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NEW GENERALIZED APOSTOL-FROBENIUS-EULER
POLYNOMIALS AND THEIR MATRIX APPROACH

MARÍA JOSÉ ORTEGA1, WILLIAM RAMÍREZ1, AND ALEJANDRO URIELES2

Abstract. In this paper, we introduce a new extension of the generalized Apostol-
Frobenius-Euler polynomials H

[m−1,α]
n (x; c, a;λ;u). We give some algebraic and

differential properties, as well as, relationships between this polynomials class
with other polynomials and numbers. We also, introduce the generalized Apostol-
Frobenius-Euler polynomials matrix U[m−1,α](x; c, a;λ;u) and the new generalized
Apostol-Frobenius-Euler matrix U[m−1,α](c, a;λ;u), we deduce a product formula for
U[m−1,α](x; c, a;λ;u) and provide some factorizations of the Apostol-Frobenius-Euler
polynomial matrix U[m−1,α](x; c, a;λ;u), which involving the generalized Pascal
matrix.

1. Introduction

It is well-known that generalized Frobenius-Euler polynomial H(α)
n (x;u) of order α

is defined by means of the following generating function

(1.1)
( 1− u
ez − u

)α
exz =

∞∑
n=0

H(α)
n (x;u)z

n

n! ,

where u ∈ C and α ∈ Z. Observe that H(1)
n (x;u) = Hn(x;u) denotes the classical

Frobenius-Euler polynomials and H(α)
n (0;u) = H(α)

n (u) denotes the Frobenius-Euler
numbers of order α. Hn(x;−1) = En(x) denotes the Euler polynomials (see [2, 7]).

For parameters λ, u ∈ C and a, b, c ∈ R+, the Apostol type Frobenius-Euler polyno-
mials Hn(x;λ;u) and the generalized Apostol-type Frobenius-Euler polynomials are
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defined by means of the following generating functions (see [8]):( 1− u
λez − u

)
exz =

∞∑
n=0

Hn(x;λ;u)z
n

n! ,(1.2)
(
az − u
λbz − u

)α
cxz =

∞∑
n=0

H(α)
n (x; a, b, c;λ;u)z

n

n! .(1.3)

If we set x = 0 and α = 1 in (1.3), we get
az − u
λbz − u

=
∞∑
n=0

Hn(a, b, c;λ;u)z
n

n! ,

Hn(a, b, c;u;λ) denotes the generalized Apostol-type Frobenius-Euler numbers (see
[8]).

In the present paper, we introduce a new class of Frobenius-Euler polynomials
considering the work of [8], we give relationships between this polynomials whit
other polynomials and numbers, as well as the generalized Apostol-Frobenius-euler
polynomials matrix.

The paper is organized as follows. Section 2 contains the definitions of Apostol-
type Frobenius-Euler and generalized Apostol-Frobenius-Euler polynomials and some
auxiliary results. In Section 3, we define the generalized Apostol-type Frobenius-Euler
polynomials and prove some algebraic and differential properties of them, as well
as their relation with the Stirling numbers of second kind. Finally, in Section 4 we
introduce the generalized Apostol-type Frobenius-Euler polynomial matrix, derive
a product formula for it and give some factorizations for such a matrix, which in-
volve summation matrices and the generalized Pascal matrix of first kind in base c,
respectively.

2. Previous Definitions and Notations

Throughout this paper, we use the following standard notions: N = {1, 2, . . .},
N0 = {0, 1, 2, . . .}, Z denotes the set of integers, R denotes the set of real numbers
and C denotes the set of complex numbers. Furthermore, (λ0) = 1 and

(λ)k = λ(λ+ 1)(λ+ 2) · · · (λ+ k − 1),

where k ∈ N, λ ∈ C. For the complex logarithm, we consider the principal branch.
All matrices are in Mn+1(K), the set of all (n + 1) × (n + 1) matrices over the field
K, with K = R or C. Also, for i, j any nonnegative integers we adopt the following
convention (

i

j

)
= 0, whenever j > i.

Now, let us givel some properties of the generalized Apostol-type Frobenius-Euler
polynomials and generalized Apostol-type Frobenius-Euler polynomials with parame-
ters λ, a, c, order α (see [4, 8, 11]).
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Proposition 2.1. For a m ∈ N, let {H(α)
n (x;u)}n≥0 and {Hn(x;λ;u)}n≥0 be the se-

quences of generalized Apostol-type Frobenius-Euler polynomials, generalized Frobenius-
Euler polynomials respectively. Then the following statements hold.

