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Abstract 
The photoreceptor phosphodiesterase (PDE6) is a member of large family of Class I 
phosphodiesterases responsible for hydrolyzing the second messengers cAMP and cGMP. PDE6 
consists of two catalytic subunits and two inhibitory subunits that form a tetrameric protein. 
PDE6 is a peripheral membrane protein that is localized to the signaling-transducing 
compartment of rod and cone photoreceptors. As the central effector enzyme of the G-protein 
coupled visual transduction pathway, activation of PDE6 catalysis causes in a rapid decrease in 
cGMP levels that results in closure of cGMP-gated ion channels in the photoreceptor plasma 
membrane. Because of its importance in the phototransduction pathway, mutations in PDE6 
genes result in various retinal diseases that currently lack therapeutic treatment strategies due to 
inadequate knowledge of the structure, function, and regulation of this enzyme. This review 
focuses on recent progress in understanding the structure of the regulatory and catalytic domains 
of the PDE6 holoenzyme, the central role of the multi-functional inhibitory γ-subunit, the 
mechanism of activation by the heterotrimeric G protein, transducin, and future directions for 
pharmacological interventions to treat retinal degenerative diseases arising from mutations in the 
PDE6 genes. 
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1. Introduction: Overview of role of PDE6 in visual transduction 

The initial events in vision are triggered when light enters the eye and activates the visual 
transduction pathway in rod and cone photoreceptor cells of the retina. Rods and cones are 
sensory neurons containing a membrane-rich outer segment compartment in which 
phototransduction proteins are localized [1,2]. Although rod and cone photoreceptors differ in 
their physiological responsiveness to illumination, most of the proteins that constitute the 
phototransduction pathway are either shared or highly homologous in these two cell types [3,4]. 
Photons absorbed by the visual pigment in the outer segment initiate a G-protein-amplified 
cascade leading to hyperpolarization of the cell membrane and generating the synaptic output to 
second-order retinal neurons and eventually to the visual cortex [5]. In this review, we focus 
attention on recent advances in biochemical and structural elucidation of the exquisite regulatory 
mechanisms in the phototransduction pathway, focusing on the structure, function, and 
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regulation of the central effector enzyme, phosphodiesterase-6 (PDE6). Given that dysregulation 
of PDE6 can result in cytotoxic levels of cGMP accumulating in photoreceptor cells, we also 
provide examples of how understanding the structure and conformational dynamics of PDE6 
opens avenues for novel therapeutic interventions. 

The phototransduction signaling pathway is initiated upon absorption of a photon of light by 
the visual pigment, rhodopsin, a member of the G-protein coupled receptor superfamily (Fig. 
1A). Isomerization of rhodopsin’s covalently bound ligand, 11-cis retinal, induces a 
conformational change in rhodopsin that enhances the binding to the photoreceptor G-protein, 
transducin (Gαβγ). Stimulation of GDP/GTP exchange in the α-subunit of transducin (Gα) 
causes dissociation of Gβγ from Gα*-GTP and association of Gα*-GTP with PDE6. The 
nonactivated rod PDE6 holoenzyme consists of a catalytic heterodimer (Pαβ) to which two 
inhibitory γ-subunits (Pγ) bind (Fig. 1B). Upon light activation, the binding of two Gα*-GTP to 
PDE6 relieves the inhibitory constraint of the Pγ subunits, leading to catalytic acceleration of 
cGMP hydrolysis. The drop in cytoplasmic cGMP levels results in closure of cGMP-gated ion 
channels in the plasma membrane, and membrane hyperpolarization ensues. The lifetime of 
activated PDE6 is primarily regulated by the intrinsic GTPase activity of Gα*-GTP; upon GTP 
hydrolysis, Gα-GDP re-associates with the βγ subunits of transducin thereby restoring the 
inhibited state of PDE6. For general reviews, see [6-8]. 

 

2. Cyclic nucleotide phosphodiesterase superfamily 

Vertebrate 3’,5’-cyclic nucleotide phosphodiesterases (PDEs) constitute the Class I 
superfamily of phosphohydrolases (Pfam ID: PDEase_I) that catalyze the hydrolysis of the 
phosphodiester bond of cyclic nucleotides (principally cAMP and cGMP). The Class I PDEs 
share a modular, bipartite structure composed of regulatory and catalytic domains, the latter of 
which includes a highly conserved catalytic core (Fig. 2). There are eleven members of this PDE 
superfamily (PDE1 through PDE11) that can be categorized based on their sequence homology, 
substrate or inhibitor specificity, and mechanism of regulation of catalysis. Many of the PDE 
families consist of multiple genes which can undergo alternative mRNA splicing or post-
transcriptional processing to generate close to 100 different isozymes [9,10]. 

 2.1 Catalytic domain of PDE6 

 The catalytic domain of Class I PDEs consists of 16 α-helices (~270 amino acid 
residues), with the active site forming a deep hydrophobic pocket that contains Zn2+ and Mg2+ in 
addition to the cyclic nucleotide binding pocket (Pfam: PF00233). About two dozen highly 
conserved residues participate in the active site of Class I PDEs, of which 4 His, 2 Asp, and 2 
Tyr/Phe residues are invariant in the eleven human PDE families [11] and participate in substrate 
binding, divalent cation binding, and catalysis. Whereas some PDE families readily catalyze both 
cAMP and cGMP, other families are specific for either cAMP (PDE4, PDE7, and PDE8) or 
cGMP (PDE5, PDE6, PDE9); the features within the enzyme active site responsible for substrate 
discrimination are still not well understood [11]. 

Fig. 3 shows the catalytic domain of the rod Pβ subunit which has been aligned with the 
closely related PDE5 catalytic domain in order to show the position of the divalent cations and 
the 5’-GMP product in the active site. The metal-binding site (M-site, light brown) depicts three 
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conserved His and one Asp residues that coordinate with Zn2+, Mg2+, and several water 
molecules (not shown) to enable binding of the cyclic phosphate group of cGMP and facilitate 
positioning a water molecule for an in-line SN2 nucleophilic attack of the cyclic phosphate bond 
[12,13]. His557 is believed to be a proton donor during catalysis, and Asp739 participates in an 
H-bond relay (Fig. 3, red; [14]). In addition to the cyclic phosphate interactions with the M-site, 
the so-called Q-pocket (Fig. 3, orange residues) stabilizes interactions with the guanosine moiety 
of cGMP, as well as with several inhibitor compounds originally designed for PDE5 [15] but 
which also bind to Pβ. Gln771 of PDE6B represents one determinant of cAMP/cGMP substrate 
discrimination, but other residues must also participate in modulating the binding affinity of 
ligands to this region of the catalytic site [11].   

The PDE6 catalytic mechanism is distinguished by operating with a turnover number that 
is ~500-fold greater (kcat = 5600 cGMP per PDE6 per s; [16-18]) than the other ten PDE families 
[19]; all three PDE6 isozymes have similar KM and kcat values [18], and prefer cGMP over 
cAMP by a factor of ~50-fold [17,20]. Replacing the Ala residue of the PDE5 catalytic domain 
with Gly (corresponding to Gly 562 of Pβ; Fig. 3, green) in the α6 helix forming the back wall of 
the metal binding pocket accelerated catalysis of the PDE5 mutant 10-fold [21]; other structural 
elements contributing to PDE6 hydrolyzing cGMP at the diffusion-controlled rate remain 
undiscovered. 

 2.2 Regulatory GAF domains of PDE6 

  2.2.1 Five PDE families contain regulatory GAF domains 

The regulatory domains of rod and cone PDE6 consist of GAF domains, a feature shared with 
four other PDE families: PDE2, PDE5, PDE10, and PDE11. The GAF domain (Pfam: PF01590) 
is so named because this domain has been found in cGMP-binding phosphodiesterases, 
cyanobacterial Adenylyl cyclases and transcription factor FhlA [22]. GAF domains are one of 
the most prevalent and widespread ligand binding domains, having been identified in all 
kingdoms of life. GAF domains are known to bind a wide variety of ligands, allosterically 
communicate to other protein domains, and participate in stabilizing protein-protein interactions. 
In mammals, PDEs are the only protein family known to contain regulatory GAF domains (for 
reviews, see [23,24]). 

