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ABSTRACT 

 

GAS PHASE ION/MOLECULE REACTIONS BETWEEN 

MONOCATIONIC METAL-BIPYRIDYL (METAL = CU, AG, AU) 

COMPLEXES AND SMALL GAS MOLECULES USING ION TRAP 

MASS SPECTROMETER 

By 

Shan Chen 

 

Ion/molecule reactions happens in the very diluted low-pressure environment provided by mass 

spectrometer. Studying ion/molecule reactions in gas phase may reveal novel chemistries of the 

pertinent reactants and products. The convenience of isolating target reactant ions with multistage 

MS in the gas phase eliminates the involvement of solvent or counterions which could add 

unnecessary complexity for interpreting novel chemistry. A lot of research has been applied to the 

metal-bipyridine system in the solution phase, but not too much research reported in the gas phase. 

In this work, the study of metal-bipyridine system has been extended to the gas phase with aid of 

Mass Spectrometer. Monocationic metal-bipyridyl [M-bpy]+ complexes (Metal = Cu, Ag, Au) 

were produced in the gas phase with electrospray coupled with MS/MS, reactions with water gas 

and nitrogen gas were performed inside the Linear Quadrupole Ion Trap, and the full reaction 

process was detected by Mass Spectrometer synchronously. Product peaks for water adduct 

([H2OM-bpy]+) and nitrogen adduct ([N2M-bpy]+) are observed on the mass spectrum. Kinetic 

study shows the gas phase reaction follows pseudo-first order with respect to [M-bpy]+ for Cu and 

Au. The attributes of products were further investigated with Density Functional Theory (DFT) at 



 

XI 
 

PBE0/cc-pVTZ/cc-pVTZ-PP level, including the geometry optimization and IR prediction. 

Thermo stability was calculated for the dissociation process. For a given gas, gold complex has 

the highest binding ability followed by copper and silver complexes. For the dissociation process 

from the respective bound complexes, they are all indicated as endothermic processes under 

vacuum and at room temperature. The metal complexes are also found to act as mild bond 

activation reagents for small gas molecules, with gold complex being the best candidate for O-H 

activation of water and copper complex being the best for nitrogen bond activation of N2. 

Compared with the bond length in free gases, the bond lengths of O-H and N≡N get elongated in 

the complexes with the optimized structures. In addition, the IR spectra predict a major red-shift 

in correspond to the stretch frequency of O-H and N≡N in the complexes. Ligands effects are also 

predicted with calculations, and the results show that phenanthroline perform similar ability 

binding with water and nitrogen gas molecules as bipyridine.
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CHAPTER I: INTRODUCTION 

1.1 Introduction of ion/molecule reactions in gas phase 

The first ion/molecule reaction with Mass Spectrometry was proposed in 1916 by Dempster1 who 

also designed the technique electron ionization (EI). He identified the ions presented the mass to 

charge ratio 3 is the product for the reactions between H2
+ and H2. However, at the beginning of 

20th century, mass spectrometrists were mostly focusing on understanding the complexity of the 

mass spectra so that they largely overlooked the ion/molecule reaction chemistry. It was not until 

1966 that Munson and Field2 discovered that ion/molecule reaction can replace the electron 

ionization to create a softer ionization method, which is chemical ionization. Chemical ionization 

often involved proton transfer from charged solvent molecules to the analyte. Thereafter, explosive 

number of studies on ion/molecule reactions are reported, including functional group identification 

or isomer identification. With the development of Mass Spectrometry, the mass spectrometer has 

become an instrumental tool that widely used to study organic chemistry other than analytical 

chemistry. Ion/molecule reactions also contribute to unravel the reaction mechanisms of organic 

reactions, helping to bridge the gap between condense-phase organic chemistry and gas-phase ion 

chemistry. A lot of classical organic reactions have been studied with MS methods. For example, 

the nucleophilic substitution reaction,3-5 [4+2] Diels-Alder cycloaddition reaction,6-7 Michael 

addition8 and so on. With the broad use of electrospray, mass spectrometry becomes a versatile 

tool to study the inorganic and organometallic chemistry,9-11 because electrospray possesses the 

advantages that the metal complex can be easily transferred from the solution phase to the gas 

phase without altering the oxidation state.12-13 
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Compared with reactions in the solution phase, gas phase supplies several unique advantages. 

Firstly, reactions in the gas phase are efficient, fast, and highly sensitive. They generally take only 

femtoseconds, and MS can detect the products at trace level.14-15 For studying the mechanism of 

organic reactions,16-17 gas phase can provide the detailed information about single step and allows 

the study of transient intermediate which has never been accessed through techniques in the 

solution phase. Moreover, the reaction in the gas phase may provide intrinsic chemical or physical 

properties of the ions which can be hidden in the solution phase because of the solvent effect or 

ion-pairing effect.18-19 In some cases, the performance of ions in gas phase is consistent with the 

performance in solution phase.20 However, there is also observation that solvent molecule has 

significant effect on the performance of ions, affecting the reactivity and energy partitioning. For 

instance, Mackay21 and Heril22 groups worked on the solvent effect of nucleophilic substitution of 

CH3Cl and CH3Br, and they found that the presence of water solvent molecules suppresses the 

reaction rate coefficient. And they also found that the most abundant product in gas phase was not 

the thermo favored solvated product ion like in the solution phase, but the free solvated ion. 

Schettino23 and Yu24 group also found that the water solvent molecule can lower the reactivity. 

With Mass spectrometry, the ability to isolate the specific ions provides flexibility to select the 

ions with or without solvent molecules. 

1.2 Introduction of Linear Quadrupole Ion Trap 

Ion trap is a setup to confine ions in a small space by elaborately applying the magnetic field and 

electric field to the electric charges. Due to the capacity to trap ions provided by the ion trap, W. 

Paul and H. Steinwedel25 firstly introduced this ion storage device into the mass spectrometer by 

coupling it to the ionization techniques (e.g., electrospray ionization). They were also the first to 

unravel a method to trap a range of masses and to detect the ions in mass spectrometry. The mass 
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analysis with ion trap contributes to the first stage of the development of ion trap mass 

spectrometry. Followed by that, during 1960s to 1980s, several peer leaders in Mass Spectrometry 

including John F. J. Todd, N.R. Whetten, P.H. Dawson etc.26 created a new scan method that 

through operating the field of quadrupoles, only one single mass can be stored in the trap at a time. 

The mass-selective storage, or ion isolation is the second age of ion trap mass spectrometry 

development. George Stafford and many other researchers such as John E. P. Syka and so on 

promoted the development of the third stage – mass-selective ejection in late 1980s. They firstly 

disclose a new scan mode of exciting ions and ejecting to the detector, which is a main scan mode 

being used till today27. The development of ion trap mass spectrometer makes it available to more 

applications including the structure elucidation, multistage MS analysis, providing high sensitivity 

and resolution to the sample analysis. In addition, the capacity to store ions and high vacuum 

chamber makes the ion trap mass spectrometer a good device for chemists to study the reactions 

in the gas phase. 

Figure 1.128 shows the configuration of an ion trap mass spectrometer (Linear Trap Quadrupole 

Mass Spectrometer, or LTQ-MS) with different pressures for each chamber and operational 

voltages for each part of the device. Analyte ionized in the ionization source with different 

techniques (Electrospray ionization for example) is pumped into the mass spectrometer, the solvent 

gets vaporized when passing the heated capillary, the left analyte ions are energized when going 

through the accelerating electric field and finally arrive the ion trap, being trapped, isolated, or 

ejected to the detector eventually29.  
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Figure 1.1 Configuration of Linear Trap Quadrupole Mass Spectrometer (LTQ-MS) with 

operational voltages and pressures. Reprinted with permission from ref 28, Copyright 2002, 

American Chemical Society. 

 

 

Figure 1.2 Composition of 3D ion trap (left) Reproduced with permission from ref 30. Copyright 

2000, Rapid Communication in Mass Spectrometry. Composition of linear quadrupole ion trap 

(right). Adapted from ref 28. Copyright 2002, American Chemical Society.  
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The first generation of ion trap used in Mass Spectrometry was developed by W. Paul, which is a 

3D ion trap (also called Paul Ion Trap) containing two end caps and one ring electrode (Figure 

1.2).30 In 2002, Jae C. Schwartz and Michael W. Senko28 in Thermo developed a two-dimensional 

quadrupole ion trap and demonstrated that it has a better ion capacity, higher sensitivity, and higher 

resolution than the 3D ion trap. The main configuration of the 2D linear ion trap is made of two 

pairs of hyperbolic rods with each rod cut into three sections with different lengths (12 mm, 37 

mm and 12 mm from the front section to back section). Each rod is applied with both a direct 

current (DC) voltage as well as an alternating current (AC) voltage with the same polarity on each 

pair of opposite rods and opposite polarity on each pair of nearby rods (Figure 1.2, right). The ion 

motion inside an ion trap was well studied and a stability diagram was created by Mathieu (Figure 

1.3).27 The diagram shows the stable and unstable regions for ions using a new set of coordinates 

q and a, which are defined as Equation 1-1 and Equation 1-2:  

𝑞 =
4𝑒𝑉

𝑚𝑟0
2𝜔2                                                                                                               Equation 1-1 

𝑎 =
8𝑒𝑈

𝑚𝑟0
2𝜔2                                                                                                               Equation 1-2 

where e is the charge on an ion, V is the zero-to-peak amplitude of the alternating current voltage, 

m is the mass of ions, r0 is the radius of the chamber, U is the amplitude of the direct current 

voltage, and ω is the angular frequency of applied radio frequency (RF) voltage. 

Based on the Mathieu Equation and stability diagram, the ions can stay in different status inside 

the ion trap by adjusting the AC/DC/RF applied on the electrodes.28 For example, the ions can stay 

in a stable region thus being trapped in the ion trap in axial direction by applying DC voltages to 

the electrodes and trapped in radial direction by changing the frequency of AC voltages. The ions 
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can be excited and fragmented by changing the AC voltages on the electrodes. And ions can be 

isolated by keeping other ions in the unstable region and leaving targeted ions in the stable region. 

 

 

Figure 1.3 Mathieu stable diagram for the ions inside mass spectrometer. Reproduced with 

permission from ref 27. Copyright 2002, American Chemical Society. 

 

1.3 Synthesis and application of metal-bipyridine complexes (metal = Cu, Ag, Au) 

The organometallic chemistry for coinage metal (Cu, Ag, Au) bipyridine [M(bpy)] in the solution 

phase have been widely studied including the study on theory and study on applications. In around 

20th century, researchers mainly work on the fundamental study of complexes, for example, the 
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interaction of ligands with metal compounds,31 the crystal morphology,31-33 the stereometry, and 

geometry of the complexes with different oxidation states (Figure 1.4).33 In more recent time, 

research more focus on the application of complexes including the catalysis and photochemistry. 

