbon Nanobelt and Carbon Nanohoops: An Overview63
3.2 Application of [n]CPPs 73
3.3 Tuning Cycloparaphenylene Host Properties by Chemical Modification 76
3.4 Synthesis, Optoelectronic and Supramolecular Properties of a CPP-Calix[4]arene Hybrid Host 90
3.5 New Optoelectronic Applications of CycloParaPhenylene Derivatives 103
3.6 A [8]CPP Derivative as Emitter in Triplet-Triplet Annihilation Upconversion 105
3.7 CPP-Based Luminescent Solar Concentrator 120
4 Experimental Section 130
4.1 General Section 130
4.2 Solid State Self-Assembly of Resorcin[6]arene 132
4.3 Synthesis of a Tetrasulfate-Resorcin[6]arene Cavitand 135
4.4 Biomolecular Recognition with Larger Resorcin[6]arene Derivatives 139
4.5 Tuning Cycloparaphenylene Host Properties by Chemical Modification 152
4.6 Synthesis, Optoelectronic and Supramolecular Properties of a CPP-Calix[4]arene Hybrid Host 180
4.7 A [8]CPP Derivative as Emitter in Triplet-Triplet Annihilation Upconversion 200
4.8 CPP-Based Luminescent Solar Concentrator 217

1 Introduction

1.1 Supramolecular Chemistry

Supramolecular chemistry ${ }^{1}$ is a multidisciplinary branch of the chemistry that study the systems constituted by molecules or ions held together by secondary interactions.
The expression "Supramolecular Chemistry" has been coined for the first time by Jean-Marie Lehn in 1978 and defined as the "... chemistry of molecular assemblies and of the intermolecular bond". ${ }^{1}$ Furthermore, this field can be divided in two categories: host-guest chemistry, ${ }^{2}$ in which the aim is the design of host molecules able to complex in a specific way, appropriate guests (generally smaller molecules or ion - Figure 1a), and the self-assembly ${ }^{3}$ processes that explore the spontaneous and reversible association of two or more molecules to form an aggregate ${ }^{3 a}$ in solution or in the solid state (Figure 1b).
Both, the host-guest chemistry and the self-assembly processes are deriving inspiration from the natural systems, where numerous examples of supramolecular phenomena are known. ${ }^{1}$

[^0]

Figure 1: Example of: a) molecular recognition of the n-butylammonium guest with the tetrapropoxy- p-tert-butylcalix[4]arene host; ${ }^{4}$ b) Self-assembly of six resorcin[4]arene molecules and 8 water molecules to form the hexameric capsule reported by Atwood ${ }^{5}$ in 1997.

Learning the lesson from natural processes and taking inspiration from them, in the last decades, artificial systems have been designed able to mimic the majority of their performances. Thus, the selective recognition of substrates by natural receptors (e.g.: enzymes) has inspired the host-guest chemistry. Regarding the self-assembly processes, useful informations have been obtained by studying the natural systems such as the DNA. ${ }^{\text {3b }}$

1.1.1 The Self-Assembly

The self-assembly phenomena, ${ }^{6}$ is defined as "The spontaneous and reversible association of two or more

[^1]components to form a larger, non-covalently bound aggregate". ${ }^{3,4-7}$
As representative example, the resorcin[4]arene macrocycle 1 assembles both, in the solid state ${ }^{5}$ and in solution ${ }^{8}$ in the presence of water, to form a cage (hexameric capsule) constituted by 6 macrocycles 1 and 8 water molecules, sealed by $60(\mathrm{O}-\mathrm{H} \cdots \mathrm{O})$ hydrogen bonds. The internal volume of 1375 \AA^{3} is large enough to encapsulate 6-8 molecules of CHCl_{3} or benzene (Figure 2). ${ }^{5}$

Figure 2: Self-assembly of the hexameric resorcinarene capsule. ${ }^{5,8}$ (Right) In the tube model of the hexameric capsule the undecyl chains and H -atoms have been removed for clarity, while bridged $\mathrm{H}_{2} \mathrm{O}$ molecules are represented as CPK model.

In the last decade, many reports in the field of supramolecular catalysis have shown that the resorcinarene hexameric capsule is able to catalyze chemical reactions. ${ }^{9}$ Like an enzymatic active site, the inner cavity of the hexameric capsule is able to host selectively the substrates, and by virtue of the confinement effect they can react, leading to the formation of intermediates

[^2]and transition states stabilized by secondary interactions with the capsule. ${ }^{9 a}$

1.1.2 The Host-Guest Chemistry and the Principles of the Molecular Recognition

Hosts are defined as synthetic structures which are able to bind, in a selective way (molecular recognition), smaller molecules or ions (guests) by means secondary interactions such as, dipole-dipole, hydrogen-bond, electrostatic, hydrophobic and Van der Waals interactions (Figure 3).

Figure 3: Molecular recognition. In green the host while the smaller elements represent the guests.

The formation of a host-guest complex is an equilibrium process defined by an association constant:

$$
\begin{array}{ll}
\mathrm{H}+\mathrm{G}_{1} \longrightarrow \mathrm{HG}_{1} \\
\mathrm{H}+\mathrm{G}_{2} \longrightarrow \mathrm{HG}_{2} & K_{1}=\frac{\left[H G_{1}\right]}{[H] \cdot\left[G_{1}\right]} \\
& K_{2}=\frac{\left[H G_{2}\right]}{[H] \cdot\left[G_{2}\right]}
\end{array}
$$

The selectivity is the ratio of the association constants $\mathrm{K}_{1} / \mathrm{K}_{2}$, for the host \boldsymbol{H}, binding two guest \boldsymbol{G}_{1} and $\boldsymbol{G}_{2} .{ }^{10}$
The specificity of binding of the natural enzymes toward their substrates has inspired the design of artificial hosts for the molecular recognition of anions, cations and neutral guests. The origin of the specificity of the natural enzymes can be explained using the Lock and Key analogy proposed by Emil Fischer in 1894. ${ }^{11}$
This model compares the enzyme to a lock (host) and substrate to a key (guest), thus the interaction between them is driven by geometric (size and shape) and electronics complementarities between both the binding sites.
Daniel Koshland, half a century later, introduced the Induced Fit model - according which, conformational changes can occur in the enzymatic active site in order to facilitate the binding of the substrate (Figure 4): "... the flexibility of a "hand in glove", which included Fisher's idea of a fit but added the flexibility concept ". ${ }^{12}$

Figure 4: Induced Fit model representation - The enzyme (blue) binds substrate (purple) upon an adaptive conformational change.

[^3]In order to reach a higher recognition between host and guest, some crucial factors must be taken into account during the design of new hosts:

- Complementarity: As in the lock and key model, a high recognition is related to the steric (shape and size) and electronic complementarity (positive/negative charges, H-bonds donor/acceptor, etc.) between the interacting surfaces. Some examples of complementarity are reported in Figure 5a and 5b. In particular in Figure 5a, ${ }^{13}$ is illustrated the recognition of K^{+}by the 18 -crown- 6 host, in which the spherical cation fits into the circular cavity of the host. The Figure 5 b , shows the recognition of the nitrate anion by means the C_{3}-symmetrical host designed by Ansylin. ${ }^{14}$ The perfect steric and electronic complementarity between host and the anionic guest affords a high selectivity.

Figure 5. Steric and electronic complementarity: a) Spherical recognition of K^{+}with the 18 -Crown-6 and, b) Recognition of a trigonal planar anion (nitrate) with the $C_{3^{-}}$ symmetrical host of Ansylin. ${ }^{14}$

[^4]- Large contact area between host and guest and multiple interactions sites. If the host is able to wrap around the guest, then more secondary interactions can be established and more stable is the resulting complex (Figure 6).

$\log \mathrm{K}=6.08\left(\mathrm{H}_{2} \mathrm{O}\right)$

$\log \mathrm{K}=5.40\left(\mathrm{H}_{2} \mathrm{O}\right)$

Figure 6. Large contact area between host and guest: a) CPK-model of the $\mathrm{K}^{+} \subset 18$ -
crown-6 complex where part of the cation surface (purple) is left open and accessible to the solvent ; b) Chemical drawing of $\mathrm{K}^{+} \subset 2,2,2$-cryptand and, c) CPKmodel of the $\mathrm{K}^{+} \subset 2,2,2$-cryptand in which the 2,2,2-cryptand is able to wrap around K^{+}guest.

- Preorganization: it is the ability of the host and guest to interact between them without making significant conformational changes (Figure 7). Indeed, citing ${ }^{15}$ the paradigm of the molecular recognition of Cram : "the more highly hosts and guests are preorganized for binding and low solvation prior to their complexation, the more stable will be their complexes"., ${ }^{2,15}$

[^5]

Figure 7. Preorganization: a) Structure of the $\mathrm{Li}^{+} \subset$ Spherand complex studied by Cram; b) side-view of the spherand free and c) side-view of the $\mathrm{Li}^{+} \subset$ spherand.

Another interesting aspect related to the preorganization of the host is the so called "macrocycle effect" which plays a fundamental role for the thermodynamic stability of the hostguest complexes. ${ }^{16}$
a)

$\log K=2.3$
b)

Figure 8. The macrocycle effect: a) $\mathrm{K}^{+} \subset$ Podand complex and b) $\mathrm{K}^{+} \subset[18]-C r o w n-6$ (right).

Comparison between the association constant values for the formation of two complexes in Figure 8 shows clearly that the $\mathrm{K}^{+} \subset[18]$-crown- 6 is significatively more stable than the $\mathrm{K}^{+} \subset$ podand (pentaethyleneglycol) complex (Figure 8). In accord with the macrocyclic effect: "Host systems that are more preorganized into a large cyclic shape form more stable

[^6]complexes as there is no energetically unfavorable change in conformation in order to bind a guest. ${ }^{17}$ In fact, during the formation of the $\mathrm{K}^{+} \subset$ podand (pentaethyleneglycol) complex a conformational change of the podand must occur in order to adapt its shape (and binding site) around to the K^{+}guest (from open to close conformation, Figure 9a), as a result a great loss of degrees of freedom will occur $(\Delta S<0)$.

Figure 9 : a) Not preorganized ligand (as podand) ; b) preorganized macrocyclic structure.

Differently the cyclic [18]-crown-6 in Figure 8, shows a binding site already preorganized for the complexation of the guest (close conformation, Figure 9 b), and consequently the $\Delta \mathrm{S}$ of binding is much less and hence more favorable. Analogously the enthalpic contribution is more favorable to the formation of the $\mathrm{K}^{+} \subset$ [18]-crown-6 complex. In fact, the free podand (Figure 8) adopts a linear conformation (open conformation, Figure 9a) in solution in order to minimize the electrostatic repulsion between the electrons lone-pairs on oxygen atoms. In the open conformation, the donor atoms of a podand are also

[^7]more accessible to the solvent molecules for the solvation (Figure 9a). Consequently, in order to adopt a close conformation during the complexation of the cation, the podand must overcome the unfavorable electrostatic repulsion between the electrons lone pairs and, also, a great amount of energy must be paid in order to break the interactions with the solvent. Differently, the cyclic host [18]-crown-6 already adopts a close conformation in which the electrostatic repulsion between the lone pairs have been overcome during the synthesis, in addition the binding site of a macrocyclic hosts is less accessible for the solvation.

In conclusions, based on these considerations we can conclude that the macrocyclic structures form more stable host-guest complexes with respect to the analogous podands (linear derivatives). For this reason, to date, many efforts have been focused on design and synthesis of new macrocyclic derivatives for their application in supramolecular processes. Thus, in the last decade, appealing macrocyclic structures have been reported which showed amazing supramolecular properties: $\quad \operatorname{pillar}[\mathrm{n}]$ arene $^{18}, \quad$ calix[n$]$ tetrolarenes ${ }^{19}$, bambu[n]suril ${ }^{20}$, oxatub[n]arene ${ }^{21}$, zorbarene ${ }^{22}$,

[^8]biphen[n]arenes ${ }^{23}$, cycloparaphenylene ${ }^{24}$ and cyclophenacenes ${ }^{25}$ - Figure 10.
a)

d)

f)

Figure 10: a) Pillar[5]arene, b) Calix[4]arene, c) Calix[4]tetrolarenes, d) [8]Cycloparaphenylene, e) Oxatub[4]arene and f) Cyclophenacenes.

These macrocyclic hosts have shown interesting recognition abilities toward cations, ${ }^{26}$ anions ${ }^{27}$ and neutral molecules of clinical ${ }^{28}$ and environmental interests. ${ }^{29}$

[^9]
1.2 Macrocycles in Supramolecular Chemistry

The macrocyclic hosts show a central cavity (binding site) able to bind complementary guests through secondary interactions. As previously discussed, cyclic hosts are more preorganized and consequently form more stable host-guest complexes with respect to the linear podand analogous. However, the macrocycle flexibility provides kinetic support to the complexation by facilitating access of the guest to the central cavity. ${ }^{6}$ Thus, for the design of new macrocyclic hosts, needs to find the right balance between complementarity/rigidity and flexibility of the cyclic backbone. At this regard, an excellent example is the lariat-ether host reported in Figure 11, which can be considered as a cryptand analogous with a threedimensional binding site. Differently, by the cryptand hosts, the lariat-ethers (Figure 11) show a more favorable kinetic of binding thanks to the flexibility of the pendant side arm, at which is associated the preorganization of the central crownlike binding site.

Figure 11: $\mathrm{NH}_{4}{ }^{+} \subset[18]$ crown- 6 and $\mathrm{NH}_{4}{ }^{+} \subset$ lariat-ether.

Historically, the efforts of the scientists have been directed toward the study of cyclophane ${ }^{13,17,30}$ macrocycles because of their synthetic and conformational versatilities. The term cyclophane includes the bowl-shaped molecules constituted by bridged aromatic ring. The presence of aromatic units (e.g.: benzene, naphthalene) ensures the easy functionalization of the macrocycles and consequently the synthesis of hosts with novel features and properties - Figure 12.

Figure 12: Calix[4]tubes proved highly selective for complexation of potassium over all group I metal cations. ${ }^{31}$

A central role in supramolecular chemistry has been played by the resorcinarene ${ }^{30 \mathrm{e}}$ and calixarene ${ }^{30 \mathrm{~b}, \mathrm{c}}$ macrocycles which constituted useful scaffolds for the synthesis of hosts with

[^10]interesting supramolecular properties. Taking inspiration from them, in the last decades, novel macrocycles (e.g.: pillar $[\mathrm{n}]$ arenes ${ }^{30 \mathrm{~d}}$ and coronarenes ${ }^{32}$) have been designed and synthesized which have shown even more innovative supramolecular properties.

1.2.1 Resorcin[n]arenes

Resorcin[n]arenes ${ }^{30 \mathrm{e}}$ (or calix[n]resorcinarenes) are compounds synthesized starting from resorcinol in the presence of aldehydes under acidic conditions. Vogel and Niederl, first in 1940, ${ }^{33}$ reported the elucidation of the structure of the "crystalline condensation product of acetaldehyde with resorcinol"," the authors reported that: "the crystalline condensation products seem to possess a similar structural pattern as the porphyrins obtainable in pyrrole-carbonyl compounds condensations, but possessing benzene instead of "pyrrole". ${ }^{33}$ In 1968, Nilson ${ }^{34}$ for the first time reported an Xray structure of a resorcin[4]arene obtained by condensation of resorcinol with benzaldehyde, while in 1980, Högberg ${ }^{35}$ reported the synthesis of two stereoisomeric resorcinarene derivatives starting from acetaldehyde and resorcinol and their conformational characterization in solution by dynamic NMR spectroscopy. ${ }^{35}$ In this context, the stereoselective synthesis of the resorcinarene derivatives in $C_{4 v}$ isomers (Scheme 1),

[^11]reported by D. J. Cram in 1988, ${ }^{36}$ has constituted a milestone for the success and the diffusion of these macrocycles.

1.2.1.1 Synthesis of resorcin[n]arenes: the synthesis of Cram ${ }^{36}$

Tetrameric derivative $\mathbf{1}$ is the most studied and can be easily obtained under mild conditions, generally using a plethora of aliphatic or aromatic aldehydes and HCl in ethanol as solvent Scheme 1.

Scheme 1: Synthesis of the resorcin[4]arene derivatives developed by Cram. ${ }^{36}$
The resorcin[4]arene derivatives in Scheme 1 are obtained in high yields, ranging from 60 to 88% after crystallization from ethanol. ${ }^{36}$

[^12]
2 Supramolecular Properties of Larger Resorcin[6]arene Macrocycles

The first aim of this PhD project has been encouraged by a recent result reported by our group, ${ }^{37}$ and regarding the study of an improved synthetic procedure for the synthesis of the large resorcin[6]arene macrocycle $\mathbf{3}$ in Figure $13 .{ }^{37}$ The new synthetic procedure, has paved to way to the possibility to study the supramolecular properties of the resorcin[6]arene macrocycle, until this moment left unexplored in literature.

2.1 Synthesis of Larger Resorcinarenes: An Overview

As concerns the study and the supramolecular applications of the resorcinarene macrocycles, the attention has been principally focused on the resorcin[4]arene (Scheme 1 and Figure 13), which has constituted a useful platform for building more elaborated synthetic hosts. ${ }^{30 \mathrm{c}}$ In macrocyclic chemistry, many attentions have been devoted to the design and synthesis of new macrocycles. Naturally, the study of resorcin[$n]$ arene macrocycles with a number of resorcinol rings > 4 (larger, Figure 16) could pave the way for the synthesis of supramolecular systems with new and intriguing recognition or self-assembly properties.

[^13]

2

3

Figure 13: Larger resorcin[$n]$ arenes $(n>4)$.

Differently from tetrameric derivatives in Scheme 1, the larger cyclo-adducts (Figure 13) $\mathbf{2}$ and $\mathbf{3}$ have been scarcely investigated owing their poor solubility in common organic solvents. ${ }^{38,39}$
The first synthesis of the larger resorcinarenes 2 and $\mathbf{3}$ (Figure 13), has been published by Konishi ${ }^{38}$ and coworkers, which reported the formation of $\mathbf{3}$, by reaction of 2-methylresorcinol with 1,3,5-trioxane in the presence of ethanol as solvent and aqueous concentrated HCl as catalyst and for short reaction times (3 h at reflux instead of 12-24 h reported for the tetramers in Scheme 1). The authors reported that the purification of 3 was difficult, due to the poor solubility of the resorcin[6]arene $\mathbf{3}$ in common organic solvents. The lack of solubility of $\mathbf{3}$ was attributed to the presence of free OH groups, thus ${ }^{38}$ the crude reaction mixture was before acylated with propionic anhydride and successively purified.

[^14]In these reports, ${ }^{38}$ Konishi and coworkers, demonstrated that the formation of the resorcin[5]arene 2 and resorcin[6]arene $\mathbf{3}$ was obtained under kinetic conditions: for short reaction time, while after equilibration for longer reaction time the tetramer, resorcin[4]arene, was the favored product. ${ }^{38}$
Interestingly, Sherman ${ }^{39}$ and coworkers obtained the larger resorcinarene $\mathbf{2}$ and $\mathbf{3}$ by reaction of 2-methylresorcinol with diethoxymethane in the presence of aqueous concentrated HCl as catalyst and ethanol as solvent. Accordingly with the results previously reported by Konishi's group, ${ }^{38}$ Sherman and coworkers ${ }^{39}$ showed that the larger resorcinarene $\mathbf{2}$ and $\mathbf{3}$ were formed in good yields for short reaction time (30 min at 60 $\left.{ }^{\circ} \mathrm{C}\right) .{ }^{39}$ Analogously to the results reported by Konishi, ${ }^{38}$ the purification of the larger resorcinarene 2 and 3 was difficult because of poor solubility of derivatives, in fact, by quoting the authors: ${ }^{39}$ "Moreover, it is far easier to purify the cavitand mixture than to isolate the different resorcinarene products and bridge them separately", thus after 30 minutes at $60^{\circ} \mathrm{C}$ the reaction was quenched and the crude reaction mixture was directly treated with $\mathrm{CH}_{2} \mathrm{BrCl}$ in the presence of base to give the cavitands 4 and 5 (Figure 14). ${ }^{39}$

Figure 14: Larger [5,6$]$ cavitands reported by Shermann. ${ }^{39}$

[^15]Thus, the results reported by Konishi ${ }^{38}$ and Shermann ${ }^{39}$ indicated that the presence of masked OH groups in larger resorcinarene macrocycles plays a crucial role for their solubility in organic solvents, making their work-up procedures easier. On the basis of these results ${ }^{38,39}$ our group has reported in $2016{ }^{37}$ an improved procedure for the synthesis of larger resorcin[5,6] arene by using 1,3-dimethoxy-2-methylbenzene 6 as starting material, with the aim to directly obtain larger resorcinarenes with masked OH functions (Scheme 2), in order to improve both purification procedures and synthetic efficiency.

6

$7: n=4 \quad 27.5 \%$
$8: \mathrm{n}=5 \quad 3.7$ \%
$9: n=6 \quad 28.6 \%$

Scheme 2: Synthesis of derivatives 7, 8 and 9. ${ }^{37}$

In details our results ${ }^{37}$ showed that, by treatment of 1,3-dimethoxy-2-methylbenzene 6 with paraformaldehyde in ortho-dichlorobenzene as the solvent and BF_{3} at $0{ }^{\circ} \mathrm{C}$, the resorcin[5]arene $\mathbf{8}$ and the resorcin[6] arene 9 were obtained in 3.7 and 28.6% of yield (Scheme 2). Interestingly, under the conditions reported in Scheme 2 the resorcin[6]arene 9 was the most abundant product. Thanks to the good solubility of the derivatives $\mathbf{8}$ and $\mathbf{9}$ in common organic solvent, their
purification was performed by chromatographic column. Successive treatment of 9 with BBr_{3} afforded to the synthesis of resorcin[6]arene $\mathbf{3}$ in quantitative yields (Scheme 3).

Scheme 3: Synthesis of derivatives 10, 2 and 3.

Very recently, Atwood and coworkers reported a novel procedure of purification of the C-ethylresorcin[6]arene which was separated from its tetrameric homologous, through the formation of co-crystals with 1-(2-pyridylazo)-2 naphthol ${ }^{40}$ or $4,4^{\prime}$-bipyridine ${ }^{41}$ in alcoholic solvents.

2.2 Solid State Self-Assembly of Resorcin[6]arene ${ }^{42}$

There are a great deal of examples in which resorcinarene based systems are involved in molecular recognition, biomimetic catalysis, gas storage and drug delivery. ${ }^{43}$ In

[^16]addition, resorcinarenes and cavitands are useful scaffolds to develop novel molecular containers (or cages). ${ }^{44}$ In fact, as it is well known, resorcin[4]arene derivatives, form self-assembled capsules (Figure 2) in which the aromatic cavity is isolated from the external environment and offers a binding pocket for the inclusion of complementary guests. ${ }^{45}$ The confinement of molecules into the capsule stabilizes reactive species ${ }^{46}$ promote chemical reactions through the confinement of reactants and catalysts inside the inner space of the capsules. ${ }^{9,47}$
Atwood in $1997,{ }^{44 \mathrm{c}}$ showed that the self-assembly of six resorcin[4]arene molecules and 8 water molecules to form the hexameric capsule occurs in the solid state (Figure 2). The Xray structure of the hexameric capsule in Figure 2 resembles a cube with six resorcinarene molecules located on the sides and eight water molecules as the corners in a chiral structure, sealed by $60(\mathrm{O}-\mathrm{H} \cdots \mathrm{O}) \mathrm{H}$-bonds. Thus, an octahedral-shaped cavity was formed with an internal volume of $1375 \AA^{3}$ that can host about 6-8 molecules of chloroform or benzene. The pioneering work of Atwood ${ }^{44 \mathrm{c}}$ prompted us to study the solid-state selfassembly properties of the larger resorcin[6]arene macrocycle

[^17]3, which has been synthesized exploiting the synthetic procedure recently reported by us. ${ }^{37}$

2.2.1 Solid-state Assembly of a Resorcin[6]arene in Twin Molecular Capsules ${ }^{42}$

Crystals of $\mathbf{3}$ were obtained by slow evaporation from a solution of toluene/ethyl acetate. X-ray analysis revealed that in the solid state the resorcin[6]arene $\mathbf{3}$ adopts a pinched cone conformation ${ }^{42}$ (Figure 15a) which is defined by two trimeric 3/4 cone-like sub-cavities - (highlighted in blue and yellow in Figure 14a) almost perpendicular to each other as reported by Ugozzoli for calix[6]arene. ${ }^{48}$
Superimposition between the pinched cone conformations of p -tert-butylcalix[6]arene (blue in Figure 15 b) and resorcin[6]arene (violet in Figure 15 b) shows their similarity, with a low root-mean-square deviation value of $0.578 \AA$.
a)

Figure 15: a) Side view of pinched-cone conformation of 3 with the two subcavities hightlited. b) Superimposition between the pinched conformation of $\mathbf{3}$ (violet) and p -tert-butylcalix[6]arene (blue).

[^18]Surprisingly, in the solid state, two units of resorcin[6]arene 3 self-assemble in a molecular capsule (Figure 16a) in which two resorcinarene molecules are facing each other. The capsule is sealed by two square-arrays of intra and intermolecular hydrogen bonds between the OH groups of two macrocycles (Figure 16a-c). Close inspection of the structure of the capsule in Figure 16a revealed that two trimeric 3/4 cone-like cavities of each resorcin[6]arene are facing each other to form two pockets (twin capsules), each of which includes solvent molecules (Figure 17), toluene and ethyl acetate.

Figure 16: a) Side view of the solid-state structure of the capsule; b)CPK model of capsule; c) Detailed view of the square pattern of H -bonds. ${ }^{42}$

Figure 17: Encapsulation of toluene a) and ethyl acetate b) guest molecules in the molecular capsule. ${ }^{42}$

Toluene molecules establish $\pi \cdots \pi$ stacking interactions with the aromatic walls of the container and two $\mathrm{ArCH}_{2}-\mathrm{H} \cdots \pi$ interactions, the first one between the methyl group of the toluene and the aromatic wall of the macrocycle, and the second one between an aromatic CH group of toluene and an Ar group of the host (Figure 17a). Ethyl acetate is held in place by $\mathrm{CH}_{3} \cdots \pi$ interaction and weak H-bond between the carbonyl oxygen atom and the OH group of resorcin[6]arene - Figure 17 b .
For each pocket of the molecular capsule, an average volume of void space of $252 \AA^{3}$ was calculated by using VOIDOO software (see Experimental Section) - Figure 18. Volumes of toluene and ethyl acetate guests (VG) were also calculated with the same program, and resulted 96 and $85 \AA^{3}$, respectively. In the field of synthetic receptors, a single value parameter, the Packing Coefficient (PC), ${ }^{44}$ was introduced by Rebek and Mecozzi to simplify the assessment of complex stability for host-guest systems. It was found that the optimal PC value, defined as the ratio between the volume of the guest over the void volume of the receptor cavity, ranging from 46 to 64% ($0.55 \pm 0.09(55 \%)$), in the liquid state when weak intermolecular interactions (dispersion forces, van der Waals interactions) are presents.

Figure 18: Surfaces of the voids available in the solid-state structure of the capsule (purple).

This simple rule has been validated in a large number of synthetic host-guest systems in solution and has been also extended to biological receptors.
Thus, by the volumes data calculated by VOIDOO, we have estimated a PC of 96/252 $=0.38$ and $86 / 252=0.34$ for the solid-state inclusion of toluene and ethyl acetate, respectively, into the pockets of the molecular capsule.
Finally, the view along the c-axis showed the presence of parallel rows of resorcin[6]arene capsules linked by intermolecular H -bonds between the OH groups of adjacent resorcin[6] arene units (Figure19).

Figure 19: View of the one-dimensional self-assembly of molecular capsules along the c -axis.

In order to investigate the role played by the solvent in the solid-state self-assembly of the resorcin[6] arene molecules, we have performed a slow crystallization by DMF, a very strong competitor solvent for hydrogen bonding. In fact, the dimerization of $\mathbf{3}$ in the presence of DMF as crystallization solvent does not occur. X ray diffraction analysis shows the $\mathbf{3}$ adopts again a pinched cone conformation stabilized through six intramolecular H-bonds (Figure 20a).
Crystallization solvent has been included in crystalline lattice and six intermolecular hydrogen bonds are formed between the DMF molecules and OH groups of the resorcin[6]arene
molecules (Figure 20a). Each column arrangement of resorcin[6]arene (Figure 20b) runs parallel to the b-axis and is flanked by two other equivalent columns whose resorcinarenes cavities are oriented in the opposite direction - Figure 20b.

b)

d)

Figure 20: a) Resorcin[6]arene is surrounded by six DMF molecules interacting through intermolecular H -bonds; b) Columnar assembly of 3 viewed along the b axis; c) $\mathrm{CH} \cdots \pi$ interactions between the DMF guest molecules and the aromatic walls of host; d) Stacking of $\mathbf{3}$ and guest DMF molecules along the b -axis.

The columnar arrangements of $\mathbf{3}$ along the b-axis in Figure 20 b present voids between the stacked resorcinarenes which are filled with DMF molecules (Figure 20 c and 20 d) that estabilish $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Figure 20c) with the aromatic walls of $\mathbf{3}(\mathrm{C}-\mathrm{H} \cdots \pi$ distances ranging from $3.474(2)$ to $3.987(2)$ Å).
Crystallographic data for both capsular derivatives were reported in Table 1.

Table 1: Crystal structure informations.

	3 (Toluene/Ethyl Acetate)	3 (DMF)
CCDC code	CCDC 1458015	CCDC 1458012
Empirical formula	$\mathrm{C}_{48} \mathrm{H}_{48} \mathrm{O}_{12}, 0.5\left(\mathrm{C}_{7} \mathrm{H}_{8}\right),$ $0.5\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right), \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	$\mathrm{C}_{48} \mathrm{H}_{48} \mathrm{O}_{12},$ $6\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)$
Formula weight	995.08	1255.43
Temperature (K)	100(2) K	100(2) K
Wavelength (\AA)	0.7000	0.7000
Crystal system	Triclinic	Monoclinic
space group	$P-1$	$P 2_{1} / \mathrm{c}$
$a(\AA)$	11.91(1)	29.012(1)
b (\AA)	14.88(1)	7.058(2)
$c(\AA)$	16.83(1)	32.683(1)
$\alpha\left({ }^{\circ}\right)$	70.96(2)	90
$\beta\left({ }^{\circ}\right)$	87.2(1)	105.991(3)
$\gamma\left({ }^{\circ}\right)$	71.42(2)	90
$V\left(\AA^{3}\right)$	2668(3)	6433.4(18)
$\boldsymbol{Z}, \rho_{\text {calc. }}\left(\mathbf{M g} \cdot \mathrm{m}^{-3}\right)$	2, 1.239	4, 1.296
$\mu\left(\mathrm{mm}^{-1}\right)$	0.085	0.090
F(000)	1058	2688
Data collection θ range	1.263-25.000	$2.455^{\circ}-30.017^{\circ}$
Refl. collected / unique	48563 / 14544	56892 / 19593
Refinement method	FMLS on F^{2}	FMLS on F^{2}
Data / restraints / parameters	9245 / 13 / 744	18107 / 0 / 841
GOF	1.092	1.190
R_{1} indices [$1>2 \sigma(\mathrm{l})$]	0.1053	0.0760
$w R_{2}$ indices [$1>2 \sigma(\mathrm{I})$]	0.2673	0.2001
R_{1} indices (all data)	0.1087	0.0772
$w R_{2}$ indices (all data)	0.2730	0.2007

In conclusion, ${ }^{42}$ single crystals of the resorcin[6]arene macrocycle were obtained from a toluene/ethyl acetate solution and from a DMF solution. Two different crystal structures were achieved from different solvents and in both crystal forms, 3 adopts a pinched cone conformation (Table 1), very similar to that reported for the p-tert-butylcalix[6]arene. ${ }^{48}$ The pinched cone of the resorcin[6]arene $\mathbf{3}$ was stabilized by intramolecular H -bonds between OH groups. The crystal structure analysis of the triclinic form reveals that in the solid state the resorcin[6]arene assembles in a twin molecular capsule able to host toluene and ethyl acetate solvent molecules.

2.3 Synthesis of a TetrasulfateResorcin[6]arene Cavitand ${ }^{49}$

2.3.1 Resorcin[4]arene-based Cavitand: An Overview

Cavitands are macrocyclic hosts with enforced cavities and designed to preorganize the resorcin[4]arene cavity by blocking the interconversion between the different conformations (Figure 21). ${ }^{50}$

Generally, resorcin[4]arene cavitands are obtained by bridging the OH groups with appropriate spacers, such as, methylene, ${ }^{39}$ phosphonate, ${ }^{51}$ thiophosphonate ${ }^{52}$ and quinoxaline. ${ }^{53}$

In its pioneering work, ${ }^{54} \mathrm{Cram}$ for the first time reported the synthesis of resorcin[4]arene-based cavitands and the study of their conformational and supramolecular properties. Cram and coworkers highlighted the fundamental role played by bridges of different nature and length on the conformational mobility, shape, depth and recognition ability of this class of

[^19]compounds. ${ }^{54}$ Cram showed clearly that the introduction of methylene bridges between the proximal OH groups of $\mathbf{1}$ (Figure 21), led to the formation of a cavitand 11 (Figure 21) which was able to host appropriate guests complementary to its cavity, such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. ${ }^{54}$

Resorcin[4]arene

[4]Cavitand

11

Figure 21: Structural difference between resorcinarenes and cavitand.

Rebek ${ }^{55}$ reported in 1998 a novel class of cavitand named Velcrand ${ }^{56}$ (12 in Figure 22), which exhibit amazing supramolecular abilities as concerns the self-assembling in dimeric capsules and the molecular recognition and catalysis. 57

In details the cavitand $\mathbf{1 2}$ is able to dimerize in a cylindrical capsule $\mathbf{1 2} \cdot \mathbf{1 2}$ driven by the formation of eight bifurcate H bond interactions between self-complementary immide groups. ${ }^{6,46 b}$

[^20]

Figure 22: Tetraimmide cavitand 12 and its self-assembling in dimeric capsule sealed by 8 bifurcated H -bonds. ${ }^{55}$

Remarkable examples of cavitands have been reported by Dalcanale and coworkes ${ }^{56,57}$ which were able to bridge two vicinal hydroxyl group of $\mathbf{1}$ with phosphonate and thiophosphonate groups (derivatives 13 and 14 in Figure 23). ${ }^{51,52}$

13

14

Figure 23: Phosphonate and thiophosphate cavitands developed by Dalcanale's group. ${ }^{51,52}$

Tetraphosphonate resorcin[4]arene cavitands ${ }^{51}$ show recognition abilities toward N -methylated ammonium guests by virtue of H -bonding and dipole-dipole interactions between $\mathrm{P}=\mathrm{O}$ groups of $\mathbf{1 3}$ and the ammonium function of the guest. ${ }^{58}$ The recognition abilities of tetraphosphonate cavitands toward ammonium and alcohol guests have been exploited in gas sensing and cantilever-based chemical sensors (Figure 24).

[^21]

Figure 24: Top and side views of the crystal structures of the derivative $\mathrm{EtOH} \subset 13 .{ }^{58}$

The studies on resorcinarene-based cavitands, reported to date in the literature, are focused on tetramer, while limited information have been reported on larger resorcin[6]arene. These considerations led me to develop a new topic, regarding the synthesis of a resorcin[6]arene cavitand in which the proximal OH groups are bridged with sulfate groups ($\mathrm{R}-\mathrm{SO}_{2}-$ $\mathrm{R})$. The sulfate-bridge ($\mathrm{R}-\mathrm{SO}_{2}-\mathrm{R}$) can be considered as a supramolecular interacting group thanks to its H -bonds acceptor abilities and its inherent polarity. This project was also inspired by the diaryl sulfates synthetic route reported recently by Shi. ${ }^{59}$

2.3.2 Synthesis of Tetrasulfate Resorcin[6]arene Cavitand and NMR Investigation ${ }^{49}$

The treatment of $\mathbf{3}$ with N, N^{\prime}-sulfuryldiimidazole [(Im$)_{2} \mathrm{SO}_{2}$] and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in dry N, N-dimethylacetamide at $75^{\circ} \mathrm{C}$ for 60 h , gave bridged derivative $\mathbf{1 5}$ in 30% yield, after purification on silica gel - Scheme $4 .{ }^{49}$ MALDI FT-ICR mass analysis shows

[^22]a monoisotopic peak at $1087.0895 \mathrm{~m} / \mathrm{z}$ attributable to $[\mathrm{M}+\mathrm{Na}]^{+}$ of a tetrasulfate-bridged derivative (calculated: 1087.0888).

Scheme 4: Synthesis of 15.
The structure assignment of the $\left(\mathrm{SO}_{4}\right)_{4}$-bridged 15 was based on spectral ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data. Structural information can be related at just one of three possible $\left(\mathrm{SO}_{4}\right)_{4}$-bridged derivatives namely, 1,2,4,5-tetra-bridged 15, 1,2,3,4-tetrabridged $\mathbf{1 5}^{\prime}$, and 1,2,3,5-tetra-bridged $\mathbf{1 5}^{\prime \prime}$ - Figure 25.

15

15'

15"

Figure 25: The three possible regioisomers of a tetrasulfate-bridged resorcin[6]arene 15.

The ${ }^{1} \mathrm{H}$ NMR spectrum of 15 at $403 \mathrm{~K}(400 \mathrm{MHz}, \mathrm{TCDE})$ Figure 26, show the presence of two broad $\mathrm{ArCH}_{2} \mathrm{Ar}$ singlets at 4.05 and 3.94 ppm , in $2: 1$ ratio, two ArCH_{3} singlets at 2.29
and 2.42 ppm ($2: 1$ ratio), and finally two ArH signals in $2: 1$ ratio at 7.30 and 7.33 ppm . This ${ }^{1} \mathrm{H}$ NMR spectrum was only compatible with the symmetry of the $1,2,4,5$-bridging pattern of $\mathbf{1 5}$ in Figure 25.
 Figure 26: ${ }^{1} \mathrm{H}$ NMR spectrum of 15 (TCDE, $600 \mathrm{MHz}, 403 \mathrm{~K}$).