Each of the five GAF-containing PDEs contain two tandem GAF domains (GAFa and 
GAFb) located in the N-terminal half of the catalytic subunit. However, only one of the GAF 
domains is able to bind cyclic nucleotides. For PDE5, PDE6, and PDE11, cGMP is the ligand 
that binds to the GAFa domain, whereas the GAFb domain is the locus for binding cGMP 
(PDE2) or cAMP (PDE10). Whereas the role of the GAF domains to promote dimerization of 
PDE catalytic subunits is shared by all GAF-PDEs [24], the direct allosteric activation of PDE 
catalysis by cyclic nucleotide binding to their GAF domains has been firmly established for only 
PDE2 and PDE5 [25-27]. While PDE10 and PDE11 GAF domains can allosterically 
communicate upon occupancy of their ligand binding sites [28], the physiological relevance of 
GAF domain regulation of catalytic activity of PDE10 and PDE11 remains uncertain [29,30]. 
The N-terminal region preceding the PDE5 GAFa domain has been implicated in allosteric 
regulation of cGMP binding and catalytic activation via reversible phosphorylation [27]. 

All reported GAF domain structures for the cyclic nucleotide binding site share a very 
similar domain structure in which the bound ligand is deeply buried, and large conformational 
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changes are associated with occupancy of the ligand binding site [24]. At present, only the 
atomic structure of nearly full-length PDE2 has provided structural insights into the allosteric 
communication pathway linking noncatalytic cGMP binding in the GAF domain to stimulation 
of catalytic activity believed to result from conformational changes in the H- and M-loops in the 
vicinity of the enzyme active site [31]. 

  2.2.2 PDE6 GAF domains 

Unlike PDE2 and PDE5, there is no evidence supporting direct allosteric activation of 
catalysis by binding of cGMP to the PDE6 GAFa domain [32,20]. Instead, allosteric control of 
PDE6 activity is primarily determined by the inhibitory Pγ subunit which binds to both the 
regulatory GAFab domain as well as the catalytic domain (discussed below). However, cGMP 
binding to the PDE6 GAFa domain does induce conformational changes that are communicated 
to the catalytic domain, as judged by changes in cGMP binding affinity upon binding of catalytic 
site inhibitors as well as alterations in inhibition potency of PDE5/6 inhibitors upon occupancy 
of the GAFa cGMP binding site [33]. 

Structural evidence supporting cGMP-dependent conformational changes in PDE6 was 
first reported by Martinez et al. [34] who determined that the x-ray structure of the isolated 
GAFa domain of cone PDE6 (PDBID: 3DBA) has a similar fold as determined for PDE2 and 
PDE5. Analysis of the apo and cGMP-bound forms of the GAFa domain by NMR spectroscopy 
suggested that conformational changes occurred upon cGMP binding [34]. More recently, the x-
ray structure of the dimeric PDE6C GAFab domains (apo state) was solved at 3.3 Å (PDBID: 
6X88) and comparison of the apo state of cone GAFab with the cGMP-liganded GAFa crystal 
structure identified conformational changes upon cGMP binding; this study also generated 
structural models for cone GAFab that mapped the interaction surface of an N-terminal fragment 
of cone Pγ in the presence or absence of cGMP using chemical cross-linking mass spectrometry 
(XL-MS; [35]) and NMR spectroscopy [36]. [See Section 4.3.2 for details.]  

 

3. The Pγ subunit is a multi-functional regulator of PDE6 activity 

PDE6 is the only family of Class I phosphodiesterases whose catalytic activity is 
regulated by a distinct protein subunit, Pγ. Available phylogenetic evidence suggests that the Pγ 
subunit co-evolved with the appearance of PDE6 catalytic subunits at the base of vertebrate 
evolution [37,38], already having evolved into rod-like (PDE6G) and cone-like (PDE6H) 
isoforms [39]. Most of the sequence diversity between rod and cone Pγ isoforms is found in the 
N-terminal region of the protein, along with four highly conserved rod-cone differences at 
positions 21, 48, 74, and 84 of the rod Pγ sequence [40]. 

In dark-adapted rod photoreceptors, PDE6 catalytic activity is suppressed by two Pγ 
subunits that physically occlude the enzyme active site on each catalytic subunit [41,42]. Upon 
photoactivation of the visual excitation pathway, the light-activated transducin α-subunit (Gα*-
GTP) binds to multiple sites on Pγ, relieves its inhibitory constraint, and PDE6 catalytic 
activation ensues [7]. During photoresponse recovery to the dark-adapted condition, the Pγ 
subunit also interacts with the Regulator of G-protein Signaling9-1 (RGS9-1) to accelerate the 
intrinsic GTPase activity of Gα*-GTP that leads to the restoration of PDE6 to its inhibited state 
(reviewed in [8]). 
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In addition to inhibiting cGMP hydrolysis, allosterically modulating cGMP binding affinity 
to GAFa, and interacting with Gα* and RGS9-1, this small but highly versatile protein has a 
recognition sequence for SH3 domain-containing binding proteins [43] as well as substrate sites 
for ADP ribosylation [44] and phosphorylation ([45] and references cited therein). 

3.1 Pγ is an intrinsically disordered protein  

The remarkable versatility of the Pγ subunit to carry out so many functions—through its 
interactions not only with PDE6 but also with Gα and RGS9-1—is a consequence of Pγ 
exhibiting the structural properties of an intrinsically disordered protein.  The 87 amino acid 
sequence of rod Pγ at neutral pH has a pI of 9.5, is largely devoid of secondary structure, and its 
hydrodynamic properties are very similar in the absence or presence of strong denaturants [46]—
all of which are characteristics of an intrinsically disordered protein [47]. The NMR solution 
structure of rod Pγ was determined to consist of an unfolded N-terminal region and a loosely 
folded domain formed by its central polycationic and C-terminal region, the latter of which 
contains three small α-helical segments [48]. NMR studies of cone Pγ whose C-terminal region 
was truncated also exhibited behavior characteristic of an intrinsically disordered protein [36]. 
As is typical for intrinsically disordered proteins, the Pγ subunit undergoes a major transition to a 
linearly extended subunit upon binding to Pαβ, with its N-terminal region interacting with the 
GAFa domain, the central polycationic region interacting with the GAFb domain, and the 
glycine-rich and C-terminal regions (containing α-helical content) binding to the catalytic 
domain. This disorder-to-order transition is also observed when Pγ binds to Gα* or to RGS9-1. 

3.2 Functional domains of the Pγ subunit 

 The rod Pγ subunit can be divided into four structurally distinct sub-domains: the N-
terminal region (amino acids 1-21), the central polycationic region (amino acids 22-45), the 
glycine-rich region (amino acids 46-62) and the C-terminal region (63-87); see Fig. 5E. 
Numerous biochemical studies have revealed several functionally important sites within these 
domains, summarized in the subsequent sections. Recent advances in the structural determination 
of the PDE6 holoenzyme ([49,50]; see Section 4) and its complex with Gα* ([50,51]; Section 5), 
have brought into focus a number of structure-function relationships between the multi-
functional Pγ subunits and its binding partners. Each of the following sub-sections first 
summarizes structural features of each Pγ region followed by their functional properties. 

  3.2.1 N-terminal region of Pγ (amino acids 1-21) 

The N-terminal region of rod Pγ (Figs. 5A and 5B, blue) primarily interacts with the 
GAFa domain of the catalytic subunits, forming close interactions with residues in close 
proximity to the cGMP binding pocket, including the β4/α4 lid element that stabilizes cGMP in 
its binding pocket [34]; Toward the end of the N-terminal region, Pγ also makes several 
interactions with the GAFb domain.  

Whereas deletion of the N-terminal region of Pγ has little effect on the overall binding 
affinity of Pγ for Pαβ, several studies [52-54] have shown that this region is capable of 
enhancing the binding affinity of cGMP (Fig. 5E). A second role for the N-terminal region of Pγ 
was uncovered in the course of comparing the evolutionary and biochemical features of rod and 
cone Pγ whose sequence differences are primarily confined to this N-terminal region [40]. Two 
rod Pγ-specific motifs (residues 9-18 and 21) were found to reduce the efficacy of rod PDE6 to 
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be activated by Gα*, whereas cone Pγ-specific residues in this region enabled more efficient Gα* 
activation of rod PDE6. In addition, the first four amino acids of either rod or cone Pγ contribute 
to Gα* activation of PDE6 (Fig. 5E; [40]). Current structural studies of the Gα*-PDE6 complex 
have not identified direct interactions between Gα* and the N-terminal region of Pγ. However, 
the observation that Gα activation of PDE6 increases the cGMP dissociation rate from GAFa 
binding sites [55,54] is consistent with the idea that Gα* binding to multiple sites on Pγ during 
Gα* activation of PDE6 holoenzyme reduces the affinity of the Pγ N-terminal region for the 
GAFa domain, thereby enhancing release of bound cGMP from noncatalytic sites (see also 
Section 5.1.5). 

