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Abstract 

Experimental characterization and crystal plasticity modeling of mechanical properties 

and microstructure evolution of additively manufactured Inconel 718 superalloy 

By 

Saeede Ghorbanpour 

University of New Hampshire, September 2021 

In this thesis, the mechanical behavior of the additively manufactured (AM) IN718 nickel-based 

superalloy and their correlations with the evolution of microstructure are studied comprehensively. 

The effects of manufacturing parameters, build orientations, and post processing procedures, i.e. 

standard heat treatment and hot isostatic pressing (HIP), on various mechanical properties including 

monotonic compression and tension strength, low cyclic fatigue performance, high cyclic fatigue 

behaviour, and fatigue crack growth behavior are investigated. Due to the high temperature 

applications of the IN718 alloy, elevated temperature properties are examined as well. Electron 

Backscattered Diffraction (EBSD) technique is employed to measure the initial and deformed 

textures. In addition, an elasto-plastic self-consistent polycrystal plasticity model is developed to 

interpret the deformation behavior of the alloy in room temperature and high temperatures. The model 

incorporates the contributions of solid solution, precipitates shearing, and grain size and shape effects 

into the initial slip resistance. For activating the slip systems, the non-Schmid effects and backstress 

are implemented in the model. The crystal plasticity model is capable of simulating the monotonic and 

large-strain load reversal cycles of the material with pole figure difference (PFD) values no more than 

0.2.  

https://www.sciencedirect.com/topics/engineering/polycrystal
https://www.sciencedirect.com/topics/engineering/plasticity-model
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Chapter 1: A crystal plasticity model incorporating the effects of precipitates in superalloys: 

Application to tensile, compressive, and cyclic deformation of Inconel 718  

This chapter was published as “A crystal plasticity model incorporating the effects of precipitates in 

superalloys: Application to tensile, compressive, and cyclic deformation of Inconel 718” in the 

International Journal of Plasticity, 99 (2017): 162-185. The Authors of this paper are Saeede 

Ghorbanpour, Milovan Zecevic, Anil Kumar, Mohammad Jahedi, Jonathan Bicknell, Luke Jorgensen, 

Irene J Beyerlein, and Marko Knezevic. My contribution to this chapter was performing all 

mechanical testing, performing initial and final texture measurements. In addition, I developed the 

crystal plasticity model by modifying the initial slip resistance calculations, introducing the mean free 

path, latent hardening matrix, non-schmid effect, and backstress effects to the model. I performed all 

the simulations and generated all the simulation results. 
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A crystal plasticity model incorporating the effects of precipitates in superalloys: Application to 

tensile, compressive, and cyclic deformation of Inconel 718 

Saeede Ghorbanpoura, Milovan Zecevica, Anil Kumarb, Mohammad Jahedia, Jonathan Bicknellc, Luke 

Jorgensenc, Irene J. Beyerleind, and Marko Knezevica, 

 

a Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824, USA. 

b Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA. 

c Turbocam Energy Solutions, Turbocam International, Dover, NH 03820, USA. 

d Mechanical Engineering Department, Materials Department, University of California at Santa 

Barbara, Santa Barbara, CA 93106, USA.   

 

 

Abstract  

An elasto-plastic polycrystal plasticity model is developed and applied to an Inconel 718 (IN718) 

superalloy that was produced by additive manufacturing (AM). The model takes into account the 

contributions of solid solution, precipitates shearing, and grain size and shape effects into the initial 

slip resistance. Non-Schmid effects and backstress are also included in the crystal plasticity model for 

activating slip. The hardening law for the critical resolved shear stress is based on the evolution of 

dislocation density. Using the same set of material and physical parameters, the model is compared 

against a suite of compression, tension, and large-strain cyclic mechanical test data applied in different 

AM build directions. It is demonstrated that the model is capable of predicting the particularities of 

both monotonic and cyclic deformation to large strains of the alloy, including decreasing hardening 

rate during monotonic loading, the non-linear unloading upon the load reversal, the Bauschinger 

effect, the hardening rate change during loading in the reverse direction as well as plastic anisotropy 

and the concomitant microstructure evolution. It is anticipated that the general model developed here 

can be applied to other multiphase alloys containing precipitates.  
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 Introduction 

Inconel 718 (IN718) is a Ni-based superalloy exhibiting a range of excellent properties including high 

yield strength, toughness, and corrosion resistance enabling the components made of it to operate 

under extreme mechanical and thermal conditions (Francis et al., 2014; Kuo et al., 2009; Mei et al., 

2015; Rao et al., 2003; Slama and Abdellaoui, 2000). It is extensively used for various applications in 

turbine engines, jet engines, power generation plants, heat treatment equipment, etc. (Davis, 1997; 

Herderick, 2015; Knezevic et al., 2012b).  Some of these parts can take on complex shapes. Achieving 

the shapes needed often requires machining. The costs can be expensive since these materials are very 

hard and can quickly wear machining tools. An alternative technique to make the required shapes of 

IN718 is additive manufacturing.   

Modeling the deformation behavior of IN718, made by any manufacturing process, is challenging due 

to its complex microstructure featuring γ' and γ'' precipitates within a γ matrix (Antolovich, 2015; Rao 

et al., 2003; Xiao et al., 2005). The chemical composition of the γ' precipitate is Ni3(Al,Ti). This γ' 

precipitate is usually spherical in shape with a diameter of 20-30 nm when the material is heat treated 

according to AMS 5663, where the atoms are arranged in a L12 structure (Paulonis et al., 1969; 

Worthem et al., 1990). The lattice parameter a for the γ' compound face-centered cubic (FCC) crystal 

structure is 0.3605 nm (Wlodek and Field, 1994). The alloy retains its strength at up to 650 °C 

primarily due to metastable γ''. The chemical composition of the γ'' precipitate is Ni3Nb. These 

precipitates are disk shaped, wherein the atoms are arranged in a D022 structure (Paulonis et al., 1969; 

Worthem et al., 1990). The diameter of the disks is 20-30 nm, while their thickness is 5-6 nm, when 

the material is heat treated according to AMS 5663 (Kalh et al.; Worthem et al., 1990; Xiao et al., 

2005; Xie et al., 2005b). The values of lattice parameters a and c for the γ'' body-centered tetragonal 

(BCT) compound are 0.3624 nm and 0.7406 nm, respectively (Brown and Muzyka, 1987; Hinojos et 

al., 2016; Paulonis et al., 1969). Additionally, the alloy typically contains a small, less than one weight 
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percent, fraction of coherent δ precipitates (Wang and Li, 2004). The composition of the δ phase is 

also Ni3Nb but the structure is orthorhombic with the following lattice constants a = 0.5114, b = 

0.4244 nm, and c = 0.4538 nm (Dehmas et al., 2011; Fang et al., 1992). The metastable γ'' 

decomposes into the stable Ni3Nb δ phase at very long aging times, which could be met in service.  

The plastic deformation response, including flow stress, hardening rate, tension-compression 

asymmetry and temperature dependence of Ni-based superalloys depends on the precipitate volume 

fraction and morphologies. Plasticity of the γ matrix is primarily carried by twelve octahedral 

{111}〈11̅0〉 glide systems, although activity of the six cubic {001}〈110〉 glide systems has also been 

reported (Ding et al., 2004; Haddou et al., 2004; Österle et al., 2000). Generally, the γ' and γ'' 

precipitates are the primary strengtheners. Dislocations gliding on octahedral planes shear the γ' and γ'' 

precipitates, since they are very small, nanoparticles, much smaller than the critical radius above 

which a dislocation would instead loop around the particle. When a dislocation shears through an 

ordered γ′ or γ'' precipitate, it leaves an anti-phase boundary (APB) behind, which increases the energy 

of the crystal (Gleiter and Hornbogen, 1968; Huther and Reppich, 1978; Maciejewski et al., 2013). 

The APB values can affect the slip system selection. The APB energy for the cubic planes tends to be 

lower than that for the octahedral planes (Umakoshi et al., 1984) and hence, screw dislocations would 

tend to cross slip onto the {001} planes. In contrast to γ′ or γ'' strengtheners, the δ precipitates are 

known to deteriorate mechanical properties, unless they appear as spherical δ precipitates at grain 

boundaries, in which case they can prevent grain boundary sliding and improve the material’s creep 

behavior (Davis, 1997; Ghosh et al., 2008). 

Ni-based superalloys containing a large fraction of γ' are known to exhibit a pronounced tension-

compression (T-C) asymmetry (Copley and Kear, 1967a, b; Keshavarz and Ghosh, 2015). [001] γ' 

single crystals show a higher yield stress in tension than in compression and the [011] γ' single 

crystals show a higher yield stress in compression than in tension. It has been proposed that the origin 

of the T-C asymmetry is, in part, due to the non-planar core structure of the screw dislocations and 
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hence influenced by the Non-Schmid (NS) effects on the glide of screw dislocations on the {111} 

planes. According to the Schmid law, dislocation glide activates when the stress tensor projected onto 

the glide plane in its glide direction reaches a value of slip resistance (Schmid and Boas, 1950). 

According to the NS law, dislocation glide results not only from the resolved shear stress along the 

direction of slip (Schmid law) but also from shear stresses resolved along directions orthogonal to the 

slip direction as well as the three normal stress components (Dao and Asaro, 1993). NS effects have 

been observed for every γ' crystal orientation tested in the literature, thus far, with exception of the 

[111] orientation, where the cubic slip has the highest Schmid factor and found to dominate even at 

room temperature (Lall et al., 1979). Complex deformation characteristics of Ni-based superalloys are 

also attributed to the formation of Kear-Wilsdorf (KW) locks, which accompany the shearing large γ′ 

and γ'' precipitates by dislocation glide (Hirsch, 2003; Veyssieìre and Saada, 1996). The KW locks are 

pinned segments of dislocations that are created when they cross slip from octahedral planes in the γ 

matrix to cubic planes within γ' and γ'' and then transitions back onto octahedral planes. It has been 

found that the frequency of KW locks as well as the activity of cubic slip increases with temperature 

(Paidar et al., 1984). With more cross-slip activity with increasing temperature, KW lock formation is 

promoted, resulting in more obstacles for mobile dislocations and enhanced hardening.  

Linking these mechanisms to mechanical behavior is possible with microstructure based constitutive 

laws. For superalloys, many of these modeling efforts have used polycrystalline plasticity schemes 

such as finite element and self-consistent (Francis et al., 2014; Keshavarz and Ghosh, 2015; Shenoy et 

al., 2008). Further, to account for both contributions from elasticity and plasticity, the particular 

elasto-plastic self-consistent (EPSC) mean-field homogenization (Neil et al., 2010; Turner and Tomé, 

1994) is appropriate. In EPSC, a polycrystal is treated as a collection of single crystals each having a 

specific orientation, a volume fraction, and an ellipsoidal shape. Each ellipsoidal representative grain 

orientation is treated as an elasto-plastic inclusion in the homogeneous equivalent medium (HEM), 

which would have average properties of the polycrystal. A self-consistent scheme is used to relate the 

file:///C:/Users/vmoosabeikideh/Downloads/Saeede_Thesis.docx%23_ENREF_96
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deformation of the polycrystal to the deformation of grain. Recently, EPSC has been used to model 

Ni-based superalloys (Francis et al., 2014). The model with a phenomenological Voce-type hardening 

successfully interpreted the elastic lattice strain data gained from a neutron diffraction experiment 

concluding that the γ and γ′ deform jointly in the fine γ′ microstructure, but not in the medium and 

coarse γ′. However, no effort was made to incorporate the shearing of precipitates effect into 

hardening nor backstress and non-Schmid effects were considered. Later, another version of EPSC 

was developed for predicting the behavior of metals under cyclic deformation (Zecevic et al., 2016). 

The model incorporated an updated hardening law that explicitly evolves a set of dislocation densities.  

The hardening law connected inter-granular and slip system backstresses to the annihilation and 

reverse glide of certain populations of dislocations, enabling the prediction of non-linear unloading, 

the Bauschinger effect upon reloading in the reverse direction, and the hardening rate under further 

reversal strains. The model, however, was not used for modeling of materials requiring the 

consideration of precipitates and their effects on dislocation motion and backstress generation.  

The objective of this article is to present an advancement of the EPSC model to account for the effects 

of precipitates, in particular the APB formation due to precipitate shearing and backstress. The model, 

called P-EPSC, is applied to an IN718 Ni-based superalloy that has been fabricated using the direct 

metal laser sintering process (DMLS), which is an additive manufacturing (AM) process. The KW 

locks are unlikely to form in IN718 due to the size of the precipitates but the model is sufficiently 

flexible to incorporate the effect through the latent hardening matrix, which is considered by the 

model. Previously reported room temperature tension and compression tests are used to calibrate and 

validate the model (Smith et al., 2016). Additionally, we performed, also at room temperature, 

experimental large strain load reversal tests and carry out the analogous simulations with the model to 

establish a baskstress and reversible dislocation glide parameters. We show that the model predicts the 

dependence of the mechanical behavior for samples built in different directions, an anisotropy 

stemming primarily from the texture and grain structure elongated in the build direction. The 
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measurements and calculations suggest that as the pre-strain increases, the backstresses increase 

causing the non-linearity of unloading to increase. It is also found that the intra- and inter-granular 

stresses govern the Bauschinger effect while reversible dislocation motion plays a major role in 

hardening during reverse loading. Although we only investigate room temperature deformation in this 

work, the formulation can be extended to elevated temperatures. The microstructure, constituents, and 

behavior of AM IN718 are similar to those of wrought IN718 as well as other Ni-based superalloys, 

and therefore, the microstructure-sensitive model developed here can be generalized to a broad range 

of alloys.  

 

 Material 

2.1 Additive manufacturing   

The samples of IN718 have been fabricated using the direct metal laser sintering process (DMLS) as 

defined in ASTM F2792-12a (2012b). The powder for use in the EOS M280 DMLS machine were 

produced by gas atomization and the final particle sizes had an average diameter of 35μm, and a range 

of <1μm to 80μm. The chemical composition of the powder was (wt%) 55.5 Ni, 18.2 Cr, 5.5 Nb, 3.3 

Mo, 1.0 Co, 0.35 Si, 0.35 Mn, 0.3 Cu, 1.15 Ti, 0.3 Al, 0.08 C, 0.015 P, 0.015S, 0.006 B, and balance 

Fe, meeting the chemical composition of the IN718 standard. The material was printed in the form of 

bars and rods, which were subsequently machines into the samples for testing. The samples were 

finally heat treated according to AMS 5663. This heat treatment results in an optimized structure 

which contains a high fraction of γ' and γ'' phases and a lower fraction of δ phase (Kuo et al., 2009; 

Wang and Li, 2004). The volume fraction of γ' and γ'' phases in the material studied here will be 

presented later in Table 4. 
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2.2 Microstructure  

Samples before and after deformation were prepared for EBSD by sectioning along and perpendicular 

to the loading direction. Automated grinding and polishing procedures were used to prepare the 

sections for characterization. These grinding methods employed a series of SiC grinding papers 

ranging from 120 grit to 1200 grit. The samples were then polished on a cloth using steps of 6 μm and 

0.25 μm diamond polishing compound. At this stage, the samples have been etched for 10-15 s. The 

solution for etching contained 25 mL deionized water, 20 mL hydrochloric acid (HCl), and 5 milliliter 

hydrogen peroxide (30%) (H2O2). Final polish was done by 0.02 μm colloidal silica suspension.  

The automated electron backscattered diffraction (EBSD) data collection was performed using the 

Pegasus system (Octane Plus SDD detector and Hikari High Speed Camera) attached to a Tescan Lyra 

(Ga) field emission scanning electron microscope (SEM) at a voltage of 20 kV. The EBSD scans ran 

over sufficiently large areas to obtain representative texture measurement, at a working distance of 9 

mm and spot size of 56.0 nm, with a 1 μm step size.  

Figure 1a shows an EBSD orientation map to depict the initial grain structure of the alloy. The 

microstructure exhibits columnar grains with average major axis a = 65.93 μm and minor axis b = 

13.16 μm resulting with a ratio of approximately 5. The average grain size in the material is 

approximately 45 μm. The directional columnar grain structure is a consequence of the heat flow 

direction during solidification of DMLS molten pool, which was roughly perpendicular to the surface 

of substrate or the pre-deposited layers.  

To obtain information about the initial crystallographic texture in the material, multiple EBSD scans 

were collected over an area of several square millimeters. Figure 1b shows the corresponding pole 

figures. The measurement finds that the samples possessed a moderately intense <001> texture 

component along the build direction (BD), with multiples of random distribution intensity 

approaching 3.  
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Figure 1. Inverse pole figure (IPF) map showing microstructure in IN718 made by DMLS after heat 

treatment. The colors in the maps indicate the orientation of the built direction (aligned with the axis 

of vertically built samples) with respect to the crystal reference frame according to the IPF triangle. 

On the right are pole figures showing the corresponding texture. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

 

2.3 Mechanical testing   

For calibration and verification of the model, we characterize the plastic anisotropy, T-C asymmetry, 

and the cyclic, tension-compression response to large strains for the IN718 alloy. The material was 

tested in tension using flat dog-bone samples and in compression using cylinders deposited in three 

orientations with respect to BD (figure 2a): vertical (V), diagonal at 45° (D), and horizontal (H) in 

earlier studies (Gribbin et al., 2016; Smith et al., 2016). The tensile test samples were machined using 

a CNC machine according to the ASTM E8 (2015) standard with a gauge section of 25 mm in length 

and cross-sectional geometry of 6 × 3 mm. The compression test samples were machined as right 

cylinders 6 mm in diameter and 8 mm in height. Note that machining reduces the surface roughness 

created by AM. The average roughness was measured to be approximately 0.9 μm finish. 

The specimens for load reversal tests to large strains were designed according to the ASTM E606 

(2012a) standard. We only modified the grip section in order to fit into the existing flat hydraulic 

grips. The gage section remained 14 mm long and 6.35 mm in diameter according to the standard. 

A3 

A3=BD 

BD 

BD 
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Samples were prepared in two orientations with respect to the BD: D and H (figure 2b). These 

samples were also machined to the average roughness of surfaces of approximately 0.9 μm finish. 

After machining all specimens were heat treated per AMS 5663.  

Cyclic loading at room temperature was carried out on an MTS Landmark 370 tension/compression 

servohydraulic-testing machine with a controller and Flextest software. In this machine, samples were 

clamped with hydraulic grips. The nominal strain rate of the tests was 10-3 s-1. During the tests, 

actuator load and displacement and average strain over a 25 mm gage length, acquired with an MTS 

623.12E-24 extensometer, were recorded.  

 

Figure 2. Orientation of ASTM E8 tensile bars and compression samples with respect to the BD. (b) 

Orientation of ASTM E606 samples used for cyclic loading with respect to the BD. The loading 

direction (LD) is coincident with the sample orientation in both (a) and (b).  

 

2.4 Stress-strain response  

To test for tension-compression asymmetry in flow behavior, the samples were tested separately in 

compression and in tension. Due to the moderate texture and elongated grain structure along the BD, 

both tension and compression tests were repeated for the V, D, and H samples to assess anisotropy. 

Figure 3 presents the measured compressive and tensile true stress–true strain responses of DMLS 

heat-treated material for the three builds. Multiple samples (at least five samples) were tested for 

every direction and the results were repeatable to less than 3% difference. We observe that all curves 

(a) (b) 
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exhibit a classical decreasing hardening rate throughout, a signature of the slip-dominated plastic 

deformation. Samples in all build directions exhibited significant T-C asymmetry. The T-C 

asymmetry did not depend on build direction; the tensile flow stresses are lower than the compression 

flow stresses in all cases. Table 1 shows yield stress for all six monotonic tests. In both tension and 

compression, the flow stress is found to depend on the loading direction with respect to the build 

direction. The material built in the H and D directions exhibited similar flow stresses and were higher 

than those tested in the V direction.  

 

Table 1. Yield stress [MPa] (0.2% offset) in tension and compression as a function of build direction. 

 Vertical Diagonal Horizontal 

Tension 1215 1305 1290 

Compression 1255 1370 1345 

 

Next, the material was tested under large strain cyclic deformation. The samples were first pulled in 

tension to a given strain level and then unloaded and reloaded in compression until the total strain was 

zero. Finally, they were reloaded in tension to failure. Figure 4 shows the true stress–true strain curves 

for the H samples, when the samples are first loaded in tension to strains of either (a) 0.02 or (b) 0.03. 

Upon unloading, the material exhibits an initial linear portion and a subsequent non-linear portion. 

The extent of the macroscopically non-linear portion increases with the level of plastic pre-strain. 

When the material becomes compressed, it yields at a lower value than yield in the tensile pre-strain. 

After yielding, the hardening rate rapidly increases. The lower yield in reverse loading followed by a 

rapid hardening rate is characteristic of the Bauschinger effect for many materials (Bauschinger, 

1886). The lower yield in the reversal compression path than forward tension path can be attributed to 

the BE rather than the T-C asymmetry, since as we have seen in figure 3, when tested separately 

compression would have a higher yield stress than tension. 
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Figure 3. True stress-true strain response of IN718 samples as a function of built direction in (a) 

compression and (b) tension.  

 

Figure 4c compares the forward-reverse responses for 0.01, 0.02, 0.03, and 0.04 tensile pre-strain. The 

BE became more pronounced with higher pre-strain. The corresponding normalized strain hardening 

behavior is shown in figure 4d. The difference between tension vs. compression is clearly evident, 

where tension is much steeper than compression. Also, the slope is a strong function of pre-strain 

level. The normalization factor is the shear modulus, μ, taken to be 80GPa (Fukuhara and Sanpei, 

1993). The two curves start from the value corresponding to the ratio between Young's modulus and 

the shear modulus, E/μ (Jahedi et al., 2017; Knezevic et al., 2010). Due to non-linear unloading, the 

compressive curves are always below E/μ at zero macroscopic stress. The same is true for the tensile 

reloading curves. 

Figure 4e shows that for every forward strain level, the flow stress in reversal (compression) remained 

below that reached in the forward straining (tension), a behavior referred to as permanent softening. 

This type of permanent softening after strain reversal was first observed in (Hasegawa et al., 1975) for 

a polycrystalline Al alloy during tension and compression. This softening was attributed to the 

annihilation of dislocations (recovery effects) after the reversal of the slip directions during loading in 

the reverse direction.  

(a) (b) 
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A few load reversal tests were repeated for the D samples. Figure 5 shows that the behavior is similar 

to the H sample response when first tension tested to 0.02.  The BE is slightly smaller in the sense that 

the difference in yield stress between the forward and reverse load paths is smaller for the D sample 

than the H sample.   

 

 Crystal plasticity model 

A polycrystal model, called P-EPSC, is developed here in order to provide a microstructure-based 

constitutive law for IN718, one that can give insight into the microstructural origin of the observed 

deformation behavior: tension-compression asymmetry, anisotropy with respect to build direction, 

non-linear unloading, the BE, and the change in strain hardening rate during strain reversals. The 

model is based on a polycrystalline EPSC formulation originally developed in (Turner and Tomé, 

1994) and later extensions (Lentz et al., 2015a; Lentz et al., 2015b; Neil et al., 2010; Zecevic et al., 

2017; Zecevic and Knezevic, 2017; Zecevic et al., 2015). Here we adopt a recently presented version 

of the EPSC model for cyclic loading (Zecevic and Knezevic, 2015), which integrates a hardening law 

based on evolution of dislocation density and slip system backstresses and further extend it to 

materials containing precipitates, such as IN718. In this new development, the effect of intermetallic 

APB is treated as well as the backstresses are due to not only grain-to-grain interactions within a 

single-phase, as before, but also from the precipitates. Note that the modeling approach does not 

explicitly model the precipitates but accounts for them in a homogenized way.  This is a reasonable 

assumption since their size is orders of magnitude smaller than the grain size and their shape and 

distributions are not highly oriented. The modeling framework is described in the next section.  
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Figure 4. True stress-true strain response of IN718 samples built horizontally under single tension-

compression cycle pre-strained in tension to (a) 0.02 and (b) 0.03 and then pulled to failure, and 

multiple tension-compression cycles pre-strained in tension to (c) 0.01, 0.02, 0.03, and 0.04 and then 

pulled to failure. Macro-yield points in compression at approximately 0.005 offset are indicated. (d) 

Strain hardening rates corresponding to (c). (e) True stress-true strain curve shown in (c) as a function 

of accumulated true strain showing drops in yield stress upon load reversal and permanent softening 

during subsequent straining.  

(c) (d) 

(e) 

(a) (b) 
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Figure 5. Comparison of true stress-true strain response of IN718 samples built horizontally and at 

45° under single tension-compression cycle pre-strained in tension to a strain of 0.02 and then pulled 

to failure.   

 

In EPSC, a polycrystal is represented by a set of grains with each having an orientation, shape, and a 

volume fraction. Each grain is treated as an elasto-plastic inclusion embedded in a homogeneous 

effective medium (HEM). Individual grains do not interact explicitly with each other but only with 

HEM (Lipinski and Berveiller, 1989).The elementary inclusion problem is solved using a Green’s 

function approach. Enforcing the macro-homogeneity condition of self-consistency between the 

macroscopic stress and grain average stresses allows for calculation of the elasto-plastic properties of 

the effective medium. The HEM response corresponds to that of the polycrystal and is to be compared 

with that of the tested sample.” 

In the description below, we use “∙” to represent a contracted or dot product and “⊗” for uncontracted 

or tensor product.   

The macroscopic Jaumann stress rate and strain rate are linked through the following linear 

relationship: 

 �̂� = 𝐋�̇�,          (1) 
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where 𝐋 is the instantaneous elasto-plastic stiffness tensor of the polycrystal, which at the outset is 

unknown and must be solved iteratively through the standard self-consistent procedure (Turner and 

Tomé, 1994) until equilibrium and strain compatibility are satisfied (Eshelby, 1957). The strain rate in 

the individual crystals is related to the macroscopic strain rate via 

�̇�𝑐 = 𝐀𝑐�̇�,          (2) 

where 𝐀𝑐 = (𝐋𝑐 + 𝐋𝑐∗
)

−𝟏
(𝐋𝑐∗

+ 𝐋) is the localization tensor for elasto-plastic ellipsoidal inclusion, 𝐋𝑐 

is the instantaneous single crystal, c, elasto-plastic stiffness tensor, and 𝐋𝑐∗
= 𝐋(𝐒𝑐−1 − 𝐈) is the 

effective stiffness tensor.  The latter relates the stress and total strain rate in a grain to the stress and 

total strain rate in the macroscopic medium through an interaction equation, given by (�̂�𝒄 − �̂�) =

−𝐋𝑐∗
(�̇�𝑐 − �̇�), and it contains the 𝐒𝑐, which is the symmetric Eshelby tensor and 𝐈 is the fourth rank 

identity matrix.  

 

Next the condition that the polycrystal stress and strain rate is equal to the volume average of the 

stress and strain rate in grains is enforced: 

     �̂� = 〈�̂�𝑐〉,          (3) 

and  

   �̇� = 〈�̇�𝑐〉,          (4) 

which provides an expression for L:  

𝐋 = 〈𝐋𝑐𝐀𝑐〉〈𝐀𝑐〉−𝟏.         (5) 

Last, to calculate the macroscopic Cauchy stress, we recall the relationship between the Cauchy stress 

rate and Jaumann rate given by �̇� = �̂� + 〈𝐖c𝛔c〉 − 〈𝛔c𝐖c〉 = 𝐋�̇� + 〈𝐖c𝛔c〉 − 〈𝛔c𝐖c〉, where 𝐖c is 

the elastic spin of crystal, c. The above relationship is integrated explicitly over time, i.e.,  𝛔𝑛+1 =
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𝛔𝑛 + 𝐋𝑛�̇�𝑛∆𝑡 + 〈𝐖𝑛
𝑐𝛔𝑛

𝑐 〉∆𝑡 − 〈𝛔𝑛
𝑐 𝐖𝑛

𝑐〉∆𝑡.  With the remaining field variables, such as the elastic spin 

and strain rate updated at the current increment n, the macroscopic stress can be updated for the next 

increment n + 1.    

The constitutive relationship at the single crystal level between the Jaumann stress rate, �̂�𝑐, and the 

strain rate, �̇�𝑐, is: 

 �̂�𝑐 = 𝐂𝑐(�̇�𝑐 − ∑ 𝐦𝑐,𝑠�̇�𝑐,𝑠
s ) − 𝛔𝑐𝑡𝑟(�̇�𝑐),      (6) 

where 𝐂𝑐 is the single crystal elastic stiffness tensor and ∑ 𝐦𝑐,𝑠�̇�𝑐,𝑠
s  is the plastic strain rate, which is 

defined as the sum of shear strain rates, �̇�𝑐,𝑠, from each slip system, s. The tensor 𝐦𝑐,𝑠 =

0.5(𝐛𝑐,𝑠 ⊗ 𝐧𝑐,𝑠 + 𝐧𝑐,𝑠 ⊗ 𝐛𝑐,𝑠) is the symmetric part of the Schmid tensor for slip system s, and 𝐛𝑐,𝑠 

and 𝐧𝑐,𝑠 are respectively  the orthonormal unit vectors representing the slip direction and slip plane 

normal. To account for changes in orientation due to texture evolution, the elastic stiffness is 

calculated at the beginning of each deformation increment. The invariant single crystal elastic 

constants are provided in the next section. 

The present formulation incorporates the non-Schmid driving force, where five non-glide stress 

components: the two shear stresses 𝐭𝑐,𝑠⨂𝐛𝑐,𝑠 and 𝐭⨂𝐧𝑐,𝑠, acting normal to the Burgers vector and the 

three normal stresses 𝐧𝑐,𝑠⨂𝐧𝑐,𝑠, 𝐭𝑐,𝑠⨂𝐭𝑐,𝑠, and 𝐛𝑐,𝑠⨂𝐛𝑐,𝑠, are contained.  To include their effects, a 

non-Schmid tensor 𝐦𝑛𝑠
𝑠  has been defined (Dao and Asaro, 1993; Knezevic et al., 2014a; Lim et al., 

2013; Savage et al., 2017), as: 

𝐦𝑛𝑠
𝑐,𝑠 = 𝑐1(𝐭𝑐,𝑠⨂𝐛𝑐,𝑠) + 𝑐2(𝐭𝑐,𝑠⨂𝐧𝑐,𝑠) + 𝑐3(𝐧𝑐,𝑠⨂𝐧𝑐,𝑠) + 𝑐4(𝐭𝑐,𝑠⨂𝐭𝑐,𝑠) − (𝑐3 + 𝑐4)(𝐛𝑐,𝑠⨂𝐛𝑐,𝑠), 

                     (7) 

where the ci are weighting coefficients. Under incompressible flow, only four of these coefficients ci, 

are independent. The driving force for slip then becomes modified to be:  
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𝐦𝑐,𝑠 ∙ 𝛔𝑐 + 𝐦𝑛𝑠
𝑐,𝑠 ∙ 𝛔𝑐 = 𝐦𝑡𝑜𝑡

𝑐,𝑠 ∙ 𝛔𝑐,        (8) 

where 𝐦𝑡𝑜𝑡
𝑐,𝑠 = 𝐦𝑐,𝑠 + 𝐦𝑛𝑠

𝑐,𝑠
. If we include that a backstress, 𝜏𝑏𝑠

𝑐,𝑠
 ,  must be overcome in order for a slip 

system to activate, then two conditions must be satisfied: first 𝐦𝑡𝑜𝑡
𝑐,𝑠 ∙ 𝛔𝑐 − 𝜏𝑏𝑠

𝑐,𝑠 = 𝜏𝑐
𝑐,𝑠

 and second 

𝐦𝑡𝑜𝑡
𝑐,𝑠 ∙ �̂�𝑐 − �̇�𝑏𝑠

𝑐,𝑠 = �̇�𝑐
𝑐,𝑠

, which requires that the stress must remain on the single crystal yield surface. 

Since these two conditions do not allow for negative shear, each slip system is split into two, having 

the same plane normal but opposite sense of shearing. 

The relationship between the rates of slip resistance, �̇�𝑐
𝑐,𝑠

, and the backstress, �̇�𝑏𝑠
𝑐,𝑠

, are given by the 

following relations (Zecevic and Knezevic, 2015): 

�̇�𝑐
𝑐,𝑠 = ∑ ℎ𝑠𝑠′

𝑠′ �̇�𝑐,𝑠′
,         (9a) 

�̇�𝑏𝑠
𝑐,𝑠 = ∑ ℎ𝑏𝑠

𝑠𝑠′

𝑠′ �̇�𝑐,𝑠′
,         (9b) 

where ℎ𝑠𝑠′
 and ℎ𝑏𝑠

𝑠𝑠′
 are the hardening and backstress matrices, respectively. Expressions for ℎ𝑠𝑠′

 and 

ℎ𝑏𝑠
𝑠𝑠′

 follow the derivation given in (Zecevic and Knezevic, 2015) and are provided in appendix A.  

To get the expression for shear rates, relations (6), (9a) and (9b) are used in condition 𝐦𝑡𝑜𝑡
𝑐,𝑠 ∙ �̂�𝑐 −

�̇�𝑏𝑠
𝑐,𝑠 = �̇�𝑐

𝑐,𝑠
 : 

𝐦𝑡𝑜𝑡
𝑐,𝑠 ∙ (𝐂𝑐(�̇�𝑐 − ∑ 𝐦𝑐,𝑠′

�̇�𝑐,𝑠′

s′ ) − 𝛔𝑐𝑡𝑟(�̇�𝑐)) = ∑ ℎ𝑠𝑠′

𝑠′ �̇�𝑐,𝑠′
+ ∑ ℎ𝑏𝑠

𝑠𝑠′

𝑠′ �̇�𝑐,𝑠′
.  (10) 

Equation (10) represents a set of scalar linear equations for shear rates, �̇�𝑐,𝑠′
. Performing some 

algebraic manipulations allows expressing shear rates on active slip systems in terms of strain rate in 

crystal: 

�̇�𝑐,𝑠 = (∑ (𝑋𝑠𝑠′
)

−1
𝐦𝑡𝑜𝑡

𝑐,𝑠′

𝑠′ (𝐂𝑐 − 𝝈𝑐 ⊗ 𝐢)) ∙ �̇�𝑐      (11) 

where 

𝑋𝑠𝑠′
= ℎ𝑠𝑠′

+ ℎ𝑏𝑠
𝑠𝑠′

+ 𝐂𝑐 ∙ 𝐦𝑡𝑜𝑡
𝑐,𝑠 ⊗ 𝐦𝑐,𝑠′

.      (12) 
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Finally, we obtain the modulus 𝐋𝑐 consistent with changed loading conditions including non-schmid 

tensor, which relates the Jaumann rate for a crystal and the strain rate via 

�̂�𝑐 = 𝐋𝑐�̇�𝑐,          (13) 

as 

𝐋𝑐 = 𝐂𝑐 − 𝐂𝑐 ∑ 𝐦𝑐,𝑠
𝑠 ⊗ (∑ (𝑋𝑠𝑠′

)
−1

𝐦𝑡𝑜𝑡
𝑐,𝑠′

𝑠′ (𝐂𝑐 − 𝝈𝑐 ⊗ 𝐢)) − 𝝈𝑐 ⊗ 𝐢,  (14) 

Last, the lattice rotation rate tensor, 𝐖𝑐, is defined as: 

𝐖𝑐 = 𝐖𝑎𝑝𝑝 + 𝚷c − 𝐖𝑝,𝑐        (15) 

where 𝐖𝑎𝑝𝑝 is the applied rotation rate and 𝐖𝑝,𝑐 the plastic rotation rate. The plastic rotation rate is 

calculated from the shearing rates as: 

𝐖𝑝,𝑐 = ∑ 𝐪𝑐,𝑠�̇�𝑐,𝑠
𝑠                      (16) 

where 𝐪𝑐,𝑠 = 0.5(𝐛𝑐,𝑠 ⊗ 𝐧𝑐,𝑠 − 𝐧𝑐,𝑠 ⊗ 𝐛𝑐,𝑠) is the skew part of the dyadic product of the unit Burgers 

direction and the slip plane normal. The tensor 𝚷c arises from the antisymmetric part of the Eshelby 

tensor (Lebensohn and Tomé, 1993).   