Surprisingly, VT NMR study shows that the cooling at 298 K (TCDE, 400 MHz) caused the freezing of two conformational isomers of 15 .
In fact, ${ }^{1} \mathrm{H}$ NMR spectrum of 15 at 298 K in Figure 27a and 2D COSY spectrum in Figure 27f, showed clearly that two independent sets of $\mathrm{ArCH}_{2} \mathrm{Ar} \mathrm{AX}$ systems were presents. In Figure 27a we marked in blue three AX systems in a $1: 1: 1$ ratio, attributable to the conformer $\mathbf{1 5 a}$ (in Figure 28d, e), while the second one in which two AX systems in a $2: 1$ ratio, (blue in Fig. 27a) are attributable to the conformer 15b (Figure 28a,c). Integration of the corresponding ${ }^{1} \mathrm{H}$ NMR signals evidenced a $50 / 50$ ratio for the two conformers $\mathbf{1 5 a}$ and $\mathbf{1 5 b}$.

As concerns the conformer 15b (Figure 28a, c), the presence of two methylene AX systems at 4.51/3.70 (8H) and 3.90/3.14 $(4 \mathrm{H}) \mathrm{ppm}$ in a $2: 1$ ratio (COSY spectrum, Figure 27f), suggested a conformation in which were presents two orthogonal symmetry planes bisecting the aromatic rings A and D of 15 (Figure 25) and the methylene bridges 3 and 6 in Figure 25. A Monte Carlo conformational search (MM3 force field, CHCl_{3} as solvent) suggested the conformation 15b in Figure 28a,b as the lowest energy structure compatible with these ${ }^{1} \mathrm{H}$ NMR signal pattern. In this conformation (Figure 28a,b) the resorcin[6]arene adopts again a pinched cone conformation and the four 8 -membered SO_{4}-rings (Figure 28a,c) adopt a boatchair conformation (the boat-chair shape is highlighted in red in Figure 28c), in analogy to the known $6 \mathrm{H}, 12 \mathrm{H}-$ dibenzo $[\mathrm{d}, \mathrm{g}][1,3]$ dioxocine ring. ${ }^{60}$
As concerns the conformer 15a, the presence of three $\mathrm{ArCH}_{2} \mathrm{Ar}$ AX systems at $4.55 / 3.75,3.62 / 4.22$ and $4.14 / 3.28 \mathrm{ppm}$ in a 1:1:1 ratio (COSY spectrum, in Figure 27f), is compatible with the presence of only one symmetry plane bisecting the aromatic rings A and D of $\mathbf{1 5}$ in Figure 25. A Monte Carlo conformational search (MM3 force field, CHCl_{3} as solvent) suggested the conformation 15a in Figure 28d as the lowest energy structure compatible with these ${ }^{1} \mathrm{H}$ NMR signal patterns. In this conformer, the resorcin[6]arene backbone adopts a pinched cone conformation with two adjacent 8membered SO_{4}-rings (Figures 28d,f), in a distorted-boat conformation (the distorted boat-shape of the 8 -membered ring is highlighted in red in Figure 28f). Such distorted-boat

[^23]conformation was already reported in calixarene derivatives containing $6 \mathrm{H}, 12 \mathrm{H}$-dibenzo $[\mathrm{d}, \mathrm{g}][1,3]$ dioxocine rings. ${ }^{61}$

Figure 27: Methylene region of the ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz , TCDE) of 15 at: (a) 298 K; (b) 313 K ; (c) 333 K ; (d) 363 K ; (e) 403 K. (f) Expansion of 2D COSY spectrum (TCDE, $600 \mathrm{MHz}, 298 \mathrm{~K}$) of derivative 15.

(d)

(f)

Figure 28: Lowest energy conformations (Monte Carlo conformational search, MM3, CHCl_{3} as solvent) of: a) top view of $\mathbf{1 5 b}$; b) side view of $\mathbf{1 5 b}$; \mathbf{c}) particular of the boat-chair conformation ${ }^{60}$ of the 8 -membered ring bearing the sulfate bridge; \mathbf{d}) top view of 15 a ; e) side view of 15 a ; f) particular of the distorted boat conformation ${ }^{61}$ of the 8 -membered rings bearing sulfate bridge in 15a.

High temperature ${ }^{1} \mathrm{H}$ NMR data show a coalescence for $\mathrm{ArCH}_{2} \mathrm{Ar} \mathrm{AX}$ systems of $\mathbf{1 5 a}$ and $\mathbf{1 5 b}$ at 333 and $363 \mathrm{~K}(400$ MHz), respectively. From these data an energy barrier of 15.4

[^24]and $16.5 \mathrm{kcal} / \mathrm{mol}$ was calculated ${ }^{62}$ for the conformational interconversion of $\mathbf{1 5 a}$ and $\mathbf{1 5 b}$, respectively.
In solution the conformational ratio $\mathbf{1 5 a} / \mathbf{1 5 b}$ is affected by the nature and polarity of the solvent. Thus, while in TCDE a 1:1 ratio was found, in $\mathrm{CD}_{3} \mathrm{CN}$ the symmetrical pinched conformation 15b, in which the four 8 -membered sulfate rings adopt a boat-chair conformation, is favored - Figure 28 - with respect to 15 a (at 298 K) with a $98 / 2$ ratio (measured by ${ }^{1} \mathrm{H}$ NMR signal integration).

Figure 29: Significant portions of the ${ }^{1} \mathrm{H}$ NMR spectra of: (top) 15 in TCDE $(298 \mathrm{~K}$, 600 MHz); (bottom) 15 in $\mathrm{CD}_{3} \mathrm{CN}(298 \mathrm{~K}, 600 \mathrm{MHz})$. Marked in blu and in red the ${ }^{1} \mathrm{H}$ NMR signals of the conformer 15b and 15a respectively.

Probably, the regular pinched conformation 15b in solution is templated by the acetonitrile solvent molecules that can occupy its two sub-cavities establishing secondary interactions.

This assumption was corroborated by the inspection of the solid-state structure of $\mathbf{1 5}$ obtained by X-ray analysis of a crystals formed by slow evaporation of an acetonitrile solution

[^25]of $\mathbf{1 5}$ Figure 28 f . - In the solid state the cavitand 15 adopts a pinched cone conformation in which the four 8 -membered sulfate rings adopt a boat-chair conformation ${ }^{60,61}$ - Figure 30. The central free OH groups establishes intramolecular H-bond (with an $\mathrm{O} \cdots \mathrm{O}$ distance of $2.7 \AA$) that stabilize the pinched conformation - Figure 30b. Interestingly, in the solid state, two acetonitrile molecules are included into the two sub-cavities of the pinched cone conformation of $\mathbf{1 5}$ where establish weak hydrogen-bond interactions $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{S}$ between the methyl group of the $\mathrm{CH}_{3} \mathrm{CN}$ and oxygen atom of the sulfate bridge (Figures 30a,d) with an average $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{S}$ distance of $3.32 \AA$ and an average $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{S}$ angle of $147.5 \AA$.

Figure 30: X-ray structure of tetrasulfate-resorcin[6]arene cavitand 15.

In addition, the methyl groups of $\mathrm{CH}_{3} \mathrm{CN}$ are involved in $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions with the aromatic rings of 15 with an average distance $\mathrm{C}-\mathrm{H} \cdots \pi^{\text {centroid }}$ of $3.55 \AA$.

Crystallographic data of derivative $\mathbf{1 5}$ was reported in Table 2.

Table 2: Crystal structure informations.

	Derivative 15
CCDC code	CCDC 1485235
Empirical formula	$\mathrm{C}_{48} \mathrm{H}_{40} \mathrm{O}_{20}, \mathrm{~S}_{4} 7\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)$
Formula weight	1352.42
Temperature (K)	100 K
Wavelength (\AA)	0.7000
Crystal system	Monoclinic
space group	P 21/n
$a(\AA)$	13.909(4)
b (\AA)	20.264(2)
$c(\AA)$	22.762(2)
$\alpha\left({ }^{\circ}\right)$	90(2)
$\beta\left({ }^{\circ}\right)$	91.41(3)
$\gamma\left({ }^{\circ}\right)$	90(2)
$V\left(\AA^{3}\right)$	6414(2)
$\boldsymbol{Z}, \rho_{\text {calc. }}\left(\mathbf{M g} \cdot \mathrm{m}^{-3}\right)$	4, 1.401
$\mu\left(\mathrm{mm}^{-1}\right)$	0.217
F(000)	2825
Data collection θ range	5.021-27.499

2.3.3 Molecular Recognition Ability

We investigate through NMR techniques the molecular recognition ability of the cavitand $\mathbf{1 5}$ toward di-cationic guests such as $\mathbf{1 , 8}$-DiammoniumOctane $\left(1,8-\mathrm{DO}^{2+}\right), \quad \mathbf{1 , 1 0 -}$ DiammoniumDecane ($1,10-\mathrm{DD}^{2+}$), and DiMethylViologen (DMV ${ }^{2+}$), as Tetrakis[3,5-bis(triFluoromethyl)Phenyl]Borate TFPB ${ }^{-}$salts - Figure 31. ${ }^{63}$

TFPB

1,8-DO ${ }^{2+} ; n=4$ 1,10-DD ${ }^{2+} ; n=6$
DMV ${ }^{2+}$

Figure 31: Guests tested toward derivative 15.

[^26]${ }^{1} \mathrm{H}$ NMR titrations were carried out in acetonitrile- d_{3}, were the regular pinched $\mathbf{1 5 b}$ was the most abundant conformer (98/2 ratio $\mathbf{1 5 b} / \mathbf{1 5 a}$), by increasing the [guest]/[host] ratio while keeping constant the host concentration at about $0.001 \mathrm{~mol} / \mathrm{L}$. In all instances, the host signals were observed as averaged single resonances because of the fast exchange on the NMR timescale between the free and bound state.

The addition of TFPB salt of $1,8-\mathrm{DO}^{2+}$ to a solution of host $\mathbf{1 5}$ caused a downfield shift of its NMR signals, indicative of the inclusion of the guest inside the aromatic cavity of 15 . In accord, molecular mechanics calculations revealed that in $1,8-$ $\mathrm{DO}^{2+} \subset \mathbf{1 5}$ complex the guest is linked to $\mathbf{1 5}$ via a two-point double-hydrogen bonding between $\mathrm{NH}_{3}{ }^{+}$and SO_{4} groups, while the host exhibits a regular pinched cone conformation Figure 34b.
The Job's plot for $\mathbf{1 5}$ toward $1,8-\mathrm{DO}^{2+}$ showed a maximum at a mole fraction of 0.5 , thus indicating a $1: 1$ binding stoichiometry - Figure 32b.

Figure 32: a) Plot of the observed downfield chemical shift of the $\mathrm{ArCH}_{2} \mathrm{Ar}$ of 15 as a function of added $1,8-\mathrm{DO}^{2+} ;$ b) Job's Plot experiment for the $1,8-\mathrm{DO}^{2+} \subset \mathbf{1 5}$ complex.

Likewise, a titration experiment was performed with TFPB salt of $\mathbf{1 , 1 0 - D D}{ }^{\mathbf{2 +}}$ but no appreciable interaction could be detected by NMR spectroscopy. Probably because of the its length, 1,10-DD ${ }^{2+}$ cannot form the two-point double-hydrogen bonding interaction with the sulfate bridges of $\mathbf{1 5}$.
Finally, titration and Job's plot with TFPB salt of $\mathbf{D M V}{ }^{2+}$ was performed - Figure 33. The formation of $\mathbf{D M V}{ }^{\mathbf{2}+} \subset \mathbf{1 5}$ complex was unequivocally confirmed by the base peak at $625.1068 \mathrm{~m} / \mathrm{z}$ (calcd. 625.1070) in the MALDI-FT-ICR mass spectrum in accordance with the molecular formula of the complex - Figure 34a.

Figure 33: a) Plot of the observed downfield chemical shift of the $\mathrm{ArCH}_{2} \mathrm{Ar}$ of 15 as a function of added DMV^{2+}; b) Job's Plot experiment for the $\mathrm{DMV}^{2+} \subset \mathbf{1 5}$ complex.

A close inspection of the energy-minimized (OPLS force field) structure of $\mathbf{D M V}{ }^{\mathbf{2 +}} \subset \mathbf{1 5}$ complex reveals that the positive N atoms of the guest are in close contact with SO_{4} bridges of $\mathbf{1 5}$ (average distance $\mathrm{N}^{+} \ldots \mathrm{O}=\mathrm{S}$ of $3.5 \AA$) to establish ion-dipole interactions - Figure 34c. Association constants was calculated to both guests through nonlinear regression analysis ${ }^{64}$ and a value of $600 \mathrm{M}^{-1}$ was calculated for the formation of $\mathbf{1 , 8}$ $\mathbf{D O}^{\mathbf{2 +}} \subset \mathbf{1 5}$ complex and $1200 \mathrm{M}^{-1}$ for $\mathbf{D M V}{ }^{\mathbf{2 +}} \subset \mathbf{1 5}$ complexes.

[^27]In conclusion we have reported the first example of resorcin[6]arene-based cavitand. Sulfate bridges play a double role, both, as structural element for the preorganization of the larger resorcin[6]arene macrocycle and as functional supramolecular interacting groups.
The structure of the tetrasulfate-cavitand $\mathbf{1 5}$ was assigned by 1D and 2D NMR studies. In addition, the recognition abilities of the tetrasulfate-cavitand toward diammonium guests were investigated by standard NMR methods and high-resolution mass spectrometry.

Figure 34: a) Significant portion of the HR MALDI FT-ICR mass spectrum of the DMV ${ }^{2+} \subset 15$ complex showing the isotopic envelop with a Δ spacing of $0.5 \mathrm{~m} / \mathrm{z}$; b) Minimized structures (molecular mechanics calculations, OPLS force field) of 1,8$\mathrm{DO}^{2+} \subset 15$ and c$)$ of $\mathrm{DMV}^{2+} \subset 15$.

As predicted, the sulfate-bridges play a crucial role in the interaction with 1,8-diammoniumoctane cation via a two-point double-hydrogen bonding between the ammonium groups and the sulfate bridges.
The resorcin[6]arene cavitand is also able to bind the dimethylviologen cation by means of ion-dipole interactions and high-resolution mass spectrometry prove the formation of host-guest complex.

2.4 Biomolecular Recognition with Larger Resorcin[6]arene Derivatives 65

2.4.1 Biomolecular Recognition with Macrocyclic Derivatives

Recently, many efforts have been focused on the study of the interactions between macrocyclic derivatives and biological druggable targets. ${ }^{66}$ The principal aim of these studies is the design of macrocyclic compounds active as anti-cancer agents. In a pioneering work, Hamilton and co-workers ${ }^{67}$ reported that calixarene derivatives bearing peptide-functions, were able to inhibit the tumor growth and angiogenesis in vivo, thanks to their selective binding to PDGF growth factor. Interestingly, the results of Hamilton and co-workers, also, showed a lack of toxicity of the calixarene framework in vivo biological tests. De Mendoza ${ }^{68}$ and co-workers synthesized a calixarene derivative bearing cationic tetramethylguanidinium groups and showed that this macrocyclic derivative was able to interact selectively with the tetrameric protein p53TD-R337H mutant through hydrophobic interactions, ion pairing, and hydrogen bonding. Neri ${ }^{69}$ and co-workers, obtained significant results in

[^28]the inhibition of the histone deacetylase inhibitors (HDACis) by calix[4]arene derivatives bearing amido-functions, and by molecular docking they showed that, van der Waals interactions between the large hydrophobic groups at the exo rim of the calixarene derivatives and the four external hydrophobic pockets on the enzyme surface were essential for the stabilization of the HDAC-calixarene complex. More recently, the same authors reported the inhibition of the PDI enzyme, by a calix[4]arene derivative bearing acetamido functions at the upper rim. ${ }^{70}$
Macrocyclic derivatives such as calixarenes and resorcinarenes, thanks their synthetic versatility, can be functionalized with a variable number of functions through which they can establish multiple interactions with biomolecular targets affording to efficient inhibition of druggable targets.

2.4.2 Multivalent Effect

Many natural systems establish multiple simultaneous interactions to perform their task efficiently. Starting from this idea, new types of molecules are developed, called Multivalent Systems, that can bind a biomolecular guest through multiple and non-covalent interactions. This is an interesting and alternative approach to the traditional lock/key strategy to access new selective and potent inhibitors. ${ }^{71}$

[^29]Generally, a multivalent system is composed by recognition units which are generally constituted by a known inhibitor of a druggable biomolecular target (blu in Figure 35), a central core (gray sphere in Figure 35) and appropriate spacers.
We can define the "valency" as the number of recognition units for a given compound. The high number of interactions result in an improved specificity and thermodynamic and kinetic stability compared to a simple monovalent interaction. Therefore, multivalent systems show affinity enhancement compared to the corresponding monovalent ligand. This behavior is called "multivalent effect". ${ }^{72}$
In order to quantify the multivalent effect, we can define the relative inhibitory potencies - RP (Relative Potency) - given by the ratio of the IC50 (half maximal inhibitory concentration) values of the monovalent unit and that of the multivalent compounds.

Figure 35: Possible binding modes in multivalent systems. a) Statistical rebinding, b) multiple non-specific interaction, c) secondary interactions between ligand and sterically encumbered substrate and d) clustering.

The second parameter is related to the affinity enhancement $\mathbf{R P} / \mathbf{n}$ - and it is defined as the ratio between RP and the number

[^30]of interacting units. We observe a multivalent effect when RP/n $\gg 1$.

In multivalent systems, play a crucial role the design of scaffolds bearing multiple recognition units in order to develop new and more efficient inhibitor. ${ }^{73}$ Macrocycles, such as calixarenes and resorcinarenes are a suitable choice, because they can be functionalized with a variable number of recognition units. Examples of calixarene-based multivalent systems ${ }^{74}$ have been reported by Ungaro and coworkers. ${ }^{75}$

2.4.3 Multivalent Systems for the Inhibition of Glycosidases

Tumors are associated with a variety of structural alterations in the size and composition of the carbohydrates of glycoconjugates on the tumor cell surface. ${ }^{76}$ The N-linked oligosaccharides on the cancer cell surfaces are larger and highly-branched. Oligosaccharide synthesis occurs in the endoplasmic reticulum, and is a process controlled by glycosidase enzymes. Naturally the glycosidases are involved in the malignant transformation of cells, and consequently specific glycosidases inhibitors may be promising candidates

[^31]for cancer chemotherapy. ${ }^{77}$ The use of glycosidase inhibitors to prevent the formation of aberrant N-Linked oligosaccharides through the inhibition of druggable-glycosidases has emerged as a promising frontier for identifying new therapeutic strategy against cancer.
Golgi α-mannosidase II (GMII) enzyme plays a central role in the mammalian N-glycosylation pathway, which constitutes a crucial step in the formation of mature glycans. The active site of GMII includes a Zn atom as part of the catalytic systems (Figure 36).

Figure 36: X ray structure of dGMII and magnification of catalytic site.

Natural pyrrolidine-based iminosugar as the 1,4-dideoxy-1,4-imino-D-arabinitol (DAB-1), extracts by Angylocalyx boutiqueanus, - Figure 37, has shown excellent inhibition properties toward α-glucosidase II and Golgi-mannosidases I and II.

[^32]

Figure 37: Multivalent system synthetized by Prof. Cardona. ${ }^{78}$

Recently, Cardona and coworker have reported the multivalent system 16, (Figure 37) bearing nine DAB-1 units which shows a very high RP / n value of $1520 .{ }^{78}$
These results prompted us to consider the design of a resorcin[6]arene-based multivalent system for the inhibition of glycosidase. Since, the introduction of a unit DAB-1 on each OH group of the resorcin[6]arene $\mathbf{3}$ could lead to the synthesis of a multivalent system bearing 12 recognition units DAB-1. ${ }^{79}$ On the basis of these considerations, in collaboration with Prof. Francesca Cardona of University of Florence, we have developed the new resorcin[6]arene-based multivalent derivative bearing DAB-1 units in Figure 38.
The synthetic strategy is based on the CuAAS cycloaddition between the azide 17 (synthesized by Cardona's group) and the

[^33]resorcin[6]arene derivative 20 bearing propargyl groups Figure 38 .

17

Figure 38: Catalytic strategy for obtaining the multivalent resorcin[6]areene-based system 23.

In addition, resorcin[4]arene-based imminosugars 22 and 24 at lower valence (eight) were synthesized in order to compare their biological activities with that of the derivative 23. Finally, biological assays were performed by Sergej Sestàk from Institute of Chemistry, Center for Glycomics of Slovak Academy of Sciences.

2.4.4 Synthesis and Characterization

In the first step, derivatives $\mathbf{1 0}, \mathbf{1 8}$ and $\mathbf{3}$ were alkylated using propargyl bromide and potassium carbonate as base and all the derivatives were obtained with a good yield - Scheme 5.
${ }^{1} \mathrm{H}$ NMR spectrum of derivative 21 (acetone- $d_{6}, 400 \mathrm{MHz}, 298$ K) shows a doublet at 4.48 ppm attributable to OCH_{2} and a triplet for $\mathrm{C} \equiv \mathrm{CH} \mathrm{H}$-atom at $3.04 \mathrm{ppm}(J=3.2 \mathrm{~Hz})$.

Scheme 5: Synthesis of derivative 19, 20 and 21.

The singlet at 3.89 ppm , attributable to $\mathrm{ArCH}_{2} \mathrm{Ar}$ groups, is the proof of the fast rotation of the aromatic rings through the annulus and of the high conformational mobility of the macrocycle at room temperature - Figure 39a.

Figure 39: ${ }^{1} \mathrm{H}$ NMR spectra of: a) Derivative 21 (acetone- $d_{6}, 400 \mathrm{MHz}, 298 \mathrm{~K}$), b) Derivative 19 (DMSO, $600 \mathrm{MHz}, 298 \mathrm{~K}$) and c) Derivative 20 (acetone- $d_{6}, 300 \mathrm{MHz}$, 298 K).

Likewise, derivate 20 (acetone- $d_{6}, 300 \mathrm{MHz}, 298 \mathrm{~K}$) shows a doublet at 4.40 ppm for OCH_{2}, a triplet at 3.03 ppm for $\mathrm{C} \equiv \mathrm{CH}$ $(J=1.8 \mathrm{~Hz})$ and finally at 3.89 ppm the singlet attributable to $\mathrm{ArCH} \mathrm{H}_{2} \mathrm{Ar}$ - Figure 39c.
In accord with the spectroscopic data reported in literature for 19, ${ }^{\mathbf{8 0}}$ the ${ }^{1} \mathrm{H}$ NMR spectrum of derivative 19 (DMSO, 600 $\mathrm{MHz}, 298 \mathrm{~K}$) shows a doublet at 4.58 ppm for the $\mathrm{ArCH}\left(\mathrm{CH}_{3}\right) \mathrm{Ar}$ that is partially overlapped with the OCH_{2} signals at 4.44 ppm . At 1.33 ppm we observe a doublet attributable to CHCH_{3} while the triplet at 3.47 ppm is attributable to the $\mathrm{C} \equiv \mathrm{CH}(J=2.4 \mathrm{~Hz})$ group- Figure 39 b .

A High-Resolution MALDI Fourier-Transform ion cyclotron resonance (MALDI-FT-ICR) mass spectum shows a monoisotopic ion peak for the derivative $\mathbf{1 8}$ at $\mathrm{m} / \mathrm{z} 849.3492$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]$(calculated: 849.3422) and for derivative 20 at m / z $1273.5121\left[\mathrm{M}+\mathrm{H}^{+}\right]$(calculated: 1273.5097).

Derivatives 22, 23 and 24 were obtained by reaction of the corresponding propargylated resorcinarene derivatives with the azide $\mathbf{1 7}$ in the presence of CuSO_{4}, ascorbic acid in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ in ACE tube and irradiate with microwave at $80^{\circ} \mathrm{C}$ for 45 min - Scheme 6.

The purification of the derivatives thus obtained, was performed through column chromatogrpahy on silica gel using an ammonia solution in MeOH as liquid phase in order to eliminate $\mathrm{Cu}(\mathrm{I})$ that could interfere with biological essays.
${ }^{1} \mathrm{H}$ NMR of $24\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$ - Figure 40 - shows a singlet at 7.78 ppm attributable to the triazole cycle and two

[^34]signals attributable to the diastereotopic CH_{2} at 2.81 and 2.32 ppm (see 2D-HSQC in experimental detail). Alkyl chain signals can be assigned trough 2D COSY at 1.47, 1.29 (32 H), 1.86 and 4.34 ppm - Figure 41.

Scheme 6: Synthesis of glycoconjugates 22, 23 and 24.

Figure 40: ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{2 4}\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 41: Magnification of 2D COSY spectrum of derivative 24. Signals of coupling between CH_{2} of alkyl chain were marked ($\left.\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

MALDI FT-ICR mass spectrum of 24 shows a peak for $[24+\mathrm{H}]^{+}$at $m / z 2915.6992$ (calculated: 2915.6991) that confirms the molecular formula of 24 . MALDI FT-ICR
investigation after and before the chromatographic purification shows clearly the the eluition of the sample of 24 with an ammonia solution in MeOH is effective in removing Cu^{+}. Mass spectrum performed before of the purification - Figure 42a exhibits four isotopic patterns attributable to $\left[\mathbf{2 4}+\mathrm{H}^{+}\right]$, $\left[\mathbf{2 4}+\mathrm{Na}^{+}\right],\left[\mathbf{2 4}+\mathrm{K}^{+}\right]$and $\left[\mathbf{2 4}+\mathrm{Cu}^{+}\right]$species. ${ }^{81}$ After purification we can observe only the peaks of the $\left[24+\mathrm{H}^{+}\right],\left[24+\mathrm{Na}^{+}\right]$and $\left[24+\mathrm{K}^{+}\right]$complexes - Figure 42b.
For the derivative 24 a specific rotation value of $\alpha=-21.0^{\circ}$ (c $=4.1 \mathrm{mg} / 1$ in metanol) was measured.

Figure 42: Portions of MALDI FT-ICR of derivate 24 a) before purification and b) after purification purification through chromatography column performed with ammonia solution in MeOH .

[^35]${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of derivative 23 is reported in Figure 43. MALDI FT ICR spectrum of $\mathbf{2 3}$ shows a monoisotopic signal $\left[\mathbf{2 3}+\mathrm{Na}^{+}\right]$at $m / z 4395.5286$ (calculated: 4395.5910). A specific rotation value of $\alpha=-33.50^{\circ}$ was measured for 23 ($c=1.9 \mathrm{mg} / \mathrm{l}$ in metanol).

Figure 43: ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{2 3}\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

2.4.5 Biologica Essays

Biological tests were performed toward three α-mannosidases and particularly Jack Bean α-mannosidase (JBMan), Golgi α mannosidase (GMII) and lysosomal α-mannosidases (LManII) and two glucosidases: α-Glucosidase and Amyloglucosidase.
For each enzyme was calculated the relative potency (rp) and relative potency per active unit (rp/n) and the values are reported in Table 3 and 4.

Table 3: $\mathrm{IC}_{50}, \mathrm{rp}$ and rp / n values measured for α-Mannosidases.
α-Mannosidases

		JBMan		GMIIb		LManII	
Compound	Valency	IC $_{\mathbf{5 0}}$	rp $(\mathbf{r p} / \mathbf{n})$	IC $_{\mathbf{5 0}}$	rp $(\mathbf{r p} / \mathbf{n})$	IC $_{\mathbf{5 0}}$	rp $(\mathbf{r p} / \mathbf{n})$
DAB-1	1	1300	-	175	-	2450	-
$\mathbf{2 4}$	8	14.5	$88(11)$	5.3	$33(4.1)$	865	2.8 (0.35)
$\mathbf{2 3}$	12	3.8	342 (29)	1.7	103 (8.6)	523	$4.7(0.4)$
$\mathbf{2 2}$	8	5.3	248 (31)	3.7	$47(6)$	173	$14(1.8)$

Table 4: $\mathrm{IC}_{50}, \mathrm{rp}$ and rp / n values measured for Glucosidases.
Glucosidases

		α-Glucosidase		Amyloglucosidase	
Compound	Valency	$\mathbf{I C}_{\mathbf{5 0}}$	$\mathbf{r p}(\mathbf{r p / n})$	$\mathbf{I C}_{\mathbf{5 0}}$	$\mathbf{r p}(\mathbf{r p} / \mathbf{n})$
DAB-1	1	153	-	8	-
$\mathbf{2 4}$	8	29.3	$5.2(0.65)$	0.31	$26(3.3)$
$\mathbf{2 3}$	12	15.3	$10(0.8)$	0.2	$41(3.4)$
$\mathbf{2 2}$	8	10.8	$14(1.8)$	0.38	$21(2.7)$

The results reported in Tables 3 and 4 evidence that all the resorcinarene derivatives have a good inhibitory activity. The most important result regards the high selectivity of the derivatives 22-24 toward GMIIb mannosidase with respect to LManII, as expressed for both IC50 and rp/n values: this selectivity plays a crucial role for anti-cancer applications. Both JBMn and GMIIb are prone to accept multivalent inhbitors, in fact RP/n values are large in both cases. Finally, the multivalent resorcin[6] arene derivative 23 gave an, very promising, IC50 value toward GMIIb of $1.7 \mu \mathrm{M}$.

3 Synthesis of New CycloParaPhenylene Macrocycles and Studies of Their Properties

3.1 Carbon Nanobelt and Carbon Nanohoops: An Overview

An ancient and fascinating challenge in macrocyclic chemistry is the synthesis of carbon nanobelts and carbon nanohoops (Figure 44). ${ }^{82}$ Belt and hoop-like macrocycles are constituted by fully conjugated π systems that possess electronics and optical features of interest for applications in organic electronics and photonics. ${ }^{83}$

Figure 44: Examples of Carbon Nanohoop and Carbon Nanobelt.

[^36]Belt-shaped macrocycles (Figure 44 - derivatives 25 and 26) are constituted by fused benzene rings, and initially were of interest as synthetic challenge. ${ }^{84}$ Thus, as example given, the cyclacene (Figure 44), the shortest belt segment of zigzag CNTs, was only theorized in literature in 1954. ${ }^{55}$ Many scientists have attempted the synthesis of the cyclacenes, among them, Stoddart, ${ }^{86}$ Schlüter, ${ }^{87}$ and Cory, ${ }^{88}$ but unsuccessfull. Analogously, Vögtle ${ }^{89}$ proposed a nanobelt (Vögtle's belt), which can be considered as a segment of armchair CNTs, and analogously to cyclacene, the Vögtle's belt has never been synthesized. Very recently, in an impressive work, $\operatorname{Itami}^{25}$ and coworkers has reported the synthesis of a macrocyclic carbon nanobelt, constituted by a closed loop of fully fused edge-sharing benzene rings. The nanobelt 25 has been obtained by iterative Wittig reactions followed by a nickel-mediated aryl-aryl coupling reaction.
In the last decade, ${ }^{90}$ many attentions have been devoted to the synthesis of macrocyclic carbon nanorings, in which arene rings are linked by single bonds. Among, the carbon nanorings, the [n]CycloParaPhenylenes ([n]CPPs, Figure 44) are fully conjugate macrocycles constituted by n para-linked benzene

[^37]units. ${ }^{91}$ The cyclic structure of CPPs induces a high energy strain in these macrocycles. As shown by DFT calculations at the B3LYP/6-31G(d) level of theory, ${ }^{92}$ a dramatic increase of energy strain was calculated as the diameter of CPP decreases. For example, [12]CPP has an energy strain approximately of 4 kcal mol^{-1} for aryl ring, while [5]CPP (the smallest of the series) has a $24 \mathrm{kcal} \mathrm{mol}^{-1}$ of energy strain for aromatic ring. The structural parameters, $\boldsymbol{\alpha}, \boldsymbol{\beta}$ and $\boldsymbol{\theta}$ angles represented in Table 5, are indicatives of the strain of the CPP derivatives: $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ values decreases as the dimensions of the CPPs became larger, while the torsion angle $\boldsymbol{\theta}$ increases as the CPP become larger, until to reach similar values to those of the linear p polyphenylenes. ${ }^{93}$

Table 5: Calculated bending and torsional angles for CPPs. ${ }^{94}$

$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{1 8}$	$\mathbf{2 0}$			
$\mathbf{n} \boldsymbol{\mathbf { C P P }}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{1 0}$					
$\boldsymbol{\alpha}$	12.5	9.3	7.3	6.1	5.2	4.6	4.0	3.6
$\boldsymbol{\beta}$	18.0	13.7	11.1	9.3	8.0	6.9	6.3	5.6
$\boldsymbol{\theta}$	27.4	30.7	32.7	33.4	34.4	35.0	34.9	35.1

[^38]The structural size-depending properties, previously summarized, are closely interconnects with the optoelectronic features of CPP derivatives. As shown in Figure 45, the right balance between the bending and torsional effects influences the HOMO-LUMO energy gap of CPPs. ${ }^{94}$

Figure 45: Contribution of the structural effects on HOMO (LUMO energy levels. ${ }^{91}$

As CPP becomes larger, then the HOMO-LUMO energy gap increases as result of the stabilization of the HOMO level and destabilization of the LUMO level: vice versa, CPPs show a narrowing of the HOMO-LUMO gap as the number of benzene units n decreases, as shown in Figure 46.

Figure 46: Comparison of the HOMO-LUMO band-gap between the CPPs and the linear paraphenylenes. ${ }^{91}$

[^39]Differntly, the linear paraphenylenes show a narrowing of the HOMO-LUMO gap as n (Figure 46, blu) and conjugation length is increased, as reported in Figure $54 .{ }^{84}$ It is clear that, these aspects influence the optoelectronic properties of CPP macrocycles. In details, regarding the optical properties, the [512]CPPs have a common absorption maximum between 335340 nm (Figure 47).

Figure 47: Absorpion spectra (full line) and fluorescence spectra (dashed line) of [5-12]CPPs. ${ }^{91}$

In fact, as reported, ${ }^{95}$ the HOMO-LUMO optical transitions in CPPs are Laporte forbidden because of the conservation of orbital symmetry for the centrosymmetric CPPs (Figure 48). In details, the absorbance maxima for all [n]CPPs derivatives are almost identical and have been attributed to degenerate HOMO-1 to LUMO or HOMO-2 to LUMO transitions, and HOMO to LUMO+1 or HOMO to LUMO+2 transitions.

[^40]

Figure 48: Representation of orbital distribution of transition density. The black arrows rappresent transition dipole moment. ${ }^{95}$

Fluorescence spectra are red-shifted when CPP become smaller while no fluorescence is observed for [6] and [5]CPPs - Figure 47. In addition, as reported in Table 6 the quantum efficiency decreases as the CPP macrocycle become smaller. These observations have been explained performing time-dependent density functional theory studies (TD-DFT). In detail, because of a violation of the Frank-Condon principle, the relaxation from S_{2} and S_{3} states to S_{1}, state occurs.

Table 6: Summary of experimental photophysical properties for [5]-[12]CPP ${ }^{91}$

$[\mathbf{n}] \mathbf{C P P}$	Diameter $(\mathbf{n m})$	Absorbance $(\mathbf{n m})$	Fluorescence $(\mathbf{n m})$	Stoke Shift $(\mathbf{n m})$	Fluorescence Quantum Yield	Extinction coefficient $\left(\mathbf{M}^{-1} \mathbf{c m}^{-1}\right)$
5	0.67	335	--	--	--	$5.7 \cdot 10^{4}$
6	0.79	340	--	--	--	N.A.
7	0.95	340	587	247	0.007	$6.9 \cdot 10^{4}$
8	1.1	340	533	193	0.1	$1.0 \cdot 10^{5}$
9	1.2	340	494	154	0.38	$1.2 \cdot 10^{5}$
10	1.4	338	466	128	0.65	$1.3 \cdot 10^{5}$
11	1.5	340	458	118	0.73	$1.3 \cdot 10^{5}$
12	1.6	339	450	111	0.81	$1.4 \cdot 10^{5}$

Interestingly, in larger [n]CPPs (with $\mathrm{n}>7$) the S_{1}, state breaks the symmetry of the ground state - Figure 48 - causing emission to the S_{0} state and consequently a decreasing quantum
efficiency and redshifting fluorescence from [12]CPP to [7]CPP were observed. In smaller [5 and 6]CPPs the S_{1}, state conserves the symmetry of the ground state and so emission to the S_{0} state doesn't occurs and no fluorescence is observed.

3.1.1 Synthesis of Cycloparaphenylenes

As previously discussed, the [n]CPPs derivatives are highly curved nanohoops which suffer of a high level of strain and consequently the direct macrocyclization from linear paraphenylenes has never been observed. ${ }^{96}$ Consequently, the synthetic strategies adopted for the synthesis of CPPs, by Justi, Yamago and others, ${ }^{96}$ provide for macrocyclization between rigidly-curved elements ${ }^{96}$ as masked benzene rings and successive aromatization of the macrocyclic precursors. On this basis, the first syntheses of CPPs - Scheme 10 - has been reported by Jasti and Bertozzi in 2008. ${ }^{24}$ In the synthesis of Jasti and Bertozzi (Scheme 7), the key intermediate is the rigidly-curved derivative 28, incorporating the 3,6-syn-dimethoxy-cyclohexa-1,4-diene unit as a masked benzene: in fact the diene was aromatized after the macrocyclization by treatment with sodium naphthalide. ${ }^{96}$
Derivative 28 was obtained by double addition of monolithium reagent (obtained from 1,4-diiodobenzene) at 1,4benzoquinone. Diiodide 28 was transformed in diboronate 29 and subsequently, hemicyclic derivatives 28 and 29 was coupled through Suzuki-Miyaura cross-coupling to give three macrocycles: 33, 34 and 35 constituted by nine, twelve and eighteen units respectively. Treatment with sodium naphthalide (that was found to be an excellent solution to

[^41]reduce oxidized cyclic compounds) gave final CPP derivatives with good yields. ${ }^{24}$

Scheme 7: Jasti synthetic route. ${ }^{24}$

The discovery of an efficient route to obtain CPP derivatives, gave a new thrust to improve this procedure and to discover of new ones. Similarly, were synthesized selectively [7-12] CPP. ${ }^{97}$ In 2012 Jasti reported a cheaper gram-scale synthesis of [8] and [10] CPPs - Scheme $8 .{ }^{98}$
In the gram-scale synthesis of Jasti, ${ }^{87}$ a crucial role is played by derivative 36 which can be synthesized in large quantities. Derivative 36 (bears two cyclohexadiene rings) was reacted with 29 to give macrocycle 39 with 50% of yield. Likewise, diboronate 38 (obtained from 36) was coupled to give derivative 40 with 44% of yield. In order to minimize the cost of production, $\mathrm{Pd}(\mathrm{OAc})_{2}$ has been used as catalyst for the crosscoupling macrocyclization. Finally [8]CPP and [10]CPP was obtained in 75% and 65% of yield respectively in reductive aromatization reaction.