  3.2.2. Polycationic region of Pγ (amino acids 22-45) 

The polycationic regions of the Pγ subunits have asymmetric interactions with the Pα and 
Pβ catalytic subunits. The Pγ subunit primarily associated with Pα (Fig. 5A, cyan) has numerous 
interactions with the GAFb domain (including the β1/β2 loop thought to be part of the allosteric 
communication network), as well as several interactions with GAFa [56] and the central helices 
of both Pα and Pβ. Also notable are a patch of residues (amino acids 38-44) that are solvent 
exposed. In contrast, the Pβ-associated Pγ subunit (Fig. 5B, green) has fewer interactions in its 
polycationic region with the Pβ GAF domains but a greater number of interactions with the Pα 
GAFb domain and the central helices of both catalytic subunits. Also noteworthy is the more 
tightly coiled conformation of the polycationic region of this Pγ subunit that is intertwined with 
the neighboring glycine-rich region (Fig. 5B). The pronounced structural asymmetry in the 
interactions of Pγ with Pα and Pβ underlie the functional asymmetry of the PDE6 holoenzyme 
and of the Gα-PDE6 activated complex (discussed below). The polycationic region also interacts 
with Gα* in the absence of PDE6 (Fig. 5C), adopting a linearly extended structure that interacts 
with the Ras sub-domain (Pγ residues 24-30) and the helical sub-domain (Pγ residues 31-44) of 
Gα* [50]. 

Functionally, the polycationic region of Pγ serves as an important regulatory locus for 
several reasons: (1) residues within this region (especially amino acids 27-38; [54]) are primary 
contributors to the 50-fold greater affinity of the N-terminal half of Pγ than the C-terminal half 
for binding to Pαβ [20]. Stabilizing Pγ-Pαβ interactions in this region likely accounts for the 
observation that activation of mammalian PDE6 by Gα* does not result in dissociation of Gα*-
Pγ from the activated Gα*-PDE6 complex under physiological conditions [57]. (2) The 
polycationic region of Pγ is also a major determinant for Gα* binding to the PDE6 holoenzyme 
[58], and may serve as the initial site of interaction of Gα* upon encountering PDE6 during 
visual excitation (see Section 5). (3) Two threonine residues within the polycationic region 
(Thr22 and Thr35) are known to be substrates for phosphorylation by several different protein 
kinases (reviewed in [59]), and transgenic mice carrying Thr-to-Ala mutations at these sites 
display altered photoresponses [60,61,45] consistent with a role for phosphorylation in regulating 
adaptational processes during visual transduction. 

  3.3.3 Glycine-rich region of Pγ (amino acids 46-62) 

The glycine-rich regions of the two Pγ subunits also exist in very different conformations 
in the PDE6 holoenzyme. Whereas the Pα-associated Pγ subunit is in a linearly extended 
conformation with a bend at Gly59, the glycine-rich region of the Pβ-associated subunit is in 
proximity to a majority of the polycationic region (Figs. 5A and 5B). One striking similarity is 
that the last five amino acid residues (amino acids 58-62) of both glycine-rich regions form 
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similar interactions with the long α-helices that form the backbone of the catalytic subunit 
structures and link the GAFb domains with the catalytic domains. Additional structural evidence 
comes the crystal structure of the RGS domain of RGS9-1 in a complex with a chimeric Gt/Giα 
and a Pγ fragment (PDBID: 1fqj; [62]); this fragment of the PDE6 inactivation complex revealed 
that Pγ residue Asp52 was in close proximity to both the Switch II region of Gα* as well as the 
α5/α6 loop of RGS9.  

Biochemical evidence has shown that the glycine-rich region (Fig. 5E) provides 
stabilizing interactions needed for Gα* to “dock” with PDE6 in order to permit catalytic 
activation at the active site as well as to induce allosteric changes in Pγ that enhance cGMP 
dissociation from the GAFa noncatalytic sites [54]. The glycine-rich region also plays a minor 
role in stabilizing the Gα*-RGS9-1 inactivation complex to facilitate GTPase acceleration, as 
well as containing additional sites of interaction with Pαβ to enhance Pγ affinity for Pαβ [54]. 

  3.3.4 C-terminal region of Pγ (amino acids 63-87) 

The structure of the C-terminal region of Pγ that binds to the catalytic domains have been 
reported in cryo-EM and XL-MS studies of nonactivated PDE6 holoenzyme [49,50]. In both 
cases, the C-terminal region consists of a bipartite structure containing an coiled-like region 
(residues 63-77) and an α-helical segment extending up to the last four residues at the C-terminus 
of Pγ; a similar conformation of a C-terminal Pγ peptide (residues 70-87) was observed in a 
chimeric PDE5/PDE6 catalytic domain [42] and in a structural model of the C-terminal region of 
Pγ docked with the obligate chaperone of PDE6, the aryl hydrocarbon receptor-interacting 
protein-like 1 (AIPL1) [63]. In contrast, unbound Pγ [48] and the C-terminal region of Pγ 
associated with a chimeric Giα/Gα* and the RGS9 domain [62] have additional α-helical content 
in residues 63-74, suggestive of a major conformational change in this segment of the C-terminal 
region upon Gα* activation of PDE6. 

The C-terminal region of each Pγ subunit makes multiple interactions with the catalytic 
domains, with residues 74-87 undergoing major NMR spectral changes upon binding of the Pγ 
C-terminal region to a chimeric PDE5/6 catalytic domain [48]. Of particular importance to the 
inhibitory function of Pγ, the last four amino acids (located at the entrance to the active site) 
form multiple interactions with both the M-loop, the H-loop and the α11/α12 loop which 
together restricts diffusion of cGMP into the active site. This mechanism of inhibition of 
catalysis is unique to PDE6, since it is believed that PDE2 and PDE5 rely on the H-loop and M-
loop (Fig. 3) to regulate catalysis (see [49] for discussion). Although each Pγ primarily interacts 
with one catalytic subunit, several residues in the unfolded segment form interactions with the 
GAFb domains of the other catalytic subunit, including the GAFb β1/β2 loop implicated in the 
allosteric communication pathway [49].  The asymmetric interactions of the two Pγ subunits 
noted for other regions of Pγ are also observed in Pγ’s C-terminal region; the Pγ that binds to the 
Pβ catalytic site has 90% of its Pγ residues in close proximity to the catalytic domain, whereas 
only 30% of the C-terminal Pγ residues are closely associated with the Pα catalytic domain [50]. 

The structural features of the C-terminal region of Pγ and its interactions with the Pαβ 
catalytic heterodimer described above are consistent with numerous biochemical studies of the 
novel mechanism by which Pγ inhibits rod PDE6 through direct occlusion of the enzyme active 
site by its C-terminal residues [41]. In addition to the primary role of the last four  C-terminal 
residues to block access to the active site, allosterically-mediated inhibition of catalysis has been 
ascribed to the coiled-like segment (specifically residues 61-76) under conditions where the 
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remainder of the Pγ C-terminus was truncated [64]. [For discussion of the mechanisms by which 
Gα* interacts with the C-terminal region of Pγ during visual excitation, see Section 5.] 

In addition to its central importance in regulating cGMP hydrolytic rates, the C-terminal 
region of Pγ also interacts with RGS9-1 in a complex with Gα* (Fig. 5D) and thereby serves to 
potentiate the RGS9-1-catalyzed acceleration of the GTPase activity of Gα*-GTP [65,8]. The 
crystal structure of the RGS domain of RGS9-1 in a complex with a chimeric Giα/Gα* and a Pγ 
fragment [62] identified the Switch II and Switch III regions and the groove between the 
adjacent α2 and α3 helices of Giα/Gα* forming multiple interactions with the C-terminal region 
of Pγ (Fig. 5D), including the formation of an α-helical segment (residues 63-74) that is unfolded 
when associated with Pαβ. Mutagenesis studies identified Thr65 and Val66 being important to 
maximally accelerate the GTPase rate of Gα*/RGS9–1 complex [66,54] both of which are in 
close proximity to the α4/α5 loop of the RGS domain [62]. When interactions of Pγ with the 
Gα*/RGS9-1/Gβ5L protein complex were studied by chemical cross-linking, additional Pγ 
interactions with RGS9-1 were detected in the N-terminal half of Pγ that are purported to 
stabilize the entire complex [67]. Future efforts are needed to determine the molecular 
organization of the entire RGS9-1 inactivation complex to fully understand the allosteric 
mechanism by which Pγ potentiates the GTPase acceleration of Gα* that is catalyzed by RGS9-
1. 