 

3.1 Initial slip resistance  

The initial slip resistance is given by the following equation  

𝜏0
𝑠 = 𝜏0,𝑠𝑠

𝛼 + 𝜏0,𝐻𝑃
𝑠 + 𝜏0,𝑠ℎ𝑒𝑎𝑟

𝛼 ,        (17) 

where 𝜏0,𝑠𝑠
𝛼  represents the contribution due to the solid solution strengthening, 𝜏0,𝐻𝑃

𝑠  is the Hall-Petch-

like term, and 𝜏0,𝑠ℎ𝑒𝑎𝑟
𝛼  is the contribution caused by dislocation shearing of the precipitates. 

The theory for multi-component solid-solution hardening is based on a model proposed by Gypen and 

Deruyttere (Gypen and Deruyttere, 1977), which assumes a superposition of strengthening of 
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individual solutes that individually have differing potencies. The theory has widely been used for Ni-

based superalloys (Kozar et al., 2009; Maciejewski et al., 2013). Because solute spacing is 

proportional to the square root of the concentration, the resultant strengthening is given by 

𝜏0,𝑠𝑠
𝛼 =

1

𝑀
∑

𝑑𝜎

𝑑√𝑔𝑖
√𝑔𝑖           (18) 

where M is the Taylor factor, g is the atomic fraction, and 
𝑑𝜎

𝑑√𝑔𝑖
 is the strengthening coefficient of the 

solute elements in IN718, which are taken from (Roth et al., 1997). The strengthening coefficient 

reflects the strengthening potency of each alloying element and represents the strain induced in the 

lattice. For both cubic and octahedral slip systems the value of 𝜏0,𝑠𝑠
𝛼  was estimated to be 263.2 MPa. 

The Hall-Petch-like term follows the equation (Beyerlein and Tomé, 2008) 

𝜏0,𝐻𝑃
𝑠 =

𝐻𝛼𝜇IN718
𝛼 √𝑏𝛼

√𝑑𝑚𝑓𝑝
𝑠

,         (19) 

where 𝐻𝛼, 𝑏𝛼, 𝑑𝑚𝑓𝑝
𝑠 , and 𝜇IN718

𝛼  are the Hall-Petch coefficient per slip mode, the Burgers vector for 

the <110> dislocations (𝑏𝛼 = 2.492 10−10 𝑚), the mean free path for a given slip system s, and the 

shear modulus of the alloy, respectively. The shear modulus on the slip system is obtained using the 

single crystal stiffness tensor, as explained later. The effect of grain size strengthening of IN718 has 

been studied (Zhao et al., 2016). The study reported a Hall-Petch coefficient of 1260 MPa√μm for a 

macroscopic Hall-Petch law at room temperature, which considers only an average grain size. In 

contrast, Eq. (19) used here considers a dislocation mean free path, 𝑑𝑚𝑓𝑝
𝑠 . Figure 6 shows 

schematically the advantage of using 𝑑𝑚𝑓𝑝
𝑠  instead of using average grain size for microstructures 

exhibiting elongated grain morphology, such as those in DMLS IN718 studied here. Given the 

average values of major a and minor b axis for ellipsoid representing an average shape of initial grain 

structure, 𝑑𝑚𝑓𝑝
𝑠  can be estimated using 
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𝑑𝑚𝑓𝑝
𝑠 =

2

√(
�̂�𝑥

𝑠

𝑎
)

2

+(
�̂�𝑦

𝑠

𝑏
)

2

+(
�̂�𝑧

𝑠

𝑐
)

2
.        (20) 

Note that b = c for the average grain shape shown in figure 6 and �̂�𝑥
𝑠, �̂�𝑦

𝑠 , �̂�𝑧
𝑠 are components of a unit 

vector in the Burgers direction expressed in a frame of the ellipsoid. Equation (20) finds the longest 

possible distance in the Burgers direction given the ellipsoid. It is worth mentioning that unlike the 

conventional macroscopic law, Eq. (19) accounts for local crystallography as it considers the slip-

system shear modulus and the length of Burgers vector per slip mode. As a reference, the Hall-Petch 

contribution using 1260 MPa√μm is 61.4 MPa calculated using an average grain size of d = 45 µm, 

i.e., 
1260

𝑀√𝑑
, where M is the Taylor factor approximately taken to be 3. The value calculated using Eq. 

(19) using 𝐻𝛼 = 0.31 for both cubic and octahedral slip varies but the average over many grains is 

67.9 MPa, which is in reasonable agreement with the macroscopic value.   

 

 

Figure 6. Schematic showing mean free path of a dislocation on (111) plane in [011̅] direction for a 

crystal embedded in an ellipsoid oriented with its major axis a vertically and in an ellipsoid oriented 

with its major axis a horizontally. These two correspond to grain shape in V and H samples, 

respectively. The loading axis to activate the defined slip system is vertical in both.  
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As mentioned earlier, the model considers the moving dislocations to shear the precipitates as opposed 

to moving around them. In this model, one contribution to the resistance to precipitate shearing is 

included in the initial slip resistance following (Courtney, 1990; Maciejewski et al., 2013): 

𝜏0,𝑠ℎ𝑒𝑎𝑟
𝛼 = 0.7𝜇𝛾′ (

APB
𝛾′
𝛼

𝜇
𝛾′
𝛼 𝑏

𝛾′
𝛼 )

3

2

(
𝑓

𝛾′�̅�
𝛾′

𝑏
𝛾′
𝛼 )

1

2

+ 0.7𝜇𝛾′′ (
APB

𝛾′′
𝛼

𝜇
𝛾′′
𝛼 𝑏

𝛾′′
𝛼 )

3

2

(
𝑓

𝛾′′�̅�
𝛾′′

𝑏
𝛾′′
𝛼 )

1

2

,    (21) 

where f is the volume fraction of the precipitate and �̅� is the average radius of the precipitates, γ' and 

γ''. Note that most of the variable in Eq. (21) differ for the octahedral slip and cubic slip modes. The 

values are provided in next section. 

 

3.2 Anti-phase boundary (APB) energy for slip modes in IN718  

In light of the model for slip resistance presented above, it can be appreciated that the APB energies of 

different slip modes would affect slip activity under deformation.  However, to date, APB energies 

among reported studies vary widely and particularly for γ'' precipitates are not as readily available for 

all the slip modes. Beauchamp et al. (Beauchamp et al., 1987) calculated the value of APB energy of 

γ' for both cubic and octahedral planes 90 
𝑚𝐽

𝑚2 and 111 
𝑚𝐽

𝑚2, respectively. They performed atomic 

simulations modifying the potentials which have been introduced by (Paidar et al., 1982; Yamaguchi 

et al., 1982). Their calculated values were close to those which Douin et al. (Douin et al., 1986) 

measured employing the weak-beam electron microscopy. Ardell et al. (Ardell and Huang, 1988) 

performed theoretical analysis to calculate the APB energy of γ' on the {111} planes and reported the 

value of 161±24 
𝑚𝐽

𝑚2. They used the relationship between the APB energy and the critical diameter of 

particles in which the shearing to looping transition occurs, <d>max, for their analysis. The value of 

APB energy for γ' of 140 
𝑚𝐽

𝑚2 has been chosen by (Heilmaier et al., 2001; Maciejewski et al., 2013). 

Nemoto et al. (Nemoto et al., 1991) estimated 180 
𝑚𝐽

𝑚2 for the APB energy by calculating the leading 
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and trailing dislocations force balance. Glazer et al. (Glazer and Morris, 1987) calculated the APB 

energy of γ' precipitates by modifying the CRSS solution of Hanson-Mirris (Hanson and Jr., 1975) 

which was for a random array of point obstacles. Their solution resulted in a relationship between the 

APB energy and the minimum looped precipitate diameter and they predicted a value of 102±35 
𝑚𝐽

𝑚2. 

Kozar et al. (Kozar et al., 2009) used 200 
𝑚𝐽

𝑚2 as the APB energy for tertiary γ' in the IN100, which has 

approximately the same size as the γ' precipitate in IN718. Due to difficulty in determining the exact 

value from the literature, they also tried 150 
𝑚𝐽

𝑚2
.  This is similar to the value of 164 

𝑚𝐽

𝑚2
 for the APB 

energy of γ' used by Wang et al. (Wang et al., 2006) for use in their constitutive model for IN100 alloy 

at 650 °C. Smallman et al. (Alankar et al.; Beauchamp et al., 1987; Douin et al., 1986; Smallman and 

Bishop, 1999) performed electron microscopy measurements to investigate the effect of Al fraction on 

the APB energy varying the aluminum from 23.5% to 26.5%. Increasing the Al content decreased the 

APB energy from 183±12 
𝑚𝐽

𝑚2  to 175±12 
𝑚𝐽

𝑚2  on the octahedral planes while the changes were from 

157±8 
𝑚𝐽

𝑚2  to 113±10 
𝑚𝐽

𝑚2  for the cubic planes. However, another value of 12 
𝑚𝐽

𝑚2 has also been reported 

in the other literature (Oblak et al., 1974) calculated based on the average fault energy in a region and 

the associated volume fraction of γ' and γ''. Yu et al. (Yu et al., 1994) measured the APB energy of 

both cubic and octahedral planes in Ni3Al as a function of temperature and some elements 

concentrations based on the dislocation pairs separation. They claimed that the APB energy of the 

octahedral planes is not dependent to the composition or temperature significantly and they reported 

170±14 
𝑚𝐽

𝑚2 in the room temperature. The APB energy value for the cubic planes at room temperature 

was 124±10 
𝑚𝐽

𝑚2. To calculate the APBE of Ni3Al, Voter et al. (Voter and Chen, 1987) employed the 

embedded atom method and calculated the values of 83 
𝑚𝐽

𝑚2  and 142 
𝑚𝐽

𝑚2 for cubic and octahedral 

planes respectively which they claimed is in a good agreement with the measured values of 140±14 
𝑚𝐽

𝑚2
   

and 180±30 
𝑚𝐽

𝑚2 by Veyssiere et al. (Veyssiere et al., 1985). A similar calculation method was 
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employed by Foiles et al. (Foiles and Daw, 2011) and the results were 28 
𝑚𝐽

𝑚2 and 96 
𝑚𝐽

𝑚2 for the cubic 

and octahedral planes respectively. Yoo et al. (Yoo et al., 1994) calculated the values of 140 
𝑚𝐽

𝑚2
 and 

175 
𝑚𝐽

𝑚2
 for the antiphase boundary energy of cubic and octahedral planes at 0 K. Manga et al. (Manga 

et al., 2015) calculated the APB energy of γ' employing the first-principles calculations and the effects 

of the APB energy on the Helmholtz free energy and the total Gibbs free energy. In their calculations 

the APB energy of (111) planes was not dependent to the temperature and changed from 178 
𝑚𝐽

𝑚2
 to 

183 
𝑚𝐽

𝑚2
 when temperature varied from 100 K to 1000 K. However, the cubic planes APB energy was 

dependent to the temperature and for the same change in the temperature, APB energy dropped from 

73 
𝑚𝐽

𝑚2 to just 11 
𝑚𝐽

𝑚2. Unlike the wide ranges of measured and calculated APB energy values for γ', few 

studies investigated APB energies for γ''. We only found 95±17 
𝑚𝐽

𝑚2, which was calculated based on the 

precipitations kinetics and interfacial energy between the precipitates and the matrix and 296 
𝑚𝐽

𝑚2 

considering the average fault energy and make it proportional to the volume fraction of precipitates 

for an area have been reported (Devaux et al., 2008; Oblak et al., 1974). A table that summarizes 

values based on a literature of the literature is given in appendix B. 

 

3.3  First-principles calculations of APB energy for slip modes in IN718 

Due to the variance in the reports for APB energies and the approaches, the values of the APB energy 

for the two slip modes within the two γ' and γ'' precipitates were calculated using density functional 

theory (DFT).  These values were then used in the initial slip resistance equations described in the 

previous section. The DFT calculations employed the generalized gradient approximation (GGA) for 

the exchange correlation functional with the Perdew-Becke-Ernzerhof (PBE) parametrization (Perdew 

et al., 1996) as implemented in the Vienna Ab initio Simulation Package (VASP) code (Kresse and 
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Furthmüller, 1996; Kresse and Hafner, 1994). The interaction between the valence electrons and ionic 

cores is treated using the Projector-Augmented Wave (PAW) potentials (Blöchl, 1994; Kresse and 

Joubert, 1999). The number of valence electrons in the PAW potentials is 10 for Ni, 3 for Al, 4 for Ti 

and 13 for Nb. We used a plane wave energy cutoff of 400 eV and optimized the atomic structure until 

the force on each atom is smaller than 0.01 eV/˚A. For the calculations of the lattice constants of the 

cubic primitive unit cell, we used a 19 × 19 × 19 Γ-centered Monkhorst Pack (Pack and Monkhorst, 

1977) k-point to integrate the Brillouin Zone. The resulting values of lattice constants and elastic 

constants are given in Table 2. The comparison of energies of different compounds in the L12 or D022 

crystal structures shows that the stable crystal structure for Ni3Al, Ni3Ti, and Ni3Al0.5Ti0.5 compounds 

is L12 and the stable crystal structure for Ni3Nb is D022. 

 

Table 2. The calculated lattice constants (in Å) and single crystal elastic constants (in GPa) for 

different compounds in IN718 in their ground state structure. The Zener ratio is defined as (
2𝐶44

𝐶11−𝐶12
) 

for both the cubic and tetragonal structures (Meyers and Chawla, 1998). The measure single crystal 

elastic constants for IN718 have been reported to be: 𝐶11 =  242.2 GPa, 𝐶12 =  138.9 GPa, and 𝐶44 =

 104.2 GPa (Haldipur, 2006), which are used in our homogenized calculations. The average between 

Ni3Al and Ni3Ti was used in calculations for γ'. 

 

Compounds a, b, c C11 C12 C44 C33 C13 C66 Zener 

ratio 

Ni (FCC) 3.508,3.508, 3.508 272.1 169.0 131.0    2.541 

Ni3Al (L12) 3.562, 3.562, 3.562 243.0 154.8 132.3    3.000 

Ni3Ti (L12) 3.605, 3.605, 3.605 285.0 151.2 107.4    1.602 

Ni3Al0.5Ti0.5 (L12) 3.593, 3.593, 7.110 273.0 148.0 134.2 264.4 154.5 128.6 2.147 

Ni3Nb (D022) 3.635, 3.635, 7.483 290.6 187.0 114.2 30.9.6 160.7 119.2 2.205 

 

For the APB energy for the Ni-based compound on (100) glide plane, we take a periodic supercell 

consisting of 48 atoms for both the L12 and D022 structures, whereas for the (111) glide plane we take 

file:///C:/Users/vmoosabeikideh/Downloads/Saeede_Thesis.docx%23_ENREF_67
file:///C:/Users/vmoosabeikideh/Downloads/Saeede_Thesis.docx%23_ENREF_68
file:///C:/Users/vmoosabeikideh/Downloads/Saeede_Thesis.docx%23_ENREF_16
file:///C:/Users/vmoosabeikideh/Downloads/Saeede_Thesis.docx%23_ENREF_69
file:///C:/Users/vmoosabeikideh/Downloads/Saeede_Thesis.docx%23_ENREF_69
file:///C:/Users/vmoosabeikideh/Downloads/Saeede_Thesis.docx%23_ENREF_88
file:///C:/Users/vmoosabeikideh/Downloads/Saeede_Thesis.docx%23_ENREF_88
file:///C:/Users/vmoosabeikideh/Downloads/Saeede_Thesis.docx%23_ENREF_83
file:///C:/Users/vmoosabeikideh/Downloads/Saeede_Thesis.docx%23_ENREF_41


 

26 

  

a supercell consisting of 144 atoms for L12 structure and 72 atoms for D022 structure (see figure 7). 

Each supercell consists of a 15 Å thick vacuum layer along the direction normal to slip plane.  

To calculate the APB for different slip systems, we shift the upper half of the crystal with respect to 

the lower half of the crystal along the glide direction as shown in figure 7. For Ni based compounds in 

L12 and D022 structures, the normalized displacement of 1 along [110] corresponds to the APB 

structure (figure 8). We minimize the energy of the system by allowing additional relaxation along the 

x and y directions as described in (Kumar et al., 2017).  

 

 

Figure 7. Periodic models used to calculate APB energy for cubic (100) <110>, and octahedral 

(111) <110> & (111) <112> slip systems in Ni3Al and Ni3Ti in the L12 crystal structure (a) and (b); 

Ni3Nb in the D022 crystal structure (c) and (d). The supercell in (a) and (c) contains 48 atoms, and 

supercell in (b) and (d) contains 144 and 72 atoms respectively. Ni atoms are shown in blue and Al 

and Nb atoms are shown in yellow.  
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The DFT calculations APB energies and values of complex stacking fault for these compounds on 

(100) and (111) plane are summarized in Table 3. Interestingly, the DFT calculations find that the 

APB configuration on (100) plane for Ni3Ti is more stable than the perfect L12 structure 

(corresponding to x=0), leading to a negative APB energy. In other words, the APB structure is more 

favorable than the bulk reference state use. Last, we point out that one interesting result from these 

calculations is that Ti lowers the APB energy for cubic slip, implying that more Ti could promote 

cubic slip.    

 

Table 3. The anti-phase boundary (APB) energies (in mJ/m2) for (100) and (111) glide planes and the 

complex stacking fault (CSF) energy corresponding to fault energy at 0.33 displacement along 

(112) direction on (111) plane in the Ni based compounds. To calculate the APB energies, we fully 

relax all the atoms in the APB configuration, however, to calculate the CSF energy we do not relax 

atom along the glide directions.  

Compounds APB Energy 

at (100) plane 

APB Energy 

at (111) pane 

CSF Energy 

at (111) plane 

Ni (FCC) - - 123.65 

Ni3Al (L12) 130.74 188.74 243.4 

Ni3Ti (L12) -133.67 245.13 461.72 

Ni3Al0.5Ti0.5 (L12) 448.85 400.86 540.70 

Ni3Nb (D022) 329.93 378.13 -38.54 

 

One of the parameters that directly uses these results is τ0,𝑠ℎ𝑒𝑎𝑟
𝛼 . The values that result from the DFT 

calculations is given in Table 4 along with shear modulus, Burgers vector, and volume fraction and 

size of precipitates. The latter two are taken as averages from measurements reported in the following 

literature (Brown and Muzyka, 1987; Kalh et al.; Liu et al., 2002; Wang and Li, 2004; Worthem et al., 

1990; Xiao et al., 2008; Xie et al., 2005a). Note that the APB energy values for octahedral slip in γ' 

were appropriately weighted for Al and Ti. The τ0,𝑠ℎ𝑒𝑎𝑟
𝛼  values are 302.6 MPa and 177.7 MPa for 

octahedral and cubic slip respectively. Although τ0,𝑠ℎ𝑒𝑎𝑟
𝛼 for cubic slip is lower than that for octahedral 
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based on the APB values, the total initial resistance for cubic slip is much higher than octahedral slip 

if the cubic slip dislocations are hard to move with a high Peierls barrier and/or drag coefficient. In 

order to eliminate the activity of cubic slip in IN718, the total initial slip resistance for cubic slip was 

approximately 1700 MPa. The increase is justified by an additional Peierls barrier contribution to the 

initial slip resistance, which requires further investigation and data at elevated temperatures.  

 

3.4 Hardening 

In this section, we present a description of hardening on individual slip systems in IN718. We use the 

Greek superscript  to denote slip modes and let superscripts s, s’ span over the individual slip 

systems belonging to a mode α. The sense of slip that is positive s+ and negative s- directions are 

arbitrarily chosen.  

Table 4. Calculated, geometric, and microstructure parameters used for calculation of 𝜏0,𝑠ℎ𝑒𝑎𝑟
𝛼 , Eq. 

(21), for octahedral, 1, and cubic, 2, slip systems.  

 APB1 [
𝑚𝐽

𝑚2] APB2 [
𝑚𝐽

𝑚2] 𝜇1 [GPa] 𝜇2 [GPa] 𝑏𝛼 [nm] 
𝑎

2
〈110〉 f [%] �̅� [nm] 

γ′ 207 130.7 78.2 115.6 0.254912 3.9 12.5 

γ′′ 378.1 329.9 72.6 114.2 0.256255 10  5.85 

 

First, the evolution of slip resistance from its initial value is defined as (Ardeljan et al., 2014; Ardeljan 

et al., 2016; Ardeljan et al., 2015; Jahedi et al., 2015; Knezevic et al., 2012a; Knezevic et al., 2015; 

Knezevic et al., 2016): 

𝜏𝑐
𝑠 = 𝜏0

𝛼 + 𝜏𝑓𝑜𝑟𝑒𝑠𝑡
𝑠 + 𝜏𝑑𝑒𝑏𝑟𝑖𝑠

𝛼 ,        (22) 

where 𝜏𝑓𝑜𝑟𝑒𝑠𝑡
𝑠  is a forest term for the statistically stored dislocations and 𝜏𝑑𝑒𝑏𝑟𝑖𝑠

𝛼  is a debris term for 

dislocations stored as debris from incomplete recovery reactions. The former evolves with stored 

forest dislocations according to a Taylor-type relation, which includes the latent hardening term 

(Kitayama et al., 2013): 
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Figure 8. Top view of the atomic structure of one layer from upper crystal and one layer from the 

lower crystal near the glide plane corresponding to normalized displacement x=0 (upper panels) and 

x=1.0 (lower panes). The atoms in the lower layer are shown by + symbol.  

 

𝜏𝑓𝑜𝑟𝑒𝑠𝑡
𝑠 = 𝑏𝛼𝜒𝜇IN718

𝛼 √∑ 𝐿𝑠𝑠′
𝜌𝑡𝑜𝑡

𝑠′

𝑠′
,       (23) 

where 𝜒 = 0.9 is a dislocation interaction constant, 𝜌𝑡𝑜𝑡
𝑠  is the total forest dislocation density for sth 

slip system (𝑠 ∈ 𝛼) and 𝐿𝑠𝑠′ is a latent hardening interaction matrix. The slip system shear modulus is 

calculated using 𝜇IN718
𝛼 = 𝑚𝑖𝑗

𝛼 𝐶𝑖𝑗𝑘𝑙𝑚𝑘𝑙
𝛼 , where 𝑚𝑖𝑗

𝛼  is a Schmid tensor of an arbitrary slip system 

belonging to mode 𝛼 and 𝐶𝑖𝑗𝑘𝑙 is the single crystal stiffness tensor. Since all slip systems within one 

mode are crystallographically equivalent, shear modulus is the same for all slip systems within one 

mode. 𝜇IN718
𝛼  is calculated based on the IN718 single crystal constants: 𝜇IN718

1  = 69.3 GPa and 𝜇IN718
2  

= 118 GPa. 

The formation of KW locks has been linked to the anomalous yield stress dependence on temperature 

(a higher yield stress at elevated than at room temperature). Two scenarios for the cross-slip process 

involved in the formation of KW locks have been discussed in the literature, one involving 
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superpartial dislocations and another involving Shockley partial (Keshavarz and Ghosh, 2015). In the 

former case, a leading superpartial cross slips from the {111} onto a {001} plane for some distance 

and then cross slips back onto a {111} plane. It moves onto the {111} plane until the trailing 

superpartial meets the cross-slipped {001} plane. At this point motion on the {111} plane stops 

forming the KW lock. In the latter case, the superpartials would additionally dissociate and split into 

two Shockley partials creating a complex stacking fault gliding in the <112> direction and then cross 

slips onto the {001}. In order for the individual Shockley partials to cross slip they must constrict 

before cross slipping on the {001} plane.  Hence cubic slip activation is promoted when the sense of 

loading permits the Shockley partials to constrict for cross slip. If the sense of loading is reversed, the 

Shockley partials expand, hindering cross slip and, thus, formation of KW locks. The resolved shear 

stress needed to constrict the Shockley partials for the cross slip is asymmetric and hence can 

potentially explain the T-C asymmetry.  

Latent hardening is a way of modeling dislocation interactions as well as representing the effect of 

KW locks on cross slip propensity, promoting cross slip in one direction (and hence leading to more 

cubic slip) but not the other (hence leading to less cubic slip). However, dislocation mechanisms in 

the IN718 alloy are not expected to form KW locks like in other Ni-based superalloys because of 

small size of the precipitate. Thus, the latent hardening will only be modeled for octahedral slip 

dislocation interactions. The octahedral-to-cubic interaction coefficients will not be characterized 

because of no activity of cubic slip at room temperature. Future research involving high temperature 

data and will characterize these. It would be expected that a cubic-to-octahedral coefficient will 

harden octahedral slip more in compression than in tension to promote cubic slip activity in 

compression, which would result in higher flow stress in compression than in tension.  

The latter term is related to the dislocation debris via an extended Taylor-type relation (Madec et al., 

2003): 
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𝜏𝑑𝑒𝑏𝑟𝑖𝑠
𝛼 = 𝑘𝑑𝑒𝑏𝜇IN718

𝛼 𝑏𝛼√𝜌𝑑𝑒𝑏𝑙𝑜𝑔 (
1

𝑏𝛼√𝜌𝑑𝑒𝑏
),     (24) 

where  𝑘𝑑𝑒𝑏 = 0.086 is a material independent constant that recovers the Taylor law i.e., Eq. (23) for 

low values of dislocation density and 𝜌𝑑𝑒𝑏 is the density of dislocations stored as debris.  

Hardening of slip systems is based on the thermodynamics of dislocation storage, stored either as 

forest dislocations or debris. Here, we adapt the evolution laws presented in (Zecevic and Knezevic, 

2015) to simulate hardening during strain path changes of IN718. The model introduces a reversible 

dislocation density that is accumulated in forward loading and represents the fraction of dislocations 

available to move in reverse loading. Recall that each slip system is split into a s+ and s- system 

sharing the same slip plane but opposing directions. In this case, the total dislocation density on each 

slip system is written as the following sum: 

𝜌𝑡𝑜𝑡
𝑠 = 𝜌𝑓𝑜𝑟

𝑠 + 𝜌𝑟𝑒𝑣
𝑠+

+ 𝜌𝑟𝑒𝑣
𝑠−

,                           (25) 

where 𝜌𝑓𝑜𝑟
𝑠  is the forward dislocation density common to both directions s+ and s- follows the 

following law (Kocks and Mecking, 1981): 

𝜕𝜌𝑓𝑜𝑟
𝑠

𝜕𝛾𝑠 = (1 − 𝑝)𝑘1
𝛼√𝜌𝑡𝑜𝑡

𝑠 − 𝑘2
𝛼(휀̇, 𝑇)𝜌𝑓𝑜𝑟

𝑠 ,              (26) 

where 𝑘1
𝛼 is a coefficient accounting for the rate of generation of statistically stored dislocations, 𝑘2

𝛼 is 

a rate-sensitive coefficient for dynamic recovery (Beyerlein and Tomé, 2008), and 𝑝 is a reversibility 

parameter having value between 0 and 1.  

 The 𝜌𝑟𝑒𝑣
𝑠+

 and 𝜌𝑟𝑒𝑣
𝑠−

  are the reversible dislocation densities respectively associated with the s+ 

and s-  directions. They depend on the previous strain history and shearing direction. The p parameter 

divides the increment in total stored dislocation density into a forward ((1 − 𝑝)𝑘1
𝛼√𝜌𝑡𝑜𝑡

𝑠  𝑑𝛾𝑠) and a 

reversible (𝑝𝑘1
𝛼√𝜌𝑡𝑜𝑡

𝑠  𝑑𝛾𝑠). The evolution of 𝜌𝑓𝑜𝑟
𝑠  is independent of the direction of shear strain per 
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slip system. The remaining increment in total dislocation density (𝑝𝑘1
𝛼√𝜌𝑡𝑜𝑡

𝑠  𝑑𝛾𝑠) is stored as 

reversible dislocation density depending on shear direction on slip system, that is,  

(If  𝑑𝛾𝑠+
> 0) 

𝜕𝜌𝑟𝑒𝑣
𝑠+

𝜕𝛾𝑠 = 𝑝𝑘1
𝛼√𝜌𝑡𝑜𝑡

𝑠 − 𝑘2
𝛼(휀̇, 𝑇)𝜌𝑟𝑒𝑣

𝑠+
,               (27) 

𝜕𝜌𝑟𝑒𝑣
𝑠−

𝜕𝛾𝑠
= −𝑘1

𝛼√𝜌𝑡𝑜𝑡
𝑠 (

𝜌𝑟𝑒𝑣
𝑠−

𝜌0
𝑠 )

𝑚

,                (28) 

where the parameter 𝑚 controls the rate of dislocation recombination and here is set to 0.5 (Wen et 

al.). The density 𝜌0
𝑠 is the total dislocation density at the moment the shear on the sth slip system is 

reversed  (Kitayama et al., 2013).  

If 𝑑𝛾𝑠− > 0, the increments in 𝜌𝑟𝑒𝑣
𝑠−

 and 𝜌𝑟𝑒𝑣
𝑠+

 evolve in analogous manner to that presented in Eqs. 

(27) and (28), respectively. The initial conditions for the presented dislocation density evolution laws 

are: 𝜌𝑓𝑜𝑟
𝑠 (𝛾𝑠 = 0) = 𝜌𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑠 ,  𝜌𝑟𝑒𝑣
𝑠+

(𝛾𝑠 = 0) = 0  and 𝜌𝑟𝑒𝑣
𝑠−

(𝛾𝑠 = 0) = 0. The initial dislocation 

density was set to 1.5 1012. 

The coefficient 𝑘2
𝛼 is calculated using:  

 
𝑘2

𝛼

𝑘1
𝛼 =

𝜒𝑏𝛼

𝑔𝛼
(1 −

𝑘𝐵𝑇

𝐷𝛼(𝑏𝛼)3
𝑙𝑛 (

�̇�

�̇�0
)),                                                      (29)  

where 𝑘𝐵 ,  휀0̇, 𝑔𝛼 and 𝐷𝛼 are the Boltzmann constant, a reference strain rate of value 107 s-1, an 

effective activation enthalpy and a drag stress, respectively. Finally, 𝑑𝜌𝑑𝑒𝑏 is coupled to the rate of 

recovery of all active dislocations via:  

𝑑𝜌𝑑𝑒𝑏 = ∑ 𝑞𝛼𝑏𝛼√𝜌𝑑𝑒𝑏𝑘2
𝛼(휀̇, 𝑇)𝜌𝑡𝑜𝑡

𝑠 𝑑𝛾𝑠
𝑠 ,                                                          (30) 

where 𝑞𝛼 is a coefficient that extracts a fraction of α-type dislocations that are not annihilated but 

become debris. The sum is over both the cubic and octahedral slip systems.  
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3.5 Evolution of backstress during forward loading 

Backstresses are involved in activating slip, via the following condition: 𝐦𝑡𝑜𝑡
𝑐,𝑠 ∙ 𝛔𝑐 − 𝜏𝑏𝑠

𝑠 = 𝜏𝑐
𝑠. 

Clearly, satisfying this condition is controlled in part by the evolution of the backstresses. During 

deformation, the backstress on individual slip system will evolve as a function of shear strain on that 

slip system. We will adopt backstress evolution laws similar to (Beyerlein and Tomé, 2007; Zecevic 

and Knezevic, 2015), but slightly corrected for use of backstress law for multiple load reversals. In the 

case of shearing in s+ direction, 𝑑𝛾𝑠+
> 0, with 𝜏𝑏𝑠

𝑠+
≥ 0, the evolution law is: 

𝜏𝑏𝑠
𝑠+

= 𝜏𝑏𝑠
𝑠𝑎𝑡(1 − exp(−𝜈𝛾𝑠+

)),                 (31) 

𝜏𝑏𝑠
𝑠−

= −𝐴𝜏𝑏𝑠
𝑠+

,                    (32) 

where backstresses 𝜏𝑏𝑠
𝑠+

 and 𝜏𝑏𝑠
𝑠−

 act in the two opposite directions, 𝜏𝑏𝑠
𝑠𝑎𝑡 is the saturation value, A and 𝜈 

are fit parameters and 𝛾𝑠+
 is the accumulated shear strain on the sth slip system. The parameter A 

introduces an asymmetry in the law and takes into account “micro-backstresses” due to pileups 

(Sritharan and Chandel, 1997).  𝜏𝑏𝑠
𝑠+

 acts against the resolved shear stress on s+, i.e. 𝐦𝑠+
∙ 𝛔𝑐 − 𝜏𝑏𝑠

𝑠+
=

𝜏𝑐
𝑠, while 𝜏𝑏𝑠

𝑠−
 acts with the resolved shear stress on the slip system s- according to: 𝐦𝑠−

∙ 𝛔𝑐 − 𝜏𝑏𝑠
𝑠−

=

𝜏𝑐
𝑠. In this way, the micro plasticity processes responsible for non-linear unloading and the BE are 

captured.  