(a) Special values: for n ∈ N0,
H(0)
n (x;u) = xn.

(b) Summation formulas:

H(α)
n (x;u; a, b, c;λ) =

n∑
k=0

(
n

k

)
H

(α)
k (x;u; a, b, c;λ)(x ln c)n−k,

H(α+β)
n (x+ y;u; a, b, c;λ) =

n∑
k=0

(
n

k

)
H

(α)
k (x;u; a, b, c;λ)H(β)

n−k(y;u; a, b, c;λ),

((x+ y) ln c)n = H
(α)
n−k(y;u; a, b, c;λ)H(−α)

k (x;u; a, b, c;λ),

H(−α)
n (x;u2; a2, b2, c2;λ2) =

n∑
k=0

(
n

k

)
H

(−α)
k (x;u; a, b, c;λ)H(−α)

n−k (x;−u; a, b, c;λ).

Definition 2.1. ([5, p. 207]). For n ∈ N0 and x ∈ C, the Stirling numbers of second
kind S(n, k) are defined by means of the following expansion

xn =
n∑
k=0

(
x

k

)
k!S(n, k).

The Jacobi polynomials of the degree n y orde (α, β), with α, β > −1, the n-th
Jacobi polynomial P (α,β)

n (x) may be defined through Rodrigues’ formula

P (α,β)
n (x) = (1− x)−α(1 + x)−β (−1)n

2nn!
dn

dxn

{
(1− x)n+α(1 + x)n+α

}
and the values in the end points of the interval [−1, 1] is given by

P (α,β)
n (1) =

(
n+ α

n

)
, P (α,β)

n (−1) = (−1)n
(
n+ β

n

)
.

The relationship between the n-th monomial xn and the n-th Jacobi polynomial
P (α,β)
n (x) may be written as

(2.1) xn = n!
n∑
k=0

(
n+ α

n− k

)
(−1)k (1 + α + β + 2k)

(1 + α + β + k)n+1
P

(α,β)
k (1− 2x).

Proposition 2.2. For λ ∈ C and m ∈ N, let {B[m−1]
n (x)}n≥0, {Gn(x)}n≥0 and

{En(x;λ)}n≥0 be the sequences of generalized Bernoulli polynomials of level m, Genoc-
chi polynomials and Apostol-Euler polynomials, respectively, we have the relationships:

(a) [12, Equation (4)]

xn =
n∑
k=0

(
n

k

)
k!

(k +m)!B
[m−1]
n−k (x);(2.2)
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(b) [9, Remark 7]

xn = 1
2(n+ 1)

[
n+1∑
k=0

(
n+ 1
k

)
Gk(x) +Gn+1(x)

]
;(2.3)

(c) [10, Equation (32)]

xn = 1
2

[
λ

n∑
k=0

(
n

k

)
Ek(x;λ) + En(x;λ)

]
.(2.4)

Definition 2.2. Let x be any nonzero real number. For c ∈ R+, the generalized
Pascal matrix of first kind in base c Pc[x] is an (n+ 1)× (n+ 1) matrix whose entries
are given by (see [13,14])

pi,j,c(x) :=


(
i
j

)
(x ln c)i−j, i ≥ j,

0, otherwise.

When c = e, the matrix Pc[x] coincides with the generalized Pascal matrix of first
kind P [x]. Furthermore, if we adopt the convention 00 = 1, then Pc[0] = In+1, with
In+1 = diag(1, 1, . . . , 1).

An immediate consequence of the remarks above is the following proposition.

Proposition 2.3 (Addition Theorem of the argument). For x, y ∈ R is fulfilled

Pc[x+ y] = Pc[x]Pc[y].

Proposition 2.4. For c ∈ R+, let Pc[x] be the generalized Pascal matrix of first kind
in base c and order n+ 1. Then the following statements hold.

(a) Pc[x] is an invertible matrix and its inverse is given by

P−1
c [x] := (Pc[x])−1 = Pc[−x].