 

4. Structural biology of the PDE6 holoenzyme 

The biggest obstacle to progress in the structural biology of PDE6 has been the inability 
to express the functional PDE6 heterotetramer in a heterologous expression system in sufficient 
quantities for molecular structure determination. While a major breakthrough was reported by 
Artemyev and colleagues who discovered that proper folding of PDE6 holoenzyme during its 
biosynthesis required the presence of AIPL1 as a chaperone, with co-expression of Pγ greatly 
enhancing formation of functional enzyme [68]. Future efforts to scale up heterologous 
expression of rod and cone PDE6 to generate quantities suitable for structural studies now appear 
attainable. In the meantime, investigations of the three-dimensional structures of rod or cone 
PDE6 will continue to rely on isolation of photoreceptors from mammalian retina and 
purification of native PDE6 holoenzyme.  

4.1 Overall domain organization of the PDE6 holoenzyme 

The overall quaternary structure of the rod PDE6 heterotetramer was initially determined 
by single particle analysis of negative-stained samples of purified PDE6 [69-72]. These low-
resolution EM studies established the overall domain organization of Pαβ in a parallel orientation 
in which each subunit consists of three lobed domains corresponding to the GAFa, GAFb, and 
catalytic domains. Although one study reported a major conformational change in quaternary 
structure upon proteolytic removal of the Pγ subunits [72], other studies using negative-stained 
samples [70], cryogenically vitrified samples [73], or analytical ultracentrifugation [74] 
concluded that the Pαβ dimer and the PDE6 heterotetramer do not exhibit major differences in 
their overall conformation. Immunolabeling studies with antibodies specific for Pγ or for the 17 
kDa prenyl binding protein (originally referred to as δ-subunit of rod PDE6, PDE6D; [75]) 
permitted assignment of the N-terminal and C-terminal domains as well as confirming a linearly 
extended conformation of Pγ that spans the entire length of the catalytic dimer [69,71,72]. 
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4.2 Three-dimensional structure of the nonactivated PDE6 holoenzyme 

The first atomic-level structural model of the rod PDE6 Pαβ catalytic dimer was 
determined by integrative structural modeling [76] that combined chemical cross-linking data of 
rod PDE6 holoenzyme with available x-ray crystal structures of cone PDE6 GAFa domain, 
PDE2, and PDE5 catalytic domain in addition to an EM density map as templates [77]. Unlike 
PDE2 in which cGMP binding to the GAF domains induces a closed-to-open configuration of 
the catalytic domains that stimulates catalytic activity [31], the Pαβ catalytic dimer was 
determined to have its active sites in an “open” configuration [77,78]. Marked differences in the 
sites of interaction of the Pγ subunits with the GAFa domain were identified that are consistent 
with prior observations of two different classes of cGMP binding sites whose affinities can be 
modulated by Pγ binding [16]. Although this work illustrated some of the unique structural and 
regulatory features of the PDE6 family compared with other GAF-containing PDEs, an 
insufficient number of cross-links between Pγ and Pαβ precluded the identification of the entire 
interaction surface of Pγ subunits with Pαβ [77]. 

A major breakthrough in understanding the structural basis for allosteric regulation of rod 
PDE6 was the high resolution (3.4 Å) structure of the rod PDE6 holoenzyme obtained by cryo-
EM (PDBID: 6mzb; [49]). This structure revealed the sites of interaction of the N-terminal 
region of Pγ with the cGMP binding site in GAFa, providing a structural basis for reciprocal 
positive cooperativity of cGMP and Pγ binding affinity (Section 4.3). The flexible N-terminal 
region that precedes the GAFa domains consists of several small α-helical segments that likely 
contribute to stabilizing the Pαβ dimer. Visualization of the H- and M-loops of the catalytic 
domain and their interactions with the C-terminal region of Pγ provided insights into how PDE6 
catalytic regulation differs from other GAF-containing PDEs. Unfortunately, due to 
conformational flexibility of several structural elements of PDE6 (Pγ residues 31-69, and the N- 
and C-terminal regions of the Pαβ subunits, these regions were not resolved by cryo-EM [49]. 

Building upon the above-mentioned studies, Irwin et al. [50] presented a structural model 
of the entire rod PDE6 holoenzyme that included the complete interaction surface of Pγ with 
Pαβ, as well as other structural elements not previously resolved by cryo-EM (Fig. 5A-B). Using 
the cryo-EM structure of rod PDE6 [49] as a template in conjunction with spatial restraints 
imposed by high-density cross-linking data, they resolved additional secondary structure 
elements in both the N-terminal and C-terminal regions of the catalytic subunits as well as filling 
in the missing central region of each Pγ subunit that interacts with both the GAFb and catalytic 
domains of Pαβ. Conformational differences were identified between vitrified PDE6 and 
membrane-associated PDE6 that were especially apparent in flexible elements of the GAFb 
domain (e.g., the β1/β2 loop purported to be involved in allosteric communication) and in the 
catalytic domain where displacements of the α15 and α16 helices led to different H- and M-loop 
conformations in the vicinity of the active site. While the topology of the two Pγ subunits share 
structural similarities in the N-terminal and C-terminal regions of Pγ, the polycationic and 
glycine-rich regions adopt very different conformations; also notable is the fact that each Pγ 
forms primary interactions with one subunit (especially apparent in the GAFa and catalytic 
domains) but also interacts with the other catalytic subunit, permitting inter-subunit 
communication mediated by Pγ. The structural asymmetry of Pγ interaction surfaces was 
proposed to account for heterogeneity of cGMP and Pγ binding affinity to Pαβ, as well as 
providing a rationale for two classes of Gα* binding sites on the PDE6 holoenzyme [50]. [See 
also Section 5.2.1.] 
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4.3 Allosteric communication pathway of PDE6 holoenzyme  

 4.3.1 Biochemical evidence for allosteric communication in PDE6 

Unlike the case for the GAF-containing PDE2 and PDE5 enzymes where direct allosteric 
communication occurs between cGMP binding site to the GAF domains and stimulation of 
catalytic activity in the catalytic domain active site (see Section 2.2.1), no direct allosteric 
regulation of PDE6 catalysis by cGMP binding to GAFa has been detected [32,20]. This is not 
unexpected, since the active sites of PDE6 already hydrolyze cGMP at the diffusion-controlled 
limit when Pγ is not present (Section 2.1). However, direct, inter-domain allosteric 
communication in the Pαβ dimer was observed by demonstrating that cGMP affinity for the 
GAFa binding pocket was enhanced when the enzyme active site was occupied with the PDE5 
inhibitor, vardenafil [33]. 

 It has long been appreciated that the affinity of the Pγ subunit was enhanced when cGMP 
occupied its GAFa binding sites [79]. This has the effect of lowering the basal activity of 
nonactivated PDE6 [80], with the physiological consequence of reducing spontaneous PDE6 
activation which is critical for rod photoreceptors to reliably detect single photons of light [81]. 
In a reciprocal manner, Pγ association with Pαβ enhances the binding affinity of cGMP to its 
GAF domain [82]. In both cases, this reciprocal allosterism between cGMP binding and Pγ 
binding occurs with only one of the two catalytic subunits [16,20]. Although it has been 
proposed that this reciprocal cooperativity of cGMP and Pγ binding to PDE6 plays a 
physiological role in light adaptation of rod photoreceptors [82], experimental evidence 
supporting this hypothesis is lacking [83]. In summary, while intrinsic allosteric communication 
between regulatory and catalytic domains of Pαβ has been demonstrated, the primary means for 
PDE6 to regulate its catalytic activity resides in the multi-functional Pγ and the multiple 
interactions it forms with the GAF and catalytic domains of PDE6 as well as its participation in 
the Gα*-PDE6 activation complex and in the RGS9-1 inactivation complex. 