J. M. Mayer group34 used Cu(II)(bpy) as catalyst for reduction of water, and Orellana group35 

discovered Ag(II)(bpy)2 can be utilized to functionalize the C-H bond directly. Besides, metal-

bipyridine complex also have large contribution in the field of sensor15 or biochemistry36. However, 

the study of [M(bpy)] in the gas phase are not as much as in the solution phase, mainly focusing 

on the theoretical computation37 or physical study38. 

 

Figure 1.4 [Ag(bpy)2]
2+ cation in solid state [Ag(bpy)2](ClO4)2 and computation of representative 

bond lengths. Reproduced with permission from ref 33. Copyright 2012, Polyhedron. 

 

In the solution phase, a lot of methods31,39-40 have been developed to synthesize the complex, the 

most common method is mixing the metal salt with ligands, after stirring, evaporation of solvent, 

the target complex can be roughly synthesized. The products need more operations like 

recrystallization for get purified. Reactions in solution phase usually take long time (at least 30 

min), and large amount of ingredients are necessary. Evaporation of solvent creates a waste of 

solvent and increases the expense, and recrystallization makes the process complicated to get pure 
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products. However, R. G. Cooks group41 discovered that metal could get oxidized gradually with 

electrospray under high voltage, by adding the ligands into the solution, the complex will form 

during the electrospray process. To make different kinds of complexes, metal can be changed 

through changing the electrode, and ligand can be changed by changing the solutions. Most kinds 

of complexes can be synthesized through electrospray38. The formation of complex only takes a 

few minutes, which greatly saves the time. Besides, the concentration of ligands is under part-per-

million (ppm) level in most circumstances, and the volume is under 100 μL, which saves a lot of 

chemicals and solvents. 

In this research, the monocationic coinage metal complexes in gas phase are formed through 

electrospray, tandem MS is coupled to remove extra ligands. Bipyridine is selected as the ligand 

due to the relative simplicity and the ability to interact with many different metals. The single 

charged metal-bipyridine complex [M(bpy)]+ (M= Cu, Ag, Au) will further react with small gas 

molecules (e.g. water gas, nitrogen gas) in the ion trap  mass spectrometer. Kinetics of the reaction 

is studied here. Density Functional Theory (DFT) is applied to predict the geometry of complexes 

and the Thermodynamics of reactions. IR spectra of products and effects of other ligands are also 

predicted with calculation. 
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CHAPTER II: EXPERIMENTAL METHODS 

2.1 Materials and instruments 

2.1.1 Chemicals and materials 

All metal electrodes in this research are commercially available, Copper electrode (diameter is 0.3 

mm) is from an unknown vender. Silver electrode (99.99+%, 0.25 mm diameter) is bought from 

Sigma Aldrich (MO, USA). Gold electrode (Premion, 99.998%, 0.1 mm diameter) is purchased 

from Alfa Aesar (MA, USA). Acetonitrile (ACN) is Certified ACS grade purchased from Fisher 

Chemical (NJ, USA), 2,2’-Dipyridyl (99+%) is purchased from ACROS ORGANICS (NJ, USA). 

Borosilicate glass capillaries without filament, (B 150-86-10, o.d., 1.5 mm; i.d., 0.86 mm; 10 cm 

length) is purchased from Sutter Instrument (CA, USA). 

2.1.2 Instruments 

Micropipette puller (model P-1000, Sutter Instrument, CA, USA) is used to pull capillary pipette. 

To get a 3 µm capillary tip, parameters used for puller are listed: Heat is 300 unit, velocity is 17 

unit, pressure is 590 unit, and 50 ms cooling time between each trial. Jaw temperature is 21°C.  

LTQ-XL Linear trap mass spectrometer is purchased from Thermo Scientific (San Jose, CA, USA). 

The inlet temperature is 125 °C, inlet capillary voltage is 41 V, Len 0 and Len 1 voltages are -5 V, 

-38 V, respectively. Front lens voltage is -6.25 V, Gate Len voltage is -76 V. Multipole RF 

Amplitude voltage is 400 V from peak to peak.  

2.2 Synthesis of [M(bpy)]+ complex 

Figure 2.1 shows the setup for synthesizing the complexes. Under ambient pressure, the 

commercially available metal electrode is inserted into a pulled capillary (tip diameter is about 3 

μm) filled with 10 μL of bipyridine (1 ppm dissolved in acetonitrile). A high voltage about 1.5 kV 
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is applied to the electrode. The metals gradually get oxidized when high voltage turns on, complex 

ions are formed in the solution phase and gradually getting nebulized under the electrical field. An 

aerosol containing complex ions then get introduced to the mass spectrometer through the inlet. 

The ions are accelerated and guided to the ion trap with the octupole ion guide. The process is fully 

monitored with mass spectrometry and several different metal complexes formed during the 

electrochemical process are observed under full scan. To get the target complex [M(bpy)]+, the 

precursor ions are selected, with the help of tandem MS, the extra ligands will be removed through 

collision with Helium gas, the process is called collision introduced dissociation (CID). LTQ tune 

software is used to control the CID conditions, the isolation window is set as 1.5 Th, and the 

collision energy is 15% arbitrary unit, q value is 0.30. 

 

Figure 2.1 Experimental setup to produced complexes in the gas phase with operational pressures. 

Key components are labeled. The labeled components are listed: A. high voltage supplier, B. inlet, 

C. octupole ion guides, D. linear ion trap, E. detector, He. Helium gas cylinder. Voltage is 2.0 kV, 

bipyridine solution is 1 ppm, 10 µL. Auto Gain Control (AGC) is 3E4 for full MS. 

 

2.3 Reaction of [M(bpy)]+ with N2 and H2O in Mass Spectrometer 

The [M(bpy)]+ ions are formed through tandem MS, then they are isolated with a MS3 without any 

activation energy applied, isolation window is 1.5 Th, q value is 0.30. Reaction time is manually 

controlled by adjusting the “activation time” on the LTQ tune panel. For different metal complexes, 

different reaction time are applied based on the results of pre-experiments. For copper complex, 
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reaction time ranges from 10 to 300 ms, for silver complexes, the time is from 30 to 1500 ms, and 

for gold complex, the reaction time is 10 to 150 ms. No N2 or H2O gas needs further introduced to 

the mass spectrometer because there are already some amounts of gases inside mass spectrometer 

with a pressure at ca. 1.0 * 10-5 Torr. Temperature for the reaction is room temperature. Mass 

spectrum starts to collect under different reaction times when the intensity of [M(bpy)]+ stabilizes. 

For each spectrum, it is presented with an average of 50 times scan. Thermo Xcalibur Qual 

Browser (4.0.27.10) is used to collect, process data, and read information needed. 

Normalized intensity42 is calculated as the absolute intensity of individual peak divided by the total 

intensity of peaks, where the total intensity of peaks means the summary of intensity of bare metal 

complex [M(bpy)]+, intensity of water addicted peak [H2OM(bpy)]+ and the intensity of nitrogen 

addicted peak [N2M(bpy)]+. To study the reaction order, linear regression for natural logarithm of 

the normalized intensity of [M(bpy)]+ versus reaction time is plotted for the first order, and linear 

regression using the reciprocal of normalized intensity of [M(bpy)]+ vs. reaction time is plotted for 

second order, respectively.43 

2.4 Computational methods 

Density Functional Theory (DFT) calculations were performed to study the ion/molecule reaction. 

All calculations are calculated with PBE0 functions,45 the cc-pVTZ basis set is applied to the atoms 

C, N, O, H and cc-pVTZ-PP with effective core potential (ECP) is applied to the heavy metals Au, 

Ag and Cu.44 And the calculations are performed with Gaussian 09W package of programs. 

GaussView 5.0 software is used to create the model and visualize the results.  

Geometry optimization shows the prediction of complex structures and how they interact with gas 

molecules. Thermostability for all metal complexes is predicted with following aspects: 
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Bond dissociation energy (BDE), which is calculated as:  

BDE = E([M(bpy)]+) + E(L) – E([LM(bpy)]+)                                                         Equation 2-1 

Enthalpy change for the dissociation reaction, which is calculated as: 

ΔH = H([M(bpy)]+) + H(L) – H([LM(bpy)]+)                                                          Equation 2-2 

Free Gibbs Energy for the dissociation process, which is calculated as:  

ΔG = G([M(bpy)]+) + G(L) – G([LM(bpy)]+)                                                          Equation 2-3 

where L represents the small molecules (N2 or H2O), which can be recognized as a new ligand to 

the metal complexes. E is the “Sum of electronic and thermal energies”, H is the “Sum of 

electronic and thermal enthalpies”, G is the “Sum of electronic and thermal free energies”, that are 

listed in the output file of Gaussian. 

To better explain the interaction between metal complex and gas molecules, orbitals of complexes 

showed, the orbital are visualized with GaussView with isovalue 0.2. IR is also predicted to study 

the bonds activation within water and nitrogen. For prediction of the effect of Phenanthroline 

ligand, all calculations follow the same functions and basis sets as the Bipyridine ligand, and all 

energy are calculated using the equations stated above. 
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CHAPTER III: RESULTS AND DISCUSSIONS 

3.1 Synthesis of [M(bpy)]+ complexes 

3.1.1 Synthesis of [Cu(bpy)]+ 

The synthesis process is fully monitored by Mass Spectrometer. The Extracted Ion Current (EIC) 

shows the relative strength of the signals for each peak with time in Figure 3.1 (a) – (c). And the 

time starts to count when the high voltage turns on. The signal of [Cu(bpy)2]
+ appears firstly and 

reaches a peak at ca. 3.5 min and decreases subsequently and disappears at ca. 10 min. The signal 

of [ACNCu(bpy)]+ appears at almost the same as [Cu(bpy)2]
+, but the intensity increases slower 

than [Cu(bpy)2]
+, the signal keeps at a relative stable level for about 5 min and decreases in the 

end. The signal for [Cu(ACN)2]
+ also comes out nearly the same time, but a little slower than the 

other two. The intensity keeps stable increase during the whole process and becomes the dominant 

peak at last. Figure 3.1 (e) – (f) show several mass spectra presented at specific time points (3.0 

min, 6.0 min, 10.0 min) which also shows the tendency of the change of each peak. As time goes, 

the intensity of [Cu(bpy)2]
+ (m/z 375/377) decreases, followed by [ACNCu(bpy)]+ (m/z 260/262). 