When the material is reloaded in the opposite direction, slip systems activated during the forward 

path, s+, unload and activate in the opposite direction, s-. The backstress evolves after each reversal, 

𝑑𝛾𝑠−
> 0, according to: 

𝜏𝑏𝑠
𝑠−

= −(𝐴 + 1)𝜏𝑏𝑠
𝑠𝑎𝑡 𝑒𝑥𝑝 (−

𝛾𝑠−

𝛾𝑏
) + 𝜏𝑏𝑠

𝑠𝑎𝑡 , 𝜏𝑏𝑠
𝑠+

= −
1

𝐴
𝜏𝑏𝑠

𝑠−
 𝑖𝑓  𝜏𝑏𝑠

𝑠−
< 0,             (33) 

𝜏𝑏𝑠
𝑠−

= 𝜏𝑏𝑠
𝑠𝑎𝑡(1 − 𝑒𝑥𝑝(−𝜈𝛾𝑠−

)), 𝜏𝑏𝑠
𝑠+

= −𝐴𝜏𝑏𝑠
𝑠−

 𝑖𝑓  𝜏𝑏𝑠
𝑠−

> 0               (34) 
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where 𝛾𝑏 is a fit parameter. Prior models (Beyerlein and Tomé, 2007; Zecevic and Knezevic, 2015) 

used similar relationships.   

 Results and discussion  

4.1 Monotonic tension and compression to large strains 

We first characterize the modeling parameters associated with the hardening law presented in the 

previous section. The initial texture used in the simulation is the measured texture given in figure 1 

and the grain shape aspect ratio is set to 5 representing the measured columnar grain structure. 

Deformation simulations are carried out in uniaxial compression or tension in one of three directions: 

H, V, and D. The prescribed strain rate was 10−3 𝑠−1, corresponding to the laboratory test and the 

temperature was set to room temperature.   

Using values for the material parameter within appropriate bounds, the values were changed and 

simulations repeated until calculation agreed with measurement in yield stress, flow stress, and 

hardening rate.  Part of the characterization involves the DD-based hardening law.  The single set of 

DD model parameters is given in table 5. Different slip dislocations have different atomic core 

structures and they in principle should have their own 𝑘1
𝛼, activation barrier for de-pinning 𝑔𝛼, and 

drag stress 𝐷𝛼. Therefore, these parameters should be characterized for each slip mode and verified 

using a large suite of data, including stress–strain responses in multiple load directions, different 

temperatures, and changes in temperature and strain path. To simplify characterization due to lack of 

high-temperature data, we consider only octahedral slip. As presented, multiple stress–strain 

measurements and texture data are used for calibration and validation. However, the parameters are 

valid only for room temperature deformation of IN718. Thus, we should keep in mind that the 

parameters for IN718 reported here will require extension in the future high-temperature studies Even 

so, it is possible to estimate the hardening parameters for IN718 from one stress–strain curve since 

individual parameters introduced in our model are responsible for different portions of the curve. For 
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example, 𝜏0
𝛼 is mainly responsible for the yield stress, 𝑘1

𝛼 mainly governs the initial slope of the 

stress–strain curve, while 𝑔𝛼 and 𝐷𝛼 control the response at higher strain levels. 

 

Table 5. Hardening parameters for the evolution of 𝜏𝑓𝑜𝑟𝑒𝑠𝑡
𝑠  and 𝜏𝑑𝑒𝑏𝑟𝑖𝑠

𝛼 . The parameters for cubic slip 

are arbitrarily set.  

 𝑘1
𝛼 [

1

𝑚
] 𝐷𝛼 [MPa] 𝑔𝛼 𝑞𝛼 𝐻𝛼 c1 c2 

{111} 3.2e+8 520 0.04 16 0.31 0.045 0.97 

{001} 2.8e+8 600 0.04 16 0.31 0 0 

 

In addition, we needed to characterize the latent hardening matrix used in Eq. (23), which is:  

𝐿𝑠𝑠′ = [
𝐀 ∎
∎ ∎

],          (35) 

where A is the interaction matrix (defined in appendix C) for octahedral slip systems for the FCC 

metals (Franciosi and Zaoui, 1982). We used values calculated for FCC metals by Hoc et al. (Hoc et 

al., 2004) and Devincre et al. (Devincre et al., 2006) employing dislocation dynamic simulations. The 

values are given in table 6. It should be mentioned that a0, a1, a2, a3, a4, and a5 correspond to the self-

interaction, coplanar interaction, Hirth, collinear, Glissile, and Lomer interaction coefficients, 

respectively. Anisotropic hardening of γ/ γ' superalloy single crystals has been studied in (Estevez et 

al., 1997; Hoinard et al., 1995). It was found that hardening anisotropy at 650°C is comparable to one 

of the most anisotropic pure FCC metals, mainly because of the hardening asymmetry on the 

octahedral slip systems. Because cubic slip is not active at room temperature, cubic-octahedral, cubic-

to-cubic, and octahedral-to-cubic interactions have not been characterized. The non characterized 

entrees in Eq. (35) are indicated by ∎. 

 

Table 6. Latent hardening interaction matrix constants.  

a0 a1 a2 a3 a4 a5 

0.068 0.068 0.0454 0.625 0.137 0.122 
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Last, in the characterization step, we also sought values for some of the NS coefficients.  Although 

non-zero c3 and c4 NS coefficients could lead to a T-C asymmetry, we did not have a physical basis or 

a reasonable range of values. However, it is known that the non glide stresses that shrink or expand 

the super-partials on the {111} plane are controlled by the c1 and c2 NS coefficients (Steinmann et al., 

1998). Here, these coefficients were characterized to be c1 = 0.045 and c2 = 0.97. The values are 

presented in table 5. The high value of c2 is in agreement with the recent finding that the separation 

between Shokley partials in FCC metals should only be dependent on 𝐭 ⊗ 𝐧 NS resolved shear stress 

term (Baudouin et al., 2013). It should be noted that the characterization here applies only to 

octahedral slip systems and not cubic slip, since cubic slip was inactive for most of the deformation 

process.  Figure 9 compares the model curves using the above set of parameters with the measurement 

for each build direction. As shown, the model captures well the tension-compression asymmetry and 

hardening rate in each case.  

As a validation of the model, we calculate the texture evolution corresponding to each test. figure 10 

shows the texture evolution using stereographic pole figures after compression in the V, D, and H. 

After deformation, the samples have formed the <011> fiber texture as expected in compression of 

FCC metals. Note that the initial texture from the AM processing was a <001> fiber aligned with the 

BD. The differences among the deformation directions are not substantial because of the large 

straining in compression.  A direct comparison is made using pole figures in figure 11.  As shown the 

model captures well the main components to first order. To quantify the degree of agreement between 

measured (figure 10) and predicted (figure 11) textures, we calculate the pole figure difference  

(PFD), which is given by (Knezevic and Bhattacharyya, 2017; Knezevic et al., 2014b; Knezevic and 

Landry, 2015): 
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Figure 9. Comparison of measured and predicted true stress–true strain responses in tension and 

compression of IN718 as a function of build direction as indicated in the figure. The measured data is 

from figure 3.  
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where   and   are the longitude and latitude positions in a given  lkh  pole figure, while  ,

measuredI
    

and  ,

predictedI
   are intensities at those position in the pole figure. A value of PFD = 0 corresponds to a 

perfect match and PFD = 1 corresponds to a maximum misorientation between two textures. Two 

textures with a PFD < 0.2 are considered to be well matched. The calculated values averaged over 

three poles are 0.1905, 0.1806, and 0.1991 for V, D, and H pole figures, respectively. As mentioned 
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above, the contributions of the cubic slip modes to tension and compression were none and, thus, the 

relative activity plots of deformation modes are not presented.   

 

  

 

 

 

Figure 10. Pole figures showing the measured texture in the compressed DMLS IN718 samples along 

(a) vertical (V) direction to a strain of 0.55, (b) diagonally at 45° direction to a strain of 0.57, and (c) 

horizontal (H) direction to a strain of 0.53. The compression direction is in the center of the pole 

figures.     

 

 

A3=BD 

A3=LD 

(a) 
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Figure 11. Pole figures showing the simulated texture corresponding to those measured shown in 

figure 10.  

 

4.2 Large strain cyclic tension and compression 

For large strain cyclic deformation i.e., forward-reversal loading, the backstress term needs a 

calibration. The cyclic curve in Fig. 4b was used to identify the backstress parameters, which are 

presented in table 7. The backstress parameters control the level of nonlinear unloading, the BE, and 

hardening in the reverse direction. Note that tables 5 and 7 contain ten model parameters, which were 

adjusted to fit the IN718 data.  

(a) 

(b) 

(c) 
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Table 7. Constitutive parameters for backstress evolution.  

𝜏𝑏𝑠
𝑠𝑎𝑡 [MPa] ν 𝛾𝑏 A 

100 600.0 0.01 6.5 

 

Without further adjusting the model, we simulate the remaining large strain forward and reversal 

loading cases from Figs. 3 and 4.  Figure 12 compares the model and measurement for the D and H 

cases after a tension pre-strain of 0.02 to 0.04.  Clearly the agreement in non-linear unloading, flow 

stress, hardening rate, and BE are good. Notably, the model captures the increase BE with larger pre-

strains, the lower yield in reverse loading, the higher hardening rate after yield. We find that the 

backstresses are primarily responsible for the increases in the non-linear unloading with the amount of 

pre-strain. Both the backstresses and inter-granular stresses were responsible for the BE, however. 

Last, reversible dislocation motion activity governed the hardening rates during reverse loading.  



 

41 

  

  

Figure 12. Comparison of measured and predicted true stress–true strain responses during cyclic 

tension-compression of IN718. The measured data is from figures 4 and 5.   

 

 Conclusions  

In this work, we present an experimental and modeling study of the room temperature deformation 

behavior of a Ni-based superalloy IN718 fabricated by an additive manufacturing technique called 

DMLS.  The DMLS IN718 alloy shows plastic anisotropy with respect to the build direction and 

tension-compression asymmetry behavior. Upon the change in strain path from tension to 

compression, the material exhibits non-linear unloading, a BE, and an increasing reduction in yield 

stress during reverse loading as the strain for forward loading is increased.  To gain the insights into 

the microstructural origins of this behavior, we advance an EPSC model, called P-EPSC, to account 

for the effects of nanoscale precipitates on the plastic deformation response of this Ni-based 
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superalloy. The effects are encased within an updated hardening law for both octahedral {111}〈11̅0〉 

slip and cubic slip {001}〈110〉 that accounts for the APB energy for these two slip modes in two 

compositions of precipitates. In order to use consistent values of the APB energy from one source, we 

used density functional theory to calculate the APB energies for these modes. Coupled with the 

inherited models for backstress and reversible dislocations, and latent hardening, we demonstrate that 

the new P-EPSC model, with the precipitate sensitive slip resistance, non-Schmid effects, and the 

grain shape sensitive dislocation mean-free-path, is capable of predicting the constitutive response in 

monotonic loading, the tension-compression asymmetry, and the non-linearities during unloading, the 

BE, and permanent softening associated with cyclic loading. The latter cyclic responses are also 

successfully predicted as a function of loading directions and level of pre-strain. The model 

calculations suggest that as the pre-strain increases, the backstresses increase causing the non-linearity 

during the unloading step to increase.  It is also suggested that the backstresses and inter-granular 

stresses govern the Bauschinger effect while reversible dislocation motion plays a major role in 

hardening during reverse loading.  As many of these features in the behavior of IN718 are similar to 

other Ni-based superalloys, the present modeling framework is expected to be useful for a wider set of 

materials such as superalloys and other cubic metals. 
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Appendix A 

The hardening matrix is: 

ℎ𝑠𝑠′
=

𝜕𝜏𝑐
𝑠

𝜕𝛾𝑠′
 
=

𝜕𝜏0
𝛼

𝜕𝛾𝑠′
 
+

𝜕𝜏𝑓𝑜𝑟𝑒𝑠𝑡
𝑠

𝜕𝛾𝑠′
 

+
𝜕𝜏𝑑𝑒𝑏𝑟𝑖𝑠

𝛼

𝜕𝛾𝑠′
 

,            (A1) 

with: 

𝜕𝜏0
𝛼

𝜕𝛾𝑠′ 
= 0,                (A2) 

𝜕𝜏𝑓𝑜𝑟𝑒𝑠𝑡
𝑠

𝜕𝛾𝑠′ 
=

𝜕𝜏𝑓𝑜𝑟𝑒𝑠𝑡
𝑠

𝜕𝜌𝑡𝑜𝑡
𝑠′

 

𝜕𝜌𝑡𝑜𝑡
𝑠′

𝜕𝛾𝑠′  = 𝑏𝛼𝜒𝜇IN718
𝛼 1

2√∑ 𝐿𝑠𝑠′
𝜌𝑡𝑜𝑡

𝑠′

𝑠′

𝐿𝑠𝑠′
(

𝜕𝜌𝑓𝑜𝑟
𝑠′

𝜕𝛾𝑠′ +
𝜕𝜌𝑟𝑒𝑣

𝑠′+

𝜕𝛾𝑠′ +
𝜕𝜌𝑟𝑒𝑣

𝑠′−

𝜕𝛾𝑠′ ),        (A3) 

𝜕𝜏𝑑𝑒𝑏𝑟𝑖𝑠
𝛼

𝜕𝛾𝑠′ 
=

𝜕𝜏𝑑𝑒𝑏𝑟𝑖𝑠
𝛼

𝜕𝜌𝑑𝑒𝑏 

𝜕𝜌𝑑𝑒𝑏

𝜕𝛾𝑠′ 
= −𝑘𝑑𝑒𝑏𝜇IN718

𝛼 𝑏𝛼(𝑙𝑜𝑔(𝑏𝛼√𝜌𝑑𝑒𝑏) + 1)
1

2√𝜌𝑑𝑒𝑏

𝜕𝜌𝑑𝑒𝑏

𝜕𝛾𝑠′ 
.       (A4) 

The backstress hardening matrix, in the case of shearing in the s+ direction, 𝑑𝛾𝑠+
> 0, with 𝜏𝑏𝑠

𝑠+
≥ 0 

is: 

ℎ𝑏𝑠
𝑠+𝑠+

=
𝜕𝜏𝑏𝑠

𝑠+

𝜕𝛾𝑠+ = 𝜏𝑏𝑠
𝑠𝑎𝑡𝜈 exp(−𝜈𝛾𝑠+

),                        (A5) 

ℎ𝑏𝑠
𝑠−𝑠+

=
𝜕𝜏𝑏𝑠

𝑠−

𝜕𝛾𝑠+ = −𝐴ℎ𝑏𝑠
𝑠+𝑠+

,              (A6) 

The backstress hardening matrix after reversal (i.e.  𝑑𝛾𝑠−
> 0) in the case 𝜏𝑏𝑠

𝑠−
< 0 is:  

ℎ𝑏𝑠
𝑠−𝑠−

=
𝜕𝜏𝑏𝑠

𝑠−

𝜕𝛾𝑠− =
(𝐴+1)𝜏𝑏𝑠

𝑠𝑎𝑡

𝛾𝑏
𝑒𝑥𝑝 (−

𝛾𝑠−

𝛾𝑏
),            (A7) 

ℎ𝑏𝑠
𝑠+𝑠−

=
𝜕𝜏𝑏𝑠

𝑠+

𝜕𝛾𝑠− =
1

𝐴
ℎ𝑏𝑠

𝑠−𝑠−
 ,             (A8) 

while if 𝜏𝑏𝑠
𝑠−

≥ 0 the hardening matrix is then defined as:  

ℎ𝑏𝑠
𝑠−𝑠−

=
𝜕𝜏𝑏𝑠

𝑠−

𝜕𝛾𝑠− = 𝜏𝑏𝑠
𝑠𝑎𝑡𝜈 exp(−𝜈𝛾𝑠−

),                       (A9)  

ℎ𝑏𝑠
𝑠+𝑠−

=
𝜕𝜏𝑏𝑠

𝑠+

𝜕𝛾𝑠− = −𝐴ℎ𝑏𝑠
𝑠−𝑠−

 .            (A10) 
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Appendix B 

Summary of APB values for γ' and γ'', including the method used to obtain the values, and the source. 

γ' (111) [
𝑚𝐽

𝑚2] γ'
(001) [

𝑚𝐽

𝑚2] γ'' (111) [
𝑚𝐽

𝑚2] Method References 

111 90  Calculations- modified 

potentials. 

(Beauchamp et 

al., 1987) 

111±15 90±5  Measurement- weak-

beam electron 

microscopy. 

(Douin et al., 

1986) 

161±24   Measurement- 

relationship between the 

APB energy and 

<d>max. 

(Ardell and 

Huang, 1988) 

140   Chosen as appropriate. (Heilmaier et al., 

2001) 

180 (at 923 K)   Calculations- force 

balance between the 

trailing and leading 

dislocations. 

(Nemoto et al., 

1991) 

102±35   Calculations- modifying 

a relationship between 

the APB energy and the 

minimum looped 

precipitate diameter. 

(Glazer and 

Morris, 1987) 

200   Chosen as appropriate. (Kozar et al., 

2009) 

164   Chosen as appropriate. (Wang et al., 

2006) 

183±12-175±12 157±8-

113±10 

 Measurement- electron 

microscopy. 

(Smallman and 

Bishop, 1999) 

12  296 Calculations- average 

fault energy and volume 

fractions of the 

precipitates. 

(Oblak et al., 

1974) 
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170±14 124±10  Calculations- 

precipitations kinetics 

and interfacial energy 

between the precipitates 

and the matrix. 

 

(Yu et al., 1994) 

142 83  Calculations- embedded 

atom method. 

(Voter and Chen, 

1987) 

180±30 140±14  Measurement – not 

described. 

(Veyssiere et al., 

1985) 

96 28  Calculations- embedded 

atom method. 

(Foiles and Daw, 

2011) 

175 (0 K) 140  Calculations- not 

described. 

(Yoo et al., 

1994) 

178 (at 100 K) -183 

(at 1000 K) 

 

73-11  Calculations- the 

Helmholtz free energy 

and the total Gibbs free 

energy. 

(Manga et al., 

2015) 

  95±17 at 

(973 K) 

Calculations- average 

fault energy and volume 

fractions of the 

precipitates. 

(Devaux et al., 

2008) 

 

 

Appendix C 

The interaction matrix for FCC metals, where A2, A3, A6, B2, B4, B5, C1, C3, C5, D1, D4, and D6 are the 

slip systems with A, B, C, and D representing the (1̅11), (111), (1̅1̅1), and (11̅1) slip planes and 1 to 6 

representing [011], [01̅1], [101], [1̅01], [1̅10], and [110] slip directions (Franciosi and Zaoui, 1982).  

 

 A2 A3 A6 B2 B4 B5 C1 C3 C5 D1 D4 D6 

A2 a0 a1 a1 a3 a4 a4 a2 a4 a5 a2 a5 a4 

A3  a0 a1 a4 a2 a5 a4 a3 a4 a5 a2 a4 

A6   a0 a4 a5 a2 a5 a4 a2 a4 a4 a3 

B2    a0 a1 a1 a2 a5 a4 a2 a4 a5 

B4     a0 a1 a5 a2 a4 a4 a3 a4 

B5      a0 a4 a4 a3 a5 a4 a2 

C1       a0 a1 a1 a3 a4 a4 

C3        a0 a1 a4 a2 a5 

C5         a0 a4 a5 a2 
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D1          a0 a1 a1 

D4           a0 a1 

D6            a0 
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Chapter 2: Experimental characterization and crystal plasticity modeling of anisotropy, tension-

compression asymmetry, and texture evolution of additively manufactured Inconel 718 at room 

and elevated temperatures 

This chapter was published as “Experimental characterization and crystal plasticity modeling of 

anisotropy, tension-compression asymmetry, and texture evolution of additively manufactured Inconel 

718 at room and elevated temperatures” in the International Journal of Plasticity, 125 (2020): 63-79. 

The Authors of this paper are Saeede Ghorbanpour, Md Ershadul Alam, Nicholas C Ferreri, Anil 

Kumar, Brandon A McWilliams, Sven C Vogel, Jonathan Bicknell, Irene J Beyerlein, Marko 

Knezevic. My contribution to this chapter was developing the crystal plasticity model, performing the 

simulations, and generating all the crystal plasticity simulation results. 
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Experimental characterization and crystal plasticity modeling of anisotropy, tension-

compression asymmetry, and texture evolution of additively manufactured Inconel 718 at room 

and elevated temperatures 

 

Abstract 

In this work, strength and microstructural evolution of superalloy Inconel 718 (IN718) are 

characterized as a function of the initial microstructure created via direct metal laser melting (DMLM) 

additive manufacturing (AM) technology along with subsequent hot isostatic pressing (HIP) and heat 

treatments as well as wrought processing. Stress-strain curves are measured in tension and 

compression from room temperature to 550 °C and crystallographic texture is characterized using 

neutron diffraction. Furthermore, a recently developed crystal plasticity model incorporating the 

effects of precipitates is extended to interpret the temperature dependent deformation behavior of the 

alloy. The model accounts for solid solution, precipitate shearing, and grain size and shape 

contributions to initial slip resistance, which evolves with a dislocation density-based hardening law 

considering latent hardening, while non-Schmid effects are taken into account in the activation stress. 

Part of the experimental data is used for calibration of the model, while the rest is used for 

experimental validation of the model. It is shown that the model is capable of modeling the data with 

accuracy. Based on the comparison of the data and model predictions, it is inferred that the grain 

structure and texture give rise to plastic anisotropy of the alloy, while its tension-compression 

asymmetry results from non-Schmid effects and latent hardening. 

 Introduction 

Inconel 718 (IN718) superalloy is well known for its high strength, toughness, and corrosion 

resistance and is widely used for a number of components operating under mechanical and thermal 

extremes (Barrett et al., 2018; Francis et al., 2014; Knezevic et al., 2012b; Knezevic and 

https://www.sciencedirect.com/science/article/pii/S074964191930347X#bib13
https://www.sciencedirect.com/science/article/pii/S074964191930347X#bib31
https://www.sciencedirect.com/science/article/pii/S074964191930347X#bib55
https://www.sciencedirect.com/science/article/pii/S074964191930347X#bib56
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Ghorbanpour, 2018; Kuo et al., 2009; Mei et al., 2015; Rao et al., 2003; Slama and Abdellaoui, 2000). 

Yet the parts for such applications are of complicated shape, requiring careful machining. Due to the 

high strength and hardness of alloy 718, the cutting tools wear relatively quickly translating into a 

high cost of machining. Additive manufacturing (AM) is a technology that can print complex shapes 

from powders, minimizing the need for machining. AM of the alloy and its behavior have recently 

been extensively studied (Amato et al., 2012; Gribbin et al., 2016). 

The alloy has a relatively complex microstructure, featuring several precipitates and carbides in a γ 

matrix (Antolovich, 2015; Rao et al., 2003; Xiao et al., 2005). These are summarized in Table 1. 

These precipitates govern the behavior of the alloy. Their volume fraction and distribution depend on 

processing. For example, the content of δ precipitates was found to be significantly larger in AM 

IN718 (Gribbin et al., 2019) than wrought processing. Octahedral {111}〈11̅0〉 slip systems 

accommodate plastic deformation of γ matrix. Additionally, the activity of the six cubic {001}〈110

〉 glide systems has been reported at the high temperatures associated with wrought processing of the 

alloy (Ding et al., 2004; Haddou et al., 2004; Österle et al., 2000; Semiatin et al., 2004). 

Table 1. Phases in alloy IN718. 

 

Phase 

Crystal 

structure 

Space 

group 

Composition 

Lattice 

Parameters (Å) 

References 

a b c 

Solid 

solution 

matrix 

γ Cubic Fm-3m 

Co,Cr,Ni,Fe - 

Based 

3.59 - - 

(Murr et al., 2011) 

(Amato et al., 2012) 

(Murr et al., 2012) 

https://www.sciencedirect.com/science/article/pii/S074964191930347X#bib56
https://www.sciencedirect.com/science/article/pii/S074964191930347X#bib66
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https://www.sciencedirect.com/science/article/pii/S074964191930347X#bib85
https://www.sciencedirect.com/science/article/pii/S074964191930347X#bib93
https://www.sciencedirect.com/science/article/pii/S074964191930347X#bib4
https://www.sciencedirect.com/science/article/pii/S074964191930347X#bib37
https://www.sciencedirect.com/science/article/pii/S074964191930347X#bib5
https://www.sciencedirect.com/science/article/pii/S074964191930347X#bib85
https://www.sciencedirect.com/science/article/pii/S074964191930347X#bib100
https://www.sciencedirect.com/science/article/pii/S074964191930347X#tbl1
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Intermeta

llic 

γ' Cubic Pm-3m Ni3(Ti,Al,Nb) 3.58 - - 

(Mukherji et al., 

2003) 

γ'' Tetragonal I4/mmm Ni3Nb 3.62 - 7.41 

(Murr et al., 2011) 

(Amato et al., 2012) 

(Murr et al., 2012) 

δ 

Orthorhom

bic 

Pmmn Ni3Nb 4.55 4.25 5.11 

(Amato et al., 2012) 

Topograp

hically 

close-

packed 

(intermet

allic) 

η Hexagonal P63/mmc Ni3(Ti,Al) 5.10 - 8.30 (Evans et al., 2004) 

Laves Hexagonal P63/mmc 

(Ni,Cr,Fe)2(N

b,Ti) 

4.83 - 7.88 

(Manikandan et al., 

2015) 

Carbide 

MC Cubic Fm-3m (Nb,Ti)(C,N) 4.46 - - 

(Mostafa et al., 

2017) 

M23C6 Cubic Fm-3m (Cr,Fe)23C6 10.60 - - (Evans et al., 2004) 

 

The strengthening results from the γ′ and γ'' precipitates, which are shearable by dislocations. After the 

dislocations cut through them, an anti-phase boundary (APB) in the precipitate is left behind. APB can 

further contribute to strengthening by increasing the energy of the crystal (Gleiter and Hornbogen, 
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1968; Huther and Reppich, 1978; Maciejewski et al., 2013). Therefore, knowledge of the values of 

APB energy would benefit an understanding of precipitate strengthening. For instance, the APB 

energy for the cubic planes was found to be lower than that for the octahedral planes (Umakoshi et al., 

1984), which provided an explanation for why screw dislocations would tend to cross slip onto 

the {001} planes. The calculated values for APB energies for γ′ and γ'' precipitates have been 

presented in our earlier study (Ghorbanpour et al., 2017). In contrast to γ′ or γ'' strengtheners, the APB 

for δ precipitates has not been studied in the past, likely because of size of these precipitates. 

However, δ precipitates in AM alloy IN718 vary in size substantially and a fraction of them could be 

sheared (Gribbin et al., 2019), and thus quantification of their APB energy is warranted. 

The stress-strain response of the alloy shows a pronounced tension-compression (T-C) asymmetry 

(Copley and Kear, 1967a, b; Keshavarz and Ghosh, 2015). These have been attributed to the complex 

microstructural features and the non-Schmid effects at the slip level (Bhattacharyya et al., 2015; Dao 

and Asaro, 1993; Knezevic and Bhattacharyya, 2017; Schmid and Boas, 1950). Relationships between 

microstructure, mechanisms, and mechanical behavior have been studied using microstructure-based 

constitutive laws (Francis et al., 2014; Keshavarz and Ghosh, 2015; Shenoy et al., 2008). These works 

have focused on room temperature behavior. Considerably less attention has been dedicated to 

modeling of high temperature plastic behavior. The anisotropic response of γ/γ' superalloy single 

crystals at 650 °C was examined in (Estevez et al., 1997; Hoinard et al., 1995). The hardening 

anisotropy was comparable to that of most anisotropic pure face-centered cubic (FCC) metals, likely 

because the hardening asymmetry on the octahedral slip systems is similar. 

In this work, we study the stress-strain behavior of IN718 that has been additively manufactured at 

elevated temperatures of 450 °C and 550 °C, corresponding to typical service temperatures for this 

alloy. This work extends the elasto-plastic self-consistent (EPSC) mean-field homogenization, 

originally developed in (Barrett and Knezevic, 2019; Neil et al., 2010; Turner and Tomé, 

1994; Zecevic et al., 2017; Zecevic and Knezevic, 2017, 2019) and recently advanced to P-EPSC for 
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IN718 (Ghorbanpour et al., 2017), to model temperature dependent behavior of IN718. The model 

incorporates latent hardening, a temperature-dependent initial slip resistance and a temperature-

dependent hardening law that explicitly evolves a set of dislocation densities. The initial slip 

resistance accounts for the effects of grain shape and size and the formation of APB in precipitates as 

mobile dislocations shearing through them. 

The model is calibrated and validated on the comprehensive set of data on IN718 that has been created 

by AM. We demonstrate its capability to replicate both the texture evolution and stress-strain response 

to large strains across a broad range of temperatures and the dependence of the mechanical behavior 

built in different directions. The model suggests that the anisotropy stems primarily from the texture 

and elongated grain structure oriented along the build direction, while asymmetry is due to non-

Schmid activation and latent hardening. 

 Material and experiments 

2.1 Additive manufacturing 

The compression/tension specimens have been fabricated using direct metal laser melting (DMLM) in 

the EOS M280 machine. The powder produced by gas atomization had an average diameter of 35 μm, 

and a range of < 1 μm to 80 μm. The chemical composition is given in Table 2, meeting the chemical 

composition of the IN718 standard. Details pertaining to DMLM are given in (Gribbin et al., 2016). 

The material was printed in the form of bars and rods, which were subsequently machined into the 

samples for testing. Three categories of the DMLM IN718 samples are prepared for testing in tension 

and compression to evaluate the effect of their associate microstructures on strength. The three 

categories are different orientations with respect to the build direction (BD) and will be labeled as: H-

horizontal, D-diagonal at 45°, and V-vertical. Hot isostatic pressing (HIP) treatment was done for a set 

of samples at 1163 °C for 4 h under 100 MPa. Finally, samples of wrought IN718 were machined from 

a shaped forging with sample loading direction perpendicular to the axial direction. The samples of 
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every material category were heat treated (HT) after machining according to AMS 5663. The AMS 

5663 HT is a solution treatment at 954 °C for 1 h, fan cooling in argon to below 120 °C, and double 

aging. The double aging involves holding samples at 718 °C for 8 h, followed by furnace cooling at a 

rate of 50 °C/h to 621 °C, holding at 621 °C for 8 h, and finally air cooling to room temperature. 

Table 2. Alloy IN718 composition in wt%. 

Ni Cr Nb Mo Ti Mn Si Cu Al C S P B Fe 

55.5 18.2 5.5 3.3 1.15 0.35 0.35 0.3 0.3 0.08 0.015 0.015 0.006 Bal 

 

2.2 Texture and microstructure 

Electron backscattered diffraction (EBSD) characterization of grain structure in the three material 

categories have been presented in (Gribbin et al., 2019). In the present paper, the bulk texture in the 

samples before and after deformation was measured using neutron diffraction. 

2.3 Mechanical testing 

Room temperature (RT) tensile data is taken from (Gribbin et al., 2016; Smith et al., 2016), while 

room temperature compression data for DMLM materials is taken from (Smith et al., 2016). Room 

temperature compression testing of the DMLM + HIP and wrought samples is performed here for the 

first time. Consistent with the procedure presented in (Ghorbanpour et al., 2019a, b; Jahedi et al., 

2017; Knezevic et al., 2010; Smith et al., 2016), these tests are performed on an Instron Model # 1350 

servohydraulic testing machine with DAX software and controller. The machine was equipped with a 

customized compression fixture consisting of two cylindrical compression dies aligned vertically 

along the axis of the actuator. Compliance of the testing setup was measured by compressing the dies 

without a specimen to correct the raw data before computing the true stress–true strain curves. The 
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samples were compressed to a true strain of approximately 0.5 (i.e. the tests are interrupted before 

sample fracturing). Three samples are tested per category. 

Tensile testing at two different test temperatures (450 °C and 550 °C) was carried out on subsized, flat 

and dog-bone shaped specimens with a nominal gage section of 12.7x3.0x1.2 mm. First, the gage 

section of these DMLM IN718 specimens was machined down, by the electrical discharge machining 

(EDM), to half of their original length to reduce the force required to break the specimens, and to 

facilitate high temperature friction gripping without slippage. All the machined specimens were 

polished up to 1500 grit SiC paper to remove surface oxidation (if any) and damage caused by the 

EDM. They were then cleaned in ultrasonic vibrator using water. An MTS 810 servo-hydraulic 

universal testing machine (capacity: 250 kN) equipped with a clamshell furnace (MTS 657.02, 

capacity 1600 °C) was used to conduct the tests in the air at 450 °C and 550 °C, with ±1 °C accuracy. 

The specimens were heated to the target temperature at load-control mode and held for 30 min before 

shifting to displacement control for testing at a displacement rate of 0.75 mm/min, or a strain rate 

≈10−3/s. A high temperature extensometer (MTS 632.53E-11, range: ±20% of 25.4 mm), with ceramic 

arms extending into the furnace, was used to measure the specimen displacement. The load and 

displacement of the actuator were also recorded for verification. The samples were deformed to 

failure. Tensile properties were determined according to the ASTM test standard E8M-13 (2013). 

Simple compression tests were conducted on cylindrical IN718 specimens, EDMed down to 4 mm 

diameter from their original 6 mm diameter in order to reduce the load required to deform the 

specimens at high temperature. However, to maintain consistency with the room temperature test 

(Smith et al., 2016), the length to diameter ratio was kept 1.2. Both surfaces of the specimens are 

polished using 1500 grit SiC paper. 

All compression tests were performed on the same MTS 810 machine, and using the same furnace and 

extensometer as the high-temperature tensile tests. However, the machine was equipped with a 
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customized compression fixture consisting of two cylindrical compression dies aligned vertically 

along the axis of the actuator. The compression dies are made of Inconel with smooth, flat surfaces. 

Tungsten carbide (WC) bearing blocks (5 mm thick, 20 mm diameter), also flat-surfaced, were used at 

both sides of the dies to protect the face of the Inconel dies and to help transmit the axial load. Boron 

nitride spray-II was used to minimize the effects of contact friction between the faces of the specimen 

and the upper and lower compression dies and blocks. All the dies and the blocks were aligned before 

tests and found parallel to the loading axis after tests. 

The samples were compressed to a true strain of approximately −0.25 to −0.4. The maximum strain is 

determined by the maximum compressive load that the WC can bear (25 kN–30 kN) before shattering 

at that temperature. The tests were performed at a strain rate of 10−3/s in the air at 550 °C. Three 

samples were deformed per category to ensure the reputability and accuracy of the measured data. 

Compression test loads and displacements were measured in accordance with the ASTM E209, 

2018, ASTM E9-09, 2018. 

 Experimental results 

This section presents results of mechanical testing and texture characterization for alloy IN718. 

3.1 Texture and microstructure 

The initial grain structure in all samples (DMLM, DMLM + HIP, and wrought) were characterized 

previously in (Gribbin et al., 2019). It was found that the DMLM material exhibits a strongly 

elongated grain structure along the deposition direction (average major and minor axis of 130 μm and 

25 μm, respectively), while the aspect ratio is significantly reduced in the DMLM + HIP material but 

grains are much coarser (average major and minor axis of 280 μm and 80 μm, respectively). 