 4.3.2 Structural studies evaluating conformational changes upon cGMP or Pγ 
binding 

Structural studies have provided new insights into the conformational changes 
accompanying the binding of cGMP and Pγ to the Pαβ dimer. For example, comparison of cryo-
EM structures with and without sildenafil bound to the active site of rod PDE6 revealed that the 
β1/β2 loops of GAFb exhibited greater dynamic behavior when this PDE5 inhibitor was bound, 
even though structural perturbations to the catalytic domain were not observed [49].  
Quantitative XL-MS of Pαβ in various liganded states [78] identified several conformationally 
sensitive sites in the catalytic domain M-loop as well as subunit-specific differences in the 
interactions of Pγ with the GAFa domain. These structural studies support the idea that the 
allosteric communication pathway in the rod Pαβ dimer relies on several flexible elements that 
communicate the state of cGMP occupancy in GAFa to the GAFb domain and from GAFb to the 
catalytic domain; the extent to which Pγ mediates allosteric communication by responding to 
conformational changes in structural elements of Pαβ will require new approaches that can 
resolve the conformational dynamics of PDE6 in its nonactivated and Gα*-activated states. 

Until recently, far less was known about the cGMP- and Pγ-dependent allosteric 
communication pathways in cone PDE6. The solved x-ray structure of the cone PDE6 GAFab 
domain (PDBID: 6x88) in its apo state (Fig. 4) has provided the structural foundation for 
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evaluating conformational changes induced by binding of cGMP and/or cone Pγ [36]. Using XL-
MS and integrative structural modeling, Gupta et al. that showed cGMP binding induced 
significant movement of the GAFa β4/α4 loop that serves as a “lid” for the cGMP binding 
pocket, as well as the GAFa β1/β2 loop implicated in communication with GAFb (Fig. 4). In 
conjunction with MD simulations, Gupta et al. identified changes in the GAFb β1/β2 and β4/β5 
loops that are hypothesized to convey cGMP-dependent allosteric changes from GAFb to the 
catalytic domain (Fig. 4; [36]). NMR studies of isotopically labeled Pγ enabled docking of the 
central polycationic region of Pγ to the GAFb domain, while XL-MS identified cGMP-
dependent conformational changes that resulted in Pγ forming interactions with the GAFb β1/β2 
loop and other GAFb loops. However, the absence of the cone PDE6 catalytic domains, this 
study could not address how the allosteric communication pathway within the regulatory GAFab 
domains of cone PDE6 conveys allosteric signals to the catalytic domains. Another unanswered 
question is the extent to which rod and cone PDE6 rely on the same allosteric pathways, given 
that rod PDE6 is a catalytic heterodimer while cone PDE6 is a homodimer. 

 

 

5. Mechanism of PDE6 catalytic activation by transducin during visual excitation 

5.1 Biochemical insights into the mechanism of Gα* activation of PDE6 

This section first summarizes the biochemical evidence for the mechanism by which 
transducin binds to and activates rod PDE6 during phototransduction. This knowledge is then 
applied to more recent structural studies of the Gα*-PDE6 activation complex that sheds light on 
the sequence of steps progressing from nonactivated PDE6 to the fully activated enzyme. 

  5.1.1. Activation by transducin is enhanced when Gα* and PDE6 are 
membrane-associated 

It is well established that Gα* activation of PDE6 occurs with greater efficiency when 
transducin and PDE6 are tethered to the rod outer segment membrane (or phospholipid bilayers) 
by their fatty acyl and prenyl groups, respectively [84,85]. Gα* membrane attachment is 
facilitated by acylation of its extreme N-terminal glycine residue with acyl moieties [86]. The 
reported heterogeneity of acyl modifications to Gα may account for the observation that only a 
portion of Gα exhibits high affinity binding to membranes [87,88]. Furthermore, the association 
of Gα* with the membrane is enhanced when PDE6 is also present [89,84], suggesting that the 
combination of post-translational acylation of the Gα* subunit along with its affinity to bind to 
PDE6 underlies this effect. Co-localization of Gα* and PDE6 on membranes likely serves to 
optimize the activation mechanism, both by creating a high local concentration of protein as well 
as reducing the dimensionality of diffusional encounters.  

  5.1.2. Gα*-activated PDE6 can attain the same maximal extent of activation 
as the Pαβ catalytic dimer lacking Pγ 

Although studies have reported a wide range of maximal extents of Gα* activation of 
PDE6 catalytic activity (when referenced to the maximum velocity of hydrolysis of fully 
activated Pαβ catalytic dimer lacking bound Pγ), the preponderance of evidence supports the idea 
that when both proteins are membrane-associated and a sufficient amount of Gα* is present, 
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PDE6 can be activated by Gα* in vitro to a similar extent as Pαβ catalytic dimers devoid of Pγ 
[90,85,91]. Whether full catalytic activation of PDE6 by transducin occurs in vivo is still a matter 
of debate. 

  5.1.3. Two Gα* molecules per PDE6 holoenzyme are required for maximal 
activation of PDE6 catalysis 

While there are studies reporting that binding of a single Gα* can activate catalysis of 
PDE6 holoenzyme to its maximum rate [92,85], the consensus from both biochemical [93,89,73] 
and structural studies (Section 5.2) now support two distinct binding sites for Gα* with PDE6 
holoenzyme.  

5.1.4 The sequential mechanism of transducin activation of PDE6 has not 
been elucidated 

Two different mechanisms in which successive binding of two Gα* to PDE6 fully 
activates catalysis have been proposed which differ in whether the two binding events occur with 
equal [93] or different [90,94,91] affinities for PDE6. A compelling case for a “coincidence 
detector” mechanism for rod PDE6 activation by transducin has been proposed [73] involving a 
two-stage process: (1) high-affinity binding of the first activated Gα*-GTP to PDE6 but with 
little catalytic activation of PDE6; (2) low-affinity binding of a second Gα*-GTP which results 
in full activation (i.e., equivalent to Pαβ lacking bound Pγ) at both active sites. This mechanism 
is not only consistent with the structural and functional asymmetry of the rod PDE6 catalytic 
heterodimer and its nonidentical binding interactions with its two Pγ subunits (see Section 4), but 
also is supported by computational simulations of the photoresponses of mammalian rod 
photoreceptors to dim and bright illumination [95,96]. Differences in the N-terminal region of 
rod and cone Pγ can influence the efficacy with which rod and cone PDE6 can be activated by 
transducin [40], with the implication that cone PDE6 activation by cone transducin may utilize a 
different mechanism than that proposed for rod PDE6. 

5.1.5 Gα* activation of PDE6 alters cGMP binding to the GAFa domains 
Binding of Gα* to PDE6 not only relieves Pγ inhibition of catalysis in the catalytic 

domain, but also enhances the rate at which cGMP exchange occurs at the noncatalytic binding 
sites in GAFa [54].  Since the Pγ N-terminal region enhances cGMP binding affinity to the 
GAFa domains [20], this effect of Gα* has been attributed to Gα* binding to Pγ and weakening 
the interactions of the N-terminal region of Pγ with the GAFa domain.     

 
5.2 Structural studies of the Gα*-PDE6   complex 
Two recent structural determinations of the activation complex of Gα* with PDE6 

[50,51] have reached different conclusions about the mechanism by which Gα* binds to PDE6 
and relieves the inhibitory constraint of Pγ at the PDE6 active site. The approach used by Irwin 
et al. employed XL-MS combined with integrative structural modeling that identified two 
distinct docking sites for Gα*, one interacting with the catalytic domain and the other site 
interacting with the GAFb domain of each PDE6 catalytic subunit (Fig. 6A-B; [50]). Gao et al. 
carried out high-resolution cryo-EM analysis of the Gα*-PDE6 complex which identified Gα* 
interacting only with the GAFb domains (Fig. 6C; [51]). A comparison of the results and the 
different mechanisms of transducin activation of PDE6 proposed by the two groups is presented 
in the following sections. 
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  5.2.1 Structure of the Gα*-PDE6 activation complex obtained using XL-MS 

Irwin et al. reported the molecular architecture of the membrane-associated Gα*-PDE6 
activation complex based on identifying chemically cross-linked peptides whose sequences 
provided spatial restraints on protein-protein interactions between Gα* and rod PDE6 catalytic 
and inhibitory subunits [50]. While the majority of the Gα* cross-links were consistent with 
binding sites on the PDE6 catalytic domains, several cross-links could only be explained if Gα* 
was also able to bind to the GAFb domains. Whereas the Pγ subunits underwent major 
conformational changes upon Gα* activation, no major structural changes in Pα, Pβ, or Gα* 
subunits were observed when comparing the nonactivated and Gα*-activated PDE6 holoenzyme. 
This is consistent with the notion that Gα* forms primary interactions with the Pγ subunits and 
not with the Pαβ catalytic dimer itself. 

