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ABSTRACT

LEARNING TO ACT WITH ROBUSTNESS

by

Reazul Hasan Russel

University of New Hampshire, September, 2021

Reinforcement Learning (RL) is learning to act in different situations to maximize a nu-

merical reward signal. The most common approach of formalizing RL is to use the framework

of optimal control in an inadequately known Markov Decision Process (MDP). Traditional

approaches toward solving RL problems build on two common assumptions: i) exploration

is allowed for the purpose of learning the MDP model and ii) optimizing for the expected

objective is sufficient. These assumptions comfortably hold for many simulated domains like

games (e.g. Atari, Go), but are not sufficient for many real-world problems. Consider for

example the domain of precision medicine for personalized treatment. Adopting a medical

treatment for the sole purpose of learning its impact is prohibitive. It is also not permis-

sible to embrace a specific treatment procedure by considering only the expected outcome,

ignoring the potential of worst-case undesirable effects. Therefore, applying RL to solve

real-world problems brings some additional challenges to address.

In this thesis, we assume that exploration is impossible because of the sensitivity of actions

in the domain. We therefore adopt a Batch RL framework, which operates with a logged set

of fixed dataset without interacting with the environment. We also accept the need of finding

xiv



solutions that work well in both average and worst case situations, we label such solutions

as robust. We consider the robust MDP (RMDP) framework for handling these challenges.

RMDPs provide the foundations of quantifying the uncertainties about the model by using so

called ambiguity sets. Ambiguity sets represent the set of plausible transition probabilities

- which is usually constructed as a multi-dimensional confidence region. Ambiguity sets

determine the trade-off between robustness and average-case performance of an RMDP.

This thesis presents a novel approach to optimizing the shape of ambiguity sets con-

structed with weighted L1−norm. We derive new high-confidence sampling bounds for

weighted L1 ambiguity sets and describe how to compute near-optimal weights from coarse

estimates of value functions. Experimental results on a diverse set of benchmarks show that

optimized ambiguity sets provide significantly tighter robustness guarantees.

In addition to reshaping the ambiguity sets, it is also desirable to optimize the size

and position of the sets for further improvement in performance. In this regard, this thesis

presents a method for constructing ambiguity sets that can achieve less conservative solutions

with the same worst-case guarantees by 1) leveraging a Bayesian prior, and 2) relaxing the

requirement that the set is a confidence interval. Our theoretical analysis establishes the

safety of the proposed method, and the empirical results demonstrate its practical promise.

In addition to optimizing ambiguity sets for RMDPs, this thesis also proposes a new

paradigm for incorporating robustness into the constrained-MDP framework. We apply

robustness to both the rewards and constrained-costs, because robustness is equally (if not

more) important for the constrained costs as well. We derive required gradient update rules

and propose a policy gradient class of algorithm. The performance of the proposed algorithm

is evaluated on several problem domains.

Parallel to Robust-MDPs, a slightly different perspective on handling model uncertainties

is to compute soft-robust solutions using a risk measure (e.g. Value-at-Risk or Conditional

Value-at-Risk). In high-stakes domains, it is important to quantify and manage risk that

arises from inherently stochastic transitions between different states of the model. Most
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prior work on robust RL and risk-averse RL address the inherent transition uncertainty and

model uncertainty independently. This thesis proposes a unified Risk-Averse Soft-Robust

(RASR) framework that quantifies both model and transition uncertainties together. We

show that the RASR objective can be solved efficiently when formulated using the Entropic

risk measure. We also report theoretical analysis and empirical evidences on several problem

domains.

The methods presented in this thesis can potentially be applied in many practical ap-

plications of artificial intelligence, such as agriculture, healthcare, robotics and so on. They

help us to broaden our understanding toward computing robust solutions to safety critical

domains. Having robust and more realistic solutions to sensitive practical problems can in-

spire widespread adoption of AI to solve challenging real world problems, potentially leading

toward the pinnacle of the age of automation.
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CHAPTER 1

INTRODUCTION

Artificial Intelligence (AI) is defined as the study of rational actions based on situations.