(e) The matrix Pc[x] can be factorized as follows

(2.5) Pc[x] = Gn,c[x]Gn−1,c[x] · · ·G1,c[x],

where Gk,c[x] is the (n+ 1)× (n+ 1) summation matrix given by

Gk,c[x] =


[
In−k 0

0 Sk,c[x]

]
, k = 1, . . . , n− 1,

Sn,c[x], k = n,

being Sk,c[x] the (k+ 1)× (k+ 1) matrix whose entries Sk,c(x; i, j) are given by

Sk,c(x; i, j, c) =


(x ln c)i−j, i ≥ j,

0, j > i,
0 ≤ i, j ≤ k.
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3. Generalized Apostol-Frobenius-Euler Polynomials
H[m−1,α]
n (x; c, a;λ;u)

Definition 3.1. For m ∈ N, α, λ, u ∈ C and a, c ∈ R+, the generalized Apostol-type
Frobenius-Euler polynomials in the variable x, parameters c, a, λ, order α and level
m, are defined through the following generating function

(3.1)


m−1∑
h=0

(z ln a)h
h! − um

λcz − um


α

cxz =
∞∑
n=0

H[m−1,α]
n (x; c; a;λ;u)z

n

n! ,

where |z| <
∣∣∣ ln(um)

ln(c) −
ln(λ)
ln(c)

∣∣∣.
For x = 0 we obtain, the generalized Apostol-Frobennius-Euler numbers of param-

eters λ ∈ C, a, c ∈ R+, order α ∈ C and level m ∈ N
H[m−1,α]
n (c, a;λ;u) := H[m−1,α]

n (0; c, a;λ;u).
According to the Definition 3.1, with e = exp(1), we have (1.1) and (1.2)

H[0,α]
n (x; e, 1; 1;u) = H(α)

n (x;λ;u),
H[0,1]
n (x; e, 1;λ;u) = H(1)

n (x;λ;u).

Example 3.1. For any λ ∈ C, m = 2, c = 2, a = 3, α = 1
2 and u = 2 the first the

generalized Apostol-type Frobenius-Euler polynomials in the variable x, parameters
c, a, λ, order α and level m are:

H
[1,( 1

2)]
0 (x; 2, 3;λ; 2) =

√
3

λ− 4 ,

H
[1,( 1

2)]
1 (x; 2, 3;λ; 2) =

√
−3
λ− 4x

[
1
2

(
ln 3
λ− 4 + 3λ ln 2

(λ− 4)2

)
+ x ln 4

]
,

H
[1,( 1

2)]
2 (x; 2, 3;λ; 2) = 1

2x
2

(−3
4

√
−3
λ− 4

(
ln 3
λ− 4 + 3λ ln 2

(λ− 4)2

)2

+1
2

√
−3
λ− 4

−2 ln 3 ln 2
(λ− 4)2 −

6λ2 ln 4
(λ− 4)3 + 3λ ln 4

(λ− 4)2


+x ln 2

√
−3
λ− 4

(
ln 3
λ− 4 + 3 ln 2

(λ− 4)4

)
+ x2 ln 4

√
−3
λ− 4

 .
Example 3.2. For any λ ∈ C, m = 4, c = 2, a = 3, α = 1 and u = 2 the first the
generalized Apostol-type Frobenius-Euler polynomials in the variable x, parameters
c, a, λ, order α and level m are:

H
[3,1]
0 (x; 2, 3;λ; 2) = −15

λ− 16 ,
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H
[3,1]
1 (x; 2, 3;λ; 2) = x

[
ln 3

λ− 16 + λ15 ln 2
(λ− 16)2 − x

15 ln 2
λ− 16

]
,

H
[3,1]
2 (x; 2, 3;λ; 2) = 1

2x
2
[

ln 9
λ− 16 − λ

2 ln 3 ln 2
(λ− 16)2 + x

2 ln 3 ln 2
λ− 16 − λ

2 30 ln 4
(λ− 16)3

+x 30λ ln 4
(λ− 16)2 + λ

15 ln 4
(λ− 16)2 − x

2 15 ln 4
λ− 16

]
.