Gα*-GAFb interactions (Fig. 6A): Structural modeling of the Gα* binding sites in the 
GAFb domains was based on cross-links that could not be accommodated by the catalytic 
domain docking site due to distance restraint violations [50]. Although each Gα* subunit docked 
to the GAFb sites had different interactions with either Pα or Pβ, the GAFb β1/2 loops and the 
catalytic domain H- and M-loops (all proposed sites of allosteric regulation) were common sites 
of interaction for both Gα* subunits when docked to their respective GAFb domains. The 
relatively large surface of interaction of the GAFb docking sites compared with the catalytic 
domain docking sites (compare Fig. 6A with Fig. 6B) is likely a result of the chemical cross-
linking method which could have captured an ensemble of Gα* interactions with PDE6 
alternating between the GAFb site and the catalytic domain site. 

The small number of observed cross-links with Pγ precluded Irwin et al. from identifying 
Pγ interacting sites in the Gα*-GAFb complex. However, if Pγ were to form similar interactions 
with Gα* when associated with Pαβ (Fig. 5A-B) as it does when free in solution (Fig. 5C), Gα* 
binding to the Pγ polycationic region would not require displacement of Pγ interactions with 
either the GAFa or catalytic domains (see Fig. 4B of ref. [50]). The GAFb docking site for Gα* 
might thus be the high-affinity/low-activity binding site proposed by Qureshi et al. [73].  

Gα*-catalytic domain interactions (Fig. 6B): The Gα* binding sites to the catalytic 
domains of Pα and Pβ were identified with greater confidence due to the larger number of spatial 
restraints imposed by the crosslinking data [50]. Although Gα* has a smaller interaction surface 
on the catalytic domain compared with the GAFb docking site, these Gα* interactions target the 
regulatory M-loop near the active site as well as the neighboring α14 and α16 helices of the 
catalytic domain. In addition, each Gα* forms interactions with the other catalytic domain, 
possibly mediating direct allosteric communication between the PDE6 catalytic domains.  

The Irwin et al. study was unable to model the C-terminal region of Pγ in the catalytic 
domain dock of Gα* with Pαβ. However, comparison of the conformation of the C-terminal 
region of Pγ bound to a chimeric Giα/Gα* in the RGS/Gα/Pγ complex [62] with the 
conformation of Pγ in nonactivated PDE6 suggests a major relocation of the last four C-terminal 
residues from the entrance to the PDE6 active site to the Switch II region of Gα* upon PDE6 
activation. Furthermore, if Gα* retains its high-affinity interactions with the polycationic region 
when docked to the catalytic domain, the N-terminal region of Pγ would have to dissociate from 
the GAFa domain (see Fig. 4C in [50]). 
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Based on these results Irwin et al. proposed a sequential mechanism of transducin 
activation in which an activated Gα*-GTP subunit initially interacts with the polycationic region 
of Pγ that is associated with a GAFb domain. This initial binding event is likely of relatively high 
affinity, given the ability to observe Pγ-Gα* cross-linking (Fig. 5C) in the absence of PDE6 
holoenzyme [50]. Furthermore, binding of Gα* to the polycationic region of Pγ associated with 
the GAFb region can be accommodated without displacement of either the N-terminal region or 
the inhibitory C-terminal region of Pγ; hence little catalytic activation would ensue, consistent 
with the “coincidence detector” activation mechanism (Section 5.1.4). Binding of the second 
Gα* to PDE6 might then induce movement of the initial Gα* from the GAFb to the catalytic 
domain docking site resulting in displacement of both Pγ C-terminal regions from the entrance of 
the active sites and full activation of catalysis (Fig. 1B, Model #2). The accompanying disruption 
of Pγ interactions with the GAFa domains would explain the observation that Gα* activation of 
PDE6 lowers cGMP binding affinity to GAFa noncatalytic sites (Section 5.1.5). 

  5.2.2 Cryo-EM structure of the Gα*-PDE6 complex 

Gao et al. [51] provided the first high-resolution cryo-EM structure of the Gα*-PDE6 
activation complex (PDBID: 7jsn) in which the Gα* subunits are located in the vicinity of the 
GAFb domains of Pαβ (Fig. 1B, Model #1). The chimeric Giα/Gα* specifically interacts with the 
β5/β6 loops of both GAFa and GAFb of Pα (Fig. 6C, cyan) and the GAFb α1/α2 helices and α11 
of the catalytic domain of the Pβ subunit (Fig. 6C, green). Whereas the N-terminal region of Pγ 
retained a very similar conformation to that of nonactivated PDE6 holoenzyme, the polycationic, 
glycine-rich, and C-terminal regions of Pγ all formed numerous interactions with Gα* that 
reflected a major displacement of Pγ from its sites of interaction in the nonactivated PDE6 
holoenzyme [51]. Indeed, the C-terminal residues of Pγ that block the entrance to the active site 
in the nonactivated state undergo an ~60 Å movement upon binding to Gα*, with the C-terminal 
region of Pγ interacting with the Switch II and Switch III elements of Gα* in a similar 
conformation to that observed in the RGS9-1 inactivation complex [62]. 

Based on their cryo-EM structure, Gao et al. proposed an alternating-site activation 
mechanism in which both Gα* subunits associated to the GAFb domains in a complex with Pγ 
(including its inhibitory C-terminal region), and allosterically induce catalytic activation of one 
PDE6 subunit at a time. They proposed that binding of the Ras sub-domain of the first Gα* to Pγ 
removes the C-terminal region from the catalytic domain to form a stable interaction with the 
GAFb domain, but without catalytic activation occurring. Upon binding of the second Gα*, 
catalytic activation ensues at one active site at a time, with the GAFb domain of PDE6 and the 
helical sub-domain of Gα* allosterically regulating which catalytic domain is active (for details, 
see Fig. 6 of ref. [51]). Of note, this mechanism predicts that Gα*-activated PDE6 achieves a 
level of catalytic activation that is one-half the rate of Pαβ lacking Pγ (see Section 5.1.2). 

  5.2.3 The sequential mechanism of transducin activation of PDE6 remains 
unresolved 

The differences in the structural models put forward in these two studies can be explained 
in part by differences in how the Gα*-PDE6 activation complexes were prepared for structural 
determinations. The Irwin et al. study [50] relied on native Gα and PDE6 purified from bovine 
retina and reconstituted on liposomes, and XL-MS was performed under conditions where PDE6 
was activated by aluminum fluoride-activated Gα* (Gα*-GDP-AlF4

-) to the same extent as 
purified Pαβ (i.e., lacking bound Pγ). While these experimental conditions attempted to mimic 
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the physiological milieu of the photoreceptor membrane, the XL-MS approach used in this study 
has two limitations: (1) the relatively low resolution of XL-MS is a consequence of the 
molecular distances between crosslinked molecules limiting spatial resolution, and (2) under 
conditions where Gα* interacts with multiple sites on PDE6, the identified crosslinks may reflect 
an ensemble of Gα* interactions with PDE6 and thus limit the accuracy of delineating distinct 
GAFb and catalytic domain docking sites on PDE6. 

Challenges reported by Gao et al. [51] in preparing stable and homogeneous specimens 
for cryo-EM analysis likely influenced the structure that they solved. Issues with their Gα*-
PDE6 activated complex include: (1) use of a chimeric G-protein consisting of 18 Giα residues 
substituted into the transducin Gα sequence that could alter binding interactions with PDE6; (2) 
steric constraints imposed by tethering the two chimeric Giα/Gα* subunits together with an 
antibody likely restricted the number of orientations that Gα could productively bind to PDE6; 
(3) inclusion of vardenafil (a PDE5/6 inhibitor) to stabilize the structure would have weakened 
Pγ interactions with the catalytic domain [97,41,98,42] and enhanced the ability of Gα* to 
displace Pγ from the active site. 

In spite of differences in experimental design and structural determination, the fact that 
both studies identified interactions of Gα* with the GAFb domains of PDE6 may be explained 
by recalling that the Pγ subunit is an intrinsically disordered protein (see Section 3.1). The highly 
disordered and solvent-exposed polycationic and glycine-rich region of Pγ (Fig. 5A-B) may 
permit favorable interactions of Pγ with multiple orientations of Gα*, thereby “reeling in” Gα* 
to form a stable interface of interactions with the Pα and Pβ catalytic subunits. This so-called 
“fly-casting effect” postulated for intrinsically disordered proteins [99] could explain why 
membrane-associated Gα* [50] and antibody-linked chimeric Giα/Gα* dimers in solution [51] 
are both able to form stable complexes with PDE6 by interacting with the central region of Pγ. 
We hypothesize that the flexibility of the disordered Pγ subunit could not only account for the 
ability of Gα* to interact with the GAFb domains but also as a mechanism for the Gα*-Pγ 
complex to alternate between docking sites on the GAFb and the catalytic domains of PDE6. 