Learning a sequence of actions to achieve a goal is known as planning- which is an important

sub-field of AI. Typical planning involves an agent that can perceive a situation through

its sensors and can act depending on that [1]. AI devises a well trained agent capable of

taking sensible actions based on the perceptions. Planning usually involves a finite set of

distinct situations, a finite set of actions, a dynamics of the model specifying the outcome

of each action and an objective function to optimize. Typical planning takes the predictive

model dynamics as granted without worrying about where they come from [2]. This thesis

deviates from such conventional approach and seeks to develop a goal-seeking agent that

operates in an uncertain environment. The target is to optimize the interplay between

planning and real-time action selection while also learning about a model dynamics of the

environment. Methods optimizing such objectives are traditionally known as Reinforcement

Learning (RL). Learning from trial-and-error and dealing with delayed reward feedback are

two main distinguished features of RL. In this thesis, we will focus on planning problems

involving sequential decision making under model uncertainty.

Uncertainty is an inherent part of real-world optimization problems, meaning the prob-

lem is not known exactly when it is being solved. Measurement/estimation errors in the data

collection process, implementation errors due to the impossibility of implementing a solution

exactly, limited data-sets, modeling errors are some common reasons for data uncertainty.

It is common in real-world problems that a small uncertainty in data can make the nominal
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Figure 1.1: Inventory control problem to meet customer demands.

solution practically meaningless. This issue can get magnified for problems involving sequen-

tial decision making, yielding a different type of ”curse” that requires attention and cure.

This is known as curse of uncertainty. This refers to the fact that the solution to a sequential

decision making problem can be very sensitive with respect to the model uncertainty, when

the model dynamics is estimated from samples. As a result, any RL method needs to handle

this uncertainty in a tractable way.

We now describe two specific examples: i) inventory management and ii) invasive species

management. Both examples involve sequential decision making under model uncertainty.

They will help us better understand the context of the problems and their associated chal-

lenges.

Inventory Management Inventory control problems are one among the earliest areas

of application for sequential decision making models. The scope of the model is to determine

the optimal reorder level for a single product in a single store at each decision epoch (e.g.

week or month). The amount of a product available in stock at the time of review represents

the system state. The action corresponding to a state represents the amount of product to

order from the warehouse. Transition to a next state is determined by the order amount and

the random customer demand for the product throughout the decision epoch. The demand

distribution is usually unknown, associates significantly high uncertainty and is estimated

from historical data. A decision rule specifies the restocking amount as a function of the

2



Figure 1.2: Managing invasive species.

state representing the current inventory level at hand. The goal is to find a reordering policy

that is able to meet the customer demands while minimizing the long-run average ordering

and inventory carrying costs. A detail description of the model can be found in Chapters

1.2 and 3.2 of [3] and also in [4].

Invasive Species Management Ecological models are often complex, stochastic in

nature, data collection is expensive and also involves a lot of uncertainty. Developing an

optimal management strategy is therefore very difficult. Yet it is important that the decisions

are robust due to their long term impacts. In this invasive species management problem, the

population dynamics of the species is modeled in an ecosystem where the abundance level of

the species represents a state. The state space evolves according to an exponential population

dynamics. The land manager has a choice to apply or not to apply a treatment action based

on the current population. Applying a control measure incurs an immediate cost, but can

bring future retribution with species being under control. The affects of a treatment action

depends on the current population level and is highly variable due to many environmental

factors. Data available to model the population dynamics are usually not sufficient to infer

a precise model. The goal is then to develop a good strategy that remains effective even

when the reality significantly deviates from what the data-set asserts. A detailed description

3



of the model can be found in Section 4.2 of [5] and also in Chapter 5 of [6]. This species

management problem is a an instance of sequential decision making because the decision

about treatment measure has a temporal aspect. The land manager needs to periodically

decide about the action to take in different instances of times.

These two problems, however, are some mere examples. Almost all control system engi-

neering problems involve sequential decision making and therefore can be formulated as an

RL problem. However, a precise model for planning may not be readily available for such

problems. This thesis proposes methods to compute robust and risk-sensitive solutions for

such problems when the model dynamics are not known precisely.

1.1 Framework

Figure 1.3: Sequential Decision Making.