[^42]

Scheme 8: Gram-Scale syntesis of [8] and [10]CPP reported by Jasti. ${ }^{98}$
In 2009 Itami and co-workers have investigated the synthesis of [12]CPP. ${ }^{99}$

Scheme 9: Itami synthetic route. ${ }^{99}$

[^43]Synthetic strategy is based on the use of cis-cyclohexane-1,4diyl units - Scheme 9. Derivatives 43 and 44 was obtained through Suzuki-Miyaura cross-coupling and final aromatization reaction was performed by microwave with p toluenesulfonic acid.
Finally, in 2010 Yamago achieved the first selective synthesis for [8]CPP, the smallest cycloparaphenylene at the time. Differently from two previously strategies, Yamago reduce the synthetic step through directly formation of tetranuclear platinum complex 45 - Scheme 10. ${ }^{100}$
Reductive elimination reaction gave [8]CPP with 49 \% of yield but with disadvantages of limited scalability. Similar strategy can be performed in order to obtain [8]-[13] CPP in selective way. ${ }^{101}$

45
Scheme 10: Yamago synthetic route. ${ }^{100}$

[^44]
3.2 Application of [n]CPPs

3.2.1 Seeds for Carbon Nanotubes

Carbon nanotubes (CNTs) are intriguing materials that showed interesting features in different fields (electronics, optics, material science, etc.) and many efforts have been devoted to study them. ${ }^{102}$
Carbon nanotubes can be divided on the base of three fundamental parameters: i) diameters, ii) number of walls and iii) chirality, respectively show in Figure 49 in a, b and c. The difference in optoelectronic properties of these materials is closely relate to these structural properties. ${ }^{103}$

Figure 49: Different structural properties of carbon nanotubes.

CPPs can be seen as the shortest cyclic unite of armchair carbon nanotube and on this basis the scientists have envisioned a template synthesis of single-walled of CNT starting by CPPs. ${ }^{104}$

[^45]In 2013 Itami published the elongation of carbon nanotube starting from [12]CPP trough Chemical Vapor Deposition and using ethanol like carbon source - Figure 50. The authors showed that the lack of perfect diameter and chirality is limited, and the scalability of the process can be improved. ${ }^{97}$

In 2016 Jasti explored the Dies-Alder reaction as new strategy to elongate carbon nanotube starting by perylene-incorporated CPP derivatives using nitroethylene which acts as a masked acetylene equivalent. ${ }^{105}$

Figure 50: Schematic presentation of the elongation experiments to obtian CNT starting frrom [12]CPP. The reaction plate was placed in the heated chamber at 500 ${ }^{\circ} \mathrm{C}$ for 15 minutes with a flow of ethanol gas. ${ }^{104}$

3.2.2 Molecular Recognition Abilities of [n]CPPs

The appealing structure of the $[n]$ CPP macrocycles and their optoelectronic properties are of interest for their applications as host in molecular recognition processes. The π-electron rich aromatic cavity of CPPs should interact with a wide range of substrates to give very interesting supramolecular phenomena. The first example was report by Yamago in 2011^{106} in which

[^46]the molecular recognition ability of different size CPPs toward Buckminsterfullerene were investigated. NMR investigation revealed the high selectivity of [10]CPP toward Fullerene C60 and fluorescence titration allowed the calculation of the association constant. ${ }^{106}$ Solid state investigation shown a peapod structure where the guest was hosted inside the cavity of CPP through $\pi-\pi$ interactions with the π-elctron rich aromatic cavity of the CPP host- Figure 51a. ${ }^{62}$
Similarly, was studied the complexation of the Fullerene-C70 with the [11]CPP.
X ray studies show clearly that in the $\mathrm{C} 70 \subset[11] \mathrm{CPP}$ complex the CPP host adopts a peapod structure in which the nanoring is distorted owing induced-fit phenomenon - Figure 51b. ${ }^{107}$

Figure 51: Peapod structures of a) $\mathrm{C} 60 \subset[10] \mathrm{CPP}$ and b) $\mathrm{C} 70 \subset[11] \mathrm{CPP}$. ${ }^{106,107}$

[^47]
3.3 Tuning Cycloparaphenylene Host Properties by Chemical Modification ${ }^{108}$

Cycloparaphenylenes was discovered in 2008 and they are excellent candidates for applications in nanoelectronics and photonics. Poorly investigated are the molecular recognition ability of these macrocycles. Fullerene C60 and C70 was studied recently, ${ }^{106,107}$ but at the date, there isn't informations regarding the recognition abilities of CPPs toward small organic molecules. Among the guests of interest in supramolecular chemistry, the ammonium organic cations ${ }^{109}$ play a pivotal role for the synthesis of interpenetrated architectures ${ }^{110}$ and molecular machines. ${ }^{111}$ Prompted by these considerations, and with the aim to obtain a CPP host for the recognition of pyridinium guests, a topic of this PhD project has been devoted to the synthesis of CPP derivative 46, bearing an electron-rich 1,4-dimethoxybenzene ring, which is well

[^48]known ${ }^{111}$ for its affinity toward pyridinium guests, and to the study of its recognition properties. ${ }^{97}$ - Figure 52.

46

Figure 52: Derivative 1,4-DMB-[8]CPP 46 and organic cationic guests investigated in this work.

3.3.1 Synthesis and Characterization of 1,4-DMB-[8]CPP

The synthesis of the [8]CPP derivative 46 incorporating a 1,4dimethoxybenzene unit (1,4-DMB-[8]CPP, Figure 52) was obtained through a modification of the gram-scale synthesis of CPPs reported by Jasti. ${ }^{98}$ Diboronic pinacol ester 50 incorporating the 1,4-dimethoxycyclohexa-1,4-dienyl unit was synthetized through the synthetic scheme outlined in Scheme 11.

2,5-dimethoxy-(1,4)-benzoquinone (47), commercially available, was allowed to react with mono aryl-lithium derivate (obtained by 1,4-dibromobenzene) to give derivative 48 with 65% of yield. Hydroxyl groups of 48 was protected by methylation performed with MeI and NaH to give the derivative 49. Finally, this compound was treated with $n-\mathrm{BuLi}$ in dry THF and isopropyl pinacol borate at $-78^{\circ} \mathrm{C}$ to give, after chromatographic purification the derivative 50 in 53% of yield. Suzuki-Miyaura cross-coupling between the dibromide

36 and the diboronic pinacol ester 50 afforded to the macrocycle 51 in 31% yield - Scheme 12 .

48

Scheme 11: Synthetsis of diboronic pinacol ester 50.

MALDI-FT-ICR mass spectrum exhibits an molecular ion peak of $[\mathrm{M}]^{+}$at $m / z 668.2708$ (calculated: 668.2710) in accord with the molecular formula of 51.
${ }^{1} \mathrm{H}$ NMR spectrum of 51 in Figure $53\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right.$ at 298 K) shows four singlets attributable to the OMe groups between 3.40 and 3.66 ppm and a $\mathrm{C}=\mathrm{CH}$ singlet for the $1,4-$ dimethoxycyclohexa-1,4-dienyl unit of $\mathbf{5 1}$ at 5.06 ppm . Between 6.05 and 6.15 ppm can be observed the vinyl protons of the cyclohexyl moieties and finally the aromatic signals of 51 were detected between 7.13 and 7.53 ppm . FT-ICR mass spectrum shows a monoisotopic peak of $[\mathrm{M}+\mathrm{Ag}]^{+}$at m / z 961.2859 (calculated: 961.2870).

Scheme 12: Synthesis of derivatives 51 and 46.

Figure 53: ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $51\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Derivative 51 was reduced with SnCl_{2} and HCl in degassed THF to give the CPP 46 in 56% yield - Scheme 15. ${ }^{1} \mathrm{H}$ NMR spectrum of 46 - Figure $54-\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right.$ at 298 K) shows the loss of three OCH_{3} singlets of the cyclohexadienyl unit. One singlet was presents at 3.73 ppm attributable to the OMe group of 46, which correlated in the HSQC spectrum with a carbon resonance at 57.1 ppm .
The aromatic protons of the 1,4-dimethoxybenzene unit resonated as a singlet at 6.83 ppm . A careful interpretation of the DQF-COSY spectrum showed the presence of an AB system at 7.41 and $7.59 \mathrm{ppm}(J=8.7 \mathrm{~Hz})$ attributable to the benzene $\mathrm{Ar} H$ rings adjacent to the substituted 1,4-DMB-unit.

Figure 54: ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $46\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.
${ }^{1}$ H VT NMR experiments - Figure 55 - showed a broadening of AB system previously described upon lowering the temperature, with a coalescence at 223 K . Below 223 K , two AX systems emerged, attributable to a / b and $\mathrm{a}^{\prime} / \mathrm{b}^{\prime}$ protons in Figure 55 b , in accordance with a slowdown of the rotation
around the benzene-benzene bonds. The analysis of the ${ }^{1} \mathrm{H}$ VT and ${ }^{13} \mathrm{C}$ NMR spectra of 46 is in accordance with its dissymmetric structure of $\mathbf{4 6}$ due to the presence of a C_{2}-axis passing through the substituted ring and the distal benzene unit.

Figure 55: (right) $\mathrm{T}>223 \mathrm{~K}$ rapid isomerization process with respect to the NMR time scale (600 MHz): $a=a^{\prime}$ and $b=b^{\prime} . T<223 \mathrm{~K}$, slow isomerization with respect to the NMR time scale, $a \neq a$ ' and $b \neq b$ '. (left) Aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum of $46\left(600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ at a) 183 K, b) 223 K , and c) 298 K

Derivative 46 is free from stereogenic carbon atoms and its chirality arises from the nonplanar structure which loses symmetric planes because of the para-relationship between the two methoxy groups. ${ }^{112}$ Notably, as evidenced in Figure 55, the rapid rotation with respect to the NMR time scale $(600 \mathrm{MHz})$

[^49]around the biphenyl bonds affords to a fast isomerization of 46. From the coalescence temperature of 223 K (Tc), an energy barrier ${ }^{113}$ of $10.1 \mathrm{kcal} / \mathrm{mol}$ was deduced for this isomerization process (with the equation reported below).
$$
\Delta G_{\mathrm{c}}^{\neq}=a T_{c}\left[9.972+\log \left(\frac{T_{c}}{\sqrt{\Delta v^{2}+6 J^{2}}}\right)\right]
$$

Finally, a close inspection of the DFT optimized structure of 46 at the B3LYP/6-31G(d,p) level of theory shows an average dihedral angle of 33° between the substituted $1,4-\mathrm{DMB}$ ring and the adjacent benzene rings, while a torsion angle of 30° was found for the other biphenyl bonds of the CPP hoop.

3.3.2 Optoelectronic Features of 46

Optoelectronic characterization of 46 was performed through cyclic voltammetry and UV-Vis and fluorescence spectroscopy.
In the first instance, cyclic voltammetry measurements were performed using
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as solvent and TBAP as the electrolyte.
All measured potentials were referenced to the platinum quasireference electrode potential which has been calibrated with the ferrocene/ferrocenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) redox couple. Derivative 46 showed an oxidation half-wave at a potential of 0.50 V , lower than that 0.59 V reported for [8]CPP (Figure 56a).
The UV-Visible spectrum of 46 shows the absorbance maximum at $\lambda_{\text {abs }}=340 \mathrm{~nm}$ and a coefficient of molar extinction

[^50]of $\varepsilon_{340}=57000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$, five times greater than the [8]CPP. Fluorescence maximum at $\lambda_{\mathrm{em}}=542 \mathrm{~nm}$, with quantum yield $\Phi=0.42$ (quinine sulfate as standard), a value higher than that reported for [8]CPP $(\Phi=0.10)$ (Figure 56b).

Figure 56: a) Cyclic voltammetry of $\mathbf{4 6}$ (vs $\mathrm{Fc} / \mathrm{Fc}+$); b) Absorbance (red line) and fluorescence (green line) spectra of 46 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($\lambda_{\text {exc }}=340 \mathrm{~nm}$ and $\varepsilon_{340}=57000 \mathrm{M}^{-1}$ cm^{-1}). Inset: photographs of 46 at sunlight and after irradiation at 365 nm in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

3.3.3 Pyridinium Guest Recognition

As it is well known, the electron-rich 1,4-dimethoxybenzene moiety exhibits a natural affinity for the π-electron poor guests such as pyridinium cations. ${ }^{108 a}$ Therefore, in order to evaluate
the recognition abilities of 46 toward pyridinium guests we have performed 1D and 2D NMR and HR-MS studies of complexation (Figure 57). ${ }^{108 a}$
When a CDCl_{3} solution of N-methylpyridinium (NMP^{+}) was titrated with 46, a dramatic shielding of the ${ }^{1} \mathrm{H}$ NMR signals of the guest was observed (Figure 57a-d).
A fast complexation equilibrium between NMP^{+}and 46 was observed, with respect to the NMR timescale ($600 \mathrm{MHz}, 298$ K), and consequently the ${ }^{1} \mathrm{H}$ NMR signals of NMP^{+}(in red in Figure 57b-d) were observed as averaged single resonances between the free and complexed form of $\mathrm{NMP}^{+}\left(\delta_{\text {observed }}=\mathrm{X}_{\text {free }}\right.$ $\left.\delta_{\text {free }}+\mathrm{X}_{\text {complex }} \delta_{\text {complex }}\right)$.

Figure 57: (Left) HR MALDI FT ICR spectrum of a $1: 1$ mixture of 46 and $\mathrm{NMP}^{+{ }^{-}}$. (Right) ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of a) $46(0.003 \mathrm{M})$; b) 46 in the presence of an excess of $\mathrm{NMP}^{+} \mathrm{I}^{-}$; c) $1: 1$ mixture of $\mathbf{4 6}$ and $\mathrm{NMP}^{+} \mathrm{I}^{-}$; d) $\mathrm{NMP}^{+} \mathrm{I}^{-}$.

In details, the ${ }^{1} \mathrm{H}$ NMR signals of the NMP^{+}guest in red in Figure 57a-d, were up-field shifted upon addition of CPP 46, to indicate the inclusion of the guest inside the aromatic cavity of CPP. The high-resolution mass spectrum of the $1: 1$ host guest mixture showed a molecular ion peak at $m / z 762.3361$ (calculated:762.3367) attributable to the $\mathrm{NMP}^{+} \subset \mathbf{4 6}$ complex (Figure 57).

In order to define the stoichiometry of the $\mathrm{NMP}^{+} \subset \mathbf{4 6}$ complex we have performed a 2D-DOSY NMR experiment between 46 and NMP^{+}. By close inspection of the DOSY spectrum of the $1: 1$ mixture (15 mM in Figure 58b) of 46 and NMP^{+}, a coefficient diffusion of $5.77 \pm 0.05 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s}$ was calculated for the $\mathrm{NMP}^{+} \subset \mathbf{4 6}$ complex. ${ }^{108 a}$
From the diffusion coefficient of the $\mathrm{NMP}^{+} \subset \mathbf{4 6}$ complex and by using the Stokes-Einstein ${ }^{114}$ equation, a hydrodynamic radius $\mathrm{R}_{\mathrm{h}}(\exp)=7.08 \AA$ was obtained. This result is in a good accord with the hydrolytic radius estimated through DFT optimized structure of complex that showed a value of R_{h} $($ calculated $)=8.66 \AA$.

Figure 58: 2D-DOSY spectra ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of a) $\mathrm{NMP}^{+} \mathrm{I}^{-}(15 \mathrm{mM})$; b) $1: 1$ mixture of $\mathrm{NMP}^{+} \mathrm{I}^{-}$and derivate 46 (15 mM each one); and c) derivative 46 (15 mM).

In addition, comparison between the DOSY spectra in Figure 58 , confirms the formation of the $\mathrm{NMP}^{+} \subset \mathbf{4 6}$ complex. Analogously, when a solution of N -propylpyridinium iodide $\left(\mathrm{NPP}^{+}\right)$- Figure 59b- and N-methyllutidinium (NML^{+}in Figure

[^51]59 c) in CDCl_{3} were titrated with 46 , similar shielding of the guest ${ }^{1} \mathrm{H}$ NMR signals were observed. Association constant values for the formation of the complexes were obtained through nonlinear regression analysis ${ }^{71}$ of the NMR titration data for a $1: 1$ stoichiometry. The binding isotherms for each guest are reported in Figure 59.
The NMP $^{+} \subset \mathbf{4 6}$ complex shows an apparent association constant of $2200 \mathrm{M}^{-1}$ (error $<15 \%$), a value higher than that calculated for $\mathrm{NPP}^{+} \subset 46$ and $\mathrm{NML}^{+} \subset 46$ of $1950 \mathrm{M}^{-1}$ and 800 M^{-1} respectively (Figure 59).

Figure 59: a) Plot of the observed (blue) and calculated (red) upfield shift of the ${ }^{1} \mathrm{H}$ NMR signals of NMP^{+}as a function of [46]; b) Plot of the observed (green) and calculated (red) upfield ${ }^{1} \mathrm{H}$ NMR chemical shift of the o-ArH of NPP ${ }^{+}$as afunction of [46]; c) Plot of the observed (black) and calculated (red) upfield ${ }^{1} \mathrm{H}$ NMR chemical shift of the methyl of NML^{+}as a function of [46]; d) Plot of the observed (black) and calculated (red) upfield ${ }^{1} \mathrm{H}$ NMR chemical shift of the o-ArH of NMP^{+}as a function of [8]CPP.

In order to compare the recognition abilities of 46 with those of the native [8]CPP we have studied the complexation of

NMP $^{+}$guest with [8]CPP by NMR titration experiments. A CDCl_{3} solution of $\mathrm{NMP}^{+} \mathrm{I}^{-}$was titrated with [8]CPP ${ }^{56}$ and an apparent association constant value of $700 \mathrm{M}^{-1}$ was found for the formation of the $\mathrm{NMP}^{+} \subset[8] \mathrm{CPP}$ complex, a value significatively lower than that obtained for the complexation of NMP $^{+}$guest with 46 (Figure 59d).
When dimethylviologen guest DMV^{2+}, dihexylviologen guest $\mathrm{DH}_{2} \mathrm{~V}^{2+}$ and hexylviologen DHV^{+}were added to a CDCl_{3} solution of derivative $\mathbf{4 6}$, no hint of interaction was detected by ${ }^{1}$ NMR spectroscopy.
DFT calculations, at the B3LYP/6-31G(d,p) level of theory using Grimme's dispersion corrections ($\operatorname{IOp}(3 / 124=3)$), ${ }^{115}$ suggests that the electron-rich 1,4- dimethoxybenzene moiety in 46 plays a central role in the complexation of NMP^{+}guest.

Figure 60: C-H \cdots Tcentroid distances for the $\mathrm{NMP}^{+} \subset \mathbf{4 6}$ complex

In fact, the DFT model of $\mathbf{N M P}^{+} \subset \mathbf{4 6}$ complex in Figure 60 suggest the presence of a cation $\cdots \pi$ interaction between N^{+}of the guest and the 1,4-dimethoxybenzene moiety of 46 with a distance $\mathrm{N}^{+} \cdots \pi^{\text {centroid }}$ of $4.9 \AA$ and seven $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interactions (Figure 60a).

[^52]

Figure 61: a) C-H \cdots. centroid distances for the NPP $^{+} \subset 46$ complex; b) and c) C$\mathrm{H}^{\cdots} \cdot \pi$ centroid distances for the $\mathrm{NML}^{+} \subset 46$ complex

Finally, the DFT-optimized model obtained for the $\mathrm{NML}^{+} \subset 46$ complex reveals an oblique orientation - Figure 61b - of the guest inside the cavity of macrocycle, the complex was stabilized through three $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between the NML^{+}guest and host 46.
In summary, the complexation phenomenon was highlighted thought fluorescence technique. When a solution of host (constant throughout the titration) was titrated with NMP^{+} guests, a quenching of the fluorescence of 46 was observed Figure 62a.

Figure 62: a) Fluorescence spectra of $46\left(1.00 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}, \lambda_{\mathrm{exc}}=340 \mathrm{~nm}\right)$ in the presence of NMP^{+1} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The concentrations of NMP^{+1} are $0.0-50\left(\times 10^{-5} \mathrm{~mol}\right.$
L^{-1}) from the top to the bottom. b) Plots of δ for $o-A r H$ of NMP^{+}as a function of the concentration of $46(\square)$ and $[8] C P P(\bullet)$.

In conclusion, we have reported the synthesis of a [8]CPP derivative incorporating an electron-rich 1,4dimethoxybenzene ring. This is the first example of substituted CPP derivative reported in literature able to recognize pyridinium guests. Owing to the presence of the 1,4dimethoxybenzene ring a fine-tuning of the binding abilities of 46 toward pyridinium guests was obtained with respect to the native [8]CPP macrocycle - Figure 62b. I accordance, DFT calculations show that the close steric fitting between the pyridinium guest and the rigid aromatic cavity of 46 allows the formation of stabilizing cation $\cdots \pi$ interactions and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between host and guest. This information could open new perspectives for the design of CPP hosts with intriguing recognition properties.

3.4 Synthesis, Optoelectronic and Supramolecular Properties of a CPPCalix[4]arene Hybrid Host ${ }^{116}$

3.4.1 Hybrid Calix[4]arene Hosts: An Overview

Calixarenes are considered as a versatile platform for developing macrocyclic hosts with novel and intriguing supramolecular features. ${ }^{117}$ Among the calixarene hosts, a main role has been played by the hybrid systems which are composed by calixarene skeleton and portion of different macrocyclic hosts (crown-ethers, ${ }^{118}$ spherands, ${ }^{119}$ resorcinarene ${ }^{120}$ and calixpyrrole ${ }^{121}$) installed at the upper or lower rim.
The hybrid systems combine the supramolecular features of both the hosts, as example given, recently, Sessler and coworkers, ${ }^{128}$ reported a hybrid host in which the

[^53]calix[4]pyrrole was fused with a calix[4]arene macrocycle. The hybrid hosts in Figure 63, combine the anion recognition abilities of the calix[4]pyrrole with the cation recognition abilities of the calix[4]arene, in order to perform ion pair recognition.

Figure 63: Hybrids Calix[4]arene-Calix[4]pyrrole developed by Sessler

Among the hybrid calixarene hosts, the calix-crown synthetized by Asfari ${ }^{122}$ is used by U. S. Department of Energy to extract cesium from process wastewater and to stabilizing dangerous materials (Figure 64). ${ }^{123}$

Figure 64:Ball-and-stick representations of calix[4]arene bearing two crown ethers moiety. Green highlight calix[4]arene scaffold in 1,3-alternate conformation.

[^54]As discussed previously, the CPP macrocycles possess interesting optoelectronic properties. Prompted by these considerations, we have envisioned to combine the optoelectronic properties of CPPs with the recognition abilities of the calixarene moiety. Thus, a topic of this Ph.D work has been devoted to the design and synthesis of the CPP-Calix[4] hybrid system 54 reported in Scheme 13 and to study its recognition and optoelectronic properties.

3.4.2 Synthesis and Characterization ${ }^{116}$

Scheme 13: Synthesis of derivative $54 .{ }^{116}$

The main step for the synthesis of $\mathbf{5 4}$, is the Suzuki-Miyaura cross-coupling between the known 24 derivative 29 incorporating a cyclohexa-2,5-diene moiety as masked benzene ring, and the bis[(p-bromobenzyloxy)]-calix[4]arene derivative 52, to give the precursor 53 which has been aromatized to $\mathbf{5 4}$ by treatment with SnCl_{2} or sodium naphthelide. The macrocyclization between 52 and 29 has been performed in DMF/ $\mathrm{H}_{2} \mathrm{O}$ as solvent in the presence of S Phos, $\mathrm{K}_{3} \mathrm{PO}_{4}$ and $\mathrm{Pd}(\mathrm{AcO})_{2}$. After mixing for 3 d at $100{ }^{\circ} \mathrm{C}$, the derivative 53 was isolated by chromatographic column in
$5.8 \%{ }^{124}$ of yield. The HR MALDI-FT-ICR mass spectrum of derivative 53 showed a molecular ion peak $[\mathrm{M}+\mathrm{Na}]^{+}$at m / z 1167.6645 (calculated:1167.6473). ${ }^{116}$

The ${ }^{1} \mathrm{H}$ NMR (600 MHz , TCDE, 373 K) spectrum in Figure 65 of 53 shows overlapped aromatic signals attributable to the CPP-bridge between 7.36 and $7.54 \mathrm{ppm}(16 \mathrm{H})$, while the calixarene aromatic signals appeared as broad singlets at 6.53 ppm and 6.93 ppm . Regarding the cyclohexadienyl ring of 53, a broad signal was detected at 6.00 ppm . At 4.66 ppm was presents a broad signal attributable to the OCH_{2} protons, while the two broad signals at 3.97 and 3.13 ppm was attributable to methylene bridge of the calix-skeleton. The two singlets at 3.13 and 3.14 were attributable to OCH_{3} groups. ${ }^{116}$

Figure 65: ${ }^{1} \mathrm{H}$ NMR spectrum of 53 (TCDE, $600 \mathrm{MHz}, 373 \mathrm{~K}$).

[^55]Finally, at 0.88 and 1.15 ppm , two singlets were attributable to the tert-butyl group of calixarene.
The reductive aromatization of $\mathbf{5 3}$ with SnCl_{2} in the presence of HCl and THF as the solvent, for 7 h , gave 54 in 14% of yield - Scheme 13.

The reliability of the results was proved by MALDI-FT-ICR mass spectrum (obtained using cationization agent NaTFA) that showed molecular ion peaks $[\mathrm{M}+\mathrm{Na}]^{+}$at $\mathrm{m} / \mathrm{z} 1105.6147$ (calculated: 1105.6105). ${ }^{116}$
To confirm the structural assignment of $\mathbf{5 4}$ we performed a MALDI-CID MS/MS. The CID mass spectrum of sodiated $\mathbf{5 4}$ $[\mathbf{5 4}+\mathrm{Na}]^{+}$exhibits an interesting fragmentation behavior, which is in accord with the loss of the CPP-bridge related to a homolytic dissociation of two OCH_{2} - CPP bonds. While, the collisional activation of the sodiated $\mathbf{5 4}[\mathbf{5 4}+\mathrm{Na}]^{+}$generates exclusively ${ }^{t \mathrm{Bu}} \mathrm{C}[4](\mathrm{OMe})_{2}(\mathrm{O} \cdot)_{2} @ \mathrm{Na}^{+}$at $\mathrm{m} / \mathrm{z} 697.421760$ (calculated: 697.422731; accuracy $=1.40 \mathrm{ppm}$). Similar results were obtained performing MALDI-CID MS/MS studies in presence of LiTFA (Figure 66).

Figure 66: HR MALDI-FT-ICR-CID mass spectrum of 54 in the presence of cationization agent NaTFA (bottom) and LiTFA (top).

The ${ }^{1} \mathrm{H}$ NMR spectrum of 54 ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 393 \mathrm{~K}$), shows broad $\mathrm{ArCH} \mathrm{H}_{2} \mathrm{Ar}$ signals, to prove of the high conformational mobility of two anisole rings of 54 (Figure 69) owing to the OMe through-the-annulus passage - Figure 67.

1 cone

$\Delta \mathbf{G}^{\ddagger}=14.3 \mathrm{Kcal} / \mathrm{mol}$

$1^{\text {paco }}$

Figure 67: Cone-Paco interconversion due to the through-the-annulus passage.

Figure 68: Methylene regions of the ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 54 at: (down) 253K; (top) 298K.

Low temperature experiment shows that at 253 K , the $\mathrm{ArCH}_{2} \mathrm{Ar}$ signals decoalesced in two AX systems assignable to two conformations of 54, namely, the cone and partial cone (paco) conformation, frozen out in the NMR time scale (Figure $68)$.
${ }^{1} \mathrm{H}$ NMR signals integrations shows that the cone and paco conformation of derivative 54 exist in 46 and 54%, respectively. Increasing the temperature, the ${ }^{1} \mathrm{H}$ NMR spectrum (TCDE 300 MHz) shows a coalescence for the methylene bridges signals at 323 K . A complete sharpening of the ${ }^{1} \mathrm{H}$ NMR signals of $\mathbf{5 4}$ was observed at 393 K , due to fast OCH_{3} through-the-annulus passage. An energy barrier of 14.3 $\mathrm{kcal} / \mathrm{mol}$ was calculated for this conformational process. ${ }^{14}$ In the end, the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 4}$ at 393 K (TCDE, 300 MHz), exhibits an $\mathrm{ArCH}_{2} \mathrm{Ar}$ AX system at $4.05 / 3.21 \mathrm{ppm}$, an OCH_{2} singlet at 4.66 ppm and an OCH_{3} singlet at 3.34 ppm (Figure 69).

Figure 69: ${ }^{1} \mathrm{H}$ NMR spectrum of 54 (TCDE, $600 \mathrm{MHz}, 393 \mathrm{~K}$).

3.4.3 DFT Investigation and Optoelectronic Features of the Hybrid CPP-Calix[4] derivative ${ }^{116}$

The cone and partial cone conformation of 54 were optimized at B3LYP/6-31G(d) level of theory including solvent (dichloromethane) effects, which were modeled through the polarizable continuum model (PCM). B3LYP computations found the partial cone conformation are more stable than the cone conformation by less than $0.4 \mathrm{kcal} / \mathrm{mol}$. Therefore, cone and paco can be view as almost isoenergetic conformations in line with NMR results, finding two relevant conformers.
A careful analysis of the optimized structure of partial cone conformer of 54 - Figure 70 - revealed the presence of stabilizing $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions ${ }^{125}$ between the tert-butyl group of the inverted aromatic ring with the CPP-bridge. Indeed, a C$\mathrm{H} \cdots \pi$ interaction was found in the paco conformation between OCH_{3} group and the distal inverted anisole ring of 54.

Figure 70: DFT-optimized structures of 54 in: (left) cone-conformation; (middle) detail of the benzene ring C ; (right) partial-cone conformation.

[^56]DFT-calculations indicate that CPPbridge of 54 adopt an alternating zigzag conformation for both conformers. In detail a dihedral angle θ of 33° was predicted between neighboring phenylene rings A

Figure 71: Absorption (red) and fluorescence (blue) spectra of derivative 54. and B - Figure 70 - very similar to that observed for [12]CPP $\left(34^{\circ}\right)$. Smaller value of torsion angle 28° was found between neighboring phenylene rings B and C - Figure 70 - very similar to that observed for smaller [6]CPP derivative. Finally, DFT investigation show a bending angle α values of 13.6° for the benzene ring C (Figure 70) close to that found in [6]CPP while a softer deformation was observed for benzene rings B 9.6°.
In conclusion, the DFT structure of $\mathbf{5 4}$ in Figure 70 reveals that the CPP-bridge in $\mathbf{5 4}$ suffer a strain not uniformly distributed over the phenylene chain, but mainly located on the benzene ring C (Figure 70).
The CPP strain is also transmitted to the connected calixarene Ar rings which are consequently forced to be almost parallel in both cone and paco conformers (Figure 70).
The absorption spectrum of 54 - Figure 71, exhibits an intense and broad band, extending for ca 1.5 eV and peaked at 310 nm , ($\varepsilon_{310}=35000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$). Maximum absorption is considerably blue shifted with respect to the case of unsubstituted [n]CPPs. This behavior is predictable owing the disruption of conjugation system due to the insertion of the aliphatic units of
calixarene scaffold into the hoop of $\mathbf{5 4}$. In agree with time dependent TDDFT computations the absorption band results from three optical transitions, falling at 346, 285 and 275 nm . In opposition with regular n CPPs where the $\mathrm{S}_{1} \leftarrow \mathrm{~S}_{0}$ transition is forbidden, the HOMO \rightarrow LUMO excitation is optically allowed in 54 due to the loss of symmetry. An intense transition (predicted at 285 nm) consists of HOMO \rightarrow LUMO+1 and HOMO-4 \rightarrow LUMO excitations. The last gives rise to a weak charge transfer from the benzene unit of the calixarene moiety to the CPP bridge. In addition, transition is predicted to occur at 275 nm , mainly $\mathrm{HOMO} \rightarrow \mathrm{LUMO}+2$ in character consistent with the shoulder observed at 280 nm .
Same conclusions are discovered for the cone conformation of 54 - Figure 72.

Figure 72: Isodensity surface plots of the frontier Kohn-Sham orbitals of the paco conformer of 54.
The fluorescence spectrum of 54 (Figure 71) shows the maximum at 382 nm , significantly blue-shifted with respect to linear p quinquephenyl derivatives, which shows maximum intensity at
$344 \mathrm{~nm} .{ }^{126}$ The fluorescence quantum yield of $\mathbf{5 4}$ is $\Phi=0.26$ (using anthracene in EtOH as standard), value significantly lower than that reported for linear p-quinquephenyls, $\Phi \approx$ $0.89,{ }^{126}$ but far higher than that of [5]CPP, which show vanishing emission. ${ }^{127}$

3.4.4 Molecular Recognition Ability

The recognition ability of $\mathbf{5 4}$ toward Li^{+}and Na^{+}cations were studied trough fluorescence studies. Titration experiment was performed adding NaPF_{6} or LiPF_{6} to a solution of $\mathbf{5 4}$ in $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{CN}(9: 1, \mathrm{v} / \mathrm{v})$. Fluorescence intensity of 54 peaked at 382 nm progressively decreased as shown in Figure 73.

Figure 73: Fluorescence spectra of $54(5.4 \mu \mathrm{M})$ upon addition of $\mathrm{PF}_{6}{ }^{-}$salts of Li^{+} (left) and Na^{+}(right) ($0.1-3.0$ equiv) in $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{CN}(9: 1, \mathrm{v} / \mathrm{v})$.

The association constants found for $\mathbf{N a}^{+} \subset 54$ and $\mathbf{L i}^{+} \subset 54$ in a $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{CN}(9: 1, v / v)$ mixture were determined by curve fitting analysis of the fluorescence data. ${ }^{128}$ The binding

[^57]constants values calculated for $\mathbf{N a}^{+} \subset 54$ and $\mathbf{L i}^{+} \subset 54$ complexes, are respectively, $4.7 \cdot 10^{4} \mathrm{M}^{-1}$ and $2.5 \cdot 10^{5} \mathrm{M}^{-1}$. The calix[4]-CPP shows a pronounced affinity for Li^{+}cation with a $\mathrm{Li}^{+} / \mathrm{Na}^{+}$selectivity ratio of about 5 .
Unlike by calixcrown and calixspherand hybrid calixderivative, which exhibit a greater affinity for Na^{+}cation over $\mathrm{Li}^{+},{ }^{126}$ in the case of $\mathbf{5 4}$ this behaviour is reversed. In addition, when the solution of $\mathbf{5 4}$ was titrated with the larger K^{+}cation no hint of interaction between the host 54 and K^{+}(as KPF_{6}) was detected by fluorescence titration. In summary, the thermodynamic stability of the $\mathrm{M}^{+} \subset 54$ complexes follow the order $\mathrm{Li}^{+}>\mathrm{Na}^{+}$, while K^{+}is not complexed.
DFT calculations at B3LYP/6-31G(d) level of theory suggest that the cationic guest is located near to the oxygen atoms at the lower rim of the calix-skeleton (Figure 74).

Figure 74: Different views of DFT-optimized structure of $\mathrm{Li}^{+} \subset 54$.
These data suggest that the size complementarity between host 54 and cationic guest plays a crucial role for the stability of the complexes. Probably, the small size of the CPP-bridge at the lower rim of 54, and the conformational rigidity of the bridged calix-skeleton, does not allow the access of larger cations into its binding site. In addition, probably, also the cation $\cdots \pi$ interaction between the $\mathrm{Li}^{+} / \mathrm{Na}^{+}$cations and the aromatic CPP
bridge in $\mathbf{5 4}$ plays a special role for the stabilization of the $\mathbf{L i}^{+} \subset \mathbf{5 4}$ complex. In conclusion, calix-CPP $\mathbf{5 4}$ shows an unexpected selectivity for the Li^{+}cation over Na^{+}, as a result of more favorable cation $\cdots \pi$ interactions of Li^{+}with the CPPbridge and its better size-complementarity.
In conclusion we have reported a new interesting class of CPPbased hybrid host in which a cycloparaphenylene moiety was fused with the calix[4]arene skeleton. DFT conformational analysis reveals that derivative 54 presents a strain not uniformly distributed over the phenylene chain. Our studies show that the CPP-bridged calix[4]arene 54 combines perfectly the recognition abilities of the calix-skeleton with the optoelectronic features of CPP derivatives. Finally, Calix-CPP 54 shows a non-common Li^{+}selectivity due to a more favourable interaction between the cation and the aromatic rings of the CPP bridge.

3.5 New Optoelectronic Applications of CycloParaPhenylene Derivatives

In the last decade, the applications investigated for the CycloParaPhenylenes (CPPs) have been principally focused in the field of the templated synthesis of uniform single walled carbon nanotubes ${ }^{109}$ and as supramolecular hosts for the recognition of fullerenes ${ }^{111,112}$ and more recently of pyridinium guests. ${ }^{113}$ In addition, the size-depending optoelectronic properties of these macrocycles could be of interest in materials science for the synthesis of electronic, optical, and optoelectronic materials and devices. In this field, however, their real applications are limited. Recently, [10]cycloparaphenylene tetra alkoxy ${ }^{129}$ derivatives were synthesized and their thin films were spin-coated showing absorption and fluorescence spectra almost similar to those in solution. The carrier transport properties of these thin films were almost identical to those of PCBM ([6,6]-Phenyl C_{61} butyric acid methyl ester), which is used widely as an n-type active layer in bulk heterojunction photovoltaics. Regarding the optoelectronic materials, recently, a [4]cyclofluorene-based OLED ${ }^{130}$ has been reported with a strong green band emission. Prompted by these considerations a topic of this PhD project has been focused on the study of new optoelectronic applications of CPP macrocycles. In details, in collaboration with the proff. Andrea Peluso and Amedeo Capobianco

[^58](Department of Chemistry and Biology, University of Salerno) has been investigated the light upconversion abilities of a new [8]CPP derivative, via triplet-triplet-annihilation process. In a different project, performed in collaboration with the prof. Luca Beverina (Università di Milano-Bicocca), has been investigated the use of CPP derivatives as organic fluorophores in the preparation of luminescent solar concentrators.

