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ABSTRACT

 

Graphene field-effect transistor (GFET) is becoming an increasingly popular biosensing 

platform for monitoring health conditions through biomarker detection. Moreover, the graphene’s 

2-dimensional geometry makes it ideal for implementing flexible or wearable electronic devices. 

By using a GFET platform as a biosensor, users can easily monitor numerous health conditions. A 

sweat-based biosensor can non-invasively monitor levels of proteins in the body and alert the user 

to possible issues such as a steep increase or decrease in a particular protein. By creating a platform 

that can be used as a wearable biosensor, it allows for rapid results and a cheaper way to provide 

clinical quality data about one’s health conditions. 

 This thesis presents a novel approach for creating a low cost, reliable and selective, 

wearable biosensor for real-time observation and tracking of the levels of the protein biomarker 

Interleukin-6 (IL-6). A printable graphene transistor-based biosensor is created by using a PCB 

printer on a flexible Kapton substrate. The conductive channel of the GFET is created using a 

chemical vapor deposition (CVD)-grown graphene layer. By functionalizing (or modifying) the 

graphene surface with biorecognition elements such as antibodies or aptamers in the channel of 

the device, the GFET can operate as a biosensor. When various levels of IL-6 were introduced into 

the GFET device, the target proteins bind to the aptamers causing a change in the charge carrier 

concentration. The device is able to monitor in real-time the levels of IL-6 by observing the drain-

to-source current of the GFET which correlates to the IL-6 concentration being measured. The 

device implemented contains an integrated current meter which is one of the building blocks for 

creating a wearable electronic biosensor. 
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CHAPTER 1: INTRODUCTION

1.1. OVERVIEW 

 The development of cheaper, more reliable, and rapid-result biosensors and devices cover 

a wide range of research topics in the health and bioelectronics fields. There are many types of 

biosensors including optical, electrochemical, electrical, piezoelectric, thermal and Field-Effect 

Transistor (FET)-based sensors. While each of these sensors have benefits and drawbacks, the 

FET-based biosensors are growing more popular as they offer many advantages such as highly 

sensitive measurements, portable instrumentation, easy operation, and low cost [6], [28], [40], 

[54]. More specifically, Graphene-based FETs have proven to make highly effective biosensors 

with extremely high sensitivity, flexibility, and rapid results. Graphene is a two-dimensional 

material, as it is a single atomic layer of graphite, which lends itself to being highly mechanically 

flexible, [37]-[38], [54] which is beneficial in terms of creating a wearable biosensor. 

The fabrication of a wearable device creates many requirements to be met in terms of 

mechanical characteristics as well as the standard electrical characteristics necessary for a 

biosensor. Beginning with the substrate, the device must be bendable and able to conform to the 

skin; however, it should be rigid enough not to tear while still allowing for full mobility. These 

requirements have created the need for further investigation into electrode fabrication. The 

electrodes must be easily integrated with a variety of substrates during the fabrication process. The 

electrodes must also be bendable as they will be affixed to the substrate. After fabricating the 

electrodes on the selected substrate, the GFET also must meet a plethora of sensing requirements 

in order to successfully operate as a biosensor. The GFET will have to be able to detect a 

biomarker, which in this application will be the protein Interleukin-6 (IL-6). In addition, the device 



 

 2 

must show a concentration-dependent response to the IL-6, otherwise there is no correlation 

between the device and biomarker. The device must also be selective to our target biomolecule 

exclusively while not responsive to other possible interfering species. Finally, the biosensor must 

be able to operate in real-time as a wearable device that is portable and gives both rapid and reliable 

detection results. 

1.2. GFET AS A BIOSENSOR 

 Graphene-based FETs are highly advantageous for creating simple yet reliable biosensors 

and thus are increasing in popularity as a sensing platform. Graphene-based FETs have been used 

in a wide variety of sensing applications for an assortment of biomarkers. For example, GFETs 

have been used to detect proteins [4], [6], [80-83], DNAs [1], glucose [54], etc. GFETs function 

as biosensors effectively because biomarker and protein levels are able to be tracked through the 

device characteristics. By using GFET platforms as biosensors, point-of-care testing (POCT), 

which is highly sought-after, can be accomplished. POCT is when medical care is provided in 

more patient-geared locations such as their homes or even bedside as opposed to a medical facility 

[8], [9]. POCT requires devices that provide sophisticated results and accuracy while being low 

cost, simple to operate, and that reduce the time to obtain the results [13]. Moreover, GFETs have 

proven to provide a platform that can do just that and therefore are a competitive option for POCT 

applications. 

1.3. MOTIVATION 

Many people around the globe suffer from diseases and sicknesses which need to be closely 

monitored and often tracked continuously in order to keep them under control. The pandemic that 

people are dealing with world-wide right now is just one of many examples of how important fast 

and reliable testing and detection of an illness can be. At the moment, certain tests can take days 



 

 3 

for patients to receive results and COVID-19 can spread incredibly quickly. Therefore, in order to 

contain the spread of the virus, rapid and trustworthy testing is needed.  Diseases such as 

tuberculosis, which is the leading infectious disease killer in the world, further demonstrate the 

need for rapid and reliable detection of disease biomarkers. According to the CDC, in 2018, ten 

million people suffered from tuberculosis but over three million of those cases went undiagnosed 

[14]. Breast cancer is yet another life-threatening disease that requires early-action testing and 

diagnosis for effective treatment. Early detection of breast cancer has proven to allow for increased 

available treatment options, increased survival, and improved quality of life [15]. While there are 

currently individual tests that detect each of these different diseases, it is necessary to further 

increase the reliability, speed, and accessibility to testing of all diseases. 

Biosensors are becoming an increasingly popular device to be used in order to help 

monitor, track, and treat a plethora of diseases, sicknesses, and conditions. GFET sensors can be 

produced for low cost, meaning they can be mass produced and thus could become widely 

available as a new way to monitor one’s health. In addition, sensors mounted on the skin have the 

ability to provide quality data to the user about a wide variety of biomarkers without the patient 

ever having to visit a doctor’s office. Thus, in the future, GFET devices could be used as low cost, 

rapid, wearable biosensors that will allow for the user to have more flexibility in their day-to-day 

life, all while knowing that any conditions they may have are continuously being monitored. 

1.4. THESIS OBJECTIVES 

 The goal of this thesis is to develop an in-house PCB printed graphene-based field-effect 

transistor biosensor with high sensitivity for Interleukin-6. The transistor is to be used as a 

wearable device and thus it should be flexible as well as be a stand-alone device. The specific 

objectives of this work are the following: 
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1. Develop a printable graphene field-effect transistor (GFET)-based biosensor on a flexible 

platform. 

2. Demonstrate the detection of a biomarker, specifically Interleukin-6 (IL-6), using the printable 

GFET-based platform modified with aptamers as target-binding receptors. 

3. Characterize the limit of detection and selectivity of the graphene-based sensor. 

4. Demonstrate the real-time detection of the biomarker. 

5. Characterize the GFET transfer (current-voltage) characteristic curve while the substrate is 

under mechanical stress. 

6. Implementation of an integrated current measurement system for the device characterizations 

(in collaboration with Prof. Md. Shaad Mahmud’s group). 

1.5. THESIS OUTLINE 

 Chapter 2 gives background information on biosensors and electrolyte-gated GFET 

devices. The chapter also details sensing principles such as Dirac voltage, Debye length, and 

functionalization and immobilization of the device using PBASE and aptamers respectively. 

Chapter 3 outlines the exact materials, methods and procedures that were followed during the 

research process. The fabrication of the flexible and printable GFET is detailed from printing to 

graphene deposition. Chapter 4 discusses the optimization of the device as well as the process of 

functionalizing the graphene surface to be used as a selective biosensor. Chapter 5 describes the 

detection of the target biomarker IL-6 with the GFET biosensor in both a static and real-time 

measurement mode. This chapter also analyzes the device in terms of selectivity and reliability 

under mechanical stress. Chapter 6 details the integration of an internal microcontroller that is used 

to measure and record the current responses. Chapter 7 provides the conclusion and future outlook 

of this research. 
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CHAPTER 2: THEORETICAL BACKGROUND

2.1. OVERVIEW 

 Biosensors and health monitors are used to observe biomarkers and conditions occurring 

in the body. Humans rely on health monitoring systems for a plethora of information including 

disease diagnosis and progression. Sensors that can be worn on the body and continuously monitor 

these conditions could provide earlier notice to the user that there are issues which need to be 

addressed. Sensors depend on sensitivity, reliability, and rapid timing to remain as a key system 

for monitoring. Graphene-based FET devices are known for supporting highly sensitive and 

reliable devices which is why their use for sensors is a wide topic of research. In this chapter, the 

basic working principle of a graphene FET, its application as a biosensing platform and the 

theoretical background on aptamer-based target recognition and detection are discussed. 

2.2. BIOSENSORS 

 A biosensor is a device which monitors for biomarkers and health conditions. A biosensor 

can be defined as an analytical device that incorporates a biological material such as 

microorganism, antibody, cell receptor, etc. and interprets the biomarker quantity into a 

proportional, measurable signal [87]. Biosensors similar to the one used in this application utilize 

a biological element along with a physicochemical transducer which converts a bio-recognition 

event into a proportional electronic signal [25]. Furthermore, a biosensor is comprised of two main 

parts, a bioreceptor and a transducer [25]. The first portion of the sensor is the bioreceptor where 

the target biomolecule either interact or bind with a receptor causing physical changes in the 

structures of the bioreceptor [25]. The second portion of the sensor is the transducer which 
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characterizes the changes occurring physically and creates measurable signals that are proportional 

to the concentration of the target molecules bound to the receptors [25]. Biosensors come in many 

different forms including optical, thermal, piezoelectric, quartz crystal microbalance (QCM), and 

electrochemical [25]. The sensors are classified based on the transducer type that is being used in 

order to convert the target recognition event into a readable signal. 

 Current state of the art of graphene-based biosensors includes extensive work on rigid 

substrates and often using lithography, etching and lift-off techniques to fabricate such devices. 

Many research groups have presented working graphene-based electronics, specifically as nano 

sensors [4], [10], [82]. As the name suggests, nano sensors get their name from both their physical 

size and the quantities of targets they are able to detect [84]. Nano sensors’ dimensions are 

typically in the nanometer range while their limit of detection can be in the nanomolar range or 

even lower [4], [10], [84]. These nano sensors have provided clear results supporting that they can 

accurately measure changes in concentration of biomarkers such as proteins or DNA. In previous 

work, the FET is typically fabricated on a silicon oxide (SiO2) coated silicon wafer substrate using 

standard nanofabrication techniques as mentioned above. Biosensors that detect DNAs or proteins 

are also widely used, where DNA sensing uses peptide nucleic acid (PNA) probes as the receptor 

to bind to the graphene and protein sensing uses specific aptamers [1], [4]. These devices show 

not only a range of targets that can be sensed, but also demonstrate the highly sensitive and 

selective nature of the GFET-based sensing platform. 

 In more recent work, the progression of GFETs on a variety of substrates has been at the 

forefront of development. Other techniques for fabrication have also been used such as inkjet 

printing [41]. By creating devices on bendable and stretchable substrates, it is more feasible to 

consider this platform for a wearable sensor in the future. Works on mylar are very common as it 
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is an extremely thin and transparent film which is a good choice for wearables. Mylar can also 

easily be mounted onto PDMS or adhesive tape allowing for a more stretchable design to be 

implemented [10], [40]. As a direct result of creating a device on a bendable substrate come 

challenges in terms of device inconsistencies upon several mechanical stresses such as bending, 

twisting, and stretching. These challenges are where the most recent field of research tends to 

focus. 