These studies both highlight the fact that many of the important functional sites involved 
in PDE6 interactions for Gα* exhibit conformationally dynamic behavior—not just the 
intrinsically disordered Pγ subunit, but also several elements of Pαβ that exist as unfolded or 
loosely coiled conformations and which participate in allosteric communication between the 
regulatory and catalytic domains of PDE6. Future efforts to elucidate the sequential mechanism 
of transducin activation of PDE6 will require new structural approaches that can resolve the 
conformational dynamics at each step in the activation sequence, as well as identify the structural 
basis of the functional asymmetry of Gα* subunits binding to the PDE6 holoenzyme.  

 

6. Molecular etiology of retinal diseases associated with inherited defects in PDE6 genes 

Many inherited retinal diseases, including retinitis pigmentosa [100], congenital 
stationary night blindness [101], achromatopsia [102], cone dystrophy [103], and bradyopsia 
[104], result from disruption of components of the visual transduction pathway in rod and cone 
photoreceptors. Mutations in the genes coding for rod PDE6 (gene names: PDE6A, PDE6B, and 
PDE6G) or cone PDE6 (PDE6C, PDE6H), cataloged at the Retinal Information Network 
(https://sph/uth.edu/RETNET), have been correlated with a significant fraction of these retinal 

https://sph/uth.edu/RETNET
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diseases [100]. In some cases, excessive accumulation of the second messenger cGMP is 
believed to lead to photoreceptor cell death and retinal degeneration [105,106]. Cytotoxic levels 
of cGMP in photoreceptors can result from defects in PDE6 catalytic subunits [107-109] or from 
defects in other phototransduction genes [105].  

 

 6.1 Retinal diseases associated with mutations in the catalytic subunits of PDE6 

A large number of germline missense mutations in human PDE6 genes have been 
reported in ClinVar (PDE6A, 138; PDE6B, 173; PDE6C, 102; PDE6G, 7; PDE6H, 5; as of 
3/1/21), with the large majority characterized as “uncertain clinical significance” and 2% or less 
cited in OMIM as having a documented pathogenic phenotype. Next-generation sequencing 
technologies will continue to accelerate the identification of new nonsynonymous single-
nucleotide variants (both non-coding and missense), but widely used pathogenicity prediction 
algorithms are limited in their ability to correlate genotype with a clinical disease phenotype 
[110,111]. 

Advances in determining the atomic level structure of the rod PDE6 holoenzyme (Section 
4) have provided mechanistic insights for some of the disease-associated mutations of PDE6 
catalytic and inhibitory subunits (e.g., [112]). However, knowledge of the structure of the PDE6 
holoenzyme alone is inadequate to evaluate mutations that affect conformational dynamics 
responsible for allosteric regulation of PDE6 or that disrupt PDE6 interactions with its binding 
partners regulating activation (by Gα*) and inactivation (by RGS9-1) of the phototransduction 
pathway. To illustrate the latter point, Fig. 7 shows a structural model of the PDE6 catalytic 
domains decorated with reported missense mutations in PDE6A (red) and PDE6B (magenta) that 
are within 10 Å of the Gα* interaction surface with the catalytic domain of PDE6 [50]. Of these 
13 PDE6 missense mutations, only one PDE6B mutant (Trp807Arg; large magenta sphere) is a 
known disease-causing mutation [113], while the others are currently of uncertain clinical 
significance. 

6.2 Retinal diseases associated with mutations in Pγ subunit 

To date, few mutations in the rod and cone Pγ genes have been associated with retinal 
disease. In the case of the PDE6G gene, one report identified a nucleotide transversion in the 
third intron that resulted in expression of Pγ in which the C-terminal region had been replaced 
with irrelevant sequence; this mutation was observed to co-segregate with autosomal-recessive, 
early-onset retinitis pigmentosa [114]. For PDE6H, a truncation mutant of cone Pγ in which only 
the first twelve amino acids were expressed (S12X) resulted in incomplete achromatopsia [115]. 
For both PDE6G and PDE6H, additional inherited mutations in both genes have been reported in 
ClinVar but are currently of uncertain clinical significance. Mouse models of retinal disease in 
which site-directed missense mutations were introduced into rod Pγ underscore the critical 
functional roles that Pγ plays in phototransduction [116-119]. 

 
 

7. Pharmacotherapeutic approaches to modulating PDE6 activity  
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The PDE superfamily has become an important target for drug development, with a 
number of family-specific PDE inhibitor compounds for PDE1, PDE3, PDE4, and PDE5 having 
received FDA approval for the treatment of pulmonary hypertension, cardiac failure, male 
erectile dysfunction, intermittent claudication, and pulmonary disease [120,121]. Most PDE-
targeted therapeutic compounds are classical active site inhibitors, but more recently therapeutic 
strategies involving allosteric modulators or disruptors of specific protein-protein interactions 
have received increased attention [121]. 

 7.1 Many compounds designed to inhibit PDE5 also inhibit PDE6 

Because activation of PDE6 catalysis is a critical event for transforming light stimuli into 
the electrical response of photoreceptor cells, there are no known clinical applications for 
compounds that would specifically inhibit PDE6. As a consequence, interest in the 
pharmacology of PDE6 has focused on assessing possible adverse side effects arising from 
administration of PDE inhibitors targeting other PDE families. This is particularly relevant to 
inhibitors targeting PDE5 (e.g., sildenafil, vardenafil, tadalafil), since PDE6 is most closely 
related (structurally and biochemically) to PDE5 [122] and several marketed PDE5 inhibitors are 
known to have moderate, reversible adverse effects on vision—either via direct inhibition of 
PDE6 activity in photoreceptor cells or indirectly by inhibition of PDE5 present in ocular blood 
vessels [123-125]. 

Comparative studies of the ability of PDE5 inhibitors to also inhibit PDE6 have 
documented that some compounds are more aptly termed “PDE5/6 inhibitors” (e.g., sildenafil, 
vardenafil) due to their lack of selectivity in discriminating the active sites of PDE5 and PDE6 
[97,126,98]. In contrast, tadalafil is a PDE5-selective inhibitor that binds to the PDE5 active 
with >200-fold greater affinity than to PDE6 [127,98]. Several molecular determinants for 
tadalafil’s selectivity for PDE5 over PDE6 have been localized to the M-loop (and adjacent α-
helices) by site-directed mutagenesis of the PDE5 catalytic domain drug interacting residues 
[128]. Structural studies have also emphasized the importance of the catalytic domain H-loop in 
inhibitor binding [129]. Molecular dynamics simulations of homology models of PDE6 docked 
with inhibitor compounds have implicated additional structural elements important for inhibitor 
binding to the active site [130,131]. Future efforts in structure-guided design of next-generation 
PDE5 inhibitors lacking affinity for PDE6 will benefit from recent advances in structural 
determinations of the PDE6 catalytic domain such as the cryo-EM structure of vardenafil 
occupying the active site rod PDE6 [51]. 

7.2 Future prospects for drugs and interfering peptides targeting allosteric sites or 
protein-protein interfaces in PDE6 

Given that excessive accumulation of cGMP in photoreceptor cells is a hallmark of 
retinal degenerative diseases arising from inherited defects in PDE6 or other phototransduction 
genes [132], therapeutic approaches that shift the dynamic balance of cGMP synthesis and 
degradation by modestly elevating PDE6 catalytic activity to reduce cGMP concentrations their 
dark-adapted levels could have neuroprotective effects that slow or halt photoreceptor cell death. 
As the combination of biochemical and structural studies of PDE6 further define the allosteric 
communication network in PDE6 and the sites of interaction with Gα* and other binding 
partners, binding pockets for small molecule allosteric activators or synthetic peptides that 
disrupt protein-protein interactions may be developed that can elevated the basal activity of 
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PDE6 without disrupting the ability of Gα* to activate PDE6 in response to photoactivation of 
the visual excitation pathway.  