3.6 A [8]CPP Derivative as Emitter in Triplet-Triplet Annihilation

 Upconversion ${ }^{131}$Upconversion is a photophysical process in which photons emission at higher energy (shorter wavelength) is observed upon excitation at lower energy. This phenomenon can be exploited in different applications, for converting low energy photons into light adequate for photovoltaic, ${ }^{132}$ photocatalysis, ${ }^{133}$ and bioimaging. ${ }^{134}$
One of the principal methods for the photon Up conversion is the Triplet-Triplet Annihilation process.
Qualitative Jablonski Diagram describe the TTA upconversion process between triplet sensitizer and annihilator - Figure 75.
This process is based on mixing in solution of an annihilator (triplet sensitizer) and of an emitter (triplet acceptor). The excitation energy is harvested by the first and the energy is transferred to the second via triplet-triplet energy transfer through a Dexter process. ${ }^{136}$
Subsequently, the emitter at the triplet excited state will collide with each other and produce the singlet excited state of the acceptor that finally can decay in ground state across radiative emissions.

[^59]

Figure 75: Jablonski Diagram for the TTA upconversion process. \mathbf{S}_{0} is ground state energy, \mathbf{T}_{1} is triplet state, \mathbf{S} are the singlet states, TTET is triplet-triplet energy transfer, TTA is triplet triplet annihilation process and ISC in an intersystem crossing.

Among the most used pairs of annihilator-emitter there is palladium-porphine complex (PdOEP) and the 9,10-diphenyl anthracene $(9,10-\mathrm{DPA})^{135}$ that are cheaper and longtime investigated - Figure 92. Previously we have highlighted the excellent abilities of CPP macrocycles as emitter, exhibiting high fluorescence quantum yields. Thus, based on these considerations, we have envisioned of incorporate the 9,10DPA unit into a [8]CPP skeleton 55 in order to obtain the first example of a CPP-based emitter in photon upconversion, thus widening the application fields of this class of compounds.

[^60]

55

PdOEP
9,10-DPA

Figure 76: Derivative 55 synthetized and PdOEP and 9,10-DPA involved in TTAUpconversion.

3.6.1 Synthesis of Anthracene-Incorporated [8]CPP Derivative 55 ${ }^{131}$

The key step for the synthesis of CPP 55 is the macrocyclization between curved elements (Scheme 14), $\mathbf{3 6}^{98}$ and $63{ }^{131}$ bearing the 9,10 -dimethoxy- 9,10 -dihydroanthracene curved-moiety as masked anthracene unit. While the derivative 36 has been previously reported by Jasti, ${ }^{98}$ the synthesis of 57 is outlined in Scheme 14. 1,9-Anthraquinone was reacted with (4-bromophenyl) lithium to give the syn-diol, which was methylated to give the derivative 56 in 53% of yield.

Scheme 14: Synthesis of diboronate 57.

Derivative 56 was treated in anhydrous atmosphere with n butyllithium and isopropyl pinacol borate for five hours. After
chromatography purification diboronate 57 was obtained in 41 \% of yield - Scheme 14.
Macrocyclization between the known derivative $\mathbf{3 6}$ and 57 in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}, S$-Phos, and $\mathrm{K}_{3} \mathrm{PO}_{4}$ in $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}$, gave the macrocycle 58 in 10% of yield- Scheme 15.

Scheme 15: Syntesis of derivative 55.
The reliability of the results was proved by MALDI FT-ICR mass spectrum, which showed a molecular ion peak at m / z 894.3895 (calculated: 894.3921).

The ${ }^{1} \mathrm{H}$ NMR - Figure 77 - spectrum of $58\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right.$, 298 K) exhibited three singlets at $3.46,3.41$, and 3.15 ppm , in a $1: 1: 1$ attributable to the OCH_{3} groups. Regarding the cyclohexadienyl rings of $\mathbf{5 8}$, an AB system was present at 6.03 and $6.11 \mathrm{ppm}(J=10.3 \mathrm{~Hz}, 4 \mathrm{H}$ each $)$, which correlated in the HSQC spectrum with two resonances at 133.0 and 133.5 ppm . Moreover, the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 8}$ evidenced the presence of two AB systems at $7.44 / 7.38 \mathrm{ppm}(J=8.5 \mathrm{~Hz}, 4 \mathrm{H}$ each $)$ and $7.17 / 6.92 \mathrm{ppm}(J=8.5 \mathrm{~Hz}, 4 \mathrm{H}$ each $)$ attributable to the benzene
rings named A and B (Scheme 15). Finally, a singlet can be observed at 7.50 ppm attributable to ArH of ring C (4H).

Figure 77: ${ }^{1} \mathrm{H}$ NMR of derivative $58\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Finally, the macrocycle 58 was aromatized by treatment with sodium naphthalenide at $-78{ }^{\circ} \mathrm{C}$ for 3 h in the dark, in degassed dry THF and followed by quenching with I_{2}, affording to the derivative 55 in 11% yield. ${ }^{136}$

Figure 78: Structure of derivative 55.

A close analysis of the ${ }^{1} \mathrm{H}$
NMR - Figure 79 - and DQF-COSY - Figure 80-spectra of derivative 55 in $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$ showed two distinct

[^61]$\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ spin systems assignable to the ArH atoms $1 / 2$ and $1^{\prime} / 2^{\prime}$ - Figure 78 - of the anthracenyl unit. In details, the two $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ systems were detected at $7.89 / 7.39$ and $7.72 / 7.41 \mathrm{ppm}$ as highlighted in DQF-COSY and correlated in the HSQC spectrum with four different carbon resonances at 127.72, $128.64,127.64$ and 127.12 ppm , respectively.
It's clear that the two peripheral benzene rings of the anthracenyl group in $\mathbf{5 5}$ are nonequivalent. This behavior is due at their different in/out orientation with respect to the macrocycle cavity, which implies a hindered rotation around τ_{1} Figure 81a.

Figure 79: Significant portion of the ${ }^{1} \mathrm{H}$ NMR spectrum of 55 ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

Figure 80: Significant portion of the DQF-COSY spectrum of 55 ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

Because of this limited rotation, the benzene ring A (Figure 78), close to the anthracenyl group, adopts a tilted orientation, and the two $3 / 3^{\prime}$ (and $4 / 4^{\prime}$) protons become nonequivalent Figure 79. Consequently, two AB systems were found in the ${ }^{1} \mathrm{H}$ NMR spectrum of 55 for the ortho-coupled $3 / 4$ and $3^{\prime} / 4^{\prime}$ protons at $7.11 / 7.01(J=6.1 \mathrm{~Hz})$ and $7.00 / 7.08 \mathrm{ppm}(J=9.0$ Hz). VT ${ }^{1} \mathrm{H}$ NMR experiments ($400 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$) evidenced no hint of coalescence up to 393 K for the signals of anthracenyl unit and aromatic ring A.

b)

॥

Figure 81: a) Schematic representation of 55 indicating the dihedral angle τ_{1} and τ_{2}. b) The most stable conformers of 55 and their relative energies $\left(E / \mathrm{kcal} \mathrm{mol}^{-1}\right)$.

In addition, the DQF-COSY spectrum of 55 shows the presence of another AB system at $7.42 / 7.23 \mathrm{ppm}(J=8.4 \mathrm{~Hz})$ of $5 / 6 \mathrm{H}$ atoms attributable to ArH protons of B - Figure 78.

3.6.2 DFT conformational studies

DFT conformational studies and TD DFT analysis were perfomed in collaboration with the proff. Andrea Peluso and Amedeo Capobianco (Department of Chemistry and Biology, University of Salerno). The analysis of the 1D and 2D NMR spectra of $\mathbf{5 5}$, suggest the presence of a plane of symmetry and consequently the geometry optimizations of derivative 55 were restricted to the C_{s} point group. For this purpose, we estimate the optimized potential energy profile along the Lagrangian variable τ_{1}. Was fixed in each step two dependent dihedral angles and carry out an optimization of all the other nuclear coordinates.
A close inspection of conformational results obtained by DFT studies highlight the inclined orientation of anthracene unit. The most relevant conformers at RT exhibit an alternating zigzag conformation of the phenylene rings, with the dihedral angle between neighboring phenylene units being ca. 28°, close to the optimal value of 30° found for $[\mathrm{n}]$ CPP systems.
The dihedral angle τ_{1} is almost 60° in both conformers I and II, reaching the expected value for free 9,10 -DPA $\left(\approx 77^{\circ}\right)$ only in III. Deformation and bent angles showed a value of 6.2 and 14.2°, respectively, close to the values of 9.3 and 13.7° observed for α and β in the phenyl rings of [8]CPP - Figure 81b. Different ways were taken to verify that all molecular conformations were assessed: (i) geometry optimizations by
scanning the τ_{2} parameters and (ii) geometry optimizations starting from casual conformations. No additional minimum energy conformations were found.

3.6.3 Optoelectronic features

Derivative 55 was characterized through cyclic voltammetry, UV-Vis spectroscopy and fluorescence spectrophotometry and DFT calculation.
Voltammogram of $\mathbf{5 5}$ exhibits the first oxidation peak at 0.53 V vs $\mathrm{Fc}^{+} / \mathrm{Fc}$ redox couple, a similar value to that found for [8]CPP (0.59 V).
The first oxidation potential of the most stable conformer (\mathbf{I}) is predicted to be at +0.52 V vs $\mathrm{Fc}^{+} / \mathrm{Fc}$ by (RO) CAM-B3LYP computations, in good agreement with the measured value.
Time dependent DFT studied performed using PCM-CAM-B3LYP/6-31+G**137 level of theory, predicts that the HOMO and LUMO of $\mathbf{5 5}$ are mainly localized on the anthracene unit. The predicted HOMO/LUMO energy gap is 2.2 eV .
In the absorption spectrum of 55 we can observe two characteristic intense bands: the first at $320 \mathrm{~nm}\left(\varepsilon=1.7 \times 10^{4}\right.$ $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$) and the second less intense absorption extending from 360 to 450 nm .
The shape of signal is characteristic of cycloparaphenylene systems and the latter resembles very closely that of anthracene moiety - black line in Figure 82.
Optical transitions obtained through computational techniques are in excellent agree with those observed experimentally Figure 82.

[^62]The absorption spectrum of 55 is mainly given by the superposition of the signals of [8]CPP and 9,10-DPA. This comparison suggest that the two molecular moieties maintain in the ground state their electronic structures.
The enlarged spectral absorption observed between 350-450 nm is similar to the absorptions predicted at 400, 410, and 380 nm for conformers I, II, and III, respectively - Table 7.

Figure 82: Normalized UV/vis absorption (black) and emission (red) spectra of $\mathbf{5 5}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and computed vertical electronic transitions (vertical lines) of conformers I (blue), II (violet), and III (green).

The $\mathrm{S}_{1} \leftarrow \mathrm{~S}_{0}$ transitions predicted about 400 nm (Table 7) was obtained from the excitation of one electron from the HOMO to the LUMO, which are both Kohn-Sham π orbitals localized over the 9,10 -DPA moiety or on the other five CPP rings as shown in Figure 83.
The fluorescence spectrum of $\mathbf{5 5}$ - Figure 82 in red - is broad, ranging from 350 up to 650 nm , with a peak at 485 nm . The
poorly structured signal occurring at shorter wavelengths, is somewhat characteristic of the $9,10-\mathrm{DPA}$ unit, whose fluorescence spectrum is characterized by vibronic peaks in the region between $400-450 \mathrm{~nm} .{ }^{138}$

Table 7: Major electronic transitions (TD-DFT) of the most significant conformers of 55 (I-III) predicted at the (PCM)TDCAM-B3LYP/6-31+G** level.

	I			II			III		
Transitio n	$\begin{gathered} \lambda / \mathrm{n} \\ \mathrm{~m} \end{gathered}$		Major Contributio ns^{a}	$\begin{gathered} \lambda / \mathrm{n} \\ \mathrm{~m} \end{gathered}$		Major Contributio ns^{a}	$\begin{gathered} \lambda / n \\ \mathrm{~m} \end{gathered}$		Major Contributio ns^{a}
$\mathrm{S} 1 \leftarrow \mathrm{So}$	399	$\begin{gathered} \hline 0.2 \\ 7 \\ \hline \end{gathered}$	$\mathrm{H} \rightarrow \mathrm{L}$	410	$\begin{gathered} 0.2 \\ 5 \\ \hline \end{gathered}$	$\mathrm{H} \rightarrow \mathrm{L}$	380	$\begin{gathered} \hline 0.0 \\ 5 \\ \hline \end{gathered}$	$\mathrm{H} \rightarrow \mathrm{L}$
S2 \leftarrow So		$\begin{gathered} 0.5 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{H}-1 \rightarrow \mathrm{~L}+1 \\ \mathrm{H} \rightarrow \mathrm{~L}+1 \\ \mathrm{H}-2 \rightarrow \mathrm{~L}+2 \\ \mathrm{H}-1 \rightarrow \mathrm{~L} \end{gathered}$		$\begin{gathered} 0.4 \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{H}-1 \rightarrow \mathrm{~L}+1 \\ \mathrm{H} \rightarrow \mathrm{~L}+1 \\ \mathrm{H}-1 \rightarrow \mathrm{~L} \\ \mathrm{H}-2 \rightarrow \mathrm{~L}+2 \end{gathered}$	357	$\begin{gathered} 0.7 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{H}-2 \rightarrow \mathrm{~L}+2 \\ \mathrm{H}-1 \rightarrow \mathrm{~L} \\ \mathrm{H}-1 \rightarrow \mathrm{~L}+1 \\ \mathrm{H} \rightarrow \mathrm{~L}+1 \end{gathered}$
$\mathrm{S}_{3} \leftarrow$ So	319	$\begin{gathered} \hline 0.0 \\ 9 \end{gathered}$	$\begin{aligned} & \mathrm{H}-4 \rightarrow \mathrm{~L} \\ & \mathrm{H} \rightarrow \mathrm{~L}+4 \end{aligned}$	325	$\begin{gathered} 0.3 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{H}-4 \rightarrow \mathrm{~L} \\ & \mathrm{H} \rightarrow \mathrm{~L}+4 \\ & \mathrm{H} \rightarrow \mathrm{~L}+2 \end{aligned}$	323	1.54	$\begin{gathered} \mathrm{H}-2 \rightarrow \mathrm{~L}+1 \\ \mathrm{H}-1 \rightarrow \mathrm{~L}+2 \\ \mathrm{H} \rightarrow \mathrm{~L}+2 \end{gathered}$
$\mathrm{S}_{4} \leftarrow$ So	301		$\begin{gathered} \mathrm{H}-2 \rightarrow \mathrm{~L}+1 \\ \mathrm{H}-1 \rightarrow \mathrm{~L}+2 \\ \mathrm{H} \rightarrow \mathrm{~L}+2 \\ \mathrm{H}-2 \rightarrow \mathrm{~L} \end{gathered}$	311		$\begin{gathered} \mathrm{H}-2 \rightarrow \mathrm{~L} \\ \mathrm{H}-2 \rightarrow \mathrm{~L}+1 \\ \mathrm{H}-1 \rightarrow \mathrm{~L}+2 \\ \mathrm{H} \rightarrow \mathrm{~L}+2 \end{gathered}$	317	$\begin{gathered} 10- \\ 4 \end{gathered}$	
$\mathrm{S}_{5} \leftarrow$ So	287	0.41	$\begin{aligned} \mathrm{H} & \rightarrow \mathrm{~L}+3 \\ \mathrm{H}-1 & \rightarrow \mathrm{~L}+1 \\ \mathrm{H} & \rightarrow \mathrm{~L}+1 \end{aligned}$		$\begin{gathered} 0.3 \\ 7 \end{gathered}$	$\begin{gathered} \mathrm{H} \rightarrow \mathrm{~L}+3 \\ \mathrm{H}-1 \rightarrow \mathrm{~L}+1 \\ \mathrm{H} \rightarrow \mathrm{~L}+1 \end{gathered}$	295		$\begin{gathered} \mathrm{H} \rightarrow \mathrm{~L} \\ \mathrm{H}-3 \rightarrow \mathrm{~L} \\ \mathrm{H}-1 \rightarrow \mathrm{~L} \\ \mathrm{H}-1 \rightarrow \mathrm{~L}+1 \end{gathered}$

${ }^{[a]}$ H: HOMO, L: LUMO

Differently by [8]CPP the maximum of emission spectrum is blue-shifted and the fluorescent quantum yield is increase to a value $\Phi=0.47$ (measured using quinine sulfate as a standard). Therefore, the localization of exciton on five phenylene rings, which characterizes the excited state geometries of [n]CPPs with $\mathrm{n}>8,{ }^{91}$ can also likely occur in 55, making its

[^63]photophysical properties more similar to [9-12]CPP than [8]CPP.

Figure 83: Isodensity surface plots of the frontier Kohn-Sham orbitals of the most populated conformers of 55 from CAM-B3LYP computations.

3.6.4 TTA- Upconversion Studies

Starting by the successfully use of $9,10-$ DPA in TTA Upconversion studies, we have investigated the optical response of $\mathbf{5 5}$ in solution with palladium(II) octaethylporphyrin (PdOEP) as sensitizer.

Figure 84: Upconverted emission spectra of $55(1 \mathrm{mM})$ and PdOEP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \lambda_{\mathrm{exc}}=$ 540 nm . Blue, $[P d O E P]=10 \mu \mathrm{M}$; red, $[P d O E P]=100 \mu \mathrm{M}$; green, $[P d O E P]=1.0$ mM . The light source was passed through a 295 nm long pass cutoff emission filter prior to incidence on samples

Different emission spectra were recorded of a solution 1 mM in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ of $\mathbf{5 5}$ and at different concentration of sensitizer (10$1000 \mu \mathrm{M}$), performed under nitrogen atmosphere. Excitation wavelength of the system is 540 nm , on the maximum of absorbance of PdOEP. The shape of the upconverted radiation is related at the concentration of the palladium complex, because of the partial overlap with its absorbance spectrum Figure 84.
The upconverted spectrum is significantly red-shifted if confronted with that previously reported for $9,10-\mathrm{DPA},{ }^{139}$ demonstrating that emission involves the first excited state of the whole nanohoop. As reported by Parker and Hatchard and

[^64]few years later by Castellano, ${ }^{140}$ light upconversion occurring via TTA is characterized by a quadratic dependence of the fluorescence intensity upon the incident light power.

Figure 85: a) Upconverted emission intensity profiles of a solution of $\mathbf{5 5}$ (0.5 mM) and PdOEP $(10 \mu \mathrm{M})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at different incident power density; b) the corresponding normalized integrated emission as a function of the normalized incident power. Dashed line $y=x$, full line $y=x^{2}$; maximum incident power 0.8 mW cm^{-2}.

To have a clear idea about the observed anti-Stokes fluorescence of $55 / \mathrm{PdOEP}$ system, we have studied the dependence of the emission signal as a function of the excitation light power - Figure 85a.
The integrated fluorescence intensities are reported as a function of the power density of the incident light, both normalized at their highest values. Clearly the results show that the emission intensity depends on the square of the power of the incident light - Figure 85 b - and prove that the upconversion occurs via sensitized TTA.

To sum up, derivative $\mathbf{5 5}$ has been synthesized adapting the gram-scale synthesis recently reported by Jasti and fully characterized through 1D, 2D and VT NMR studies

[^65]conformational studies have been performed by DFT calculations. The absorption spectrum is characterized by two low energy transitions, one attributable to the 9,10 -DPA unit and another characteristic of [n]CPP systems. The emission spectrum resembling to that of larger size CPPs. In the presence of the octaethylporphyrin $\mathrm{Pd}(\mathrm{II})$ complex as a sensitizer, derivative 55 undergoes visible light upconversion. This is the first case reported in the literature in which a CPP derivative is involved as an emitter in low power light frequency conversion.

3.7 CPP-Based Luminescent Solar Concentrator ${ }^{141}$

3.7.1 Luminescent Solar Concentrator

Luminescent Solar Concentrators (LSC) utilize dyes or scattering effects in order to capture the light normal, incident to a surface and redirect it toward the edges to be harvested by photovoltaics devices. This kind of technology has been developed to deal with the outsize global energy consumption using renewable sources. ${ }^{142}$ The interest for this technology is related to exploiting solar radiation by use of large-area devices that needed a minimal amount of photovoltaic material, which makes the energy production cheaper. Furthermore, through this technology, it will make it possible to exploit the vertical surface of buildings.

b)

Figure 86: a) Schematization of LSC; b) Chromophore-related losses. ${ }^{143}$

[^66]These materials are based on total internal reflection phenomenon that trap light radiation inside itself and guide in the edges, similarly that happens in the optical fibers - Figure 86a.
Different processes may limit the efficiency of LSC and can depend by chromophores or by optical quality of waveguides. As concerns the choice of the chromophore, surley a pivotal role is played by the molecules that show a high quantum yields and high Stoke-shifts. High Stoke-shifts ensure a low selfabsorption phenomenon - Figure 86b. The light trapped inside the material is determinate by its refractive index. Moreover, waveguide more commonly used are made by polymers that can be affected bulk defect or roughness surface. ${ }^{143}$
In literature have been reported principally two classes of LSCs, coloured and colourless. The first-class features luminophores designed to harvest a high fraction of the impinging solar light, eventually re-emitting it with high efficiency and minimized re-absorption losses. Organic luminophores, such as the commercially available Lumogen, are particularly used for building cloured LSCs.
One of the issues connected with the use of the coloured LSC is their visual impact, in most cases limiting building aesthetic. The best result was obtained using quantum dots. Owing of their very broad absorption spectrum the colour distortion is limited. ${ }^{144}$
The second class is costituted by colourless luminophores in which the use of lanthanide chelates, highly conjugated

[^67]cyanines and high band gap quantum dots is very common. ${ }^{145}$ The absorption of these compounds is essentially limited to the UV region, thus strongly limiting the photon harvesting capabilities. Their Stokes shift is very large, and reabsorption is almost zero. This feature becomes relevant when addressing large area devices, as those developed to replace standard windows. Re-absorption phenomenon strictly limits the maximum active area achievable with the use of standard luminophores, to the point that there is very little scope for devices having surfaces exceeding $100 \mathrm{~cm}^{2}$.
As it is known, ${ }^{91}$ the CPP macrocycles show interesting absorption and emission light properties: the absorption spectrum of CPP is independent by macrocycle dimension and remains completely localized within the UV region ($\lambda_{\max }$ around 340 nm), instead, the emission maximum spans from 450 to 590 nm on going from the largest (13 phenyl ring) to the smallest (7 phenyl rings). Thus, in collaboration with prof. Luca Beverina and prof. Sergio Brovelli of University of Milano-Bicocca we have studied the performances of CPP derivatives as organic luminophores in luminescent solar concentrator.

3.7.2 Synthesis of [8] and [10] CPPs

The choice of [8] and [10]CPP - Figure 87 - is principally due to their high Stoke shift in solution, respectively of 190 nm and 130 nm , and their easy of synthesis on gram-scale. ${ }^{98}$

[^68]

Figure 87: Derivatives synthetized for this application.

The synthesis of [8] and [10]CPPs were obtained following the synthestic procedure reported by Jasti. ${ }^{98}$
In order to study the photophysical properties of [8] and [10]CPP macrocycles in the solid state the absorption and emission spectra of both compounds in methyl methacrylate (MMA) solution were registered. [8]CPP shows an emission maximum at 550 nm and a moderate quantum yield, while the [10]CPP featuring an emission maximum at 480 nm and a quantum yield above 65%, analogously to data obtained in solution.

3.7.3 Slabs Manufacturing and Characterization

The preparation of the LSC slabs was perfomed by the research group of the Prof. Beverina of the Università Milano Bicocca. As the embedding matrix for the preparation of LSC slabs, was selected PMMA because is the most common materials employed for this application and it is cheap.
Furthermore, use of PMMA matrix enables a direct comparison with other reported fluorophores. Firstly, was studied the cell cast method previously reported by Beverina and co-workers,
for the preparation of both Perylenediimides (PDIs) and lanthanide chelates LSCs. ${ }^{146}$
Thus, the solution of PMMA into unreacted MMA (the socalled syrup) was obtained by the reaction of distilled MMA with AIBS at $80^{\circ} \mathrm{C}$.
A solution of [8]CPP in MMA was added to the syrup, along with Lauroyl peroxide as radical initiators.
The viscous solution was degassed and subsequently poured in a cast constituted by two glass sheets and a 5 mm PVC separator. In the end, this have been immersed in a heated water bath at $56^{\circ} \mathrm{C}$ for 48 h , followed by a final treatment at $110^{\circ} \mathrm{C}$ in an oven for 12 h .
The photoluminescence bands of the slab and CHCl_{3} solution were compared, and in this way, we observe that the behavior of the chloroform solution of [8]CPP is accord with the literature data, while, significatively, the signal coming from the slab of [8]CPP was unexpected. In details, the emission band of the [8]CPP immobilized in slab is broadened in comparison with the behavior in CHCl_{3} solution. This is indicative of a high energy shoulder connected with a reduction in the Stokes shift with respect to the solution signal.
The emissions decay profiles were also different as can observe in Figure 88.

[^69]

Figure 88: [8]CPP solution emission decay (black line), Emission decay of termal and photo polymerizzated slabs (red and green respectively)

In fact, the decay profile of the solution of [8]Cycloparaphenylene can be fitted with a monoexponential decay with a lifetime of 10 ns - black line - whilst the slab signal shows a biexponential decay with a fast component and a slow component of 12.5 ns - red line.
Both the emission band are coherents with the formation of a by-product during the thermal polymerization.
Thus, in order to overcome the problem, a photopolymerization approach was studied, and particularly the new slabs were prepared by irradiation of a solution of [8]CPP and Irgacure ${ }^{\circledR}$ 184 in a distilled MMA/lauroyl methacrylate 70/30 \% wt Figure 89.

Figure 89: Photopolimerizzation process of MMA/PMMA syrup.

The photopolymerized slab of the [8]CPP shows an absorption emission profiles similar to that highlighted for the macrocycle in CHCl_{3} solution but differently by the thermal polymerized slab previously described - Figure 90, the emission band is unaffected by the broadening - green line in Figure 90. Probably, the increase of the lifetime of the photoluminescence band of the [8]CPP in PMMA is due to the deactivation of rotovibrational non-radiative decay pathways connected with the high viscosity of the medium.
Starting by the good results obtained with the slab doped with [8]CPP by photopolymerization approach, a slab of a [10]CPP was prepared in the same condition - Figure 91.

Figure 90: Emission of slabs containing [8]CPP at different concentration. Red line is the emission of slab obtained throuth termal polymerizzation.

Figure 91: Photo of LSCs produced with [8]CPP and [10]CPP.

As for the time resolved luminescence, was observed in both cases a simple monoexponential decay with lifetimes of 14.6 and 17.7 ns for solution and slab, respectively Figure 92b. To assess the magnitude of the reabsorption phenomena over the maximum useful dimension of an LSC, was measured the fluorescence of [8]CPP and [10]CPP slabs upon excitation at

405 nm , as a function of the distance between irradiation point and photodetector.
These results were compared with the experimental data reported for Lumogen Orang F205, a well-know fluorophore in coloured LSC devices and Europium chelate NB06 used for building colourless LSC.

Figure 92: (Top) Absorption and emission of slab - red lines - and in solution - black line - of [10]CPP. (Bottom) Emission decay in slabs at different concentration of [10]CPP.

Comparison between Lumogen and [10]CPP shows a great difference in signal attenuation. In fact, Lumogen shows an attenuation of about 40% at 10 cm from the excitation spot,
while [10]CPP only 10% at 10 cm and below 14% at $20 \mathrm{~cm}-$ Figure 93b. [8]CPP shows an attenuation of 15% at 10 cm from excitation point that remain constant at 16 cm - Figure 93a.
This behavior is very similar to that observed with Europium chelate NB06.

Figure 93: Evaluation of reabsorption phenomena in slab (left) [10]CPP and (right) [8]CPP as function of distance.

In summary, here have been prepared for the first time CPPbased LSCs.
The high Stokes shift of the CPP macrocycles, enables the preparation of slabs in which a low reabsorption was oberved. The results here obtained show clearly the the photophysical performances of the CPP-based LSC closely matches with that of the lanthanide chelates based LSC, of interest for applications in colorless LSC.

4 Experimental Section

4.1 General Section

All chemicals reagents grade was used without further purification and were used as purchased from TCI and Sigma Aldrich. Tetrahydrofuran was dried by heating under reflux over sodium wire in the presence of benzophenone as indicator ${ }^{147}$ while dimethylformamide were dried by activated $3 \AA$ molecular sieves ${ }^{148}$. Other solvent was purchase by Sigma Aldrich. When necessary compounds were dried in vacuo over CaCl_{2}. Reaction temperatures were measured externally. Reactions were monitored by Magery-Nagel TLC silica gel plates (0.25 mm) and visualized by UV light 254 nm , or by spraying with $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}$. Flash chromatography was performed on Magery-Nagel silica gel ($60,40-63 \mu \mathrm{~m}$).
NMR spectra were recorded on a $600\left[600\left({ }^{1} \mathrm{H}\right)\right.$ and 150 MHz $\left.\left({ }^{13} \mathrm{C}\right)\right], 400\left[400\left({ }^{1} \mathrm{H}\right)\right.$ and $\left.100 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)\right], 300 \mathrm{MHz}\left[300\left({ }^{1} \mathrm{H}\right)\right.$ and $75 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ or $250 \mathrm{MHz}\left[250\left({ }^{1} \mathrm{H}\right)\right.$ and $\left.62.5 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)\right]$ spectrometer. Chemical shifts are reported relative to the residual solvent peak ${ }^{149}$.
Melting points were determined with a Kofler apparatus.
HR MALDI mass spectra were recorded on a FT-ICR mass spectrometer equipped with a 7 T magnet. The samples were

[^70]ionized in positive ion mode using MALDI ion source. The mass spectra were calibrated externally, and a linear calibration was applied.

4.2 Solid State Self-Assembly of Resorcin[6]arene

4.2.1 Procedure of preparation of 3

Derivative 3 was obtained in accordance with the literature procedure reported in 2016 by our group. ${ }^{37}$

4.2.2 Crystal structure determination

Capsular self-assembled crystals were all of small dimensions and contained a large number of solvent molecules; consequently, to improve the intensity of the diffraction pattern, data collections were carried out using synchrotron radiation at the X-ray diffraction beam-line of the Elettra Synchrotron, Trieste, Italy, employing the rotating-crystal method with the cryo-cooling technique. Routinely, the crystal dipped in Paratone, as cryoprotectant, was mounted in a loop and flash frozen to 100 K with liquid nitrogen.

Diffraction data of capsular system containing toluene or ethyl acetate molecules (named $\mathbf{1 A}$) were indexed and integrated using the XDS package, ${ }^{150}$ while MOSFLM ${ }^{151}$ was used for crystal obtained from slow evaporation of DMF (named 1B). Scaling was carried out with SCALA ${ }^{152,153}$ for datasets

[^71]collected from crystals of $\mathbf{1 A}$, whereas AIMLESSiii, ${ }^{139}$ was used for that one collected from crystals of 1B. The structures were solved by direct methods using SIR2011. ${ }^{154}$ Nonhydrogen atoms at full occupancy, or with population equal to or higher than 0.5 were anisotropically refined (H atoms at the calculated positions) with bond length and angle restraints by full-matrix least-squares methods on F2 using SHELXL-14. ${ }^{139}$
The structure of $\mathbf{1 A}$ shows disorder in the orientation of a phenyl ring: the two positions were refined at $0.4 / 0.6$ of partial occupancy. Three orientations were identified for an ethyl acetate solvent molecules, refined at $0.4 / 0.3 / 0.3$ of partial occupancy. A toluene solvent molecule and an ethyl acetate solvent molecule share the same binding site in the calixarene cavity. The two solvent molecules were refined at equal partial occupancy.
Restrains (DFIX, DANG) were applied on bond lengths and angles and thermal parameters (SIMU) for atoms involved in disordered fragments.
The cell contained also a severely disordered solvent molecule with partial occupancy, that was not modelled but taken into account using the SQUEEZE/PLATON ${ }^{155}$ procedure. The residual electron density of 37 electrons/cell found in the inner space of the crystal (corresponding to about 6.1% of the cell volume) can be attributed or to 0.7 toluene solvent molecules or to 0.8 ethyl acetate solvent molecules.

[^72]
4.2.3 Calculation of the cavity volume for the capsular assembly 1A

The volume of the sub-cavities of the supramolecular capsule 1A was estimated using the VOIDOO software, ${ }^{156}$ starting from the crystallographic coordinates of $\mathbf{1 A}$. The following atomic radii were used for the calculations:

- \quad carbon $=1.70 \AA$,
- \quad oxygen $=1.60 \AA$,
- \quad nitrogen $=1.65 \AA$,
- aliphatic hydrogen $=1.20 \AA$.

Four molecules of benzene were introduced in the model only at the aim of closing the openings in the capsule walls, so that the virtual probe with radius of $1.4 \AA$ could define the void in the cavity.
The following parameters were changed from their default settings:

- Primary grid spacing: 0.1
- Maximum number of volume-refinement cycles: 30

The average volume of the void space inside the sub-cavity, shown in Figure S5, resulted $252 \AA^{3}$.
Volumes of toluene and ethyl acetate guests ($V \mathrm{G}$) were also calculated with the same program, and resulted 96 and $85 \AA^{3}$, respectively.

[^73]
4.3 Synthesis of a TetrasulfateResorcin[6]arene Cavitand

4.3.1 Synthesis of derivative 15

A solution of resorcin[6]arene $3(0.16 \mathrm{~g}, 0.19 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.55 \mathrm{~g}, 4.00 \mathrm{mmol})$ in dry DMA $(24 \mathrm{~mL})$ was stirred at $75{ }^{\circ} \mathrm{C}$ for 30 min , then was cooled at $25^{\circ} \mathrm{C}$ and $1,1^{\prime}$ sulfonyldiimidazole was added. The reaction mixture was stirred at $75^{\circ} \mathrm{C}$, under atmosphere of N_{2} for 60 h . The solvent was evaporated and the solid was dissolved in ethyl acetate (50 mL) and washed with aqueous 1 M
HCl solution $(2 \times 50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to obtain a brown solid. The pure product 15 was purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 99.5 / 0.5 \mathrm{v}: \mathrm{v}$) as a yellow solid, $0.060 \mathrm{~g}, 30 \%$ yield. M.p. $>125.3^{\circ} \mathrm{C}$ dec.
${ }^{1}$ H NMR $(600 \mathrm{MHz}$, TCDE, 403 K$) \delta 7.32$ (s, $\mathrm{ArH}, 2 \mathrm{H}$), 7.30 (s, $\mathrm{ArH}, 4 \mathrm{H}$), 5.74 (br s, OH), 4.06 and 3.94 (br s, $\mathrm{ArCH}_{2} \mathrm{Ar}$, 12H), 2.42 (s, $\mathrm{ArCH}_{3}, 6 \mathrm{H}$), 2.29 ($\mathrm{s}, \mathrm{ArCH}_{3}, 12 \mathrm{H}$).
${ }^{13}$ C NMR (75 MHz , TCDE, 403 K) $\delta 9.34,10.3,29.3$, 33.3, 119.71, 125.16, 126.36, 126.96, 127.93, 128.08, 133.79, 146.29, 146.42, 151.02.

HRMS (MALDI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{48} \mathrm{H}_{40} \mathrm{NaO}_{20} \mathrm{~S}_{4}$, 1087.0888; found 1087.0895.

Figure 94: ${ }^{13} \mathrm{C}$ NMR spectrum of 15 (TCDE, $75 \mathrm{MHz}, 403 \mathrm{~K}$).

Figure 95: (left) 2D COSY spectrum (TCDE, $600 \mathrm{MHz}, 298 \mathrm{~K}$) of derivative 15 ; (right) Expansion of 2D COSY spectrum (TCDE, $600 \mathrm{MHz}, 298 \mathrm{~K}$) of derivative 15.
403 K
 ,

363 K \qquad
353 K

Figure 96: Expansion of methylene region of $\mathrm{VT}{ }^{1} \mathrm{H}$ NMR experiment of derivative 15 (TCDE, $600 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure 97: Significant portion of the MALDI FT-ICR mass spectrum of $15[\mathrm{M}+\mathrm{Na}]^{+}$, showing the isotopic envelop.

Figure 98: ORTEP representation of the derivative 15. Ellipsoids displayed at 40% probability.

4.4 Biomolecular Recognition with Larger Resorcin[6]arene Derivatives

4.4.1 Synthesis of derivative 19

Derivative 19 was obtained in accordance with the literature procedure reported in 2016 by Liu and coworker. ${ }^{85}$

4.4.2 Synthesis of derivative 20

A solution of $12(0.47 \mathrm{~g}, 0.58 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.16 \mathrm{~g}, 15.66$ $\mathrm{mmol})$ in acetone (27 mL) was stirred a reflux for 1 h , then was cooled at $25^{\circ} \mathrm{C}$ and propargyl bromide ($0.70 \mathrm{~mL}, 9.74 \mathrm{mmol}$) was added. The reaction mixture was stirred at reflux for 24 h and after which a second addition of propargyl bromide (0.70 $\mathrm{mL}, 9.74 \mathrm{mmol}$) is carried out. After further 24 h , solvent was evaporated and the solid was dissolved in diethyl ether (50 mL) and washed with aqueous 0.1 M HCl solution ($2 \times 100 \mathrm{~mL}$). The organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to obtain pale yellow solid. Derivative $\mathbf{2 0}$ was obtained with 87 $\%$ of yield (0.65 g).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 6.39(\mathrm{~s}, \mathrm{ArH}, 6 \mathrm{H}), 4.34$ (d, $J=2.4 \mathrm{~Hz},-\mathrm{OCH}_{2}-, 24 \mathrm{H}$), $3.84\left(\mathrm{~s},-\mathrm{CH}_{2}-, 12 \mathrm{H}\right), 2.48(\mathrm{t}, J=$ $2.4 \mathrm{~Hz},-\mathrm{C}=\mathrm{CH}, 12 \mathrm{H}$), $2.26\left(\mathrm{~s},-\mathrm{CH}_{3}, 18 \mathrm{H}\right)$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 154.15,129.95,129.32$, 125.34, 79.41, 75.34, 60.59, 29.85, 11.04.

DEPT-135 ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 129.95,79.41,75.34$, 60.59, 29.85, 11.04.

HRMS (MALDI) $m / z[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{84} \mathrm{H}_{73} \mathrm{O}_{12}, 1273.5097$; found 1273.5121 .

Figure 99: ${ }^{1} \mathrm{H}$ NMR spectrum of $20\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 100: ${ }^{13} \mathrm{C}$ NMR and DEPT-135 spectra of 21 (Acetone- $d_{6}, 100 \mathrm{MHz}, 298 \mathrm{~K}$).