Reinforcement Learning (RL) is a branch of ma-

chine learning that aims to develop intelligent

agents capable of learning to act in an unknown

environment. The goal is to optimize some long-

term objectives represented by a scalar value

known as reward signal. We assume in this thesis

that the environment dynamics is stochastic and

the states of the environment are fully observ-

able. Markov Decision Processes (MDPs) pro-

vide a versatile framework for modeling RL prob-

lems with these characteristics. MDPs incorpo-

rate three essential aspects required for learning,

namely: sensation of the situations, notion of actions applicable in a situation and the

concept of a goal or objective. RL involves simultaneous learning of good actions in differ-

ent situations (exploitation) along with learning about the dynamics of the unknown MDP

model (exploration). This poses one unique challenge for RL which is commonly known as

4



exploration-exploitation trade-off.

MDP is a simple model capable of representing an RL problem with a finite set of states,

a finite set of actions, transitions between states and a reward signal. The objective is to

maximize the discounted infinite-horizon sum of rewards, where rewards from distant future

have discounted values but are not irrelevant. MDPs provide enough flexibility to model

a wide variety of different problems. In general, MDPs are learned from historical data.

Given a precise MDP model for a problem, a reasonable solution can be computed in a

tractable way. It is also easy to incorporate different assumptions and constraints into an

MDP framework to better model a specific problem. Such flexibility gives rise to many

variations of MDPs, including but not limited to: Constrained MDPs (CMDPs), Robust

MDPs (RMDPs), Partially Observable MDPs (POMDPs), Continuous-time MDPs and so

on. One particular flavor of MDPs we will be using throughout this thesis is RMDP, where

the transition probability is uncertain and the objective is to maximize the worst-case value

within a set of plausible models. These models are discussed in more detail in the next

chapter.

1.2 Challenges in Real-World Decision Making

Recently RL has been used to solve several challenging simulated domains and games like

Go, Atari, StarCraft etc. [7, 8]. Training RL methods to solve such simulated games have

several advantages like: data is unlimited and can be obtained at will from simulation, the

system dynamics are often deterministic and stationary, poor choice of actions does not have

costly consequences and exploration is welcome to the highest extent.

Having impressive successes in simulated games and synthetic domains, RL has a high

potential to make an impact on real-world problems involving sequential decisions. Such

problems are common in agriculture, resource management, inventory management, per-

sonalized recommendation systems, healthcare, autonomous driving, and robotics. Yet our

understanding of applying RL to solve these problems is limited. Some of the main challenges
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of applying RL to solve a real-world problem are:

� It is often very costly to make a mistake. For example, trying a medication just to

learn its impact is risky and can cause severe harm to a patient. So, exploration to

collect more data in the real world is not always practical.

� The amount of data available to train an RL agent is often limited. Gathering more

data can be restrictive as well. For example, autonomous vehicles cannot simply keep

driving on roads just to collect more data without worrying about the safety of others.

� It is a very common requirement for sensitive problems to learn solutions that can

provide a guarantee about its worst-case performance. For example, in an electric

power system decision and control problem, any learned control law needs to guarantee

that power system outage is not going to happen.

While such challenges are not there in simulated domains like games, they are indeed a

part of most real-world problems. One common fact is that, it is not feasible to develop a

good simulator for most real world problems as well. Because they are complex, inherently

stochastic, evolve in a non-stationary way, have strong safety constraints, and simulating

them can be difficult and costly in terms of both time and money. So, building a perfect

simulator and then keep training with unlimited data is not a way to go. Moreover, only op-

timizing the expected return can be insufficient for most real world problems. So, developing

solutions for real world problems poses a different and harder set of challenges.

1.3 Contributions

The goal of this thesis is to develop robust and risk-averse algorithms for problems requir-

ing sequential decision making. We use robust MDPs (RMDPs) to compute policies with

provable worst-case guarantees in reinforcement learning. The quality and robustness of

an RMDP solution are determined by the ambiguity set−the set of plausible transition
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probabilities−which is usually constructed as a multi-dimensional confidence region. We de-

part from the traditional methods of constructing ambiguity sets as confidence regions using

concentration inequalities, which usually leads to overly conservative solutions. The main

contributions in this direction are:

� Computing weights from the value function estimates to customize the shape of the

ambiguity sets for a specific problem. Show that the structure of a near-optimal am-

biguity set is problem specific and need not be uniform and symmetric in shape.

� Incorporating prior knowledge using Bayesian inference and optimize the size and po-

sition of the ambiguity sets. Show that the novel ambiguity sets are tractable, sig-

nificantly less conservative than existing ones and are guaranteed to provide a robust

estimate.