 This thesis is novel as it presents a fully printable GFET platform that is implemented as a 

wearable device. Currently, this printable platform is one of a kind as it is fabricated using 2D 

printed electronics through a PCB printer and silver conductive ink. The GFET is fabricated on a 

Dupont™ Kapton® flexible film using a conductive and stretchable silver ink (Dycotec Materials, 

Ltd., UK). The device has proven to have sensitive and selective results, can be 2D printed on a 

bendable substrate thus reducing cost and production time, and shows positive results under 

mechanical stresses. In addition to the advantages that this platform already offers, it can easily be 

integrated into wearable electronic devices for sensor input control and data acquisition.  

2.3. GRAPHENE 

 Graphene has been at the forefront of research since 2004 when graphene was first isolated 

by Geim and Novoselov of University of Manchester, UK and has only become increasingly 

popular since their research was awarded a Nobel prize in 2010 [71], [72]. Graphene is a two-

dimensional material of sp2 hybridized carbon atoms in a hexagonal structure [72], [74]. Geim and 

Novoselov coined the term ‘Scotch Tape method’ as this was the method used to first discover the 

material [72]. As it is only a single atomic layer thick, it comes as no surprise that graphene is the 

thinnest material ever discovered [72]. Graphene is referred to as the building block for all 

graphitic carbon materials such as carbon nanotubes, graphite, and many others [72]. In addition 
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to being the building blocks of many materials, its carbon makeup also means that it conducts heat 

and electricity extremely well [73]. It is also the strongest material ever discovered, while at the 

same time the hardest and one of the most pliable [73]. After the ‘Scotch Tape method’ of 

discovering graphene, methods such as mechanical cleaving, chemical exfoliation, chemical 

synthesis, and thermal chemical vapor deposition were created in order to synthesize graphene 

[74]. 

 Often referred to as a “wonder material”, graphene is a one-atom-thick layer of carbon 

atoms and is extremely diverse, making its possible applications wide-ranging. Graphene has many 

properties that make it advantageous for biosensing such as great conductivity, biocompatibility, 

and it is easy to functionalize [44]. Graphene is a versatile material with excellent properties, both 

mechanically and electrically, for creating a wearable biosensor. Graphene is made up of carbon 

atoms which are bonded tightly through in-plane 6-sigma bonds [26]. The bonds are created in a 

hexagonal shape and a network of delocalized electrons in the pi-orbitals are responsible for 

graphene being electrically conductive among other features which make it a multipurpose 

material [26]. This particular network shape is responsible for the resulting electronic properties 

graphene possesses such as a zero-bandgap. Zero-bandgap structure means that at the charge 

neutrality point, holes and electrons can seamlessly be converted back and forth [42]. Thus, with 

zero-bandgap, the characteristic curve of graphene is continuous and ambipolar as shown in Figure 

2.1(B). Figure 2.1(A) shows the VDS applied to the device as well and the VGS. The VGS determines 

if current will flow between the source and drain terminals [85]. Figure 2.1(B) displays how the 

Fermi energy level relates to the VGS. When the VGS is lower than the Dirac voltage of the device, 

the Fermi energy level is in the conduction band and therefore the current is due to hole conduction 

[42]. Conversely, when the VGS is greater than the Dirac voltage, the Fermi energy level is in the 
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valence band and therefore the current is due to electron conduction. At VGS equal to the Dirac 

voltage, the device functions at the intrinsic Fermi level meaning that neither hole conduction nor 

electron conduction is dominant. Graphene also has an extremely high intrinsic carrier mobility 

and high conductivity which make it ideal for a conduction channel [2]. Graphene allows for the 

development of sensors with unprecedented sensitivity, fewer molecular defects, and superior 

conductivity [3]. Graphene-based electronics and FETs have proven to have high stability and 

electron mobility all while being relatively low cost to fabricate, thus making it highly in-demand 

for new electronics and sensors. A further, more extensive review of graphene’s electrical 

properties is done in [43]. 

 
Figure 2.1: (A) Schematic of GFET device on an SiO2 coated Si substrate (back-gated); (B) Zero-
bandgap structure of graphene resulting in an ambipolar characteristic curve. Reproduced from 
[42]. 
 
 In addition to a slew of valuable electrical properties, graphene also exhibits tremendous 

mechanical properties for creating a wearable biosensor. Graphene is one single atomic layer of 

graphite and therefore is a 2D, not 3D material. Graphene is the thinnest and strongest material 

ever discovered with an ultimate tensile strength of 130 gigapascals which is over 300 times 

stronger than structural steel [3]. Graphene is one atomic layer thick and therefore has unmatched 

mechanical flexibility along with optical transmittance [37], [38]. Graphene is the thinnest known 
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material which results in an extremely low bending stiffness as bending stiffness is proportional 

to the thickness cubed [57].  In addition to its two-dimensional structure being advantageous in 

terms of flexibility, it also lends itself to being extremely light weight at only 0.77 milligrams per 

square meter [3]. Graphene also has a Young’s modulus of about 0.5 to 1 TPa, spring constant of 

about 1-5 N/M, and high material elasticity [2]. With such diverse electrical and mechanical 

properties, graphene is highly attractive for creating a biosensor. 

2.4. GRAPHENE-BASED FIELD-EFFECT TRANSISOR 

 Field-effect transistors (FETs) are devices which utilize a source, gate, and drain terminal 

and use a conduction channel and electric field to control the flow of current in a device [28]. In 

graphene-based field-effect transistors (GFETs), graphene is used as the semimetal in the 

conduction channel. Graphene is a semimetal as opposed to a semiconductor because a semimetal 

is defined as a zero-bandgap semiconductor [86]. GFETs are considered an emerging technology 

in sensing applications because when a charged molecule adsorbs onto the graphene surface, it 

causes a change in the electric field which in turn causes a change in the gate potential of the device 

[42]. As a result, this causes a direct change in the channel conductance and subsequent change in 

the drain-source current [42]. This concept can be utilized to implement a sensor in which drain-

source current changes proportionally to the amount of a particular molecule that is introduced and 

thus creating a GFET-based biosensor.  

 For a GFET, the conductive channel is created using graphene which is in contact with the 

drain and source electrodes, all of which is on an insulated substrate. The channel is then modified 

using a bioreceptor or specific modifier so that when the target proteins are introduced, the charge 

carriers in the conductive channel will be modulated due to the change in the electric field. An 

ionic buffer solution is then dropped onto the conductive graphene channel. When a gate-to-source 
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voltage (VGS) is applied to the device, the electrical double layer (EDL) forms between the 

graphene channel and buffer solution [12]. The electrical double layer results in charges in the 

channel as well as a high gate capacitance which causes the electrostatic gating effect [42]. By 

altering the channel with outside biomolecules, there will be a change in the transfer characteristic 

curve, i.e., the drain-to-source current (IDS) as a function of the gate-to-source voltage (VGS) [29]. 

The transfer characteristic curve equation is given as follows [67]: 

IDS =µ !
"
	Ctot VD (VG-Vth) 

Where µ is the carrier mobility, !
"

 is the width to length ratio of the graphene conduction channel, 

and Ctot is the total gate capacitance of the dielectric. The gate capacitance is the total of the 

capacitance from the electrical double layer [68] as well as the quantum capacitance of the 

graphene [69]. VD is the drain voltage, VG is the gate voltage, and Vth is the threshold voltage. 1-

pyrenebutyric acid N-hydroxy succinimide ester (PBASE) linkers are used to functionalize the 

graphene by permanently bonding to the surface through p- stacking and allow for other modifiers, 

such as aptamers, to be added which can interact with proteins [16]. Aptamer-based sensing is 

highly effective as aptamers have high affinity and selectivity for their targets [30]. Aptamers have 

proven to be successful in biosensing as they can bind to a variety of targets including proteins, 

peptides and amino acids [30]. Aptamers are immobilized onto the PBASE linkers and a droplet 

of liquid buffer is then placed across the drain, source, and gate electrodes. This electrolyte buffer 

is the medium through which the gate voltage is applied, thus this type of device architecture is 

called a liquid-gated GFET device. When the proteins are introduced to the system, they begin to 

interact with the aptamers. As the aptamers bind with the proteins, the aptamers are expected to 

undergo a significant conformation change [30]. Due to the changing shape of the aptamers and 

the proteins folding, there are measurable changes in IDS which can be used as the sensor’s readout. 
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2.5. INTERLEUKIN-6 

 Interleukin-6 (IL-6) is a pleotropic cytokine that is produced in response to a plethora of 

processes including tissue damage, infections, cancer, and auto immune diseases [11], [45]. 

Interleukin-6 is also a biomarker for ailments such as collagen vascular disease, alcoholic cirrhosis, 

and kidney disease [19]. IL-6 is a protein which can be produced by both normal and harmful 

biological process. For instance, it is produced by the body during infections and kidney disease, 

but it is also produced by normal cell types that are involved in processes such as reproduction, 

metabolism, neural development, bone remodeling, and angiogenesis [46], [47]. Interleukin-6 is 

an important protein to sense and monitor as increased levels of IL-6 can require medical attention 

for many of the issues and illnesses listed above. Early detection of any one of these diseases or 

illnesses is key as it opens up the door for many more options during treatment.  

Elevated levels of IL-6 have been linked to the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2). Contracting SARS-CoV-2 has proven to release a “cytokine storm” 

of hyper-inflammatory responses and causes the release of not only Interleukin-6, but Interleukin-

1, Interleukin-8 and tumor necrosis factor alpha (TNF-a) [21]. Interleukin-6 levels are proven to 

increase with respect to disease stage for SARS-CoV-2 and directly relate to respiratory failure 

[21]. Furthermore, identification of IL-6 levels allowed for early identification of survivors versus 

non-survivors [21]. Additionally, IL-6 levels have proven to be lower for patients with SARS-

CoV-2 who were in stage IIb and would soon recover into stage IIa in comparison with those who 

were in stage IIb and would progress further into stage III [21]. Moreover, the levels of Interleukin-

6 in the body not only provide important information about the current state of an illness, but also 

the likely course that the illness or disease will take next. 
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 IL-6 is a pro-inflammatory cytokine, meaning it is involved in processes where 

inflammation is present. Inflammation is a key sign of cancer growth and progression making it 

vital to keep track of and manage [11].  In 2014 it was reported that gastric cancer was the fourth 

most common cancer, with 951,000 cases and 723,000 resulting deaths [48]. High levels of IL-6 

have been proven to lower the overall survival rate in patients with gastrointestinal (GI) cancer 

[11]. Studies have also proven that IL-6 can be used to estimate a patient’s chance of recovery, 

reoccurrence of the disease, as well as a patient’s response to therapy [49], [50]. By identifying 

and tracking levels of IL-6 early on in a patient’s diagnosis, it can allow both doctor and patient to 

have a deeper understanding of the disease stage, future course of the disease, appropriate therapy 

and treatments, and much more. Early diagnosis and treatment can be critical for many patients 

regardless of ailment. Metastatic dissemination is the main process during the growth of a human 

cancer tumor and is the main cause of death from cancer [51]. Early diagnosis allows for local 

control, less invasive surgeries, and reduced the need for chemotherapy [51]. Diagnosing a disease 

or cancer early also results in less time for a tumor to grow and therefore, at initial treatment there 

are more options [51]. Quantification of IL-6 levels is extremely important for disease control and 

survival. 

2.6. SENSING CONCEPTS 

 This section discusses specific terminology and concepts that are critical to understanding 

the goals of the project. These terms and concepts specifically relate to graphene-based field-effect 

transistors and their applications in the field of wearable sensors, such as liquid gate, aptamers, 

Debye length, and Dirac voltage. This chapter gives an overview of GFET operation and explains 

the basics of sensing including a brief introduction to the Hill-Langmuir equation.  
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2.6.1. LIQUID-GATED FET 

 In the application of a wearable biosensor, using a liquid-gated FET is extremely practical. 