However, the intensity of [Cu(ACN)2]
+ (m/z 145/147) keeps increasing all the way. The isotopic 

peaks are caused by the isotopes of copper (63Cu and 65Cu), the ratio of the isotopic peaks is 

consistent to the ratio of copper which is 2:1, which helps identify that the peaks belong to the 

copper complexes. The mechanism of this process can be rationalized. Cu is gradually oxidized to 

Cu+ under high voltage. And Cu+ are primarily build connection with two bipyridines to form 

[Cu(bpy)2]
+ when there is high concentration of bipyridine around. This may because bipyridine 

is more basic than acetonitrile and bipyridine is a bidentate ligand while acetonitrile is a single 

dentate ligand. After the bipyridine is largely consumed, there is not enough bipyridine to support  
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Figure 3.1 Step 1 of synthesis process of [Cu(bpy)]+, (a) – (c) are Extracted Ion Chromatogram for 

[Cu(bpy)2]
+, [ACNCu(bpy)]+ and [Cu(ACN)2]

+, respectively. (e)-(f) are representative mass 

spectra at 3.0 min, 6.0 min and 10.0 min, respectively. 
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the formation of [Cu(bpy)2]
+, resulting in a decrease signal of [Cu(bpy)2]

+. Instead, an alternative 

[ACNCu(bpy)]+ is preferred because it is more stable than [Cu(bpy)2]
+, so copper is preferring to 

bind with one bipyridine plus an acetonitrile. After most of the bipyridine get consumed, Cu+ can 

only bind with acetonitrile, that is why there is only high intensity of [Cu(ACN)2]
+ in the end. 

 

Figure 3.2 Step 2 of synthesis of [Cu(bpy)]+. Tandem MS spectrum of [(ACN)Cu(bpy)]+. Isolation 

window is 1.5 Th, activation energy is 15%.  

 

To get the [Cu(bpy)]+, either [Cu(bpy)2]
+ or [(ACN)Cu(bpy)]+ can be selected as the precursor ion. 

With the help of tandem MS, an extra bipyridine or ACN ligand will be removed through the 

collision with He gas. However, EIC figures show that [(ACN)Cu(bpy)]+ can keep at a stable level 

with high intensity for a longer time. In order to decrease the influence caused by the fluctuation 

of ion source, [Cu(bpy)]+ formed from [(ACN)Cu(bpy)]+ are used for the further study. 
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3.1.2 Synthesis of [Ag(bpy)]+ 

Figure 3.3 Step 1 of synthesis process of [Ag(bpy)]+, (a) – (c) are Extracted Ion Chromatogram for 

[Ag(bpy)2]
+, [ACNAg(bpy)]+ and [Ag(ACN)2]

+, respectively. (e)-(f) are representative mass 

spectra at 4.2 min, 5.0 min and 12.0 min, respectively. Voltage is 2.0 kV, bipyridine solution is 1 

ppm, 10 µL. 
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The process to make [Ag(bpy)]+ is quite similar to [Cu(bpy)]+. The EIC curves (Figure 3.2 (a) – 

(c)) show that the signal of [Ag(bpy)2]
+ appears at ca. 4 min and decreases continuously after it 

quickly reaches a peak. The signal of [ACNAg(bpy)]+ appears nearly the same time and keeps at 

a relative stable level from 4.5 min to 12 min. The signal of [Ag(ACN)2]
+ increases during the 

whole process and becomes the main peak finally. The mass spectra at 4.2 min, 5.0 min and 16.0 

min are showed on Figure 3.2 (e) – (f), the 1:1 isotopic peak caused by the 1:1 ratio of 107Ag and 

109Ag helps verify the peaks are silver complexes. At the beginning, [Ag(bpy)2]
+ (m/z 419/421) is 

the highest peak, and then the intensity for [ACNAg(bpy)]+ (m/z 304/306) and [Ag(ACN)2]+ (m/z 

189/191) increases and [Ag(ACN)2]+ becomes the main peak in the last which match the change 

of EIC curves. The reasons to explain this kind of tendency are the same as the formation of copper 

complexes. [ACNAg(bpy)]+ is used as the precursor ion to produce [Ag(bpy)]+ through MS2 

(Figure 3.4) for further study because of the stability and high intensity of [ACNAg(bpy)]+. 

 

Figure 3.4 Step 2 of synthesis of [Ag(bpy)]+, tandem MS spectrum of [(ACN)Ag(bpy)]+. Isolation 

window is 1.5 Th, activation energy is 15%. 
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3.1.3 Synthesis of [Au(bpy)]+ 

  

Figure 3.5 Step 1 of synthesis [Au(bpy)]+, full scan of spraying bipyridine with Au electrode at 3.0 

min, 6.0 min and 7.0 min, respectively. Voltage is 2.0 kV, bipyridine solution is 1 ppm, 10 µL.  

 

Most part of the process to make [Au(bpy)]+ is similar to the process of copper and silver but there 

are some differences between them. First difference is that the peak of one of the target ion 

[ACNAu(bpy)]+ (m/z 394) which is further used to make the [Au(bpy)]+ ion overlaps with a 

background peak (m/z 394), making it hard to monitor the process to know when the ions will 

form from EIC curve because there is always a signal for m/z 394 (Appendix A). Besides checking 

the MS2 spectrum of the peak to distinguish the ion peak from the background peak (Appendix B), 

several methods can help estimate when the gold ions formed. Figure 3.5 shows that during the 

spray, there is a mount of silver complexes formed indicated by the 1:1 ratio peaks and m/z ratio, 

this is a normal phenomenon because silver is a common impurity during the manufacture of gold 
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wire and it will be etched out ahead of gold because silver is more active than gold. The appearance 

of silver complex demonstrates the gold complexes will reach the detector in about 1-2 min based 

on the evidence of the pre-experiment (Appendix C). A more convenient method is that from the 

EIC curve of copper and silver, it shows that all of the complexes come out almost at the same 

time, which support the method that the time can be estimated through appearance of [Au(ACN)2]
+ 

(m/z 279). These two methods can help to estimate when the needed complex ion will be made, 

and further reactions can be performed. The other difference is that, compared with copper and 

silver complexes, there is no peak for [Au(bpy)2]
+ (m/z 505), which may because the high 

concentration of bipyridine is consumed by Ag+ to form [Ag(bpy)2]
+ and there is not enough high 

concentration of bipyridine left to support the formation of [Au(bpy)2]
+. The other hypothesis is 

that the size of gold is larger than copper and silver, so the orbitals of gold ion may not overlap 

well with the orbitals of two bipyridines at the same time to make a stable complex [Au(bpy)2]
+. 

 

Figure 3.6 Step 2 of synthesis of [Au(bpy)]+, tandem MS spectrum of [ACNAu(bpy)]+. Isolation 

window is 1.5 Th, activation energy is 15%.  
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To get [Au(bpy)]+, [ACNAu(bpy)]+ is isolated, and ACN ligand is removed through collision with 

He gas (Figure 3.6). 

3.2 Kinetic study of [M(bpy)]+ with small gas molecules  

3.2.1 [Cu(bpy)]+ 

In figure 3.7 (a), the mass spectrum represents the peaks for both the reactant [Cu(bpy)]+ (m/z 219), 

water adduct [H2OCu(bpy)]+ (m/z 237) and nitrogen adduct [N2Cu(bpy)]+ (m/z 247) where a 50 

times magnification is applied for the nitrogen adduct after 100 ms reaction. Plots containing the 

constitution of the reactants and products are showed in Figure 3.7 (b) and (c). The normalized 

intensity is calculated as the absolute intensity of each peak divided by the total intensity where 

the total intensity means the summary of the intensity of all complexes. When the reaction 

increases in time, more of the reactants are converting to the products. The reacts goes pretty fast, 

nearly 20% of [Cu(bpy)]+ is consumed only for 10 ms reaction. Over 300 ms, 90% of [Cubpy]+ 

are reacted to form the water adduct [H2OCu(bpy)]+. Besides water adduct, there is also a small 

amount (0.1% - 0.2%) of nitrogen adduct observed for first 150 ms (Figure 3.7 (c)), which means 

this copper complex can also bind with nitrogen gas. But the water product is more favorable, 

mainly because [Cu(bpy)]+ is more likely to form connection with water and the water product is 

more stable than nitrogen. 

The natural logarithm of the normalized intensity of reactant [Cu(bpy)]+ and reciprocal of the 

normalized intensity of [Cu(bpy)]+ against reaction time are showed in Figure 3.7 (d) and (e). The 

linear relationship between ln [Cu(bpy)]+ vs. time indicates that the reaction performs the first 

order with respect to [Cu(bpy)]+. The rate constant is 0.0081 ms-1. First order reaction means the 

H2O or N2 will not affect the reaction rate. In this case, it is because H2O or N2 are in an excess 
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amount and the amount stay constant during the reaction. And therefore, it is preferred to call this 

reaction follows pseudo-first order reaction46 with respect to [Cu(bpy)]+. 

 

Figure 3.7 (a) Representative mass spectrum showing the reactants and products of the reactions 

after reacting for 100 ms, 50 scans are averaged. (b) The ratio change of each component with 

different reaction times. (c) Zoom in curve for m/z 247 in Figure (b). (d) 1st order regression with 

respect to [Cu(bpy)]+. (e) 2nd order regression with respect to [Cu(bpy)]+. 
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3.2.2 [Ag(bpy)]+ 

Figure 3.8 (a) shows the spectrum of the reaction of [Ag(bpy)]+ with neutral gas molecules. m/z 

263 corresponds to [Ag(bpy)]+, theoretical m/z of water adduct is m/z 281, but m/z 280 is observed 

here, this peak is still correspond to the water adduct based on CID spectrum of m/z 280 (Appendix 

D), it is may because there is a slightly mass shift in this region of the instrument. Theoretical m/z 

of nitrogen adduct is m/z 291, but no peak observed in the range m/z 285 to m/z 300, even with a 

magnification of 50 times for the peak intensity. Compared with [Cu(bpy)]+, there is more reactants 

and less products observed. As the reaction goes for 1500 ms, there is still about 94% of the 

reactants remained (Figure 3.8 (b)) and only 6% of water product being observed (Figure 3.8 (c)). 

And during the reaction time from 30 second to 100 second and after 800 second, the intensity of 

[Ag(bpy)]+ does not change too much. This may relate to the source that provides the target metal 

complex. Different from the reactions in the solution phase, the initial concentration of the 

reactants will not change during the reaction. However, in this research, [Ag(bpy)]+ is made from 

[ACNAg(bpy)]+, the production of [ACNAg(bpy)]+ is an endless process as long as the high 

voltage is applied on and the solution in capillary does not run out. Therefore, there is continuous 

production of [Ag(bpy)]+ at the same time when reacting with gas molecules. At the first 100 ms 

seconds, the consumption rate of [Ag(bpy)]+ may equal or less than the production rate, which 

creates an equilibrium with respect of [Ag(bpy)]+, therefore, at the beginning, the normalized 

intensity of [Ag(bpy)]+ in the gas phase keeps at a relative stable ratio. And the intensity of 

[Ag(bpy)]+ slightly decreases between 100 ms to 800 ms. After 800 ms, the intensity stables again, 

which mainly because that the water adduct is not stable in the gas phase, when the reaction goes 

for longer time, [H2OAg(bpy)]+ may break up to form [Ag(bpy)]+ again which create another 

equilibrium for longer reaction time. This problem was not observed in the copper complex mainly  
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Figure 3.8 (a) Representative mass spectrum showing reactants and products after reaction goes 

100 ms, 50 scans are averaged. (b) The ratio change of reactant at different reaction times. (c) The 

ratio change of water adduct at different reaction times. (d) 1st order regression with respect to 

[Ag(bpy)]+. (e) 2nd order regression with respect to [Ag(bpy)]+. 