Constrained-MDPs (CMDPs) are a super class of MDPs that incorporate multiple reward

functions. One reward function is used to set the optimization objective and the others

are used to set some constraints restricting the space of admissible policies. Many practical

problems come with such constraints and the CMDP framework provides a useful model to

deal with them. While robustness is important in general MDPs, it is also important to

incorporate robustness on the constraint costs. In this regard, this thesis contributes in:

� Incorporating robustness to both objective and constraints of CMDPs, leading to a

new paradigm of Robust-CMDPs (RCMDPs). We derive the associated optimization

objective and propose a policy optimization technique.

A class of methods that build on robust optimization but employ different risk measures

and reduce conservativeness are known as epistemic risk aversion [9] or soft-robustness [10,

11]. These methods also estimate the range of possible models consistent with the observed

data and then optimize a policy with respect to a risk metric across different models. This

thesis uses entropic risk measure, which is an exponential utility based convex risk measure

and contributes in:
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� Developing a unified Risk-Averse Soft-Robust (RASR) framework that quantifies and

manages both model and transition uncertainties. We propose a tabular method for

RASR framework and also present its scaled up version for larger problems.

For all the proposed ideas, we report relevant theoretical analysis along with empirical

evaluation on several problem domains.

1.4 Outline

The thesis is organized as follows: Chapter 2 presents the foundations of RL and describes

many of the relevant concepts required to formulate the research ideas presented in later

chapters of the thesis. Chapter 3 presents the detailed derivations and theories of weighted

norm-bounded ambiguity sets. Construction of near-optimal ambiguity sets under Bayesian

framework is presented in Chapter 4. Chapter 5 describes the unified Robust-CMDP frame-

work and proposes the constrained robust policy optimization techniques. Chapter 6 presents

the Risk-Averse Soft-Robust (RASR) framework along with relevant theoretical and empir-

ical analysis.
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CHAPTER 2

REINFORCEMENT LEARNING AND ROBUSTNESS

Reinforcement Learning is learning to map situations to actions that maximize a long term

objective [2, 12]. The actions are not labeled for training, rather the agent needs to learn

about most rewarding actions by trying them. An action affects both the immediate reward

and the next state yielding short and long term consequences.

An important (but not compulsory) component of the reinforcement learning framework

is a model of the environment. This thesis focuses on dynamical decision making in stochastic

environment represented by a model with finite set of states and a finite set of actions. The

dynamics of the stochastic system is represented by a transition probability distribution.

This distribution is supposed to be known in an ideal world, but unfortunately that is not

the case in reality. We assume throughout this thesis that this transition distribution is

uncertain and resides within an ambiguity set. The nature plays against the decision maker

at each decision stage by picking an adversarial transition within that uncertainty set. The

goal in robust RL is to maximize the worst-case expected value over the set of plausible

adversarial actions. In this section, we formalize the framework of robust RL that we use in

this thesis.

Before going into the details in later sections, we now specify some important definitions

and notations: we use vectors x ∈ Rn throughout this thesis to represent various quantities.

All vectors are column vectors in finite dimensional spaces unless otherwise specified. Vectors

111 and 000 denote all ones and zeros respectively of an appropriate size suitable for the context.

An identity matrix of appropriate size is represented by III.

9



Definition 2.0.1. (Vector Norm) Let us assume that x ∈ Rn is a vector. A norm ‖x‖ :

x → R is a function from vector x to a real number representing some sense of length or

magnitude of the vector x. Following are the definitions of some specific norms:

� Lp norm: ‖x‖p = (
∑n

i=1 |xi|p)
1
p

� L1 norm: ‖x‖1 =
∑n

i=1 |xi|

� L∞ norm: ‖x‖∞ = maxni=1 |xi|

� Weighted L1 norm: ‖x‖1,w =
∑n

i=1wi|xi|

� Span seminorm: ‖x‖s = maxni=1 xi−minni=1 xi, where span seminorm satisfies all the

properties of a norm except that ‖x‖s = 0 does not imply that x = 0.

� Dual norm: ‖z‖? = sup {zᵀx : ‖x‖ ≤ 1}, it is well known that dual norms to L1, L2,

and L∞ are norms L∞, L2, and L1 respectively.