As briefly mentioned in Section 2.5, a liquid-gated FET uses a droplet of a conducting liquid in 

the sensing channel to apply the gate-source voltage to the device. Therefore, a liquid gate is very 

convenient in a wearable application, as body fluid such as sweat can easily be used as the liquid 

across the drain and source where the gate voltage is applied. By using sweat as the means of 

sensing, a non-invasive biosensor can be created, thus allowing for a more comfortable while still 

accurate biomonitoring device. In addition to the ease of using a liquid-gated device in the 

wearable application, in aptamer-based sensing techniques liquid-gating is necessary. The device 

used in this research is a top-liquid-gated GFET meaning that the gate voltage will be applied from 

the ‘top’ of the channel to the liquid gate. 

2.6.2. APTAMER-BASED SENSING 

Aptamer-based sensing is highly advantageous when it comes to biosensors. Aptamers are 

single stranded DNA or RNA ligands which can be synthesized to bind selectively to a number of 

targets [30], [31]. Aptamers offer many benefits such as high specificity and affinity for the target 

[30]. The aptamers can also be synthesized with extremely high reproducibility and purity, and 

they display properties ideal for biosensing upon target binding [30]. Most aptamers are selected 

using systematic evolution of ligands by exponential enrichment (SELEX) to choose aptamers 

from liquid biopsy specimens [35], [52]. The SELEX method always begins by introducing the 

desired target to a random library that contains between 1012 and 1016 single-stranded 

oligonucleotides [35], [53]. Next, oligonucleotides which bind with the target are separated out 

and amplified by PCR in an iterative process, each time becoming more selective to the target [35], 
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[53]. Finally, the remaining aptamers can be sequenced and identified [53]. This iterative process 

is outlined pictorially in Figure 2.2 below. 

 
Figure 2.2: Iterative SELEX method and process of aptamer selection. Reproduced from [53]. 

 
When aptamers and targets bind together, the aptamer’s physical structure changes 

significantly as it folds in on the protein [30], [32].  With this being said, the aptamer’s new shape 

causes a measurable change in the charge carrier concentration in the conductive channel [10]. 

This change in charge carrier concentration is detected by the device as a change in the IDS. 

Aptamers are highly selective to their designated target, meaning that their interactions are 

extremely limited outside of such target. The aptamers bind with high specificity as they fold into 

secondary and tertiary structures during target interactions [35]. Even extremely small changes in 

the target molecule can result in a lack of aptamer binding [30], [33]-[34]. This is a beneficial trait 

for a receptor when creating a biosensor as only the selected target should be able to interact with 

the aptamer and cause a change in the aptamer structure. Aptamers also allow for extremely 
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sensitive devices with dissociation constants (Kd) in the nanomolar to picomolar range [30], [33]. 

Aptamer-based sensors or “aptasensors” [35], are advantageous and have many benefits over using 

antibodies. Aptamers are more stable than antibodies as they are more robust in extreme conditions 

such as high temperature or harsh pH levels [35]. Also, it is possible to create aptamers that can 

target any molecule from a small molecule to a protein to an entire cell [31], [35], which is not the 

case for antibodies. Lastly, aptamers are more adaptable to changes due to their more simple 

chemical structures [35]. 

2.6.3. FUNCTIONALIZATION 

 Although graphene itself has not proven to be able to directly sense proteins or create links 

with aptamers through covalent bonding, it has shown that its p bonds have a willingness to interact 

through adsorption of other materials by way of p-p, p-H, p-cation, p-anion, and p-metal 

interactions [26]. Functionalization of the nano sensor includes the incubation of PBASE and 

aptamers onto the graphene surface. Single stranded probe DNAs (pDNAs) are linked to the 

graphene surface via the bifunctional linker 1-pyrenebutyric acid N-hydroxy succinimide ester 

(PBASE). PBASE and graphene form strong connections through p- stacking [16]. After 

immobilization of the PBASE, the aptamers can then be attached. The aptamers are introduced to 

the PBASE and allowed to incubate. During incubation, the aptamers and the PBASE covalently 

link together via N-hydroxy succinimide (NHS) crosslinking [20]. 

2.6.4. DEBYE LENGTH 

 Debye length is the distance in a semiconductor over which the local electric field 

influences the distribution of free charge carriers [28]. The Debye length plays an integral role in 

the fundamentals of the graphene-based field-effect transistor and biosensors in general. The 
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Debye length describes how far away from the conducting channel of a device the surface charge 

density can be affected [28]. The Debye length is important to understand because it is necessary 

that the aptamer and protein binding is occurring within the Debye length of the device. Thus, if 

the length of the aptamer is too long, the binding process between the target protein and the aptamer 

will not occur inside of the Debye screening length, and therefore will not have an effect on the 

surface charge density in the conduction channel. The Debye length is identified as one of the 

leading issues facing biosensors and FET-based devices [28]. For an electrolyte buffer solution, 

the Debye screening length is as follows [39]: 

𝑘#
$% = '

∈ 𝑘𝑇
𝑒& ∑ 𝑍'&𝑛'('

 

where k and T are the Boltzmann’s constant and temperature respectively, e is the charge of a 

proton, ∈ is the permittivity of the solvent, Zi is the charge concentration of ion species i and niB 

is the bulk concentration of ion species of i, extending the sum over all ions in the solution [39].  

2.6.5. DIRAC VOLTAGE 

 Graphene-based field-effect transistors exhibit ambipolar behavior meaning that both 

electrons and holes can be the majority charge carrier depending on the gate-to-source voltage for 

the device. Resultingly, the current-voltage characteristics of a GFET device are V-shaped with a 

clear location in which the number of electrons and holes are even, known as the charge neutrality 

point or Dirac Voltage. This is detailed in Figure 2.3 below where two transfer characteristic curves 

are shown: one before target binding and the other after target binding. 
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Figure 2.3: V-shaped transfer characteristic curve (ID vs VGS) with Dirac voltage before and after 
target binding. 
 

The left branch of the transfer characteristic curve is when the density of holes is increasing, and 

the right branch of the characteristic curve is when the density of electrons is increasing [77]. The 

point where the charge neutrality is even corresponds to the minimum drain-to-source current and 

the gate voltage that corresponding to the minimum current, is referred to as the Dirac Voltage 

[78]. The Dirac voltage is important as it is where the shifts in transfer characteristic curve are 

measured about. As different concentrations of target analyte are introduced to a device, the Dirac 

voltage should shift to the left or right depending on the charge of the target. This movement in 

transfer characteristic curve should be proportional to the concentration of the target that was 

introduced. The change in Dirac voltage versus concentration of the target analyte should follow 

the Hill-Langmuir equation. The Hill-Langmuir equation describes the relationship between the 

concentration of a target analyte and the number of receptors, or in this case aptamers, that have 

bound to a target [22]. The Hill-Langmuir equation is used as a benchmark to describe the rate at 

which ligands will bind with receptors and is outlined as follows [22]:  
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∆𝑉# = 𝐴
[𝑐 𝐾)4 ]*

1 + [𝑐 𝐾)4 ]*
+ 𝑍 

𝐴 = Maximum response with all binding sites occupied 

c = Concentration of all the applied target 

𝐾)	= Apparent dissociation constant that produces half occupation of receptors 

n = Hill coefficient 

Z = Parameter offset 

2.6.6. SENSING MECHANISMS 

 There are two different sensing mechanisms which have a direct impact on the Dirac 

voltage and how it shifts. These two mechanisms are the electrostatic gating effect and the charge 

transfer doping effect. While both are similar, one causes positively charged biomolecules to shift 

the Dirac voltage in the positive direction while the other causes positive charges to create a shift 

in the negative direction, and opposite for negative charges in both cases. The overall resulting 

behavior is a combination of these two processes and therefore the more dominant process will 

ultimately decide how positive and negative charges influence the Dirac voltage. 

 
Figure 2.4: (A) Schematic of electrolyte liquid-gated GFET (top-gated); (B) Electrostatic gating 
effect demonstrated with capacitors formed at the graphene-solution and gate-solution interfaces. 
Reproduced from [42]. 
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 The electrostatic gating effect is when the concentration of the adsorbed charged molecules 

is so high that the intermolecular distance is less than the Debye length [42]. Subsequently, the 

adsorbed molecules act as one of the two plates of the electrical double layer (EDL) formed on the 

graphene-electrolyte interface as shown in Figure 2.4(B). Therefore, any additional charged 

molecules which are adsorbed onto the graphene will modulate this charge density in the EDLs 

resulting in a change in the channel current [42]. Therefore, if the adsorbed molecules are 

positively charged, the Dirac voltage will shift in the negative direction and result in having to 

apply a voltage that is less positive to compensate for the additional charge stored in the EDL [42], 

[75], [76]. In a similar way, if the molecules that are adsorbed into the graphene are negatively 

charged, the resulting Dirac voltage will shift in the positive direction and therefore a more positive 

charge will need to be applied due to the negative charges in the EDL [42], [75], [76].  

 
Figure 2.5: Charge transfer doping effect demonstrated in GFET. Reproduced from [42]. 
 
 The charge transfer doping effect is a result of direct charge transfer from the adsorbed 

molecules to the graphene surface [42]. This happens specifically when the biomolecules 

introduced are at low concentration or are weakly charged as detailed in Figure 2.5 [42]. This 

causes the adsorption density to be small and therefore the distance between the adsorbed 
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molecules is larger than the Debye length of the channel [42]. Furthermore, the charge transfer is 

then dominant between the adsorbed molecules and the channel itself [42]. Therefore, if adsorbed 

molecules are positively charged, the Dirac point will shift in the positive direction or if negative 

charges are introduced the Dirac voltage will shift in the negative direction [42], [75].  
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CHAPTER 3: MATERIALS AND METHODS

3.1. OVERVIEW 

 This chapter discusses in-depth the device fabrication procedure for creating the printable 

and flexible graphene-based field-effect transistor (GFET) platform. This chapter also includes an 

overview of how KiCAD is used to create the design, using the Voltera V-One PCB printer to print 

the design, and easy transfer graphene which is used as the conductive channel between the source 

and drain electrodes. Reliability throughout the fabrication process is also discussed. This chapter 

includes all necessary steps and procedures to fabricate the GFET. 

3.2. DEVICE FABRICATION 

3.2.1. KICAD 

 The fabrication process of the wearable GFET begins with the initial design that is created 

using KiCAD which is an open-source computer aided design software. The KiCAD schematic 

includes the layout for all drain, source, and gate electrodes. The KiCAD software allows for 

variation in trace width, layer, shape, and a variety of other tools. The final design features six 

drain/source electrodes and one gate electrode as shown in Figure 3.1. Table 3.1 details the layout 

of the GFET design specifically which electrodes are the drain, source, and gate for each of the 

five GFET devices created in the pattern. 



 

 23 

 

Figure 3.1: Final KiCAD design featuring 7 electrodes; electrodes 1 – 6 as drain/source and 
electrode 7 as gate with line width 350µm and line spacing 250µm edge to edge. 

 
Trace width and trace spacing were two factors that were critical to optimize for the printable 

device. It is important to balance these two elements as the smallest feature size possible is needed 

while also keeping the widest possible electrode in order to reduce the trace resistance. Upon 

completion of the KiCAD design, multiple files are generated with each of the different printing 

layers, which can then be uploaded into the Voltera software for the next fabrication step. 

 
Table 3.1: Summary of labels for final GFET device. 