 

because the reaction rate of [Cu(bpy)]+ is fast enough and the products of copper are stable so that 

the fluctuations can be ignored. With the normalized intensity, reaction order does not show a 

higher relativity for either 1st order reaction or 2nd order reaction (Figure 3.8 (d) and (e)). But it is 
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highly believed it follows a pseudo-first order reaction with respect to [Ag(bpy)]+ because this 

reaction process is similar to the reaction of [Cu(bpy)]+. 

3.2.3 [Au(bpy)]+ 

 

Figure 3.9 (a) Representative mass spectrum of products of the reactions after 100 ms reaction, 50 

scans are averaged. (b) The ratio change of reactants and products at different reaction time. (c) 

zoom in curve for m/z 381 in Figure (b). (d) 1st order regression with respect to [Au(bpy)]+. (e) 2nd 

order regression with respect to [Au(bpy)]+. 
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The representative mass spectrum for reaction between [Au(bpy)]+ and gas molecules is showed 

in Figure 3.9 (a). The peaks from left to right corresponds to [Au(bpy)]+ (m/z 353), the water 

adduct [H2OAu(bpy)]+ (m/z 371) and nitrogen product [N2Au(bpy)]+ (m/z 381), respectively. And 

Figure 3.9 (b) shows the normalized intensity of each component with different reaction time. 

Compared with [Cu(bpy)]+, [Au(bpy)]+ is a more reactive reactant with 60% of [Au(bpy)]+ getting 

reacted in 10 ms, and nearly all [Au(bpy)]+ getting reacted in 150 ms. Moreover, there is also a 

larger portion of the nitrogen adduct of ca. 1.1% (Figure 3.9 (c)) compared with [Cu(bpy)]+, which 

means [Au(bpy)]+ works better on binding with nitrogen gas and the nitrogen product is more 

stable. By comparing the regression of reaction order, the reaction also follows a pseudo-first-

order with respect to [Au(bpy)]+ like [Cu(bpy)]+, and rate constant is 0.0269 ms-1. 

 

Figure 3.10 Comparison of the normalized intensity of reactants and products for different metal 

complexes after reaction goes for 100 ms. The intensity of nitrogen adducts is magnified with 50 

times for clarity. 
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Figure 3.10 summarized the reactivity of different metal complexes under 100 ms reaction time. 

As shown on this graph, after reaction happens the same time, 50% of [Cu(bpy)]+ gets reacted, but 

less than 10% of [Au(bpy)]+ gets reacted, [Au(bpy)]+ gets more than 90% reacted. Compare the 

intensity of water adducts, gold complex forms most of water adduct and silver complex forms the 

least water adduct (less than 1%). For nitrogen adduct, gold complex produces the most and then 

the copper complex. No nitrogen adduct is observed in the reaction of silver complex, which may 

either because the silver complex has a poor interaction with nitrogen gas, or because the 

[N2Ag(bpy)]+ is unstable that the product quickly break up after formation. In summary, 

[Au(bpy)]+ is the most reactive reagent followed by [Cu(bpy)]+ and [Ag(bpy)]+, and [Au(bpy)]+ 

has the highest binding ability with water and nitrogen gas.  For all the metals, they show higher 

binding activity towards water gas than nitrogen gas. 

3.3 Theory calculations 

3.3.1 Structure optimization  

Geometry for the reactants and products are optimized with DFT calculations. Optimized 

structures for both reactants and products are showed in Figure 3.11 and representative bond 

lengths are summarized in Table 3.1. Figure 3.11 shows that all bindings with gas molecules are 

through single dentate interaction. Length between metal to new attached gas molecules which can 

be seen as a new ligand to the metal-bipyridyl complex are calculated and presented by P. K. 

Chattaraj group44 (numbers showed in parentheses). Compared with reported numbers, the results 

in this work are pretty similar to the numbers showed in paper, with a maximum difference of 

0.003 Å, which means the methods used in this research works well. In terms of the orientation of 

the structures, the bare copper complex shows a nearly symmetrical structure with a dihedral angle 

of N1-C-C-N2 0.82 degrees. After binding with a water, the bond difference increases to 0.007 Å, 
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but the dihedral angle decreases to0.43 degrees. When nitrogen addicted to copper complex, it 

changes the length of the two Cu-N bonds simultaneously, so it keeps an overall symmetrical 

structure for the product, and the nitrogen adduct complex gets a more planar structure with the  

 

Figure 3.11 Geometry prediction for both bare metal complexes and gas attached metal complexes. 

Color codes for structures are Grey = C, White = H, Dark Blue = N, Red = O, Pink = Cu, Light 

Blue = Ag, Yellow = Au. 
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Table 3.1 Representative bond lengths (in Å) and angles (in degrees) for optimized structures. 

Length for metal to one nitrogen of bipyridine (M-N1), length for metal to the other nitrogen of 

bipyridine (M-N2), distance difference (Δd) between length for M-N1 and M-N2, length for metal 

to new attached molecules (M-L), the dihedral angle created by N1-C-C-N2 (in degrees) are 

calculated at PBE0/cc-pVTZ/cc-pVTZ-PP level. Numbers in parentheses are results reported by 

literature. (ref 44) 

 

dihedral angle near 0. All silver complexes get similar shapes with copper complexes. [Ag(bpy)]+ 

is a rather symmetrical shape, and water makes the structure a little unsymmetrical while nitrogen 

does not change the symmetry of structure. Besides, the adduct makes the structure access to a 

planar shape, and nitrogen addicted structure gets more planar than water addicted structure. For 

gold complexes, the structures show much different properties. The bare gold complex [Au(bpy)]+ 

shows a nearly symmetrical structure with a length difference of 0.002 Å of two Au-N bonds. 

When binding with water, the structure of the adduct becomes more unsymmetrical and distorted 

compared to the bare gold complex, as the bond difference is up to 0.646 Å and dihedral angle is 

27.56 degrees. When binding with nitrogen, nitrogen makes the bipyridine ligand less distorted 

with the dihedral angle of N1-C-C-N2 ranging from 13.94 degrees to 2.64 degrees, but still makes 

the whole structure less asymmetrical than water adduct. 

Complexes M-N1 M-N2 Δd M-L 
Dihedral 

angle 

[Cu(bpy)]+ 1.967 1.967 0.000  0.82 

[H2OCu(bpy)]+ 2.015 2.008 0.007 1.954 (1.954) 0.43 

[N2Cu(bpy)]+ 1.998 1.998 0.000 1.831 (1.830) 0.25 

      
[Ag(bpy)]+ 2.254 2.255 0.001  14.33 

[H2OAg(bpy)]+ 2.275 2.279 0.004 2.227 (2.225) 12.96 

[N2Ag(bpy)]+ 2.251 2.250 0.001 2.122 (2.119) 2.43 

      
[Au(bpy)]+ 2.221 2.223 0.002  13.94 

[H2OAu(bpy)]+ 2.029 2.675 0.646 2.097 (2.095) 27.56 

[N2Au(bpy)]+ 2.104 2.418 0.314 1.961 (1.962) 2.64 
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The asymmetrical structure of tridentate gold(I)-bipyridine complex has also been observed by 

other groups47-49. Landis and Weinhold50-51 believe the asymmetrical binding of bipyridine ligand 

is a manifestation of the anti-chelate effect, which occurs between the Au+ center and the ligands. 

When a new ligand approaches the [Au(bpy)]+, the anti-chelate effect arises from the fixed angle 

of the bipyridine ligand and the Au center prefers a linear geometry to satisfy the three-center four-

electron (3c/4e) N-Au-L bond (where L represents the new attached ligand). Lucy M. C. Luong et 

al.48 describe the symmetrical three dentate gold complexes as a transition state between the two 

limiting unsymmetrical structures. They interpret the 3c/4e bond with natural resonance theory 

(NRT) and “12 electron rule” formalism where only the 5d and 6s valance orbitals taking into 

consideration. Either nitrogen in the bipyridine ligand will donate the lone electron pair to an empty 

Au-L antibonding orbital, producing a 3c/4e N-Au-L bond. The 3c/4e bonding interaction 

maximizes when three atoms reach a linear geometry. 

Plot showing the electron density helps better explain the symmetry of the structure. For 

[N2Cu(bpy)]+, p-orbital of both nitrogen in bipyridine overlap well with the d-orbital of copper as 

well as the p-orbital in nitrogen gas, the lone pair on nitrogen in bipyridine can easily delocalize 

along N-Cu-N bond, the symmetrical properties make the overall structure of copper complex 

symmetrical. [N2Ag(bpy)]+ has similar orbital formation as [N2Cu(bpy)]+ but the energy of orbital 

is overall lower than [N2Cu(bpy)]+. The orbitals showed here are all HOMO orbitals, except for 

[N2Ag(bpy)]+, which is HOMO-1 orbital. However, for [N2Au(bpy)]+, only one side of the p-

orbital of nitrogen in bipyridine overlaps well with d orbital of Au and p-orbital of addicted 

nitrogen, making one nitrogen in bipyridine easy to donate the lone pair to the empty anti-binding 

orbital of nitrogen gas, forming a 3c/4e therefore. The difference between gold complex and copper 

complex may result from the bigger size of gold atom, with the fixed angle of bipyridine, the  
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Figure 3.12 Molecular orbital for nitrogen adducts (top row) and water adducts (bottom row). 

HOMO are showed here except for [N2Ag(bpy)]+, where the HOMO-1 is showed here. Isovalue 

is 0.2 for all orbitals presented. 

 

orbitals of both nitrogens cannot fully overlap with the orbitals of gold, instead, with some 

distortion of bipyridine, one nitrogen can form bond with gold, the other nitrogen prefers an anti-

binding with gold orbital, therefore, the gold complex presents an asymmetrical shape. Explanation 

about the symmetrical [H2OCu(bpy)]+, [H2OCu(bpy)]+ and unsymmetrical [H2OAu(bpy)]+ are 

pretty similar to the nitrogen adducts, which depends on either one or two nitrogen orbitals in 

bipyridine overlap with the orbital of metals. For each metal, the lone pair on nitrogen can flow to 

the empty anti-bonding orbital of water. 
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3.3.2 Bond energies and thermo stability 

The stability of adduct complexes is examined with different aspects. Table 3.2 shows the bond 

dissociation energy (BDE) of the M-L bond, the enthalpy change and energy change for the 

dissociation process of bound complexes. Numbers showed in parentheses are reported results. 