Incoherent annealing twins are introduced in the microstructure by HIP treatment. Wrought material 

exhibits an equiaxed grain structure of approximately 105 μm and a large fraction of the coherent twin 

boundaries. Porosity content was also studied in the earlier work (Smith et al., 2016). The content of 
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porosity in the DMLM material was found to be approximately 0.18% with 0% in DMLM + HIP and 

wrought. 

It was found that the δ precipitates in the DMLM material were intragranular with some present along 

the grain boundaries (GBs) (Gribbin et al., 2019). In contrast, the δ precipitates in the DMLM + HIP 

and wrought materials were primarily along the GBs. The high fraction of intragranular δ precipitates 

in the DMLM sample was attributed to heterogeneity in the solidification microstructure that occurred 

during the DMLM process, whereas localized inter-dendritic regions can have relatively high 

concentrations of Nb and Ni (Lass et al., 2017). GB δ precipitates in DMLM + HIP and wrought 

samples were much larger than those in the DMLM. The DMLM + HIP and wrought samples also 

contain carbides. Existence of δ precipitates of variable size in the DMLM material suggests that both 

shearing and looping hardening mechanisms will be activated during their interaction with mobile 

dislocations. Due to their size in IN718 both γ'' and γ′ are shearable. In addition to shearing of γ'' 

and γ', the shearing contribution from the δ phase is also considered but the contribution is very small. 

Importantly, we have been able to fit the initial slip resistance without considering any looping, which 

suggests that looping has a minimal effect in alloy IN718. The content of δ precipitates was 7.9% in 

DMLM, while only 0.7% in DMLM + HIP and 0.8% in wrought (Ferreri et al., 2019). 

Crystallographic texture has also been characterized using EBSD (Smith et al., 2016). However, the 

micro technique is not well suited to do so, especially for coarse grained materials. In the present 

work, the textures have been characterized using neutron diffraction (figure 1). As shown, a 

moderately strong <100> fiber along the deposition direction is found for DMLM. As a result of the 

preferential grain structure and texture, the mechanical response will vary among the V, D, and H 

samples. Texture in the DMLM + HIP material is even weaker, which is a consequence of static 

recrystallization and grain growth. Texture in the wrought material is a consequence of the ring rolling 

process. Weak to moderately strong textures in the samples will likely have a secondary effect on the 

plastic behavior of these materials. 
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Figure 1. Stereographic pole figures as measured using the neutron diffraction technique showing the 

initial crystallographic texture in the samples of IN718: (a) DMLM, (b) DMLM + HIP, and (c) 

wrought. BD is vertical for (a) and (b). 
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3.2 Stress-strain response 

Figure 2 shows the measured true stress-true strain data at room temperature and two elevated 

temperatures 450 °C and 550 °C. The DMLM samples are stronger in tension and compression than 

DMLM + HIP and wrought materials. However, wrought and DMLM + HIP samples show more 

elongation to fracture. Initial microstructures of the samples govern such behavior. The DMLM 

material contains some porosity limiting its elongation to fracture. The DMLM material exhibits much 

smaller grains than wrought and DMLM + HIP, making it stronger, as explained below. The 

difference in the behavior between the DMLM V, H, and D samples is driven by the grain 

morphology and texture. As explained earlier, the HIP treatment changes the structure to a coarse-

grained one and randomizes the texture. The treatment also dissolves the precipitates, including 

the δ precipitates, and rebuilds them in different amounts. These δ precipitates are not dissolved 

during the subsequent heat treatment per AMS 5663. Thus, the material is comparatively softer and 

more ductile than the DMLM material without HIPing. The wrought material also has a coarser grain 

structure making it weaker than the DMLM material. Among the room temperature tests on the 

DMLM material, the V sample shows relatively lower strength than the H and D counterparts, both in 

tension and compression (figure 2). This trend also persists at high temperatures, although the 

difference in strengths among the V, H, and D samples has slightly reduced. Since presented in the 

form of true stress-true strain, the provided elevated temperature tensile data is up to the maximum 

load point, meaning that the softening portion of the curves is not shown. The 0.2% yield strength 

(YS) slightly decreases with increasing temperature from RT to 550 °C, but are still comparable 

(especially for DMLM D and H) to the room temperature HIPed and wrought alloy (Table 3). 

However, DMLM samples in all three build directions exhibited some T-C asymmetry, which will be 

shown using modeling results. 
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Figure 2. Simple tension and compression responses of IN718 as a function of sample orientation and 

temperature measured under 0.001/s strain rate: (a) compression: DMLM along D, H, and V, 

DMLM + HIP, and wrought at RT, (b) tension: DMLM along D, H, and V, DMLM + HIP, and 

wrought at RT, (c) compression: DMLM along V and H, and wrought at RT, DMLM along V and H, 

and wrought at 550 °C, (d) tension: DMLM along V, D, and H at RT, DMLM along V, D, and H at 

450 °C, DMLM along V, and H at 550 °C. The samples tested in tension went to fracture, while those 

tested in compression were interrupted before fracture. 

 

Some of the high temperature stress-strain curves for tensile test shown in figure 2 reveal dynamic 

strain aging (DSA) or serration, which is common in some metals, including Ni-based alloys that 

generally occurs during plastic deformation within a specific temperature range and strain rate (Beese 

et al., 2018; Cai et al., 2017; Hayes and Hayes, 1982; Maj et al., 2014; Mannan, 1993). In our case, 

type-C serration was seen of tested specimens for all three DMLM samples at 450 °C, and only for 
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DMLM-V sample at 550 °C in tension, although their spacing and stress-amplitude vary (see  figure 

2). A critical strain is also required to initiate the serrated response, which is ~0.02 at 450 °C for all 

three DMLD specimens, ~0.035 for DMDL-V at 550 °C. It is widely accepted that the DSA occurs 

due to the interaction between diffusing solute atoms and mobile dislocations that are blocked by 

these solute atoms and strengthen materials. 

Table 3. Yield stress estimates at 0.2% offset strain in tension and compression (expressed in [MPa]). 

The values are average of 2 or 3 tests. 

 DMLM, V DMLM, D DMLM, H DMLM+HIP Wrought 

Tension at RT 1215 1305 1290 1105 1170 

Compression at RT 1255 1370 1345 1125 1205 

Tension at 450 ℃ 1110 1130 1125 - - 

Tension at 550 ℃ 1015 - 1045 - - 

Compression at 550 ℃ 1135 - 1160 - 1100 

 

When the stress reaches a critical value, these mobile dislocations are released and thereby a lower 

stress is needed for deformation, resulting serration in the stress-strain curve (Beese et al., 2018; Cai et 

al., 2017; Maj et al., 2014). We note that the compression test at 550 °C for all three DMLM 

specimens did not show such a serrated response or DSA. On the contrary, the IN718-wrought 

(forged) sample exhibited serration at the same temperature in compression. This finding is consistent 

with (Beese et al., 2018), who observed DSA for conventionally processed Inconel 625, whereas an 

absence of DSA for the AM-processed counterpart during compression at 600 °C. The presence of 

coarser precipitates, especially carbides, at grain boundaries is the main reasons for serration of 
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wrought IN718 (Beese et al., 2018; Mannan, 1993; Weaver and Hale, 2001). The DMLM processed 

IN718 does not contain coarser carbide and delta phases at grain boundaries but much more dispersed 

intra-granular delta phases (Gribbin et al., 2019). The dislocation arrest theory (proposed by 

(Sleeswyk, 1958)) and supported by many subsequent works (Beese et al., 2018; Hayes and Hayes, 

1984)) assumes that solute atmospheres (carbon atoms) form on forest dislocations. At room/low 

temperature, solute atoms are immobile within the lattice, however, they become mobile along with 

dislocations at higher temperature. As mobile dislocations glide under applied loading, they encounter 

obstacles like immobile forest dislocation surrounded by solute ambience. The obstacles could 

temporarily or permanently arrest mobile dislocations. If temporarily, during the waiting time, solute 

atoms drain from forest dislocations to mobile dislocations via pipe diffusion. This accumulation of 

solute atoms in mobile dislocations further strengthens the obstacles that raise the critical stress 

needed to overcome these obstacles. When the applied flow stress exceeds the critical stress, these 

mobile dislocations quickly move to the next obstacles (with increased strain and relaxed stress). The 

process repeats leading to the serration. For DMLM processed IN718, these mobile dislocations are 

obstructed by the finely distributed precipitates at the grain interior whit high dispersion hardening 

effect. The precipitates can react with carbon and act as sinks for solute atoms; therefore, draining 

carbon from the mobile dislocation rather than forming obstacles. However, for wrought IN718, the 

large carbides and delta phases are coarsely distributed, mostly along the grain boundaries, so, the 

probability for arresting mobile dislocations is low because of low dispersion hardening effect. This 

allows mobile dislocations to move freely until arrest at the forest dislocations, and dislocation pipe 

diffusion mechanism dominates during waiting time, resulting in serration during deformation. Details 

of the dislocation arrest theory can be found in (Beese et al., 2018; Hayes and Hayes, 1984; Sleeswyk, 

1958). Grain size and texture also play their role on DSA behavior (Beese et al., 2018; Mannan, 

1993). It is also well established that the negative strain rate sensitivity of the flow stress is correlated 

with DSA phenomena (Beese et al., 2018; Hayes and Hayes, 1984; Mannan, 1993). 
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 Modeling framework 

The recently developed P-EPSC (Ghorbanpour et al., 2017) is advanced here into a temperature 

dependent constitutive law for IN718, by applying it to model the behavior of the alloy across a 

temperature range from room to 550 °C. The model integrates a dislocation density-based hardening 

law. While precipitates are not modeled explicitly because of their size, the model takes into account 

the effect of the APB formation in γ', γ'', and δ precipitates into the slip resistance. Finally, the model 

considers latent hardening and non-Schmid activation stresses. In our description, we use “∙” to denote 

a dot product and “⊗” to denote a tensor product.   

The EPSC model represents a polycrystal as an aggregate of grains with a distinct crystallographic 

orientation and volume fraction. Each grain is modeled as an elasto-plastic ellipsoid inclusion in a 

homogeneous medium. The constitutive response of the polycrystalline aggregate is assumed to 

follow a linear relationship given by: 

�̂� = 𝐋�̇�,          (1) 

where 𝐋 is the instantaneous elasto-plastic stiffness tensor of the polycrystal, �̂� is the macroscopic 

Jaumann stress rate, and  �̇� the strain rate.  The self-consistent scheme solves for  𝐋 iteratively (Turner 

and Tomé, 1994) until equilibrium and strain compatibility are satisfied (Eshelby, 1957). The 

polycrystalline �̇� is related to the strain rate of the individual crystals �̇�𝑐 according to 

�̇�𝑐 = 𝐀𝑐�̇�,          (2) 

where 𝐀𝑐 = (𝐋𝑐 + 𝐋𝑐∗
)

−𝟏
(𝐋𝑐∗

+ 𝐋) is the localization tensor for the ellipsoidal inclusion c, 𝐋𝑐 is its 

instantaneous elasto-plastic stiffness tensor and 𝐋𝑐∗
= 𝐋(𝐒𝑐−1 − 𝐈) is its effective stiffness tensor. 

Note that the latter contains the symmetric Eshelby tensor 𝐒𝑐.  𝐈 is the fourth rank identity matrix. The 

tensor 𝐋𝑐∗
 relates the grain stress and total strain rate to the polycrystalline (i.e., homogeneous 

medium) stress and total strain rate through an interaction equation, given by 
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(�̂�𝒄 − �̂�) = −𝐋𝑐∗
(�̇�𝑐 − �̇�),  

In the self-consistent scheme, the polycrystal stress and strain rate are enforced to be equal to the 

volume average of the stress and strain rate in all grains: 

�̂� = 〈�̂�𝑐〉,          (3) 

and  

�̇� = 〈�̇�𝑐〉,          (4) 

The above conditions lead to the following expression for L:  

𝐋 = 〈𝐋𝑐𝐀𝑐〉〈𝐀𝑐〉−𝟏.         (5) 

Finally, the macroscopic stress is updated using the following relationship between the Cauchy stress 

rate and Jaumann rate  

�̇� = �̂� + 〈𝐖c𝛔c〉 − 〈𝛔c𝐖c〉 = 𝐋�̇� + 〈𝐖c𝛔c〉 − 〈𝛔c𝐖c〉,  

where 𝐖c is elastic spin of crystal c. The macroscopic Cauchy stress is solved by explicit time 

integration, i.e.,  𝛔𝑛+1 = 𝛔𝑛 + 𝐋𝑛�̇�𝑛∆𝑡 + 〈𝐖𝑛
𝑐𝛔𝑛

𝑐 〉∆𝑡 − 〈𝛔𝑛
𝑐 𝐖𝑛

𝑐〉∆𝑡.     

For an individual grain, the constitutive relationship is: 

�̂�𝑐 = 𝐂𝑐(�̇�𝑐 − ∑ 𝐦𝑐,𝑠�̇�𝑐,𝑠
s ) − 𝛔𝑐𝑡𝑟(�̇�𝑐),      (6) 

where the grain Jaumann stress rate is �̂�𝑐,  the grain strain rate is �̇�𝑐, the grain stiffness tensor is 𝐂𝑐 

and the grain plastic strain rate is ∑ 𝐦𝑐,𝑠�̇�𝑐,𝑠
s . The latter is given by the sum of the product of the 

shear strain rates, �̇�𝑐,𝑠, from each slip system, s, and the tensor 𝐦𝑐,𝑠 = 0.5(𝐛𝑐,𝑠 ⊗ 𝐧𝑐,𝑠 + 𝐧𝑐,𝑠 ⊗ 𝐛𝑐,𝑠) 

, which is the symmetric part of the Schmid tensor for slip system s.  The Schmid tensor is calculated 

as the tensor product of 𝐛𝑐,𝑠 and 𝐧𝑐,𝑠, the orthonormal unit vectors representing the slip direction and 
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slip plane normal, respectively. Since the grain orientation can change during deformation, the elastic 

stiffness and Schmid tensors are updated at the beginning of each deformation increment.  

Due to the core structure of dislocations in Ni-based superalloys, non-Schmid effects can be 

important. Non-Schmid effects are included in the crystal level constitutive law via the introduction of 

a non-Schmid tensor 𝐦𝑛𝑠
𝑐,𝑠

. To define 𝐦𝑛𝑠
𝑐,𝑠

, we consider five non-glide stress components: the two 

shear stresses 𝐭𝑐,𝑠⨂𝐛𝑐,𝑠 and 𝐭𝑐,𝑠⨂𝐧𝑐,𝑠, acting normal to the Burgers vector and the three normal 

stresses 𝐧𝑐,𝑠⨂𝐧𝑐,𝑠, 𝐭𝑐,𝑠⨂𝐭𝑐,𝑠, and 𝐛𝑐,𝑠⨂𝐛𝑐,𝑠.  These components are related to the non-Schmid tensor 

via (Dao and Asaro, 1993; Knezevic et al., 2014a; Lim et al., 2013; Savage et al., 2017): 

𝐦𝑛𝑠
𝑐,𝑠 = 𝑐1(𝐭𝑐,𝑠⨂𝐛𝑐,𝑠) + 𝑐2(𝐭𝑐,𝑠⨂𝐧𝑐,𝑠) + 𝑐3(𝐧𝑐,𝑠⨂𝐧𝑐,𝑠) + 𝑐4(𝐭𝑐,𝑠⨂𝐭𝑐,𝑠) − (𝑐3 + 𝑐4)(𝐛𝑐,𝑠⨂𝐛𝑐,𝑠), 

             (7) 

The non-Schmid tensor is added to the Schmid tensor to give the total Schmid tensor where 𝐦𝑡𝑜𝑡
𝑐,𝑠 =

𝐦𝑐,𝑠 + 𝐦𝑛𝑠
𝑐,𝑠

 to provide the stress used to activated slip:  

𝐦𝑐,𝑠 ∙ 𝛔𝑐 + 𝐦𝑛𝑠
𝑐,𝑠 ∙ 𝛔𝑐 = 𝐦𝑡𝑜𝑡

𝑐,𝑠 ∙ 𝛔𝑐,        (8) 

In Eq. (7), ci is the weighting coefficient for the non-Schmid effect i. Only four coefficients are 

needed since only four are independent under incompressible flow.  

The  relationship between the evolution of slip resistance, �̇�𝑐
𝑐,𝑠

, and the rates of slip on other slip 

systems is given by (Zecevic and Knezevic, 2015; Zecevic and Knezevic, 2018a): 

�̇�𝑐
𝑐,𝑠 = ∑ ℎ𝑠𝑠′

𝑠′ �̇�𝑐,𝑠′
,         (9) 

where ℎ𝑠𝑠′
 is the hardening matrix. Expressions for ℎ𝑠𝑠′

 are given in (Zecevic and Knezevic, 2015).  

Combining relations (6) and (9) with 𝐦𝑡𝑜𝑡
𝑐,𝑠 ∙ �̂�𝑐 = �̇�𝑐

𝑐,𝑠
  gives a set of linear equations for the shear 

rates: 

𝐦𝑡𝑜𝑡
𝑐,𝑠 ∙ (𝐂𝑐(�̇�𝑐 − ∑ 𝐦𝑐,𝑠′

�̇�𝑐,𝑠′

s′ ) − 𝛔𝑐𝑡𝑟(�̇�𝑐)) = ∑ ℎ𝑠𝑠′

𝑠′ �̇�𝑐,𝑠′
.    (10) 
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These shear rates are related to the strain rate in crystal following 

�̇�𝑐,𝑠 = (∑ (𝑋𝑠𝑠′
)

−1
𝐦𝑡𝑜𝑡

𝑐,𝑠′

𝑠′ (𝐂𝑐 − 𝝈𝑐 ⊗ 𝐢)) ∙ �̇�𝑐,      (11) 

where 

𝑋𝑠𝑠′
= ℎ𝑠𝑠′

+ +𝐂𝑐 ∙ 𝐦𝑡𝑜𝑡
𝑐,𝑠 ⊗ 𝐦𝑐,𝑠′

.       (12) 

Given the above, the modulus 𝐋𝑐 that relates the grain strain rate and Jaumann rate according to 

�̂�𝑐 = 𝐋𝑐�̇�𝑐,          (13) 

can be calculated 

𝐋𝑐 = 𝐂𝑐 − 𝐂𝑐 ∑ 𝐦𝑐,𝑠
𝑠 ⊗ (∑ (𝑋𝑠𝑠′

)
−1

𝐦𝑡𝑜𝑡
𝑐,𝑠′

𝑠′ (𝐂𝑐 − 𝝈𝑐 ⊗ 𝐢)) − 𝝈𝑐 ⊗ 𝐢,  (14) 

Finally, to update the texture, we calculate the lattice rotation rate tensor, 𝐖𝑐, according to 

𝐖𝑐 = 𝐖𝑎𝑝𝑝 + 𝚷c − 𝐖𝑝,𝑐,        (15) 

where 𝐖𝑎𝑝𝑝 is the applied rotation rate,  𝚷c is the antisymmetric part of the Eshelby tensor 

(Lebensohn and Tomé, 1993), and 𝐖𝑝,𝑐 is the plastic rotation rate. The latter is related to the slip 

system slip rates according to: 

𝐖𝑝,𝑐 = ∑ 𝐪𝑐,𝑠�̇�𝑐,𝑠
𝑠 ,                      (16) 

where 𝐪𝑐,𝑠 = 0.5(𝐛𝑐,𝑠 ⊗ 𝐧𝑐,𝑠 − 𝐧𝑐,𝑠 ⊗ 𝐛𝑐,𝑠).  

 

4.1 First-principles calculations of APB energy for the delta phase in IN718 

In prior work, the values of the APB energy within the two γ′ and γ'' precipitates were calculated using 

density functional theory (DFT) (Ghorbanpour et al., 2017). In this work, we additionally calculate the 

APB energy for the δ phase. The APB energy values are used in the initial slip resistance equations 

described in the previous section. 
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To calculate the generalizes stacking fault energy (GSFE) in the delta phase of Ni3Nb, we performed 

DFT calculations using the Vienna Ab initio Simulation Package (VASP) code (Kresse and 

Furthmüller, 1996; Kresse and Hafner, 1994). For exchange correlation functional in DFT, we used 

generalized gradient approximation (GGA) with the Perdew-Becke-Ernzerhof (PBE) parametrization 

(Perdew et al., 1996) and Projector-Augmented Wave (PAW) pseudopotentials for the interaction 

between valence electrons and ionic cores (Blöchl, 1994; Kresse and Joubert, 1999). The numbers of 

valence electrons are 10 and 13 for the Ni and Nb pseudopotentials, respectively. For the calculations 

of the lattice constants of the cubic primitive unit cell, we used a 19 × 19 × 19 Γ-centered Monkhorst 

Pack k-point to integrate the Brillouin Zone. We used a plane wave energy cutoff of 400 eV, and 

optimized the atomic structure until the force on each atom is smaller than 0.01 eV/Å. 

The crystal structure of the delta phase is orthorhombic. The calculated lattice constants for the 

orthorhombic structure (space group #59) are given in Table 1. To calculate the GSFE curves on (100) 

plane in Ni3Nb, we take a periodic supercell consisting of 64 atoms (48 Ni and 16 Nb atoms) as 

shown in  figure 3a. Supercell consists of a 15 A thick vacuum layer along the direction normal to slip 

plane. As shown in  figure 3a, there are two interlayer distances (0.72 Å and 1.44 Å) along normal to 

(100) plane.  figure 3b and c shows the calculated GSFE curves for the interlayer 2 (separation 

1.44 Å) and interlayer 1 (separation 0.72 Å) along three directions respectively. The calculated 

antiphase boundary (APB) energy on the (100) plane is 65 mJ/m2. 

 

4.2 Initial resistance to slip 

Initial slip resistance is expressed as 

𝜏0
𝑠 = 𝜏0,𝑠𝑠 + 𝜏0,𝐻𝑃

𝑠 + 𝜏0,𝑠ℎ𝑒𝑎𝑟.        (17) 

The contributing terms to the slip resistance are the solid solution strengthening, the Hall-Petch-like 

barrier effect, and precipitates shearing effect.  
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The first term is given by 

𝜏0,𝑠𝑠 =
1

𝑀
∑

𝑑𝜎

𝑑√𝑔𝑖
√𝑔𝑖           (18) 

 

 

Figure 3. Generalizes stacking fault energy (GSFE) curves along three directions on (100) plane for 

Ni3Nb in the δ phase. Nb atoms are shown in yellow and Ni atoms are shown in blue. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the Web version 

of this article.) 

 

where M is the Taylor factor, g is the atomic fraction, and 
𝑑𝜎

𝑑√𝑔𝑖
 is the strengthening coefficient of the 

solute elements in IN718, which are taken from (Roth et al., 1997). Using these values in Eq. (18) 

along with M for the measured texture, the solid solution strengthening contribution is 263.2 MPa. 

The second term is 

𝜏0,𝐻𝑃
𝑠 =

𝐻 𝜇IN718 √𝑏

√𝑑𝑚𝑓𝑝
𝑠

,          (19) 
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with  

𝑑𝑚𝑓𝑝
𝑠 =

2

√(
�̂�𝑥

𝑠

𝑎
)

2

+(
�̂�𝑦

𝑠

𝑏
)

2

+(
�̂�𝑧

𝑠

𝑐
)

2
        (20) 

where 𝐻, 𝑏, 𝑑𝑚𝑓𝑝
𝑠 , and 𝜇IN718  are the Hall-Petch coefficient per slip mode, the Burgers vector for the 

<110> dislocations (𝑏 = 2.492 10−10 𝑚), the mean free path for a given slip system s, and the shear 

modulus of the alloy, respectively. Component, �̂�𝑥
𝑠, �̂�𝑦

𝑠 , �̂�𝑧
𝑠, represent a unit vector in the Burgers 

direction expressed in a frame of the ellipsoid of size a, b, and c. The value calculated using Eq. (19) 

averaged over many grains is 67.9 MPa.  

The remaining term is (Courtney, 1990; Maciejewski et al., 2013) 

𝜏0,𝑠ℎ𝑒𝑎𝑟 = 0.7𝜇𝛾′ (
APB

𝛾′

𝜇𝛾′𝑏𝛾′
)

3

2
(

𝑓
𝛾′�̅�

𝛾′

𝑏𝛾′
)

1

2
+ 0.7𝜇𝛾′′ (

APB
𝛾′′

𝜇𝛾′′𝑏𝛾′′
)

3

2
(

𝑓
𝛾′′ �̅�

𝛾′′

𝑏𝛾′′
)

1

2
+ 0.7𝜇𝛾′′ (

APB𝛿

𝜇𝛿𝑏𝛿
)

3

2
(

𝑓𝛿�̅�𝛿

𝑏𝛿
)

1

2
, (21) 

where f is the volume fraction of the precipitate and �̅� is the average radius of the precipitates. APB 

values for γ' and γ'' have been provided in (Ghorbanpour et al., 2017). In this work, we provide the 

value for 𝛿 based on the DFT calculations. As noted above, not all 𝛿 precipitates are shearable. Only a 

small fraction of 1 % is assumed shearable. Table 4 presents the input values for Eq. (21). The 

estimated value is 267.2 MPa.  

 

Table 4. Data used for the calculation of 𝜏0,𝑠ℎ𝑒𝑎𝑟 using Eq. (21).  

 APB [
𝑚𝐽

𝑚2] 𝜇 [GPa] 𝑏 [nm] 
𝑎

2
〈110〉 f [%] �̅� [nm] 

γ′ 207 78.2 0.254912 13.2 12.5 

γ′′ 378 72.6 0.256255 2.9  5.85 

𝛿 65 84.3 0.3217 1 10 

 

The initial slip resistance depends on temperature and the values calculated above use input that are 

applicable to RT. Note, the RT value was obtained with no calibration constants. With measured 
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material response at elevated temperatures, we have the opportunity to characterize this temperature 

dependence in initial slip resistance. In doing so, we assume that the net value of the resistance 

considering all contributions will decrease with increases in temperature from room temperature. 

Individually, the first term in the equation for the initial slip resistance represents the resistance from 

lattice friction and it is assumed that the increase in lattice vibrations with increase in temperature 

results in a reduction in this value as a result of weaker atomic bond strength at high temperatures. 

The second term decrease as well since it aids slip transfer across the grain boundaries. The third term 

also depends on the temperature through the temperature dependence of APB energy and the shear 

modulus, which decrease with increases in temperature (Li et al., 2019). In summary, we do not 

calculate the temperature-dependent APB energy and the shear modulus but establish the temperature-

dependent initial slip resistance by fitting the mechanical data. 

4.3 Evolution of slip resistance 

In this model, we allow for the slip resistance on individual slip systems to evolve with strain, 

temperature, and strain rate. The slip resistance is defined as (Ardeljan et al., 

2014, 2015, 2016, 2017; Ardeljan and Knezevic, 2018; Jahedi et al., 2015; Knezevic et al., 

2012a, 2013, 2015b, 2016): 

𝜏𝑐
𝑠 = 𝜏0 + 𝜏𝑓𝑜𝑟𝑒𝑠𝑡

𝑠 + 𝜏𝑑𝑒𝑏𝑟𝑖𝑠,        (22) 

where 𝜏𝑓𝑜𝑟𝑒𝑠𝑡
𝑠  is the resistance from the forest of dislocations and 𝜏𝑑𝑒𝑏𝑟𝑖𝑠 is the resistance from 

residual dislocation debris from incomplete recovery reactions. The 𝜏𝑓𝑜𝑟𝑒𝑠𝑡
𝑠   evolves according to 

(Kitayama et al., 2013): 

𝜏𝑓𝑜𝑟𝑒𝑠𝑡
𝑠 = 𝑏𝜒𝜇IN718 √∑ 𝐿𝑠𝑠′

𝜌𝑡𝑜𝑡
𝑠′

𝑠′
,       (23) 

where 𝜒 = 0.9 is a dislocation interaction constant, 𝜇IN718
𝛼  is the shear modulus in the slip system 

coordinate system, 𝜌𝑡𝑜𝑡
𝑠  is the accumulated forest dislocation density for sth slip system and 𝐿𝑠𝑠′ is a 
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latent hardening interaction matrix.  

The 𝜏𝑑𝑒𝑏𝑟𝑖𝑠 is related to the density of dislocations stored as debris 𝜌𝑑𝑒𝑏 using the extended Taylor 

law (Madec et al., 2003): 

𝜏𝑑𝑒𝑏𝑟𝑖𝑠
𝛼 = 𝑘𝑑𝑒𝑏𝜇IN718 𝑏√𝜌𝑑𝑒𝑏𝑙𝑜𝑔 (

1

𝑏√𝜌𝑑𝑒𝑏
),      (24) 

where  𝑘𝑑𝑒𝑏 = 0.086 is a material independent constant that recovers the Taylor law i.e., Eq. (24) for 

low values of dislocation density.  

The rate of stored dislocation density with strain is governed by a competition between the rate of 

trapping and the rate of recovery.   

𝜕𝜌𝑓𝑜𝑟
𝑠

𝜕𝛾𝑠 = 𝑘1√𝜌𝑓𝑜𝑟
𝑠 + 𝜌𝑟𝑒𝑣

𝑠 − 𝑘2(휀̇, 𝑇)𝜌𝑓𝑜𝑟
𝑠 ,      (25) 

The rate coefficient of trapping 𝑘1 is assumed to be insensitive to temperature and strain rate.  

However, the rate coefficient of recovery 𝑘2 is calculated using:   

 
𝑘2

𝑘1
=

𝜒𝑏

𝑔
(1 −

𝑘𝐵𝑇

𝐷(𝑏)3 𝑙𝑛 (
�̇�

�̇�0
)),         (26)  

where 𝑘𝐵 ,  휀0̇, 𝑔 and 𝐷 are the Boltzmann constant, a reference strain rate of value 107 s-1, an 

effective activation enthalpy and a drag stress, respectively. The drag stress is assumed to be a 

function of temperature following (Risse et al., 2017).  Finally, the increment in debris density 𝑑𝜌𝑑𝑒𝑏 

depends on the rate of recovery via:   

𝑑𝜌𝑑𝑒𝑏 = ∑ 𝑞𝑏√𝜌𝑑𝑒𝑏𝑘2(휀̇, 𝑇)𝜌𝑡𝑜𝑡
𝑠 𝑑𝛾𝑠

𝑠 ,                                                                (27) 

where 𝑞 is a coefficient that scales with the fraction of α-type dislocations that are transformed into 

debris.  
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4.4 Model setup 

Hardening parameters pertaining to the temperature dependent hardening law are identified using part 

of the mechanical data. These are presented in Table 5. To the authors’ knowledge, the high 

temperature single crystal moduli of this material are not publicly available. The measured single 

crystal elastic constants for IN718 of C11=242.2GPa, C12=138.9GPa, and C44=104.2GPa (Haldipur, 

2006) have been used in the room temperature calculations and softened to match the experimentally 

measured elastic slope for elevated temperature data. The measured elastic slopes at elevated 

temperatures are softer than expected for the alloy (Fukuhara and Sanpei, 1993), since the data is 

presented as measured i.e. without attempting to correct the slopes. 

Table 5. Hardening law constants calibrated as functions of temperature in [K]. Tref is room 

temperature, 298 K. 

𝜏0(𝑇) [MPa] 𝐷(𝑇) [MPa] g 𝑘1 [𝑚−1] q 𝐻 

637.9-37.9*exp((T-Tref)/261.1) 468.2+4.4*exp(-T/150.9) 

 

0.04 3.2e+8 4.0 0.31 

 

The initial texture used in the simulation is reconstructed from the neutron diffraction pole figure 

measurements and is represented using 5000 crystal orientations using procedures from (Barrett et al., 

2019; Eghtesad et al., 2018; Knezevic and Landry, 2015).  Figure 4 shows pole figures of the initial 

texture for simulations with respect to the loading direction (LD). The grain shape aspect ratio is set to 

5, consistent with the measured grain structure. The simulations are performed in simple compression 

and tension in three directions relative to the BD: H, V, and D. Consistent with experiments, the 

imposed strain rate was 10−3 s−1. 
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Figure 4. Stereographic pole figures visualizing texture in the DMLM samples with respect to the 

loading direction (LD). The texture was constructed from the neutron diffraction measurements 

(figure 1a) and represented with 5000 orientations, which are used in the crystal plasticity modeling. 
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In this model, we make available only the octahedral 〈111〉 〈11̅0〉 slip mode, since it is the main 

deformation mode in the service conditions from room temperature to 550 °C. It has been reported 

experimentally that cubic slip activates at much higher temperatures than considered in this work and 

therefore, we make available the same octahedral slip systems at all temperatures (Ding et al., 

2004; Haddou et al., 2004; Österle et al., 2000; Semiatin et al., 2004). 

The final part of developing the model is to characterize the material parameters associated with the 

hardening model. In earlier work, these parameters were defined for room temperature deformation 

(Ghorbanpour et al., 2017). Here we identify any temperature dependencies in these parameters by 

applying the model to a range of temperature, from room to high-temperature deformation of the alloy 

IN718. 

The latent hardening interaction matrix used in Eq. (23) is based on notation in (Franciosi and Zaoui, 

1982) with the values from (Devincre et al., 2006; Hoc et al., 2004), which were obtained using 

dislocation dynamic simulations. The values 

are a0 = 0.068, a1 = 0.068, a2 = 0.0454, a3 = 0.625, a4 = 0.137, and a5 = 0.122 and correspond to the 

self-interaction, coplanar interaction, Hirth, collinear, Glissile, and Lomer interaction coefficients, 

respectively. The matrix is explicitly defined in (Ghorbanpour et al., 2017). 

 Modeling results and discussion 

 Figure 5 compares measured and simulated data. As shown, the model achieves agreement in the 

yield stress, flow stress, and hardening rate for all cases and temperatures. In particular, the calculated 

response has the same T-C asymmetry, anisotropy, and hardening rate as the measurement. More 

importantly, changes in these features with an increase in temperature agree with the measured 

responses. 

Figure 6 and figure 7 compare the measured and calculated texture after deformation. Earlier works 

(Knezevic et al., 2014a, 2014b) have shown no appreciable difference in texture evolution between 

https://www.sciencedirect.com/science/article/pii/S074964191930347X#bib24
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RT and elevated temperature in materials deforming by the same slip modes at RT and elevated 

temperatures. Thus, the texture was measured only for the deformed samples experiencing the largest 

amount of strain to evaluate texture evolution. From the measurements, we observe that for all three 

samples, H, V, and D, a strong <011> fiber texture formed along the loading direction, which is 

common for FCC metals. The model achieves an excellent agreement with the measurements. 