2.1 Markov Decision Processes (MDPs)

Markov Decision Process (MDP) is the standard mathematical framework to model the

environment for reinforcement learning [2, 3, 13]. An MDP is a tuple, M = (S,A, P, r, p0),

where S = {1, . . . , S} is a finite set of states, A = {1, . . . , A} is a finite set of actions,

P : S × A × S → [0, 1] is the transition probability defining the next state s′ given the

current state s and action a, and r : S × A → R is a reward function. The rewards are

known but the true transition probabilities P ? : S × A → R are unknown. An initial state

distribution p0 : S → [0, 1] is such that
∑

s∈S p0(s) = 1. At each time step t = 1, . . . , T , the

decision maker observes a state st ∈ S, takes an action at ∈ A, receives a reward rt ∈ R and

transitions to a new state st+1 ∼ P (st, at). This thesis focuses on maximizing the utility for

the infinite horizon discounted MDP, where utility is the γ−discounted cumulative sum of

10



rewards. With γ < 1 and |r| ≤ Rmax, the utility for a sequence of states is defined as:

v([s0, s1, . . .]) = r(s1) + γr(s2) + γ2r(s3) + . . .

=
∞∑
t=0

γtr(st+1)

≤
∞∑
t=0

γtRmax

= Rmax/(1− γ)

The goal is to learn a policy mapping each state to an action that maximizes the utility.

Definition 2.1.1. (Policy)( [3]) A policy represented by π is defined as a mapping from a

state s ∈ S to possible actions a ∈ A. A deterministic policy π : S → A maps one action to

each state of the MDP and a randomized policy π : S → ∆A assigns a distribution over the

available actions in each state of the MDP. The set of all deterministic stationary policies is

denoted by Π.

For infinite-horizon discounted MDPs used in this thesis, there always exists an optimal

deterministic and stationary policy [3]. Our focus in this thesis therefore remains on sta-

tionary policies where the optimal actions in the same state stay constant over time. We

consider both deterministic and stochastic policies in different parts of this thesis depending

on the problem settings.

Throughout the thesis, the matrix Pπ will denote the transition probability matrix where

rows represent the from states and columns represent the to states. For ay states s, s′ ∈ S:

Pπ(s, s′) =
∑
a∈A

π(s, a)P (s, a, s′)

The rewards rπ for a state s and policy π is defined as:

rπ(s) =
∑
a∈A

π(s, a) · Pπ(s, a)T r(s, a)

11



The optimization objective with a policy π is the expected utility of executing π starting at

state s0 ∈ S and is expressed as:

vπ(s0) = EP

[
∞∑
t=0

γtr(st, π(st))

]

Where the expectation is with respect to the transition probability distributions determined

by s and π. This expected utility is known as the value function.

Definition 2.1.2. (Value Function)( [3]) A value function v : s→ R is an estimate of the

expected utility of being in a state s when following a policy π.

The optimal policies are often represented with a value function, as shown later in defi-

nition 2.1.4. Now, among all the available stationary stochastic policies Π, there exist one

(or more) policy which has a higher value function compared to all others. This is called an

optimal policy and is denoted as π?s :

π?s ∈ arg max
π∈Π

vπ(s)

Note that the optimal policy π? is independent of the initial state in the infinite horizon

MDPs. Because this thesis analyzes the impact of using different transition probabilities

as the true transition model is unknown, we use a subscript to indicate which ones are

used. The optimal value function for some transition probabilities P is, therefore, denoted

as v?P : S → R, and the value function for a deterministic policy π : S → A is denoted as

vπP . The total return ρ(π, P ) of a policy π under transition probabilities P is:

ρ(π, P ) = pT0 v
π
P ,

where p0 is the initial state distribution.

As the value of being in a state is determined as the expected sum of discounted rewards

from that state onward, it is therefore obvious that there is a relationship between the value
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function of a state and it’s neighbors. The value function of a state s can be decomposed

as the immediate reward of state s plus the expected discounted values of next states s′

following an optimal action a ∈ A:

v(s) = max
a∈A

(
r(s, a) + γ

∑
s′

P (s′|s, a)v(s′)
)

(2.1)

This famous recursive formulation is known as Bellman optimality equation [14]. The value

function of the states are solutions of the set of Bellman equations. There are n Bellman

equations when total number of states is n, one associated to each state. The n equations

contain n unknowns representing the utilities of the states. But the equations are not linear

because of the max operator and therefore cannot be solved using linear algebra techniques.