Table 3.2. Bond Dissociation Energy (BDE, kcal/mol) for M-L bond, enthalpy change (ΔH, 

kcal/mol) at 298 K and Gibs Free Energy change (ΔG, kcal/mol) at 298 K for the Dissociation 

Reaction [LM(bpy)]+ → [M(bpy)]+ + L at PBE0/cc-pVTZ/cc-pVTZ-PP level, numbers in 

parentheses are results reported by Chattaraj, P. K. Group. (ref 44) 

Complexes BDE ΔH ΔG 

[Cu(bpy)]+    

[H2OCu(bpy)]+ 26.5 (18.9) 27.1 (21.0) 18.5 (13.3) 

[N2Cu(bpy)]+ 21.6 (21.9) 22.2 (23.3) 12.7 (13.8) 

    
[Ag(bpy)]+    

[H2OAg(bpy)]+ 20.4 (12.7) 21.0 (14.8) 12.9 (7.3) 

[N2Ag(bpy)]+ 11.5 (12.1) 12.1 (13.0) 4.7 (5.3) 

    
[Au(bpy)]+    

[H2OAu(bpy)]+ 30.1 (20.9) 30.7 (24.2) 20.5 (15.4) 

[N2Au(bpy)]+ 24.2 (24.6) 24.8 (25.9) 15.8 (17.7) 

 

Compared to the reported energies, the nitrogen addicted complexes get similar energies with 

literature, and the differences are among 0.1 to 0.9 kcal/mol lower than reported. However, the 

water addicted complexes calculated in this research usually have a 5-6 kcal/mol energy higher 

than the reported energies. For comparison, typical hydrogen bonds have energies of 1-20 kcal/mol 

in different environmental conditions.52 One possible reason that cause this difference may be the 

energy correction for the calculations, the literature did both Zero Point Energy (ZPE) correction 

and Basis Set Superposition Error (BSSE) correction to the energy calculations, but only ZPE 

correction applied to the energies in this work. ZPE53 is the lowest possible energy that a quantum 

system may have, because of the truth that all quantum system undergoes fluctuation at each 
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energy level, zero-point energy must be included when calculating the ground state energy, which 

is a consequence of wave-like nature.  

BSSE54 is an error that often exists in calculation of intermolecular energies. For the reaction A + 

B → AB, the interaction cannot be simply calculated by E(AB)-E(A)-E(B). Because the decrease 

of energy of AB will not only result from the interaction between A and B which is really needed, 

but also the overlap functions from A and B, which increases the basis set used to calculate the 

energy of AB. Therefore, a BSSE correction should be included, and the energy should be 

calculated as E(AB)-E(A)-E(B)+E(BSSE). However, whether to do correction to BSSE is a 

controversial problem, some researchers55 prefer applying correction to BSSE especially when the 

interactions are weak, while some56 argue that the error can be neglected if the right basis sets are 

selected. In this research, calculation without BSSE correction can better support the experimental 

observation. For the given metal, M-O bonds in water adducts have higher bond dissociation 

energy than the M-N bonds in nitrogen adducts. Besides, the enthalpy change of the dissociation 

process are all positive, which means dissociation is an endothermic process for all bound 

complexes. Enthalpy change of dissociation for water adducts are also higher than nitrogen adducts, 

indicating the water adducts needs higher energy to dissociate. The dissociation processes of bound 

complexes are nonspontaneous because ΔG are greater than 0. In summary, the water adducts are 

more stable than nitrogen adducts. Compare the stability between different metal complexes, the 

gold complexes have a higher bond dissociation energy and higher enthalpy, followed by copper 

and silver, for both the two gases. which means [Au(bpy)]+ has higher binding ability with gas 

molecules, which is consistent with the experimental results. 
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3.3.3 Activation of bonds 

During the process [M(bpy)]+ binding with nitrogen or water, the metal complexes also work like 

a bond activation reagent to the bonds of the small gas molecules. The length of N≡N and H-O 

bonds get elongated with different degrees (ranges from 0.001 Å to 0.004 Å) in the complexes 

compared with the length in free gas molecules (Table 3.3 and Table 3.4). The shape of water 

keeps symmetrical all the way during the whole process, so one bond length showed in table. 

[Au(bpy)]+ makes the O-H bond prolong the most with 0.005 Å, and [Au(bpy)]+ and [Cu(bpy)]+ 

both make N≡N prolong about 0.004 Å.  

Table 3.3 The bond length of O-H (Å) in free H2O and in different water adducts, the length 

elongated (Å) of O-H bond in adducts compared with free water.  

Name Length of O-H Length elongated 

H2O 0.958  

[H2OCu(bpy)]+ 0.960 0.002 

[H2OAg(bpy)]+ 0.960 0.002 

[H2OAu(bpy)]+ 0.963 0.005 

 

Table 3.4 The bond length of N≡N (Å) in free N2 and in different adducts, the length elongated (Å) 

of N≡N bond in adducts compared with free N2. 

Name Length of N≡N Length elongated 

N2 1.090  

[N2Cu(bpy)]+ 1.094 0.004 

[N2Ag(bpy)]+ 1.091 0.001 

[N2Au(bpy)]+ 1.094 0.004 

 

Table 3.5 Prediction of IR frequency (cm-1) of O-H bond for water symmetrical stretch and the 

decreased frequency (cm-1) of O-H stretch in complexes compared with free water. 

Name Frequency/cm-1 
Decreased 

frequency/cm-1 

H2O 3865.60  

[H2OCu(bpy)]+ 3851.58 14.02 

[H2OAg(bpy)]+ 3849.46 7.14 

[H2OAu(bpy)]+ 3809.84 55.76 
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Table 3.6 Prediction of IR frequency (cm-1) of N≡N bond for symmetrical stretch and the decreased 

frequency (cm-1) of N≡N stretch in complexes compared with free N2. 

Name Frequency/cm-1 
Decreased 

frequency/cm-1 

N2 2482.56  

[N2Cu(bpy)]+ 2423.10 59.46 

[N2Ag(bpy)]+ 2464.91 17.65 

[N2Au(bpy)]+ 2427.64 54.92 

IR calculates the frequency of each movement. For O-H bond of water, the symmetrical stretch 

frequency is discussed here. All metal complexes make a significant shift to a lower frequency, 

and gold complex makes frequency shift the most. Along with the result of bond elongation, 

[Au(bpy)]+ is the best candidate for O-H activation. For N≡N bond of nitrogen, compared with the 

symmetrical stretch frequency in the free nitrogen gas molecule, there is also a red-shift of the 

frequency for N≡N stretch, and in the copper complexes, the frequency shifts the most. Therefore, 

[Cu(bpy)]+ performs the best on nitrogen bond activation. Silver complexes is the least active 

reagent for either O-H or N≡N activation.  

3.4 Prediction effect of ligands 

Phenanthroline (in short of phen) is also a common ligand used in coordination chemistry. It is 

used in this research as a substitution of bipyridine to study how the ligand will affect interaction 

between metal complex and gas molecules. 

The geometries after optimization are showed in Figure 3.13. The orientation of the structures 

follows similar tendency as bipyridine coupled complexes. All complexes have a single dentate 

binding with gas molecules. For copper and silver complexes, they have relative symmetrical 

structures, but for gold complexes, their structures are unsymmetrical. The difference between 

these structures with bipyridine structures are that these structures are not distorted, which is 

mainly due of the rigidity of Phenanthroline. 
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Figure 3.13 Optimized geometry for the bare [M(phen)]+ and gas attached complexes. Color codes 

for structures are Grey = C, White = H, Dark Blue = N, Red = O, Pink = Cu, Light Blue = Ag, 

Yellow = Au. 
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Table 3.7 Bond Dissociation Energy (BDE, kcal/mol) for M-L bond, enthalpy change (ΔH, 

kcal/mol) at 298 K and Gibs Free Energy change (ΔG, kcal/mol) at 298 K for the Dissociation 

Reaction [LM(phen)]+ → [M(phen)]+ + L at PBE0/cc-pVTZ/cc-pVTZ-PP level. 

Complexes BDE ΔH ΔG 

[Cu(phen)]+    

[H2OCu(phen)]+ 25.9 26.5 18.1 

[N2Cu(phen)]+ 20.9 21.5 12.4 

    
[Ag(phen)]+    

[H2OAg(phen)]+ 20.1 20.7 12.3 

[N2Ag(phen)]+ 11.3 11.9 3.6 

    
[Au(phen)]+    

[H2OAu(phen)]+ 29.6 30.2 20.7 

[N2Au(phen)]+ 23.9 24.5 14.8 

 

Thermostability is also calculated using the same method as bipyridine. The results are 

unbelievably similar to the results of bipyridine, with energies for all complexes are less than 1 

kcal/mol lower than bipyridine complexes.  Which indicates [M(phen)]+ complexes may have 

similar interactions with the gas molecules like [M(bpy)]+. 

The molecular orbitals of [M(phen)]+ help rationale why [M(phen)]+ performs so close to 

[M(bpy)]+. As hypothesized, the orbital overlap of p orbital of nitrogen in the ligand, the d orbital 

of metal and the anti-bonding orbital allows nitrogen to donate lone pair to the empty orbital of 

gas molecules, so that create the interaction with the gas molecules. And from the graph, it is clear 

to see that phen creates similar orbital overlap as bipy, so that establish similar interactions with 

gas molecules. Because middle benzene ring is an electron-withdrawing group, which makes the 

electron density on nitrogen slightly goes down, therefore, the interaction between [M(phen)]+ 

with gas molecule is slightly weaker than [M(bpy)]+. And due to the big size of Au orbital, it 

cannot overlap well with both p orbitals of nitrogen in phen, thus getting an unsymmetrical 

geometry.  



 

37 
 

 
Figure 3.14 Molecular orbitals for [M(phen)]+ complexes. HOMOs are showed for copper and 

gold complexes, HOMO-1 are showed for silver complexes. Isovalue is 0.2 for all orbitals 

presented. 

 

 

 

  



 

38 
 

CHAPTER IV: CONCLUSIONS AND FUTURE WORK 

4.1 Conclusions 

This research extended the study of metal-bipyridine (metal = Cu, Ag, Au) system to the gas phase, 

synthesized the single charged metal-bipyridine ion [M(bpy)]+ and compared the reactivity of 

different metal complexes for the reaction with small gas molecules, N2 and H2O. The 

experimental results show that [Au(bpy)]+ has the highest binding ability with both the N2 and 

H2O, followed by is [Cu(bpy)]+, and [Ag(bpy)]+ has the weakest interaction with H2O and no 

interaction with N2 is observed, which may because the indeed weak interaction with N2, or the 

nitrogen adduct is not stable. 