 

 

Figure 5. Comparison of measured and predicted true stress–true strain responses in tension (the 

shorter curve per plot) and compression (the longer curve per plot) for alloy IN718 as a function of 

temperature and build direction as indicated in the figure. The measured data is from figure 2. Length 

of the x-axis is different for every row. 
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Figure 6. Stereographic pole figures measured using the neutron diffraction technique showing 

texture after simple compression for: (a) V, (b) H, and (c) D samples of alloy IN718. The strain values 

are 0.55, 0.53, and 0.57 respectively. LD is the loading direction, which is vertical. BD is the build 

direction, which varies. 
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Figure 7. Pole figures showing simulated textures corresponding to those given in  figure 6. The 

corresponding initial texture relative to LD for each simulation case is given in figure 4. 
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With a single set of parameters, the model was able to predict the stress-strain response in three build 

directions, both tension and compression and for three temperatures (for cases when data is available). 

The analysis finds that not all slip hardening-related parameters are dependent on temperature. It is 

suggested that the observed decrease in the yield and flow stress with increase in temperature can be 

understood by a decrease in the initial slip resistance. Table 5 contains the empirical relationships 

for τ0(T) and D(T) used in the calculations shown in figure 5. The remaining parameters governing 

statistical trapping of dislocations, activation enthalpy for recovery processes, and latent hardening 

parameters could remain temperature independent. 

At both RT and 550 C, the alloy exhibits a T-C asymmetry in yield stress, where the yield stress in 

compression is consistently higher than that in tension. The two components of the model responsible 

for the T-C asymmetry in the calculated response are the latent hardening parameters and non-Schmid 

coefficients with the latter having a dominant effect. Three coefficients, c2, c3, and c4, can lead to a T-

C asymmetry (Savage et al., 2017). In this work, we elected to vary only c1 and c2 NS coefficients 

since these coefficients have been associated with separation between the super-partials and Shockley 

partial separation (Baudouin et al., 2013; Steinmann et al., 1998). Interestingly, the model suggests 

that c1 = 0.045 is very small in magnitude and insensitive to temperature, whereas the c2 is much 

larger in magnitude. Furthermore, c2 is found to decrease with temperature from 0.97 at RT to 0.75 at 

450 °C to 0.3 at 550 °C, indicating that temperature reduces the effect of the t⊗n non-Schmid 

resolved shear stress term and hence the evolution of T-C asymmetry. Similar findings have been 

reported for tantalum in (Zecevic and Knezevic, 2018b). 

 Conclusions 

In this work, we studied the mechanical response of alloy IN718 as a function of the initial 

microstructure created by DMLM, subsequent HIP, and wrought manufacturing. The high temperature 

stress-strain responses for the alloy in the three DMLM and wrought conditions are provided for the 

https://www.sciencedirect.com/science/article/pii/S074964191930347X#tbl5
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first time. Serrated response is seen for all three DMLM samples tested in tension at 450 °C, and only 

for DMLM-V sample tested in tension at 550 °C, with variable spacing and stress-amplitude. A 

critical strain required to initiate the serrated response is ~0.02 at 450 °C, while ~0.035 for DMDL-V 

at 550 °C. Furthermore, serration is observed for wrought samples tested in compression at 550 °C but 

interestingly not for the DMLM samples tested at the same temperature in compression. The modeling 

is carried out only for the DMLM materials in function of the deposition direction and temperature. 

An elasto-plastic crystal plasticity model is extended to predict the temperature-dependent 

deformation of DMLM alloy IN718. The model predicts hardening and texture evolution for several 

test directions across a range of temperatures. The model suggests that anisotropy stems from grain 

structure, while tension/compression asymmetry predominantly from non-Schmid activation and some 

from latent hardening. 
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Chapter 3: Effect of microstructure induced anisotropy on fatigue behaviour of functionally 

graded Inconel 718 fabricated by additive manufacturing 

This manuscript is submitted to the Materials Characterizations entitled “Effect of microstructure 

induced anisotropy on fatigue behaviour of functionally graded Inconel 718 fabricated by additive 

manufacturing”. The authors of the paper are Saeede Ghorbanpour, Saswat Sahu, Kaustubh 

Deshmukh, Evgenii Borisov, Ton Riemslag, Elise Reinton, Virginia Bertolo, Quanxin Jiang, Anatolii 

Popovich, Aleksey Shamshurin, Marko Knezevic, and Vera Popovich. My contribution to this chapter 

was analysing the data from the mechanical tests, performing and analysing all microstructural 

analysis and writing the manuscript. 
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Abstract 

In this paper, the effect of microstructural anisotropy on the fatigue crack growth behaviour of the 

functionally graded Inconel 718 fabricated through laser powder bed fusion (L-PBF) is investigated. 

Different manufacturing parameters, including low and high laser powers, were used to produce a 

variety of non-graded (NG) and functionally graded (G) specimens in two build directions, vertical 

and horizontal. In addition, a group of heat treated wrought samples was tested as a reference. It was 

observed that the different manufacturing parameters result in various grain size, crystallographic 

textures, precipitates and Laves phases, porosity, and un-melted particles. Three-point bending fatigue 

tests were conducted to measure the threshold stress intensity factor (ΔKth) and fatigue crack growth 

rate (FCGR),da/dN. Only the lower laser power L-BPF Inconel material was found to have 

comparable to the wrought heat treated material fatigue crack growth behaviour. Furthermore, a new 

approach of automatically controlling ΔK as a function of the crack length was employed for graded 



 

103 

  

specimens to investigate the crack growth rate as a function of local microstructure. The FCGR value 

of the vertical L-PBF samples, in which the crack direction was perpendicular to the build direction, 

remained constant. In contrast, the da/dN value of the horizontal samples with the crack direction 

parallel to the build direction increased constantly with the increase of the crack length. This 

behaviour is in good agreement with the hardness profile of the graded materials. Melt pool 

boundaries, graded interface boundaries, and grain orientations close to <001> were found to deflect 

the crack path. Additionally, it was found that L-PBF material is more affected (at a low stress ratio of 

R=0.1) by the roughness-induced crack closure than the wrought counterparts. This study has 

successfully demonstrated the feasibility of using an additive manufacturing process to fabricate 

functionally graded materials featuring tailorable fatigue response of the local microstructures. 

 Introduction 

Inconel 718 (IN718), due to its outstanding combination of superior strength, creep and wear 

resistance, corrosion and oxidation, even at cryogenic and elevated temperatures (up to 650 °C), is 

widely used in various applications in petrochemical, aeronautics, energy, and aerospace industries [1-

5]. IN718 is a precipitation hardened Nickel-base superalloy with main strengthening precipitates γ' 

(Ni3Al) with an L12 lattice structure and γ'' (Ni3Nb) with a DO22 structure [1, 6-8]. γ' precipitates are 

spherical shape with diameters ranging between 10 and 40 nm, while γ'' precipitates are disk shaped 

with diameters of 20-30 nm and thickness of 5-6 nm [2, 9-12]. The weight percentages of γ' and γ'' can 

vary around 3-8% and 8-18%, respectively, based on the manufacturing methods and post processing 

history [13, 14]. In addition to the strengthening precipitates, undesired phases such as hexagonal 

Laves (Ni,Fe,Cr)2(Nb,Mo,Ti) and MC carbides could be present in the alloy [7, 15]. 

IN718 also exhibits high low cycle fatigue (LCF) strength and high temperature fatigue crack growth 

resistance [1, 16]. Some research [1, 17-22] was performed on the short and long crack initiation and 

growth behaviour of conventionally manufactured IN718. Short crack initiation and growth of a 
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solution treated forged IN718 were studied at 600 ˚C [17]. Due to mismatch strains between the 

oxidized particles and the matrix, crack initiation sites with sub-surface primary carbides (Nb, Ti) C 

oxidation were developed. Short crack growth rates (before reaching a couple of hundred microns) 

were found to be constant across a wide range of crack lengths. However, they transitioned to rapid 

and accelerating growth while the crack length increased to several hundred microns [17]. Room 

temperature fatigue crack growth was found to be transgranular with different crack growth 

mechanisms such as pure shearing on slip planes or formation of microcracks and subsequent linking 

[18]. The high temperature fatigue crack growth rate (FCGR) was studied in [1, 19-21] and it was 

found that the FCGR increases with temperature. However, the high temperature fatigue behaviour of 

IN718 is not the scope of the current study. In addition to the test temperature, the microstructure can 

play an important role in the fatigue crack growth behaviour. Coarsening the grain size from 22 µm to 

91 µm was found to reduce the near threshold crack growth rates while increases the threshold stress 

intensity factor [22]. 

Additive manufacturing (AM) has been considered a replacement manufacturing technique for 

conventional methods due to the near net shape (NNS) production capability, which is desirable for 

complicated geometries. Altering the manufacturing parameters can influence the microstructure and 

grain size and thus affect the mechanical properties of the final products. Different scanning strategies, 

namely cross snake (CS) and cross snake 10 (CS10), in the selective electron beam melting method 

results in columnar and equiaxed grains with significantly different sizes [23]. The AM process has 

been previously used to tailor the microstructure and develop site-specific and user-defined functional 

properties[24]. As reported in [24-26] the microstructure is affected by various AM methods and 

different manufacturing parameters, resulting in cube or Goss textures. Laser powder bed fusion (L-

PBF) which is a common AM method employs a laser beam to melt powders layer by layer and build 

the final geometry defined by a computer aided design (CAD) model [24, 27, 28]. 
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Since the AM methods became more widely used, more research has been focusing on the mechanical 

properties including the fatigue behaviour. Long crack propagation of L-PBF IN718 was formulated 

in the threshold and Paris regions in [28]. It was found that L-PBF IN718 is less resistant to the long 

crack growth in the near threshold region due to the effect of the residual stress, finer microstructure, 

and low content of boron [28]. Similarly, a higher crack growth rate compared to the wrought material 

was reported in the L-PBF IN718 with columnar grains and an average grain size of 100 µm on the 

building direction cross section [29]. In situ fatigue testing at 25˚C and 650˚C revealed that the fatigue 

short crack growth rates are much higher in the build direction (BD) due to the small misorientation of 

adjacent grains and the lower strength compared with the other orientations [30]. 

Functionally graded materials (FGM)s refer to a class of advanced materials with different 

compositions or microstructures along with the geometry, which results in different properties [31-

33]. The transition of the microstructure, composition, and morphology can be used to grade the 

materials and functional properties [31]. FGM parts can be made from one material, single-material 

FGM, or different materials known as multi-material FGM. While the former can be used to achieve 

superior and functional properties, the latter can also be a means of joining dissimilar metals. In our 

earlier works, it was successfully demonstrated that the microstructure of IN718 can be graded by 

manipulation of L-PBF process parameters. It was shown [24, 34, 35] that Vickers hardness, tensile 

strength, and creep of the functionally graded IN718 can be tailored to achieve location-specific 

properties. However, the fatigue crack growth behaviour of the functionally graded IN718 material 

has not been investigated yet. Furthermore, the experimental approach to investigate the fatigue crack 

growth behaviour in functionally graded materials, which could account for dissimilar microstructures 

and interface behaviour has not been reported to date.  

The objective of the current research is to study the effect of the grain size, texture, and graded 

interface on the fatigue crack growth behaviour of a functionally graded L-PBF IN718. Graded 

samples with different build orientations were manufactured employing the L-PBF technique. 
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Additionally, a set of non-graded samples with a variety of grain sizes, textures and build directions 

were manufactured and studied. In addition, heat treated wrought samples (based on AMS 5663 [36]) 

were tested and the corresponding data were used as a reference. Interactions of fatigue crack path 

with various microstructural features and graded interface are studied in detail. Furthermore, a novel 

fatigue crack growth setup and approach are developed to account for the graded interface behaviour.  

 Materials and methods  

2.1 Materials   

The IN718 samples were manufactured using the powder produced by the gas atomization of the hot 

melt with a chemical composition of (wt%) 51.45 Ni, 19.38 Cr, 18.49 Fe, 5.3 Nb, 3.4 Mo, 1.04 Ti, 

0.72 Al, 0.1 Co, and 0.12 Mn. The particle diameters of the powder ranged between d10=20 µm and 

d90=64 µm. Samples for this study were manufactured using the L-PBF technique with an SLM 280HL 

facility (SLM Solutions Group AG, Germany). Two different laser power values of 250 W and 950 W 

with a wavelength of 1070 nm were employed to build the fatigue specimens. To optimise the 

manufacturing parameters, the linear energy density (LED), El, which is the ratio of the laser power to 

the laser scanning speed was adjusted and is defined by equation (1). The volume energy density 

(VED), Ev, is another parameter which accounts for the combined effect of laser power and speed in 

addition to the hatch distance and layer thickness [37]. Ev is described by equation (2). The L-PBF 

parameters were optimized in a way that the volume energy density remained about the same for both 

laser powers. 
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Where P is the laser power, v is the laser scanning speed, t is the layer thickness, and h is the hatch 

distance. Note that t and h are in mm. 

The laser beams for 250 W and 950 W laser powers were 80 µm diameter with Gaussian distribution 

and 100 µm diameter with flat top distributions respectively. It is known that large and homogenous 

beams are beneficial for suppressing the spatters and powder bed degradation and allowing the 

production of denser parts [38]. In addition, the hatch distances of the low and high laser power 

categories were different which can influence the final textures of the AM parts [39]. Table 1 

summarizes the process parameters which were optimized and used in this study to produce different 

parts. 

Table 1. L-PBF process parameters used in this study. 

Build 

direction 

P    

[W] 

V     

[mm/s] 

h   

[mm] 

t  

[mm] 

Beam diameter 

[µm] 

Beam 

distribution 

El 

[J/mm] 

Ev 

[J/mm3] 

H 250 700 0.12 0.05 80 Gaussian 0.36 59.5 

H 950 320 0.5 0.1 100 Flat top 2.97 59.4 

V 950 320 0.5 0.1 100 Flat top 2.97 59.4 

 

Two categories of specimens denoted as Non-graded (NG) and Graded (G) samples were 

manufactured (see Figure 1). One constant laser power was employed during the whole manufacturing 

process in the former group while there was a transition of the laser power from 250W to 950W in the 

latter one. Another parameter which was altered during the manufacturing process was the building 

direction with respect to the sample axis or the crack direction (CD). All fatigue samples were 

designed in a way that the anticipated crack path was located aligned with the sample’s vertical 

symmetry axis. The samples were denoted as vertical (V) when the build direction and CD were 

perpendicular, and horizontal (H) when those two directions were parallel. Graded samples and higher 

laser power of NG specimens, i.e. 950 W, were designed and built in two V and H orientations, while 
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the NG 250 W samples were manufactured only in the H direction. Figure 2 depicts a schematic of the 

manufactured samples showing their orientation concerning the build direction and sample axes.  

 

Figure 1. Schematics of the graded and non-graded specimens showing the sample orientations with 

respect to the BD. Note that the crack direction (CD) is always aligned with the sample symmetry 

axes. (a) NG-V-950W, (b) NG-H-950W, (c) NG-H-250W, (d) G-V, and (e) G-H. Note that the 

dimensions are schematic and not up to the actual scale.   

 

Rectangular single-edge-notched samples were manufactured based on the ASTM E399 [40] 

specifications, as shown in figure 2. The final dimensions of the samples were achieved after milling. 

The notch with a total depth of 0.5 mm and a radius of 0.2 mm was machined using the electrical 

discharge machining (EDM) technique. A crack of length 1.5 mm was produced by fatigue pre-

cracking in all samples according to the requirements in ASTM E399 [40].    

2.2 Microstructural characterization  

Optical and scanning electron microscopy (SEM) observations were performed to study the grain 

morphology and size, melt pools, different structures caused by various manufacturing parameters, 

precipitates, and carbides. Prior to the observations, samples’ surfaces were prepared by grinding (180 

to 2000 European grit size), polishing down to 1 µm, and etching for 3 seconds in a Glyceregia 

etchant solution of 5 ml HNO3, 10 ml Glycerol, and 15 ml HCl. Leica DMLM optical microscope 

equipped with analySIS 5.0 by Olympus soft Imaging Solutions GmbH, Keyence VHX-5000, and 

JEOL JSM IT-100 SEM with JEOL InTouchScope software were used. Besides, fracture surface 
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analyses by SEM were performed on the graded samples, which were intentionally overloaded in 

constant ΔK tests. 

  

 

         

 

Figure 2. The geometry of the single edge notched samples used in this study (a) non-graded and (b) 

graded fatigue test specimens. As provided in the text, the dimensions are slightly different for G and 

NG samples. The notch specifications are provided in the insert. All dimensions are in mm.   

 

To identify the present phases, X-ray diffraction (XRD) analyses were performed on the wrought and 

non-graded samples. Prior to the XRD measurements, samples were polished for 10 minutes by 

colloidal silica. A Bruker D8 advanced diffractometer with a Co Kα radiation (wavelength of 1.78897 

Å) equipped with Bruker software Diffrac. EVA vs 5.0 was used to collect the XRD patterns. The 2θ 

range of scan was set between 20 and 140 degrees with a scanning step size of 0.035 degrees. The X-

ray beam was collimated to a spot size of 0.5 mm in diameter. The applied voltage and current were 

45 kV and 35 mA respectively, which resulted in a penetration depth of 6 µm. 

Crystallographic maps of the wrought and additively manufactured parts were collected using the 

electron backscattered diffraction (EBSD) technique to study the texture and reveal the microstructure 

at the surface along the fatigue crack path. Sample preparation was done similar to the microscopy 

sample preparation. However, an additional polishing step with 0.25 µm colloidal silica slurry 

followed by ultrasonic bath cleaning with isopropanol was done. EBSD data collection was performed 

using an SEM Mira 3 Tescan equipped with channel 5- HKL software. The accelerating voltage was 

(a) 

(b) 



 

110 

  

set to 20 kV. To study the crack growth path and reveal the microstructure of the materials, the step 

sizes of 1 µm and 0.8-1.2 µm were used for imaging around the crack and on large areas far from the 

cracks respectively. To post process the acquired data, TSL-OIM analysis software version 8 was 

used. The number of collected data points in the IPF maps used for microstructural analyses, varied 

from 2,797,299 points, in the scans with larger step size, to 6,842,364 points in the scan with the 

smallest step size. At least 96.57 percent of the collected points were indexed, and the lowest average 

confidence index (CI) of the measured data was 0.35. Grains were classified in relation to the 

neighboring groups as groupings of more than 10 pixels with crystallographic misorientation of larger 

than 5 degrees [41]. To plot the pole figures, a generalized spherical harmonic expansion smoothing 

with series rank (L) of 16, a Gaussian half-width of 5 degrees, and a triclinic symmetry was used. 

Vickers hardness measurements were done on different AM and wrought samples using a Struers 

DuraScan G5 testing machine at a load of 1000 gf (HV1) and the holding time of 10 s. Hardness 

measurements of the NG and wrought samples were repeated 10 times to assure the reliability and 

consistency of the tests. For G specimens Vickers hardness measurements were performed in intervals 

of 0.3 mm along the entire width in multiple locations to understand the effect of the microstructure 

gradient on the surface hardness. Prior to the measurements, all samples surfaces were prepared as 

provided in the ASTM E92 [42]. 

 

2.3 Fatigue crack propagation 

2.3.1 Fatigue testing  

Three-point bending fatigue tests were performed using a servo hydraulic MTS machine with a 

loading capacity of 25 kN equipped with the MTS MultiPurpose TestWare and Flextest electronic 

control unit. Specifically, for this work, a novel fatigue test setup, as shown in figure 3, capable of 

investigating the fatigue crack growth of graded materials in an accurate and reproducible manner, 
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was developed. Three-point bending tests were conducted employing fatigue test configurations and 

stress intensity solutions as described in ASTM E399 [40]. An S690 steel platform with two fixed 

rollers was made and mounted to the lower grip of the MTS machine. Reference marks, with 0.5 mm 

intervals, were fabricated on the surface of the samples from the edge of the notch up to 7 mm. For 

visual crack calibration and to monitor the symmetry of the crack propagation, Limess digital image 

correlation (DIC) 5 megapixel cameras on two sides of the samples were used, and the average 

optically-measured crack lengths were periodically compared. Direct current potential drop (DCPD) 

equipment from Howden brand with a typical crack length measurement resolution of about 0.05 mm, 

was used to determine the dependence between the actual crack length and the measured voltage in 

two places across the samples. A polymer clamp system (PMMA) was designed to facilitate stable 

connections of the DCPD probes as well as to ensure the proper alignment of the samples on the 

platform. To minimize the errors and increase the accuracy, prior to the tests equipment and setups 

were tuned and calibrated.  

 

 
 

Figure 3. The novel fatigue test setup designed for this study to facilitate accurate testing of the 

graded samples. (a) shows an overall view of the three-point bending test setup and equipment and (b) 

depicts the sample, DCPD connections, and loading fixture. 

 

a) b) 
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Fatigue crack propagation testing was done through the following procedures: 

Constant Kmax tests were done to determine the threshold stress intensity range (ΔKth). The ΔKth tests 

were conducted at a frequency of 30 Hz and an initial load ratio of R=0.1 (where R=Kmin/Kmax), which 

then was increased to R=0.6 and R=0.7 for the wrought and L-PBF materials, respectively. The Kmax 

was calculated according to equation (3) to facilitate an appropriate ΔK to grow a crack. The value of 

Kmin was adjusted using equation (4). 

max
1

K
K

R




  

(3) 

  min 0 0expK K C a a 
 

(4) 

Where K0 is the value of the initial Kmin, C is the stress intensity gradient which was chosen to be -0.4 

mm-1, a0 is the initial crack length measured optically, and a is the instantaneous crack length 

measured by DCPD and validated by periodical optical and DIC observations.  

Kmin was calculated and adjusted at intervals of 0.1 mm. The adjustment process was carried out until 

the crack did not grow by 0.1 mm in 100000 cycles, which indicates a crack growth rate of 10-6 

mm/cycle or less. The final reading of ΔK was considered as the ΔKth value.  

Constant load amplitude tests (Paris regime) were performed to formulate the crack growth rate as a 

function of stress intensity range (ΔK). The crack growth rate tests were done at a frequency of 50 Hz 

and based on the condition provided by ASTM-E647 [43]. 

The graded samples were examined under constant stress intensity range (constant ΔK) condition to 

evaluate the effect of the FGM microstructure on the crack growth rate behaviour. Since at a given ΔK 

level the FCGR is a constant value for a particular microstructure, maintaining a constant ΔK should 

reveal the effect of the functionally graded structure on the FCGR. It should be pointed out that the 
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standard K solutions for determining the load levels as a function of f(a/W) are for homogenous 

materials hence do not apply to the functionally graded parts and require adaptation.  

It should be mentioned that for the constant Kmax and constant ΔK tests, the loads were adjusted 

automatically during crack growth, to match the desired stress intensity range for the crack length 

measured by the DCDP system. 

2.3.2 Modelling 

In order to obtain accurate customized K solutions for constant ΔK tests of graded materials, an elastic 

FEM model within ABAQUS software was developed. In this model, each graded specimen is 

represented by two halves, i.e. 250 W and 950 W, with an interface plane perpendicular to the crack. 

Figure 4(a) shows the model used in the current study. The half-span of the specimen is modeled 

under 2D plane strain condition, where the global X axis is the transversal direction and the global Y 

axis is the direction of deflection. Crack is modeled at the symmetry plane of the specimen. The crack 

length is varied from 1.5 mm to 7.5 mm in order to study the change of the stress intensity factor 

during the crack growth. At the symmetry plane, displacement along X axis is constrained at the non-

cracked edge, while free boundary condition is applied to the crack. The applied load is modeled with 

a point load along the negative Y direction at the top edge and the support is modeled as a point pined 

constraint at the bottom edge. Due to the symmetry, the total load applied to the FEM is 5 kN, as the 

test load at the mid-span of the specimen is 10 kN. The Young’s moduli of the 250 W and 950 W 

parts are obtained from the compliance measurements of the fatigue tests of the non-graded 

specimens. The Poisson’s ratio is set to be 0.3. The interface based on a previous research [24] has a 

total thickness of 1 mm and is divided into 5 layers of 0.2 mm height, with a linearly changing 

Young’s modulus assigned to each layer. Small mesh elements of 0.02 mm are used near the crack tip, 

while elements of 0.5 mm are used outside the crack-influenced area. In total 185 CPE6M (6-node 

modified quadratic plane strain element, with hourglass control) and 4456 CPE8R (8-node biquadratic 
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plane strain element with reduced integration) elements are used. J integral is calculated at the fifth 

contour from the crack tip. The fifth contour involves a circular area with a radius of 0.08 mm, shown 

in Figure 4(b). K solution is then obtained from the J integral according to equation (5).  

21

E
K J


 

  

                (5) 

Where E is the Young’s modulus at the crack tip, J is the integral value and 𝜈 is the Poisson’s ratio.   

 

 

Figure 4. a) The model used for the FEM analysis of the graded materials. Since the sample is 

symmetric about the axis containing the notch, half of it is modelled. The loading direction (LD) and 

the location of one of the rollers are determined in the figure. The notch is on the left edge where the 

mesh has more elements. The mid-height region which has different colours represents the five layers 

of the interface in the model. b) Nodes involved in the fifth contour to calculate the J integral.  

 

The goal of conducting the constant K tests was to determine the effect of the graded microstructure 

on the crack growth rate. For a particular microstructure, at a given level of ΔK, the crack growth rate 

is expected to be constant. To maintain the constant ΔK criterion the load level should be modified 

based on accurate solutions of K. The standard K solutions are only applicable to materials with a 

constant Young’s modulus (E). However, graded samples are intentionally manufactured with various 

microstructures, hence different material properties (including E) are expected. Therefore, prior to the 

FEM modelling, the values of E for the non-graded materials were estimated from the load-line-

roller 

LD 

notch 

250 W 

950 W a) 
b) 
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compliance [44]. The load line displacement (δtotal) of the fatigue test and the load line displacement in 

the absence of the crack, δno-crack, are given by equations (6) and (7) respectively. 

total crack no crack    
 

(6) 

3

3

.

4. . .
no crack

P S

E BW
  

 

(7) 

 

Where P is the applied load, S is the span length, E is the Young’s modulus at the crack tip, B is the 

height of the sample, and W is the width of the specimen. The additional displacement due to the 

presence of a crack, δcrack is given by equation (8). 
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 Where ν is the Poisson’s ratio and f(a/W) is a dimensionless geometry factor defined by equation (9). 
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(9) 

 

Measurements of displacement and load during the fatigue tests were applied to the equation (6)-(9) to 

estimate the Young’s modulus for each microstructure of AP IN718. The calculated values of 

Young’s moduli from non-graded specimens, given in table 2, which are in good agreement with 

values in [24], were applied to the FEM-model to calculate the modified K solutions.   

Table 2. Young’s modulus of non-graded L-PBF IN718 superalloy obtained from three-point bending 

tests. 

Laser power [W] Specimen direction Measured Young’s modulus 

[GPa] 

950 V 139 ± 36 

950 H 136 ± 10 

250 H 186 ± 15 

 



 

116 

  

 Results and discussions 

3.1 Microstructural Characterization 

Figure 5 shows the light optical microscopy images of the longitudinal cross sections of the IN718 

samples processed using 250 W and 950 W laser powers. Figure 5 (a) depicts the 250 W material with 

finer melt pools, while figures 5 (b) and 5 (c) show the 950 W material with irregular and larger melt 

pool contours. Moreover, higher magnification optical micrographs in figures 5 (d) and 5 (e) are 

provided for a better comparison. The differences in the size and shape of the melt pools arise from 

the different process parameters used in this study. Higher laser power is capable of penetrating 

deeper and melting the previously solidified layers, and as a result, larger melt pools can be generated. 

The other parameter that affected the melt pools’ size was the laser scanning speed which was 320 

mm/s and 700 mm/s for the higher and lower laser powers. The lower laser scanning speed was found 

to result in wider and deeper melt pools and vice versa due to the changes in the melt pool penetration 

depth [45, 46]. Considering the effect of the laser power and laser scanning speed simultaneously, 

lower LED values results in deeper and narrower beads, with an average of 133 µm depth and 108 µm 

width of the beads, while the higher LED values make shallower and wider beads, with average values 

of 62 µm depth and 116 µm width of the beads. Similar behaviour is reported in a previous research 

[47]. 

Optical micrographs of the longitudinal cross sections of the interfaces in the graded samples are 

provided in figure 6. The deposition of each layer in the vertical (V) sample shown in figure 6(a) 

contains a transition at the interface from 250 W to 950 W. The melt pools out of the interface region 

show the characteristics of the NG samples corresponding to each laser power, as discussed before. 

The interface is distinguished by the finer melt pools in the centre, and keyhole-induced porosities, 

unmelted particles, and deeper melt pools in the edges which can be a result of overlapped melt pools.    
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Figure 5. Optical micrographs of longitudinal cross sections of the as-printed samples (a) 250 W-H, 

(b) 950 W-V, and (c) 950 W-H showing the melt pools. Higher magnification optical micrographs of 

(a) and (c) are provided in (d) and (e) respectively. 

In addition, the time window associated with the change of the depositing parameters which takes 

place in each pass can influence the interface microstructure. The transition in the horizontal (H) 

a) 

BD 

BD 

b) 

c) 

BD 

e) 

BD 

d) 

BD 
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graded sample was smoother since each layer was deposited using one laser power, namely 250 W in 

the bottom of the micrograph and 950 W in the top layers, as shown in figure 6(b). Melt pools in the 

lower and upper parts are thus similar to those discussed earlier in the NG 250 W and 950 W laser 

power samples. Figure 6(c) which is also obtained on an H sample is taken by a non-digital 

microscope and shows the characteristic dendritic growth and epitaxial microstructure.  

  

 

Figure 6. Optical micrographs of the interface area in the graded AP samples in (a) V, (b), and (c) H 

orientations. The laser power used for each side of the interface along with the build directions are 

provided in the figures. It should be noted that figure c is taken by a different microscope to highlight 

the epitaxial columnar dendrites and interface transition. 

  

Figure 7 shows the SEM micrographs of the as-processed (AP) L-PBF specimens in the sections 

parallel to the build direction (BD) along with a micrograph of the wrought sample. As can be seen in 

all L-PBF categories, grains are extended along the BD. The layer thickness of the 250 W and 950 W 

laser power samples were 50 µm and 100 µm, respectively. In the micrographs, the larger axis of the 

250 W 

950 W 
BD 

a) 
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grains in all categories exceeds the layer thickness, which is an indication of melting the previously 

solidified layers and a strong trend of the epitaxial grain growth from one layer to another [24]. In the 

higher magnification micrographs, fine dendritic segregations are captured along the build direction. 

The presence of such dendritic structures has been reported in the AM IN718 alloy in the earlier 

research and is attributed to the very high solidification cooling rates [48, 49]. Similar to the grains, 

dendritic structures showed the epitaxial growth between the layers in all three studied categories. 
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Figure 7. SEM micrographs of the AP specimens manufactured in different conditions (a) 250 W, (b) 

950 W-V, (c) 950 W-H, and (d) a high magnification BEC micrograph of the sample shown in (c). 

The micrograph in (e) shows an SEM image of the heat treated wrought sample where the precipitates 

are found mostly around the grain boundaries. 

 

To better reveal the existing larger phases such as Laves phase and carbides, the backscattered 

electron composition (BEC) technique was used, and imaging was performed in higher magnification. 

As can be seen in figure 7(d), carbides and inter-dendritic Laves phases are present in the AP material, 

which could affect the fatigue properties. The composition of these phases acquired by Energy 

Dispersive X-Ray Spectroscopy (EDS) is given in table 3. In the micrograph of the wrought material 

shown in figure 7(e), needle shape and globular δ phases are captured close to the grain boundaries. 

The SEM micrographs do not reveal the fine strengthening precipitates due to their nanometer-size 

dimensions. Since the SEM micrographs shown in figure 7 are performed in such a magnification that 

a number of melt pools were captured, the precipitates in orders of microns could be detected. 

Moreover, the strengthening precipitates of the AM IN718 estimated to have their sizes ranging 

between 10 nm and 50 nm [50]. Therefore, compared with SEM, transmission electron microscopy 

(TEM) is a more suitable method for detecting them.  It should be noted that the Laves phases, which 

form during the solidification in the AM process, are not present in the wrought material. 

Table 3. EDS analyses of the Laves phase and carbides in the 950 W-H material. 

 Ti Cr Mo Fe Ni Nb C 

Laves 2.63 18.58 4.48 16.57 38.19 19.55 - 

Carbides 7.10 0.63 - 0.57 1.37 50.19 40.15 

  

To identify all existing phases, XRD analyses on all groups of materials were performed and the 

results are summarized in figure 8. The precipitate peaks in the L-PBF samples are minor, and the 

precipitate concentration based on the previous study [24] does not exceed 2 wt.%, which is not high 

enough to have a strong effect on the mechanical properties. In both laser powers materials, Laves 



 

121 

  

phases are present, which are detrimental to the mechanical properties and can be altered by heat 

treatment and post processing procedures [7]. In all materials, the γ peaks were found at 2θ of 51, 59, 

and 89 degrees. The γ peaks at 2θ equal to 51 and 59 degrees in the 950 W- H material are not 

identical and the first peak is significantly shorter than the other, which suggests an anisotropy in the 

texture. However, the γ peaks of the 250 W and 950 W- V materials are similar, which indicates more 

uniform textures. The γ', γ'', and δ phases peaks only were observed in the wrought materials. 

 

 

Figure 8. XRD spectra showing different phases in the AP material manufactured using different laser 

powers and the wrought material. Sub-figure (b) shows a zoomed-in view with identified phases.  

 

The average values of the Vickers hardness in all non-graded L-PBF categories as well as the wrought 

material are summarized in table 4. The average hardness values of the AM parts are relatively close 

to each other, with the 250 W sample category about 9% and 18% higher than the 950 W- H and 950 

W- V groups. This higher hardness of the 250 W samples can be attributed to its finer grains and 

higher yield strength [24], which is explained by the Hall-Petch relationship. Among the two groups 

of 950 W laser power, the average hardness of the horizontal orientation specimens is about 11% 

higher than the vertical direction samples, which cannot be explained by the grain size effect. The 

morphology and content of the brittle Laves phases which form in the interdendritic regions [50, 51] 

can also influence the hardness. Coarsened Laves phases with lower volume fraction result in a higher 

hardness compared with a higher volume fraction of fine dendrites and particles of Laves phases [50]. 

The Vickers hardness of the wrought material is 25% higher than that of the 250 W group. As next it 

will be explored in more depth, the wrought material has significantly finer grains compared with the 

a) b) 
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L-PBF parts. This can result in higher yield strength and hardness. In addition, the presence of the 

strengthening precipitates formed during the heat treatment affects the hardness. Therefore, the higher 

hardness values of the wrought material arise from the combined effect of the grain size and 

strengthening precipitates.  