4.4.3 Synthesis of derivative 21

A solution of $\mathbf{1 0}(0.44 \mathrm{~g}, 0.82 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.04 \mathrm{~g}, 14.72$ mmol) in acetone (26 mL) was stirred a reflux for 1 h , then was cooled at $25^{\circ} \mathrm{C}$ and propargyl bromide ($0.74 \mathrm{~mL}, 9.84 \mathrm{mmol}$) was added. The reaction mixture was stirred at reflux for 24 h . Subsequently, solvent was evaporated and the solid was dissolved in ethyl acetate (50 mL) and washed with aqueous 1 M HCl solution $(2 \times 50 \mathrm{~mL})$. The organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to obtain pale yellow solid. Derivative 21 was delivered with 81% of yield $(0.70 \mathrm{~g})$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, acetone- $\left.d_{6}, 298 \mathrm{~K}\right) \delta 6.22(\mathrm{~s}, \mathrm{Ar} H, 4 \mathrm{H})$, $4.48\left(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz},-\mathrm{OCH}_{2}-, 16 \mathrm{H}\right), 3.98\left(\mathrm{~s},-\mathrm{CH}_{2}-, 8 \mathrm{H}\right), 3.04(\mathrm{t}$, $J=2.4 \mathrm{~Hz},-\mathrm{C} \equiv \mathrm{CH}, 8 \mathrm{H}), 2.31\left(\mathrm{~s},-\mathrm{CH}_{3}, 12 \mathrm{H}\right)$.
${ }^{13} \mathbf{C}$ NMR (75.48 MHz, acetone- $\left.d_{6}, 298 \mathrm{~K}\right) \delta 155.28,130.72$, 129.58, 125.37, 80.37, 76.79, 61.21, 30.85, 11.11.

DEPT-135 (75.48 MHz, acetone- $\left.d_{6}, 298 \mathrm{~K}\right) \delta 129.58,80.37$, 76.79, 61.21, 30.85, 11.11.

HRMS (MALDI) $m / z[M]^{+}$calcd. for $\mathrm{C}_{56} \mathrm{H}_{49} \mathrm{O}_{8}, 849.3422$; found 849.3492.

Abstract

Figure 101: ${ }^{1} \mathrm{H}$ NMR spectrum of 21 (Acetone-d ${ }_{6}, 300 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure 102: ${ }^{13} \mathrm{C}$ NMR and DEPT-135 spectra of 21 (Acetone- $d_{6}, 75 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure 103: Significant portion of the MALDI FT-ICR mass spectrum of $21[\mathrm{M}+\mathrm{Na}]^{+}$, showing the isotopic envelop.

4.4.4 Synthesis of derivative 22

Derivative 19 ($3.99 \mathrm{mg}, 4.70 \mu \mathrm{~mol}$) and derivative 61 (10.69 $\mathrm{mg}, 41.40 \mu \mathrm{~mol}$) were dissolved in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (v:v) 2:1 (1.00 $\mathrm{mL})$ in an ACE pressure tube and $\mathrm{Cu}_{2} \mathrm{SO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(0.35 \mathrm{mg}, 1.40$ $\mu \mathrm{mol}$) and sodium ascorbate ($0.56 \mathrm{mg}, 2.80 \mu \mathrm{~mol}$)was added. The reaction mixture was heated under microwave irradiation for 45 min at $80^{\circ} \mathrm{C}$. The reaction mixture was filtered off through a pad of celite ${ }^{\circledR}$ and the filtrate was concentrated under reduced pressure to deliver a yellow solid.
The mixture was purified through chromatographic column (silica gel, gradient: From MeOH to $\mathrm{NH}_{3} 4 \%$ in MeOH) to give derivative $\mathbf{2 2}$ with 27% of yield (3.7 mg).
> ${ }^{1}$ H NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, 298 K) $\delta 8.09$ (s, H-Triazole, 4H), 7.36 (s, H-Triazole, 4H), 7.22 (s, ArH, 2H), 6.99 (s, ArH, 2 H), 6.72 ($\mathrm{s}, \mathrm{Ar} H, 2 \mathrm{H}$), 5.98 ($\mathrm{s}, \mathrm{ArH}, 2 \mathrm{H}$), 5.21 and 5.14 (AB,
$J=12.0 \mathrm{~Hz},-\mathrm{OCH}_{2}$-Triazole, 8 H), 4.89 (overlapped to signal of $\mathrm{H}_{2} \mathrm{O},-\mathrm{OCH}_{2}$-Triazole), $4.55\left(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)\right.$ - Ar , 4H), 4.45 (broad, 12 H$) 4.28$ (broad, 8 H), 3.94-3.87 (overlapped, 16H), 3.68-3.63 (overlapped, 16H), 3.32-3.25 (AB, overlapped to signal of $\left.\mathrm{CH}_{3} \mathrm{OH}\right), 3.04-2.98(\mathrm{~m}, 8 \mathrm{H}), 2.86-$ 2.78 (m, 8H), 2.66-2.64 (m, 16H) 2.45-2.32 (overlapped, 16H) 1.94 (broad, $-\mathrm{CH}_{2}-, 8 \mathrm{H}$), 1.83 (broad, $-\mathrm{CH}_{2}-, 8 \mathrm{H}$), 1.60-1.33 (overlapped, 44H).
${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}$) $\delta 155.22,154.05$, $144.19,143.89,130.75,129.47,126.44,123.83,123.67,79.35$, $75.90,73.20,62.75,61.09,61.06,59.12,55.19,55.08,51.01$, $50.01,31.64,31.09,30.60,29.96,29.86,29.41,29.33,29.16$, $29.02,28.90,28.80,28.44,27.44,27.41,26.70,26.60,26.45$, 26.27, 26.00, 25.48, 22.29, 18.85, 12.99.

HRMS (MALDI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{144} \mathrm{H}_{224} \mathrm{~N}_{32} \mathrm{O}_{32}$, 2915.6991; found 2915.7250.
$[\boldsymbol{\alpha}]_{\mathbf{D}}(\mathrm{c}: 3.7 \mathrm{mg} / \mathrm{mL})=-20.99^{\circ}$.

Figure 104: ${ }^{1} \mathrm{H}$ NMR of derivative $22\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 105: ${ }^{13} \mathrm{C}$ NMR spectrum of $22\left(\mathrm{CD}_{3} \mathrm{OD}, 150 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 106: (left) 2D COSY spectrum ($\mathrm{CD}_{3} \mathrm{OD}, 150 \mathrm{MHz}, 298 \mathrm{~K}$) of derivative 22; (right) 2D HSQC spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}, 150 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of derivative 22.

Figure 107: Significant portion of the MALDI FT-ICR mass spectrum of $22[\mathrm{M}+\mathrm{H}]^{+}$.

4.4.5 Synthesis of derivative 24

Derivative 21 ($4.06 \mathrm{mg}, 4.83 \mu \mathrm{~mol}$) and derivative $\mathbf{6 1}(9.98 \mathrm{mg}$, $38.6 \mu \mathrm{~mol})$ were dissolved in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(\mathrm{v}: \mathrm{v})$ 2:1 $(1.00 \mathrm{~mL})$ in an ACE pressure tube and $\mathrm{Cu}_{2} \mathrm{SO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(0.36 \mathrm{mg}, 1.40 \mu \mathrm{~mol})$ and sodium ascorbate ($0.57 \mathrm{mg}, 2.90 \mu \mathrm{~mol}$) was added. The
reaction mixture was heated under microwave irradiation for 45 min at $80^{\circ} \mathrm{C}$. The reaction mixture was filtered off through a pad of celite ${ }^{\circledR}$ and the filtrate was concentrated under reduced pressure to deliver a yellow solid.
The mixture was purified through chromatographic column (silica gel, gradient: From MeOH to $\mathrm{NH}_{3} 4 \%$ in MeOH) to give derivative $\mathbf{2 4}$ with 44% of yield (6.2 mg).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}$) $\delta 7.78$ (s, H-Triazole, 8 H), 6.26 ($\mathrm{s}, \mathrm{ArH}, 4 \mathrm{H}$), 4.82 (overlapped, $-\mathrm{OCH}_{2}$-Triazole, $16 \mathrm{H}), 4.34\left(\mathrm{t}, J=7.4 \mathrm{~Hz}\right.$, triazole- $\left.\mathrm{CH}_{2}, 16 \mathrm{H}\right), 3.94(\mathrm{~m},-\mathrm{CHOH}$, $8 \mathrm{H}), 3.90(\mathrm{~m},-\mathrm{CHOH}, 8 \mathrm{H}), 3.80\left(\mathrm{~s}, \mathrm{Ar}^{2} \mathrm{CH}_{2}-\mathrm{Ar}, 8 \mathrm{H}\right), 3.66(\mathrm{~m}$, $\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CHOH}, 16 \mathrm{H}$), $3.02\left(\mathrm{~d}, J=11.4 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{OH}-, 8 \mathrm{H}\right), 2.82$ $\left(\mathrm{m}, \mathrm{CH}_{2}-\mathrm{N}, 8 \mathrm{H}\right), 2.67\left(\mathrm{~m},-\mathrm{CH}_{2} \mathrm{OH}, 8 \mathrm{H}\right), 2.46(\mathrm{~m},-\mathrm{CHOH}$, $8 \mathrm{H}), 2.31\left(\mathrm{~m}, \mathrm{CH}_{2}-\mathrm{N}, 8 \mathrm{H}\right), 2.30\left(\mathrm{~s}, \mathrm{Ar}-\mathrm{CH}_{3}, 12 \mathrm{H}\right), 1.86(\mathrm{~m}$, $\mathrm{CH}_{2}, 16 \mathrm{H}$), 1.48 (m, $\mathrm{CH}_{2}, 16 \mathrm{H}$), 1.29 (overlapped, $\mathrm{CH}_{2}, 32 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}$) δ 155.73, 145.10 , $131.08,130.24,125.76,125.41,80.64,77.25,74.71,66.67$, $62.46,60.54,56.59,51.34,31.23,28.71,27.81,27.35,11.40$.

HRMS (MALDI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{144} \mathrm{H}_{224} \mathrm{~N}_{32} \mathrm{O}_{32}$, 2915.6991; found 2915.6992.
$[\boldsymbol{\alpha}]_{\mathbf{D}}(\mathrm{c}: 4.1 \mathrm{mg} / \mathrm{mL})=-21.01^{\circ}$.

Figure 108: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 4}\left(\mathrm{CD}_{3} \mathrm{OD}, 150 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 109: (left) 2D COSY spectrum ($\mathrm{CD}_{3} \mathrm{OD}, 150 \mathrm{MHz}, 298 \mathrm{~K}$) of derivative 24; (right) 2D HSQC spectrum ($\mathrm{CD}_{3} \mathrm{OD}, 150 \mathrm{MHz}, 298 \mathrm{~K}$) of derivative 24.

Figure 110: Significant portion of the MALDI FT-ICR mass spectrum of $\mathbf{2 4}[\mathrm{M}+\mathrm{H}]^{+}$ and $24[\mathrm{M}+\mathrm{Na}]^{+}$.

4.4.6 Synthesis of derivative 23

Derivative $21(4.00 \mathrm{mg}, 3.14 \mu \mathrm{~mol})$ and derivative $\mathbf{6 1}(9.73 \mathrm{mg}$, $37.7 \mu \mathrm{~mol})$ were dissolved in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(\mathrm{v}: \mathrm{v})$ 2:1 $(1.00 \mathrm{~mL})$ in an ACE pressure tube and $\mathrm{Cu}_{2} \mathrm{SO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(0.23 \mathrm{mg}, 0.94 \mu \mathrm{~mol})$ and sodium ascorbate ($0.37 \mathrm{mg}, 1.9 \mu \mathrm{~mol}$) was added. The reaction mixture was heated under microwave irradiation for 45 min at $80^{\circ} \mathrm{C}$. The reaction mixture was filtered off through a pad of celite ${ }^{\circledR}$ and the filtrate was concentrated under reduced pressure to deliver a yellow solid.
The mixture was purified through chromatographic column (silica gel, gradient: From MeOH to $\mathrm{NH}_{3} 4 \%$ in MeOH) to give derivative $\mathbf{2 3}$ with 14% of yield (1.9 mg).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}$) $\delta 7.89$ (s, H-Triazole, $12 \mathrm{H}), 6.42$ (s, ArH, 6H), 4.71 (s, $-\mathrm{OCH}_{2}$-Triazole, 24H), 4.32 ($\mathrm{t}, J=6.5 \mathrm{~Hz}$, triazolo- $\mathrm{CH}_{2}-, 24 \mathrm{H}$), $3.95(\mathrm{~m},-\mathrm{CHOH}, 12 \mathrm{H}), 3.90$
(m, $-\mathrm{CHOH}, 12 \mathrm{H}$), 3.83 (broad, $\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{Ar}, 12 \mathrm{H}$), 3.66 (m, N-$\mathrm{CH}_{2}-\mathrm{CHOH}, 24 \mathrm{H}$), 3.03 (d, $J=9.8 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{OH}-, 12 \mathrm{H}$), 2.83 $\left(\mathrm{m}, \mathrm{CH}_{2}-\mathrm{N}, 12 \mathrm{H}\right), 2.67\left(\mathrm{~m},-\mathrm{CH}_{2} \mathrm{OH}, 12 \mathrm{H}\right), 2.50$ (broad, $\mathrm{CHOH}, 12 \mathrm{H}), 2.34\left(\mathrm{~m}, \mathrm{CH}_{2}-\mathrm{N}, 12 \mathrm{H}\right) 2.21\left(\mathrm{~s}, \mathrm{Ar}-\mathrm{CH}_{3}, 18 \mathrm{H}\right)$, $1.83\left(\mathrm{~m}, \mathrm{CH}_{2}, 24 \mathrm{H}\right), 1.47\left(\mathrm{~m}, \mathrm{CH}_{2}, 24 \mathrm{H}\right), 1.29$ (overlapped, $\left.\mathrm{CH}_{2}, 48 \mathrm{H}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right) \delta$ 155.53, 145.01, $130.89,126.35,125.46,80.90,77.38,74.39,62.56,60.54$, 56.39, 31.27, 28.95, 27.90, 27.40, 11.19.

HRMS (MALDI) $m / z \quad[M]^{+}$calcd. for $\mathrm{C}_{216} \mathrm{H}_{336} \mathrm{~N}_{48} \mathrm{O}_{48}$, 4395.5286; found 4395.5910 .
$[\boldsymbol{\alpha}]_{\mathrm{D}}(\mathrm{c}: 1.9 \mathrm{mg} / \mathrm{mL})=-33.50^{\circ}$.

Figure 112: Significant portion of the MALDI FT-ICR mass spectrum of $\mathbf{2 3}[\mathrm{M}+\mathrm{Na}]^{+}$ and $\mathbf{2 3}[\mathrm{M}+\mathrm{K}]^{+}$.

4.5 Tuning Cycloparaphenylene Host Properties by Chemical Modification

4.5.1 Synthesis of derivative 48

A solution of 1,4-dibromobenzene $(8.63 \mathrm{~g}, 36.6 \mathrm{mmol})$ in anhydrous THF (400 mL) was cooled at $-78^{\circ} \mathrm{C}$, and a 2.5 M solution of n-butyllithium in hexane ($17.1 \mathrm{~mL}, 42.8 \mathrm{mmol}$) was added over 15 min . Compound $5(3.00 \mathrm{~g}, 17.8 \mathrm{mmol})$ was then added to the reaction mixture as a solid in three equal portions over 15 min . The solution was stirred for 5 h at $-78^{\circ} \mathrm{C}$ and then added to 100 mL of water. The mixture was further diluted by addition of 100 mL of diethyl ether, and the organic layer was separated. The aqueous layer was extracted with diethyl ether $(2 \times 50 \mathrm{~mL})$, and the combined organic layers were washed with a saturated brine solution $(150 \mathrm{~mL})$. The organic phase was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (4:6). The product $\mathbf{4 8}$ was isolated as a white solid in 65% yield (5.60 g). Mp: 75.3-76.1 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $\mathrm{Ar} H, 4 \mathrm{H}$), 7.26 (d, $J=8.4 \mathrm{~Hz}, \mathrm{Ar} H, 4 \mathrm{H}), 4.99$ (s, $\mathrm{CH}=\mathrm{COMe}$, $2 \mathrm{H}), 3.54\left(\mathrm{~s}, \mathrm{OCH}_{3}, 6 \mathrm{H}\right), 2.96(\mathrm{~s}, \mathrm{OH}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 155.4,144.7,131.7$, 127.7, 121.4, 103.1, 73.9, 55.5.

HRMS (ESI-) $m / z[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{O}_{4}, 478.9499$; found, 478.9479 .

Figure 113: ${ }^{1} \mathrm{H}$ NMR spectrum of $48\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 114: ${ }^{13} \mathrm{C}$ NMR spectrum of $48\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 115: Significant portion of the HR MALDI FT-ICR mass spectrum of $48[\mathrm{M}-\mathrm{H}]^{-}$ showing the isotopic envelop.

4.5.2 Synthesis of derivative 49

Compound $48(5.60 \mathrm{~g}, 11.6 \mathrm{mmol})$ in anhydrous THF (110 mL) was cooled at $0{ }^{\circ} \mathrm{C}$, followed by addition of $\mathrm{NaH}(1.86 \mathrm{~g}, 46.4$ $\mathrm{mmol}, 60 \%$ in mineral oil). The mixture was stirred for 30 min , and subsequently iodomethane ($4.3 \mathrm{~mL}, 69.6 \mathrm{mmol}$) was added. The reaction mixture was then stirred at room temperature overnight. The excess of sodium hydride was then quenched by addition of 50 mL of water followed by addition of 70 mL of ethyl ether. The organic layer was separated, and the aqueous phase was extracted with ethyl ether. The combined organic layers were dried over sodium sulfate, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using petroleum ether/ethyl ether (6:4). The product 49 was
isolated as a white solid in 81% yield (4.79 g). Mp: 119.5$120.7^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2} 298 \mathrm{~K}$): $\delta 7.43(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, ArH, 4H), 7.28 (d, $J=8.8 \mathrm{~Hz}, \mathrm{ArH}, 4 \mathrm{H}), 4.85$ (s, CH=COMe, $2 \mathrm{H}), 3.55\left(\mathrm{~s}, \mathrm{OCH}_{3}, 6 \mathrm{H}\right), 3.33\left(\mathrm{~s}, \mathrm{OCH}_{3}, 6 \mathrm{H}\right)$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta 155.6,143.7,131.4$, 128.4, 121.4, 104.2, 79.0, 55.4, 51.6.

HRMS (ESI+) $m / z[M+N a]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{NaO}_{4}$, 530.9777; found, 530.9798.

$\begin{array}{llllllllllllllll}8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & \mathrm{ppm}\end{array}$ Figure 116: ${ }^{1} \mathrm{H}$ NMR spectrum of $49\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 117: ${ }^{13} \mathrm{C}$ NMR spectrum of $49\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 118: Significant portion of the HR MALDI FT-ICR mass spectrum of 49 $[\mathrm{M}+\mathrm{Na}]^{+}$showing the isotopic envelop.

4.5.3 Synthesis of derivative 50

Compound $49(1.30 \mathrm{~g}, 2.55 \mathrm{mmol})$ was dissolved in 30 mL of dry THF and cooled to $-78{ }^{\circ} \mathrm{C}$, and a 2.5 M solution of n butyllithium in hexanes ($2.3 \mathrm{~mL}, 5.6 \mathrm{mmol}$) was added over 15 min. Finally, isopropyl pinacol borate ($2.3 \mathrm{~mL}, 11.5 \mathrm{mmol}$) was rapidly added, and the mixture was stirred for 5 h under argon. Then, 25 mL of water and 30 mL of ethyl ether were added to the solution, and the biphasic mixture was stirred for 30 min and heated at room temperature. The organic phase was separated, and the aqueous layer was extracted with ethyl ether $(3 \times 25 \mathrm{~mL})$. The combined organic phases were dried over sodium sulfate and concentrated under reduced pressure. The crude was purified by column chromatography on silica gel using petroleum ether/ethyl ether (7:3) to deliver compound $\mathbf{5 0}$ as a white solid in 53% yield $(0.82 \mathrm{~g})$. Mp: $129.0-130.0^{\circ} \mathrm{C}$.
> ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 7.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $\mathrm{Ar} H, 4 \mathrm{H}$), 7.45 (d, $J=7.8 \mathrm{~Hz}, \mathrm{Ar} H, 4 \mathrm{H}), 4.90$ (s, $\mathrm{CH}=\mathrm{COMe}$, 2H), 3.55 ($\mathrm{s}, \mathrm{OCH}_{3}, 6 \mathrm{H}$), 3.41 ($\mathrm{s}, \mathrm{O} \mathrm{CH}_{3}, 6 \mathrm{H}$), 1.34 ($\mathrm{s}, \mathrm{CH} 3$, 24H).

${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 155.3,147.0,134.8$, 125.4, 104.4, 83.9, 79.4, 55.2, 51.5, 25.0.

DEPT 135 (62.5 MHz, $\mathrm{CDCl}_{3}, 298 \mathrm{~K}$): 134.8, 125.4, 104.4, 55.2, 51.5, 25.0 .

HRMS (MALDI) $m / z[\mathrm{M}+\mathrm{Ag}]^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{AgB}_{2} \mathrm{O}_{8}$, 711.2430; found, 711.2418 .

Figure 119: ${ }^{1} \mathrm{H}$ NMR spectrum of $50\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 120: ${ }^{13} \mathrm{C}$ NMR spectrum of $50\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 121: DEPT-135 spectrum of $50\left(\mathrm{CDCl}_{3}, 62.5 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 122: Significant portion of the HR MALDI FT-ICR mass spectrum of 50 $[\mathrm{M}+\mathrm{Ag}]^{+}$showing the isotopic envelop.

4.5.4 Synthesis of derivative 51

Diboronate 50 ($1.81 \mathrm{~g}, 3.00 \mathrm{mmol}$), dibromide 36 ($1.99 \mathrm{~g}, 3.00$ mmol), S-Phos ($1.48 \mathrm{mg}, 3.6 \mathrm{mmol}$), and $\mathrm{K}_{3} \mathrm{PO}_{4}(2.55 \mathrm{~g}, 12.0$ $\mathrm{mmol})$ in DMF (600 mL) and $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$ were stirred and degassed twice through the freeze/pump/thaw technique. Finally, $\mathrm{Pd}(\mathrm{OAc})_{2}(404 \mathrm{mg}, 2.1 \mathrm{mmol})$ was added, and the mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 48 h under argon. After cooling at room temperature, the mixture was filtered through Celite ${ }^{\circledR}$, and 100 mL of water and 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added. The biphasic mixture was stirred for 10 min , and then the organic layer was extracted while the aqueous phase was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 50 \mathrm{~mL})$. The combined organic phases were washed with 150 mL of NaCl aqueous solution and dried over sodium sulfate. The solvent was removed under reduced pressure, and the crude product was purified by chromatography column on silica gel (gradient of petroleum ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=30: 65: 5$) to give derivative 51 as a white solid in 31% yield $(0.79 \mathrm{~g})$. Mp: $>293{ }^{\circ} \mathrm{C}$ dec.
${ }^{1} \mathbf{H}^{\text {NMR }}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$: $\delta 7.53-7.49$ (overlapped, $\mathrm{Ar} H, 12 \mathrm{H}$), 7.36 (d, $J=7.6 \mathrm{~Hz}, \mathrm{Ar} H, 4 \mathrm{H}$), 7.13 (d, $J=8.2 \mathrm{~Hz}$, $\mathrm{Ar} H, 4 \mathrm{H}$), 6.14 (overlapped, $\mathrm{C} H=\mathrm{C} H, 4 \mathrm{H}$), 6.05 (d, $J=10.1 \mathrm{~Hz}$ $\mathrm{CH}=\mathrm{CH}, 4 \mathrm{H}$), 5.05 ($\mathrm{s}, \mathrm{CH}=\mathrm{COMe}, 2 \mathrm{H}$), 3.66 ($\mathrm{s}, \mathrm{OCH}_{3}, 6 \mathrm{H}$), 3.47 (s, $\mathrm{OCH}_{3}, 6 \mathrm{H}$), $3.41\left(\mathrm{~s}, \mathrm{OCH}_{3}, 6 \mathrm{H}\right), 3.40\left(\mathrm{~s}, \mathrm{OCH}_{3}, 6 \mathrm{H}\right)$.
${ }^{13}$ C NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 155.5$, 143.6, 142.9, 141.6, 139.9, 139.8, 133.9, 133.6, 133.0, 132.7, 127.0, 127.0, $126.5,126.4,126.4,105.0,79.8,74.8,74.2,55.3,52.3,51.9$, 51.8.

DEPT 135 ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 133.9,133.6,133.0$, 132.7, 127.0, 127.0, 126.5, 126.4, 126.4, 105.0, 55.3, 52.3, 52.0, 51.8 .

HRMS (MALDI) $m / z[\mathrm{M}+\mathrm{Ag}]^{+}$calcd for $\mathrm{C}_{56} \mathrm{H}_{54} \mathrm{AgO}_{8}$, 961.2870; found, 961.2859.

Figure 123: ${ }^{13} \mathrm{C}$ NMR spectrum of $51\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 124: DEPT-135 spectrum of $51\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 125: Significant portion of the HR MALDI FT-ICR mass spectrum of 51 $[\mathrm{M}+\mathrm{Ag}]^{+}$showing the isotopic envelop.

4.5.5 Synthesis of derivative 46

A suspension of $\mathrm{SnCl}_{2}(954 \mathrm{mg}, 5.03 \mathrm{mmol})$ in 110 mL of THF under argon was added of $\mathrm{HCl}(13 \mathrm{~mL}, 37 \%)$ and degassed. Then, derivative 51 was added ($430 \mathrm{mg}, 0.50 \mathrm{mmol}$), and the reaction mixture was stirred for 8 h at room temperature. Subsequently an aqueous solution of $\mathrm{NaHCO}_{3}(45 \mathrm{~mL})$ and $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ were added, and the mixture was stirred for 5 min. The organic layer was separated, and the aqueous phase was extracted with $\mathrm{CHCl}_{3}(2 \times 30 \mathrm{~mL})$. The combined organic layers were dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered, and the solvent was removed in vacuum. The crude product was purified by column chromatography on silica gel using petroleum ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (7:3). The product 46 was obtained as a yellow solid in 56% yield $(0.19 \mathrm{~g})$. Mp: $>325^{\circ} \mathrm{C}$ dec.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $\mathrm{ArH}, 4 \mathrm{H}$), 7.52- 7.50 (overlapped, $\mathrm{ArH}, 8 \mathrm{H}$), 7.48-7.46 (overlapped, $\operatorname{ArH}, 12 \mathrm{H}$), 7.41 (d, $J=8.4 \mathrm{~Hz}, \mathrm{ArH}, 4 \mathrm{H}$), 6.83 (s, $\mathrm{CH}=\mathrm{COMe}, 2 \mathrm{H}$), 3.73 (s, OMe, 6H).
${ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 152.7,138.7,138.5$, 138.0, 137.9, 137.8, 137.7, 136.3, 129.3, 129.0, 127.9, 127.7, 127.6, 127.5, 127.1, 115.5, 57.1.

DEPT 135 (150 MHz, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 129.2,127.8,127.7$, 127.5, 127.5,127.0, 115.4, 57.0.

HRMS (MALDI) $m / z[M]^{+}$calcd for $\mathrm{C}_{50} \mathrm{H}_{36} \mathrm{O}_{2}, 668.2710$; found, 668.2708.

Figure 126: ${ }^{13} \mathrm{C}$ NMR spectrum of $46\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 127: DEPT-135 spectrum of $46\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 128: Significant portion of the HR MALDI FT-ICR mass spectrum of 46 $[\mathrm{M}+\mathrm{Ag}]^{+}$showing the isotopic envelop.

Figure 129: (left) Significant portion of the 2D COSY spectrum $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right.$, 298 K) of derivative 46; (right) 2D HSQC spectrum ($\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, 298 \mathrm{~K}$) of derivative 46.

Figure 130: Relevant aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum of $46(600 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) at (from bottom to top): 298, 273, 263, 253, 243, 233, 223, 213, 203, 193, and 183 K .

4.5.6 Titration experiments

${ }^{1} \mathrm{H}$ NMR titration were performed at 298 K in CDCl_{3}. The guest concentration was kept constant (1.0 mM) while the host concentration was varied. In all cases, the signals of the guest were followed, and the data were analyzed by a nonlinear curve fitting method for the determination of K . Thus, the observed chemical shifts were fitted with the calculated one using following equation:

$$
\left.\delta_{o b s}=\delta_{R}+\frac{\Delta_{0}}{2\left[R^{0}\right]}\left\{\left[R^{0}\right]+\left[S^{0}\right]+\frac{1}{K}-\sqrt{\left[\left(\left[R^{0}\right]+\left[S^{0}\right]+\frac{1}{K}\right)^{2}-4\left[R^{0}\right]\left[S^{0}\right]\right.}\right]\right\}
$$

Figure 131: Titration of $\mathbf{N M P}^{+}$with 46. Region of the ${ }^{1} \mathrm{H}$ NMR spectra ($\mathrm{CDCl}_{3}, 400$ $\mathrm{MHz}, 298 \mathrm{~K}$) of NMP^{+}after addition of (from bottom to top) $0.0,0.1,0.2,0.3,0.4,0.5$, $0.6,0.7,0.8,0.9,1.0,1.2,1.4,1.6,1.8,2.0,2.5,3.0,3.5$ and 4.0 equiv of Host 46.

Figure 132: Titration of $\mathbf{N P P}^{+}$with 46. Region of the ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}, 298 \mathrm{~K}$) of NMP^{+}after addition of (from bottom to top) $0.0,0.1,0.2,0.3,0.4,0.5$, $0.6,0.7,0.8,0.9,1.0,1.2,1.4,1.6,1.8,2.0,2.5,3.0,3.5$ and 4.0 equiv of Host 46.

Figure 133: Titration of NML^{+}with 46. Region of the ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}, 298 \mathrm{~K}$) of NMP^{+}after addition of (from bottom to top) $0.0,0.1,0.2,0.3,0.4,0.5$, $0.6,0.7,0.8,0.9,1.0,1.2,1.4,1.6,1.8,2.0,2.5,3.0,3.5$ and 4.0 equiv of Host 46.

Figure 134: Titration of NMP ${ }^{+}$with [8]CPP. Region of the ${ }^{1} \mathrm{H}$ NMR spectra (CDCl_{3}, $400 \mathrm{MHz}, 298 \mathrm{~K}$) of NMP^{+}after addition of (from bottom to top) $0.0,0.1,0.2,0.3,0.4$, $0.5,0.6,0.7,0.8,0.9,1.0,1.2,1.4,1.6,1.8,2.0,2.5,3.0,3.5$ and 4.0 equiv of Host [8]CPP.

4.5.7 DFT calculation

Preliminary conformational searches have been performed by molecular mechanics calculations (Spartan 02). The minimized structures were optimized by DFT calculations (Gaussian 09) at B3LYP/6-31G(d,p) level of theory using Grimme's dispersion corrections $(\operatorname{IOp}(3 / 124=3)) .{ }^{157,158}$

Atomic coordinates of 46

1 C 1	-2.2925	-5.2360	-0.1306 C		20 C 20	-6.3133	1.1171
2 C2	-1.5724	-5.6851	-1.2548 C	-1117 C			
3 C3	-0.1827	-5.7640	-1.2346 C	21 C 21	-6.4079	-0.2715	-1.1467 C
4 C4	0.5501	-5.4013	-0.0881 C	22 C 22	-5.9985	-1.0565	-0.0514 C
5 C5	-0.1846	-5.1866	1.0916 C	23 C 23	-5.7221	-0.3746	1.1472 C
6 C6	-1.5722	-5.1039	1.0702 C	24 C 24	-5.6272	1.0117	1.1819 C
7 C7	-5.5171	-2.4552	-0.1979 C	25 C 25	-2.9900	4.9788	-0.0106 C
8 C8	-4.8440	-2.8101	-1.3807 C	26 C 26	-3.3835	4.3498	-1.2053 C
9 C9	-3.9203	-3.8482	-1.4003 C	27 C 27	-4.4331	3.4391	-1.2287 C
10 C10	-3.6244	-4.5842	-0.2389 C	28 C 28	-5.1415	3.1119	-0.0587 C
11 C11	-4.4685	-4.3811	0.8703 C	29 C 29	-4.8978	3.9131	1.0738 C
12 C12	-5.3928	-3.3399	0.8908 C	30 C 30	-3.8468	4.8260	1.0969 C
13 C13	4.0940	-3.0324	0.0133 C	31 C 31	4.9950	1.1223	0.1097 C
14 C14	3.8569	-3.9610	1.0470 C	32 C 32	4.6101	-0.9605	1.3604 C
15 C15	2.8066	-4.8740	0.9651 C	33 C 33	4.7898	-1.7273	0.1847 C
16 C16	1.9506	-4.9079	-0.1504 C	34 C 34	5.4639	0.3384	-0.9712 C
17 C17	2.3339	-4.1416	-1.2655 C	35 C 35	2.5940	4.6306	0.0126 C
18 C18	3.3752	-3.2271	-1.1835 C	36 C 36	3.4242	4.3904	1.1234 C
19 C19	-5.8050	1.7839	0.0200 C	37 C 37	4.3639	3.3624	1.1083 C

[^74]| 39 C39 | 2.9177 | 3.9494 | -1.1750 C | 1378 Ar |
| :---: | :---: | :---: | :---: | :---: |
| 40 C40 | 1.2575 | 5.2701 | 0.1259 C | 14712 Ar |
| 41 C41 | 0.5088 | 5.0626 | 1.2983 C | 157221 |
| 42 C 42 | -0.8783 | 5.1499 | 1.2931 C | 1689 Ar |
| 43 C43 | -1.5860 | 5.4505 | 0.1154 C | 178551 |
| 44 C44 | -0.8246 | 5.8828 | -0.9877 C | 18910 Ar |
| 45 C 45 | 0.5649 | 5.7945 | -0.9826 C | 199561 |
| 46 O46 | 4.2360 | -1.6231 | 2.49720 | 201011 Ar |
| 47 O47 | 5.9573 | 1.0173 | -2.0557 O | 211112 Ar |
| 48 C 48 | 6.4233 | 0.2704 | -3.1672 C | 2211571 |
| 49 C49 | 3.8424 | -0.8725 | 3.6343 C | 2312581 |
| 50 C 50 | 4.5147 | 2.5255 | -0.0148 C | 241314 Ar |
| 51 H51 | -2.0981 | -5.8967 | $-2.1817 \mathrm{H}$ | 251318 Ar |
| 52 H52 | 0.3441 | -6.0318 | $-2.1463 \mathrm{H}$ | 2613331 |
| 53 H 53 | 0.3390 | -4.9229 | 2.0051 H | 271415 Ar |
| 54 H54 | -2.0851 | -4.7770 | 1.9690 H | 2814761 |
| 55 H55 | -4.9216 | -2.1695 | $-2.2532 \mathrm{H}$ | 291516 Ar |
| 56 H56 | -3.3105 | -3.9806 | $-2.2880 \mathrm{H}$ | 3015771 |
| 57 H57 | -4.3455 | -4.9926 | 1.7597 H | 311617 Ar |
| 58 H58 | -5.9674 | -3.1634 | 1.7958 H | 321718 Ar |
| 59 H59 | -6.5602 | 1.6843 | $-2.0048 \mathrm{H}$ | 3317781 |
| 60 H60 | -6.7255 | -0.7547 | $-2.0664 \mathrm{H}$ | 3418751 |
| 61 H61 | -5.4202 | -0.9368 | 2.0251 H | 351920 Ar |
| 62 H62 | -5.2546 | 1.4829 | 2.0856 H | 361924 Ar |
| 63 H63 | -2.7658 | 4.4506 | $-2.0918 \mathrm{H}$ | 3719281 |
| 64 H64 | -4.5974 | 2.8618 | $-2.1328 \mathrm{H}$ | 382021 Ar |
| 65 H65 | -5.4858 | 3.7645 | 1.9752 H | 3920591 |
| 66 H66 | -3.6404 | 5.3681 | 2.0155 H | 402122 Ar |
| 67 H67 | 3.2832 | 4.9621 | 2.0365 H | 4121601 |
| 68 H68 | 4.9319 | 3.1562 | 2.0113 H | 422223 Ar |
| 69 H69 | 3.9945 | 2.3521 | -2.1006 H | 432324 Ar |
| 70 H70 | 2.3232 | 4.1194 | -2.0671 H | 4423611 |
| 71 H71 | 1.0008 | 4.6764 | 2.1852 H | 4524621 |
| 72 H72 | -1.4210 | 4.8279 | 2.1761 H | 462526 Ar |
| 73 H73 | -1.3273 | 6.2178 | $-1.8906 \mathrm{H}$ | 472530 Ar |
| 74 H74 | 1.1130 | 6.0625 | $-1.8815 \mathrm{H}$ | 4825431 |
| 75 H75 | 3.5291 | -2.5482 | $-2.0155 \mathrm{H}$ | 492627 Ar |
| 76 H76 | 4.4421 | -3.9121 | 1.9558 H | 5026631 |
| 77 H77 | 2.6022 | -5.5152 | 1.8183 H | 512728 Ar |
| 78 H78 | 1.7134 | -4.1442 | $-2.1560 \mathrm{H}$ | 5227641 |
| 79 H79 | 6.8199 | 1.0007 | -3.8741 H | 532829 Ar |
| 80 H80 | 7.2214 | -0.4254 | $-2.8792 \mathrm{H}$ | 542930 Ar |
| 81 H81 | 5.6149 | -0.2946 | $-3.6500 \mathrm{H}$ | 5529651 |
| 82 H82 | 4.6563 | -0.2342 | 4.0012 H | 5630661 |
| 83 H83 | 2.9627 | -0.2500 | 3.4274 H | 573134 Ar |
| 84 H84 | 3.5898 | -1.6055 | 4.4020 H | 5831501 |
| 85 C85 | 4.6726 | 0.4323 | 1.2884 C | 593185 Ar |
| 86 C86 | 5.3277 | -1.0499 | -0.9277 C | 603233 Ar |
| 87 H87 | 4.3157 | 1.0132 | 2.1280 H | 6132461 |
| 88 H88 | 5.5589 | -1.6347 | -1.8095 H | 623285 Ar |
| @<TRIPOS>BOND | | | | 633386 Ar |
| 112 Ar | | | | 6434471 |
| 216 Ar | | | | 653486 Ar |
| 31101 | | | | 663536 Ar |
| 423 Ar | | | | 673539 Ar |
| 52511 | | | | 6835401 |
| 634 Ar | | | | 693637 Ar |
| 73521 | | | | 7036671 |
| 845 Ar | | | | 713750 Ar |
| 94161 | | | | 7237681 |
| 1056 Ar | | | | 733839 Ar |
| 115531 | | | | 743850 Ar |
| 126541 | | | | 7538691 |