Kinetic study shows that the reactions follow pseudo-first order with respect to the metal complex 

[M(bpy)]+ for Cu and Au, Ag does not show a good reaction order regression, which may because 

of the signal fluctuation due to the low reactivity of [Ag(bpy)]+, but there is high probability that 

the reaction between [Ag(bpy)]+ and gas molecules also follows the pseudo-first order, based on 

the properties of [Ag(bpy)]+. 

DFT calculations are applied to find more properties. Geometry optimization finds that for all 

complexes, they form a single dentate with gas molecules. Optimized structures for copper 

complexes and silver complexes show a relative symmetrical shape, the gold complexes show 

obvious unsymmetrical structures after binding with a gas molecule. Molecular orbital plots help 

explain the phenomenon and give a deeper insight to the interaction between metal complexes and 

gas molecules. The overlap of orbital allow nitrogen in bipyridine donating the electrons to the 

anti-bonding of gas molecule, creating an interaction between them. And the degree of orbital 

overlap determines the interaction. 
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Calculated thermo parameters show that the products of the reaction are rather stable. Dissociation 

of products is endothermic and nonspontaneous. Bond dissociation energy shows that [Au(bpy)]+ 

has the highest binding ability with gas molecules, followed by [Cu(bpy)]+ and [Ag(bpy)]+. For all 

of the metal complexes, they have higher binding ability towards H2O than N2, which agrees with 

the experiment results.   

IR spectrum of products are also predicted. IR shows that all metal complexes have some ability 

to active the N≡N bond and O-H bond. Compared of the frequency, there is significant red-shift 

for the symmetrical stretching of bonds. Besides, the bond lengths also get elongated compared 

with the length in free gas. [Au(bpy)]+ works the best on O-H activation, and [Cu(bpy)]+ works 

the best on N≡N activation. 

In the end, phenanthroline is used to study how ligand will affect the interaction between complex 

and gases with calculations. It is predicted that M-phen complexes have similar geometry as M-

bpy. The interactions between [M(phen)]+ with gas molecules are much similar to [M(bpy)]+ but 

they are slightly lower than [M(bpy)]+. Molecular orbitals showed to provide interpretations. The 

similar orbital overlap explains the similarity between two series of complexes. And the lower 

electron density on nitrogen of phenanthroline may contribute to the slightly weaker interactions 

for [M(phen)]+
. 

4.2 Future work 

Future work can be divided to two branches, the theoretic study and applications.  

For the theoretic study, further study may focus on the study of effect of other metals or ligands. 

Platinum is the metal with the highest oxidation potential, so the Platinum complexes may have 

higher reactivity than coinage metal in the gas phase. There is already literature57 reported that 
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Platinum can also be oxidized during electrospray ionization, so the platinum complexes could be 

synthesized with electrospray.  

For the ligand effect, part of the ligand effect has been predicted in this thesis. Experimental data 

can be acquired to check if this prediction works. Other ligands either with electron-withdrawing 

group or electron-donating group can also been studied to see how it will affect the interaction 

between complexes and gas molecules. 

For the application, the metal complexes in this research are promising to be the key ingredient of 

a gas sensor. The metal complexes in this research are pretty sensitive to the gases. As is shown at 

the beginning, the pressure inside Ion Trap is only 1 * 10-5 Torr, with 99% of it are He gas, so there 

is extremely low concentration of nitrogen gas and water gas. However, the metal complexes can 

still bind with gas molecules and get detected. The metal complexes also have the potential to 

detect other gases. Moreover, many metal complexes in the solution phase works as a catalyst34,58, 

the metal complexes in the gas phase may also work to catalyze the reactions in the gas phase. 

Other studies in solution phase like the photochemistry59 can also be studied in gas phase. 
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Appendix 

Appendix A: EIC curve of m/z 394 
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Appendix B: MS2 of m/z 394 for the background peak and [Au(bpy)]+ 
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Appendix C: EIC curves that represents the time for signal appearance. 

 

Appendix D: MS2 spectrum of m/z 280 

 

Appendix E: Geometry coordinate of the calculation output file 

[Cu(bpy)]+ 
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 X Y Z 

C 1.6664747829 1.4191628248 -0.8377667129 

C 3.0134658022 1.4857633879 -1.1664131018 

C 3.6694620088 2.7047554164 -1.1256870170 

C 2.9688037421 3.8387100582 -0.7571694960 

C 1.6296768063 3.7042955456 -0.4403644831 

C 0.9046554435 0.1363538898 -0.8644178045 

C 1.4923869879 -1.0646785951 -1.2372134386 

C 0.7362284286 -2.2250310584 -1.2436673476 

C -0.5961099666 -2.1668130881 -0.8774961749 

C -1.1209649286 -0.9394058845 -0.5174409003 

H 3.5590042220 0.5991268548 -1.4528885243 

H 4.7200777933 2.7630371539 -1.3806875955 

H 3.4411419134 4.8104845275 -0.7125998776 

H 1.0390146803 4.5622518957 -0.1453456600 

H 2.5323515260 -1.1075454958 -1.5243025890 

H 1.1889438313 -3.1647869165 -1.5336685576 

H -1.2232035039 -3.0477920149 -0.8682653259 

H -2.1583311279 -0.8429900487 -0.2232106412 

N -0.3947248602 0.1775653062 -0.5110828113 

N 0.9975441354 2.5321398625 -0.4785379151 

Cu -0.8619987069 2.0364302788 -0.0706513058 

 

[H2OCu(bpy)]+ 

 X Y Z 

C 1.8754579967 1.3741308056 -0.9364481395 

C 3.2517580815 1.3431899331 -1.1177109566 

C 3.9687345118 2.5266898727 -1.0886698785 

C 3.2948093309 3.7166889868 -0.8785263742 

C 1.9232874558 3.6699139669 -0.7067637040 

C 1.0353593914 0.1516353663 -0.9505567896 

C 1.5606745886 -1.1201522746 -1.1360637095 

C 0.7122479585 -2.2136378180 -1.1338731253 

C -0.6436710983 -2.0131322983 -0.9451331897 

C -1.0941031145 -0.7176777532 -0.7664183283 

H 3.7680753582 0.4085743513 -1.2809252627 

H 5.0422545334 2.5160631867 -1.2287164786 

H 3.8132304833 4.6652799446 -0.8469538546 

H 1.3572744649 4.5777060027 -0.5392830896 

H 2.6211296673 -1.2664515532 -1.2803564680 

H 1.1093409659 -3.2105714304 -1.2774873437 

H -1.3439295554 -2.8372164219 -0.9347742429 

H -2.1471759784 -0.5160897183 -0.6143347412 
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N -0.2820274907 0.3380801558 -0.7689487802 

N 1.2284420531 2.5336538212 -0.7347019619 

Cu -0.7519860625 2.2816737250 -0.5189523248 

O -2.3578038186 3.3440816716 -0.1885475756 

H -2.3906309291 4.3012458262 -0.2491054719 

H -3.2514533439 3.0188488716 -0.3168781892 
 

[N2Cu(bpy)]+ 

 X Y Z 

C 1.6163821603 1.3416119034 -0.9012653552 

C 2.9867643407 1.4775303802 -1.0667875578 

C 3.5555500046 2.7389889081 -1.0097277489 

C 2.7437496969 3.8374739675 -0.7885783821 

C 1.3857145021 3.6272925672 -0.6328782953 

C 0.9200012570 0.0337977087 -0.9474465145 

C 1.5780316306 -1.1697530859 -1.1540814626 

C 0.8474784818 -2.3460031445 -1.1834145878 

C -0.5239180618 -2.2952501421 -1.0058825812 

C -1.1128019835 -1.0603446028 -0.8041601867 

H 3.6125034354 0.6141064380 -1.2396519758 

H 4.6239837407 2.8590667468 -1.1373613280 

H 3.1458217103 4.8399682630 -0.7364780958 

H 0.7111964882 4.4560304120 -0.4581216485 

H 2.6490847348 -1.1993259760 -1.2914394592 

H 1.3485275977 -3.2923062741 -1.3438347017 

H -1.1322084002 -3.1891902856 -1.0217895176 

H -2.1822372219 -0.9710099526 -0.6604393552 

N -0.4124261404 0.0728705229 -0.7752616539 

N 0.8357120267 2.4147403960 -0.6873468716 

Cu -1.0924988701 1.9301537815 -0.4922476633 

N -2.6928007240 2.7693771776 -0.1989530471 

N -3.6499752159 3.2710489908 -0.0235158501 
 

[Ag(bpy)]+ 

 X Y Z 

C 1.6525959228 1.4269141676 -0.8338328236 

C 3.0318849517 1.4484924178 -1.0121667403 

C 3.7063633604 2.6566120833 -0.9967855284 

C 2.9924117300 3.8249744321 -0.7993539160 

C 1.6266355995 3.7278035062 -0.6083282151 

C 0.8912351100 0.1454614872 -0.8644511100 

C 1.4614504086 -1.0191425835 -1.3676286745 
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C 0.7354089092 -2.1972038054 -1.3592793383 