Example 3.3. For any λ ∈ C, m = 2, c = 3, a = e, α = 1
3 , and u = 5 the first the

generalized Apostol-type Frobenius-Euler polynomials in the variable x, parameters
c, a, λ, order α and level m are:

H
[1,( 1

3)]
0 (x; 3, e;λ; 5) = 3

√
−24
λ− 25 ,

H
[1,( 1

3)]
1 (x; 3, e;λ; 5) = x

1
3

3

√√√√(λ− 25
−24

)2 (
ω

λ− 25 + λ
24 ln 3

(λ− 25)2

)

+x ln 3 3

√
−24
λ− 25

 ,
H

[1,( 1
3)]

2 (x; 3, e;λ; 5) = 1
2x

2


2

9
3

√√√√(λ− 25
−24

)5
ω

λ− 25 + λ
24 ln 3

(λ− 25)2


2

+ 2
3x

3

√√√√(λ− 25
−24

)2

ln 3
(

ω

λ− 25 + λ
24 ln 3

(λ− 25)2

)

+ 1
3

3

√√√√(λ− 25
−24

)2 (
−2 ln 3 ω

(λ− 25) − λ
2 −48 ln 9
(λ− 25)3

+λ 24 ln 9
(λ− 25)2

)
+ x2 ln 9 3

√
−24
λ− 25

 ,
where ω = ln

(
3060513257434037
1125899906842624

)
.

Theorem 3.1. For m ∈ N, let {H[m−1,α]
n (x; c, a;λ;u)}n≥0 be the sequence of general-

ized Apostol-type Frobenius-Euler polynomials, whit parameters λ, u ∈ C and a, c ∈ R+,
order α ∈ C and level m. Then the following statements hold.

(a) For every α = 0 and n ∈ N0

H[m−1,0]
n (x; c; a;λ;u) = (x ln c)n.

(b) For α, λ ∈ C and n, k ∈ N0, we have the relationship

H[m−1,α]
n (x; c; a;λ;u) =

n∑
k=0

(
n

k

)
H

[m−1,α]
n−k (c; a;λ;u)(x ln c)k
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=
n∑
k=0

(
n

k

)
H

[m−1,α−1]
n−k (c; a;λ;u)H[m−1,1]

k (x; c; a;λ;u).

(c) Differential relations. For m ∈ N and n, j ∈ N0 with 0 ≤ j ≤ n, we have

[H[m−1,α]
n (x; c; a;λ;u)](j) = n!

(n− j)!(ln c)
j H

[m−1,α]
n−j (x; c, a;λ;u).

(d) Integral formulas. For m ∈ N, is fulfilled∫ x1

x0
H[m−1,α]
n (x; c, a;λ;u) dx = ln c

n+ 1
[
H

[m−1,α]
n+1 (x1; c, a;λ;u)−H

[m−1,α]
n+1 (x0; c, a;λ;u)

]
.

(e) Addition theorem of the argument.

(3.2) H[m−1,α+β]
n (x+ y; c, a;λ;u) =

n∑
k=0

(
n

k

)
H

[m−1,α]
k (x; c, a;λ;u)H[m−1,β]

n−k (y; c, a;λ;u),

(3.3) H[m−1,α]
n (x+ y; c, a;λ;u) =

n∑
k=0

(
n

k

)
H

[m−1,α]
n−k (y; c, a;λ;u)(x ln c)k,

(3.4) ((x+ y) log c)n =
n∑
k=0

(
n

k

)
H

[m−1,α]
n−k (y; c; a;λ;u)H[m−1,−α]

k (x; c; a;λ;u).

Proof. (3.2) From Definition 3.1, we have
∞∑
n=0

H[m−1,α+β]
n (x+ y, c, a;λ;u) t

n

n!

=


m−1∑
h=0

(z ln a)h
h! − um

λcz − um


(α+β)

c(x+y)z

=


m−1∑
h=0

(z ln a)h
h! − um

λcz − um


α

cxz


m−1∑
h=0

(z ln a)h
h! − um

λcz − um


β

cyz

=
∞∑
n=0

H[m−1,α]
n (x; c; a;λ;u)z

n

n!

∞∑
n=0

H[m−1,β]
n (y; c; a;λ;u)z

n

n!

=
∞∑
n=0

n∑
k=0

(
n

k

)
H

[m−1,α]
k (x, c, a;λ;u)H[m−1,β]

n−k (y, c, a;λ;u)z
n

n! . �

Proof. (3.4) Making an adequate modification β = −α and aplply (3.2)
∞∑
n=0

H[m−1,α+β]
n (x+ y; c; a;λ;u)z

n

n!
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=


m−1∑
h=0

(z ln a)h
h! − um

λcz − um


(α+β)

c(x+y)z

=


m−1∑
h=0

(z ln a)h
h! − um

λcz − um


α

cxz


m−1∑
h=0

(z ln a)h
h! − um

λcz − um


β

cyz

=
∞∑
n=0

H[m−1,α]
n (x; c; a;λ;u)z

n

n!