This set of equations can instead be solved in an iterative way, which is the basis for many

techniques in the RL literature including a fundamental algorithm known as value iteration.

The value function for state s and a policy π is vπ(s) and satisfies:

vπ(s) = r(s, a) + γ
∑
s′

P (s′|s, π(s))vπ(s′) (2.2)

This is known as the Bellman equation for policy evaluation. While the Bellman optimality

equation defined in (2.1) involves a max operator and is non-linear, the policy evaluation in

equation (2.2) is linear. Therefore, the policy evaluation question involves a system of linear

equations and can be solved quickly using linear programming techniques.

The Bellman optimality equation (2.1) is a contraction and is guaranteed to converge

to a fixed point. Finding a fixed point of the nonlinear Bellman operator is equivalent to

finding the optimal value function, which then leads to an optimal policy.

Definition 2.1.3. (Bellman Operator)( [3]) The Bellman operator T : RS → RS and the
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policy evaluation update Tπ : RS → RS for a policy π are defined as:

Tπv = rπ + γPπv

Tv = max
π∈Π

Tπv

Here T is a non-linear operator representing (2.1) and Tπ is an affine operator representing

(2.2). The operator T is usually defined with a state-wise decomposition. The optimal value

function v? ∈ RS is achieved if and only if the Bellman operator reaches a stationary point:

v? = Tv? [14]. The simplest way to compute an optimal policy from the optimal value

function is to take the greedy policy with respect to the value function.

Definition 2.1.4. (Greedy Policy)( [3]) A greedy policy takes in each state the action

that maximizes the expected value of transitioning to the following state.

π(s) = arg max
a∈A(s)

+γ
∑
s′∈S

P (s, a, s′)v(s′)

Therefore, an optimal policy can be obtained easily from an optimal value function. But

unfortunately, there is no known strongly-polynomial algorithm that can solve an MDP

in a number of arithmetic operations polynomial in S and A [15, 16]. The computational

complexity for solving an infinite horizon γ−discounted MDP is P-complete [15].

Given a policy π, the value function induced by π can be determined in O(S3) arithmetic

operations by solving a system of linear equations, as of (2.2) for each s ∈ S. And policy

improvement (2.1) can be performed in O(S2A) operations [3,17]. The total running time for

MDP solution methods (e.g. value iteration, policy iteration) is therefore polynomial if and

only if the total number of iterations required to find an optimal policy is polynomial [16].

One exception is the linear programming based solution method for MDPs [3], which requires

number of arithmetic operations polynomial in S, A and B. Here B represents the maximum

number of bits required to represent any transition P or reward r [16].
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2.2 Batch Reinforcement Learning

Collect dataset D
from any policy π

Batch Learning

Learn near-optimal
policy π? from D

Deploy learned
policy π?

Figure 2.1: Batch reinforcement learning with three sequential phases.

Many of the algorithms presented in this thesis operate in a batch reinforcement learn-

ing [18] setup, where a policy needs to be computed from a logged dataset without interacting

with the environment. This setting is common when experimentation is either too expensive

or time-consuming, such as in medical care, agriculture, or even robotics.

Definition 2.2.1. (Batch RL) ( [18]) The batch RL task is to find a policy that maximizes

the expected sum of rewards within the general agent-environment loop of classical RL, but

the learning experience (set of transition samples) is a priori given and fixed.

In batch RL setting, the agent is not allowed to interact with the environment during

learning. Figure 2.1 shows the batch RL setup with three different sequential phases: i)

data collection, ii) learning near-optimal policy from batch of data, and iii) execution of the

learned policy. Policies remain fixed after the learning phase is done. Exploration and online

policy improvement are not permitted. The exploration-exploitation trade-off is therefore not

a concern in Batch RL. Instead of learning online by taking an action at in state st at time step

t and then updating policy according to the observed next state st+1 and reward rt+1, as done

in a general reinforcement learning setup, the learning agent only receives a fixed and finite

dataset D of n transition samples: D ⊆ {(st, at, rt+1, st+1) : st, st+1 ∈ S, at ∈ A, t = 1 . . . n}.