Figure 9 shows the hardness profile measured along the width of the graded samples. The 

measurements were done on multiple locations for both samples which are shown on the schematics 

provided in the insert of figure 9. In the V samples, the average hardness value of the material closer 

to the build platform, denoted as V-1, found to be a constant value of about 340 HV with some 

fluctuations of around 5% present due to the inhomogeneity in the microstructure [50]. Similarly, the 

measurements on the side further from the build platform, V-2, which correspond to the final layers of 

deposition, showed a constant value of about 320 HV. While the average hardness values of the V 

sample remain approximately constant in one layer (or close layers) of deposited material, it depends 

on the measurement location with respect to the build platform. The average hardness of the V sample 

in the parts close to the notch, i.e. near the centre of the specimen, and layers closer to the build 

platform were approximately constant and higher than the final deposited layers. This behaviour can 

be attributed to the higher number of thermal cycles which the initial and middle layers experience 

compared with the final deposited materials. The hardness measurements of the horizontal sample 

along the width, however, showed a different trend. The measurements were repeated at different 

distances with respect to the notch position. In all measurements independent of the measurement 

location, the average hardness value of the 250 W side, which is closer to the build platform, is about 

360 HV. Going through the interface, there is no significant change of the hardness and it fluctuates 

between 344 HV and 358 HV. On the 950 W side, the hardness decreases to an average value of 340 

HV. For a better comparison, these hardness values along with the average Vickers hardness of the 

non-graded and wrought material are provided in table 4. The higher values of hardness in the layers 

closer to the build platform and the middle parts of the samples compared with the final deposited 
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layers is related to the different fractions and morphology of the Laves phases which form during the 

last steps of solidifications. The initially deposited layers experience a larger number of thermal cycles 

which result in the diffusion of Nb into the matrix and decreases the Laves phase fraction [50, 51].  

 

  
 

Figure 9. Hardness profiles of AP graded samples. The measurements are done through the samples’ 

height starting from the 250 W side. The measurements of the vertical sample are plotted for two 

locations: V-1 which is closer to the build platform, and V-2 which is closer to the final deposited 

layers. The hardness measurements were performed multiple times along with the dashed lines which 

are determined in the schematics provided in the insert.   

 

Table 4. Average Vickers hardness measured for different sample groups.  

Sample group Not Graded   

Hardness 

[HV1] 

H 

250W 

H  

950W 

V 

950W 
Wrought   

373 ± 11 341 ± 9 303 ± 10 486 ± 9   

Graded 

H 

250W side 

H 

950W 

side 

V 

250W side 

V 

950W side 

H 

interface 

V 

interfac

e 

361 ± 6 340 ± 7 339 ± 5 340 ± 9 351 ± 7 
341 ± 

13 
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Moving towards the final deposited layers, the material experiences fewer thermal cycles, and more 

Laves phase can be present, which results in a lower hardness value. The observed different behaviour 

in two categories of graded samples is thus a consequence of the different processing orientations. In 

addition, the different hardness behaviour of the V and H samples can be related to their different 

textures, since strong textures are known to cause anisotropy in hardness[52]. As will be discussed in 

the next part, horizontal samples have a strong <001> texture compared with the vertical samples. It is 

apparent that altering the processing parameters combined by the build direction influences the local 

mechanical properties. As will be shown later the observed hardness profiles for graded samples 

correlates well with the fatigue crack growth profiles.  

To further study the effects of the manufacturing parameters on the microstructure, EBSD analyses on 

the planes parallel to the build directions were performed on all NG samples in addition to the heat 

treated wrought sample. Figures 10 (a-d) show the Inverse Pole Figure (IPF) maps and pole figures 

from the EBSD analyses on the NG and wrought samples. Studied herein, L-PBF samples were found 

to exhibit columnar grain structures in the deposition direction. However, the grain elongations varied 

with the manufacturing parameters. The aspect ratio and average major axis length of the 250 W and 

950 W- V are close to each other. But the 950 W- H material has significantly larger grains with a 

lower aspect ratio. The grains in the wrought material, are equiaxed and their size is in order of 

magnitude smaller than the grains in the L-PBF materials. Table 5 gives a summary of the minor and 

major axes lengths as well as the values of the grain aspect ratios of the NG and wrought samples. 

Columnar grain structures originate from the dendritic and epitaxial growth, which is affected by the 

heat flow during the L-PBF process [24, 53]. Due to the constraints imposed by the solidified parts 

and layers on the side and bottom, the heat flow in the molten parts is known to be perpendicular to 

the deposit direction and from the top to bottom [47, 53]. Grains form parallel or nearly parallel to the 

heat flow [54]. The heat flow of different scan passes is expected to be similar and uniform in the 

inner parts, far enough from the sides and edges of the samples, while the heat flow of the parts closer 
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to the edges can vary due to the effects of the free surfaces. The grain sizes can thus be influenced by 

this variation in the heat flow when the samples are built in different directions. It is noted that if a 

specific direction of an FCC crystal matches the heat flow direction of the melt pool, that particular 

direction will grow faster and become dominant [47]. The IPF map of the 250 W sample shows a 

combination of all crystallographic directions. The <001> direction is, however, dominant in the 

higher laser power IPF maps. In the 950 W- H sample, the faster growth of grains aligned with the 

<001> direction blocked the slower growing grains with other orientations.  

Figure 10 depicts the  001 ,  110 , and  111  stereographic pole figures with triclinic symmetry for 

NG and wrought samples. The pole figures are constructed from the measured EBSD data using an 

orientation distribution function. The as processed AM IN718 microstructure is expected to show 

either cubic texture ( 001 100 ) or Goss texture ( 110 001 ) [55]. Figure 10(a) gives the 

crystallographic texture of the 250 W sample, which shows a weak Goss texture component. Similar 

texture components were observed to form in the as-built AM Inconel 625 alloy [56, 57]. Pole figures 

of the higher laser power samples are given in figures 10 (b) and 10 (c). As can be seen, both 950 W-

V and 950 W-H materials have strong cube textures. The largest maximum value of the multiples of a 

random distribution (m.r.d.) is observed in the 950 W-H material, which shows the strongest texture. 

The wrought sample has a weak random texture. The formation of the Goss and cube textures in 

different samples in this study can be attributed to the orientations of the dendritic solidifications 

driven by the heat flow which is controlled by the AM parameters. In addition to the various texture 

components, texture intensity can alter the mechanical properties in different sample categories, and 

thus anisotropic performance is expected. 
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Figure10. Inverse pole figure maps, pole figures, and misorientation angle plots obtained from the 

EBSD data of L-PBF materials (a) 250W, (b) 950 W- V, (c) 950 W- H, along with (d) wrought 

material. Note that grain boundaries with angles less than 5 degrees are not included in the 

misorientation plots. Textures of the L-PBF samples are rotated in a way that the build direction (BD) 

is parallel to the A3 (out of plane) direction. Intensities of the pole figures are plotted in multiples of a 

random distribution. 

  

Table 5. Average grain major and minor axis, aspect ratio, and grain shape of the NG IN718 as well 

as the wrought material. 

Manufacturing 

condition 

Major axis 

[µm] 

Minor axis 

[µm] 

Aspect 

ratio 

Grain shape/Preferred 

texture 

L-PBF 

250 W 135.6 28.9 0.27 Elongated in BD / No 

950 W - V 147.7 27.3 0.25 Elongated in BD / <001> 

950 W - H 518.4 79.9 0.18 Elongated in BD / <001> 

Wrought 17.5 9.6 0.55 Equiaxed / No 

 

From the misorientation angle plots of the non-graded and wrought materials in figure 10, it can be 

seen that the distribution of misorientation angles in the 250 W sample and 950 W- V specimen with 

finer grains are similar and more uniform, while in the horizontal samples (figure 10 (c)), the low 

angle grain boundaries (LAGB)s, i.e. misorientation angles less than 15 degrees [58], are dominant. 

The difference in the fraction of LAGBs could affect the fracture behavior of these categories. High 

fractions of LAGBs in AM nickel-based superalloys were observed in other studies [59, 60]. 

However, in the wrought material the presence of the annealing twin boundaries, which are defined at 

60 degrees, is relatively high with a number fraction of about 0.14. Twin boundaries can increase the 

strength and ductility of the material by introducing more grain boundaries [61], while having 

detrimental effects on the fatigue performance by acting as crack nucleation sites [53, 62]. The 

number fraction of annealing twins in the AM materials is negligible, while they are significantly 

present in the wrought material.  
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This study confirms that L-PBF parameters can be effectively used to produce and design materials 

with different grain size, grain shapes and orientations, textures, and grain boundary (GB) character 

distributions and phases. The effect of these microstructural parameters on the fatigue crack growth 

behaviour will further be investigated.  

3.2 Fatigue crack propagation 

3.2.1 FEM model 

The stress intensity factors have been calculated for twenty-one different crack lengths between 1.5 

mm and 7.5 mm. The values of stress intensity factors were calculated from the FEM and normalized 

by the stress intensity factors calculated from the empirical formula given by equation (10) according 

to ISO 12135 [63].  

 

(10) 

Where a is the initial crack length, and W is the width of the specimens. The normalized values are 

plotted against the crack length, a, in figure 11. The normalized K values from the standard formula is 

a constant value at 1. It can be observed that the stress intensity factors of both categories of graded 

specimens are greater than the values calculated by the standard formula, which is due to the existence 

of the interface layer. The trends in both groups of G samples are very similar, with the normalized K 

values slightly higher for the H samples. Both curves show the most significant deviation from the 

standard when the crack tip is about to enter the interface. After the crack propagates across the 

interface, the influence of the interface vanishes. The values of the stress intensity factors reach the 

standard values rapidly after passing the interface. 

0.5 2

2

1.5

3.93 2.7
3 1.99 1 2.15

2
2 1 1

a a a a a

w w w w wa
f

w a a

w w

      
         

         
    

   
  



 

129 

  

 

Figure 11. Plot represents the normalized values of K versus the crack length over the width obtained 

from the FEM model compared with the values provided by ISO 12135 which applies to the NG 

materials. 

  

3.2.2 Fatigue behavior of Non-graded material   

This section discusses the results of the two types of fatigue crack growth parameters, namely the 

stress intensity range threshold for fatigue crack growth (ΔKth) and the Paris law crack growth 

behaviour. To establish the crack propagation behaviour of different microstructures, constant Kmax 

tests were performed on various non-graded materials. Also, as a reference, the wrought material was 

tested. Table 6 gives a summary of obtained ΔKth with respect to the manufacturing conditions and 

sample directions. In the L-PBF material categories, samples produced with 250 W laser power had 

the highest ΔKth closely followed by the 950 W- V samples. The 950 W- H material showed the 

lowest amount of ΔKth among the AM parts. The wrought material had a significantly higher ΔKth. 

This behaviour can be attributed to the different microstructures in the materials. As was discussed in 

the previous section, the 250 W material has finer grains compared with the 950 W categories. Finer 

grains or more grain boundaries can introduce differently oriented less favorable slip systems, which 

increases the resistance to short crack growth [64]. Similarly, vertical samples with finer grains have a 

higher threshold stress intensity range compared with the horizontal samples with coarser grains. In 

addition to the smaller grains, 950 W- V samples have columnar grains oriented perpendicular to the 

crack direction resulting in more grain boundaries in front of the crack growth path. It should also be 

noted that ΔKth of all produced herein L-PBF samples is twice higher than values reported for AM 

IN718 with the same orientations [60]. The wrought samples however showed the highest value of the 

threshold stress intensity range due to the equiaxed fine grains with a large number of grain 

boundaries in the crack path. Additionally, the presence of the strengthening precipitates formed 

during the heat treatment process can increase the threshold stress intensity range. In a previous 

research [65], ΔKth of a heat treated forged IN718 (for R=0.1) with grain size of 40-60 µm, was 

reported to be 10.2 MPa√𝑚. This is consistent with the effect of the grain size on the ΔKth and the 

value which was obtained in the current study. 
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Table 6. FCG threshold (ΔKth) values measured in constant Kmax tests for samples with different 

processing conditions.  

Manufacturing 

condition 

Sample direction ΔKth [MPa√𝑚 ] R 

L-PBF 

950 W V 7.0 ± 0.3 0.7 

950 W H 6.0 ± 0.2 0.7 

250 W H 7.2 ± 0.3 0.7 

Wrought - 13.1 ± 0.9 0.6 

 

Figure 12 shows variations of fatigue crack growth rate against the stress intensity factor range, ΔK, 

describing the long crack behaviour of the various studied herein AM and wrought materials. The 

measured data of the L-PBF specimens showed some fluctuations, which are attributed to their 

heterogeneous microstructure and the residual stresses imposed during the manufacturing process 

[60]. It should be noted that the linear fits of the experimental data for crack growth rates of 5E-7 and 

higher are plotted. The fitting curves are based on the power law given by equation (11).  

 

 

Figure 12. (a) Measured data and (b) Paris law fits of NG L-PBF samples with different 

microstructures as well as the wrought samples as references. Two data sets per category are provided. 

The legend in (a) applies to both figures.  
 

𝑑𝑎

𝑑𝑁
= 𝐶(ΔK)𝑚 

(11) 

a) b) 
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Where C is the Paris constant and m is the Paris exponent. Paris constants along with the R-squared 

values of the fits in figure 12 are summarized in table 7. 

ΔKth values obtained from the curves in figure 12 for 250 W, H-950 W, and wrought categories are 

higher than those provided in table 6, which were tested at a higher R ratio. It is known that at a low 

stress ratio of 0.1 the crack closure phenomenon affects the threshold stress intensity range [28, 65, 

66]. A similar dependency of the ΔKth to the stress ratio of an additively manufactured [67] and 

wrought [68] nickel based superalloy was reported. However, the threshold stress intensity ranges of 

the V-950 W L-PBF samples did not show a significant difference when R changed. In this work, a 

strong dependency between roughness-induced crack closure and R ratio was found for H-950W and 

H-250W L-PBF materials. Hence, threshold values reported in Table 6 can be considered as true 

representative values not affected by the crack closure.   

As it can be seen in figure 12, the fatigue crack growth rate versus ΔK in 250 W and 950 W- V 

categories show a single fitting curve, while in the other groups, the behaviour changes around an 

FCGR of 1E-5. Such lower plateaus were also observed in constant Kmax tests at R=0.1 in wrought 

Inconel 718, which was attributed to the accumulation of fretting debris that caused darkening of the 

fatigue surfaces [66, 68]. It is known that the larger values of the Paris exponent are indications of 

finer fatigue striations [60]. The wrought material and the 250 W with finer grains have higher Paris 

exponent values in the Paris relationship. It can be seen that for lower values of ΔK, the 250 W 

category has the lowest FCGR values which indicates its better fatigue performance in comparison 

with other specimens. For larger ΔKs in the Paris region, 950 W- V specimens show the lowest 

FCGR. It can be related to the larger number of grain boundaries mostly oriented perpendicular to the 

crack path. 
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Table 7. A summary of Paris law constants for NG and wrought samples tested at R=0.1. The ΔKth 

values are calculated by extrapolations of the Paris curves. 

Manufacturi

ng condition 
BD 

ΔKth 

[MPa√𝑚 ] 

Paris 

exponent 

(m1) 

Paris 

exponen

t (m2) 

Paris constant 

(c1) 

Paris constant  

(c2) 

𝑅1
2 𝑅2

2
 

L-PBF 

950 

W 

V 6 ± 0.5 3.0 ± 0.1 1.1 ± 0.2 (6.0 ± 2.3) E-9 (9.4 ± 4.3) E-7 0.946 - 

H 9.2 ± 0.2 
4.6 ± 0.8 - (1.2 ± 1.1) E-

10 

- 0.972 0.978 

250 

W 
H 16.5 ± 0.1 

5.7 ± 0.1 - (1.6 ± 0.5) E-

13 

- 0.936 0.984 

Wrought - 15.1 ± 2.4 11.3 ± 5.7 
6.1 ± 0.1 (4.5 ± 4.5) E-

13 

(3.5 ± 1.1) E-

10 

0.960 0.815 

 

3.2.3 Fatigue behaviour of graded material 

The previous part focused on the fatigue behaviour of the non-graded specimens. However, one of the 

main interests of this study was to investigate the fatigue behaviour of the graded parts. In order to 

study the fatigue crack growth of the graded samples, constant ΔK tests were performed on both 

graded material categories. To maintain the constant ΔK condition, particularly near and across the 

interface area, the customized K solutions based on the J-integral values around the crack tip were 

used. The fatigue crack growth rate versus crack length, a, of constant ΔK experiments for both 

categories of graded materials are provided in figure 13. In both vertical and horizontal orientations, 

the FCGR increases as the crack propagates into the interface. This behaviour can be associated with 

the microstructural features of the interface area. The crack growth rate of the graded vertical 

250W950 W-V sample tested at 22.5 MPa√𝑚 is relatively constant, with the variation of the 
𝑑𝑎

𝑑𝑁
  

around 3E-5- 6E-5 mm/cycle in both sides of the interface. This behaviour is related to the build 

direction of the sample. The crack path in the V specimens grows within a layer of deposited material, 

which went through the same or a close number of thermal cycles. This implies that the distributions 

of the probable strengthening precipitates, carbides, and detrimental Laves phases are uniform along 
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the crack path. A similar trend was observed in the Vickers hardness profile of the vertical samples, 

shown in Figure 9. The crack growth rate of the vertically graded sample in the 250 W region is 

higher than that in the 250 W non-graded, which is about 6E-6 mm/cycle. Similarly, the FCGR of the 

950 W region of the graded sample is also higher than the non-graded 950 W specimen, which is 

about 1E-5 mm/cycle. The differences in the 
𝑑𝑎

𝑑𝑁
 values arise from the differences in the residual 

stresses developed in the materials during the manufacturing process. Compressive residual stresses 

act as extrinsic closure factors which can lead to crack closure and hindrance of the crack growth [65]. 

Table 8 gives the measured residual stresses on the non-graded samples. It also should be noted that 

the lowest fatigue crack growth rate of the graded vertical sample, 2E-5 mm/cycle, was observed 

inside the interface.  

The fatigue crack growth rate of the horizontal graded sample tested at ΔK=25 MPa√𝑚, however, 

increases gradually from about 4E-6 mm/cycle in the lower laser power region to about 7E-5 

mm/cycle in the higher laser power region. The FCGR of the 250 W region of the graded sample at 

the beginning is lower than its measured value in an NG sample, 2E-5 mm/cycle. However, it reaches 

this value before the crack propagates to the interface. Although, the FCGR has an increasing trend as 

the crack grows, it remains below 1.5E-4 mm/cycle which was measured on the NG 950 W specimen. 

This trend is in agreement with the behaviour observed in the hardness tests (shown in Figure 9). The 

initially built layers, i.e. the beginning parts of the 250 W region, experienced more thermal cycles 

which could reduce the presence of the detrimental Laves phases. As a result, those parts have a lower 

FCGR. As it gets closer to the final passes of deposited material, i.e. the last parts of the 950 W 

regions, the number of thermal cycles which materials experience reduces resulting in a larger number 

of Laves phase and consequently higher FCGR values. The differences in FCGR values of G and NG 

parts can be related to the various compressive residual strength in the NG and G parts. The interface 

does not influence the constant increase of the FCGR. As was observed in the optical microscopy 
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images depicted in figure 6, the microstructure of the interface in the vertical graded sample was 

distinguishable compared with the interface of the horizontal graded sample which has a uniform and 

smooth transition. These differences explain the FCGR variation in the interface of the vertical G 

sample compared with the smooth increase of FCGR in the horizontal G specimen.  

  

Figure 13. Fatigue crack growth rate of the graded L-PBF samples in constant ΔK experiments. 

 

Table 8. Residual stress values of the L-PBF IN718 samples measured by XRD technique. 

Manufacturing 

condition 

Sample 

direction 

Residual stress in BD 

[MPa] 

Residual stress perpendicular to 

BD [MPa] 

L-PBF 

250 W H -100 ± 23 -151 ± 30 

950 W  H -368 ± 98 -259 ± 60 

950 W  V -480 ± 66 -377 ± 44 

 

3.3 Fracture surface and crack path analyses 

The fracture surface SEM micrographs of the graded samples are depicted in figure 14, with the 

interface areas determined by dashed lines. As it was observed in the optical microscopy images of the 

graded samples shown in figure 6, the vertically built specimen has more defects accumulated in the 
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boundaries of the interface area compared with the horizontal sample. Those defects could be 

attributed to the change of the manufacturing parameters in each layer of the V samples around the 

interface area compared with the H samples in which the laser parameters remain constant in each 

deposited pass. To find out the type of the defects, the scanning electron microscopy was done in a 

higher magnification as shown in figure 14-c. The high magnification micrograph along with the 

subsequent EDS analyses revealed that the present defects are unmelted particles. The presence of 

these kinds of defects was reported in different additive manufactured alloys [24, 29, 41, 69-71]. The 

unmelted particles can act as fatigue crack initiation sites and influence crack paths affecting the 

overall fatigue behaviour of AM materials dramatically [72]. In addition, the coupling of the pores 

between the unmelted parts with oxides and carbides hinders grain growth [29]. As it can be seen in 

figure 14 (a), the presence of the unmelted particles is more pronounced on the 250 W laser power 

side. In addition, the size of the unmelted particles is towards the upper limit of the particle size in the 

powder, 64 µm. The reason is that the 250 W laser power was not high enough to melt the larger 

powder particles completely, similar to what was reported in [70]. 

Figure 15 shows the SEM micrographs of the fractured surface of a graded sample on the 250 W laser 

power region. No striations were found in the fractured surfaces, however, as seen in Figure 15(a), 

stair-like features are present, which indicate the local solidification directions. These stairs are 

revealed after the fracture since the crack propagates through the epitaxial dendrites which were 

observed to grow along the <001> directions in the columnar grains. Figure 15(b) shows a ridge on 

the fracture surface that can indicate the grain boundaries with different local orientations in adjacent 

grains or melt pool boundaries. 
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Figure14. SEM micrographs of the graded specimens’ fractured surfaces near the interface area on (a) 

vertical and (b) horizontal orientations. (c) A high magnification micrograph of an un-melted particle 

in the interface region of the vertical specimen.  

 

The optical micrographs of the crack path of a horizontal graded sample in regions manufactured 

using different laser powers are given in figures 16 (a) and 16 (b). Note that the macroscopic crack 

propagation direction is from the bottom (250 W laser power) to the top. Significant deflections are 

observed when crack encounters the boundaries of melt pools (shown by 1 in figure 16 (a)) and the 

interface region (shown by 2 in figure 16(a)), resulting in a tortuous crack path. Such deflections are 

not present at the boundaries of the 950 W region shown in figure 16(b). The crack path of the 

wrought sample, which has significantly finer grains compared with the graded parts, is shown in 16 

(c). The crack path is observed to be relatively straight, featuring a combination of transgranular and 

intergranular fracture.  

a) 

BD 

950 W 250 W 

b) 

BD 

250 W 950 W 

c) 
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Figure15. SEM micrographs of the fractured surfaces of the graded samples in the regions 

manufactured using 250 W laser power tested at ΔK=25 MPa√𝑚 , showing (a) stair like features and 

(b) ridges revealing two grains. 

 

Figure 16. Optical micrographs showing the crack path of a horizontal graded sample in the (a) 250 

W laser power side and the interface, (b) 950 W laser power side, and (c) the crack path of the 

wrought sample. Crack deflections at melt pool boundaries (1) and interface (2) are determined in 

figure (a). 
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To analyse the effect of the microstructure and grain orientations on the crack propagation behaviour 

of the graded and wrought materials, EBSD imaging is performed around the cracks, and the IPF 

maps are presented in figure 17 (a)- 17(c). The build directions of the graded specimens are indicated 

on the IPF maps. In all maps, the crack propagates from right to left. The grain sizes manufactured 

using 250 W laser power were found to be similar in both H and V graded samples and elongated in 

the build direction. However, similar to what was observed on the NG samples’ IPFs shown in figure 

10, in the 950 W laser power regions, the build direction influences the grain size. The 950 W side of 

the H graded sample was observed to have larger grains compared with the V sample. The other 

difference in the two orientations of the G samples is the interface region. From the optical 

microscopy images shown in figure 6, the transition from 250 W to 950 W regions in the H samples 

was found to be smoother compared with the V specimens. This feature is evident in the IPF maps as 

well. The interface microstructure is not distinguishable in the H sample, while the texture of the 

interface in the V sample is significantly different from the other parts. The V sample’s interface 

margin on the 250 W side consists of finer grains and defects, which were discussed earlier and shown 

in the optical micrographs in figure 16. Similarly, on the other side of the interface, where the 950 W 

laser power is used, grains are finer compared with the remaining area of 950 W. The other noticeable 

feature of the V sample’s interface is the orientations of the grains. The grains located towards the 

lower laser power are oriented in the <001> direction, while the other parts do not show a preferred 

texture. In both graded samples, deflections were observed close to the grain boundaries, similar to 

what was reported in a previous research [73]. 

From the IPF maps, it can be observed that despite having some intergranular fracture, the 

transgranular fatigue mechanism is dominant in the fatigue crack growth of the AP graded materials. 

Similar behaviour was reported in [60, 74]. However, the crack grows as a combination of 

transgranular and intergranular in the wrought material, as was evident in the optical micrographs in 
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figure 15. Crack branching (CB), which is known to form at the grain boundary high angle 

misorientation, was observed in the crack growth path and is determined in the IPFs. Crack branching 

hinders the fatigue crack growth due to the reduction of effective stress intensity factor at the crack tip 

[60]. The crack branching phenomenon was observed more in the H sample compared with the V 

specimen, and it can be related to the lower fatigue crack growth rate of the H sample. The 

intergranular crack growth mechanism, which was observed in V samples more than H samples, can 

occur when the crack tip encounters high angle grain boundaries [74]. 

     

 

  

 

 
 

Figure 17. IPF maps showing the crack paths through the interface of the graded samples built in (a) 

H and (b) V orientations tested at ΔK=22.5 MPa√𝑚  and ΔK=25 MPa√𝑚  respectively. The 

orientations of the grains with respect to the local crystal lattice frame in all IPFs are determined based 

on the IPF triangle presented in (a). A higher magnification IPF of the wrought sample is presented in 

the insert from the determined area in (c). As it can be seen the crack grows as a combination of 

intergranular and transgranular mechanisms.  

Schematics of the crack path in the H and V samples are provided in figure 18. As it was observed 

from the optical micrographs given in figure 16 and the IPFs in figure 17, the crack deflections are 

b) BD 
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BD 

 

Interface 
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larger in H samples which could be resulted from the <001> texture of the grains compared with the V 

samples, which show deflections around the melt pool boundaries. There are more deflections in the V 

samples causing a more tortuous crack path. The dominant fracture mechanism in both graded 

samples was observed to be transgranular due to the encounter of the crack tip to the high angle grain 

boundaries. 

   

Figure 18. A crack path schematic of (a) horizontal and (b) vertical samples.   

 Conclusions 

In this study, we investigated the effect of the different processing parameters in creating various 

microstructures and resulting hardness and fatigue behaviour of the L-PBF IN718 superalloy. In 

particular, the correlation of the aforementioned mechanical properties with the microstructure was 

studied. Three groups of non-graded specimens, along with two categories of the functionally graded 

samples, in which the processing parameters were used to manipulate the properties, were tested at 

room temperature. A heat treated wrought IN718 material was also tested as a reference for comparing 

the performance of the graded and non-graded materials. A finite element model was developed to 

obtain the accurate K solutions in the interface regions of the graded materials. Several conclusions 

can be drawn: 

Microstructural Anisotropy: The grains’ shape and texture were found highly affected by the 

manufacturing parameters and build directions. The grains are elongated in the build direction and 

exhibit strong <001> texture, which was found to be the most pronounced in the horizontal build 

direction of the higher laser power. The wrought material has almost equiaxed fine grains.  

a) 

BD 
BD 

b) 



 

141 

  

 

Hardness profile: Non-graded L-PBF materials had uniform values of hardness, which were lower 

than those of the wrought material. The difference was attributed to the finer grains and the presence 

of the strengthening precipitates in the wrought samples. The hardness profile of the graded material 

was affected by the processing direction and grading type and was found to reflect well the profile of 

fatigue crack growth.  

 

Fatigue crack growth behaviour (ΔKth and da/dN) of non-graded material: At a low stress ratio of 

R=0.1, only 250 W L-BPF material was found to have comparable to wrought heat treated material 

fatigue crack growth behaviour. The 950 W category was found to exhibit in general worse than the 

250 W material fatigue behaviour. This was attributed to the compressive residual stresses, leading to 

less ΔKeff in the 250 W samples with finer grains. At higher stress ratio of R=0.7, the threshold stress 

intensity range in AM materials decreases, which is related to the absence of the roughness-induced 

crack closure mechanisms observed at R=0.1. 

Fatigue crack growth behaviour of graded material: A novel approach of using a constant ΔK 

procedure was employed for graded specimens, which allows investigating the crack growth rate as a 

function of the crack interaction with the local microstructures.  It was observed that the graded 

microstructures influence the 𝑑𝑎/𝑑N values. While the values obtained for the low and high laser 

power zones were different from their ungraded counterparts, the crack growth rates were seen to be 

reducing as the crack path encounters the interface regions. Fatigue crack path: Melt pool boundaries, 

graded interface boundaries, and grain orientations close to <001> were found to influence and deflect 

the crack path. Furthermore, grain boundary misorientation was observed to cause crack branching for 

horizontal high laser power samples.  
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Thus, in this study, we have successfully demonstrated the feasibility of using an additive 

manufacturing process to fabricate functionally graded materials, which could feature tailorable 

fatigue response based on the location-specific microstructures. Future works will focus on the effects 

of various heat treatments on fatigue and fracture toughness behaviour of such graded materials.   
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Chapter 4: Effects of heat treatment and building orientation on the microstructure and fatigue 

behaviour of functionally graded Inconel 718 manufactured by laser powder bed fusion 

This chapter was published as “Effects of heat treatment and building orientation on the 

microstructure and fatigue behaviour of functionally graded Inconel 718 manufactured by laser 
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Reinton, Virginia Bertolo, Quanxin Jiang, Anatolii Popovich, Aleksey Shamshurin, Marko Knezevic, 

and Vera Popovich. My contribution to this chapter was analysing the data from the mechanical tests. 
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Abstract 

This study addresses the effect of the post process heat treatments on the microstructure and fatigue 

crack growth behaviour of the functionally graded (FG) laser powder bed fusion (L-PBF) Inconel 718 

superalloy. Different samples were additively manufactured (AM) altering the process parameters, 

namely the laser power, the laser scanning speed, layer thickness, hatch distance, and beam 

distribution function, resulting in distinctly different microstructures. Two categories of samples 

underwent heat treatment (HT) and hot isostatic pressing followed by HT (HIP+HT), while one 

category was kept in the as-processed (AP) condition to reveal the effects of the post-treatments. Also, 

to study the effect of microstructural anisotropy, samples were printed in horizontal (H) and vertical 

(V) building directions. To better understand the behaviour of the FG materials, non-graded (NG) L-

PBF samples and wrought material were investigated as references. Significant variations in terms of 
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the grain size and elongation, crystallographic texture, content of the strengthening precipitates or 

detrimental phases, and the presence of porosity were found in different AM groups. Moreover, the 

fatigue behaviour of the NG and FG materials was studied by conducting three-point bending tests. 

After HT, only the threshold for fatigue-crack initiation (ΔKth) of the 950W laser power V samples 

increased. Although the fatigue crack growth rate (FCGR), 
𝑑𝑎

𝑑𝑁
, of the HT materials, improved 

compared with their AP counterparts, it still remained slightly higher than the heat treated wrought 

IN718. ΔKth of the higher laser power was found to improve by the HIP+HT procedure. Furthermore, 

the HIP+HT reduced the FCGR of all samples and was found to be the optimum post-treatment for 

improving fatigue behaviour of the IN718 superalloy. The FCGR of the FG samples after HT and 

HIP+HT post processing was observed to be close and remain constant throughout the graded sides, 

regardless of the build orientations. This behaviour was different in the H direction of the AP 

materials, and it can be related to the different residual stress (RS) levels as a consequence of the post 

processing procedures. Similar behaviour was found in the hardness of the FG materials. Grain 

boundaries and annealing twin boundaries, which were present in the HIP+HT materials, deflected the 

crack path. Also, in the low stress ratio of R=0.1, the effect of the roughness induced crack closure 

was more pronounced in the H samples compared with the V specimens. The current study 

demonstrates that heat treatments can enhance the damage tolerance of L-PBF IN718 to the level of 

wrought material by increasing ΔKth and decreasing FCGR. 

 Introduction 

Laser powder bed fusion (L-PBF) is an additive manufacturing (AM) process which allows for 

producing complex geometries using computer aided design (CAD) models [1]. Despite many 

advantages of the AM methods, including the capability of producing functionally graded (FG) parts 

and a significantly lower buy-to-fly ratio (BTF) compared with the conventional manufacturing 

procedures, tensile residual stresses, detrimental phases and defects might be introduced into the 
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additive manufactured parts which affect the mechanical properties [2-4]. Post processing heat 

treatments can be employed to reduce these detrimental effects and enhance the properties. 

Inconel 718 (IN718) is a precipitate hardened nickel-based superalloy. The main strengthening 

precipitates of the A1 γ matrix are coherent ordered γ' (Ni3Al) with an L12 lattice structure and γ'' 

(Ni3Nb) with a DO22 structure [5-8]. γ' precipitates are spherical shaped with diameters ranging 

between 10 and 40 nm, while γ'' precipitates are disk shaped with diameters of 20-30 nm and 

thickness of 5-6 nm [9-13]. In addition to the strengthening precipitates, other phases such as 

hexagonal Laves (Ni,Fe,Cr)2(Nb,Mo,Ti), orthorhombic δ (Ni3Nb), and MC carbides could be present 

in the alloy [6, 14]. Hard and brittle irregular shape micron-sized Laves phase forms at the end of the 

solidification process due to the micro-segregation of the alloying elements [15, 16]. Due to the low 

diffusion rate of Nb in the γ matrix, the Laves phases tend to form on the grain boundaries and in 

interdendritic regions [17]. The intermetallic Laves phase is known to have detrimental effects on 

mechanical properties, including fatigue properties since they can promote the crack initiation and 

propagation at high stress amplitudes [15]. The δ phase, in the form of 1-8 µm needle-like incoherent 

precipitates [5, 18, 19], is known to be detrimental to mechanical properties except the high 

temperature creep rupture strength [17, 20, 21]. Brittle MC carbides with rough morphologies are also 

known to form at the grain boundaries, like the δ phase [22]. 