∞∑
n=0

H[m−1,−α]
n (y; c; a;λ;u)z

n

n!
=c(x+y)z

=
∞∑
n=0

((x+ y) log c)n z
n

n! .

Therefore, (3.4) holds. �

From (2.1) and Proposition 2.2 we deduce some algebraic relations connecting the
polynomials H[m−1,α]

n (x; c, a;λ;u) with other families of polynomials.

Theorem 3.2. For m ∈ N, the generalized Apostol-type Frobenius-Euler polynomials
of level m H[m−1,α]

n (x; c, a;λ;u), are related with the Jacobi polynomials P (α,β)
n (x), by

means of the identity.

H[m−1,α]
n (x+ y; c, a;λ;u)

(3.5)

=
n∑
k=0

(−1)k
n∑
j=k

j!(ln c)j
(
j + α

j − k

)(
n

j

)
(1 + α+ β + 2k)

(1 + α+ β + k)j+1
H

[m−1,α]
n−j (y; c, a;λ;µ; ν))P (α,β)

k (1− 2x).

Proof. By substituting (2.1) into the right-hand side of (3.3) and using appropriate
binomial coefficient identities (see, for instance [1, 5, 6]), we see that

H[m−1,α]
n (x+ y; c, a;λ;u)

=
n∑
j=0

(
n

j

)
H

[m−1,α]
j (y; c, a;λ;u)(n− j)!(ln c)n−j

n−j∑
k=0

(−1)k
(
n− j + α

n− j − k

)

× (1 + α + β + 2k)
(1 + α + β + k)n−j+1

P
(α,β)
k (1− 2x)

=
n∑
j=0

n−j∑
k=0

(
n

j

)
H

[m−1,α]
j (y; c, a;λ;u)(n− j)!(ln c)n−j(−1)k

(
n− j + α

n− j − k

)
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× (1 + α + β + 2k)
(1 + α + β + k)n−j+1

P
(α,β)
k (1− 2x)

=
n∑
k=0

(−1)k
n−k∑
j=0

(
n

j

)(
n− j + α

n− j − k

)
H

[m−1,µ]
j (y; c, a;λ;u)(n− j)!(ln c)n−j

× (1 + α + β + 2k)
(1 + α + β + k)n−j+1

P
(α,β)
k (1− 2x)

=
n∑
k=0

(−1)k
n∑
j=k

j!(ln c)j
(
j + α

j − k

)(
n

j

)
(1 + α + β + 2k)

(1 + α + β + k)j+1

×H
[m−1,α]
n−j (y; c, a;λ;u)P (α,β)

k (1− 2x).
Therefore, (3.5) holds. �

Theorem 3.3. For m ∈ N, the generalized Apostol-type Frobenius-Euler polynomials
of level m H[m−1,α]

n (x; c, a;λ;u), are related with the generalized Bernoulli polynomials
of level m B[m−1]

n (x), by means of the following identity

H[m−1,α]
n (x+ y; c, a;λ;u) =

n∑
k=0

n∑
j=k

k!(ln c)j
(k +m)!

(
n

j

)(
j

k

)
H

[m−1,α]
n−j (y; c, a;λ;µ; ν)B[m−1]

j−k (x).

Proof. By substituting (2.2) into the right-hand side of (3.3), it suffices to follow the
proof given in Theorem 3.2, making the corresponding modifications. �

Theorem 3.4. For m ∈ N, the generalized Apostol-type Frobenius-Euler polynomials
of level m H[m−1,α]

n (x; c, a;λ;u), are related with the Genocchi polynomials Gn(x), by
means of

H[m−1,α]
n (x; c, a;λ;u)

=1
2

n∑
k=0

(ln c)k

k + 1

(n
k

)
H

[m−1,α]
n−k (y; c, a;λ;u) +

n∑
j=k

(
n

j

)(
j

k

)
H

[m−1,α]
n−j (y; c, a;λ;u)(ln c)j−k

Gk+1(x).