Device # Source/Drain electrode Gate 

GFET-1 1/2 7 

GFET-2 2/3 7 

GFET-3 3/4 7 

GFET-4 4/5 7 

GFET-5 5/6 7 
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3.2.2. VOLTERA V-ONE PCB PRINTER  

The goal during fabrication of the GFET biosensor was to create a low cost, time effective and 

adaptable procedure that would allow for easy replication and production of many devices. Most 

often in fabrication of microdevices and biosensors, techniques such as lithography, etching, and 

liftoff are used [1], [6], [40]. These procedures are quite costly and can take a large amount of time 

to carry out. It can also be quite a rigid process as in order to change even the smallest of 

characteristics requires a lot of work, for example creating a new mask each time a minor change 

needs to be made. In this application, to fabricate the electrodes for the GFET, a Voltera 

(Kitchener, Canada) V-One PCB printer was used. The Voltera V-One PCB printer, shown in 

Figure 3.2, is a multi-functional circuit printer that is especially good for higher viscosity inks and 

can print on a wide variety of substrates.  

 

Figure 3.2: Voltera V-One PCB printer used for rapid fabrication of GFET electrodes. 
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The printer allows the user to upload a CAD file and then simply prints the CAD file pattern 

onto the substrate of the user’s choice. Moreover, this results in an extremely fast and adaptive 

process as changes to features such as line width, substrate, ink or even large changes to the design 

can be swapped in seconds and reflected to the device during printing within minutes. The Voltera 

V-One printer prints patterns extremely quickly. Although the printing time is directly proportional 

to the size of the design, number of lines and shaped to be printed, most designs are printed in 

under 3 minutes with the whole printing process taking a total of about 25 minutes, including 15 

minutes for heating to dry the ink. The Voltera allows for the user to control a variety of settings 

and printing conditions such as printing speed, height, flow rate and many others as shown in 

Figure 3.3. Such flexibility in printing conditions does create room for human error and therefore 

a KiCAD pattern that can be implemented to the Voltera without concern of electrode shorts and 

design issues must be created. 

 

Figure 3.3: Voltera V-One printer settings options. 

3.2.3. PRINTING RELIABILITY 

 As mentioned previously, ensuring that the feature size of the device is as small as possible 

is extremely important while also maximizing the width of the traces. In order to ensure reliable 

printing where none of the electrodes short together during the printing process, a variety of both 
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trace width and trace distance are assessed. Table 3.2 below shows the combinations of electrode 

widths and distances, measured from edge to edge, that were tested. All design specifications were 

printed using the Voltera V-One, utilizing the 100-micron nozzle heads and standard printing 

conditions specified from Voltera. While the first few options were not viable as the Voltera V-

One could not print this close consistently without the electrodes shorting together, the distances 

above 250 µm proved to work well. After analysis, a 350 µm electrode width with an electrode 

distance of 250 µm gave the most consistent results with the largest electrode width yet smallest 

distance between electrodes. 

 
Table 3.2: Electrode widths and distances tested in KiCAD design and printed with Voltera. 

Electrode Width 
(µm) 

Electrode Distance 
(µm) 

(edge to edge) 
100 100 
100 150 
150 150 
250 250 
250 500 
250 700 
*350 *250 
350 500 
450 500 

*Final design parameters 

Once the design is finalized and printed, the substrate is heated at 100 degrees Celsius for 15 

minutes in order for the ink to cure. At this point the initial design is completed and the electrodes 

are ready for graphene. 

3.2.4. EASY TRANSFER GRAPHENE 

 A field-effect transistor needs a conducting material placed between the drain and source 

electrodes in order to function. A GFET utilizes a graphene film to create this channel. Graphene 
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transfer is done using chemical vapor deposition (CVD)-grown graphene from Graphenea Inc. 

(San Sebastián, Spain). These graphene sheets are known as easy transfer monolayer graphene 

which are created on a polymer film and covered with a sacrificial layer as shown below in Figure 

3.4 [23].  

 

Figure 3.4: 1 cm × 1 cm easy transfer monolayer graphene from Graphenea on a polymer film. 

 
A unique fishing technique is employed in order to ensure a higher success rate in placing the 

graphene more precisely across the drain and source electrodes. The traditional fishing method 

consists of placing the sacrificial layer/graphene/polymer substrate onto the surface of deionized 

water slowly. The backing is then slowly peeled away using tweezers, leaving just the sacrificial 

layer/graphene. Finally, using the substrate below the water, catch the sacrificial layer/graphene 

perfectly across the electrodes. This entire process is outlined in Figure 3.5, courtesy of Graphenea.  
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Figure 3.5: Graphene transfer process using fishing technique. Reproduced from [5]. 

 
This method was slightly modified to increase consistency when placing the graphene across the 

electrodes. Instead of taking the bulky substrate and placing it under the graphene and trying to 

quickly lift and catch the graphene, a modified process was used. By using a pipette and placing 

approximately enough deionized water to cover the device on the substrate, this removes a large 

amount of uncertainty of where the graphene will land. The sacrificial layer/graphene/polymer 

substrate are then placed into this much smaller droplet and the polymer substrate is then slowly 

removed. Next, the water is slowly removed using the pipette and along the way the sacrificial 

layer/graphene is directed until it is in the desired location. Once the sacrificial layer/graphene are 

across the electrodes, the device is allowed to air dry for one hour and then heated at 250 °C for 

one hour. After the heating process, the sacrificial layer is then removed by submerging the 

sacrificial layer/graphene/new substrate in acetone for one hour, ethanol for one hour, and 

deionized water for one hour. After completing all fabrication steps including design, printing, and 

graphene transfer shown in Figure 3.6(A), the device will look as shown in Figure 3.6(B). 
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Figure 3.6: (A) Fabrication steps for the GFET device; (B)Voltera V-ONE printed graphene-based 
FET on Si/SiO2 wafer using KiCAD design. Easy transfer monolayer graphene transferred across 
drain and source electrodes. 
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CHAPTER 4: CHARACTERIZING GFET

4.1. OVERVIEW 

 This chapter discusses the process of finalizing all parameters of the GFET biosensor 

design. A characterization of multiple substrates choices is presented as well as a comparison of 

multiple inks that can be used in conjunction with the Voltera V-One printer. After finalization of 

the design parameters, this chapter also presents the methods of preparing the device for 

biosensing. Preparation includes functionalization of the graphene surface and immobilization of 

aptamers on the graphene as well. 

4.2. REQUIRED MATERIALS 

 For GFET characterization and sensing the following materials are needed: 

• 0.01 × PBS buffer: 200	𝜇L of 10 × PBS is combined with 199.8 mL of deionized water. 

This ratio is used as 0.01 ×	PBS has a Debye length of approximately 7.3 nm [23]. 

• PBASE in DMF: 10 mM solution of PBASE in DMF is created in order to functionalize 

the graphene. PBASE was purchased from Santa Cruz Biotechnology (TX, USA). 

• Aminated aptamers: Aptamers with specific affinity to mouse IL-6 (#ATW0077, KD = 5.4 

nM) were purchased from Basepair Biotechnologies, Inc. (TX, USA). The aptamers were prepared 

following the Basepair Biotechnologies, Inc. best practices: Handling and Storage information and 

therefore used amine resuspension buffer and the 0.01 × PBS +1 mM MgCl2 solution. 1 mM 

MgCl2 is used in order to help the aptamers bind properly as changes in magnesium chloride have 

been proven to have an effect on binding affinity [23]. This solution is created using 10 𝜇L of 10 

× PBS, 9.99 mL of deionized water and finally 1 g of MgCl2. 
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• Interleukin-6 recombinant mouse protein: IL-6 protein was purchased from BioLegend® 

(San Diego, CA) and prepared into five different concentrations. The IL-6 protein is 34 𝜇M as 

packaged and concentrations of 100 nM, 10 nM, 1 nM, 100 pM, and 10 pM were prepared using 

0.01 × PBS. 

4.3. SILICON OXIDE COATING 

 Silicon oxide coating has proven to enhance the sensing performances of GFET devices. 

Naturally occurring organic contaminants can cause issues with sensor sensitivity, decreased 

carrier mobility and unwanted doping of the substrate [6]. By using an SiO2 coating on the 

substrate, it helps prevent many of these issues by improving the substrate surface. First of all, the 

coating provides protection for the graphene against unwanted doping and also provides a 

smoother surface for the device which allows for a higher quality fabrication of the GFET device 

[6]. Secondly, the coating has also been proven to have tremendous impacts on the 

transconductance of the device which is directly related to the sensor sensitivity. Lastly, the silicon 

oxide coating provides more consistency in the overall sensor performance. Zhuang et al. 

exemplify how the silicon oxide coating creates not only a more consistent IV characteristic curve 

for their device, but it also creates sharper edges and therefore higher transconductance near the 

Dirac voltage [6]. This is extremely beneficial as during the real-time sensing, the sharper these 

curves are, the more change will be observed in the current with relation to time. The device 

consistency, transconductance, and surface morphology results are summarized in Figure 4.1. 
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Figure 4.1: SiO2 coating impacts on (a) device transfer characteristic curve; (b) device 
transconductance in both the hole and electron branches; (c,d) surface morphology of bare 
substrate and 50 nm SiO2 coated substrate. Reproduced from [6] with permission from the Royal 
Society of Chemistry. 
 
While finalizing the design features and parameters of the flexible biosensor, an SiO2 coating on 

multiple substrate options was investigated. A 50 nm SiO2 coating was deposited onto the bare 

Kapton film (12 inches × 12 inches × 1 mil) using a sputter deposition system from the 

Nanofabrication Laboratory at the University of Massachusetts Lowell. The goal here is to ensure 

that the SiO2 coating has the same impact, specifically on the transfer characteristic curve, as 

outlined above in Figure 4.1. In order to ensure the reliability of the results, the effect of a 50 nm 

SiO2 coating was explored on the Kapton film. 
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Figure 4.2: Transfer characteristic curve of GFET device fabricated on (a) Kapton substrate with 
50 nm SiO2 coating versus bare Kapton film; (b) SiO2 coating provides consistency to transfer 
characteristic curve measurements. 

 
Consistent with the results from the Lin et al. research paper, the SiO2 coating proves to produce 

a significantly steeper transfer characteristic curve [6]. Figure 4.2(A) shows that the silicon oxide 

coating improves the device characteristics. In Figure 4.2(A) the bare Kapton curve reaches a 

maximum normalized current of about 7 µA while the SiO2 coated Kapton reaches a normalized 

current of about 50 µA, thus vastly improving the conductivity of the device. In Figure 4.2(B) the 

device consistency is displayed. The SiO2 coated Kapton GFETs (k-GFETs) display more 

consistent results device to device on the same substrate in comparison to devices fabricated on 

the bare Kapton film. 

4.4. SUBSTRATE SELECTION 

 A wearable biosensor must be accommodating to the human body and thus needs to be 

able to be integrated in a wearable and flexible platform. Substrate choice is key as it will ensure 

the safety and subsequently the effectiveness of the biosensor. Substrates such as biaxially-oriented 

polyethylene terephthalate (Bo PET) also known as Mylar, polyamide film named Kapton by 
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DuPont, and polydimethylsiloxane (PDMS) are all substrates that could accommodate the needs 

of the device.  

 

Figure 4.3: Flexible film substrates (A) Kapton substrate; and (B) Mylar substrate. 

 
Kapton is a polyimide film which is lightweight and bendable, shown in Figure 4.3(A). 

The Kapton film used in this application was 0.001 inches thick which is about 25 µm. The mylar 

film being used was 2.5 µm and therefore about 10 times thinner. The Kapton was able to provide 

more structure and its rigidity helped prevent potential tears while still offering an extremely 

bendable device. Kapton has an extremely high melting point and thus can withstand extreme heat 

up to 400 ºC [18]. Mylar is a polyester film that is extremely thin and lightweight and conforms 

well to the skin, thus giving it potential as the substrate for a wearable device (Figure 4.3(B)). 