7639701
774041 Ar 784045 Ar 794142 Ar 8041711 814243 Ar 8242721 834344 Ar 844445 Ar 8544731
8645741
8746491
8847481
8948791
9048801
9148811
9249821
9349831
9449841
9585871
9686881
Atomic coordinates of $\mathbf{N M P}^{+} \subset \mathbf{4 6}$ complex

1	21	5.2605	-0
2 C 2	1.1302	4.9645	-1.2897 C
3 C 3	-0.2604	4.9328	-1.2444 C
4 C 4	-0.9568	5.1910	-0.0485 C
5 C 5	-0.2028	5.6957	1.0292 C
6 C6	1.1881	5.7318	0.9821 C
C7	5.3802	2.8242	-0.0804 C
8 C8	5.1098	3.6120	-1.2178 C
9 C 9	4.0880	4.5569	-1.2124 C
10 C10	3.2909	4.7614	-0.0684 C
11 C11	3.7344	4.1605	- 1.1251 C
12 C 12	4.7551	3.2140	- 1.1191 C
13 C13	-4.4534	2.7335	- 0.2532 C
14 C14	-3.6912	3.0702	- 1.3919 C
15 C15	-2.6542	3.9930	1.3194 C
16 C16	-2.3282	4.6451	1 0.1174 C
17 C 17	-3.2338	4.4840	-0.9491 C
18 C18	-4.2725	3.5591	-0.8787 C
19 C 19	5.9735	-1.3950	-0.1217 C
20 C 20	5.7294	-0.6818	-1.3120 C
21 C21	5.7269	0.7072	-1.3379 C
22 C 22	5.9665	1.4610	-0.1741 C
23 C23	6.4497	0.7524	0.9443 C
24 C 24	6.4561	-0.6403	- 0.9685 C
25 C 25	3.3468	-4.7270	- 0.2854 C
26 C26	3.9582	-4.4572	-0.9559 C
27 C27	4.9730	-3.5146	-1.0775 C
28 C 28	5.4098	-2.7637	0.0315 C
29 C29	4.9803	-3.2192	1.2941 C
30 C30	3.9883	-4.1863	1.4184 C
31 C31	-5.0659	-1.4520	-0.1669 C
32 C32	-5.3113	0.5402	1.2685 C
33 C33	-5.1070	1.3971	0.1553 C
34 C34	-5.2758	-0.6018	-1.2838 C
35 C35	-2.2655	-4.6809	-0.0534 C
36 C 36	-3.2179	-4.5409	0.973

38	-4.3905	-2.7771	
39 C39	-3.5759	-3.0891	
40 C40	-2.5386	-4.0100	
1 C 41	-0.8995	-5.2200	
12	-0.2445	-4.9261	
3 C 43	1.1429	-4.9343	
44 C44	1.9504	5.	
C46	-0.1056	-5.7435	-0
47	-5.4709		
8 O 48	-5.3963	-1.1863	-2.5130 0
49	-5.7477	-0.3745	-3
C50	-5.7841	0.2902	
	1.6288	4.6324	-2.1947 H
	-0.8046		
53	-0.7076	6.0061	1.9392 H
	1.7348	6.0702	
	5.6511	3.4304	-2.1
	889	5.0884	-2
	3.1844	4.3236	
	63	2.6	2.03
	5.3997	-1.2063	-2.
	5.3927	1.2046	-2
	6.7582	1.2923	
	6.7734	-1.1409	
	3.5686	-4.9051	
	5.3570	-3.2966	-2.06
	407	-2.7376	
	3.6491	-4.4468	
	-3.1131	-5.1183	
	-4.9353	-3.5156	
	-3.7001	-2.5398	-2.2858 H
	-1.8646	-4.1303	
	-0.8195	-4.5614	
	1.5945	-4.5765	
	1.8521	-6.1208	
	-0.576	-6.0819	
	-4.9121	3.4401	
	-3.8463	2.5310	
	-2.0160	. 1210	.
	-3.0949	5.0	,
	-5.9536	-1.0661	
	-6.6428	0.2216	-3.4
	-4.928	0.2937	-3.923
82 H82	-6.6514	-0.3457	
	-4.9342	-0.3392	
	-6.0212	0.9719	4.4280 H
	-5.2123	-0.8418	1.0927 C
	-5.2218	0.7824	-1.107
	-5.1232	-1.4606	
	-5.1	1.4040	
89 C89	0.1949	-1.1292	-0.1
	-0.3226	0.1136	
91 C91	0.4606	1.2151	-0.1523
92 C 92	1.8117	1.0927	. 1174 C
	36	-0.180	
c94	1.5423	-1.3023	0.1594
95 C 95	-1.7712	0.2866	-0.5325 C
96 H 96	-0.4960	-1.9584	$-0.2153 \mathrm{H}$
	-0.0279	2.1742	$-0.2873 \mathrm{H}$
$98 \mathrm{H98}$	2.4175	1.9875	0.2
9 H 99	3.4242	-0.2962	0.4

100 H 100	1.9324	-2.3069	0.2744 H	593185 Ar
101 H101	-1.9004	1.0157	$-1.3318 \mathrm{H}$	603233 Ar
102 H 102	-2.1969	-0.6705	-0.8275 H	6132471
103 H103	-2.2675	0.6506	0.3681 H	623285 Ar
@<TRIPO	>BOND			633386 Ar
112 Ar				6434481
216 Ar				653486 Ar
31101				663536 Ar
423 Ar				673540 Ar
52511				6835411
634 Ar				693637 Ar
73521				7036671
845 Ar				713738 Ar
94161				7237681
1056 Ar				733839 Ar
115531				743940 Ar
126541				7539691
1378 Ar				7640701
14712 Ar				774142 Ar
157221				784146 Ar
1689 Ar				794243 Ar
178551				8042711
18910 Ar				814344 Ar
199561				8243721
201011 A				834445 Ar
211112 A				844546 Ar
2211571				8545731
2312581				8646741
241314 A				8747501
251318 A				8848491
2613331				8949791
271415 A				9049801
2814761				9149811
291516 A				9250821
3015771				9350831
311617 A				9450841
321718 A				9585871
3317781				9686881
3418751				978990 Ar
351920 A				9889942
361924 A				9989961
3719281				1009091 Ar
382021 A				10190951
3920591				10291922
402122 A				10391971
4121601				1049293 Ar
422223 A				10592981
432324 A				1069394 Ar
4423611				10793991
4524621				108941001
462526 A				109951011
472530 A				110951021
4825441				111951031

492627 Ar 5026631 512728 Ar 5227641 532829 Ar 542930 Ar 5529651 5630661 573134 Ar 5831381

3 C 3	-0.7138	3	-1.1715 C
4 C 4	-1.3638	5.1004	0.0506 C
5 C 5	-0.5854	5.6918	1.0
6 C6	0.7968	5.8012	0.9419
7 C7	5.1675	3.1607	. 0
8 C8	4.6708	3.5797	1.1977 C
9 C 9	3.5827	4.4401	-1.2986 C
10 C 10	2.9074	4.9051	-0.1528 C
11 C11	3.5525	4.6759	1.0797 C
12 C 12	4.6613	3.8418	1.1
3 C 13	-4.5993	2.3631	0.
14 C14	-3.8009	2.7950	
15 C15	-2.8641	3.8094	1.5463 C
16 C16	-2.6775	4.4616	0.3156 C
17 C17	-3.6359	4.2004	-0.6836 C
18 C18	-4.5781	3.1860	-0.5284 C
19 C 19	6.2193	-0.9656	0.1828 C
20 C 20	6.5993	-0.1900	-0.9300 C
21 C21	6.4443	1.1935	-0.9304 C
22 C 22	5.8960	1.8692	0.1789
23 C 23	5.7733	1.1193	1.3651 C
24 C24	5.9341	-0.2617	1.3685 C
25 C25	3.8650	-4.4987	0.
26 C26	4.1993	-3.8109	-1.1301 C
27 C27	5.1258	-2.7746	-1.1224 C
28 C 28	5.7626	-2.3756	0.0671 C
9 C 29	5.6088	-3.2228	1.1
30 C30	4.6804	-4.2603	1.1755 C
31 C31	-4.7846	-1.8618	0.2106 C
32 C32	-5.0947	0.0851	1.6938 C
33 C33	-5.1158	0.9649	- 0.5779 C
34 C34	-5.2040	-1.0379	-0.8625 C
35 C35	-1.7305	-4.8518	0.0252 C
36 C36	-2.6177	-4.8217	69 C
37 C 37	-3.7280	-3.9810	1.1205 C
38 C38	-4.0027	-3.1167	C
39 C39	-3.2417	-3.3189	-1.1302 C
40 C40	-2.1334	-4.1593	-1.1321 C
41 C41	-0.3196	-5.3037	0.1307 C
42 C 42	0.3872	-5.0508	1.3205 C
43 C 43	1.7764	-4.9683	1.3282 C
44 C 44	2.5246	-5.1359	0.1470 C
45 C 45	1.8294	-5.6156	-0.9808 C
46 C46	0.4398	-5.6947	-0.9896 C
47 O47	-5.1880	0.6342	O
48 O 48	-5.3571	-1.6093	-2.1018 O
49 C49	-6.2493	-0.9807	-3.0225 C
50 C 50	-5.2707	-0.2280	4.0695 C
51 H51	1.1283	4.6156	$-2.2150 \mathrm{H}$
52 H52	-1.2827	4.4467	$-2.0076 \mathrm{H}$
53 H53	-1.0584	6.0088	1.9884 H
54 H54	1.3571	6.2091	1.7769 H
55 H55	5.0655	3.1461	$-2.1104 \mathrm{H}$
56 H56	3.2049	4.6751	$-2.2883 \mathrm{H}$
57 H 57	3.1287	5.0697	1.9972 H
58 H58	5.0775	3.6535	2.1623 H
59 H59	6.9436	-0.6788	-1.8365 H
$60 \mathrm{H6O}$	6.6793	1.7405	$-1.8381 \mathrm{H}$
61 H61	5.4173	1.5922	2.2739 H
62 H62	5.6967	-0.8089	2.2757 H
63 H63	3.6267	-3.9861	-2.0351 H
64 H64	5.2404	-2.1761	$-2.0202 \mathrm{H}$
65 H65	6.1662	-3.0234	2.0938 H

66 H66	4.5379	-4.8447	2.0798 H
67 H67	-2.4083	-5.4211	1.9982 H
68 H68	-4.3540	-3.9556	2.0071 H
69 H69	-3.4729	-2.7493	$-2.0209 \mathrm{H}$
70 H70	-1.5116	-4.1980	$-2.0219 \mathrm{H}$
71 H71	-0.1570	-4.7835	2.2211 H
72 H72	2.2724	-4.6394	2.2361 H
73 H73	2.3761	-5.8638	$-1.8857 \mathrm{H}$
74 H74	-0.0651	-6.0028	$-1.9005 \mathrm{H}$
75 H75	-5.2626	2.9953	-1.3489 H
76 H76	-3.8344	2.2573	2.6374 H
77 H77	-2.1812	4.0089	2.3663 H
78 H78	-3.6131	4.7604	$-1.6144 \mathrm{H}$
79 H79	-6.4560	-1.7237	-3.7939 H
80 H 80	-7.1823	-0.6915	$-2.5276 \mathrm{H}$
81 H81	-5.8013	-0.0975	-3.4941 H
82 H82	-6.0712	-0.9662	3.9465 H
83 H 83	-4.3225	-0.7477	4.2568 H
84 H84	-5.4975	0.4173	4.9185 H
85 C 85	-4.8573	-1.2748	1.4878 C
86 C86	-5.3029	0.3408	-0.6697 C
87 H 87	-4.6028	-1.8836	2.3452 H
88 H88	-5.4078	0.9614	$-1.5500 \mathrm{H}$
89 C89	0.1312	-1.0188	-0.2583 C
90 N90	-0.2378	0.2602	-0.5109 N
91 C91	0.5951	1.2940	-0.2405 C
92 C 92	1.8547	1.0644	0.2865 C
93 C 93	2.2592	-0.2486	0.5375 C
94 C 94	1.3803	-1.3001	0.2687 C
95 C 95	-1.5396	0.5296	-1.1886 C
96 H 96	-0.5969	-1.7882	$-0.4935 \mathrm{H}$
97 H 97	0.2249	2.2883	$-0.4678 \mathrm{H}$
98 H 98	2.5048	1.9083	0.4883 H
$99 \mathrm{H99}$	3.2514	-0.4445	0.9307 H
100 H 100	1.6508	-2.3327	0.4586 H
101 H101	-2.2248	-0.2719	$-0.9067 \mathrm{H}$
102 H102	-1.9336	- 1.4641	-0.7837 H
103 C103	-1.3524	0.6023	-2.7090 C
104 H104	-0.6472	1.4086	-2.9444 H
105 H105	-0.8934	-0.3305	$-3.0580 \mathrm{H}$
106 C106	-2.6804	0.8355	-3.4343 C
107 H 107	-2.5155	0.9070	$-4.5124 \mathrm{H}$
108 H108	-3.3769	0.0119	$-3.2523 \mathrm{H}$
109 H109	-3.1537	1.7647	-3.1022 H
@<TRIPOS>BOND			
112 Ar			
216 Ar			
31101			
423 Ar			
52511			
634 Ar			
73521			
845 Ar			
94161			
1056 Ar			
115531			
126541			
1378 Ar			
14712 Ar			
157221			
1689 Ar			
178551			
18910 Ar			

199561
201011 Ar
211112 Ar
2211571
2312581
241314 Ar 251318 Ar 2613331 271415 Ar 2814761
291516 Ar 3015771 311617 Ar 321718 Ar 3317781 3418751 351920 Ar 361924 Ar 3719281 382021 Ar 3920591 402122 Ar 4121601
422223 Ar 432324 Ar 4423611
4524621
462526 Ar 472530 Ar 4825441 492627 Ar 5026631 512728 Ar 5227641 532829 Ar 542930 Ar 5529651 5630661 573134 Ar 5831381 593185 Ar 603233 Ar 6132471
623285 Ar 633386 Ar 6434481
653486 Ar 663536 Ar 673540 Ar 6835411 693637 Ar 7036671 713738 Ar 7237681 733839 Ar 743940 Ar 7539691 7640701 774142 Ar 784146 Ar 794243 Ar 8042711 814344 Ar

8243721
834445 Ar
844546 Ar
8545731
8646741
8747501
8848491
8949791
9049801
9149811
9250821
9350831
9450841
9585871
9686881
978990 Ar
9889942
9989961
1009091 Ar 10190951 10291922 10391971 1049293 Ar 10592981 1069394 Ar 10793991 108941001 109951011 110951021 111951031 1121031041 1131031051 1141031061 1151061071 1161061081 1171061091

Atomic coordinates of $\mathbf{N M L}^{+} \subset \mathbf{4 6}$ complex

1 C1	-2.5085	5.0909	0.1640 C
2 C2	-1.6844	5.2046	1.3028 C
3 C3	-0.2994	5.2926	1.1905 C
4 C4	0.3385	5.2973	-0.0660 C
5 C5	-0.5020	5.4545	-1.1843 C
6 C6	-1.8830	5.3419	-1.0735 C
7 C7	-5.7269	2.2891	0.0422 C
8 C8	-5.1487	2.6565	1.2730 C
9 C9	-4.2342	3.7017	1.3582 C
10 C10	-3.8449	4.4343	0.2190 C
11 C11	-4.6342	4.2399	-0.9341 C
12 C12	-5.5478	3.1943	-1.0224 C
13 C13	4.0532	3.1485	-0.2392 C
14 C14	3.2461	3.3122	-1.3827 C
15 C15	2.1221	4.1273	-1.3583 C
16 C16	1.7493	4.8478	-0.2063 C
17 C17	2.6799	4.8545	0.8519 C
18 C18	3.7999	4.0220	0.8375 C
19 C19	-5.7257	-1.9525	-0.3336 C
20 C20	-6.3133	-1.3594	0.8042 C

21 C21	-6.5108	0.0165	0.8874 C	84 H84	6.4399	1.9666	-4.1709 H
22 C 22	-6.1359	0.8738	-0.1670 C	85 C 85	5.5330	-0.2179	-1.0775 C
23 C 23	-5.8001	0.2514	-1.3850 C	86 C86	4.7948	1.2222	1.1370 C
24 C24	-5.6028	-1.1225	-1.4658 C	87 H 87	5.8222	-0.7817	$-1.9553 \mathrm{H}$
25 C25	-2.7103	-4.9782	-0.0380 C	88 H88	4.4290	1.7676	1.9976 H
26 C26	-3.4908	-4.6340	1.0826 C	89 C89	-0.6611	-0.9946	-0.5760 C
27 C 27	-4.5800	-3.7771	0.9716 C	90 N90	0.2252	-0.2107	0.1177 N
28 C 28	-4.9745	-3.2380	-0.2691 C	91 C91	-0.1884	0.8497	0.8851 C
29 C 29	-4.3594	-3.8007	-1.4069 C	92 C 92	-1.5436	1.1389	0.9620 C
30 C30	-3.2497	-4.6344	-1.2938 C	93 C 93	-2.4692	0.3529	0.2855 C
31 C31	5.2289	-0.9359	0.0995 C	94 C 94	-2.0189	-0.7157	-0.4796 C
32 C32	5.3817	1.1654	-1.1843 C	95 C 95	1.6796	-0.4891	0.0558 C
33 C33	4.8450	1.8955	-0.0926 C	96 H 96	-1.8628	1.9924	1.5464 H
34 C34	5.0227	-0.1518	1.2634 C	97 H 97	-3.5277	0.5750	0.3474 H
35 C35	2.9077	-4.5224	0.0029 C	98 H 98	-2.7183	-1.3486	$-1.0110 \mathrm{H}$
36 C36	3.2451	-3.8425	-1.1830 C	99 H 99	2.1981	0.3703	$-0.3709 \mathrm{H}$
37 C37	4.1481	-2.7851	-1.1716 C	100 H 100	2.0604	-0.6749	1.0600 H
38 C38	4.7719	-2.3537	0.0210 C	101 H101	1.8748	-1.3655	$-0.5492 \mathrm{H}$
39 C39	4.6370	-3.2147	1.1319 C	102 C 102	0.8284	1.6669	1.6206 C
40 C 40	3.7197	-4.2643	1.1223 C	103 H 103	1.3742	1.0628	2.3536 H
41 C 41	1.5700	-5.1646	0.1091 C	104 H104	1.5640	2.1146	0.9461 H
42 C 42	0.8845	-5.7309	-0.9844 C	105 H105	0.3242	2.4768	2.1461 H
43 C43	-0.5057	-5.8407	-0.9882 C	106 C106	-0.1727	-2.1304	-1.4243 C
44 C44	-1.2824	-5.3777	0.0943 C	107 H107	0.3558	-2.8842	$-0.8346 \mathrm{H}$
45 C 45	-0.5766	-5.0152	1.2579 C	108 H 108	-1.0298	-2.6182	$-1.8872 \mathrm{H}$
46 C46	0.8090	-4.9155	1.2670 C	109 H109	0.4969	-1.7848	$-2.2185 \mathrm{H}$
47 O47	5.6355	1.8681	-2.3263 O	@<TRIPO	S>BOND		
48 O 48	4.8816	-0.8010	2.4597 O	112 Ar			
49 C49	4.8080	-0.0355	3.6558 C	216 Ar			
50 C 50	6.2440	1.1971	-3.4240 C	31101			
51 H51	-2.1133	5.1403	2.2975 H	423 Ar			
52 H52	0.2952	5.2590	2.0985 H	52511			
53 H53	-0.0714	5.5827	$-2.1722 \mathrm{H}$	634 Ar			
54 H54	-2.4665	5.3502	-1.9874 H	73521			
55 H55	-5.3065	2.0356	2.1495 H	845 Ar			
56 H56	-3.7338	3.8599	2.3077 H	94161			
57 H 57	-4.4789	4.8578	$-1.8121 \mathrm{H}$	1056 Ar			
58 H 58	-6.0663	3.0326	$-1.9627 \mathrm{H}$	115531			
59 H59	-6.5501	-1.9654	1.6727 H	126541			
60 H60	-6.8889	0.4344	1.8159 H	1378 Ar			
61 H61	-5.5498	0.8591	-2.2482 H	14712 Ar			
62 H62	-5.2223	-1.5241	$-2.3985 \mathrm{H}$	157221			
63 H63	-3.1967	-4.9669	2.0726 H	1689 Ar			
64 H64	-5.0616	-3.4471	1.8857 H	178551			
65 H65	-4.6926	-3.5240	$-2.4018 \mathrm{H}$	18910 Ar			
66 H66	-2.7433	-4.9416	$-2.2036 \mathrm{H}$	199561			
67 H67	2.6966	-4.0496	$-2.0972 \mathrm{H}$	201011 A			
68 H68	4.2601	-2.2037	$-2.0804 \mathrm{H}$	211112 A			
69 H69	5.1870	-3.0103	2.0393 H	2211571			
70 H70	3.5826	-4.8437	2.0308 H	2312581			
71 H71	1.4376	-6.0335	-1.8690 H	241314 A			
72 H72	-0.9925	-6.2331	$-1.8759 \mathrm{H}$	251318 A			
73 H73	-1.1167	-4.6807	2.1366 H	2613331			
74 H74	1.2948	-4.5088	2.1481 H	271415 A			
75 H75	4.4563	4.0132	1.7030 H	2814761			
76 H76	3.4484	2.7194	$-2.2662 \mathrm{H}$	291516 A			
77 H77	1.4643	4.1126	-2.2204 H	3015771			
78 H78	2.5032	5.4738	1.7263 H	311617 A			
79 H79	4.8734	-0.7534	4.4740 H	321718 A			
80 H 80	5.6380	0.6764	3.7266 H	3317781			
81 H81	3.8588	0.5110	3.7385 H	3418751			
82 H 82	7.1889	0.7266	$-3.1289 \mathrm{H}$	351920 A			
83 H 83	5.5801	0.4370	-3.8556 H	361924 A			

3719281 382021 Ar 3920591 402122 Ar 4121601 422223 Ar 432324 Ar 5026631 512728 Ar 5227641
532829 Ar 542930 Ar 5529651 5630661 573134 Ar 5831381 593185 Ar 603233 Ar 6132471 623285 Ar 633386 Ar 6434481 653486 Ar 663536 Ar 673540 Ar 6835411 693637 Ar 7036671 713738 Ar 7237681 733839 Ar 743940 Ar 7539691 7640701 774142 Ar 784146 Ar 794243 Ar 8042711 814344 Ar 8243721
834445 Ar 844546 Ar 8545731 8646741 8747501 8848491 8949791 9049801 9149811 9250821 9350831 9450841 9585871 9686881 978990 Ar 988994 Ar 99891061 1009091 Ar 10190951 1029192 Ar 103911021 1049293 Ar 10592961

4423611
4524621
462526 Ar
472530 Ar
4825441
492627 Ar
1069394 Ar 10793971 10894981 10995991 110951001 111951011 1121021031 1131021041 1141021051 1151061071 1161061081 1171061091

ΔE for the Formation of Pyridinium Complexes of 1 Obtained by Single Point DFT Calculations at B3LYP/631G(d,p) level of theory using Grimme's dispersion corrections ($\operatorname{IOp}(3 / 124=3)$))

Energies were obtained by single point calculations on DFToptimized structures. All calculations were perferomed at B3LYP/6-31G(d,p) level of theory using Grimme's dispersion corrections $(\operatorname{IOp}(3 / 124=3)))$
$\Delta \mathrm{E} \mathbf{N M P}+\subset 1$ complex $=\mathrm{E} \mathrm{NMP}+\subset 1^{-}\left(\mathrm{E}_{1}+\mathrm{EnMP}^{+}\right)=(-65.45244980)$ $-[(-2077.43558538)+(-287.986596007)]=\mathbf{- 0 . 0 3 9}$ A. U. (-24,47 KCAL/MOL)
$\Delta \mathrm{E} \mathbf{N P P}+\subset 1$ complex $=\mathrm{E}$ nPP $+\subset 1-\left(\mathrm{E}_{1}+\mathrm{EnPP}+^{+}\right)=(-2444.08960840)$ $-[(-2077.43558538)+(-366,627387657)]=\mathbf{- 0 . 0 2 7}$ A. U. (-16,94 KCAL/MOL)
$\Delta \mathrm{E} \mathbf{N M L}^{+} \subset 1$ complex $=\mathrm{E} \mathrm{nmL}_{+\subset 1}-\left(\mathrm{E}_{1}+\mathrm{Enml}^{+}\right)=(-$ $2444.09471826)-[(-2077.43558538)+(-366.637846625)]=\mathbf{- 0 . 0 2 1}$ A. U. (-13,17 KCAL/MOL)

4.6 Synthesis, Optoelectronic and Supramolecular Properties of a CPP-Calix[4]arene Hybrid Host

4.6.1 Synthesis of derivative 52

A suspension of \boldsymbol{p}-tert-butylcalix[4]arene ($11.2 \mathrm{~g}, 17.2 \mathrm{mmol}$) in 400 mL of acetonitrile and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.85 \mathrm{~g}, 20.6 \mathrm{mmol})$ was refluxed for 1 h . After that the solution was cooled to room temperature and 4-Bromobenzyl bromide ($9.5 \mathrm{~g}, 38.0 \mathrm{mmol}$) was added. The solution was stirred overnight at reflux and subsequently cooled at room temperature. Reaction mixture was spilled in 300 mL of a solution 1 M of HCl and ice. The mixture was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$, extracted twice and finally the organic phase were dried over sodium sulfate. Subsequently, the extract was concentrated to give a solid light brown product that could be recrystallized from MeOH and CHCl_{3} producing white, crystalline diol ($12.8 \mathrm{~g}, 77 \%$).
Subsequently diol ($12.8 \mathrm{~g}, 13.0 \mathrm{mmol}$) in 400 mL of dry DMF was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{NaH}(2.3 \mathrm{~g} 60 \%$ dispersion in mineral oil, 58 mmol) was added and stirred for 15 min . Finally, the reaction mixture was added methyl iodide ($11 \mathrm{~mL}, 0.13 \mathrm{~mol}$) and stirred overnight at room temperature. At reaction mixture was added of 200 mL of a solution 1 M of HCl . The mixture was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, extracted twice and finally the organic phase were dried over sodium sulfate. The extract was concentrated under reduced pressure to give a solid off-white product. Methanol was added and purification by precipitation was performed to give derivative 52 ($11.9 \mathrm{~g}, 90 \%$).
${ }^{1}$ H NMR ($250 \mathrm{MHz}, \mathrm{TCDE}, 373 \mathrm{~K}$): $\delta 7.36$ (d, $J=8.0 \mathrm{~Hz}, \mathrm{ArH}$, $4 \mathrm{H}), \delta 7.17$ (d, $J=8.2 \mathrm{~Hz}, \mathrm{ArH}, 4 \mathrm{H}), 6.91$ (s, ArH, 2 H), 6.52 (s, $\mathrm{ArH}, 4 \mathrm{H}), 4.58$ (s, CH2-Ar, 4 H), 3.90 (d, $J=12.7 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{Ar}$, 4 H), 3.31 (s, $\mathrm{OCH}_{3}, 6 \mathrm{H}$), 3.12 (d, $J=13.3 \mathrm{~Hz} \mathrm{ArCH} H_{2} \mathrm{Ar}, 4 \mathrm{H}$), $1.15(\mathrm{~s}, t \mathrm{Bu}, 18 \mathrm{H}), 0.88(\mathrm{~s}, t \mathrm{Bu}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (75 MHz, TCDE, 373 K): $\delta 155.5,153.3,144.5,144.3$, $137.4,134.5,131.8,131.3,130.0,126.0,125.1,121.5,75.6,59.1$, 33.7, 33.4, 31.4, 31.1.

HRMS (MALDI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{60} \mathrm{H}_{70} \mathrm{Br}_{2} \mathrm{NaO}_{4}$, 1037.3512; found 1037.3563.

Mp: 225.2-226.3 ${ }^{\circ} \mathrm{C}$.

Figure 135: ${ }^{1} \mathrm{H}$ NMR spectrum of $52\left(\mathrm{TCDE}-d_{2}, 250 \mathrm{MHz}, 373 \mathrm{~K}\right)$.

Figure 136: ${ }^{13} \mathrm{C}$ NMR spectrum of 52 (TCDE-d2, $75 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure 137: Significant portion of the HR MALDI FT-ICR mass spectrum of 52 $[\mathrm{M}+\mathrm{Na}]^{+}$.

4.6.2 Synthesis of derivative 53

A mixture of dibromide $52(2.50 \mathrm{~g}, 2.46 \mathrm{mmol})$, diboronate ${ }^{159} 29$ $(1.34 \mathrm{~g}, 2.46 \mathrm{mmol})$, S-Phos ($205 \mathrm{mg}, 0.50 \mathrm{mmol}$), and $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($2.08 \mathrm{~g}, 9.85 \mathrm{mmol}$) in $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}(500 \mathrm{~mL} / 50 \mathrm{~mL})$ were mixed and degassed twice through the freeze/pump/thaw technique. Finally, $\mathrm{Pd}(\mathrm{OAc})_{2}(110 \mathrm{mg}, 0.72 \mathrm{mmol})$ was added and the mixture was stirred for 3 days at $100{ }^{\circ} \mathrm{C}$ under argon. After cooling to room temperature, the mixture was filtered through a short plug of Celite ${ }^{\circledR}$ and added to 200 mL of water and 200 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 50$ mL). Organic phases were washed with 200 mL of a saturated brine solution and dried over sodium sulfate. After filtration, the solvent was evaporated under vacuum and the crude was purified through chromatographic column on silica gel (hexane/ethyl acetate $=9 / 1$) to give the macrocycle 53 as white solids, (164 mg , 5.8 \%).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 7.45-7.55$ (overlapped, ArH, 16 H), δ 6.92-7.08 (overlapped, ArH, 6 H), 6.43-6.52 (overlapped, ArH, 2 H), 6.12-6.18 (overlapped, $\mathrm{CH}=\mathrm{CH}, 4 \mathrm{H}$), 4.67-4.74 (overlapped, $\mathrm{CH}_{2}-\mathrm{Ar}, 4 \mathrm{H}$), 4.28-4.34 (overlapped, ArCH2 Ar, 1 H), 3.65-3.78 (overlapped, $\mathrm{ArCH}_{2} \mathrm{Ar}, 3 \mathrm{H}$), 3.41-3.49 (overlapped, $\mathrm{OCH}_{3}, 12 \mathrm{H}$), 3.08-3.14 (overlapped, $\mathrm{ArCH} 2 \mathrm{Ar}, 4$ H), 1.31 (broad, $t \mathrm{Bu}, 9 \mathrm{H}$), 1.06-0.98 (overlapped, $t \mathrm{Bu}, 27 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 155.9,154.1,145.4$, $144.2,143.5,142.7,140.3,137.5,135.9,133.6,132.5,129.2$, $128.6,128.2,127.3,126.6,126.2,125.6,125.1,124.4,74.9,57.9$, $52.2,38.0,34.3,33.8,31.8,31.5,31.3,29.9$.

[^75]HRMS (MALDI) m/z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{80} \mathrm{H}_{88} \mathrm{NaO}_{6}$, 1167.6473; found 1167.6645.

Mp: $268.2-269.5^{\circ} \mathrm{C}$.

Figure 138: ${ }^{13} \mathrm{C}$ NMR spectrum of $53\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 139: (Left) Full COSY spectrum of 53 and (Right) significant portion of the COSY spectrum between 2.5 and $5.5 \mathrm{ppm}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 140: HSQC spectrum of $53\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 141: Significant portion of the HR MALDI FT-ICR mass spectrum of 53 $[\mathrm{M}+\mathrm{Na}]^{+}$.

4.6.3 Synthesis of derivative 54

A suspension of $\mathrm{SnCl}_{2}(250 \mathrm{mg}, 1.32 \mathrm{mmol})$ in 27 mL of THF under nitrogen was added of $\mathrm{HCl}(3 \mathrm{~mL}, 37 \%)$ and degassed. Then, derivative 53 was added ($267 \mathrm{mg}, 0.23 \mathrm{mmol}$), and the reaction mixture was stirred for 7 h at room temperature. Subsequently an aqueous saturated solution of $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were added. The organic layer was separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \times 30 \mathrm{~mL})$. The combined organic layers were dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered, and the solvent was removed in vacuum. The crude product was purified by column chromatography on silica gel using Hexane/Toluene/ CHCl_{3} (35:35:30). The product 54 was obtained as an off-withe solid ($38 \mathrm{mg}, 14 \%$).
${ }^{1}$ H NMR ($300 \mathrm{MHz}, \mathrm{TCDE}, 393 \mathrm{~K}$): $\delta 7.51$ (broad, ArH, 20 H), $\delta 6.96$ (s, ArH, 4 H), 6.58 (s, ArH, 4 H), 4.66 ($\mathrm{s}, \mathrm{CH}_{2}-\mathrm{Ar}, 4 \mathrm{H}$), 4.05 (d, $J=11.7 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{Ar}, 4 \mathrm{H}$), 3.34 (s, OMe, 6 H), 3.21 (d, $\left.J=12.5 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{Ar}, 4 \mathrm{H}\right), 1.15(\mathrm{~s}, t \mathrm{Bu}, 18 \mathrm{H}), 0.90(\mathrm{~s}, t \mathrm{Bu}, 18$ H).
${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta 156.3,154.5,145.7$, 144.6, 140.4, 140.0, 139.9, 138.1, 136.2, 134.8, 133.6, 132.8, $130.5,130.0,129.8,129.5,129.4,129.3,129.0,128.7,128.6$, $127.9,127.8,127.7,127.3,127.1,126.0,125.7,112.2,79.6,78.0$, $77.8,77.6,76.6,60.7,56.0,38.2,36.6,34.4,34.0,32.4,32.0,31.8$, 31.6, 30.1, 29.8, 23.1, 23.1, 14.3.

HRMS (MALDI) $m / z[M+N a]^{+}$calcd for $\mathrm{C}_{78} \mathrm{H}_{82} \mathrm{NaO}_{4}$, 1105.6105; found 1105.6147 .

Мр: $256.6-257.8^{\circ} \mathrm{C}$.

Figure 142: ${ }^{13} \mathrm{C}$ NMR spectrum of $54\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 143: COSY spectrum of $54\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}, 263 \mathrm{~K}\right)$.

Figure 144: (Top) HSQC spectrum of $54\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}, 263 \mathrm{~K}\right)$; (Bottom) HSQC spectrum of $54\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 145: Significant portion of the HR MALDI FT-ICR mass spectrum of 54 $[\mathrm{M}+\mathrm{Na}]^{+}$.

Figure 146: Relevant aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum of $54(400 \mathrm{MHz}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) at (from bottom to top): 298, 283, 273, 263 and 253 K .

4.6.4 UV-Vis and Fluorescence Characterization

Absorbance measurements was performed in a 1 cm Quartz cuvette with dichloromethane (Spectrophotometric Grade) using a Cary 50 UV-vis spectrophotometer from Varian. The extinction coefficients were calculated by measuring the slope of BeerLambert plots (absorbance at 300 nm).
Fluorescence spectra was obtaining in a 1 cm Quartz cuvette with dichloromethane (Spectrophotometric Grade) using a Cary Eclipse Spectrophotometer from Varian and was measured by excitation at 300 nm .

The quantum efficiency of $\mathbf{5 4}$ was determined like described by Williams ${ }^{160}$ using anthracene in ethanol (Spectrophotometric Grade) as external standards at room temperature. The fluorescence of $\mathbf{5 4}$ was integrated from $330-500 \mathrm{~nm}$ while the fluorescence of anthracene was integrated from 360-480 nm.

Figure 147: Beer-Lambert plots for the determination of the extinction coefficient of 54

$$
\left(\varepsilon=0.35 \times 10^{5} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)
$$

[^76]
4.6.5 Binding Studies

Determination of Association Constants by fluorescence titration. Fluorescence titrations were performed at 298 K in a 1 cm Quartz cuvette using a mixture of dichloromethane : acetonitrile 9:1 as solvent. The changes in the fluorescent intensity of $\mathbf{5 4}$ at 393 nm were recorded.
The host concentration was kept constant $(5.4 \mu \mathrm{M})$ while the guest concentration was varied ($0.54-16.2 \mu \mathrm{M}$ of LiPF_{6} or $\mathrm{NaPF}_{6}-0.1-$ 3.0 equivalents).