C -0.5506292234 -2.1933837903 -0.8497381110 

C -1.0624262410 -0.9954381276 -0.3869218221 

H 3.5857699088 0.5306702758 -1.1426051088 

H 4.7802017882 2.6806049633 -1.1331397661 

H 3.4755717606 4.7923988577 -0.7836321566 

H 1.0287443946 4.6151351125 -0.4402865846 

H 2.4580437031 -1.0108248854 -1.7836339184 

H 1.1722091850 -3.1066933688 -1.7521456441 

H -1.1537221627 -3.0904977323 -0.8170120851 

H -2.0687814677 -0.9423872386 0.0100494184 

N -0.3655813667 0.1396165131 -0.3973174524 

N 0.9766839714 2.5653839051 -0.6221777319 

Ag -1.1701712324 2.2125377104 -0.0284899712 
 

[H2OAg(bpy)]+ 

 X Y Z 

C 1.8947092682 1.3695633852 -0.9575192466 

C 3.2809287191 1.2768365944 -1.0253076557 

C 4.0416836009 2.4315817417 -1.0642537706 

C 3.4034687064 3.6586580110 -1.0317468871 

C 2.0230932890 3.6715790852 -0.9465401080 

C 1.0340911551 0.1570730105 -0.9274077590 

C 1.5369710459 -1.1006308405 -1.2442690470 

C 0.7044863147 -2.2038231902 -1.1861913210 

C -0.6168892004 -2.0300378840 -0.8144451648 

C -1.0495667897 -0.7474125296 -0.5316269603 

H 3.7712930502 0.3144537613 -1.0289776415 

H 5.1215065420 2.3700535639 -1.1144918053 

H 3.9552058595 4.5883304117 -1.0633958843 

H 1.4832961251 4.6100278804 -0.9089214853 

H 2.5648083284 -1.2229734289 -1.5528209414 

H 1.0856603466 -3.1866866723 -1.4331339063 

 H -1.3043085397 -2.8624949743 -0.7498039673 

H -2.0779619060 -0.5649970864 -0.2443160361 

N -0.2515433893 0.3167289681 -0.5887882577 

N 1.2882107151 2.5622072235 -0.9081065722 

Ag -0.9434698259 2.4798705334 -0.4530439582 

O -2.7013682930 3.7911392564 -0.0668762875 

H -2.8168887217 4.6340290241 -0.5115242507 

H -3.5810592404 3.4408092051 0.0907467638 
 

[N2Ag(bpy)]+ 
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 X Y Z 

C 1.6117506407 1.3560249836 -0.8988312492 

C 2.9868258016 1.4684865162 -1.0718290297 

C 3.5832532670 2.7159702963 -1.0241010633 

C 2.7957929629 3.8321021009 -0.8051564757 

C 1.4351745270 3.645 8478944 -0.6459799770 

C 0.9185737242 0.0399331591 -0.9374580244 

C 1.6143175237 -1.1536558789 -1.0954074024 

C 0.9212391694 -2.3506358115 -1.1298692337 

C -0.4565427085 -2.3360136592 -1.0052166194 

C -1.0813475322 -1.1130518513 -0.8463415016 

H 3.5979301528 0.5958923334 -1.2471197622 

H 4.6534359587 2.8113951027 -1.1578899366 

H 3.2173494404 4.8269250490 -0.7588822775 

H 0.7792586141 4.4904408782 -0.4744602431 

H 2.6899308520 -1.1615360566 -1.1878246462 

H 1.4558843465 -3.2841446736 -1.2522984342 

H -1.0405172745 -3.2459770967 -1.0276252414 

H -2.1577627927 -1.0531382449 -0.7424716241 

N -0.4156780923 0.0399338424 -0.8124028088 

N 0.8594201358 2.4456507826 -0.6917792660 

Ag -1.3488760752 2.0636666685 -0.4948487915 

N -3.2157508084 3.0280010772 -0.2004754995 

N -4.1760270231 3.5234868683 -0.0523947325 
 

[Au(bpy)]+ 

 X Y Z 

C 1.6574939171 1.4245516852 -0.8363873340 

C 3.0351066691 1.4520710880 -1.0201298328 

C 3.7046019571 2.6631687721 -1.0019221416 

C 2.9880943494 3.8287414826 -0.7964823714 

C 1.6231113233 3.7312280418 -0.6011932701 

C 0.8961042748 0.1423624565 -0.8650477865 

C 1.4618030427 -1.0253542191 -1.3637415382 

C 0.7292447588 -2.1996240573 -1.3552149826 

C -0.5583232963 -2.1899365649 -0.8492825145 

C -1.0695061299 -0.9918446596 -0.3869002109 

H 3.5910258627 0.5363572121 -1.1563973027 

H 4.7777725257 2.6914684800 -1.1421826059 

H 3.4685373996 4.7975156811 -0.7788816214 

H 1.0189724918 4.6120757528 -0.4286929500 

H 2.4595828429 -1.0216684118 -1.7768607062 

H 1.1626243053 -3.1116346092 -1.7458243439 
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H -1.1652126335 -3.0845376828 -0.8170284007 

H -2.0741060643 -0.9291269391 0.0099696195 

N -0.3600471376 0.1355268731 -0.4001494244 

N 0.9846861829 2.5624285707 -0.6202713278 

Au -1.1276676316 2.1872649481 -0.0362562338 
 

[H2OAu(bpy)]+ 

 X Y Z 

C 1.9076172942 1.4119483897 -1.0056280884 

C 3.2736410950 1.3197401158 -0.7563779393 

C 4.0413126686 2.4704427580 -0.8222401981 

C 3.4261053943 3.6701629348 -1.1336320856 

C 2.0559112765 3.6688302339 -1.3485719010 

C 1.0488831376 0.2043162908 -0.9763039239 

C 1.5783540316 -1.0453134255 -1.2788691432 

C 0.7786479065 -2.1708405755 -1.2509914245 

C -0.5584052962 -2.0326392049 -0.9190652601 

C -1.0372140654 -0.7719701615 -0.6393624813 

H 3.7303178578 0.3768145927 -0.4881283564 

H 5.1052453617 2.4280218365 -0.6259520061 

H 3.9885817025 4.5918562952 -1.2022565618 

H 1.5333495227 4.5891188332 -1.5865660732 

H 2.6173997234 -1.1224255369 -1.5649165786 

H 1.1924781603 -3.1412932438 -1.4941841660 

H -1.2293132730 -2.8795630479 -0.8802925802 

H -2.0731475112 -0.6141899344 -0.3770522334 

N -0.2588181070 0.3219807332 -0.6696144250 

N 1.3141813863 2.5712272876 -1.2853233097 

Au -1.1455671390 2.1163996301 -0.3373562023 

O -2.1564328097 3.9119523928 0.0537618737 

H -2.7512969194 3.8712879181 0.8099281208 

H -2.6674048180 4.2490475383 -0.6897696961 
 

[N2Au(bpy)]+ 

 X Y Z 

C 1.5980063015 1.3470493136 -0.9021838056 

C 2.9698449726 1.4717327362 -1.0802852331 

C 3.5645144119 2.7188571516 -1.0371576265 

C 2.7752085563 3.8339648035 -0.8153874375 

C 1.4186723854 3.6510558945 -0.6485416140 

C 0.9115043023 0.0335670030 -0.9384854417 

C 1.5967331765 -1.1658615265 -1.0942424081 
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C 0.8798940577 -2.3502683912 -1.1220703253 

C -0.4972880087 -2.3106267460 -0.9936945847 

C -1.1038340971 -1.0753474082 -0.8377129076 

H 3.5769833804 0.5968689697 -1.2574521288 

H 4.6337342327 2.8164428351 -1.1765764948 

H 3.1921561552 4.8305966575 -0.7719898059 

H 0.7600801194 4.4901037680 -0.4741048007 

H 2.6723303583 -1.1919213039 -1.1890407583 

H 1.3964973571 -3.2941280345 -1.2421812304 

H -1.0945156655 -3.2122802784 -1.0113149191 

H -2.1791289167 -0.9935119420 -0.7309720738 

N -0.4155040848 0.0591108447 -0.8112674237 

N 0.8446400637 2.4414005498 -0.6914726487 

Au -1.2414719678 2.3035283482 -0.4547286428 

N -3.1124598884 2.8182151691 -0.1693061936 

N -4.1675044120 3.0637778261 -0.0149380354 
 

[Ag(phen)]+ 

 X Y Z 

C -3.1046575186 -6.6160060046 -0.0042996648 

C -1.7364565523 -6.6703347030 -0.0052496996 

C -0.9889124535 -5.4805120830 -0.0037390483 

C -1.6922567409 -4.2585379288 -0.0013003934 

C -3.7203440720 -5.3629875073 -0.0017808653 

C 0.4361890752 -5.4928891631 -0.0046382419 

C -0.9413650557 -3.0207641710 0.0001564646 

C 0.4673027390 -3.0797896921 -0.0009309082 

C 1.1368335166 -4.3377827578 -0.0032808041 

C 1.1772403804 -1.8672568013 0.0003575923 

H 2.2607544748 -1.8886995234 -0.0004508735 

C 0.4969290750 -0.6788901724 0.0026079697 

C -0.8987907150 -0.7117156358 0.0036520925 

H 0.9442788929 -6.4494897949 -0.0064478850 

H -3.7108119466 -7.5116976360 -0.0053940385 

H -1.2169579281 -7.6214324461 -0.0071585695 

H -4.8011972601 -5.2872041001 -0.0009023197 

H 2.2199437826 -4.3460315166 -0.0039566740 

H 1.0112534585 0.2724944326 0.0036288275 

H -1.4655208609 0.2117136591 0.0055376677 

N -1.5907378810 -1.8360952532 0.0024833055 

N -3.0428999082 -4.2300352770 -0.0003516604 

Ag -3.8259653422 -2.1115658941 0.0042491564 
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[H2OAg(phen)]+ 

 X Y Z 

C -4.6164725612 -5.3538543055 0.0071096008 

C -3.2538785327 -5.4952523405 -0.0088998920 

C -2.4364602024 -4.3537538983 -0.0096710720 

C -3.0674444682 -3.0935082091 0.0056579862 

C -5.1534708805 -4.0648182401 0.0217243039 

C -1.0134541660 -4.4433068490 -0.0244213999 

C -2.2512420508 -1.9017591327 0.0069205927| 

C -0.8482099609 -2.0340977185 -0.0067263343 

C -0.2500032991 -3.3283989145 -0.0228873357 

C -0.0796879648 -0.8590676577 -0.0028951711 

H 1.0016510023 -0.9306072721 -0.0129367112 

C -0.7044755987 0.3601133594 0.0142323676 

C -2.1004913439 0.3941487650 0.0266740183 

H -0.5578817363 -5.4260512898 -0.0362566184 

H -5.2761507969 -6.2109780712 0.0089571444 

H -2.7960644723 -6.4774730922 -0.0204494984 

H -6.2277444745 -3.9235805873 0.0353327082 

H 0.8309990020 -3.3978916038 -0.0333742777 

H -0.1440842071 1.2851975498 0.0185489077 

H -2.6209185417 1.3445361238 0.0411073650 

N -2.8485553198 -0.6932070601 0.0225756577 

N -4.4103591314 -2.9739156522 0.0206430677 

Ag -5.1266617961 -0.8122271557 0.0444786713 

O -6.9518298874 0.4651593199 0.1184970275 

 

[N2Ag(phen)]+ 

 X Y Z 

C -2.9274271129 -6.7930895685 -0.0050217298 

C -1.5571051667 -6.7999951250 -0.0052117580 

C -0.8546227201 -5.5838222990 -0.0037125345 

C -1.6066853196 -4.3929250880 -0.0020144814 

C -3.5902451230 -5.5641693652 -0.0033237322 

C 0.5702798407 -5.5300267572 -0.0038872466 

C -0.9153185142 -3.1268407986 -0.0004818398 

C 0.4932094780 -3.1158935876 -0.0007503130 

C 1.2181195993 -4.3437925084 -0.0024719901 

C 1.1366926491 -1.8675315504 0.0007186207 

H 2.2196895631 -1.8272063738 0.0005270786 

C 0.3901142299 -0.7184524161 0.0023441977 

C -1.0020770973 -0.8250252671 0.0025344076 

H 1.1225729166 -6.4618746556 -0.0052046368 
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H -3.4996403875 -7.7108503141 -0.0061831921 