The only assumption about D is that the state st+1 in (st, at, rt+1, st+1) ∈ S is distributed

according to the true transition probabilities: st+1 ∼ P ?(st, at, ·). We make no assumptions

on the policy used to generate the dataset.
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Batch reinforcement learning introduces two important challenges [19–22]. First, the

amount of data may be insufficient to compute a good policy. Second, evaluating the quality

of a policy without simulation can be difficult. We tackle these challenges by inferring a

model of the environment given the dataset D and learning a robust policy that can provide

high-confidence lower bound on the true return [19, 23, 24]. The later chapters 3 and 4 of

this thesis will unfold the relevant details of these treatments.

2.3 Safe Return Estimate

We operate in this thesis in a batch RL setup where a fixed dataset D based on the historic

interactions with the environment is provided: D ⊆ {(s, a, s′) : s, s′ ∈ S, a ∈ A}. More

data cannot be collected at will in this situation, but a solution with certain performance

guarantee is still important to obtain. For example, it can reduce the chance of an unpleasant

surprise when the policy is deployed. Or it can also be used to justify the need to collect

more data because a better performing policy cannot be learned from the present batch of

data [19,23,24]. If the lower bound on the return is smaller than the return of the currently

deployed policy, then the current policy need not be replaced.

Our objective is to compute a policy π : S → A that maximizes the return ρ(π, P ?).

Because the objective depends on the unknown P ?, we instead compute a policy with the

greatest lower guarantee on the return. The term safe return estimate refers to the lower

bound estimate.

Definition 2.3.1 (Safe Return Estimate). The estimate ρ̃ : Π → R of return is called safe

for a policy π with probability 1− δ if it satisfies:

PP ?
[
ρ̃(π) ≤ ρ(π, P ?) D

]
≥ 1− δ .

Remark. Under Bayesian assumptions, P ? is a random variable and the guarantees are con-

ditional on the dataset D. This is different from the frequentist approach, in which the
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Figure 2.2: Rectangularity: dependence of transition probabilities between different states.

random variable is D and the guarantees are conditional on P ?. See, for example, Sections

5.2.2 and 6.1.1 in [25] for a discussion of the merits of the two approaches. Unless it is

apparent from the context, we indicate whether the probability is conditional on D or P ?

whenever it appears on later chapters.

Having a safe return estimate is very important in practice. A low safe estimate informs

the stakeholders that the policy may not perform well when deployed. They may, instead,

choose to gather more data, keep the existing (baseline) policy, or use a more informative

domain [19,26].

2.4 Robust Markov Decision Processes (RMDPs)

Robust Markov Decision Processes (RMDPs) are a convenient model that can be used to

compute and tractably optimize the safe return estimate (maxπ ρ̃(π)). Our RMDP model

has the same states S, actions A, rewards rs,a as the MDP. The transition probabilities for

each state s and action a, denoted as ps,a ∈ ∆S, are assumed chosen adversarialy from an

ambiguity set Ps,a. We use P to refer cumulatively to P =
⊗

st∈S,at∈APs,a, for all states s

and actions a

Definition 2.4.1. (Ambiguity Set) ( [27]) An ambiguity set Ps,a for state s and action a

is a set of confidence for the transition probability distribution over the next states: Ps,a =
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{[p(1), p(2), . . . , p(S)] ∈ RS
+ :
∑S

i=1 p(i) = 1}. A convenient way of defining ambiguity sets is

to use a norm-distance from a given nominal transition probability p̄s,a:

Ps,a =
{
p ∈ ∆S : ‖p− p̄s,a‖1 ≤ ψs,a

}
(2.3)

for a given ψs,a ≥ 0 and a nominal point p̄s,a.

We focus on ambiguity sets defined by the L1 norm because they give rise to RMDPs

that can be solved efficiently [28]. We restrict our attention to s, a-rectangular ambiguity

sets. Rectangular ambiguity sets allow the nature to choose the worst transition probability

independently for each state and action [29,30]. Limitations of rectangular ambiguity sets are

well known [31–33] but they represent a simple, tractable, and practical model. Figure 2.2

presents the notion of rectangularity, where the horizontal X-axis represents the probability

of transitioning to a state S3 from state S1 after taking an action a and the vertical Y-axis

represents the probability of transitioning to a state S3 from state S2 with action a. Figure

2.2(a) on the left shows that, depending on the position in X-axis, the range of values in

Y-axis is not constant and so the transitions from states s1 and s2 are dependent. Figure

2.2(b) shows that the probabilities in Y-axis is uniform and does not depend on the X-axis.