Mylar is a transparent film that is commercially available for purchase at a thickness of 2.5 µm 

[10], [58]. It offers advantages such as a high tensile strength, electrical insulation, and stability 

[17]. Disadvantages of this film include a tendency to easily crumple and tare thus causing issues 
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for the sensor and a relatively low melting point in comparison to other films at 250 ºC. Another 

disadvantage to using a Mylar film is that it frequently requires bonding to a rigid substrate during 

fabrication [10]. While both Mylar and Kapton are thin films that present themselves as possible 

options for a wearable sensor substrate, there are also silicone materials that could be advantageous 

as well. 

Silicone rubbers are often used in the creation of microchannels and nanoscale devices as 

they are easily implemented for stamping, molding, and the surface properties are easy to modify 

[88]. PDMS is widely used as it is low cost, simple to fabricate, thermally stable, resistant to 

oxidation, clear and easily pliable as shown in Figure 4.4 [56], [59]. PDMS is a commercially 

available two-part silicon-based polymer. It can easily be molded to various shapes, cut, bent, and 

even stretched to a degree without compromising the integrity. 

  

Figure 4.4: Polydimethylsiloxane (PDMS) polymer substrate. 

 
The PDMS substrate provides flexibility similar to Mylar and Kapton but also provides more 

strength than the two previously mentioned substrates.  
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To select the proper substrate for device fabrication, the KiCAD design was printed onto 

each of the three potential substrates which had each been coated with 50 nm of SiO2. A silicon 

wafer substrate with the same design was also used during the process as a baseline for comparison. 

Graphene was then transferred across each of the four designs and the bare graphene transfer 

characteristic curve of each GFET device was measured as shown below in Figure 4.5. 

 

Figure 4.5: Transfer characteristic curve with VDS = 100mV for Si/SiO2 wafer (baseline), SiO2 
coated Mylar, SiO2 coated Kapton, and SiO2 coated PDMS. 

 
 The Kapton substrate exhibits the sharpest IDS versus VGS characteristic curve, making it 

the best option for creating a wearable biosensor moving forward. Mylar displays promising results 

as the magnitude of the current is similar to the silicon wafer which was used as a baseline.  

Alternatively, the GFET device fabricated on the PDMS substrate displays almost no change in 

current flow regardless of the gate-to-source voltage which was applied to the device. This 

excludes the PDMS substrate from being a viable option as it will make it extremely difficult to 

identify the Dirac voltage for a GFET with a characteristic curve with such a gradual incline. 
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4.5. INK CHOICE 

 In the ideal case for a wearable, the sensor would be fabricated on a flexible and stretchable 

substrate and the device itself would also be able to stretch and bend. In order to understand if a 

fully stretchable and bendable device is feasible, a variety of inks were tested on a flexible and 

stretchable Eco-Flex silicone rubber substrate. Eco-Flex is a two-part silicone rubber similar to 

PDMS. A combination of inks was investigated including Voltera Flex Ink, Dycotec Flexible and 

Stretchable ink, and multiple homemade ink mixtures. 

 A homemade ink mixture is attractive for creating a GFET device as the base material can 

be controlled and thus can be used to increase flexibility and stretchability. In this application a 

PDMS base was used for the ink with a mixture of carbon nanotubes, carbon nanofibers, and silver 

flakes [60-62]. In order to create the ink, the PDMS polymer-base was first mixed with toluene as 

this will allow for the conducting particles to be evenly dispersed [62]. The carbon nanotubes, 

carbon nanofibers, and silver flakes are then added to the toluene solution which is then placed 

into a bath sonicator for 5 minutes to ensure particle dispersion. After dispersion, the solution is 

placed onto a hot plate and heated at low temperature (70 ºC) while simultaneously magnetically 

stirred until the toluene solution is evaporated [62]. After evaporation, the PDMS curing agent is 

added to the mixture and is ready to be used as an ink. While the printable ink is an attractive 

option, after numerous attempts with variety in amount of carbon nanotubes, carbon nanofibers 

and silver flakes, the ink was never conductive enough to support a current and therefore one of 

the two commercially available inks would need to be used moving forward. 

The ink stretchability was investigated by printing ten 1 mm wide electrodes onto the Eco-

Flex substrate. This was done for each of the two commercial inks, as the custom ink was never 

able to support a current. After curing, the electrodes were then encapsulated in another thin Eco-
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Flex layer for support. Beginning with the Voltera ink, the 10 electrodes are printed onto the 

substrate and the resistance of each electrode is measured and recorded. The KiCAD file for the 

stretchability testing is shown in Figure 4.6.  

 

Figure 4.6: KiCAD stretchability file containing ten 1 mm wide traces. 

 
The electrodes are then stretched at increments of 5% in order to better understand the trend of 

resistance versus stretching percentage (electrode length). This process is repeated until the 

electrode resistances are into the range of megaohms or the electrodes themselves break. The 

Voltera ink was highly conductive at 0% stretching and had an average trace resistance of 0.4889 

ohms. After being stretched to just 5% of the original electrode length, all of the electrodes had 

broken as outlined in Figure 4.7. Although advertised as a flexible ink, even upon extremely small 

levels of handling or bending of the substrate, the Voltera ink traces broke. 
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Figure 4.7: Dycotec stretchable silver conductive ink versus Voltera Flex silver conductive ink. 

 
Following the same process as above, the Dycotec ink was examined next. During this 

analysis, the average resistance was 0.67 ohms at 0% stretching, and 31.8 ohms, 93.1 ohms, and 

561.8 ohms at 5%, 10% and 15% respectively as shown in Figure 4.7. Above 15%, although there 

was data collected, the error was so large that it is not reliable as it may not be reproducible in the 

future. Thus, to continually select the most advantageous parameters for creation of the GFET 

biosensor, the device is be printed on Kapton film with a 50 nm SiO2 coating using the Dycotec 

silver conductive ink as shown in Figure 4.8. 
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Figure 4.8:  GFET design with all parameters finalized. Substrate: 50 nm SiO2 coated Kapton; Ink: 
Dycotec flexible and stretchable silver conductive ink. 

 

4.6. MECHANICAL STRESS 

 Making sure that biosensor operation does not change from basic, rigid implementation to 

wearable, bendable implementation is critical. It is only practical that device functionality is stable 

over various bending radii as in the GFET biosensor’s true application, mechanical stresses on the 

substrate are unavoidable. GFET sensors have been proven to be able to withstand a wide range 

of mechanical stresses including bending [6], [10], [55], stretching [40], twisting, and a 

combination of all at once [10]. In order to understand the appropriate range of substrate bending 

that the GFET can withstand and should be used in, the Kapton substrate was characterized at 

different bending radii. The procedure for characterization was to begin with the blank device 

completely flat to obtain a baseline measurement for the GFET characteristic curve. After this, the 

GFET was bent using three different inward bending substrates with radii of 4.25 cm, 2.25 cm and 
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1.5 cm respectively. The GFET transfer characteristic curves were then measured once again to 

observe the Dirac voltage and potential shift. This process was repeated for 3 different inward 

bending radii as in real applications the device would be facing the skin and therefore the most 

likely bending would be an inward bending. 

 

Figure 4.9: (A) Transfer characteristic curve of GFET on flat substrate and bent around radii of 
1.5 cm, 2.25 cm, and 4.25 cm; (B) Change in Dirac voltage with respect to the bending radius of 
the substrate. Error bars created with N = 5 devices. 

 
As can be seen in Figure 4.9(A), the inward bending of the substrate did cause variation in the 

transfer characteristic curve. Figure 4.9(B) shows the change in Dirac voltage with respect to the 

bending radii of the device. The error bars are created with five devices. While all bending radii 

show a very small shift in Dirac voltage, the 2.25 cm bending radius showed the least amount of 

variation in transfer characteristic curve and shift in Dirac voltage. Following this was the smallest 

bending radius of 1.5 cm and lastly the most variation was in the largest bending radius of 4.25 

cm. A relatively random shifting in Dirac voltage with respect to bending radius is consistent with 

previous works [6]. A small change in Dirac voltage is consistent with other findings as well [6]. 
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The results obtained from these analyses suggest that the biosensor can operate properly in all of 

the bending conditions observed in this work.  

4.7. GFET FUNCTIONALIZATION 

 In order to prepare the graphene FET to be used as a biosensor, the target molecules need 

to interact with the GFET and influence the charge carriers in the conduction channel of the 

transistor. The first step of the functionalization process is to add PBASE to the graphene surface. 

PBASE is essential to the GFET device functioning properly as this linker allows for aptamers to 

attach to the graphene surface and therefore targets will directly be able to influence the device 

drain-source current.  

Functionalization of the device is done by placing a 200 µL droplet of 10 mM PBASE in 

dimethyl formamide (DMF) onto the graphene surface at room temperature for 2 hours. The device 

is prepared for functionalization by mounting an Eco-Flex well (1 cm × 0.5 cm	× 0.5 cm) across 

the drain and source electrodes to keep the PBASE solution on the graphene surface, as DMF is 

extremely volatile and could interfere with the bare silver electrodes. After the PBASE in DMF 

has incubated for two hours, the substrate is then washed successively with DMF, ethanol, and 

deionized water for 3 minutes each. This ensures that there are no loose PBASE linkers still on the 

substrate. Immobilization of the PBASE linker onto the graphene surface causes a p-type doping 

effect to the graphene and will cause the transfer characteristic curve and Dirac voltage to shift to 

the right due to the transfer of charges between the PBASE and graphene [63], [64]. The carbonyl 

group of PBASE is an electron-withdrawing group which means it can cause electron transfer to 

occur from the graphene to the linker, which is why there is a positive shift in Dirac voltage [65]. 

The last step in the GFET functionalization is the immobilization of the aptamers. The aptamers 

used during sensing are synthesized from BasePair Biotechnologies, Inc (TX,USA). The aptamer 
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target for selection is recombinant mouse Interleukin-6 (IL-6). The aptamers are single stranded 

DNAs with a length of 32 nucleotides and an average KD of 5.4 nM [36]. Aminated (5’) pDNA at 

5 µM in 0.01 × PBS+1 mM MgCl2 are introduced to the graphene in the form of a 100 µL droplet 

again at room temperature for two hours. After incubation, the excess aptamer solution is then 

rinsed with 0.01 × PBS in order to remove all leftover aptamers. Immobilization of the aptamers 

causes in a left shift because of n-type doping which results due to negatively charged DNA strands 

serving as electron donors when they interact with the graphene surface [65]. A positive shift due 

to PBASE attachment and a negative shift from aptamer immobilization is consistent with results 

from [6], [65], [82]. These results are summarized below in Figure 4.10. With the aptamers 

securely linked via PBASE to the graphene surface, the GFET can be used as a nano sensor. 

 

Figure 4.10: Transfer characteristic curves during functionalization displaying p-type doping after 
introduction of PBASE and n-type doping after introduction of aptamers. 

 
The immobilization of aptamers onto the graphene surface is critical in order for the 

graphene-based FET to operate as a biosensor. Without the aptamers and PBASE linkers attached 



 

 44 

to the graphene surface, the IL-6 proteins do not bind with the graphene surface. Without this 

binding there will be no shift in the drain current with respect to the gate-to-source voltage and 

therefore the concept which is being employed here will not hold. Figure 4.11 demonstrates the 

importance of using the aptamers and the linkers to achieve selective sensing on a graphene-based 

platform. Without the linkers and the aptamers present, there is practically zero change between 

the bare graphene characteristic curve and the five subsequent concentrations of Interleukin-6 that 

were introduced. The error bars in Figure 4.11(B) are generated with N = 6 devices and they 

represent one standard error. This indicates that without the incorporation of the linkers and target-

binding aptamers; the target proteins are not able to directly influence the graphene conducting 

channel. 