Post process heat treatments are common procedures to improve the properties of AM parts by 

minimizing the effects of the non-equilibrium phases and thermal residual stresses [23]. Solutionizing 

at temperatures around 1000 °C followed by aging is a well-adapted heat treatment used for Inconel 

superalloys. Solutionizing at 980 °C and double aging (DA) results in precipitation of the δ phase at 

grain boundaries in addition to preserving some of the Laves phases due to the inefficiency of the 

temperature to dissolve all those phases [24-26]. Applying the AMS 5663 [27] heat treatment to the L-

PBF material increases the δ volume fraction to about 6% [28]. It is also reported that heat treatment 

results in the disappearance of the dendritic structures formed during the AM process [26, 29]. 
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Similarly, solution treatment at a higher temperature of 1050 °C followed by the double aging 

procedure results in the dispersion of the δ phase in grain boundaries and vanishing the dendritic 

structures [30].  

The presence of porosity is one of the obstacles deteriorating mechanical properties, particularly in 

cyclic loading conditions. The hot isostatic pressing (HIP) procedure is a post processing treatment 

used to decrease internal pores and especially to reduce the size of surface porosity associated with 

AM process [31]. HIP treatment of the LPBF IN718, at a temperature and pressure of above 1150 °C 

and 100-150 MPa respectively, with a holding time of 2 hours, was found to reduce the volume 

fraction of the porosity from 0.3% to 0.07 % [16]. It is worth noting that, due to the entrapped argon 

gas in the AM parts, the existence of some porosity is inevitable [32].  

In several studies [5, 15, 16, 21, 24-26, 29, 30, 33-37], the effect of various post processing treatments 

on the improvement of mechanical properties, including hardness, tensile strengths, room temperature 

and high temperature ductility, creep life, high cycle fatigue (HCF) behaviour, and low cyclic fatigue 

(LCF) properties were investigated. Studying different post-processing treatments on the SLM IN718 

revealed that HIP followed by homogenization and double aging results in superior tensile properties 

due to dissolution of Laves and δ phase, pores closure, and size and density increase of carbides [16]. 

Yield strength and ultimate tensile strength of an SLM IN718 increased from 889-907 MPa, and 

1137-1148 MPa to 1102-1161 MPa and 1280-1358 MPa respectively, when a solution and age 

hardening post treatment was applied [26]. Furthermore, an increase of about 30% was reported in the 

microhardness of the SLM material after heat treatment. Comparing different heat treatments of the 

laser net shape manufactured (LNSM) IN718 revealed that direct age procedure increases the ultimate 

tensile strength and yield stress of the as-deposited material by about 50% and 100%, respectively 

[35]. In another study [33], it was found that double aging of an L-PBF IN718 increases the hardness 

from 310 to 470 HV. However, simulated HIP (without applied pressure) followed by the water 

quench process (HIPWQ) significantly decreases the hardness of the as processed (AP) material to 
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about 210 HV. Double aging of the HIPWQ material improves the hardness and it reaches around 440 

HV. Examining different heat treatments on an SLM IN718, it turned out that the δ aging at 980 °C 

followed by a double aging treatment results in the highest hardness of 482 HV compared with the as-

processed material, with a microhardness value of 334 HV [34]. This heat treatment improved the 

tensile strength and elongation of the AM material to be even higher than those values for forged 

standard AMS 5662 [38] parts. Applying AMS 5662 [38] heat treatment to the L-PBF IN718 parts 

fabricated by different strategies improved the creep life from 107-188 hours to 320-507 hours which 

is attributed to the grains recrystallization, δ precipitations at grain boundaries, Laves phase 

dissolution, and texture reduction [21]. Treating the LPBF IN718 samples by homogenisation 

followed by solution (at 1093 °C) and ageing (at 718 °C) increased their creep life from 12 hours to 

about 48 hours but still remained 33% lower than what was reported for the equivalent wrought 

samples [36]. The high cycle fatigue behaviour of double-aged AM samples was reported to be 

superior to the heat treated wrought samples at low stress amplitudes (lower than 630 MPa) due to the 

presence of unbroken Laves phases, which hindered the crack propagation [15]. The high temperature 

HCF behaviour of heat treated AM IN718 was found to be similar to the wrought samples and 

outperform the HIP+HT specimens. This behaviour is attributed to the domination of coarse grains in 

the structure and the high content of incoherent annealing twins in HIP+HT material which affected 

the cyclic life more than the presence of porosity and δ phase [5]. The room temperature LCF lives of 

the DMLS-HT samples at strain amplitudes lower than 0.8% were reported to be higher than the 

wrought-HT materials, while it was the opposite for the higher strain amplitudes, and it was 

rationalized by the effect of the DMLS manufacturing induced porosity [37]. Similar to the weaker 

HCF properties of the HIP+HT samples compared with the AM-HT and Wrought-HT materials [5], 

the LCF behaviours of HIP+HT samples were affected by the incoherent annealing twins, and their 

lives were shorter than the other counterparts [37].   
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Moreover, the effect of post processing on the crystallographic texture of the nickel-based superalloys 

has been explored. One hour annealing at 1080 °C or two hours solution annealing at 1150 °C of the 

L-PBF Inconel 625 were observed to eliminate the texture, reduce the low angle grain boundaries 

(LAGB)s, and increase the high angle grain boundaries and twin angle boundaries [39]. The as-built 

L-PBF IN625 exhibited a relatively strong fibre-like <100> texture, while stress relief annealing and 

recrystallization annealing treatments make the <100> texture weaker. The same research reports that 

the solution treatment further weakens the <100> texture and spreads it towards the <110>, and HIP 

results in a random texture [40]. A similar reduction in the <100> fibre texture of the AM IN718 alloy 

after applying one-hour solutionizing recrystallization at 1250 °C was reported and was related to the 

transformation of the columnar grains to equiaxed ones [41]. Homogenization of the SLM IN718 at 

1100 °C for one hour caused a reduction in <001> peak while HIP treating at 1160 °C, 100 MPa for 4 

hours homogenized material and significantly increased the <001> peak [42]. A moderate <001> fibre 

texture in the build direction was found in the direct metal laser melted (DMLM) IN718 treated as per 

AMS 5663 [27], which turned to a weak Goss texture {110} <001> after a four-hour HIPing at 

1163°C and 100 MPa due to the recrystallization and presence of the coarse grains [5].  

Despite the extensive research on the influence of post process heat treatments on various mechanical 

properties, the effects of the post treatment and microstructural anisotropy such as grain size, grain 

orientation, and texture on the fatigue crack growth rate (FCGR) of the functionally graded IN718 has 

not been investigated yet. In this study, we focused on the influence of the HT (AMS 5383 [43]) and 

HIP+HT (AMS 5664E [44]) procedures and subsequent different microstructures on the threshold for 

fatigue-crack initiation (ΔKth) and FCGR of the L-PBF IN718. A variety of specimens with different 

notch position with respect to the building orientation were fabricated. In addition to the different laser 

powers used in the non-graded materials, two categories of functionally graded materials (FGM) were 

produced and post processed. The results of this study were compared to the properties which were 

found from examining the as-processed (AP) L-PBF materials and wrought samples. 
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 Materials and experiments 

2.1  IN718 samples manufacturing and post treatment 

IN718 alloy powder made by gas atomization, with the chemical composition provided in Table 1 and 

the distribution of d10=20µm and d90=64µm, was used for L-PBF manufacturing. The IN718 fatigue 

crack growth rate test specimens were fabricated by an SLM 280HL unit using a laser wavelength of 

1070 nm. To accommodate a variety of microstructures, different manufacturing parameters including 

laser power (P), laser scanning speed (V), layer thickness (t), and hatch distance (h) were selected in a 

way that their combined effect, which is defined as the volume energy density (VED), Ev, remained 

around the constant value of 59.5 J/mm3. In addition to the mentioned parameters, the effect of the 

Gaussian and flat top beam distribution with different beam diameters were explored. Table 2 gives a 

summary of the processing parameters used for manufacturing the samples for the current study. 

To further investigate the effect of the microstructural anisotropy on the FCGR, two categories of 

samples were designed and manufactured considering the depositing build direction (BD) and the 

initial notch direction (the same as the crack direction (CD) during the tests). In all specimens, the 

crack direction was located on the vertical symmetry axis of the samples. As shown in Figure 1, the 

directional samples studied in this research were horizontal (H) with parallel BD and CD and vertical 

(V) with perpendicular BD and CD. Finally, specimens were built in the of non-graded (NG) form 

with laser specifications remaining the same during sample fabrication, and functionally graded (FG) 

form with transitions of the laser parameters during the manufacturing process. All samples were 

designed and made to satisfy the conditions provided in ASTM E399 [45]. NG samples had the size of 

70 mm length, 10 mm height, and 5 mm width. The dimensions were slightly larger for the FG 

samples as 80 mm length, 12 mm height, and 6 mm width. The notch with a total depth of 0.5 mm and 

a radius of 0.2 mm was made by the electrical discharge machining (EDM) in NG and FG samples. 

Figure 1 shows the schematics of the NG and FG samples manufactured for this study. 
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Table 1. Alloy IN718 elemental composition measured by scanning electron microscopy electron 

dispersive spectroscopy (SEM EDS) [1]. 

Element Ni Cr Fe Nb Mo Ti Al Mn Co 

wt% 51.45 19.38 18.49 5.3 3.4 1.04 0.72 0.12 0.1 

 

Table 2. L-PBF manufacturing parameters. 

Sample 

orientation 

Laser 

power 

[W] 

Laser scanning 

speed 

[mm/s] 

Layer 

thickness 

[mm] 

Hatch 

distance 

[mm] 

Beam 

distribution 

function 

Beam 

diameter 

[µm] 

H 250 700 0.05 0.12 Gaussian 80 

H 950 320 0.1 0.5 Flat top 100 

V 950 320 0.1 0.5 Flat top 100 

 

Manufactured samples were divided into three categories for post-processing purposes. The first 

group was explored in the as-processed (AP) condition. The detailed characterization and 

experimental results of this category are reported in our previous study. The second category was heat 

treated according to AMS 5383 [43], which consists of a homogenisation step at 1080 °C for 1.5 hours 

followed by the procedure described in AMS 5663 [27], which includes a solutionizing at 980 °C for 

1 hour followed by a double-aging procedure at 720 °C and 620 °C each step for 8 hours. In this 

study, the samples of this category are referred to as the heat treated (HT) ones. The other group of the 

AM material underwent the hot isostatic pressing (HIP) procedure, followed by an AMS 5664E [44] 

heat treatment. The HIP procedure was done at 1180 °C and a pressure of 150 MPa for 3 hours. The 
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heat treatment contained a homogenisation at 1065 °C for 1 hour, followed by a double aging process 

at 760 °C for 10 hours, and at 650 °C for 8 hours. These samples are referred to as HIP+HT hereon. In 

addition to the L-PBF specimens, a group of wrought material samples was made and heat treated 

based on AMS 5663.Table 3 gives a summary of the post treatment procedures of the L-PBF and 

wrought samples used in this study. 

 

  

Figure 1. Orientation of the samples with respect to the build (BD) and crack direction (CD) for non-

graded: (a) 250W-H, (b) 950W-H, (c) 950W-V, as well as functionally graded specimens: (d) 

horizontal (H), and (e) vertical (V). The notch dimensions are provided in mm in the insert. 

 

Table 3. A summary of the post processing heat treatments on the samples explored in this study 

Group  

Post-process        

heat treatment 

Temperature 

[°C] 

Holding 

time 

[h] 

Cooling specification 

L-PBF AP - - - - 

(c) 

  

0.30 

R=0.20

0 

(a) 
(b) 

(d) 

(e) 
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HT 

(AMS 5383) 

Homogenisation 1080 1.5 Air cooling (AC) 

Solutionizing 980 1.5 AC 

Double- aging 

720 8 Furnace cooling (FC) 

620 8 AC 

HIP+HT 

(AMS 5664E) 

HIP (at 150 MPa) 1180 3 FC 

Homogenisation 1065 1 AC 

Double- aging 

760 10 FC 

650 8 AC 

Wrought with HT 

(AMS 5663) 

Solutionizing 980 1 AC 

Double- aging 

720 8 FC 

620 8 AC 

 

2.2 Microstructural characterization  

Grain morphology, the presence and distribution of the precipitates and carbides, and different 

structures resulted from various manufacturing parameters and post-treatments were investigated 

utilizing the optical microscopy and scanning electron microscopy (SEM) techniques. The samples 

were prepared for the optical microscopy and SEM analyses by grinding, polishing, and etching. The 

final step of the polishing was done using a 1 µm silica suspension. The Glyceregia etchant solution, 

which consists of 15 ml HCl, 10 ml Glycerol, and 5 ml HNO3, was used to etch the surfaces for about 

3 seconds. Optical microscopy was done using a Leica DMLM optical microscope with analySIS 5.0 
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by Olympus soft Imaging Solutions GmbH, and a Keyence VHX-5000 device. A JEOL JSM IT-100 

SEM equipped with JEOL InTouchScope software was used for exploring the surfaces prior to the 

tests along with the fracture surface analyses. 

X-ray diffraction (XRD) measurements of the AP, HT, and HIP+HT L-PBF materials were carried out 

using a Bruker D8 advanced diffractometer with a graphite monochromator. The unit was equipped 

with a Co Kα X-ray beam generator and a Vantec position sensitive detector. The measurements were 

done using a wavelength of 1.78897 Å and a scanning step size of 0.035 degrees in a 2θ scale between 

20 and 140 degrees. To further analyse the XRD data, Bruker software Diffrac was used. 

To understand the impact of the post processing procedures on the localized plastic deformation 

resistance, Vickers hardness tests were performed. A Struers DuraScan G5 testing machine was used 

to perform the tests at a load of 1000 gf (HV1) and the holding time of 10 seconds. The NG samples’ 

hardness measurements were replicated on ten random spots of the surface to ensure the repeatability 

and precision of the tests. For the FG samples, however, the measurements were done in lines along 

the width of the samples to explore the possible influence of the microstructural gradient in the 

interface zone. In addition, the measurements were carried out on multiple locations to investigate the 

effect of the build direction and thermal cycles on the hardness. 

Grain structures and crystallographic textures of all categories of NG materials before the fatigue tests 

were acquired using the electron backscattered diffraction (EBSD) technique. Samples were prepared 

similar to the preparation procedure explained for the optical microscopy and SEM, with an additional 

polishing step with 0.25 µm colloidal silica suspension. The etching was not necessary, instead, an 

ultrasonic bath cleaning with isopropanol was added as the final step. An SEM Mira 3 Tescan 

equipped with channel 5- HKL software, with an accelerating voltage of 20 kV, was used to collect 

the EBSD data. Moreover, the same technique was used to study the crack growth path of the FG 

samples. Depending on the optical microscopy and SEM micrographs, the step size was chosen 
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differently between 0.8 µm and 1.7 µm. The collected EBSD data were post processed using TSL-

OIM analysis software version 8. Prior to the tests, for each category of materials, multiple areas were 

imaged to have a reasonable number of grains detected. Based on the grain size estimates, the EBSD 

imaging step size varied between 0.5 µm and 1.7 µm. The minimum average confidence index (CI) of 

all measurements was 0.35. In all measurements, at least 96.6 percent of the collected data, which 

varied between 1393644 and 6293324 points, were indexed. The data was cleaned up using the 

Neighbor CI Correlation (NCIC) clean-up procedure with the “minimum confidence index” parameter 

set to be 0.3. A generalized spherical harmonic expansion smoothing with series rank L=16, a 

Gaussian half-width of 5 degrees, and triclinic symmetry were used to plot the stereographic pole 

figures. Multiple EBSD imaging along the crack of the FG specimens and the wrought sample was 

done to cover a good length of the crack path. To avoid introducing artefacts on the crack path, clean-

up procedures were not used.  

2.3  Fatigue testing and modelling 

To study the fatigue crack growth behaviour of the NG and FG parts, three-point bending fatigue tests 

with stress intensity factor (SIF) solutions and test configurations in accordance with ASTM E399 

[45] were conducted. A hydraulic MTS machine, with a capacity of 25 kN, with the MTS 

MultiPurpose TestWare and Flextest electronic unit, was used for testing purposes. A direct current 

potential drop (DCPD) equipment with a measurement resolution of 0.5 mm was used to ascertain the 

correlation between the visually measured crack length and the output voltage. It should be noted that 

the visual crack calibration and propagation measurement were done using two Limess digital image 

correlation (DIC) 5-megapixel cameras. 

The NG samples were tested under constant Kmax condition, which allowed to measure the threshold 

stress intensity factor range (ΔKth). The frequency of the constant Kmax tests was 30 Hz. The stress 

ratio (R), which is defined by equation 1, initially was set to be 0.1 in all constant Kmax tests and was 
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increased to values around 0.6-0.7 by the end of the tests. To obtain a sufficient ΔK which allowed for 

the crack growth, the Kmax value was calculated from equation 2 and was kept constant during the 

tests. The value of Kmin was calculated by the formula given in equation 3. 

𝑅 =
𝐾𝑚𝑖𝑛

𝐾𝑚𝑎𝑥
 

(1) 

𝐾𝑚𝑎𝑥 =
𝛥𝐾

1 − 𝑅
 

(2) 

𝐾𝑚𝑖𝑛 = 𝐾0𝑒(𝐶(𝑎−𝑎0)) (3) 

Where K0 is the initial Kmin value, C is the gradient of the SIF and was set to be -0.4 1/mm, a is the 

instantaneous crack length measured by DCPD, which was validated by optical and DIC observations, 

and a0 is the initial crack length measured by DIC. The value of Kmin was ramped up during the test to 

maintain the Kmax-constant condition. The adjustment of Kmin was stopped when the crack growth was 

less than 0.1 mm during 100000 cycles which is equal to a crack growth rate of 10-6 mm/cycle or 

lower. The ΔK reading of this stage is regarded as ΔKth. 

The other type of experiment which was done on the NG samples was the constant load amplitude 

tests. The objective of these tests was to formulate the crack growth rate as a function of the SIF range 

(ΔK). The experimental procedure was in accordance with ASTM-E647 [46] and the test frequency 

was set to be 50 Hz. The curves obtained from the constant load amplitude tests in the Paris regime 

were fit linearly to calculate the Paris constant and Paris exponent values. 

To explore the effect of the microstructure of the functionally graded samples on the fatigue crack 

growth rate, three-point bending tests in the constant SIF range were carried out. It is known that for a 

given ΔK, and a specific microstructure, the FCGR remains about a constant value. Therefore, the 

effect of the functionally graded structure on the FCGR should be exposed if K remains constant. The 

standard K solutions to determine the load levels, which are described based on the crack length and 

sample width, are developed for homogeneous materials and thus are not applicable for the 
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functionally graded components. Therefore, to have accurate, customized K solutions for the FGM 

IN718 parts, an elastic FEA model within ABAQUS was developed. The functionally graded samples 

were simulated as two main halves of the NG materials, which were joint by the interface layer. For 

the main halves, Young’s moduli of the corresponding NG samples, which were measured from the 

compliance of the fatigue tests and are provided in  

 

 

 

 

Table 4, were used. The 1 mm interface was divided into five geometrically homologous layers, each 

of which had its E adjusted linearly. The Poisson’s ratio of all parts was set to be 0.3. The model 

which was used for all three post-treatment categories had the same element types and element 

numbers. Mesh elements near the crack tip were 0.02 mm. The mesh element size was increased to 

0.5 mm in the areas which were not highly influenced by the crack. The types of the elements in the 

model were CPE6M (6- node modified quadratic plane strain element with hourglass control) and 

CPE8R (8-node biquadratic plane strain element with reduced integration) and the mesh element 

numbers were 185 and 4456, respectively.  

 

 

Figure 2 demonstrates the model which was used in this study. The output of the model was the J-

integral value (J), which was employed to calculate the customized K solutions using equation 4. 
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𝐾 = √𝐽 ×
𝐸

1 − 𝜈2
 

 

(4) 

Where E is Young’s modulus at the crack tip, and 𝜈 is the Poisson’s ratio.  

 

 

 

 

Table 4. Young’s moduli measured on the AP, HT, and HIP+HT materials using the three-point 

bending tests. 

Post-processing condition Sample category Young’s modulus [GPa] 

AP 

250 W 186 ± 15 

950 W- H 136 ± 10 

950 W- V 139 ± 36 

HT 

250 W 159 ± 21 

950 W- H 130 ± 9 

950 W- V 132 ± 8 

HIP+HT 

250 W 188 ± 22 

950 W- H 170 ± 26 

950 W- V 160 ± 21 
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Figure 2. (a) The FEM model used to calculate the customized K-solutions for the graded materials. 

(b) The node used to calculate the J integral.   

 

 Results and discussions 

3.1 Microstructural analyses 

To explore the effect of the post-treatment procedures on the interface zone of the FG samples, optical 

microscopy images were taken. The optical micrographs over the longitudinal cross sections of the FG 

samples of AP and post-treated categories are provided in Figure 3. As can be seen in Figure 3 a and 

b, the melt pools which were introduced by AM are clearly visible with different characteristics in 

areas of 250 W and 950 W laser powers. The transition from the 250 W region to the 950 W zone was 

observed to be smooth in the horizontal sample since the laser parameters remained the same in any 

individual deposited layers. However, the interface area of the AP vertical sample was distinguishable 

with finer melt pools in the centre and deeper melt pools on the edges, key-hole induced porosities, 

and unmelted particles, which are the artefacts caused by the change of the laser parameters in the 

deposition. In both categories of the AP condition, grains were elongated in the building direction. 

After HT, the grains of both build orientations remained elongated in the BD, which indicates that the 

homogenisation temperature was not high enough to induce full grain recrystallization. However, the 

patterns of the deposition layers and melt pools boundaries were faint as compared to AP condition. 

a) b) Force 

Notch Roller 
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As an influence of the HT, the boundaries of the interfaces were not distinct despite what was 

observed in the AP samples. Nonetheless, the defects and porosities were still present, and similar to 

the AP samples, were more pronounced in the V specimens. The HIP+HT procedure, however, 

resulted in a completely different microstructure, as can be seen in Figure 3 e and f. The melt pool 

tracks of the deposited layers, and columnar grains were not detected. Similar to the HT specimens, 

the transitions at the interface zone for both sample orientations were smooth. The population of the 

captured defects was significantly lower compared with the other two categories. 

  

  

BD 
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Figure 3. Optical micrographs of the (a) H-AP, (b) V-AP, (c) H- HT, (d) V-HT(e) H-HIP+HT, and (f) 

V-HIP+HT functionally graded samples at the interface area revealing the effect of the various post 

processing procedures on the microstructure. The build directions (BD) are indicated in the figures. 

 

To further study the microstructure, SEM images of the NG samples in the AP and post-treated 

conditions were taken. Figure 4 shows the SEM micrographs of the AP materials along with the 

samples’ build direction. Elongated grains, extended in the build direction, and the melt pool patterns 

were observed in all SEM images. The major axes of the grains in both 250 W and 950 W laser power 

groups were found to exceed the deposited layer thickness of those categories, which were 50 µm and 

100 µm, respectively. This phenomenon implies the melting of those previously solidified layers and a 

clear pattern of the epitaxial grain growth through the deposited layers [1]. 

  

BD BD  e) 
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Figure 4. Microstructure of the AP materials in (a) 250W, (b) 950W-H, and (c) 950W-V conditions 

captured by SEM technique.  

The SEM micrographs of the HT IN718 specimens are provided in Figure 5. The micrographs show 

the growth of the dendritic structure of the γ matrix along the BD. The other feature which was 

observed in the HT materials’ micrographs is the presence of the rod-like and globular δ precipitates, 

which were not found in the AP material. The volume fraction of the δ phase in the HT L-PBF IN718 

was reported to be 5.9 ± 0.4 [28]. In addition to the δ precipitates, carbides were found to exist, which 

was confirmed by Energy Dispersive X-Ray Spectroscopy (EDS). The content of the MC carbides in 

a similar material was determined to be 1.9 ± 0.5 vol. % [28]. γ' and γ'' strengthening phases were not 

detected due to their nanometre scale sizes. Therefore, further studies in this regard were done using 

the XRD technique and will be discussed later. In addition, several studies [28, 47-50] showed the 

presence of the strengthening precipitates in the AM nickel-based alloys after the HT procedures. 

Using neutron diffraction based procedure, the volume fractions of the γ' and γ'' precipitates of the 

similar material were determined to be 6.5 ± 1.4  and 8.4 ± 0.3, respectively [28]. 

The SEM micrographs of the HIP+HT IN718 materials, however, captured completely different 

microstructures, as shown in Figure 6. The grain elongations in the BD, which were observed in the 

AP and HT categories, did not exist in the HIP+HT material. Grains were found to be significantly 

larger, and some twin boundaries were detected. Quantitative details on the grain growth and twin 

c) 
BD 
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volume fractions will be revealed later in the EBSD part. Comparing the SEM images of the HT and 

HIP+HT materials, it can be seen that the population of the carbides and δ precipitates is reduced after 

the HIP+HT procedure. This observation is similar to what was found from the neutron diffraction 

data on a HIP+HT IN718 superalloy [28]. Similar to the HT category, the existence of the nano-sized 

γ' and γ'' phases could not be examined using SEM images. Therefore, more analysis using XRD was 

needed. 

  

  

BD 

 a)   

 

BD 

 b)   

 

BD 

 a')   

BD 

 b')   
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Figure 5. SEM micrographs of (a) 250W, (b) 950W-H, and (c) 950W-V HT samples. The precipitates 

are captured in the corresponding higher magnification micrographs provided in sub-figures a'-c', 

respectively. A higher magnification SEM micrograph of the 950W-V HT material is provided in (d). 

The needle shape and globular δ precipitates, and some carbides were located. 

The XRD analyses were carried out on the surfaces along the BD to identify the present phases in the 

AP and post-processed categories. Figure 7 a and b presents the XRD patterns of the 250 W and 950 

W- H samples, respectively, in three categories as far as the post treatment procedure, i.e., AP, HT, 

HIP+HT. As was expected, the main phase in all categories was the γ phase. In both 250 W and 950 

W- H materials, in the AP and HT groups, the relative intensity of the γ(200) was higher than the 

γ(311) peak. This can be linked to a preference for growth in <001> direction and the existence of a 

strong thermal gradient in the build orientation [1, 51]. In the HIP+HT category, although the intensity 

of γ(200) still remained higher than the γ(311) peak, but the preference was not significant. It can be 

correlated with the grain growth or recrystallization during the HIP procedure [51]. The zoomed-in 

 c)   

 BD BD 

 c')   

Carbides  d)   
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views with identified phases are given in Figure 7 a' and b'. As can be seen, the Laves phase peaks 

were not detected after the HIP+HT procedure. In addition, the MC carbide peaks, which were present 

in the HT condition, were reduced in the HIP+HT material. These observations are consistent with 

what was reported from the neutron diffraction analysis of the LPBF IN718 after HIP treatment [28]. 

Moreover, after the heat treatment, δ phase peaks were present in the XRD spectra of 250 W and 950 

W- H materials. This is in agreement with the presence of δ precipitates observed in the SEM 

micrographs given in Figure 5. The spectra of the HIP+HT samples show a reduction in the 

precipitates while the carbides are present in the material, as seen in the SEM images in Figure 6.  

  

  

Figure 6. SEM micrographs on the (a) 250W, (b) 950W-H, and (c) 950W-V samples of the HIP+HT 

category. The MC carbides were captured in all materials and are more visible in a higher 

magnification SEM micrograph given in (d), which is taken on the 950W-H sample. 

 a) 
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To evaluate the effect of the post treatment on the surface hardness of the the LPBF IN718, the 

Vickers hardness test was performed on the AP, HT, and HIP+HT materials. Figure 8 shows the 

average hardness of the NG specimens in different post processing conditions. It can be seen that the 

average hardness of all NG categories increased significantly by the HT and HIP+HT procedures, 

which is attributed to the precipitation of the γ' and γ'' strengthening phases and recrystallization [52]. 

 

  

   

Figure 7. Phase analyses obtained from XRD on (a) 250 W and (b) 950 W- H categories of AM parts. 

To better reveal the existing phases, corresponding zoomed-in figures of spectra are provided in (a') 

and (b') respectively. 

  

Different heat treatment procedures, including solution+aging or homogenization+solution+aging, 

were reported to increase the hardness of the as processed SLM IN718 by about 30% [25]. Similarly, 

the direct double aging (DA), and solutionizing followed by DA treatments of the laser cladding 

IN718 coating, were found to increase the hardness significantly due to the precipitation of γ'' and 

reduction of the Laves phase, respectively [53]. The HIP+annealing treatment was found to enhance 
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the Vickers hardness of the SLM IN718 by 46%, while the increase of the hardness by a 4-hour 

annealing treatment was just below 20% [48]. It should be noted that the hardness increase by HT was 

more significant in the 950 W group compared with the 250 W material, where the increase was 51% 

and 66% for the 950 W- H and 950 W- V, respectively, compared with the 35% rise in the 250 W 

category. The trend remained the same when the HIP+HT was applied.  

 

Figure 8. Bar graphs showing the average Vickers hardness values of the non-graded L-PBF materials 

manufactured using different parameters. The graphs are plotted for as-processed (AP), heat treated 

(HT), and hot isostatic pressed and heat treated conditions (HIP+HT). 

Moreover, the Vickers hardness of the FG materials was measured along the height of the samples, 

including the interface zone. The measurements were done for both vertical and horizontal samples in 

all studied categories. The hardness profiles of the FG samples measured on the AP, HT, and HIP+HT 

conditions are provided in Figure 9. The profiles are averaged over 5 sets of measurements. It can be 

seen that the hardness values along the samples’ height, for H and V orientations, are close in the HT 

and HIP+HT categories while are significantly higher than the AP materials. This observation is 

consistent with the hardness behaviour of the NG materials in different post-processed conditions, 

given in figure 8. In the AP condition, the fit to the hardness profile of the H samples showed a 
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decreasing trend along the height, i.e., parallel to the BD. While in the V samples, the fit along the 

height, i.e., perpendicular to the BD, remained fairly constant. The average hardness value of the 250 

W side of the H sample, which is closer to the build platform (BP), was 361 ± 6 HV, and it was 340 ± 

7 HV for the 950 W side, which is the furthest from the BP. This phenomenon is related to the higher 

number of thermal cycles that the initially deposited layers, which are closer to the BP, experienced 

compared with those which are located further from the BP, i.e., the 950 W side. The repetitive local 

reheating procedures on the initially deposited layers during the solidification of the latter layers 

decreases the content of the Laves phase in those layers [54, 55]. Moreover, the reheating cycles can 

precipitate some content of very small size γ' and γ'' on the initially deposited layers [53, 56, 57]. The 

combination of the mentioned factors resulted in a higher hardness in the 250 W side of the H 

samples, which was deposited earlier, compared with the other part. On the other hand, the hardness 

measurements along the height of the V samples were done on the layers which went through the 

same number of local thermal cycles. As a result, those layers on which the individual sets of hardness 

measurements were conducted were similar as far as the content of the Laves phase or small 

strengthening precipitates. Therefore, the hardness value along the height, or the deposition direction, 

of the V samples remained constant while showed some fluctuations due to the presence of the voids 

and defects. It should, however, be noted that the hardness values on the AP V samples decreased 

along the build direction as a consequence of the reduction in the number of the thermal cycles on the 

previously deposited layers. After post-processing treatments, similar trends were found in the H and 

V samples, i.e., the hardness of the H samples decreased along the height, and the V samples’ 

hardness was independent of the position along the height. Although, the slope of the hardness 

decrease in the H samples, lowered which can be related to more homogeneity in the material after 

post treatment. Another feature which was observed from the hardness profiles of the HIP+HT 

samples was the reduction in fluctuations compared with the AP and HT samples in both build 
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orientations. This smoothing in the hardness profiles can be a consequence of fewer defects in the 

HIP+HT materials. 

  

Figure 9. Hardness profiles of (a) horizontal and (b) vertical functionally graded samples in different 

post-processing conditions. 

 

3.2  Evolution of crystallographic texture and grain size 

Comprehensive EBSD analyses were conducted on all categories of NG materials to understand the 

effect of the post-processing treatments on the microstructure and texture of the L-PBF IN718. Figure 

10 and 11 present the inverse pole figure (IPF) maps, pole figures, and the misorientation angle plots 

for the AP, HT, and HIP+HT materials. From the IPF maps it can be seen that the AP and HT 

materials have columnar grains extended along the build directions, while the grains of the HIP+HT 

do not show any preferential orientation. The elongation of the columnar grains of the AP and HT 

samples was dependent on the laser parameters and build orientations. For easier comparison, the data 

describing the shapes of the grains are summarized in Table 5. It should be mentioned that the pole 

figures and the grain shape statistics are calculated from multiple EBSD imaging on the same sample 

to have a sufficient number of grains representing the material structure. In the AP group, the grain 

a) b) 

 
 b) 
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size and elongation of the 250W and 950W- V materials were close with aspect ratios of 0.27 and 0.25 

and the major axis of 135.6 µm and 147.7 µm, respectively.  

   

   

   

Figure 10. Inverse pole figure maps of different categories of materials explored in this study prior to 

the fatigue testing. The EBSD imaging was done on large areas of (a) 250 W- AP, (b) 950 W- H- AP, 

(c) 950 W- V- AP, (d) 250 W- HT, (e) 950 W- H- HT, (f) 950 W- V- HT, (g) 250 W- HIP+HT, (h) 

950 W- H- HIP+HT, and (i) 950 W- V- HIP+HT materials.  

 

Although their grains were columnar, the elongation was less compared with the 950W- H sample 

with an aspect ratio of 0.18 and a major axis of 518.4 µm. These differences can be generated by the 

heat flow, which is parallel to the build direction and introduces the preferred grain orientation [1, 40, 

58, 59]. Observing the IPFs of the HT materials, it is evident that the 250W and 950W- V materials 
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experienced grain growth and became even more elongated, i.e., a reduction in the aspect ratios. The 

grain growth caused by HT can be linked to the grain boundary migration caused by atoms diffusion 

[60, 61]. The 950W- H material, which had the largest and most elongated grains in the AP condition, 

however, showed a reduction in the grain size and a tendency to become more equiaxed, where the 

aspect ratio increased from 0.18 to 0.2. Similar behaviour of the reduction in grain size after stress 

relief annealing treatment of an L-PBF IN625 [40] and 2-h and 6-h heat treatment of L-PBF MAR-M-

509 [62] were reported. Moreover, as it will be discussed in the following parts, the residual stress of 

the 950W- H samples was found to be higher than the 950W- V specimens. The residual stresses 

caused by the thermal cycles are considered as the driving forces of recrystallization in IN718 [63]. 