H -1.0056065211 -7.7329352889 -0.0065496389 

H -4.6730719970 -5.5279339888 -0.0031503911 

H 2.3006261829 -4.3046718318 -0.0026280341 

H 0.8530127423 0.2590080235 0.0034833206 

H -1.6177428662 0.0664894338 0.0038198807 

N -1.6336877116 -1.9847582061 0.0011961619 

N -2.9558856982 -4.4059796087 -0.0018103639 

Ag -3.8591311866 -2.3423442863 0.0014629824 

N -5.7237856552 -1.3207227946 0.0031591766 

N -6.6798233446 -0.7958345076 0.0039703454 

 

[Au(Phen)]+ 

 X Y Z 

C -3.8217155493 -6.1146933588 -0.0043636057 

C -2.4528790581 -6.1738660321 -0.0050338003 

C -1.7001758370 -4.9878496526 -0.0036414270 

C -2.3986755948 -3.7641348783 -0.0013597977 

C -4.4373162066 -4.8625724643 -0.0019444306 

C -0.2747472281 -5.0005952078 -0.0045373477 

C -1.6465546781 -2.5275991986 0.0000055407 

C -0.2387962956 -2.5863013227 -0.0009372766 

C 0.4274969828 -3.8464625923 -0.0032353005 

C 0.4688715447 -1.3728657942 0.0003761847 

H 1.5523707090 -1.3913393900 -0.0004947529 

C -0.2129671652 -0.1844836129 0.0024474442 

C -1.6083744567 -0.2132541210 0.0036275806 

H 0.2325793871 -5.9575727744 -0.0062396363 

H -4.4297629297 -7.0090959049 -0.0057440885 

H -1.9387851856 -7.1277956660 -0.0069807990 

H -5.5162653627 -4.7771756847 -0.0015247019 

H 1.5105668721 -3.8572264083 -0.0038678495 

H 0.3021441855 0.7664983973 0.0032330313 

H -2.1801697566 0.7058067798 0.0051315724 

N -3.7474760243 -3.7365268410 -0.0001899528 

N -2.2917435211 -1.3428795906 0.0026071778 

Au -4.4971574917 -1.6523342816 0.0054576651 

 

[H2OAu(phen)]+ 

 X Y Z 

C -3.9295162018 -5.9229875418 -0.0327478645 

C -2.5687822861 -6.0749355964 -0.0188729299 
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C -1.7424279254 -4.9386502568 -0.0066455599 

C -2.3707463748 -3.6752126074 -0.0092652580 

C -4.4544120042 -4.6248207895 -0.0341973079 

C -0.3219926038 -5.0409742322 0.0079022277 

C -1.5475877359 -2.4875587332 0.0029619998 

C -0.1430385677 -2.6321487110 0.0173695474 

C 0.4462573083 -3.9306123562 0.0194881647 

C 0.6525084855 -1.4780734276 0.0292454966 

H 1.7313938306 -1.5787927106 0.0402151427 

C 0.0609950135 -0.2423498926 0.0268072186 

C -1.3262857047 -0.1694248088 0.0122821792 

H 0.1284594277 -6.0262580638 0.0094363952 

H -4.5942708355 -6.7765400963 -0.0424507566 

H -2.1169504584 -7.0599650276 -0.0172237217 

H -5.5283958141 -4.4694404177 -0.0451537093 

H 1.5268766897 -4.0020069869 0.0305228168 

H 0.6404400010 0.6703439228 0.0356983996 

H -1.8276935517 0.7874362992 0.0098015159 

N -3.7048584968 -3.5456625282 -0.0228109260 

N -2.1056133632 -1.2481049241 0.0006752144 

Au -4.1192255663 -0.9505835320 -0.0215703197 

O -6.1748091872 -0.4884973408 -0.0477735649 

H -6.4407533888 0.0358777132 -0.8105648117 

H -6.4719959401 -0.0122254436 0.7348013416 

 

[N2Au(phen)]+ 

 X Y Z 

C -3.7644459589 -6.2115669384 -0.0058824215 

C -2.3947366517 -6.2506061575 -0.0046221093 

C -1.6659037533 -5.0490289738 -0.0031903701 

C -2.4008950643 -3.8481278978 -0.0031690251 

C -4.4017685211 -4.9652798960 -0.0056939370 

C -0.2409209862 -5.0144104185 -0.0018109727 

C -1.6950574573 -2.5948027564 -0.0017625571 

C -0.2865266912 -2.5975552456 -0.0004243946 

C 0.4212618417 -3.8358466238 -0.0004801583 

C 0.3773742265 -1.3618075258 0.0009119393 

H 1.4608401831 -1.3401319059 0.0019331318 

C -0.3484154785 -0.1983536330 0.0008921947 

C -1.7374019310 -0.2736503752 -0.0004676903 

H 0.3015736477 -5.9520861618 -0.0018450091 

H -4.3553893465 -7.1176768474 -0.0069902025 

H -1.8646326786 -7.1957877979 -0.0046982414 
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H -5.4844845818 -4.9041836835 -0.0066252048 

H 1.5039325107 -3.8084764025 0.0005735424 

H 0.1294416419 0.7715219018 0.0018957332 

H -2.3389512756 0.6245363311 -0.0005226207 

N -3.7423952430 -3.8265901522 -0.0043834380 

N -2.3906252932 -1.4314835030 -0.0017300661 

Au -4.4677116050 -1.4372964194 -0.0037939963 

N -6.3668487900 -0.9380331552 -0.0052481986 

N -7.4338241444 -0.6985335023 -0.0060449177 

 

[Cu(phen)]+ 

 X Y Z 

C -3.3435375290 -5.7496854575 -0.0028324001 

C -1.9752259117 -5.8233192761 -0.0041648019 

C -1.2114804621 -4.6432564511 -0.0028532919 

C -1.9024962610 -3.4187750802 -0.0000351755 

C -3.9501199172 -4.4919225956 -0.0001973146 

C 0.2146380142 -4.6558664096 -0.0043539676 

C -1.1501242834 -2.1858054131 0.0014297151 

C 0.2548860475 -2.2395005888 -0.0002217086 

C 0.9188683181 -3.5015247388 -0.0031317016 

C 0.9541679985 -1.0201752465 0.0010860276 

H 2.0378421798 -1.0287993431 -0.0001918308 

C 0.2620527362 0.1626087531 0.0038827761 

C -1.1338799237 0.1260038129 0.0055136929 

H 0.7229831371 -5.6123458652 -0.0066140015 

H -3.9587792666 -6.6391043038 -0.0039320528 

H -1.4713418258 -6.7827574037 -0.0064578594 

H -5.0292951913 -4.4013903245 0.0007435602 

H 2.0019299561 -3.5155164371 -0.0043371688 

H 0.7710701116 1.1168049592 0.0049417880 

H -1.7088437059 1.0437151847 0.0078416697 

N -3.2579819266 -3.3664377203 0.0012751351 

N -1.8170768539 -1.0049812225 0.0043878003 

Cu -3.7358810110 -1.4539783023 0.0061340600 

 

[H2OCu(phen)]+ 

 X Y Z 

C -3.3856962568 -5.6306575147 -0.0105350016 

C -2.0222202727 -5.7744063809 0.0042649997 

C -1.2059657681 -4.6314139751 0.0067127417 

C -1.8453361603 -3.3800603957 -0.0055251035 
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C -3.9302908111 -4.3437343841 -0.0219578275 

C 0.2196194629 -4.6943396931 0.0199208422 

C -1.0532280484 -2.1815726293 -0.0060979242 

C 0.3484954812 -2.2786773802 0.0057703959 

C 0.9655148954 -3.5654105972 0.0194656913 

C 1.0801241792 -1.0797874627 0.0024065527 

H 2.1632675858 -1.1134323688 0.0111296345 

C 0.4134295144 0.1182811546 -0.0126524316 

C -0.9837653507 0.1152679560 -0.0235809275 

H 0.6942363261 -5.6680510841 0.0297423610 

H -4.0438223495 -6.4889777256 -0.0137657283 

H -1.5668637505 -6.7577508479 0.0134474202 

H -5.0047709120 -4.2060508476 -0.0345566840 

H 2.0473615948 -3.6199532332 0.0288537579 

H 0.9449605434 1.0602250068 -0.0165356640 

H -1.5315998394 1.0495915514 -0.0363767080 

N -3.1898889863 -3.2497120979 -0.0189641946 

N -1.7002059640 -0.9951254680 -0.0199446685 

Cu -3.6886024793 -1.2852657460 -0.0334061938 

O -5.3513789136 -0.2529813922 -0.0844356858 

H -5.4002697177 0.6891739118 0.0915419767| 

H -6.2151169927 -0.6240509162 0.1084925991 

 

[N2Cu(phen)]+ 

 X Y Z 

C -3.2742779992 -5.8626919114 -0.0021617713 

C -1.9032924597 -5.9069038407 -0.0059144237 

C -1.1697077765 -4.7083198430 -0.0041582526 

C -1.8988800911 -3.5087754793 0.0014095930 

C -3.9137248119 -4.6204267724 0.0034204423 

C 0.2568198845 -4.6621070729 -0.0077981483 

C -1.2016090411 -2.2555040616 0.0034101978 

C 0.2021916088 -2.2426731453 -0.0002833719 

C 0.9150095797 -3.4791150711 -0.0059339301 

C 0.8339412916 -0.9874892823 0.0018336141 

H 1.9162887860 -0.9326697767 -0.0008767949 

C 0.0734491106 0.1541046158 0.0073118885 

C -1.3192079719 0.0426061787 0.0106949604 

H 0.8048918933 -5.5964085409 -0.0121073813 

H -3.8677580920 -6.7668037262 -0.0034367422 

H -1.3792089207 -6.8554812343 -0.0102490283 

H -4.9950366464 -4.5580176530 0.0063216168 

H 1.9978526613 -3.4519432433 -0.0087112732 
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H 0.5287283439 1.1350958645 0.0090720588 

H -1.9421759676 0.9286243123 0.0150490408 

N -3.2503811425 -3.4771889992 0.0050733132 

N -1.9409878509 -1.1238774797 0.0088301033 

Cu -3.8952314937 -1.5769847888 0.0126669028 

N -5.4989577244 -0.6861875121 0.0200355891 

N -6.4564303204 -0.1555257270 0.0244306871 

 

H2O 

 X Y Z 

O -0.0127595829 -0.4993376679 0.0000000000 

H 0.9443155624 -0.4566627288 0.0000000000 

H -0.2920105695 0.4170859768 0.0000000000 
 

N2 

 X Y Z 

N -4.3943423920 0.1470588200 0.0000000000 

N -5.4844223880 0.1470588200 0.0000000000 
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