 

 

Figure 4.11: IL-6 sensing process performed on Kapton GFET without PBASE and aptamers. (A) 
GFET transfer characteristic curves with VDS = 50 mV; (B) The corresponding calibration curve. 
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CHAPTER 5: DETECTING BIOMARKER

5.1. OVERVIEW 

 This chapter details the process of detecting Interleukin-6 (IL-6) using the printable 

graphene FET biosensor. Two different detection modes were implemented, namely the static 

voltage sweep method and continuous real-time sensing. The static method of sensing has multiple 

variations and thus both are discussed. Furthermore, the selectivity of the sensor is discussed along 

with the limit of detection. The impacts of mechanical stress on the substrate were also 

characterized during the sensing process in order to ensure consistency across all conditions. 

5.2. SENSING THEORY 

 The goal of the graphene transistor-based biosensor is to characterize the relationship 

between the concentration of the target analyte IL-6 and the resulting change in Dirac voltage. The 

conceptual illustration shown below in Figure 5.1 outlines the working principle of the device. 

 
Figure 5.1: Conceptual drawing detailing how protein introduction impacts the sensor behavior, 
specifically the transfer characteristic curve and resulting Dirac voltage. 

 
The rationale for developing this platform is that the flexible, Kapton-based GFET will be mounted 

on the user’s skin and sweat will be used as the liquid gate for the device, thus creating a non-
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invasive way to monitor the user’s health conditions. It is anticipated that with different 

concentrations of target analyte being introduced to the system, multiple different characteristic 

curves would be generated and thus a change in Dirac voltage that is proportional to the 

concentration of the analyte would be observed. Finally, instead of sweeping the gate-to-source 

voltage, which is not feasible for real-time monitoring of the target biomarkers, the gate-to-source 

voltage will be fixed. By fixing the gate-source voltage, a user can simply monitor changes in the 

drain-to-source current over time. Therefore, any changes seen in the current are directly related 

to changes in the target concentration.  

5.3. STATIC SENSING 

Static sensing is the process of measuring the transfer characteristic curve (IDS versus VGS), 

of the GFET device for various IL-6 concentrations. The name ‘static sensing’ is given because 

during this mode of measurement, the protein is introduced in a droplet form and thus is not moving 

across the channel as in real-time sensing. This is different from real-time sensing because in this 

sensing mode it is not possible to monitor the change in the concentration continuously in real-

time and gain time-dependent information from the results. The first step in static sensing is to get 

a baseline measurement of the GFET characteristic curve with no target analyte. This is done after 

PBASE functionalization and aptamer immobilization. A 180 µL droplet of 0.01 × PBS buffer is 

dropped onto the channel and the characteristic curve is then measured. This measurement is the 

standard for where the change in Dirac voltage will be measured from. The buffer solution is 

removed from the GFET channel and multiple concentrations of protein are then introduced one 

at a time. Beginning with 10 pM, the analyte solution is dropped in a 180 µL droplet onto the 

device and incubates for ten minutes to allow the aptamers and proteins to bind together. The 

analyte solution is then removed and replaced with the 0.01 × PBS buffer and the GFET transfer 
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characteristic curve is then measured. The graphene surface is then rinsed with 0.01 × PBS buffer 

and the next concentration, 100 pM, is then introduced. Five different concentrations of IL-6 will 

be introduced to the substrate one at a time. After each incubation, the graphene surface is washed 

with the buffer and the transfer characteristics are measured for each of the five devices that make 

up the GFET. After measurement, the graphene channel is rinsed using the 0.01 ×	PBS buffer 

solution and the new concentration is then dropped, replacing the old protein, and the process is 

repeated. After each of the six transfer characteristic curves are measured, one baseline and five 

concentrations, the results are combined into a single normalized graph where the current 

corresponding to the Dirac voltage for each curve is set to be zero as shown in Figure 5.2(A). 

  

Figure 5.2: IL-6 static sensing with 0.01 × PBS as liquid gate and VDS =100 mV. (A) Normalized 
transfer characteristic curves showing a right shift in Dirac voltage with respect to concentration; 
(B) Concentration calibration curve showing the changes in Dirac voltage as a function of 
concentration with resulting Hill-Langmuir line of best fit (R2 = 99.27%). 
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Table 5.1: Average shift in Dirac voltage for IL-6 static sensing with 0.01 × PBS as liquid gate 
and VDS = 100 mV. 

 

 

 

 

 

Normalization makes it clear to see how protein concentration and binding impacts the 

conduction channel of the device, and specifically the Dirac voltage. Not only is there a shift in 

the Dirac voltage but the shift is proportional to the concentration of IL-6 protein that was 

introduced to the device which is displayed in Figure 5.2(B). Figure 5.2(B) is obtained by plotting 

the change in Dirac voltage from the buffer solution (zero concentration) to the concentration of 

interest, which are explicitly stated in Table 5.1.  The error bars are generated with N = 4 devices 

and they represent one standard error. By simply comparing the change in Dirac voltage as a 

function of concentration, ideally the data should follow the Hill-Langmuir equation. When the 

data is plotted it is obvious that it closely follows the Hill-Langmuir equation. IL-6 at a pH of 7.4 

is used in all sensing applications. At this pH, IL-6 is negatively charged, and as observed 

throughout this work, the Dirac voltage shifts to the right. Due to the fact that the PBASE is 

introduced at such high concentration during functionalization in conjunction with the positively 

shifting Dirac voltage, it can be concluded that in this application the electrostatic gating effect 

dominates over the charge transfer doping effect. The results obtained from this method of sensing 

strongly suggests that the concepts that are being used can be implemented for wearable 

 
Average shift in Dirac voltage (mV) 

10 pM 24.781250 
100 pM 129.109250 
1 nM 307.383500 
10 nM 356.538500 
100 nM 411.979000 
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applications. If the gate-to-source voltage is fixed, it is possible to monitor the drain-to-source 

current over time and be able to monitor changes in current instantaneously.  

5.3.1. BUFFER LIQUID GATE VS ANALYTE LIQUID GATE 

There are multiple approaches for how to conduct static sensing, specifically how the liquid 

gate solution influences the shift in Dirac voltage. The first method is to introduce the protein to 

the graphene, incubating for 10 minutes, and then rinse the graphene surface briefly as discussed 

in Section 5.3. The buffer solution is then dropped onto the graphene and the transfer characteristic 

curve is measured. This method is simple and eliminates the influence of proteins that are bound 

nonspecifically but dissociation is present. The moment that the protein is removed from the 

graphene, it is no longer known if the proteins are attached to the graphene or if dissociation has 

begun. It is also possible that proteins were removed either during the rinsing process or end up 

free in the buffer solution.  

To remove the uncertainty that is brought upon by the rinsing step, the second method is 

to apply the protein and, after incubating for 10 minutes, measure the current without rinsing the 

graphene surface. This process eliminates the question of proteins being washed away or 

dissociating during the measurement process. However, this process does introduce its own issues 

to the procedure. By keeping the protein on the device, the issue of nonspecific binding will be 

present in the measurements. Furthermore, the protein sitting on the device during the 

measurement process will ensure that the Dirac voltage is being influenced by both specifically 

and nonspecifically bound proteins. Figure 5.3 shows the results from using the same static sensing 

procedure as discussed in Section 5.3 but this time without the rinsing step; therefore, the liquid 

gate is the analyte solution. By using the IL-6 solution as the liquid gate, a much larger shift in the 

Dirac voltage is observed. This is to be expected because there will always be more proteins 
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present and therefore bound to the aptamers on the device when the target analyte is present in 

comparison with only a buffer. In Figure 5.3(A) there is a shift of nearly 1 V from 0 pM to 100 

nM which is significantly larger than sensing with buffer as the liquid gate. The error bars represent 

one standard error and are generated with N = 4 devices. 

 

Figure 5.3: IL-6 static sensing with analyte as liquid gate and VDS = 10 mV. (A) Normalized 
transfer characteristic curves showing a right shift in Dirac voltage with respect to concentration; 
(B) Concentration calibration curve showing change in Dirac voltage as a function of concentration 
with resulting Hill-Langmuir line of best fit (R2 = 98.37%). 

 
Figure 5.4: (A) IL-6 calibration curve showing change in Dirac voltage as a function of 
concentration. The black represents experimental data points where there the graphene is rinsed 
before sensing (liquid gate: 0.01 × PBS buffer) and the purple represents experimental data points 
where there the graphene is not rinsed before sensing (liquid gate: specified concentration of IL-6 
solution); (B) Side by side comparison of rinse (buffer liquid gate) versus no rinse (analyte liquid 
gate) shift in Dirac voltage as a function of concentration. 

 Average shift in Dirac 
voltage (mV) 
Rinsing No Rinsing 

10 pM 24.781250 530.612250 
100 pM 129.109250 709.168500 
1 nM 307.383500 816.320750 
10 nM 356.538500 995.505250 
100 nM 411.979000 1012.73350 

N=4 
N=4 
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Figure 5.4(A) makes a clear comparison between the sensing with the target analyte as the liquid 

gate and the using a buffer solution as the liquid gate. There is a significantly larger change in 

Dirac voltage when the IL-6 protein is present in comparison to when there is only a buffer. 

Specifically shown in Figure 5.4(B), the largest change in Dirac voltage for the rinsing case did 

not shift as significantly as the smallest change in Dirac voltage for the non-rinsing case. 

Furthermore, the change for these two cases were 412 mV and 531 mV respectively. Although 

there is a more substantial shift in Dirac voltage when the IL-6 is used as the liquid gate, there is 

also much more error introduced to the experiment. The error bars for the 0.01 × PBS buffer liquid 

gate are created with N = 4 devices and the error bars for the target analyte liquid gate are created 

with N = 5 devices. The error bars are significantly larger for the case when the target analyte is 

used which is not desirable. Moreover, there are arguments that could be made in defense for either 

one of the two methods presented.  

5.3.2. SELECTIVITY AND LIMIT OF DETECTION  

 The selectivity of a biosensor ensures that the results and data obtained are specific to the 

target and not due to other possible interfering species. In this work, aptamers were used to enhance 

the selectivity of the device. Aptamers promote selectivity because they exhibit preferential 

binding to the target analyte compared to other molecules. This lowers the probability of false 

readings due to other biomolecules that could interfere with the GFET device. It is important to 

make sure that even the proteins that are similar in physical structure to the target IL-6 biomarker 

do not interact with the sensor and cause a shift in the Dirac voltage. 

 For selectivity testing, the protein tumor necrosis factor alpha (TNF-a) was used. TNF-a 

is used in this case because structurally it is very similar to Interleuken-6. As TNF-a and IL-6 are 

both cytokines that are actively present during proinflammatory processes, they often appear in 
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the body simultaneously which is an example of why selectivity of the device is important. If the 

device is exclusively monitoring the levels of IL-6 then the presence (or absence) of other proteins, 

specifically TNF-a in this case, should cause no change in the current-voltage characteristics and 

therefore no change in the Dirac voltage. As done above in the static sensing of IL-6, five different 

concentrations of TNF-a will be introduced one at a time to the device, the current-voltage 

characteristics will be recorded, and the Dirac voltage will be identified. By comparing the 

calibration curve of the IL-6 measurement with the calibration curve of the TNF-a measurements, 

there should be a concentration dependent shift with each IL-6 protein and for TNF-a, ideally there 

should be zero shift for all concentrations that are introduced. 

 

Figure 5.5: TNF-a selectivity static sensing with 0.01 × PBS as liquid gate and VDS = 100 mV. 
(A) Normalized transfer characteristic curves showing concentration independent change in Dirac 
voltage; (B) Calibration curve showing IL-6 change in Dirac voltage as a function of concentration 
with resulting Hill-Langmuir line of best fit and TNF-a change in Dirac voltage as a function of 
concentration. 