After guest addition, the samples were left to equilibrated for 24 hours at room temperature before the fluorescence readings were recorded.
The Stern - Volmer Constants ($\mathrm{K}_{\mathrm{SV}}-$ eq. 1) and Binding Constant ($\mathrm{K}_{\text {ass }}{ }^{-}$eq. 2) were determined by using the following equations:

$$
\begin{gather*}
\frac{F_{0}}{F}=1+K_{S V}[\text { Guest }] \\
\frac{F}{F_{0}}=\frac{\left\{1+\left(\frac{K_{f}}{K_{s}}\right) K_{\text {ass }}[\text { Guest }]\right\}}{\left(1+K_{\text {ass }}[\text { Guest }]\right)} \tag{eq.2}
\end{gather*}
$$

4.6.6 Computational details

Geometry optimizations of the lowest energy conformers were performed at the density functional level of theory (DFT); the B3LYP functional was employed, in conjunction with the 6$31 G(d)$ basis set. Excitation energies and oscillator strengths were computed for each conformer by using the time dependent (TD) DFT approach. The CAM-B3LYP functional with the $6-31+G(d)$ basis set including diffuse functions was adopted for TDDFT computations. ${ }^{161}$ Solvent (dichloromethane) effects were

[^77]evaluated by the polarizable continuum model (PCM) and were included in all computations. ${ }^{162}$ DFT and TDDFT computations were carried out by using the Gaussian package. ${ }^{163}$

Table 8: Low energy electronic transitions of the most significant conformers of 54 predicted at the (PCM)TDCAM-B3LYP/6-31+G(d) level.

| Transition | Paco | | | | Cone | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | λ / nm | Osc.
 Strength | Major
 Contributions | λ / nm | Osc.
 Strength | Major
 Contributions |
| $\mathrm{S}_{1} \leftarrow \mathrm{~S}_{0}$ | 346 | 0.35 | $\mathrm{H} \rightarrow \mathrm{L}$ | 346 | 0.36 | $\mathrm{H} \rightarrow \mathrm{L}$ |
| $\mathrm{S}_{2} \leftarrow \mathrm{~S}_{0}$ | 285 | 1.04 | $\mathrm{H}-4 \rightarrow \mathrm{~L}$ | 285 | 1.14 | $\mathrm{H}-3 \rightarrow \mathrm{~L}$ |
| | | | $\mathrm{H} \rightarrow \mathrm{L}+1$ | | | $\mathrm{H} \rightarrow \mathrm{L}+1$ |
| $\mathrm{~S}_{3} \leftarrow \mathrm{~S}_{0}$ | 275 | 0.58 | $\mathrm{H}-11 \rightarrow \mathrm{~L}$ | 275 | 0.60 | $\mathrm{H}-11 \rightarrow \mathrm{~L}$ |
| | | | $\mathrm{H} \rightarrow \mathrm{L}+2$ | | | $\mathrm{H} \rightarrow \mathrm{L}+2$ |

[^78]
Cartesian coordinates (PCM/B3LYP/6-31G*) of paco conformer

C	2.984351	2.730984	0.505809
C	4.350474	2.714015	0.190153
C	4.813891	2.782834	-1.127893
C	3.846154	2.752483	-2.144732
C	2.476172	2.755065	-1.879167
C	2.059275	2.846466	-0.539535
0	0.707800	3.038839	-0.265343
C	1.466187	2.576668	-3.004770
C	2.526151	2.561095	1.948333
C	2.498496	-2.552949	2.007721
C	1.552820	-2.540126	-2.967443
C	6.374721	-2.850900	-1.260727
C	7.145053	-1.803412	-0.424097
C	6.838568	-4.266924	-0.839001
C	6.307424	2.911289	-1.483122
C	6.704583	1.890438	-2.574042
C	7.220266	2.685105	-0.262259
C	6.561897	4.341054	-2.020953
C	0.422182	-4.452789	-0.131046
C	0.388072	4.445533	-0.109819
C	-3.059756	4.197252	1.477253
C	-3.071721	-4.310615	1.363531
C	-1.685018	-4.315444	1.247187
H	5.054313	2.641479	1.012862
H	4.158212	2.720237	-3.184265
H	0.705774	3.364436	-2.969617
H	1.991999	2.691381	-3.959373
H	1.437752	2.657285	1.979513
H	2.933914	3.367861	2.569916
H	1.409028	-2.640645	2.017432
H	2.888766	-3.352406	2.649424
H	0.818519	-3.353128	-2.962193
H	2.106487	-2.625938	-3.908867
H	8.220955	-1.879741	-0.623109
H	6.823470	-0.786443	-0.672553
H	6.999987	-1.945015	0.651607
H	7.918476	-4.381663	-0.996694
H	6.629865	-4.455914	0.219895
H	6.325448	-5.038167	-1.425447
H	7.776710	1.969390	-2.791577
H	6.496127	0.865468	-2.249697
H	6.167396	2.059165	-3.512896
H	8.270088	2.760550	-0.568006
H	7.052441	3.434459	0.519335
H	7.070023	1.693075	0.178687
H	7.618140	4.469185	-2.289812
H	5.958848	4.545083	-2.912798
H	6.309599	5.094616	-1.265626
H	0.956138	-4.858583	0.738685
H	0.779652	-4.983072	-1.022730
H	0.706678	4.992580	-1.006229

H	0.951856	4.843863	0.744667
H	-3.484316	3.807636	2.397328
H	-3.522068	-3.997476	2.300452
H	-1.075758	-4.040231	2.104682
C	2.953109	1.231945	2.563454
C	3.852159	1.213482	3.639766
C	4.301916	0.023596	4.223338
C	3.826923	-1.177964	3.673600
C	2.931889	-1.215450	2.600710
C	2.484025	0.006830	2.062402
0	1.630668	-0.000909	0.976024
C	5.287716	-0.008798	5.406906
C	5.690058	1.402826	5.874846
C	6.573749	-0.760064	4.986487
C	4.636960	-0.743227	6.603222
H	4.201129	2.168733	4.018378
H	4.164417	-2.126297	4.085081
H	6.387281	1.325742	6.716872
H	6.191102	1.969199	5.081527
H	4.823594	1.982011	6.213858
H	7.285158	-0.794933	5.820899
H	6.362189	-1.791359	4.685014
H	7.062110	-0.257423	4.143608
H	5.333357	-0.783539	7.449822
H	3.729702	-0.224395	6.934191
H	4.361316	-1.772158	6.348987
C	4.358152	-2.716699	0.295645
C	4.857785	-2.740990	-1.013684
C	3.919353	-2.680146	-2.052411
C	2.538988	-2.707746	-1.818191
C	2.090040	-2.832994	-0.495066
C	2.989694	-2.734710	0.577718
0	0.734344	-3.040476	-0.255385
C	6.743098	-2.643694	-2.742627
H	5.046386	-2.673161	1.135410
H	4.251634	-2.607127	-3.081898
H	7.830354	-2.708150	-2.865006
H	6.294679	-3.408451	-3.386658
H	6.423283	-1.660643	-3.106841
C	-0.581640	-1.209083	-2.645868
C	-1.326641	-0.023242	-2.552318
C	-0.626195	1.181878	-2.677375
C	0.748427	1.228945	-2.946686
C	1.434195	0.015860	-3.118086
C	0.788139	-1.218333	-2.920458
0	2.779978	0.030003	-3.454308
C	-2.844992	-0.085146	-2.295874
C	-3.506914	1.303494	-2.368305
C	-3.515177	-0.985611	-3.361071
C	-3.111845	-0.672879	-0.890344
H	-1.071598	-2.165669	-2.491269
H	-1.144661	2.126150	-2.556179
H	-4.585824	1.204830	-2.203612
H	-3.121066	1.982292	-1.600766
H	-3.359246	1.773798	-3.347929

H	-4.598505	-1.027048	-3.193249
H	-3.343311	-0.594125	-4.370883
H	-3.135638	-2.012044	-3.329729
H	-4.189659	-0.780401	-0.717785
H	-2.651797	-1.658302	-0.766556
H	-2.710516	-0.013502	-0.112243
C	-1.677961	4.195963	1.316152
C	-1.095547	4.591613	0.105469
C	-1.936467	5.073313	-0.905472
C	-3.322340	5.087394	-0.743637
C	-3.916431	4.601012	0.433993
H	-1.046038	3.840085	2.126095
H	-1.505339	5.421500	-1.841280
H	-3.947586	5.447642	-1.555828
C	-1.067227	-4.611187	0.025886
C	-1.879715	-4.992287	-1.049948
C	-3.269962	-4.999420	-0.934486
C	-3.897124	-4.606916	0.261292
H	-1.421872	-5.265568	-1.997923
H	-3.872487	-5.279541	-1.794134
C	-9.021372	0.713768	-0.090609
C	-8.429292	1.407670	0.985274
C	-8.145551	0.650375	2.137516
C	-8.141429	-0.738753	2.097314
C	-8.419624	-1.428724	0.902536
C	-9.015025	-0.677975	-0.132037
H	-9.379280	1.259361	-0.959586
H	-7.737302	1.135561	3.018121
H	-7.730220	-1.273182	2.947791
H	-9.366079	-1.175452	-1.032290
C	-5.342311	-4.270282	0.332043
C	-5.958967	-3.655486	-0.771386
C	-7.108753	-2.889163	-0.614540
C	-7.693730	-2.702633	0.652724
C	-7.221316	-3.523900	1.695920
C	-6.065711	-4.284934	1.540267
H	-5.456793	-3.645040	-1.733979
H	-7.453892	-2.300607	-1.458586
H	-7.700829	-3.493559	2.670550
H	-5.678814	-4.834137	2.394450
C	-7.198999	3.434768	1.893256
C	-7.713258	2.699635	0.805952
C	-7.176345	2.990965	-0.462922
C	-6.028649	3.764264	-0.599682
C	-5.363599	4.278148	0.527051
C	-6.043092	4.198770	1.758005
H	-7.642538	3.329469	2.879505
H	-7.555944	2.477302	-1.340288
H	-5.565812	3.835436	-1.579145
H	-5.620024	4.672517	2.639808
C	0.237238	0.003131	1.299140
H	-0.293085	0.004045	0.347156
H	-0.043501	-0.889277	1.871261
H	-0.038142	0.897889	1.870352
C	3.024411	0.035986	-4.861149

H	2.592881	0.922988	-5.342985
H	4.109618	0.048888	-4.988348
H	2.613552	-0.859073	-5.346401

Cartesian coordinates ($\mathrm{PCM} / \mathrm{B} 3 \mathrm{LYP} / 6-31 \mathrm{G}^{*}$) of cone conformer

C	-2.296861	-1.880104	2.318554
C	-3.697956	-1.881047	2.296696
C	-4.430901	-2.466806	1.258229
C	-3.701616	-2.962326	0.167630
C	-2.305220	-2.972901	0.136158
C	-1.610391	-2.510064	1.268485
0	-0.231405	-2.677903	1.349947
C	-1.572741	-3.399454	-1.136468
C	-1.553967	-1.147266	3.432983
C	-1.399441	3.362639	1.090320
C	-1.744665	1.109301	-3.467776
C	-5.960683	2.692928	-1.039380
C	-6.285524	4.201383	-1.170266
C	-6.690651	1.942211	-2.169714
C	-5.965242	-2.603211	1.289149
C	-6.600838	-1.806715	2.445227
C	-6.319717	-4.098790	1.477378
C	-6.588257	-2.105401	-0.035269
C	0.103438	3.846568	-2.120694
C	0.117152	-3.964586	1.922870
C	3.750988	-4.317735	0.854768
C	3.694479	4.865105	-1.326904
C	2.300180	4.843461	-1.345581
H	-4.213319	-1.401961	3.122490
H	-4.228656	-3.347438	-0.700470
H	-0.498408	-3.311611	-0.964808
H	-1.784415	-4.452314	-1.361319
H	-0.483645	-1.329918	3.316837
H	-1.848347	-1.554241	4.408253
H	-0.340568	3.258678	0.845748
H	-1.576441	4.418983	1.328398
H	-0.663138	1.249350	-3.418200
H	-2.084417	1.529829	-4.422231
H	-7.368995	4.367024	-1.117648
H	-5.815680	4.781915	-0.368510
H	-5.927255	4.598146	-2.127534
H	-7.772458	2.086883	-2.069938
H	-6.400313	2.312080	-3.159485
H	-6.492341	0.864729	-2.136738
H	-7.690724	-1.918970	2.414751
H	-6.262134	-2.164756	3.423927
H	-6.371946	-0.737053	2.375887
H	-7.408183	-4.237089	1.494929
H	-5.913962	-4.709415	0.663206

H	-5.912820	-4.482578	2.420334
H	-7.681304	-2.183095	0.010167
H	-6.328781	-1.058244	-0.223820
H	-6.253491	-2.691477	-0.897110
H	-0.329301	4.684269	-1.559343
H	-0.338622	3.851390	-3.126582
H	-0.313462	-4.758808	1.298347
H	-0.324416	-4.046792	2.924376
H	4.298040	-4.441589	-0.074884
H	4.204670	5.543800	-0.649047
H	1.747786	5.502250	-0.679566
C	-1.851206	0.349103	3.430585
C	-2.668808	0.918528	4.417444
C	-3.030978	2.271410	4.402274
C	-2.576495	3.046573	3.322255
C	-1.765064	2.524901	2.310604
C	-1.371550	1.178101	2.405830
0	-0.547172	0.644440	1.435222
C	-3.902358	2.915659	5.497663
C	-4.324949	1.904856	6.580835
C	-5.186122	3.504782	4.865697
C	-3.106381	4.051598	6.184152
H	-3.022607	0.270953	5.213057
H	-2.861491	4.093776	3.254904
H	-4.936546	2.410167	7.336893
H	-4.923627	1.087063	6.163706
H	-3.459283	1.468831	7.092303
H	-5.812205	3.968359	5.638093
H	-4.957102	4.271750	4.118530
H	-5.775434	2.721517	4.374955
H	-3.716465	4.530128	6.960205
H	-2.198218	3.661798	6.658757
H	-2.806203	4.825848	5.470126
C	-3.618952	2.985032	-0.069525
C	-4.432289	2.513997	-1.110516
C	-3.786102	1.909369	-2.194661
C	-2.389802	1.864558	-2.307247
C	-1.618197	2.470525	-1.303674
C	-2.224101	2.953072	-0.129244
0	-0.242084	2.598682	-1.466257
C	-6.510112	2.179649	0.311570
H	-4.075857	3.384850	0.831240
H	-4.368323	1.448922	-2.985947
H	-7.600611	2.293109	0.342751
H	-6.273344	1.120183	0.455675
H	-6.098399	2.731622	1.162509
C	-3.030388	-0.904767	-4.338748
C	-3.453735	-2.243463	-4.284886
C	-2.937138	-3.037578	-3.253692
C	-2.003423	-2.550498	-2.327023
C	-1.552393	-1.230277	-2.469547
C	-2.097066	-0.374242	-3.443828
0	-0.598707	-0.739999	-1.598104
C	-4.466297	-2.770536	-5.319651
C	-3.888125	-2.593884	-6.744027

C	-4.789153	-4.263418	-5.117844
C	-5.787319	-1.973077	-5.203017
H	-3.438616	-0.243536	-5.099370
H	-3.260690	-4.068033	-3.148095
H	-4.601452	-2.958841	-7.493153
H	-3.675491	-1.543747	-6.970163
H	-2.955499	-3.158268	-6.860104
H	-5.500980	-4.592270	-5.883448
H	-3.893798	-4.889368	-5.206588
H	-5.245118	-4.454727	-4.139817
H	-6.517052	-2.333368	-5.938731
H	-6.226104	-2.086977	-4.204864
H	-5.634657	-0.903316	-5.381026
C	2.360088	-4.339626	0.829942
C	1.616568	-4.082916	1.988740
C	2.310235	-3.887869	3.189390
C	3.704253	-3.877424	3.221067
C	4.454838	-4.044017	2.043864
H	1.844829	-4.516430	-0.111118
H	1.754120	-3.720285	4.108847
H	4.211738	-3.705495	4.166142
C	1.602620	3.968138	-2.186654
C	2.342067	3.163388	-3.062530
C	3.733099	3.172042	-3.037391
C	4.441459	3.993250	-2.138218
H	1.824058	2.489904	-3.740907
H	4.277207	2.479495	-3.672425
C	8.909609	-1.240648	-0.885856
C	9.062192	-1.325352	0.510867
C	9.547240	-0.171822	1.161192
C	9.545261	1.062193	0.516796
C	9.057605	1.186659	-0.800755
C	8.907298	-0.008364	-1.529252
H	8.591798	-2.112261	-1.449262
H	9.806504	-0.210568	2.215875
H	9.802726	1.950455	1.087677
H	8.587396	0.026187	-2.565884
C	5.890241	3.748586	-1.920376
C	6.731415	3.231159	-2.924440
C	7.911950	2.566509	-2.602167
C	8.292527	2.377524	-1.258491
C	7.578210	3.107789	-0.289095
C	6.403575	3.777169	-0.612389
H	6.422471	3.279247	-3.965167
H	8.487497	2.104851	-3.399970
H	7.846350	3.016756	0.758531
H	5.806782	4.194539	0.192880
C	7.580691	-2.005488	2.377132
C	8.300133	-2.383429	1.226972
C	7.926834	-3.597079	0.615689
C	6.748687	-4.246480	0.975476
C	5.902383	-3.719774	1.970413
C	6.408432	-2.658318	2.740150
H	7.842748	-1.090723	2.898898
H	8.506367	-3.986545	-0.216982

H	6.445370	-5.130792	0.421570
H	5.807334	-2.237035	3.540193
C	0.844871	0.738741	1.739482
H	1.376915	0.267306	0.912254
H	1.164979	1.784833	1.829776
H	1.089032	0.213321	2.671376
C	0.742496	-0.888422	-2.064696
H	0.888589	-0.394016	-3.033628
H	1.386040	-0.415706	-1.320932
H	1.016683	-1.946897	-2.165251

4.7 A [8]CPP Derivative as Emitter in Triplet-Triplet Annihilation Upconversion

4.7.1 Synthesis of derivative 56

1,4-Dibromobenzene ($10.0 \mathrm{~g}, 42.4 \mathrm{mmol}$) was dissolved in 450 mL of dry THF and cooled to $-78^{\circ} \mathrm{C}$. To this solution was added a 2.5 M solution of n-butyllithium in n-hexane (18.2 mL , 45.5 mmol) over 15 min and the reaction mixture was stirred for 30 min . Anthraquinone ($4.31 \mathrm{~g}, 20.7 \mathrm{mmol}$) was added to the reaction mixture in three equal portions over 30 min . The solution was stirred for 2 h at $-78^{\circ} \mathrm{C}$ and then added to 180 mL of water. The mixture was further diluted by the addition of 180 mL of diethyl ether and the organic layer was separated. The aqueous layer was extracted with diethyl ether ($3 \times 70 \mathrm{~mL}$) and the combined organic layers were washed with a saturated brine solution (100 mL). The organic phase was then dried over sodium sulfate, filtered and evaporated under reduced pressure to give the diol product which was used without further purification. The diol was dissolved in 70 mL of dry THF and sodium hydride ($2.07 \mathrm{~g}, 51.7 \mathrm{mmol}, 60 \%$ in mineral oil) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 min and methyl iodide ($5.2 \mathrm{~mL}, 83 \mathrm{mmol}$) was added. The mixture was allowed to warm to room temperature and stirred for an additional 18 h . The excess of sodium hydride was then quenched by addition of 100 mL of water and filtered. The white solid was washed with 120 mL of ethyl ether and dried in vacuum for 12 h , to give 56 in 53% of yield (6.04 g). M. p. $>310^{\circ} \mathrm{C}$ dec.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.49(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-$ H), 7.30-7.33 (overlapped, $8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.19 (d, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}$, Ar-H), 2.93 (s, 6H, OMe);
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 147.9,138.2,131.0$, 128.7, 128.2, 121.1, 78.7, 51.3.

HRMS (ESI+): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{NaO}_{2}$: 572.9864, found 572.9859.

Figure 148: ${ }^{1} \mathrm{H}$ NMR spectrum of $56\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 149: ${ }^{13} \mathrm{C}$ NMR spectrum of $56\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 150: Significant portion of the HR ESI FT-ICR mass spectrum of $56[\mathrm{M}+\mathrm{Na}]^{+}$.

4.7.2 Synthesis of derivative 57

Dibromide $56(2.53 \mathrm{~g}, 4.77 \mathrm{mmol})$ was dissolved in 280 mL of dry THF and cooled to $-78{ }^{\circ} \mathrm{C}$. Then a 2.5 M solution of $n-$ butyllithium in hexane ($9 \mathrm{~mL}, 22.5 \mathrm{mmol}$) was added over 10 min . Then isopropyl pinacol borate ($8.50 \mathrm{~mL}, 42.0 \mathrm{mmol}$) was added rapidly and the solution was stirred for 5 h under argon. 200 mL of water and 100 mL of ethyl acetate were added to the solution and the biphasic mixture was stirred for 30 min at room temperature. The organic phase was extracted, and the aqueous layer was washed with ethyl acetate ($3 \times 70 \mathrm{~mL}$). The combined organic layers were dried over sodium sulfate, filtered and concentrated in vacuum to give a colorless oil that was purified by chromatography on silica gel (hexane/ethyl acetate, 7:3). The product 57 was obtained as a white solid in 41% of yield (1.30 g). M.p.: 252.2-253.3${ }^{\circ} \mathrm{C}$.
> ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.68(\mathrm{~d}, J=8.1$ Hz, 4H, Ar-H), 7.48 (m, 4H, Ar-H), 7.43 (d, $J=8.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-$ H), 7.24 (m, 4H, Ar-H), 2.94 (s, 6H, OMe), $1.30\left(\mathrm{~s}, 24 \mathrm{H}, \mathrm{CH}_{3}\right)$.
> ${ }^{13} \mathbf{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 152.1,138.5,134.5$, 128.5, 128.4, 126.2, 83.8, 79.0, 51.2, 25.0.

HRMS (ESI+): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~B}_{2} \mathrm{NaO}_{6}$: 667.3378, found 667.3380.

Figure 151: ${ }^{1} \mathrm{H}$ NMR spectrum of $57\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 152: ${ }^{13} \mathrm{C}$ NMR spectrum of $57\left(\mathrm{CDCl}_{3}, 62.5 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 153: Significant portion of the HR ESI FT-ICR mass spectrum of $57[\mathrm{M}+\mathrm{Na}]^{+}$.

4.7.3 Synthesis of derivative 58

Dibromide 36 ($1.99 \mathrm{~g}, 3.00 \mathrm{mmol}$), diboronate $57(1.93 \mathrm{~g}, 3.00$ mmol), S-Phos ($246 \mathrm{mg}, 0.61 \mathrm{mmol}$) and $\mathrm{K}_{3} \mathrm{PO}_{4}(2.55 \mathrm{~g}, 12.0$ $\mathrm{mmol})$ in a mixture of $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}(600 \mathrm{~mL} / 60 \mathrm{~mL})$ was mixed and degassed twice through freeze/pump/thaw technique. Then $\operatorname{Pd}(\mathrm{OAc})_{2}(471 \mathrm{mg}, 2.11 \mathrm{mmol})$ was added and the mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 19 h under argon. After cooling to room temperature, the mixture was filtered through a short plug of Celite ${ }^{\circledR}$ and added to 150 mL of water and 100 mL of CHCl_{3}. The biphasic mixture was stirred for 30 min and separated. The aqueous layer was washed with CHCl_{3} ($3 \times 80 \mathrm{~mL}$). The combined organic layers were washed with 200 mL of a saturated brine solution and dried over sodium sulfate. After filtration the solvent was evaporated under vacuum, the crude mixture was purified by column chromatography on silica gel
(Hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=29: 70: 1$) to give the macrocycle 58 as a white solid in 10% of yield $(0.27 \mathrm{~g})$. M. p. $>305^{\circ} \mathrm{C}$ dec.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.85(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-$ H), 7.50 (s, 4H, Ar), 7.47 (m, 4H, Ar-H), 7.44 (d, $J=8.5 \mathrm{~Hz}$, $4 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 7.17(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 6.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 6.11$ (d, $J=10.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 6.03(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 4 \mathrm{H}$, $\mathrm{CH}=\mathrm{CH}), 3.46(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OMe}), 3.41(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OMe}), 3.15(\mathrm{~s}, 6 \mathrm{H}$, OMe).
${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 145.0, 143.4, $142.8,139.8,139.5,138.6,133.5,133.0,128.3,127.5,126.9$, 126.3, 126.1, 80.3, 74.6, 74.3, 52.2, 52.0.

DEPT-135 ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 133.5,133.0,128.3$, 127.5, 126.9, 126.3, 126.1, 52.2, 52.0.

HRMS (MALDI): $m / z \quad[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{62} \mathrm{H}_{54} \mathrm{O}_{6}$: 894.3921, found 894.3895.

Figure 154: ${ }^{13} \mathrm{C}$ NMR e DEPT-135 spectra of $58\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 155: 2D HSQC spectrum of $58\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 156: Significant portion of the HR MALDI FT-ICR mass spectrum of $58[\mathrm{M}]^{+}$.

4.7.4 Synthesis of derivative 55

Derivative 58 ($225 \mathrm{mg}, 0.25 \mathrm{mmol}$) was dissolved in 18 mL of dry THF, under argon, and the solution was degassed through freeze/pump/thaw technique and cooled to $-78{ }^{\circ} \mathrm{C}$. Then, a solution of sodium naphthalenide in dry THF, freshly prepared $(2.7 \mathrm{~mL}, 2.7 \mathrm{mmol})$ was added and the reaction mixture was stirred for 3 h at $-78^{\circ} \mathrm{C}$. Then I_{2} was added (3 mL of a 1.0 M solution in THF) and the reaction mixture was warmed at room temperature. Subsequently a saturated solution of sodium thiosulfate (50 mL) and $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ were added, and the reaction mixture was stirred for 10 min . The organic layer was extracted and the aqueous phase was washed with $\mathrm{CHCl}_{3}(3 \mathrm{x}$ 50 mL) and finally the combined organic layers was washed with a saturated brine solution $(60 \mathrm{~mL})$ and dried over sodium sulfate and filtered. The solvent was removed under reduced pressure, and the crude product was purified by
chromatography column on silica gel under nitrogen flow (n hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=3: 7$), to give the product 55 as a yellow solid in 11% of yield (19 mg). M. p. $>285^{\circ} \mathrm{C}$ dec.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.89(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-$ H), 7.72 (m, 2H, Ar-H), 7.49 (s, 4H, Ar-H), 7.47 (s, 8H, Ar-H), 7.42-7.40 (overlapped, $8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.22 (d, $J=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-$ H), 7.11-7.08 (overlapped, 4H, Ar-H), 7.02-7.00 (overlapped, 4H, Ar-H).
${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 146.6, 146.5, 142.7, $140.3,139.7,138.8,138.4,137.2,137.0,136.9,128.6,128.3$, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.5, 127.4, 127.2, 127.1, 127.1.

DEPT-135 ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 128.6,128.3,128.0$, 127.9, 127.8, 127.7, 127.6, 127.5, 127.5, 127.4, 127.2, 127.10, 127.12.

HRMS (MALDI): $m / z[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{56} \mathrm{H}_{36}$: 708.2811, found 708.2812.

Figure 157: ${ }^{13} \mathrm{C}$ NMR and DEPT-135 spectra of $55\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 158: 2D COSY spectrum of $55\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 159: Expansion of 2D HSQC spectrum of $55\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 160: Significant portion of the HR MALDI FT-ICR mass spectrum of $55[\mathrm{M}]^{+}$.

4.7.5 Optoelectronic Characterization

Optical absorption spectra were measured on a Cary 50 UV-vis spectrophotometer from Varian. Steady-state luminescence spectra were recorded on a modular fluorescence spectrometer from Acton Research, equipped with a xenon lamp. Light source was passed through a 295 nm long pass cut-off emission filter prior to incidence on the sample. All solution samples were deaerated with nitrogen. Relative quantum yields of $\mathbf{5 5}$ in dichloromethane were determined as described by Williams using quinine sulfate ($0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$) as standard. Excitation occurred at 319 nm and the fluorescence of $\mathbf{5 5}$ was integrated from $350-650 \mathrm{~nm}$, both for $\mathbf{5 5}$ and for quinine sulphate. In upconversion measurements an additional longpass filter cutting at ca. 300 nm has been employed to completely cut down possible emission produced by excitation of second order diffraction. The quantum yield measurements were performed in accord with the method reported by Miller and coworkers. ${ }^{115,164}$ The CPP 55 solutions were diluted to give absorbance values in the range $0.02-0.35$, within the expected linear calibration range of fluorescence emission versus concentration. The quantum yields were calculated according to equation reported by Miller.

$$
\Phi_{X}=\Phi_{R} \frac{I_{X}}{I_{R}} \frac{A_{R}}{A_{X}} \frac{\eta_{X}^{2}}{\eta_{R}^{2}}
$$

Φ_{R} is the quantum yield of the standard, A is the absorbance of the solution, I is the integrated intensity of the exciting light

[^79]and η is the average refractive index of the solution. Subscripts R and X refer to the reference and unknown compound, respectively. Cyclic voltammetry measurements were performed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with TBAP as electrolyte. All potentials were referenced to the platinum quasi-reference electrode. The potential has been calibrated with ferrocene/ferrocenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) redox couple.

Figure 161: Cyclic voltammetry of $55,2.1 \mathrm{mM}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with TBAP as electrolyte 100 mM . Scan rate $100 \mathrm{mV} / \mathrm{s}$. Working electrode, GCE. Counter electrode, Pt bar. The potential of the GCE was controlled with respect to a Pt wire as quasireference electrode.

4.7.6 Computational Details

Constrained and unconstrained geometry optimizations were carried at the density functional level of theory (DFT), by using the B97D functional including the empirical correction for dispersion energy proposed by Grimme, ${ }^{165}$ in conjunction with the density fitting approximation and the TZVP basis set. The nature of the stationary points was verified by computing the eigenvalues of the Hessian matrix. B97D was chosen because

[^80]it has been proven to be the most accurate method in predicting torsional barriers of substituted biphenyls. ${ }^{166}$ Time dependent (TD) DFT computations were carried out by using the CAMB3LYP range-separated hybrid functional. ${ }^{167}$ Indeed, it is well known that electronic excitations in conjugated oligomers have a charge transfer nature, with structural distortions that can be modelled only with the use of range-corrected hybrid DFT models including long range electronic exchange interactions. ${ }^{88,168}$ The same functional was adopted for the computation of the first oxidation potential. The restricted open shell (RO) formalism was used because it yields more accurate oxidation potentials when used with the CAM-B3LYP functional. The absolute potential of $\mathrm{Fc}^{+} / \mathrm{Fc}$ in dichloromethane has been set to $4.98 \mathrm{~V} .{ }^{169}$ The $6-31+\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set was adopted for all the computations employing the CAM-B3LYP functional. Effects due to solvent (dichloromethane) polarization were included in all computations by the polarizable continuum model (PCM). ${ }^{170}$ DFT and TDDFT computations were carried out by using the Gaussian program. ${ }^{144}$

[^81]
Atomic coordinates: Conformer I of derivative 55

C	-0.204783	-2.167246	5.422375
C	-0.204783	-2.167246	-5.422375
C	0.001765	-6.084557	-1.425602
C	0.001765	-6.084557	1.425602
C	-0.243686	-3.528244	-4.830516
C	-0.243686	-3.528244	4.830516
C	-0.246445	0.680894	-5.442208
C	-0.246445	0.680894	5.442208
C	-0.132141	-5.526497	2.792095
C	-0.132141	-5.526497	-2.792095
C	-0.300643	2.030100	4.828988
C	-0.300643	2.030100	-4.828988
C	0.056838	3.982473	2.793269
C	0.056838	3.982473	-2.793269
C	0.395044	4.512544	1.438573
C	0.395044	4.512544	-1.438573
C	0.971509	-0.026080	5.379282
C	-1.407015	-0.063146	5.741217
C	0.971509	-0.026080	-5.379282
C	-1.407015	-0.063146	-5.741217
H	1.892718	0.515764	5.176204
H	-2.355415	0.452897	5.877983
H	1.892718	0.515764	-5.176204
H	-2.355415	0.452897	-5.877983
C	0.978572	-5.271851	-3.626481
C	-1.353790	-4.925074	-3.160987
C	-1.353790	-4.925074	3.160987
C	0.978572	-5.271851	3.626481
H	1.824889	-4.078626	5.189571
H	-2.340490	-3.409945	4.288448
H	-2.340490	-3.409945	-4.288448
H	1.824889	-4.078626	-5.189571
C	-1.298728	2.255844	3.857686
C	0.753946	2.961748	4.897917
C	-1.298728	2.255844	-3.857686
C	0.753946	2.961748	-4.897917
C	0.921003	3.931830	3.903952
C	-1.120187	3.206991	2.860089
C	0.921003	3.931830	-3.903952
C	-1.120187	3.206991	-2.860089
H	-2.146642	1.577741	3.793612
H	1.502164	2.871890	5.683274
H	-2.146642	1.577741	-3.793612
H	1.502164	2.871890	-5.683274
H	1.785216	4.590909	3.946176
H	-1.835697	3.260942	2.043027
H	1.785216	4.590909	-3.946176
H	-1.835697	3.260942	-2.043027
C	-0.546682	5.294211	0.725102
C	-0.546682	5.294211	-0.725102
C	1.497254	3.948628	0.729437
C	1.497254	3.948628	-0.729437
C	-1.383568	-1.456024	-5.744088
C	0.990744	-1.418822	-5.363258
C	-1.383568	-1.456024	5.744088
C	0.990744	-1.418822	5.363258
C	-1.407405	-3.949789	-4.151686
C	0.922339	-4.300443	-4.624431
C	0.922339	-4.300443	4.624431
C	-1.407405	-3.949789	4.151686
H	-2.315564	-1.994602	-5.899786
H	1.931457	-1.918796	-5.147336
,	-2.315564	-1.994602	5.899786
H	1.931457	-1.918796	5.147336
H	1.923139	-5.777184	-3.435389
	2245005	-5.108439	2565979

H	1.923139	-5.777184	3.435389
H	-2.245005	-5.108439	-2.565979
C	1.182222	-5.828254	-0.696165
C	-1.105435	-6.572559	-0.696467
C	-1.105435	-6.572559	0.696467
C	1.182222	-5.828254	0.696165
H	2.069567	-5.476312	-1.216909
H	-2.009586	-6.868792	-1.224193
H	-2.009586	-6.868792	1.224193
H	2.069567	-5.476312	1.216909
H	4.394474	2.167398	-1.256727
H	4.394474	2.167398	1.256727
H	-3.243162	7.353755	-1.252016
H	-3.243162	7.353755	1.252016
C	3.593330	2.659335	-0.708678
C	3.593330	2.659335	0.708678
C	-2.499709	6.771026	-0.711731
C	-2.499709	6.771026	0.711731
H	2.576735	3.227062	2.474644
H	2.576735	3.227062	-2.474644
H	-1.553977	6.049510	2.490992
H	-1.553977	6.049510	-2.490992
C	2.567452	3.264608	1.393694
C	-1.557604	6.045824	-1.403828
C	-1.557604	6.045824	1.403828
C	2.567452	3.264608	-1.393694

Atomic coordinates: Conformer III of derivative 55

C	0.012431	-2.016663	5.621438
C	0.012431	-2.016663	-5.621438
C	-0.120169	-5.731402	-1.427686
C	-0.120169	-5.731402	1.427686
C	-0.127758	-3.337587	-4.962565
C	-0.127758	-3.337587	4.962565
C	0.071792	0.829452	-5.747427
C	0.071792	0.829452	5.747427
C	-0.193714	-5.216814	2.815862
C	-0.193714	-5.216814	-2.815862
C	-0.021223	2.186541	5.148347
C	-0.021223	2.186541	-5.148347
C	0.027336	3.918821	2.912389
C	0.027336	3.918821	-2.912389
C	0.171589	4.099747	1.433160
C	0.171589	4.099747	-1.433160
C	1.249320	0.084164	5.523078
C	-1.066310	0.106191	6.168498
C	1.249320	0.084164	-5.523078
C	-1.066310	0.106191	-6.168498
H	2.161682	0.594887	5.225846
H	-1.973949	0.639524	6.443375
H	2.161682	0.594887	-5.225846
H	-1.973949	0.639524	-6.443375
C	0.948402	-5.085458	-3.636877
C	-1.363246	-4.552152	-3.241150
C	-1.363246	-4.552152	3.241150
C	0.948402	-5.085458	3.636877
H	1.907492	-4.033162	5.239148
H	-2.218380	-3.038183	4.482844
H	-2.218380	-3.038183	-4.482844
H	1.907492	-4.033162	-5.239148
C	-1.213422	2.532714	4.475454
C	1.122937	2.963364	4.863276
C	-1.213422	2.532714	-4.475454
C	1.122937	2.963364	-4.863276

C	1.150415	3.807923	3.749646
C	-1.188359	3.385923	3.374233
C	1.150415	3.807923	-3.749646
C	-1.188359	3.385923	-3.374233
H	-2.131290	1.991682	4.691442
H	2.044287	2.792325	5.415887
H	-2.131290	1.991682	-4.691442
H	2.044287	2.792325	-5.415887
H	2.094113	4.256250	3.444115
H	-2.083047	3.492207	2.763526
H	2.094113	4.256250	-3.444115
H	-2.083047	3.492207	-2.763526
C	0.508930	2.912759	0.724744
C	0.508930	2.912759	-0.724744
C	-0.127130	5.281174	0.728488
C	-0.127130	5.281174	-0.728488
C	-1.095980	-1.285738	-6.104245
C	1.220450	-1.305622	-5.461991
C	-1.095980	-1.285738	6.104245
C	1.220450	-1.305622	5.461991
C	-1.331134	-3.635727	-4.288430
C	0.980771	-4.168290	-4.685268
C	0.980771	-4.168290	4.685268
C	-1.331134	-3.635727	4.288430
H	-2.024478	-1.803914	-6.334800
H	2.112558	-1.827715	-5.125044
H	-2.024478	-1.803914	6.334800
H	2.112558	-1.827715	5.125044
C	-0.467069	6.493702	-1.409255

H	1.849840	-5.646507	-3.399415
H	-2.274828	-4.639523	2.655139
H	1.849840	-5.646507	3.399415
H	-2.274828	-4.639523	-2.655139
C	1.074450	-5.562483	-0.695940
C	-1.267657	-6.111002	-0.696693
C	-1.267657	-6.111002	0.696693
C	1.074450	-5.562483	0.695940
H	1.989175	-5.288941	-1.216194
H	-2.193423	-6.331888	-1.223800
H	-2.193423	-6.331888	1.223800
H	1.989175	-5.288941	1.216194
H	-1.032504	8.550063	-1.249895
H	-1.032504	8.550063	1.249895
H	1.268612	-0.399944	-1.255916
H	1.268612	-0.399944	1.255916
C	-0.781171	7.637291	-0.713236
C	-0.781171	7.637291	0.713236
C	1.064269	0.519555	-0.710375
C	1.064269	0.519555	0.710375
H	-0.468531	6.489668	2.497268
H	-0.468531	6.489668	-2.497268
H	0.784832	1.646033	2.483134
H	0.784832	1.646033	-2.483134
C	-0.467069	6.493702	1.409255
C	0.792558	1.675809	-1.400346
C	0.792558	1.675809	1.400346

4.8 CPP-Based Luminescent Solar Concentrator

4.8.1 Procedure of preparation of [8] CPP and [10]CPP

These derivatives was obtained in accordance with the literature procedure reported by Jasti in 2012 by our group. ${ }^{94}$ Before to produce the slabs, we have performed NMR spectra and UV-Vis and fluorescence spectra were acquired and they were compared with literature.

Ringraziamenti

La prima persona che mi sento di ringraziare è il prof. Carmine Gaeta il quale mi guida dal 13 Febbraio 2012 (giorno della mia prima sintesi) e da allora molto del suo tempo lo ha dedicato a me. Da allora malgrado la mia inesperienza è riuscito ad insegnarmi davvero tanto e non solo come chimico ma anche come persona. Ritengo e ho sempre ritenuto che l'insegnamento va oltre la lettura di una semplice nozione su un libro e Lui ne è la prova certa. Lo ringrazio non solo per quello che mi ha trasmesso ma anche per la fiducia che mi ha accordato giornalmente.