Allosteric modulators as potential therapeutic agents for several PDE families have been 
reported (reviewed in [121]), including compounds targeting GAF domains. Since GAF domains 
(outside of the vertebrate lineage) are known to bind a wide variety of small molecules in 
addition to cyclic nucleotides [23], the regulatory domains of GAF-containing PDEs may serve 
as candidates for allosteric modulators of catalytic activity [24]. Given the reciprocal positive 
cooperativity of cGMP and Pγ binding and its impact on the basal activity of PDE6 (Section 4.3), 
it is conceivable that drugs that induced cGMP dissociation from the GAFa binding site would 
modestly reduce Pγ affinity and elevate catalytic activity at the PDE6 active site. Compounds 
that bind to an allosteric pocket within the catalytic domain of PDE5 (but not to the active site 
where competitive inhibitors bind) and induce conformational changes that inhibit PDE5 activity 
have also been identified [133]. The fact that PDE5/6 inhibitors can compete with Pγ for binding 
to the active site of PDE6 and elevate catalytic activity [97,98] supports the feasibility of 
identifying allosteric pockets within the PDE6 catalytic domain that could disrupt Pγ interactions 
at the entrance to the active site and elevate PDE6 catalysis. Finally, the use of interfering 
peptides to disrupt protein-protein interactions has recently become more feasible with the 
advancement of new approaches for peptide administration [134], and may be a promising 
avenue for modulating PDE6 activity through targeted disruption of specific sites at which Pγ 
interacts with the catalytic subunits.  

 

8. Conclusion 

Integrating the wealth of biochemical information spanning several decades of research 
with recent advances in the structural biology of PDE6 is providing new insights into the 
regulation and structural organization of the PDE6 signaling complexes that control the rate-
limiting steps for activation and inactivation phases of the phototransduction pathway. However, 
knowledge of the molecular organization of the PDE6 holoenzyme and the sites of interaction 
with its binding partners is insufficient by itself to describe the dynamics of allosteric regulation 
of PDE6, the sequential mechanism by which transducin binds to and relieves the inhibition of 
catalysis imposed by the Pγ subunit, or the subsequent binding of the RGS9-1 inactivation 
complex to terminate the activated lifetime of PDE6. Future efforts should be directed toward a 
greater understanding of the conformational dynamics of the intrinsically disordered Pγ subunit 
as well as of the flexible elements of the regulatory and catalytic domains of the PDE6 catalytic 
dimer. Only then will we be able to delineate the complex allosteric communication network of 
the PDE6 holoenzyme and the sequential mechanism of transducin activation and RGS9-1-
catalyzed inactivation underlying the phototransduction pathway in rod and cone photoreceptors. 
This will enable deciphering the “molecular phenotypes” of disease-causing mutations in PDE6 
and its interacting partners as well as advancing the design of effective treatments for retinal 
degenerative diseases. 
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Fig. 1 Schematic diagram of the visual excitation pathway occurring on the disk membrane of 
rod photoreceptors  A. Photoisomerization of 11-cis retinal to all-trans retinal (red) bound to the 
visual receptor rhodopsin (Rhod, green) induces conformational changes in rhodopsin (R*). 
Enhanced binding of R* to the photoreceptor G-protein, transducin (Gαβγ), results in GTP 
exchange on the G-protein α-subunit (Gα, blue) and dissociation of Gα*-GTP from R* and from 
Gβγ (tan and brown).  B. Rod PDE6 holoenzyme (αβγγ) is maximally activated upon binding of 
two Gα*-GTP molecules that result in displacement of the intrinsically disordered Pγ subunits 
from the enzyme active site (red circles). Two different mechanisms of Gα* activation of PDE6 
[50,51] are discussed in the Section 5.2. Black zig-zag lines represent post-translational 
modifications: Gα, heterogeneous N-terminal acylation [135,86]; Gγ, farnesyl group [136,137]; 
Pαβ, farnesyl and geranylgeranyl groups [138]. Space-filling models were generated from the 
following sources: R*-Gαβγ [139]; Gα*-PDE6 activated complexes [50,51]. 
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Fig. 2 The PDE superfamily The family name is indicated to the left with the number in 
parentheses indicating the number of genes in that family. Gray lines indicate the length of the 
primary sequence of a representative isoform of each family containing multiple genes and/or 
isoforms. Designations for the structural elements are catalytic domain (purple); CaM, 
calmodulin binding sites; GAFa and GAFb, ligand binding domain found in cGMP-binding 
PDEs, Anabaena adenylyl cyclase, and E. coli FhlA; TM, transmembrane region; UCR1 and 
UCR2, upstream conserved regions; P, C-terminal prenylation site; REC, cheY-homologous 
receiver domain; PAS, Per-Arnt-Sim domain. Adapted from [121]. 
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Fig. 3. Catalytic domain of PDE6  The catalytic domain of Pβ (PDBID: 6mzb, cyan) was aligned 
with the PDE5 catalytic domain crystal structure (PDBID: 1t9s) in order to visualize the divalent 
cations Zn (gray) and Mg (green) and the 5’-GMP product in the enzyme active site. The side 
chains of residues involved in the metal binding (M-site, light brown), the nucleotide binding site 
(Q-site, orange), or participating in the catalytic reaction mechanism (red) are shown. The 
residue implicated in catalytic acceleration (Gly562, green [21]) is located behind the Zn atom. 
Also shown are the conformationally dynamic H-loop (pale cyan) and M-loop (lavender) 
implicated in regulation of the catalytic rate. 
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Fig. 4. Structural changes to the regulatory GAFab domains of cone PDE6 upon cGMP binding 
to the GAFa domain  Structural models of the apo (cyan) and cGMP-bound (magenta) cone 
GAFab domains derived from XL-MS analyses and MD simulations [36] identified several 
regions undergoing conformational changes upon cGMP binding, including the GAFa β1/β2 
loop and β4/α4 loop, the LH1 helix linking GAFa to GAFb, and GAFb β1/β2 loop and β4/β5 
loop (orange). 
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Fig. 5. Structural and functional sites of interaction of the inhibitory Pγ subunit with its binding 
partners A-B. Structural model of rod PDE6 holoenzyme based on the cryo-EM structure and 
refined by chemical crosslinking studies [49,50]. The Pα (A.) and Pβ (B.; 180⁰ rotation) domains 
are colored: GAFa, lavender; GAFb, cyan; catalytic domain, blue. The Pγ subunit Cα backbone 
atoms are depicted as spheres. C. Structural model of the Gα*-GDP-AlF complex with Pγ [50]. 
The Ras and helical sub-domains are colored red and blue, respectively, and Pγ residues 24-45 
are depicted as green Cα carbons. The GDP-AlF ligands are from the alignment with PDBID: 
1tad.  D. Structure of the RGS-Gα*-Pγ complex (PDBID: 1fqj; [62]) depicting the RGS domain 
(wheat), Gα*-GDP-AlF (helical (light green) and Ras (dark green) sub-domains; Switch II and 
Switch III segments highlighted in magenta) and Pγ glycine-rich region (orange) and C-terminal 
region (red)).  E. The amino acid sequence of bovine rod Pγ (P04972) is shown, with the 
structural regions colored. Functional sites that affect the affinity of different regions of Pγ to 
either inhibit catalysis or enhance noncatalytic cGMP binding are shown as gray bars. Regions 
of Pγ that affect the efficacy of Gα* to activate PDE6 are shown as green (enhancing) or red 
(suppressing) bars [54,40], and the region that enhances cGMP dissociation from noncatalytic 
sites shown as an unfilled bar [54]. Sites on Pγ that affect the ability of Pγ to potentiate RGS9-1-
catalyzed GTPase activity of Gα*-GTP are shown as black bars. Adapted from [54] and 
references cited therein; see text for details. 
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Fig. 6 Structural models of the interacting residues between Gα* and Pαβ  Interface residues 
between Pα (cyan) and Pβ (green) with the Gα* subunit were calculated using the 
InterfaceResidues script in Pymol, and depicted as a solid surface. A. Interactions of a Gα* 
subunit with the GAFb domain of PDE6 (derived from Fig. 3C of [50]).  B.  Interactions of a 
Gα* subunit with the catalytic domain of PDE6 (derived from Fig. 3A of [50]).  C.  Interactions 
of a chimeric Giα/Gα* with the GAFb domain of PDE6 (derived from PDBID: 7jsn; [51]). For 
clarity, the Gα and Pγ subunits are not shown. 
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Fig. 7 Missense mutations in the catalytic domain of rod PDE6 at the Gα* interface The catalytic 
domains of rod PDE6 (Pα, cyan; Pβ, green) are shown, with missense mutations (Pα, red; Pβ, 
magenta) reported in ClinVar that are within 10 Å of the Gα binding interface with the catalytic 
domains (see Fig. 3A; [50]. Mg2+ and Zn2+ in the active site are shown as black and gray spheres. 
The large magenta sphere is a confirmed disease-causing missense mutation. 
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