 
Table 5.2: Average shift in Dirac voltage for TNF-a selectivity static sensing with 0.01 × PBS as 
liquid gate and VDS = 100 mV. 
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 Figure 5.5 summarizes the results from the selectivity testing of the biosensor. While IL-6 

does significantly change the Dirac voltage and specifically follows the Hill-Langmuir equation, 

the TNF-a proves to cause a relatively small shift in Dirac voltage. The average change in Dirac 

voltage was 106.58 mV, 49.151 mV, 49.198 mV, 81.943 mV, and 98.386 mV for increasing levels 

of TNF-a as displayed in Table 5.2. These changes, while small in comparison to the shift due to 

IL-6 introduction, are also random in magnitude. For example, in Figure 5.5(B) the largest shift in 

Dirac voltage due to TNF-a concentration is at 10 pM and the smallest shift is at 100 pM. 

Therefore, the shift in Dirac voltage is independent of the concentration of TNF-a that is 

introduced. These results conclude that the aptamers chosen are highly selective to the Interleukin-

6 recombinant mouse protein. The error bars are generated with N = 3 devices and they represent 

one standard error for the TNF-a data in Figure 5.5(B). 

 The limit of detection (LoD) is the lowest analyte concentration which is likely to be 

reliably measured [70].  The limit of detection can be calculated for any given device using the 

equation presented below [23]. 

Limit of Detection = +.+	.	/0)*1)21	134')0'5*	)0	063	7583/0	95*93*02)0'5*	:3)/;231
<75=3	5>	063	9)7'?2)0'5*	9;243	()0	7583/0	95*93*02)0'5*)

 

Using this equation, the GFET biosensor can be assessed for what the range of detection will be 

and the reliability of those results. The limit of detection is measured for both the case where the 

 
Average shift in Dirac voltage (mV) 

10 pM 106.580333 
100 pM 49.151000 
1 nM 49.198000 
10 nM 81.943000 
100 nM 98.385667 
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liquid gate is the 0.01 ×	PBS buffer and when the liquid gate is the target analyte. The limit of 

detection for these two cases are 14.7292 pM and 24.5399 pM respectively.  

5.3.3. SENSING UNDER MECHANICAL STRESS 

 A wearable device needs to be able to withstand material deformations while its 

performance integrity stays intact. Other Mylar-based biosensors have proven to be able to 

withstand deformations such as substrate bending [6], [54], twisting, and stretching [10]. It is vital 

that the wearable sensor results are not impacted if the sensor is bent. While the bending of the 

substrate with bare graphene was tested to see if there was a resulting shift in Dirac voltage, it is 

even more crucial to investigate if the trend of the sensing results stands true even when the 

substrate is bent. The GFET device was placed on a substrate with a radius of 2.25 cm and the 

static sensing process was repeated as shown in Figure 5.6(A). The target analyte was used as the 

liquid gate and a drain-to-source voltage of 10 mV. 
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Figure 5.6: (A) k-GFET IL-6 static sensing results while substrate is bent at radius of 2.25 cm and 
VDS = 10 mV; (B) Normalized transfer characteristic curves showing a right shift in Dirac voltage 
with respect to concentration; (C) Concentration calibration curve showing change in Dirac 
voltage as a function of concentration. 

 
From Figure 5.6(B) and (C), the conclusion can be drawn that the GFET-based IL-6 sensor still 

performs reasonably well even under the mechanical stress of bending. Figure 5.6(B) shows the 

transfer characteristic curves while the device is bent, and it can be seen that the Dirac voltage 

shifts to the right as the concentration of IL-6 increases. Figure 5.6(C) displays that there is still a 

distinct change in the Dirac voltage that is proportional to the concentration of IL-6 that is 

introduced. The error bars are generated with N = 5 devices and they represent one standard error. 
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The results indicate that there is still a significant shift of almost 1 V throughout the duration of 

the experiment.  

 

Figure 5.7: (A) Calibration curve with IL-6 sensing done with k-GFET on flat substrate (purple) 
and on bent substrate (orange); (B) Side by side comparison of flat versus bending shift in Dirac 
voltage as a function of concentration. 

 
As shown in Figure 5.7(A), although the mechanical stress on the substrate does not cause 

inconsistencies with the general trend which is displayed during sensing, it does impact the 

individual changes in Dirac voltage. Figure 5.7(B) displays the average shift in Dirac voltage for 

each case. The case when the substrate is flat shows over double the shift in Dirac voltage except 

for at 100 nM where the measurements are almost identical. The error bars are generated with N 

= 4 devices and N = 5 devices for the flat and the bending cases, respectively, and they represent 

one standard error. The Dirac voltage shifts much less in the case when the substrate is bent in 

comparison to the flat substrate. Therefore, bending does impact the sensor sensitivity and can 

cause variation in the sensor data.  

 Average shift in Dirac 
voltage (mV) 
Flat Bent 

10 pM 530.612250 150.007000 
100 pM 709.168500 300.000200 
1 nM 816.320750 316.665200 
10 nM 995.505250 495.833800 
100 nM 1012.73350 995.833400 

N=4 
N=5 
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5.4. REAL-TIME SENSING 

Real-time sensing and its implementation are key to the GFET biosensor being widely used 

in practical applications. Real-time sensing is essential as it will monitor the biomarker 

continuously through the use of a wearable device. The device is first functionalized in the same 

way as above, using the droplet method, and then the aptamers are attached. In real-time sensing 

the gate-to-source voltage is fixed, and the drain current is simply monitored versus time. Due to 

the relationship between Dirac voltage and concentration, by monitoring the drain current, the 

concentration of target protein IL-6 present can be determined. During real-time sensing, the gate-

to-source voltage is fixed relative to the Dirac voltage. The Dirac voltage is determined after the 

attachment of PBASE and aptamers using the static method for observing the existing transfer 

characteristic curve. Once the Dirac voltage is determined, the gate-to-source voltage is chosen 

appropriately. Moreover, the gate-to-source voltage should be fixed approximately ±500 mV from 

the Dirac voltage as it provides sufficient differences in the individual equilibrium currents for 

each of the target concentrations. In real-time sensing, a microfluidic channel is integrated in order 

to introduce analyte and buffer solutions continuously.  

 Microfluidic channels not only allow for the continuous introduction of protein samples, 

but also provide a plethora of other advantages over other common sensing methods. The droplet-

based technique which is used for the static sensing mentioned throughout Section 5.3 is sufficient 

for initial measurements and proof of concept however, there are inconsistencies that can arise 

from this method which are effectively eliminated when implementing microfluidics. Evaporation 

is a common problem with the droplet-based technique. Throughout the static process each droplet 

incubates on the GFET surface for over 30 minutes. Such extensive time with the droplet sitting 

static on the device can lead to evaporation of the analyte and subsequent inconsistencies with how 
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much liquid is present in the liquid gate. By implementing a system like a microfluidic channel, 

the effects of evaporation are significantly lessened due to the complete enclosure of the liquid 

along with the slow yet constant flow rate [65].  

 

Figure 5.8: Microfluidic channel used in real-time sensing with dimensions of 600 𝜇M width and 
100𝜇M height. 

 
 Microfluidics allows for real-time sensing applications to be possible. This is because of 

the continuous fluid flow across the conduction channel. In this application, a microfluidic channel 

was fabricated using PDMS and the cast molding technique. The channel used in the application 

has a width of 600 𝜇M and a height of 100𝜇M. The preparation and method of fabrication of the 

microfluidic channel is directly outlined in the supplementary material from [23]. The microfluidic 

channel used in the real-time sensing applications is shown above in Figure 5.8. 

The process for real-time sensing of IL-6 is similar to the static measurement process. In 

the real-time sensing LabVIEW VI, there are far fewer settings including only: compliance current 

for the maximum drain-source current, the drain-to-source voltage, and the data interval relating 

to how often samples should be taken. The gate-source voltage is fixed for real-time sensing and 

the external power supply is used to provide this voltage to the device. Once set up, the real-time 

monitoring can only track one out of five devices at a time so the most reliable one is selected and 

will be used for continuous sensing. The difference is that instead of introducing the sample or 
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buffer in a droplet form, it is introduced in the microfluidic channel and flowed through using a 

PHD Ultra syringe pump by Harvard Apparatus. The current is then monitored versus time and 

trends begin to form. Ideal measurements for the real-time sensing would look like the results 

drawn below in Figure 5.9.  

 

Figure 5.9: Ideal IDS versus time graph with increasing protein concentration injections. 

 
The model response for real-time measurements would begin with a buffer solution that is 

introduced to the system. The buffer continues to flow at a constant rate until an equilibrium 

current is reached. Once the equilibrium is reached and identified, the first concentration of 

Interleukin-6 is introduced. When the first concentration is introduced, which is 10 picomolar in 

this case, the current will drop quite rapidly once the proteins begin binding with the aptamers. 

Eventually the current will reach a new equilibrium current that is consistent with the new state of 

the device. After the new equilibrium current is reached, the same process will be followed again 

as the next highest concentration of IL-6 will be introduced until the next equilibrium current is 

reached. As each new concentration is introduced and each new equilibrium current is identified, 

the trend should follow the same as the static measurements, meaning that with increasing 
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concentrations of IL-6 introduced, there should be a proportional drop in equilibrium current of 

the device over time. 

 

Figure 5.10: Real-time measurements. (A) IDS versus time with various IL-6 injections; (B) Change 
in IDS with respect to concentration. 

 
It is observed during real-time sensing that the trend seen during static sensing holds true 

as exemplified in Figure 5.10. When a concentration of Interleukin-6 is introduced to the device, 

the current drops in response as predicted in the ideal scenario. When the next concentration of IL-

6 is flowed, the same response is seen as more IL-6 proteins bind to the available aptamers on the 

graphene surface. Consistent with the results from static sensing, with the gate-to-source voltage 

fixed on the right side of the Dirac voltage, the current drops with each continuous injection of IL-

6 as outlined in Figure 5.10(A). Figure 5.10(B) displays the average change in drain-to-source 

current during sensing for three devices. Figure 5.10(B) is generated by taking the difference in 

the buffer solution equilibrium current and the equilibrium current for each of the specified 

concentrations and plotting each against the concentration. The results are again consistent with 

the data presented in the static sensing section as with increasing concentration there is a 

proportional increase in the change in drain-to-source current that is recorded. 
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5.5. IMPLEMENTATION OF INTEGRATED CURRENT MEASUREMENT 

PLATFORM 

 In order for the biosensor to be a wearable device, the bulky source measurement unit, 

power supply, micromanipulator, and computer with the LabVIEW program must be removed 

from the design and replaced with a much smaller and portable device containing a power supply 

and the electrical measurement system. The miniature device was designed and implemented by 

Professor Md. Shaad Mahmud’s research group at the University of New Hampshire, and it is able 

to measure the drain-to-source current in a small and compact design as shown in Figure 5.11.  

 

Figure 5.11: The k-GFET sensor shown with the integrated current measurement platform 
developed by Prof. Md. Shaad Mahmud’s group. 

 
One of the major problems when measuring a low voltage current in the micro or nano ampere 

range is burden voltage. Burden voltage is the voltage drop across a shunt resistor as current passes 

through. This can result in significant loss of resolution and accuracy. Prof. Mahmud’s group 
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developed a custom made analog front end (AFE) using ultra-low offset (<50µV), low noise 

precision amplifier (< -90dBV). The AFE is operated with zero bias voltage, to continually correct 

for the DC offset voltage of the main amplifier. Afterward, the signal is fed into a 24-bit analog to 

digital converter with digital filtering. The output data rate is programmable, with the slowest 

speed (4.17 Hz) giving the lowest noise of 40 nV, which is negligible compared to other sources 

of noise. The device operates by simply recording the drain-to-source current overtime and taking 

samples every 500 msec. This portable measuring system records the data and currently sends it 

to a laptop computer via a USB cable. The first implementation of the wearable device was created 

on a rigid PCB substrate. The initial measurements are done to ensure integration is possible and 

that the device works as anticipated when paired with the GFET biosensor.  