Il prof. Placido Neri è la seconda persona che voglio ringraziare, che in modo molto paterno mi ha spesso consigliato e guidato e il quale operato non è passato mai in sordina. Ma indelebili sono i momenti di condivisione di idee, progetti o di esperienze passate... cose che ci portano ad amare il nostro lavoro.

Carmen Talotta (detta Carmela) la quale mi ha guidato e affiancato in questo cammino. Mi ha lasciato non solo un bagaglio culturale considerevole ma anche una grande amicizia. Con lei ho condiviso tantissimo in questi anni e senza di lei probabilmente non sarebbero passati in modo così felice.

Un pensiero speciale va a Stefano Tommasone il quale è per me un amico e un collega e dal quale è stato difficile staccarsi. È stato al mio fianco per molti anni e per me un punto di riferimento. Nonostante la distanza l'amicizia resta forte.

Inutile dire l'importanza di tutti i dottorandi che si sono succeduti negli anni e che più leggero e piacevole hanno reso questo mio cammino... Gerardo Concilio, Nicola De Simone, Pellegrino La Manna, Veronica Iuliano, Clotilde Capacchione e Rocco Del Regno. È stato davvero bello conoscervi e lavorare con voi.

In questi anni tuttavia sono stati essenziali per la mia crescita tutti gli studenti che ho seguito nel loro percorso di tesi. Mi ricordano costantemente che l'insegnamento non è mai a senso unico. Quindi grazie a Rocco Del Regno (bis), Giuseppina Di Benedetto,

Carmela Calabrese, Chiara Laureana, Chiara Nieri, Fabio Fratta, Ilaria Ruberto, Luca Di Marino, Luca Liguori, Ludovica Panico, Mara Milione, Martina Barbuto e in particolare Arico Del Mauro, Emanuele Della Rocca e Guglielmo Iannone con i quali, nonostante la lontananza è viva una grande amicizia.

E ora dato che la vita va oltre il laboratorio... non posso non ringraziare Nico Picardi ed Emilio De Cesare amici ormai di lunga data e sempre presenti nella mia vita. Grazie di cuore.

Infine, i miei Genitori e mio Fratello. Quel che è della vita e poca cosa senza una famiglia e senza qualcuno con cui condividerla. Spero un giorno di poter calcare i vostri passi e fare altrettanto bene. Grazie.

Grazie a tutti coloro che ci sono e ci sono stati e che nel bene e nel male mi hanno fatto crescere, facendo si che oggi io sia la persona che sono. Anche e soprattutto dagli sbagli si impara.
"...when I die, I want to be remembered for the life I lived not the money I made"

Tim Bergling (AVICII)

[^0]: ${ }^{1}$ Lehn, J.-M., Supramolecular Chemistry, VCH, Weinheim, Germany, 1995; Lenh, J.-M. Angew. Chem. Int. Ed. Engl. 1988, 27, 89-112.
 ${ }^{2}$ Cram D. J. Angew. Chem. Int. Ed. Engl. 1988, 27, 1009-1020.
 ${ }^{3}$ (a) Swiegers, G. F., "Self-Assembly: Terminolgy", in Encyclopedia of Supramolecular Chemsitry, Steed J. W. and Atwood, J. L. (Eds), Marcel Dekker, New York, NY, USA, 2004, pp. 1263-1269; (b) Hamilton, T. D. and MacGillivray, L. R., "Self-Assembly in biochemistry" in Encyclopedia of Supramolecular Chemsitry, Steed J. W. and Atwood, J. L. (Eds), Marcel Dekker, New York, NY, USA, 2004, pp. 1257-1262.

[^1]: ${ }^{4}$ Talotta, C.; Gaeta, C.; Neri, P. J. Org. Chem. 2014, 79, 9842-9846.
 ${ }^{5}$ MacGillivray, L. R. and Atwood, J. L. Nature 1997, 389, 469-472.
 ${ }^{6}$ a) Hof, F.; Craig, S. L.; Nuckolls, C.; Rebek, J. Jr.; Angew. Chem. Int. Ed. 2002, 41, 1488-1508 and reference cited therein. b) Rebek, Jr. J.; In Hydrogen-Bonded Capsules: Molecular Behavior in Small Spaces, World Scientific Pub Co Inc, 2015.

[^2]: ${ }^{7}$ Steed, J.W.; Turner, D. R.; Wallace, K. J. in Core concepts in Supramolecular Chemistry and Nanochemistry, Chapter 1, WILEY, West Sussex - UK, 2007.
 ${ }^{8}$ Avram, L. and Cohen, Y. J. Am. Chem. Soc. 2002, 124, 15148-15149.
 ${ }^{9}$ (a) Catti, L.; Zhang, Q.; Tiefenbacher, K. Chem. Eur. J. 2016, 22, 90609066. (b) La Manna, P.; Talotta, C.; Floresta, G.; De Rosa, M.; Soriente, A.; Rescifina, A.; Gaeta, C.; Neri, P. Angew. Chem. Int. Ed. 2018, 57, 54235428.

[^3]: ${ }^{10}$ Hamilton, A. D. in Comprehensive Heterocyclic Chemistry, Pergamon Press, 1984.
 ${ }^{11}$ Fischer, H. E. Berichte der deutschen chemischen Gesellschaft 1894, 27, 298-2993.
 ${ }^{12}$ Koshland, D. E. Jr. Angew. Chem. Int. Ed. Engl. 1994, 33, 2375-2378.

[^4]: ${ }^{13}$ Atwood, J. L. and Steed, J. W. in Encyclopedia of Supramolecular Chemistry, CRC Press, 2004.
 ${ }^{14}$ Bisson, A. P.; Lynch, V. M.; Monahan, M. K. C.; Anslyn, E. V. Angew. Chem. Int. Ed. 1997, 36, 2340-2342.

[^5]: ${ }^{15}$ Cram, D. J. Angew. Chem., Int. Ed. Engl., 1986, 25, 1039-1134. Cram, D. J. Science 1988, 240, 760-767.

[^6]: ${ }^{16}$ Cabiness, D. K. and Margerum, D. W. J. Am. Chem. Soc. 1969, 91, 40924093.

[^7]: ${ }^{17}$ Steed, J.W.; Turner, D. R.; Wallace, K. J. in Core concepts in Supramolecular Chemistry and Nanochemistry, Chapter 1, WILEY, West Sussex - UK, 2007.

[^8]: ${ }^{18}$ Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T.; Nakamoto, Y. J. Am. Chem. Soc. 2008, 130, 5022-5023.
 ${ }^{19}$ Zafrani, Y. and Cohen, Y. Org. Lett. 2017, 19, 3719-3722.
 ${ }^{20}$ Svec, J.; Necas, M.; Sindelar, V. Angew. Chem. Int. Ed. Engl. 2010, 49, 2378-2381.
 ${ }^{21}$ Jia F.; He, Z.; Yang, L. P.; Pan, Z. S.; Yi, M.; Jiangb, R. W.; Jiang, W. Chem. Sci., 2015, 6, 6731-6738.
 ${ }^{22}$ Tran, A. H.; Miller, D. O.; Georghiou, P.E. J. Org. Chem. 2005, 70, 11151121.

[^9]: ${ }^{23}$ Chen, H.; Fan, J.; Hu, X.; Ma, J.; Wang, S.; Li, J.; Yu, Y; Jia, X.; Li, C.; Chem. Sci., 2015, 6, 197- 202.
 ${ }^{24}$ Jasti, R.; Bhattacharijee, J.; Neaton, J. B.; Bertozzi, C. R. J. Am. Chem. Soc. 2008, 130, 17646-17647.
 ${ }^{25}$ Povie, G.; Segawa, Y.; Nishihara, T.; Miyauchi, Y.; Itami, K. Science, 2017, 356, 172-175.
 ${ }^{26}$ a)Yang, L.P.; Lu, S.B.; Valkonen, A.; Pan, F.; Rissanen, K.; Jiang W. Beilstein J. Org. Chem. 2018, 14, 1570-1577.
 ${ }^{27}$ a) Busschaert, N.; Caltagirone, C.; Rossom, W. V.; Gale, P. A. Chem. Rev. 2015, 115, 8038-8155. b) Gale, P. A.; Howe, E. N. W.; Wu, X. Chem 2016, 1, 351-422.
 ${ }^{28} \mathrm{Ma}$; X. And Zhao, Y. Chem. Rev. 2015, 115, 7794-7839.
 ${ }^{29}$ a) Dsouza, R. N.; Pischel, U.; Nau, W. M. Chem. Rev. 2011, 111, 79417980. b) Albelda, M. T.; Frìas, J. C.; Garcìa-Espana, E.; Schneider, H-J. Chem. Soc. Rev. 2012, 41, 3859-3877.

[^10]: ${ }^{30}$ (a) Diederich, F. N. Cyclophanes; Royal Society of Chemistry: London, 1991; (b) Gutsche, C. D. Calixarenes, An Introduction; Royal Society of Chemistry: Cambridge, UK, 2008; (c) Neri P, Sessler J. L., Wang M.-X., (Eds.), Calixarenes and Beyond, Springer, Dordrecht, 2016; (d) Ogoshi, T. in Monographs in Supramolecular Chemistry - Pillararenes, Chapter 1, RSC, Cambidge - UK, 2016; (e) Cram, D. J.; Cram J. M. in Container Molecules and Their Guests, Monographs in Supramolecular Chemistry; Stoddart, J. F. Ed; Royal Society of Chemistry: Cambridge, 1994.
 ${ }^{31}$ Matthews, S. E.; Schmitt, P.; Felix, V.; Drew, M. G. B.; Beer, P. D. J. Am. Chem. Soc. 2001, 124, 1341-1353.

[^11]: ${ }^{32}$ Wang, M. X. Sci. China Chem. 2018, 61, 993-1003.
 ${ }_{33}$ Niederl, J. B. and Vogel, H. J. J. Am. Chem. Soc. 1940, 62, 2512-2514.
 ${ }^{34}$ Nilson, B. Acta Chem. Scand. 1968, 22, 732-747.
 ${ }^{35}$ Högberg, A. G. S. J. Org. Chem. 1980, 45, 4498-4500.

[^12]: ${ }^{36}$ Tunstad, L. M.; Tucker, J. A. Dalcanale, E.; Weiser, J.; Bryant, J. A.; Shermann, J. C.; Helgeson, R. C.; Knobler, C. B.; Cram, D. J. J. Org. Chem. 1989, 54, 1305-1312.

[^13]: ${ }^{37}$ Della Sala, P.; Gaeta, C.; Navarra, W.; Talotta, C.; De Rosa, M.; Brancatelli, G.; Geremia, S.; Capitelli, F.; Neri, P. J. Org. Chem, 2016, 81, 5726-5731.

[^14]: ${ }^{38}$ a) Konishi, H.; Ohata, K.; Morikawa, O.; Kobayashi, K. J. Chem. Soc., Chem. Commun. 1995, 309-310. b) Konishi, H.; Nakamura, T.; Ohata, K.; Kobayashi, K.; Morikawa, O. Tetrahedron Lett. 1996, 37, 7383-7386.

[^15]: ${ }^{39}$ Naumann, C.; Roman, E.; Peinador, C.; Ren, T.; Patrick, B. O.; Kaifer, A. E.; Shermann, J. C. Chem. Eur. J. 2001, 7, 1637-1645.

[^16]: ${ }^{40}$ Jiang, S.; Patil, R. S.; Barnes, C. L.; Atwood, J. L. Cryst. Growth Des. 2017, 17, 2919-2922.
 ${ }^{41}$ Jiang, S.; Patil, R. S.; Barnes, C. L.; Atwood, J. L. Cryst. Growth Des. 2017, 17, 4060-4063.
 ${ }^{42}$ Brancatelli, G.; Geremia, S.; Gaeta, C.; Della Sala, P.; Talotta, C.; De Rosa M.; Neri, P. CrystEngComm 2016, 18, 5045-5049.
 ${ }^{43}$ a) Harrowfield, J.; Koutsantonis, G. In Calixarenes in the Nanoworld; Vicens, J.; Harrowfield, J.; Baklouti, L.; Eds. Springer: Netherlands, 2007.

[^17]: b) Hoskins, C.; Papachistout, A.; Ho, T. M. H.; Crtis A. D. M. J. Nanomed. Nanotechnol. 2016, 7, 1-7 and reference cited therein.
 ${ }^{44}$ (a) Cram, D. J.; Cram J. M. in Container Molecules and Their Guests, Monographs in Supramolecular Chemistry; Stoddart, J. F. Ed; Royal Society of Chemistry: Cambridge, 1994. (b) Ajami, D.; Liu, L.; Rebek, J. Jr. Chem. Soc. Rev. 2015, 44, 490-499. (c) MacGillivray, L. R.; Atwood, J. L. Nature 1997, 389, 469-472
 ${ }^{45}$ Mecozzi, S. and Rebek, Jr. J. Chem. Eur. J. 1998, 4, 1016-1022.
 ${ }^{46}$ a) Cram, D. J.; Tanner, M. E.; Thomas, R. Angew. Chem., Int. Ed. Engl. 1991, 30, 1024-1027. b) Korner, S. K.; Tucci, F. C.; Rudkevich, D. M.; Heinz T.; Rebek, J. Chem. Eur. J. 2000, 6, 187-195.
 ${ }^{47}$ Zarra, S.; Wood, D. M.; Roberts, D. A.; Nitschke, J. R. Chem. Soc. Rev. 2015, 44, 419-432.

[^18]: ${ }^{48}$ Ugozzoli, F. and Andreetti, G. D. J. Incl. Phenom. Mol. Recognit. Chem. 1992, 13, 123-126.

[^19]: ${ }^{49}$ Gaeta, C.; Della Sala, P.; Talotta, C.; De Rosa M.; Soriente, A.; Brancatelli, G.; Geremia, S.; Neri, P. Org. Chem. Front. 2016, 3, 12761280.
 ${ }^{50}$ Cram, D. J. Science 1983, 219, 1177-1183.
 ${ }^{51}$ Menozzi, D.; Pinalli, R.; Massera, C.; Maffei, F.; Dalcanale, E. Molecules 2015, 20, 4460-4472.
 ${ }^{52}$ Pinalli, R.; Suman, M.; Dalcanale, E. Eur. J. Org. Chem. 2004, 451-462.
 ${ }^{53}$ Cram, D. J.; Choi, H. J.; Bryant, J. A.; Knobler, C. B. J J. Am. Chem. Soc. 1992, 114, 7748-7765 and reference cited therein.
 ${ }^{54}$ Cram, D. J.; Karbach, S.; Kim, H.-E.; Knobler, C. B.; Maverick, E. F.; Ericson, J. L.; Helgeson, R. C. J. Am. Chem. Soc. 1988, 110, 2229-2237.

[^20]: ${ }^{55}$ Heinz, T.; Rudkevich, D. M.; Rebek, J. Jr. Nature 1998, 394, 764-766.
 ${ }^{56}$ Tucci F. C.; Rudkevich, D. M.; Rebek, J. Jr. J. Chem. Eur. J. 2000, 6, 1007-1017 and reference cited therein.
 ${ }^{57}$ Mosca, S.; Yu, Y.; Rebek Jr, J. Nature Protocol, 2016, 11, 1371-1387.

[^21]: ${ }^{58}$ Maffei, F.; Betti, P.; Geneovese, D.; Montalti, M.; Prodi, L.; De Zorzi, R.; Geremia, S.; Dalcanale, E. Angew. Chem. 2011, 123, $4750-4753$.

[^22]: ${ }^{59}$ Guan, B.-T.; Lu, X.-Y.; 1Zheng, Y.; Yu, D.-G.; Wu, T.; Li, K.-L.; Li, B.J.; Shi, Z.-J. Org. Lett. 2010, 12, 396.

[^23]: ${ }^{60}$ (a) Wöhnert, J.; Brenn, J.; Stoldt, M.; Aleksiuk, O.; Grynszpan, F.; Thondorf, I.; Biali, S. E. J. Org. Chem. 1998, 63, 3866-3871.

[^24]: ${ }^{61}$ (a) Troisi, F.; Gaeta, C.; Neri, P. Tetrahedron Lett. 2005, 46, 8041- 8046.

[^25]: ${ }^{62}$ Kurland, R. J.; Rubin, M. B.; Wise, M. B. J. Chem. Phys. 1964, 40, 2426-2431.

[^26]: ${ }^{63}$ Gaeta, C.; Troisi, F.; Neri, P. Org. Lett. 2010, 12, 2092-2095.

[^27]: ${ }^{64}$ Hirose, K. in Analytical Methods in Supramolecular Chemistry, ed. Schalley, C. A. Wiley-VCH, Weinheim, 2007.

[^28]: ${ }^{65}$ Manuscript in Preparation.
 ${ }^{66}$ Peczuh, M. W. and Hamilton, A. D. Chem. Rev. 2000, 100, 2479-2493.
 ${ }^{67}$ Blaskovich, M. A.; Lin, Q.;Delarue, F. L.; Sun, J.; Park, H. S.; Coppola, D.; Hamilton, A. D.; Sebti, S. M. Nat. Biotechnol. 2000, 18, 1065-1070. ${ }^{68}$ Gordo, V. Martos, E. Santos, M. Menendez, C. Bo, E. Giralt, J. de Mendoza Proc. Natl. Acad. Sci. USA 2008, 105, 16426-16431.
 ${ }^{69}$ M. G. Chini, S. Terracciano, R. Riccio, G. Bifulco, R. Ciao, C. Gaeta, F. Troisi, P. Neri, Org. Lett. 2010, 12, 5382-5385.

[^29]: ${ }^{70}$ Tommasone, S.; Talotta, C.; Gaeta, C; Margarucci, L.; Monti, M.C.; Casapullo, A.; Macchi, B.; Prete, S. P.; De Araujo, A. L.; Neri, P. Angew. Chem. Int. Ed. 2015, 54, 15405-15409.
 ${ }^{71}$ a) Gouin, S. G. Chem. Eur. J. 2014, 20, 11616-11628. b) Baldini, L.;
 Casnati, A.; Sansone, F.; Ungaro, R. Chem. Soc. Rev. 2007, 36, 254-266.

[^30]: ${ }^{72}$ a) Lundquist, J. J.; Toone, E. J. Chem. Rev. 2002, 102, 555-578. b) Mammen, M.; Choi, S. K.; Whitesides, G. M. Angew. Chem. Int. Ed. 1998, 37, 2754-2794.

[^31]: ${ }^{73}$ Fulton, D. A. and Stoddart, J. F. Bioconjugate Chem. 2001, 12, 655-672.
 ${ }^{74}$ Sansone, F.; Baldini, L.; Casnati A.; Ungaro, R. New J. Chem. 2010, 34, 2715-2728.
 ${ }^{75}$ Marra, A.; Scherrman, M.; Dondoni, A.; Casnati, A.; Minari, P.; Ungaro, R. Angew. Chem. Int. Ed., 1994, 33, 2479-2481.
 ${ }^{76}$ Dennis, J. W Changes in glycosylation with malignant transformation and tumor progression, in Cell Surface Carbohydrates and Cell Development, ed. Fukada, M. 1991, CRC Press, Boca Ration, USA, pp 161-194

[^32]: ${ }^{77}$ a) Compain, P. and Martin, O. R. in Iminosugars: from Synthesis to Therapeutic Applications, Wiley VCH: New York, 2007. b) Asano, N.; Oseki, K.; Kizu, H.; Matsui, K.; J. Med. Chem. 1994, 37, 3701-3706.

[^33]: ${ }^{78}$ Mirabella, S.; D’Adamio, G.; Matassini, C.; Goti, A.; Delgado, S.; Gimeno, A.; Robina, I.; Moreno-Vargas, A. J.; Sestak, S.; Jiménez-Barbero, J.; Cardona, F. Chem. Eur. J. 2017, 23, 14585-14596.
 ${ }^{79}$ Soomro, Z. H.; Cecioni, S.; Blanchard, H.; Praly, J.; Imberty, A.; Vidal, S.; Matthews, S. E. Org. Biomol. Chem. 2011, 9, 6587-6597.

[^34]: ${ }^{80}$ Liu, W.; Yang, H., Wu, Wenbo; Gao, H.; Xu, S.; Guo, Q.; Liu, Y.; Xu, S.; Cao, S.; J. Mater. Chem. C; 2016, 4, 10684-10692.

[^35]: ${ }^{81}$ FT-ICR mass investigation have a detection threshold at nM concentration.

[^36]: ${ }^{82}$ Iyoda, M.; Kuwatani, Y.; Nishinaga, T.; Takase, M.; Nishiuchi, T. in Fragments of Fullerenes and Carbon Nanotubes, Petrukhina, M. A.; Scott, L. T. Eds.; Wiley, 2012.
 ${ }^{83}$ Tahara, K. and Tobe, Y. Chem. Rev. 2006, 106, 5274-5290.

[^37]: ${ }^{84}$ a) Eisenberg, D.; Shenhar, R.; Rabinovitz, M. Chem. Soc. Rev. 2010, 39, 2879-2890. b). Tahara, K. and Tobe Y. Chem. Rev. 2006, 106, 5274-5290. ${ }^{85}$ Heilbronner, E. Helv. Chim. Acta 1954, 37, 921-935.
 ${ }^{86}$ Kohnke, F. H.; Slawin, A. M. Z.; Stoddart, J. F.; Williams, D. J. Angew. Chem. Int. Ed. Engl. 1987, 26, 892-894.
 ${ }^{87}$ Standera, M. and Schlüter, A. D. in Fragments of Fullerenes and Carbon Nanotubes, Petrukhina, M. A.; Scott, L. T. Eds.; Wiley, 2012., pp. 343-366 ${ }^{88}$ Cory, R. M.; McPhail, C. L.; Dikmans, A. J.; Vittal, J. J. Tetrahedron Lett. 1996, 37, 1983-1986.
 ${ }^{89}$ Vögtle, F.; Schroder, A.; Karbach, D. Angew. Chem. Int. Ed. Engl. 1991, 30, 575-577.
 ${ }^{90}$ Segawa, Y.; Yagi, A.; Matsui, K.; Itami, K. Angew. Chem. Int. Ed, 2016, 55, 5136-5158.

[^38]: ${ }^{91}$ Darzi, E. R.; Jasti, R. Chem. Soc. Rev. 2015, 44, 6401-6410 and reference cited therein.
 ${ }_{92}$ Segawa, Y.; Omachi, H.; Itami, K. Org. Lett. 2010, 12, 2262-2265.
 ${ }^{93}$ Segawa, Y.; Fukazawa, A.; Matsuura, S.; Omachi, H.; Yamaguchi, S.; Irle, S.; Itami, K. Org. Biomol. Chem. 2012, 10, 5979-5984.

[^39]: ${ }^{94}$ Lewis, S. E. Chem. Soc. Rev. 2015, 44, 2221-2304.

[^40]: ${ }^{95}$ Adamska, L.; Nayyar, I.; Chen, H.; Swan, A. K.; Oldani, N.; FernandezAlberti, S.; Golder, M.R.; Jasti, R.; Doorn, S. K.; Tretiak. S. Nano Lett. 2014, 14, 6539-6546.

[^41]: ${ }^{96}$ Hirst, E. S. and Jasti R. J. Org. Chem. 2012, 77, 10473-10478.

[^42]: ${ }^{97}$ Darzi, E. R.; Sisto, T. J.; Jasti, R. J. Org. Chem. 2012, 77, 6624-6628.
 ${ }^{98}$ Xia, J.; Bacon, J. W.; Jasti, R. Chem. Sci. 2012, 3, 3018-3021.

[^43]: ${ }^{99}$ Takaba, H.; Omachi, H.; Yamamoto, Y.; Bouffard, J.; Itami, K. Angew. Chem., Int. Ed. 2009, 48, 6112-6116.

[^44]: ${ }^{100}$ Yamago, S.; Watanabe, Y.; Iwamoto, T. Angew. Chem. Int. Ed. 2010, 49, 757-759.
 ${ }^{101}$ Iwamoto, T.; Watanabe, Y.; Sakamoto, Y.; Suzuki, T.; Yamago, S. J. Am. Chem. Soc. 2011, 133, 8354-8359.

[^45]: 102 Jasti, R. and Bertozzi, C. R. Chem. Phys. Lett. 2010, 494, 1-7.
 ${ }^{103}$ Petrukhina, M.A. and Scott, L. T. in Fragments of fullerenes and carbon nanotubes, Chapter 11, WILEY, West Sussex - UK, 2011.
 ${ }^{104}$ Omachi, H.; Nakayama, T.; Takanishi, E.; Segawa, Y.; Itami, K. Nature Chemistry 2013, 5, 572-576.

[^46]: ${ }^{105}$ Jackson, E.P.; Sisto, T. J.; Darzi, E. R.; Jasti, R. Tetrahedron 2016, 72, 3754-3758.

[^47]: ${ }^{106}$ Iwamoto, T.; Watanabe,Y.; Sadahiro, T.; Haino, T.; Yamago, S. Angew. Chem. Int. Ed. 2011, 50, 8342-8344.
 ${ }^{107}$ Iwamoto, T.; Watanabe, Y.; Takaya, H.; Haino, T.; Yasuda, N.; Yamago, S. Chem. Eur. J. 2013, 19, 14061-14068.

[^48]: ${ }^{108}$ Della Sala, P.; Talotta, C.; Caruso, T.; De Rosa M.; Soriente, A.; Neri, P.; Gaeta, C. J. Org. Chem. 2017, 82, 9885-9889.
 ${ }^{109}$ Lupo, F.; Capici, C.; Gattuso, G.; Notti, A.; Parisi, M. F.; Pappalardo, A.; Pappalardo, S.; Gulino, A. Chem. Mater. 2010, 22, 2829-2834.
 ${ }^{110}$ De Rosa, M.; Talotta, C.; Gaeta, C.; Soriente, A.; Neri, P.; Pappalardo, S.; Gattuso, G.; Notti, A.; Parisi, M. F.; Pisagatti, I. J. Org. Chem. 2017, 82, 5162-5168.
 ${ }^{111}$ a) Bruns C. J.; Stoddart, J. F. The Nature of the Mechanical Bond: From Molecules to Machines, First Edition. John Wiley \& Sons: 2017. b) Feringa, B. L. (Nobel Lecture). Angew. Chem. Int. Ed. 2017, 56, 11060-11078. c) Sauvage, J.-P. (Nobel Lecture). Angew. Chem. Int. Ed. 2017, 56, 1108011093. d) Stoddart, J. F. (Nobel Lecture). Angew. Chem. Int. Ed. 2017, 56, 11094-11125. e) Leigh, D. A. Angew. Chem. Int. Ed. 2016, 55, 14506-7441. f) Balzani, V.; Venturi, M.; Credi, A., Molecular Devices and Machines: A Journey Into the Nano World. Wiley-VCH: 2003

[^49]: ${ }^{112}$ E. L. Eliel, S. H. Willen in Stereochemistry of Organic Compounds, Wiley, New York, 1994.

[^50]: ${ }^{113}$ Kurland, R. J.; Rubin, M. B.; Wise, W. B. J. Chem. Phys. 1964, 40, 24262431.

[^51]: ${ }^{114} \mathbf{R}=\mathbf{k}_{\boldsymbol{B}} \mathbf{T} / \mathbf{6} \boldsymbol{\pi} \boldsymbol{\eta} \mathbf{D}$, where $\mathbf{k}_{\boldsymbol{B}}$ is the Boltzmann constant, \mathbf{T} is the absolute temperature, and $\boldsymbol{\eta}$ is the viscosity of CDCl_{3} at $298 \mathrm{~K}, 0.542 \mathrm{cP}$)

[^52]: ${ }^{115}$ Grimme, S. J. Comput. Chem. 2006, 27, 1787-1799.

[^53]: ${ }^{116}$ Della Sala, P.; Talotta, C.; Capobianco, A; Soriente, A.; De Rosa, M.; Neri, P.; Gaeta, C. Org. Lett. 2018, 20, 7415-7418.
 ${ }^{117}$ a) Gaeta, C.; Talotta, C.; Farina, F.; Teixeira, F. A.; Marcos, P. A.; Ascenso, J. R.; Neri, P. J. Org. Chem. 2012, 77, 10285-10293. b) Gaeta, C.; Talotta, C.; Margarucci, L.; Casapullo, A.; Neri, P. J. Org. Chem. 2013, 78, 7627-7638.
 ${ }^{118}$ Ghidini, E.; Ugozzoli, F.; Ungaro, R.; Harkema, S.; Abu El-Fadl, A.; Rehinoudt, D. N.; Ugozzoli, F.; J. Am. Chem. Soc. 1990, 112, 6979-6983.
 ${ }^{119}$ Dijkstra, P. J.; Brunink, J. A. J.; Bugge, K.-E.; Reinhoudt, D. N.; Harkema, S.; Ungaro, R.; Ugozzoli, F.; Ghidini, E. J. Am. Chem. Soc. 1989, 111, 7567-7575.
 ${ }^{120}$ Galán, A.; Escudero-Adán, E. C.; Frontera, A.; Ballester, P. J. Org. Chem. 2014, 79, 5545-5557.
 ${ }^{121}$ Kim, S. K.; Sessler, J. L.; Gross, D. E.; Lee, C.-H.; Kim, J. S.; Lynch, V. M.; Delmau, L. H.; Hat, B. P. J. Am. Chem. Soc. 2010, 132, 5827-5836.

[^54]: ${ }^{122}$ Asfari, Z.; Wenger, S.; Vicens, J. Supramol. Sci. 1994, 1, 103-110.
 ${ }^{123}$ Duncan, N. C.; Roach, B. D.; Williams, N. J.; Bonnesen, P. V.; Rajbanshi, A.; Moyer, B. A. Sep. Sci. Technol. 2012, 47, 2074-2087

[^55]: ${ }^{124}$ The low yields reported in some CPPs synthesis are due to high strain associated with the CPP macrocycles, see refs 24,96 and 108.

[^56]: ${ }^{125}$ Suezawa, H.; Ishihara, S.; Umezawa, Y.; Tsuboyama, S.; Nishio, M. Eur. J. Org. Chem. 2004, 4816-4822.

[^57]: ${ }^{126}$ Nijegorodov, N. I.; Downey, W. S.; Danailov, M. B. Spectrochim. Acta, Part A 2000, 56, 783-795.
 ${ }^{127}$ Kayahara, E.; Patel, V. K.; Yamago, S. J. Am. Chem. Soc., 2014, 136, 2284-2287.
 ${ }^{128}$ Thordarson, P. Chem. Soc. Rev. 2011, 40, 1305-1323.

[^58]: ${ }^{129}$ Kayahara, E.; Sun, L.; Onishi, H.; Suzuki, K.; Fukushima, T.; Sawada, A.; Kaji, H.; Yamago, S. J. Am. Chem. Soc. 2017, 139, 18480-18483.
 ${ }^{130}$ Liu. Y.-Y.; Lin, J.-Y; Bo, Y.-F.; Xie, L.-H; Yi, M.-D.; Zhang, X.-W.; Zhang, H.-M.; Loh, T.-P.; Huang, W. Org. Lett. 2016, 18, 172 - 175.

[^59]: ${ }^{131}$ Della Sala, P.; Capobianco, A.; Caruso, T.; Talotta, C.; De Rosa, M.; Neri, P.; Peluso, A.; Gaeta, C. J. Org. Chem. 2018, 83, 220-227.
 ${ }^{132}$ Monguzzi, A.; Braga, D.; Gandini, M.; Holmberg, V. C.; Kim, D. K.; Sahu, A.; Norris, D. J.; Meinardi, F. Nano Lett. 2014, 14, 6644-6650.
 ${ }^{133}$ (a) Khnayzer, R. S.; Blumhoff, J.; Harrington, J. A.; Haefele, A.; Deng, F.; Castellano, F. N. Chem. Commun. 2012, 48, 209-211. (b) Ye, C.; Wang, J.; Wang, X.; Ding, P.; Liang, Z.; Tao, X. Phys. Chem. Chem. Phys. 2016, 18, 3430-3437.
 ${ }^{134}$ a) Zhao, J.; Ji, S.; Guo, H. RSC Advances 2011, l, 937-950. b) Liu, Q.; Feng, W.; Yang, T.; Yi, T.; Li, F. Nat. Protoc. 2013, 8, 2033-2044.

[^60]: ${ }^{135}$ (a) Kozlov, D. V.; Castellano, F. N. Chem. Commun. 2004, 2860-2861. (b) Islangulov, R. R.; Lott, J.; Weder, C.; Castellano, F. N. J. Am. Chem. Soc. 2007, 129, 12652-12653. (c) Keivanidis, P. E.; Baluschev, S.; Miteva, T.; Nelles, G.; Scherf, U.; Yasuda, A.; Wegner, G. Adv. Mater. 2003, 15, 2095-2098.

[^61]: ${ }^{136}$ The low yields are common in the CPPs synthesis and are presumably due to high strain associated with the CPP macrocycles, see refs 24,96 and 108

[^62]: ${ }^{137}$ Li, P.; Wong, B. M.; Zakharov, L. N.; Jasti, R. Org. Lett. 2016, 18, 1574-1577.

[^63]: ${ }^{138}$ Du, H.; Fuh, R.-C. A.; Li, J.; Corkan, L. A.; Lindsey, J. S. Photochem. Photobiol. 1998, 68, 141-142.

[^64]: ${ }^{139}$ Baluschev, S.; Miteva, T.; Yakutkin, V.; Nelles, G.; Yasuda, A.; Wegner, G. Phys. Rev. Lett. 2006, 97, 143901-143903.

[^65]: ${ }^{140}$ (a) Haefele, A.; Blumhoff, J.; Khnayzer, R. S.; Castellano, F. N. J. Phys. Chem. Lett. 2012, 3, 299-303. (b) Deng, F.; Blumhoff, J.; Castellano, F. N. J. Phys. Chem. A 2013, 117, 4412-4419.

[^66]: ${ }^{141}$ Manuscript in Preparation.
 ${ }^{142}$ Traverse, C. J.; Pandey, R.; Barr, M. C.; Lunt, R. R. Nature Energy 2017, 2 , 849-860.

[^67]: ${ }^{143}$ Meinardi, F.; Bruni, F.; Brovelli, S. Nature Reviews, 2017, 2, 1-9.
 ${ }^{144}$ Meinardi, F.; McDaniel, H.; Carulli, F.; Colombo, A.; Velizhanin, K. A.; Makarov, N. S.; Simonutti, R.; Klimov, V. I.; Brovelli, S. Nature Nanotech 2015, 10, 878-885.

[^68]: ${ }^{145}$ Yang, C. and Lunt, R. R. Advanced Optical Materials, 2017, 5, 1600851-1600856.

[^69]: ${ }^{146}$ a) Sanguineti, A.; Monguzzi, A.; Vaccaro, G.; Meinardi, F.; Ronchi, E.; Moret, M.; Cosentino, U.; Moro, G.; Simonutti, R.; Mauri, V.; Tubino R.; Beverina, L. Phys Chem Chem Phys, 2012, 14, 6445-6448. b) Turrisi, R.; Sanguineti, A.; Sassi, M.; Savoie, B.; Takai, A.; Patriarca, G.; Salamone, M.; Ruffo, R.; Vaccaro, G.; Meinardi, F.; Marks, T.; Facchetti A.; Beverina, L. J. Mater. Chem. A, 2015, 3, 8045-8054. c) Sanguineti, A.; Sassi, M.; Turrisi, R.; Ruffo, R.; Vaccaro, G.; Meinardi, F.; Beverina, L. Chem. Соттии. 2013, 49, 1618-1620.

[^70]: ${ }^{147}$ Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A. R. Vogel's Textbook of Practical Organic Chemistry, $5^{\text {th }}$ ed.; Pearson: Harlow, 1989 and references cited therein.
 ${ }^{148}$ Williams, D. B. G.; Lawton, M. J. Org. Chem. 2010, 75, 8351.
 ${ }^{149}$ Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B.M.; Bercaw, J.E.; Goldberg, K.I. Organometallics 2010, 29, 2176-2179.

[^71]: ${ }^{150}$ Kabsch, W. Acta Crystallogr. 2010, D66, 125-132.
 ${ }^{151}$ Battye, G. G.; Kontogiannis, L.; Johnson, O.; Powell, H. R.; Leslie, A.
 G. W. Acta Crystallogr. 2011, D67, 271-281.
 ${ }^{152}$ Evans, P. R. Acta Crystallogr. 2006, D62, 72-82.
 ${ }^{153}$ Winn, M. D.; Ballard, C. C.; Cowtan, K. D.; Dodson, E. J.; Emsley, P.; Evans, P. R.; Keegan, R. M.; Krissinel, E. B.; Leslie, A. G. W.; McCoy, A.; McNicholas, S. J.; Murshudov, G. N.; Pannu, N. S.; Potterton, E. A.;

[^72]: Powell, H. R.; Read, R. J.; Vagin, A.; Wilson K. S. Acta. Crystallogr. 2011, D67, 235-242.
 ${ }^{154}$ Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Siliqi, D.; Spagna, R. J. Appl. Crystallogr. 2007, 40, 609-613.
 ${ }^{155}$ Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112-122.

[^73]: ${ }^{156}$ Kleywegt, G. J.; Jones, T. A. Acta Crystallogr. 1994, D50, 178-185.

[^74]: ${ }^{157}$ Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009. ${ }^{158}$ Grimme, S. J. Comput. Chem., 2006, 27, 1787-1799.

[^75]: ${ }^{159}$ Darzi, E. R.; Sisto, T. J.; Jasti, R. J. Org. Chem. 2012, 77, 6624.

[^76]: ${ }^{160}$ Williams, A. T. R.; Winfield, S. A.; Miller, J. N. Analyst, 1983, 108, 10671071.

[^77]: ${ }^{161}$ Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 117129.

[^78]: ${ }^{162}$ Miertuš, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117-129.
 ${ }^{163}$ Gaussian 09, Revision D.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

[^79]: ${ }^{164}$ Parker, C. A.; Hatchard, C. G. Proc. Chem Soc., London 1962, 386387.

[^80]: ${ }^{165}$ Schwabe, T.; Grimme, S. Phys. Chem. Chem. Phys. 2006, 8, 4398-4401

[^81]: ${ }^{166}$ Masson, E. Org. Biomol. Chem. 2013, 11, 2859-2871.
 ${ }^{167}$ Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51-57.
 ${ }^{168}$ Capobianco, A.; Borrelli, R.; Landi, A.; Velardo, A.; Peluso, A. J Phys. Chem A, 2016, 120, 5581-5589.
 ${ }^{169}$ a) Capobianco, A.; Velardo, A.; Peluso, A. Comp. Theor. Chem. 2015, 1070, 68-75; b) Capobianco, A.; Caruso, T.; Peluso, A. Phys. Chem. Chem. Phys. 2015, 17, 4750-4756.
 ${ }^{170}$ Miertuš, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117-129.