(3.6)

Proof. By substituting (2.3) into the right-hand side of (3.3), we see that
H[m−1,α]
n (x; c, a;λ;u)

=
n∑
j=0

(
n

j

)
H

[m−1,α]
j (y; c, a;λ;u) (ln c)n−j

2(n− j + 1)

[
n−j∑
k=0

(
n− j + 1
k + 1

)
Gk+1(x) +Gn−j+1(x)

]

=
n∑
j=0

(
n

j

)
H

[m−1,α]
j (y; c, a;λ;u) (ln c)n−j

2(n− j + 1)

n−j∑
k=0

(
n− j + 1
k + 1

)
Gk+1(x)

+
n∑
j=0

(
n

j

)
H

[m−1,α]
j (y; c, a;λ;u) (ln c)n−j

2(n− j + 1)Gn−j+1(x).

Then, using appropriate combinational identities and summations (see, for instance
[1, 5, 6]), we obtain

H[m−1,α]
n (x+ y; c, a;λ;u)
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=1
2

n∑
k=0

(ln c)k

k + 1

 n∑
j=k

(
n

j

)(
j

k

)
H

[m−1,α]
n−j (y; c, a;λ;u)(ln c)j−k +

(
n

k

)
H

[m−1,α]
n−k (y; c, a;λ;u)

Gk+1(x).

Therefore, (3.6) holds. �

Theorem 3.5. For m ∈ N, the generalized Apostol-type Frobeniu-Euler polynomials of
level m H[m−1,α]

n (x; c, a;λ;u), are related with the Apostol-Euler polynomials En(x;λ),
by means of the following identity

H[m−1,α]
n (x+ y; c, a;λ;u)(3.7)

=1
2

n∑
j=0

(
n

j

) [
λH[m−1,α]

n (y + 1; c, a;λ;u) + (ln c)jH[m−1,α]
n (y; c, a;λ;u)

]
En−j(x;λ).

Proof. By substituting (2.4) into the right-hand side of (3.3), we can see that

H[m−1,α]
n (x+ y; c, a;λ;u)

(3.8)

=
n∑
k=0

(
n

k

)
H

[m−1,α]
k (y; c, a;λ;u)(ln c)n−k

(1
2

)λ n−k∑
j=0

(
n− k
j

)
Ej(x;λ) + En−k(x;λ)


=

n∑
k=0

(
n

k

)
H

[m−1,α]
k (y; c, a;λ;u)(ln c)n−k

(
λ

2

)
n−k∑
j=0

(
n− k
j

)
Ej(x;λ)

+
n∑
k=0

(
n

k

)
H

[m−1,α]
k (y; c, a;λ;u)(ln c)n−k

(1
2

)
En−k(x;λ).

The first sum in (3.8) becomes
n∑
k=0

(
n

k

)
H

[m−1,α]
k (y; c, a;λ;u)(ln c)n−k

(
λ

2

)
n−k∑
j=0

(
n− k
j

)
Ej(x;λ)(3.9)

=
n∑
k=0

n−k∑
j=0

(
n

k

)
(ln c)n−k

(
λ

2

)(
n− k
j

)
H

[m−1,α]
k (y; c, a;λ;u)Ej(x;λ)

=
n∑
j=0

(
λ

2

)(
n

j

)
Ej(x;λ)

n−j∑
k=0

(
n− j
k

)
H

[m−1,α]
k (y; c, a;λ;u)(ln c)n−k

=
n∑
j=0

(
λ

2

)(
n

j

)
Ej(x;λ)H[m−1,α]

n−j (y + 1; c, a;λ;u).

For the second sum in (3.8), we obtain
n∑
k=0

(
n

k

)
H

[m−1,α]
k (y; c, a;λ;u)(ln c)n−k

(1
2

)
En−k(x;λ)(3.10)

=1
2

n∑
k=0

(
n

k

)
H

[m−1,α]
n−k (y; c, a;λ;u)(ln c)kEk(x;λ).
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Combining (3.9) and (3.10) we get

H[m−1,α]
n (x+ y; c, a;λ;u)

=
(
λ

2

)
n∑
j=0

(
n

j

)
Ej(x;λ)H[m−1,α]

n−j (y + 1; c, a;λ;u)

+ 1
2

n∑
j=0

(
n

j

)
H

[m−1,α]
n−j (y; c, a;λ;u)(ln c)jEj(x;λ)

=1
2

n∑
j=0

(
n

j

) [
λH[m−1,α]

n (y + 1; c, a;λ;u) + (ln c)jH[m−1,α]
n (y; c, a;λ;u)

]
En−j(x;λ).