When implementing an integrated current measurement platform to the k-GFET device, it 

is vital that the data measured in this integrated platform closely matches that obtained with the 

Keysight source measure unit. In order to validate that the on-device measurement system is 

accurate, measurements of a k-GFET device were taken using the traditional method of the 

Keysight source measure unit and LabVIEW program at the same time as using the new integrated 

device. Because the devices are both measuring the drain-to-source current, the devices are simply 

connected in series at the source terminal. The two were then compared in order to ensure that they 

matched closely enough to conclude that it was working properly. Characterizations were obtained 

using an external voltage supply to the device while both the integrated platform and external 

measurement system recorded the drain-to-source current while the gate-to-source voltage was 

swept. Three FETs were characterized for three individual k-GFET devices giving a set of nine 

total measurements. As can be seen below in Figure 5.12, the current measured by the on-device 
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platform matches very closely to the measurements obtained with the Keysight instrument in 

connection with the LabVIEW program.  

 
Figure 5.12: Comparison of integrated microcontroller measurements versus external current 
meter. (A) IDS versus VGS transfer characteristic curve; (B) Dirac voltage location with N = 3 reps 
per device. 

 
Figure 5.12(A) displays one of the characterizations shown with both the integrated 

microcontroller and external current meter, that best displays the common differences between the 

two measuring systems. As shown in Figure 5.12(B), the Dirac voltage is very similar in when 

comparing all three devices. The integrated microcontroller, in all three cases, measured a Dirac 

voltage about 100 mV higher than the external current meter. Similar to Figure 5.12(A), Figure 

5.12(B) also displays a small rightward shift in the case when the integrated microcontroller is 

used. The integrated controller also has a small offset in terms of the drain-to-source current that 

was measured. Finally, the integrated microcontroller does have a slightly higher noise and 

variation in the measurement compared to the conventional setup. 
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5.6. CHARACTERIZATION TECHNIQUES AND MEASUREMENT SETUP 

Measurements for both static and real-time measurements were collected using a 

Micromanipulator (450 PM-B) probing station in combination with a Keysight precision 

source/measure unit (B2902A) and National Instruments LabVIEW FET measurement programs. 

LabView is a graphical programming language created by National instruments which allows for 

the creation of VIs or virtual instruments that can control a variety of different lab equipment. For 

this research two independent VIs were used; one for static measurements which swept the gate-

to-source voltage and records the corresponding drain currents and another for real-time sensing 

which records the drain current over time. In the static VI, there are multiple different settings and 

choices to make before running the VI. The drain voltage must be set, the maximum and minimum 

sweeping voltage, compliance currents as well as the number of steps that the voltage will be swept 

in. For static measurements, the gate-to-source voltage was swept to a range dependent on the 

location of the Dirac voltage. In the majority of cases, the gate-to-source voltage was swept from 

-2 V to 3.5 V. The liquid gate in all scenarios consists of a liquid droplet of 180 𝜇L and to ensure 

consistency an eco-flex rubber well was mounted to each device to contain the droplet. The leakage 

current at the gate electrode was monitored during all static sensing and remained less than 6 𝜇A, 

3	𝜇A, and 0.9 𝜇A for the bare graphene measurements, buffer liquid gate sensing, and analyte 

liquid gate sensing respectively. The leakage is considered negligible as the magnitude of the 

drain-to-source current in these applications were more than 50 times higher than each of the 

respective leakage currents. 

The real-time measurements also utilize a GW Instek laboratory DC power supply, a 600 

µm by 100µM polydimethylsiloxane (PDMS) microfluidic channel, and a PHD Ultra syringe 

pump by Harvard Apparatus. For real-time measurements the gate-to-source voltage is set 
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dependent on the location of the Dirac voltage. It is set to approximately 1.3 V in this application 

along with the drain-to-source voltage set to 100 mV. The flow rate is set to 20 𝜇L and each 

concentration is exposed to the graphene nano sensor for 45 minutes. 
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CHAPTER 6: CONCLUSION

 In this work, the feasibility of a GFET-based wearable and flexible biosensor is 

investigated. The printable GFET device presented in this work is novel and opens the doors for 

low cost and easy fabrication of wearable biosensors. Using the Voltera V-One PCB printer for 

fabrication of a biosensor has been demonstrated in this work for the first time. This work has 

displayed the successful detection of Interleukin-6 using the printed k-GFET platform in both static 

and real-time measurements. The device is proven to be selective to the IL-6 target protein and 

shows a high tolerance to mechanical stress on the substrate. Finally, the k-GFET platform can 

easily be integrated with other miniaturized electronic components for current measurement. By 

incorporating the GFET-based biosensor with the integrated current measurement platform, the 

proposed device technology is just one step closer to being a truly wearable, stand-alone GFET-

based biosensor. 

FUTURE WORK 

 Although the basic implementation and feasibility have been demonstrated in this work, 

further research and development are needed before this technology can be used in real world 

applications. The integrated platform for measuring the current through the device is currently still 

being fabricated on a rigid PCB substrate. In the future, the integrated platform will be created on 

the same bendable Kapton substrate that the GFET biosensor is fabricated on. Furthermore, the 

integrated platform will conveniently send the measured data to the user’s smartphone application 

via wireless Bluetooth connection for easy monitoring. This will allow the data to be available at 

the touch of a button, and therefore the measurements and the health information will be accessible 



 

 67 

to the user at any time. Future work will also include creating a portable way to supply two 

individual voltages to the GFET platform, namely the drain-to-source voltage and the gate-to-

source voltage. By fabricating the GFET, the power supply, and the current measurement system 

all on the same substrate, each component of the platform could be seamlessly integrated. With a 

unit that can supply voltages and measure currents worked into the device, the source/measure 

unit, the power supply, the desktop computer with LabVIEW program, and the Micromanipulator 

can be removed from the design and thus a compact and truly wearable system can be realized. 

 Possible work in the future will be extending this work into the field of stretchable 

electronics as the Dycotec ink for printing is bendable and stretchable. With a stretchable platform, 

the device could be fabricated on a stretchable substrate such as PDMS. Thus far, there has been 

little development on GFETs directly fabricated onto a PDMS substrate and therefore such work 

could lead to a new and innovative device platform. 

 Static measurements are vital to the beginning stages of research as it provides a proof of 

concept and the building blocks for the remainder of the work to be done including real-time 

sensing. Therefore, the static measurement LabVIEW program needs to be modified moving 

forward. The program, regardless of sweeping range, begins at 0 volts, sweeps to the maximum 

voltage in the half of the number of steps specified, then sweeps back to zero again in the other 

half of the number of steps, then from 0 to the minimum voltage and then back again. Because the 

program runs this way, it results in both a forward sweep and a backward sweep. The forward 

sweep is defined from the minimum voltage swept to the maximum voltage and the backward 

sweep is defined as the maximum voltage swept to the minimum voltage. For analysis however, 

we choose the backward sweep as in the way the program is currently defined it is continuous, 

where the forward sweep is broken into two parts as can be seen in Figure 6.1 below. 
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Figure 6.1: Full sweep from LabVIEW showing full backward sweep and two-part forward sweep. 

 
In addition to the issue of a broken forward sweep, the program also does not evenly divide the 

number of steps across the entire sweeping voltage range but instead allots half of the steps of each 

sweep for above zero volts and half of the steps in each sweep for below zero volts. This can cause 

inconsistency as the step size can vary on either side of the sweep if the maximum and minimum 

sweeping values do not have the same absolute value. 

 Future work should also include a system in which truly identical GFET devices can be 

printed each time using the Voltera. When the devices are made, there is a large amount of human 

interaction and human dependency. During the Voltera printing of the device, while the pattern is 

identical each time, there is very little control over how thick or thin the line traces truly are. While 

KiCAD does allow for the line width to be selected, once Voltera begins to print it, there is a level 
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of uncertainty as the ink flow rate, printing speed, and printing height are all able to be controlled 

by the user and could result in differences. After printing of the device, the graphene is transferred 

onto the substrate. This is another place where there can be a small level of inconsistency device 

to device. The graphene comes in 1 cm-by-1 cm square films. This film is then cut into four 

approximately even sub-squares and one square is used per device. This can cause the graphene 

shapes to vary slightly. When the graphene is transferred onto the device itself it is also impossible 

to get the graphene to fall in the same place on the electrodes each time. With all these factors 

considered, currently there is still a high yield rate for the devices at approximately 75% of devices 

working with feasible Dirac voltages. With such promising results now, further advancements in 

reliability and wearability could make the proposed printed and fabricated GFET-based biosensors 

a technology of the future in the field of wearable health diagnostic platforms. 
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APPENDIX
 

LabVIEW code: 

Every LabVIEW code consists of both a front panel and a block diagram. 

Static sensing file: front panel 
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Static sensing file: block diagram 
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Real-time sensing file: front panel 
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Real-time sensing file: block diagram 
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Voltera printing procedure: 

 Voltera outlines the printing procedure and walks the user simply through each of the steps 

to print a design. All steps are outlined below and are as follows for this application: 

1. Open Voltera software which brings the user to the front page. Select print. 

2. Voltera allows for two different printing processes 

 Simple: Printing design on a blank substrate 

 Aligned: Priting design on a substrate with existing features 

For this application, simple printing is used. 

3. Choose the ink which is being used for the application. Currently Voltera only allows selection 

of Voltera brand inks, however this selection is only used to automatically select the temperature 

and time of curing at the end of the process. Therefore, other commercially available inks can be 

used and manually cured at the end using the heat function of the Voltera. 

4. Load in the file that is to be printed (from KiCAD). 

5. Quality check ensures success during the printing process. This includes making sure that the 

calibration pad does not have dried ink on it or that the nozzle tip is bent or broken. 

6. The substrate is secured into place on the Voltera stage using the provided clamps. In this case, 

the Kapton substrate is too thin to be securly ancored to the stage using the clamps so a small 

amount of Kapton tape is used. 

7. Mount the probe tip to the Voltera. The Voltera comes with two ‘pens’ one of which is for the 

conductive ink and the other which is the probe (green top). 

8. Position the circuit to align properly with the secured substrate. The user estimates where the 

substrate is on the Voltera stage from the software. From there after selecting the ‘outline’ button, 

the Voltera probe will hover over the Voltera stage and outline the area where circuit design will 



 

 90 

print. If the estimate of the substrate location is accurate then the user proceeds to the next step. If 

not, the user simply adjusts the positioning on the Voltera software until the probe properly outlines 

the substrate. 

9. After proper positioning, the probe measures the substrate height. This is a critical step as the 

Voltera print height is not set from the stage height, but rather is set to be relative from the surface 

of the substrate to be printed on.  

10. Priming the conductor consists of the user turning the gear on the top of the conductor until 

ink begins to come out the nozzle. After the ink comes out, the gear is turned back about a ¼ of a 

turn and then the nozzle is whipped clean and placed onto the Voltera. 

11. Calibration of the conductor ensures proper printing during the next step. During calibration, 

a standard 4 serpentine and 4 straight line pattern is printed. The user watches as this pattern is 

printed to ensure that the ink is coming out at a proper rate and that the print height is appropriate. 

If the calibration pattern is not printed properly or to the users liking, it can simply be wiped away 

and repeated until it is acceptable. This step is encouraged to be repeated as many times as 

necessary to ensure that the final design only needs to be printed once, thus saving time and 

materials. 

12. Print the pattern using the conductive ink. During this step, the entire design can be printed, or 

just certain sections making touchups extremely easy. 

13. Lastly, heating is done in order to cure the ink. If the proper ink is selected during step three, 

the heating function at the end of the printing process is acceptable to use. If this is not the case, 

the user can close the printing function and select the heating function from the front page. The 

heat function has a manual mode which allows for the user to select both the temperature and 

duration of the ink curing 
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