This can influence the grain size evolution after the HT process. Grains had a totally different 

microstructure after the HIP+HT procedure. As the IPFs in Figure 10 g-i demonstrate, the grains were 

not as extended along the BD as the AP and HT categories and were oriented randomly. The IPFs and 

grains’ statistics listed in Table 5 show that all categories had grain growth and recrystallization after 

HIP+HT. The 250W and the 950W-H microstructures show more equiaxed grains while still, some 

extent of elongation is present in the 950W-V sample. Another feature of the IPFs is the presence of 

the annealing twin boundaries in the HIP+HT materials. The Σ3 twins are defined as boundaries with 

60° misorientations along the <111> orientation [64]. Equiaxed grains with annealing twin boundaries 

define a low stacking fault energy matrix. Blank IPFs highlighting the grain boundaries and Σ3 twin 

boundaries are provided in figure 12. While the HIP+HT samples, especially the 250W and 950W-H 

groups, contained significant amounts of twin boundaries, considerable annealing twin boundaries 

were not found in the AP and HT samples. This is in agreement with the misorientation angle plots 

given in figure 11, where the annealing twins have the 60° misorientation angle. The formation of 

incoherent annealing twins after HIP treatment on the LPBF nickel-based superalloys was reported in 

other research [5, 40]. The low angle grain boundaries (angles <15° [65]) were present in the AP 

material. They are formed by arrays of dislocations as consequences of rapid solidification and the 
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fact that during solidification, sub-grains grow along the proffered crystallographic direction, i.e., 

<100> for the FCC materials [39, 66, 67]. The presence of LAGB, which can be an indication of the 

extent of local deformation or residual stresses, was reported in the LPBF nickel-based superalloys 

[39-41, 60, 68, 69]. Their fractions after HIP+HT were found to be less than those in the AP 

condition. The reduction in LAGB content was more pronounced for the 250W and 950W-H, which 

had more annealing twins after the HIP+HT process (see figure 12 g-i). It is related to the 

recrystallization and formation of the Σ3 twin boundaries and high angle grain boundaries. Similar 

behaviour was reported after post-processing of the AM nickel-based superalloys [39-41, 58]. 

 

The stereographic pole figures with triclinic symmetry of NG materials in AP, HT, and HIP+HT 

conditions are plotted in figure 11. Pole figures were constructed employing an orientation 

distribution function. Additively manufactured nickel-based superalloys are expected to possess either 

a Goss texture component ({110}〈100〉) or a cubic texture component {001}〈100〉 which originate 

from the solidification of 〈100〉-oriented grains or dendrites and is affected by the processing 

parameters [70]. Figure 11 a-c provides the crystallographic textures of the AP materials. The 250 W 

IN718 showed a weak Goss texture with a maximum multiples of random distribution (m.r.d.) of 3.4. 

The texture derived for the 950W- H sample, however, was a strong cubic texture with a maximum 

m.r.d. intensity of 17.2. The 950W- V material had a moderate texture. The formation of Goss, cubic, 

and fibre textures in AM nickel-based alloys were reported [41, 69-74]. Strong 〈001〉 fibre textures in 

the AM IN718 built with the higher laser power of 950 W, compared with a near random texture in 

the lower laser power builds, i.e., 250 W, was observed. Applying the heat treatment, the 250 W 

material’s texture evolved to 〈001〉 fibre, and the intensity showed a slight increase but remained 

moderate. Similarly, the 950 W- V material had a fibre texture after HT, but the increase in the 

intensity was significant, and the maximum value of m.r.d. was about 27, which was the strongest in 

all HT parts. The formation of 〈001〉 fibre texture after HT was observed in other research [5, 40, 58]. 



 

182 

  

The crystallographic texture of the 950W- H material remained similar to the AP condition with slight 

spreads. The intensity showed a modest decrease but remained strong with a value just below 16.  

      

  

 
  

   

Figure 11. Pole figures and misorientation angle plots corresponding to the IPFs provided in Figure 

10 as (a) 250 W- AP, (b) 950 W- H- AP, (c) 950 W- V- AP, (d) 250 W- HT, (e) 950 W- H- HT, (f) 

950 W- V- HT, (g) 250 W- HIP+HT, (h) 950 W- H- HIP+HT, and (i) 950 W- V- HIP+HT materials In 

all pole figures the build direction is parallel to the A3 ( the out of the plane direction). Note that the 

misorientation angles lower than 5° are not included in the misorientation plots. 
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In the HT materials, the intensity of the 〈001〉 was found to be high, especially for 950 W materials 

compared with the 250 W. This behaviour is in line with what was detected by XRD, where the 

intensity of γ(200) remained higher than γ(311). The HIP+HT procedure changed the microstructure 

of the horizontal samples significantly. Both 250 W and 950 W-H materials exhibited random textures 

with weak intensities. The decrease in the maximum intensity of the H samples is consistent with the 

less difference in the γ(311) and γ(311) peaks of the XRD spectra. The 950 W- V sample, however, 

behaved differently after the HIP+HT. The texture was cubic-like, and the maximum intensity 

increased to about 13. 

   

Table 5. Grain shape statistics of different NG materials obtained from multiple EBSD imaging  

Material 

category 

250 W 950 W- H 950 W- V 

AP HT HIP+HT AP HT HIP+HT AP HT HIP+HT 

Minor axis 

[µm] 

28.9 35.9 55.1 79.9 58 181.3 27.3 103 113.5 

Major axis 

[µm] 

135.6 203.9 141.7 518.4 335.5 582.3 147.7 938.9 719.2 

Aspect ratio 0.27 0.24 0.41 0.18 0.2 0.36 0.25 0.12 0.18 
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Figure 12. Blank maps identifying the grain boundaries in black, and annealing twin boundaries, in 

red. The blank maps a-i correspond to the IPFs provided in Figure 10.   

 

Lastly, using the measured EBSD data, the grain orientation spread (GOS) maps were plotted for all 

categories of materials. Figure 13 shows the GOS maps of the 250W, 290W- H, and 290W-V 

materials in AP, HT, and HIP+HT conditions. The average GOS and the maximum GOS values of 

each plot are also provided. The GOS plots give an indication intragranular distortions and also of the 

residual stress in the material where higher GOS values imply higher misorientations and residual 

stress [75-78].  
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Average GOS:0.84°  

Maximum GOS: 45.79°   

Average GOS: 0.72° 

Maximum G OS: 27.13°  

Average GOS: 0.88° 

Maximum GOS: 50.73°  

Average GOS: 0.76° 

Maximum GOS: 21.81°  

Average GOS: 0.73° 

Maximum GOS: 38.26°   

Average GOS: 0.58° 

Maximum GOS: 29.99°  

Average GOS: 0.76° 

Maximum GOS: 25.42°  

Average GOS: 0.71° 

Maximum GOS: 4.83°  

Average GOS: 1.14° 

Maximum GOS: 10.26°  

Figure 13. Grain orientation spread (GOS) of (a) 250 W- AP, (b) 950 W- H- AP, (c) 950 W- V- AP, 

(d) 250 W- HT, (e) 950 W- H- HT, (f) 950 W- V- HT, (g) 250 W- HIP+H, (h) 950 W- H- HIP+H, and 

(i) 950 W- V- HIP+H samples. The values of average GOS and maximum GOS of each plot are 

provided. The colour-bar provided in (a) applies to all plots.   
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Comparing the GOS plots of the 250W materials, the average values reduced after both HT and 

HIP+HT, which means the residual stresses decreased after post-processing. The trends were different 

for the higher laser power samples. It should be noted that the residual stress of the 950W samples 

varied depending on the build orientation. It can be a consequence of more free surfaces or free edges 

of the vertical compared with the horizontal specimens. In addition, the distance from the build 

platform on the V and H samples were different. These factors can end up in different thermal profiles 

in different build directions, which influences the residual stress values. While the average GOS of the 

950W- H material remained almost the same after post-processing treatments, the maximum GOS 

increased after HT and decreased significantly from 27.13° in AP to 4.83° in the HIP+HT condition. 

The average GOS of the 950W- V samples was measured to be 0.88° in the AP condition, and it 

decreased to 0.58° after the HT procedure. While the maximum GOS of the HIP+HT material 

decreased to 10.26°, compared with the 50.73° in the AP condition, its average GOS increased to 

1.14°, which shows a higher residual stress value.  

 

3.3  Mechanical properties 

3.3.1 Fatigue behaviour of non-graded (NG) material 

The effects of the different post processing procedures on the microstructure were explored in the 

previous section. The results of two types of fatigue crack growth parameters, namely the stress 

intensity range threshold (ΔKth) and the Paris law crack growth, are discussed in this part. To find out 

the influence of the microstructure on the crack propagation behaviour, constant Kmax experiments 

were conducted on the NG and wrought-HT parts. The starting stress ratios were set to 0.1, and the 

final stress ratios were about 0.6-0.7. ΔKth values obtained for different categories of tested materials 

are listed in [74]. It should be noted that the Kmax value for all tests was 25 MPa√𝑚. In the AP 

category, the ΔKth values were close, while the 250W material had the highest threshold stress 
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intensity factor (SIF) range followed closely by the 950W- V samples. This behaviour can be a 

consequence of the different grain sizes in the tested materials. It is known that more grain boundaries 

or finer grains hinder crack growth [79]. On the other hand, large grains are capable of 

accommodating more slip damage due to their fewer constraint to slip compared with the small grains, 

which can result in a higher ΔKth value [80]. So, as suggested in the literature, the relationship 

between the grain size and the threshold SIF range is influenced by different competing parameters 

[79, 81].  

Table 6. A summary of constant Kmax tests performed on the NG-HT, NG-HIP+HT, and wrought-HT 

samples to obtain the ΔKth values. 

Processing condition Sample category Final stress ratio ΔKth [MPa√𝑚 ] 

 250 W 0.7 7.2 ± 0.3 

L-PBF- AP 950 W- H 0.7 6.0 ± 0.2 

 950 W- V 0.7 7.0 ± 0.3 

 250 W 0.7 9.5 ± 0.2 

L-PBF- HT 950 W- H 0.7 7.9 ± 0.2 

 950 W- V 0.7 7.5 ± 0.3 

 250 W 0.7 7.7 ± 0.3 

L-PBF- HIP+HT 950 W- H 0.6 10.2 ± 0.2 

 950 W- V 0.7 8.8 ± 0.2 

Wrought-HT - 0.6 13.1 ± 0.9 
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In addition, at low stress ratios, roughness-induced crack closure in the coarse grains can induce an 

overall better near threshold crack growth behaviour [82, 83]. Finer-grained microstructure on the 

other hand can lead to a straighter crack with lower surface roughness, which reduces the effects of 

crack tortuosity and roughness-induced crack closure and hence lessens the fatigue overload 

retardation effects. From the microstructural analysis, AP-250W material had the finest grains, 

followed by the 950W- V category. Moreover, the orientations of the grains in the 950W- V parts 

created more grain boundaries in front of the crack path. 

For the HT materials category, the ΔKth values increased compared with the AP materials. This 

improvement in the threshold SIF range is associated with the presence of the strengthening phases, 

which precipitated after the HT process. Similar to the AP category, the 250W samples showed the 

highest ΔKth due to possessing the finest grains in their microstructure, which adds up the grain 

boundaries in front of the crack path. The ΔKth of a laser directed energy deposited (LDED) IN718 

after a similar HT to this study was reported to be 10.8 ± 0.1 MPa√𝑚 [84]. Comparing the wrought-

HT and L-PBF- HT materials, it turned out that the ΔKth of the wrought samples were higher, which 

can be associated with their equiaxed fine grains with major axes of less than 20 µm. The threshold 

SIF range of a solutionized and double-aged extruded Inconel 706, at R= 0.8, was reported to be in the 

range of 5.7-13.9 MPa√𝑚 in different directions [85]. In the HIP+HT category, the grain size 

increased, which could affect the ΔKth. Also, the strengthening precipitates were present in the 

materials compared with the AP condition. Additionally, the content of the porosity in the HIP+HT 

material was found to be less than the AP and HT samples [16], which can increase the ΔKth value. As 

a result, after HIP+HT, all materials showed an increase in the threshold SIF range, with the 950W- H 

samples having the highest ΔKth values. The high threshold SIF range value of these categories can be 
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a consequence of the formation of annealing twins as the annealing twin boundaries can act as 

dislocation barriers in the early stages of the crack growth [80].  

Furthermore, the Kmax constant tests of the NG and wrought-HT materials were conducted at a 

constant stress ratio of R=0.1, i.e., compared with the increasing R ratio in the previous section. 

Figure 14 gives the fatigue crack growth rate, da/dN, versus SIF range, ΔK, curves plotted for AP, HT, 

and HIP+HT samples. In addition to the curves based on the collected data points, the fits to the 

measured curves are provided. Equation 5 [86], Which has two empirical constants, namely Paris 

exponent, m, and Paris constant, C, was used for fitting purposes.  

           
𝑑𝑎

𝑑𝑁
= 𝐶(𝛥𝐾)𝑚      (5) 

[ 73] lists the empirical constants of the Paris curves and the threshold SIF range values of all curves, 

plotted in figure 14. It should be mentioned that the ΔKth values from the Paris curves are slightly 

different from those which are provided in [78]. The differences are related to the different stress 

ratios (R) in the tests, which alter the crack closure phenomenon. In the coarse grains, the roughness 

induced crack closure is supposed to improve the fatigue crack growth behaviour. However, in the HT 

materials, which still remained directional, the orientations of the grains and their elongation direction 

with respect to the crack direction played an important role. For instance, in the 950 W- H samples, 

the large axes of the grains, i.e., 336 µm, faced the crack path while it was the short axes, i.e., 103 µm, 

in the 950 W- V samples. Even in the lower laser power samples, the axes of the grains facing the 

crack were about two times the 950 W- V specimens. Therefore, a higher roughness induced crack 

closure effect in the H samples was expected.  
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Figure 14. Fatigue crack growth curves of non-graded samples measured in (a) AP, (b) HT and (c) 

HIP+HT conditions at a stress ratio of R= 0.1. The corresponding Paris law fits are provided in (a'), 

(b'), and (c'), respectively. The legend given in (a) applies to all plots. 

a) a') 

b) 

b') 

c) c') 

AP 

HT 

HIP+HT 
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Changes in the threshold SIF range values depending on the stress ratios were observed in the nickel-

based alloys [82, 87-89]. Increasing the stress ratio from 0.1 to 0.7 in a wrought IN718, which was 

solutionized at 1050°C for 1 hour and double aged analogous to the double-aging procedure of the 

wrought material in this study, decreased the ΔKth from 10.2 to 5.8 MPa√𝑚 [90]. 

Table 7. A summary of Paris law constants for L-PBF non-graded AP, HT, HIP+HT, and wrought-

HT samples tested at R=0.1. The ΔKth values are calculated at FCGR of 10-6 mm/cycles.  

Processing 

condition 

ΔKth 

[MPa√𝑚 ] 

Paris 

exponent 

(m1) 

Paris 

exponent 

(m2) 

Paris constant         

(C1) 

Paris constant  

(C2) 

AP 

250 W 16.5 ± 0.1 5.7  ± 0.1 - (1.6 ± 0.5) E-13 - 

950 W- H 9.2 ± 0.2 4.6 ± 0.8 - (1.2 ± 1.1) E-10 - 

950 W- V 6.0 ± 0.5 3.0 ± 0.1 1.1 ± 0.2 (6.0 ± 2.3) E-9 (9.4 ± 4.3) E-7 

HT 

250 W 10.9 ± 0.5 9.9 ± 1.0 2.9 ± 0.3 (2.0 ± 1.95) E-16 (6.5 ± 3.5) E-9 

950 W- H 7.2 ± 0.2 4.2 ± 0.4 2.6 ± 0.5 (4.2 ± 3.2) E-10 (7.4 ±0.4) E-8 

950 W- V 9.9 ± 2.5 5.6 ± 1.0 3.1 ± 0.7 (5.0 ±4.9) E-11 (2.0 ±1.9) E-8 

HIP+HT 

250 W 9.8 ± 0.9 3.2 ± 0.2 - (8.0 ± 4.6) E-10 - 

950 W- H 11.5 ± 2.3 3.6 ± 0.4 - (4.4 ± 4.2) E-10 - 

950 W- V 7.4 ± 1.3 5.4 ± 0.7 2.6 ± 0.3 (1.2 ± 1.1) E-10 (2.7 ± 2.4) E-8 

Wrought- HT 15.1 ± 2.4 11.3 ± 5.7 6.1 ± 0.1 (4.5 ± 4.5) E-13 (3.5 ± 1.1) E-10 
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Based on the previous research, the fatigue crack growth resistance of the AM IN718 is remarkably 

lower than the conventional materials, which can be caused by the higher residual stress and the 

microstructural specifications of the AM parts [87]. However, proper post-processing treatments can 

improve the FCG behaviour of the AM parts and make it comparable with the wrought material. 

Comparing the HT curves, it can be seen that the fatigue crack growth rate (FCGR) of the HT L-PBF 

parts is still higher than the wrought material. Moreover, the ΔKth of the wrought samples, 15.1 ± 2.4 

MPa√𝑚, are significantly higher than the L-PBF specimens ranging around 7-11 MPa√𝑚. The ΔKth 

of a laser directed energy deposited (LDED) IN718 with similar HT as the current study, found to be 

10.8 ± 0.1 MPa√𝑚 [84], which is in good agreement with the findings of this study. However, in the 

mentioned study [84], the FCGR of the HT LDED material was found to be consistent with the 

wrought ones, which was relatively weaker compared with the wrought samples in the current 

research. Figure 14 b and b' give the HIP+HT samples’ curves. Putting them up against their HT 

counterparts, it is evident that the FCGR decreased significantly, resulting in a better performance 

than the wrought-HT samples. The improvement in the fatigue behaviour can be related to the crack 

tip blunting caused by the carbides present at the grain boundary, shown in figure 6, similar to what 

was reported in HT Inconel 690 [91]. The ΔKth of both 950 W categories increased after HIP+HT 

compared with the AP materials. However, they still did not reach the ΔKth of the wrought-HT 

samples explored in our research. The increase in the threshold SIF range values after HIP+HT can be 

related to the decrease in the residual stress and defects such as porosities which were induced during 

the manufacturing process. Furthermore, after the HIP+HT procedure, the texture in all categories 

became more isotropic, and grain growth was observed, which is known to hinder fatigue crack 

propagation [91, 92]. It should also be noted that ΔKth of the HIP+HT samples was not affected by the 

crack-closure. In figure 14, it can be seen that the FCGR decreased after post processing and it was 

more pronounced in the HIP+HT category. The 0.2% yield strength of the 250W and 950W laser 

power categories were measured to be 668 ± 16 and 531 ± 9 MPa, respectively [16]. The values 
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increased to 1145 ± 16 and 1065 ± 20 MPa after HIP+HT [16]. The lower FCGR in the parts with 

higher yield strength after heat treatment procedures is consistent with an earlier report [93]. 

3.3.2  Fatigue behaviour of functionally graded (FG) materials 

One of the main purposes of the current study was to explore the fatigue behaviour of the FG 

materials which was possible by conducting the ΔK-constant tests. Prior to performing the ΔK-

constant tests on the FG parts, customized K solutions were obtained using an FEM model. The K 

values were calculated for different crack lengths between 1.5 mm and 7.5 mm, along the width of the 

samples. The calculations were done with crack length interval of 0.5 mm when the potential crack 

was far enough from the interface and 0.2 mm in zones closer to the interface. Figure 15-a shows the 

calculated SIF values for AP and post-processed FG materials, along with the K values calculated 

according to ISO 12135 [94] for the NG materials. To make an easier comparison, the values of the 

SIF of the FGMs are normalized by the K values calculated based on the standard. The normalized 

plots are provided in Figure 15-b. From the plots, it can be seen that due to the presence of the 

interface zone, the K values of the graded parts are higher than that of the non-graded materials. The 

largest difference in the K values of the FG parts and the NG material calculated from the standard 

was observed in the AP group, while the HIP+HT category showed the least deviation. When the 

crack tip was about to reach the interface, all FG curves showed the most noticeable variance from the 

standard curve calculated for the NG material. After crack enters the interface, the effect of the 

interface on K starts to reduce in all samples. Quickly after the crack passes to the other region, the K 

values of the FG and NG parts converge.  
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Figure 15. (a) Stress intensity factor values against the crack length calculated by the FEM model 

showing the variation of K in the functionally graded specimens for a constant load of 10 kN and (b) 

the normalized values of the stress intensity against the crack length over the width of the samples. In 

both plots, the ISO 12135 [94] values are plotted for comparison purposes. The legend given in (a) 

applies to both figures. 

   

Having the customized K solutions calculated, ΔK-constant tests were carried out on the FG materials. 

Figure 16 provides the FCGR, da/dN, against the crack length, a, for different sample orientations in 

HT and HIP+HT conditions. Also, the dashed lines represent the fits to the AP curves, which are 

discussed in more details in our previous research. It should be noted that all samples were tested at 

ΔK=22.5 MPa√𝑚.  

The FCGR of HT and HIP+HT samples in both directions found to be approximately constant along 

the width of the samples as the crack propagated. The FCGR fluctuated between 2E-5 and 5.5E-5 

mm/cycle in the HT and 2.3E-5-6.9E-5 mm/cycle in the HIP+HT conditions, which are considered as 

close ranges. This observation in the FCGR of the FG samples after HT and HIP+HT is similar to 

their hardness behaviour. The horizontal direction samples exhibited a slightly lower da/dN, which 

could be related to their relatively moderate texture. 

a) b) 
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Figure 16. Fatigue crack growth rate curves of the horizontal and vertical functionally graded samples 

obtained on the (a) HT and (b) HIP+HT categories in constant ΔK tests. The dashed lines are fits to 

the data obtained from the tests on the AP materials.  
  

The AP- H samples showed a different fatigue behaviour, with FCGR starting from 4E-6 mm/cycle, 

which was lower than the other samples and gradually increasing to about 7.2E-5 mm/cycle. This 

gradual increase in the FCGR arises from the different number of thermal cycles and consequently 

various fractions of the Laves phases and possible strengthening precipitates in the deposited layers 

closer to the build platform, i.e., the 250W side, and those layers which are further from the build 

platform, i.e., the 950W side. This behaviour is consistent with the hardness of the graded H samples. 

After post processing, the microstructure becomes more uniform with a more homogenous 

distribution of the precipitates so the gradual change in FCGR was not observed. The minimum 

FCGR of the AP- H material, 4E-6 mm/cycle, was lower than the post processed samples. This can be 

related to differences in compressive RS as they are known to act as extrinsic crack closure factors 

[90]. The average GOS of the 250W samples found to be lower after HT and HIP+HT compared with 

the AP materials (see figure 13). This is an indication of the reduction in the RS values after post-

processing treatments. To confirm this quantitatively, the residual stress measurements using the XRD 

technique were done on the 250W materials in the different conditions. As it was expected from the 

GOS plots, the compressive residual stress, which was measured to be -483 ± 74 MPa, decreased to -

a) b) 
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311 ± 38 MPa after HT and -186 ± 36 MPa after HIP+HT. Similar to the findings in the current study, 

the level of the compressive RS in the post-processed AM materials was reported to be lower as the 

heat treatment procedures at 650-870 °C can release them [40, 95]. 

3.3.3  Fracture surface and crack path  

Fracture surface analyses were performed on the functionally graded materials. The SEM micrographs 

around the interface zones of the AP, HT, and HIP+HT conditions are shown in figure 17. It should be 

noted that the presented micrographs are from the V samples, which showed more defects in the 

interface area compared with the H specimens. The defects were accumulated in the interface 

boundaries where the manufacturing parameters changed. As can be seen, the defects are more 

pronounced on the 250W side of the interface. In addition, they are visible in the AP and HT 

condition materials, while their presence is not significant in the HIP+HT material.  

To investigate the type of the defects, higher magnification SEM micrographs, as shown in figure 17-

d, as well as EDS analyses were performed. It was concluded that the observed defects were unmelted 

particles which is a common defect in the AM parts [1, 62, 96, 97]. The unmelted or partially melted 

particles remained in the microstructure since the laser power was not high enough to (fully) melt the 

larger particles of the powder [96]. The unmelted or partially melted particles were still present in the 

material after the HT process, while their content was significantly reduced after HIP+HT. Also, it 

should be noted that the materials in AP and HT conditions contain porosity while the HIP+HT post 

processing reduces the porosity content noticeably, as was reported in different AM alloys [37, 97, 

98].  
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Figure 17. SEM micrographs of the functionally graded vertical samples around the interface region 

on the (a) AP, (b) HT, and (c) HIP+HT samples. (d) A high magnification micrograph of an un-melted 

particle close to the interface zone. 

  

Higher magnification SEM micrographs of the fractured surfaces in the 250W region of the FG 

samples in AP, HT, HIP+HT conditions are depicted in figure 18.In the fracture surface of the AP 

material, stair-like features were observed, which can be indications of the local solidification 

direction. Crack propagation through the epitaxial dendrites revealed those stairs. The stair-like 

features were also observed in the micrograph of the HT material. In comparison to the AP specimen, 

however, the stairs seemed to be sharper, featuring lamellae. Those lamellae were accompanied by the 

secondary microcracks. Such microcracks could be promoted by the strengthening phases to diffuse 

the stress build-ups. The microcracks are believed to hinder the short crack growth. The formation of 
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the microcracks in this study is consistent with the other research on the AM IN718 superalloy [99]. 

The stair-like features were not dominant on the HIP+HT material’s fracture surface. Unlike the other 

two groups, intergranular facets were observed on the micrographs of the HIP+HT samples. The 

facets originate from the annealing twin boundaries, which were formed after HIP+HT. Extended 

crystallographic facets develop in the large grains of the HIP+HT microstructure like what was 

observed in the HIP IN718 in the high cyclic fatigue tests [5]. 

  

  

Figure 18. SEM micrographs of the fractured surfaces in the regions manufactured using 250 W laser 

power on the (a) AP, (b) HT, and (c) HIP+HT materials. Note that all the images are taken on the H 

category samples.  
  

Figure 19 gives the IPF maps of the HT and HIP+HT functionally graded samples as well as the 

wrought-HT sample in the areas close to the crack. As it was observed for the NG materials shown in 

figure 10, the AM samples kept their directional microstructure in the HT condition while the grains 

 a)  b) 

c) 

micro cracks 

stairs 

micro cracks facets  
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were more equiaxed with random textures in the HIP+HT condition. Clean-ups were not applied to 

the EBSD data close to the cracks to avoid inducing artefacts. In all maps, as the insert indicates, the 

crack propagates from right to left.  

 

 

 

 

 

 

Figure 19. Inverse pole figure maps of (a) H-HT, (b) V-HT, (c) H-HIP+HT, (d) V-HIP+HT, and (e) 

wrought-HT samples along the crack path. The IPFs of the L-PBF specimens include the interface 

region. All samples were tested at a constant ΔK of 22.5 MPa√𝑚. Note that the micron bars of the L-

PBF and wrought IPFs are different. To visualize the crack path of the wrought-HT sample, a higher 

magnification IPF map is provided in the insert.  
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The regions manufactured with different laser powers, and the interface zones are determined in the 

maps. The characteristics of those zones, i.e., 250 W or 950 W side, remained similar to what was 

observed in the NG parts. For instance, the grains were finer in the 250W sides and coarser in the 

950W regions. The texture of the 250 W sides of the HT samples was weaker, while the <001> 

preferential direction in the 950 W regions of the HT samples were observed. This behaviour is 

consistent with the dominant <001> orientation, which was discussed in the NG EBSD maps. 

Likewise, the texture of the HIP+HT samples in different zones was similar to their NG counterparts 

being random in 250 W and 950 W-H, while moderate in 950 W- V. 

 

The crack paths of the L-PBF samples show the domination of the transgranular fracture mechanism 

while intergranular fracture happened at some points. This trend was observed for both post-processed 

conditions and was reported in other research as well [84, 88]. The fracture mechanism in the wrought 

material, however, was found to be a combination of intergranular and transgranular fractures. Some 

deflections were observed on the fracture surfaces of the AM parts. The tortuous crack path on the HT 

samples’ fracture surface can be related to the effect of the melt pools, which have not completely 

disappeared after the heat treatment (see figure 3). In addition, the pinning effect of the rod shape δ 

precipitates which formed after HT (see figure 5), are the in favour of crack deflection [93]. In the 

HIP+HT samples, the deflections were mostly located close to the annealing twin boundaries. Such 

deflections can hinder crack propagation [84]. This is consistent with the lower FCGR observed for 

the HIP+HT samples in this study.  

 Conclusions 

In the current research, the effects of the manufacturing parameters and post-processing procedures on 

the microstructural and fatigue behaviour of the L-PBF IN718 were explored. Three categories of 

samples using different laser parameters and build orientations were manufactured, which were 
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regarded as non-graded. Using the same parameters, two groups of functionally graded samples were 

fabricated. All aforementioned specimens were divided into three groups as far as the post-treatment, 

namely, as-processed (AP), heat treated (HT), and hot isostatic pressing followed by heat treatment 

(HIP+HT). Three-point bending tests at room temperature were conducted to evaluate the fatigue 

crack growth behaviour of the materials. The study resulted in the following conclusions: 

The grains in the AP condition were found elongated in the build direction. The horizontal 950 W 

material had the largest grains. In all non-graded materials, as far as the post-processing, the <001> 

orientation was dominant. However, the intensity of the 001 pole was significantly higher in the 

950W- H samples, 17.2, compared with the 250W and 950W- V, which were found to be 3.4 and 6.0, 

respectively. The HT reduced the grains elongation in the 950W- H group, while the other two 

materials showed an increase in their grain sizes. It should be noted that while the <001> remained the 

dominant orientation and its intensity did not change significantly for the 250W and 950W- H 

specimens, it increased to 27 for the 950W- V material. HIP+HT changed the grains of the 250W and 

950W- H materials to equiaxed-like with random textures, while the elongation of the 950W- V 

material’s grains was preserved to some extent. 

Vickers hardness of all non-graded materials increased after post heat treatments, with close values for 

HT and HIP+HT. The same trends were found for the graded materials. The AP graded material 

showed a direction dependency with a decreasing hardness value pattern along the width for the H 

samples and near to constant hardness values along the width for the V samples. A similar trend was 

observed after HT and HIP+HT while the slope of the fit in the H samples was reduced. This can be 

related to the higher level of homogeneity in the alloy after post-treatment. 

In the HT samples, at a low stress ratio of R= 0.1, the effect of the roughness induced crack closure 

was found to be higher in the H samples compared with the V specimens, which is related to the 

elongation of the grains in front of the crack path. After heat treatment, the L-PBF non-graded 
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materials exhibited slightly higher FCGR compared with the wrought-HT samples. However, after 

HIP+HT, the FCGR improved significantly and reached a lower level than the wrought samples. This 

behaviour can be a consequence of more isotropic textures and defects reduction.  It was found that 

when the stress ratio increased to about 0.6-0.7, materials with finer grains had higher threshold stress 

intensity range which can be caused by the larger number of grain boundaries hindering the crack 

growth. After post-processing treatments, the ΔKth values in all categories increased which was 

related to the presence of the strengthening phases and the reduction of defects and porosity. In 

addition, post processing treatments, increased the yield strength, which consequently resulted in a 

lower FCGR as was observed more pronounced in the HIP+HT category. 

To study the fatigue crack growth behaviour of the FG materials, an FEM model was employed to 

calculate the customized K-solutions in order to perform the ΔK-constant tests. The FCGR of both 

build orientations after HT and HIP+HT remained constant as the crack grew. This behaviour was 

observed in the AP-V samples while the trend was different in the AP-H samples, having the 
𝑑𝑎

𝑑𝑁
 

increasing with the increase in the crack length. It was suggested that the increasing FCGR trend in 

the AP-H samples is related to the different number of thermal cycles and consequently the different 

content of the Laves phases or strengthening precipitates in different deposited layers. In addition, the 

constant FCGR of the HT and HIP+HT H samples on the 250W side was higher than the AP 

materials. This can be related to the lower amount of the residual stress after the post processing in the 

250W material, as was experimentally confirmed by the EBSD measurements (GOS) and XRD.  

The crack path of the L-PBF samples in both post-processed conditions identified as the transgranular 

fracture mechanism, while intergranular fracture was also sometimes present. In the wrought-HT 

material, the fracture was a combination of the intergranular and transgranular fracture. In the L-PBF 

samples’ crack path, deflections were located. Those deflections mostly happened near the grain 

boundaries in the HT materials and near the twin boundaries formed during the HIP+HT procedure. 
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This study comprehensively investigated the effect of the post-processing treatments on anisotropy 

and improving the fatigue crack growth behaviour of the laser powder bed fusion IN718. It was 

demonstrated that by applying the proper post-processing procedure, the fatigue behaviour can be 

enhanced to a level even higher than the wrought material. 
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Chapter 5: Summary and future work 

This thesis investigated the effects of the additive manufacturing parameters on the microstructure and 

consequently mechanical behaviors of L-PBF Inconel 718 superalloy. To study the effect of the 

microstructures caused by the AM process on the mechanical properties, specimens were built and 

tested in different orientations. Mechanical properties such as monotonic tension and compression 

strength, in addition to the large strain cyclic behaviour ,also known as pre-strained cyclic 

performance, in different build orientations were measured at room temperature. Moreover, since the 

material is used in high temperature applications, the monotonic strength of the material was 

investigated at high temperatures of 450°C and 550°C. Initial texture of the AM materials as well as 

the deformed textures were measured using electron backscattered diffraction (EBSD) technique. To 

simulate the mechanical responses of the material incorporating the microstructure, an elastoplastic 

self-consistent (EPSC) model was developed. The model was capable of accurately simulating 

monotonic behaviors including tension-compression asymmetry and directional anisotropy not only in 

room temperature but also in high temperatures using one set of parameters. In addition, 

the  Bauschinger effect, the non-linearities in cyclic unloading steps, and the permanent softening 

associated with cyclic loadings were accurately captured by the EPSC model. Also, the simulated 

deformed textures were in good agreements with the measured deformed textures. 

In the second part of this work, the fatigue behavior of functionally graded (FG) IN718 was studied. 

FG IN718 samples were manufactured altering AM parameters such as laser power, hatch distance, 

scanning speed, layer thickness and beam diameter. Non-graded (NG) samples were also fabricated 

using the same parameters to compare the results of the FG parts. A variety of post processing 

procedures were applied to the FG and NG samples to find the optimum post treatment. It turned out 

that at the stress ratio of R= 0.1, the HIP+HT process results in the lowest fatigue crack growth rate 

(FCGR) in the AM parts. The effect of the HT and HIP+HT procedures on the FG materials were 

found to be similar. 

https://www.sciencedirect.com/topics/engineering/bauschinger-effect
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Although, a good number of mechanical properties of the L-PBF IN718 were studied in this research, 

still some properties such as fracture toughness, high temperature pre-strained cyclic behavior, and 

creep behavior were not studied in details. In addition, the effect of more build orientations , both for 

NG and FG materials, can be investigated in the future. Lastly, the data obtained in the second part of 

the study is comprehensive and can be used for modeling purposes. 
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