Therefore, (3.7) holds. �

Proposition 3.1. For m ∈ N, α, λ, u,∈ C, a, c ∈ R+ and n ∈ N0, we have

H[m−1,α]
n (x+ y; c, a;λ;u) =

n∑
k=0

k!
(
x

k

)
n−k∑
j=0

(
n

j

)
H

[m−1,α]
j (y; c, a;λ;u)(ln c)n−jS(n− j, k)

=
n∑
k=0

k!
(
x

k

)
n∑
j=k

(
n

n− j

)
H

[m−1,α]
n−j (y; c, a;λ;u)(ln c)jS(j, k).

4. The Generalized Apostol-Frobenius-Euler Polynomials Matrix

Definition 4.1. The generalized (n+1)×(n+1) Apostol-Frobenius-Euler polynomials
matrix U[m−1,α](x; c, a;λ;u) with m ∈ N, α, λ, u ∈ C and a, c positive real numbers is
defined by

U
[m−1,α]
i,j (x; c, a;λ;u) =


(
i
j

)
H

[m−1,α]
i−j (x; c, a;λ;u), i ≥ j,

0, otherwise.

While, the matrices

U[m−1](x; c, a;λ;u) := U[m−1,1](x; c, a;λ;u),
U[m−1](c, a;λ;u) := U[m−1](0; c, a;λ;u)

are called the Apostol-Frobenius-Euler polynomial matrix and the Apostol-Frobenius-
Euler matrix, respectively.

Since H[m−1,0]
n (x; c, a;λ;u) = (x ln(c))n, we have U[m−1,0](x; c, a;λ;u) = Pc[x]. It is

clear that (3.3) yields the following matrix identity:

U[m−1,α](x+ y; c, a;λ;u) = U[m−1,α](y; c, a;λ;u)Pc[x].

Theorem 4.1. For a fixed m ∈ N, let {H[m−1,α]
n (x; c, a;λ;u)}n≥0 and

{H[m−1,β]
n (x; c, a;λ;u)}n≥0 be the sequences of generalized Apostol-type Frobenius-Euler
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polynomials in the variable x, parameters λ, u ∈ C, a, c ∈ R+, order α ∈ C and level
m. Then satisfies the following product formula:

U[m−1,α+β](x+ y; c, a;λ;u) = U[m−1,α](x; c, a;λ;u)U[m−1,β](y; c, a;λ;u)(4.1)
= U[m−1,β](x; c, a;λ;u)U[m−1,α](y; c, a;λ;u)
= U[m−1,α](y; c, a;λ;u)U[m−1,β](x; c, a;λ;u).

Proof. Let B
[m−1,α,β]
i,j,c (a;λ;u)(x, y) be the (i, j)-th entry of the matrix product

U[m−1,α](x; c, a;λ;u)U[m−1,β](y; c, a;λ;u), then by the addition formula (3.2) we have

B
[m−1,α,β]
i,j,c (a;λ;u)(x, y) =

n∑
k=0

(
i

k

)
H

[m−1,α]
i−k (x; c, a;λ;u)

(
k

j

)
H

[m−1,β]
k−j (y; c, a;λ;u)

=
i∑

k=j

(
i

k

)
H

[m−1,α]
i−k (x; c, a;λ;u)

(
k

j

)
H

[m−1,β]
k−j (y; c, a;λ;u)

=
i∑

k=j

(
i

j

)(
i− j
i− k

)
H

[m−1,α]
i−k (x; c, a;λ;u)H[m−1,β]

k−j (y; c, a;λ;u)

=
(
i

j

) i−j∑
k=0

(
i− j
k

)
H

[m−1,α]
i−j−k (x; c, a;λ;u)H[m−1,β]

k (y; c, a;λ;u)

=
(
i

j

)
H

[m−1,α+β]
i−j (x+ y; c, a;λ;u),

which implies the first equality of the theorem. The second and third equalities of
can be derived in a similar way. �

Corollary 4.1. For a fixed m ∈ N, let {H[m−1,α]
n (x; c, a;λ;u)}n≥0 and

{H[m−1,β]
n (x; c, a;λ;u)}n≥0 be the sequences of generalized Apostol-type Frobenius-Euler

polynomials in the variable x, parameters λ, u ∈ C, a, c ∈ R+, order α ∈ C and level
m and Pc[x] the generalized Pascal matrix of first kind in base c. Then

U[m−1,α](x+ y; c, a;λ;u) = U[m−1,α](x; c, a;λ;u)Pc[y]
= Pc[x]U[m−1,α](y; c, a;λ;u)
= U[m−1,α](y; c, a;λ;u)Pc[x].

In particular,
U[m−1](x+ y; c, a;λ;u) = Pc[x]U[m−1](y; c, a;λ;u)

= Pc[y]U[m−1](x; c, a;λ;u).

Proof. The substitution β = 0 into (4.1) yields
U[m−1,α](x+ y; c, a;λ;u) = U[m−1,α](x; c, a;λ;u)U[m−1,0](y; c, a;λ;u).

Since U[m−1,0](y; c, a;λ;u) = Pc[y], we obtain
(4.2) U[m−1,α](x+ y; c, a;λ;u) = U[m−1,α](x; c, a;λ;u)Pc[y].
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A similar argument allows to show that

U[m−1,α](x+ y; c, a;λ;u) = Pc[x]U[m−1,α](y; c, a;λ;u)
= U[m−1,α](y; c, a;λ;u)Pc[x].

Finally, the substitution α = 1 into (4.2) and its combination with the previous
equations completes the proof. �

Using the relation (2.5) and Corollary 4.1 we obtain the following factorization for
U[m−1,α](x+ y; c, a;λ;u) in terms of summation matrices.

U[m−1,α](x+ y; c, a;λ;u) = U[m−1,α](x; c, a;λ;u)Gn,c[y]Gn−1,c[y] · · ·G1,c[y].

Under the appropriate choice on the parameters, level and order, it is possible
to provide some illustrative examples of the generalized Apostol-Frobenius-Euler
polynomials matrices.

Example 4.1. For m = 1, c = a = e = exp(1), α = 1, λ = −1, The first four
polynomials H[1−1,1]

k (x; e, e; 1;u), k = 0, 1, 2, 3 are

H
[1−1,1]
0 (x; e, e; 1;u) = 1,

H
[1−1,1]
1 (x; e, e; 1;u) =x− 1

1− u,

H
[1−1,1]
2 (x; e, e; 1;u) =x2 − 2

1− ux+ 1 + u

(1− u)2 ,

H
[1−1,1]
3 (x; e, e; 1;u) =x3 − 3

1− ux
2 + 3(1 + u)

(1− u)2 x−
u2 + 4u+ 1

(1− u)3 .

Hence, for n = 3, we have

U[m−1,1](x; e, e; 1;u) =


1 0 0 0
u10 1 0 0
u20 u21 1 0
u30 u31 u32 1

 ,

where

u10 = u21 = u32 = H
[1−1,1]
1 (x; e, e; 1;u),

u20 = u31 = H
[1−1,1]
2 (x; e, e; 1;u),

u30 = H
[1−1,1]
3 (x; e, e; 1;u).
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Example 4.2. For m = 1, c = a = e = exp(1), λ = 1 and u = −1, The first four
polynomials H[1−1,α]

k (x; e, e; 1;−1), k = 0, 1, 2, 3, are

H
[1−1,α]
0 (x; e, e; 1;−1) = 1,

H
[1−1,α]
1 (x; e, e; 1;−1) =x− α

2 ,

H
[1−1,α]
2 (x; e, e; 1;−1) =x2 − αx+ α(α− 1)

4 ,

H
[1−1,α]
3 (x; e, e; 1;−1) =x3 − 3α

2 x2 + 3α(α− 1)
4 x− 3α2(α− 1)

8 .

Then, for n = 3, we have

U[m−1,α](x; e, e; 1;−1) =


1 0 0 0
u10 1 0 0
u20 2u21 1 0
u30 3u31 3u32 1

 ,
where

u10 = u21 = u32 = H
[1−1,α]
1 (x; e, e; 1;−1),

u20 = u31 = H
[1−1,α]
2 (x; e, e; 1;−1),

u30 = H
[1−1,α]
3 (x; e, e; 1;−1).

Example 4.3. For λ ∈ C, m = c = 2, a = 3, α = 1
2 , u = 2, we have the Example 3.1.

Therefore,

U[1, 1
2 ](x; 2, 3;λ; 2) =



√
3

λ−4 0 0

H
[1,( 1

2)]
1 (x; 2, 3;λ; 2)

√
3

λ−4 0
32√
1+λ 0 0

H
[1,( 1

2)]
2 (x; 2, 3;λ; 2) 2H[1,( 1

2)]
1 (x; 2, 3;λ; 2)

√
3

λ−4

 .
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