So the transition probabilities from states S1 and S2 are independent, which is known as

rectangular.

The quality of the optimal RMDP policy depends on the ambiguity set used to compute

the solution. It must be the smallest set that is large enough to guarantee that the solution

is a lower bound. RL algorithms usually construct data-driven ambiguity sets as confidence

regions derived from concentration inequalities [19, 20, 34, 35]. Using, for example, a 95%

confidence region over possible transition probabilities translates to a 95% confidence that

the RMDP return lower bounds the true return. Unfortunately, concentration inequalities

lead to solutions that are too conservative to be practical. Another approach is to construct

ambiguity sets from likelihood levels of probability distributions, but this method requires
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complex modeling and does not provide finite-sample guarantees [27,36–38].

RMDPs have properties that are similar to regular MDPs (see, for example, [29, 30, 37,

39,40]). The robust Bellman operator T̂P for an ambiguity set P for a state s computes the

best action with respect to the worst-case realization of the transition probabilities:

(T̂Pv)(s) = max
a∈A

min
p∈Ps,a

(rs,a + γ · pTv)

= max
a∈A

min
p∈∆S

{
(rs,a + γ · pTv)| ‖p− p̄s,a‖1 ≤ ψs,a

} (2.4)

The symbol T̂ πP denotes a robust Bellman update for a given stationary policy π:

(T̂ πPv)(s) = min
p∈Ps,π(s)

(rs,π(s) + γ · pTvπ)

The optimal robust value function v̂?, and the robust value function v̂π for a policy π must,

similarly to MDPs, satisfy:

v̂? = T̂P v̂
?, v̂π = T̂ πP v̂

π .

In general, we use a hat to denote quantities in the RMDP and omit it for the MDP. When

the ambiguity set P is not obvious from the context, we use it as a subscript v̂?P . The robust

return p̂ is defined as [36]:

ρ̂(π,P) = min
P∈P

ρ(π, P ) = pT0 v̂
π
P ,

where p0 ∈ ∆S is the initial distribution. In the next two chapters, we describe methods

that construct P from D in order to guarantee that ρ̂ is a tight lower bound on ρ.

The optimal policies for RMDPs are stochastic, history dependent and NP-hard to com-

pute for non-rectangular ambiguity sets [30, 36]. But the problem becomes tractable for

s,a-rectangular ambiguity sets. Ho et al. [41] show that the robustness in s,a-rectangular

setting can be handled with O(S logS) additional time for each state and action, keeping

the overall complexity tractable.
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2.4.1 Ambiguity Sets as Confidence Regions

We now describe the standard approach to constructing ambiguity sets as multidimensional

confidence regions. This is a natural approach but, as we discuss later in chapters 3 and 4,

may be unnecessarily conservative.

Before describing how the ambiguity sets are constructed, we need the following auxiliary

lemma. The lemma shows that when the robust Bellman update lower-bounds the true

Bellman update then the value function estimate is safe.

Lemma 2.4.1. Consider a policy π, its robust value function v̂π, and true value function vπ

such that v̂π = T̂ πv̂π and vπ = T πvπ. Then, v̂π ≤ vπ element-wise whenever T̂ πv̂π ≤ T πv̂π.

Proof. Using the assumption T̂ πv̂π ≤ T πv̂π, and from v̂π = T̂ πv̂π and vπ = T πvπ, we get by

algebraic manipulation:

v̂π − vπ = T̂ πv̂π − T πP vπ ≤ T πv̂π − T πvπ = γPπ(v̂π − vπ) .

Here, Pπ is the transition probability matrix for the policy π. Subtracting γPπ(v̂π−vπ) from

the above inequality gives:

(I− γPπ)(v̂π − vπ) ≤ 0 ,

where I is the identity matrix. Because the matrix (I− γPπ?)−1 is monotone, as can be seen

from its Neumann series, we get:

v̂π − vπ ≤ (I− γPπ)−10 = 0 ,

which proves the result.

Note that the inequality holds with respect to the robust value function v̂π. The require-
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Figure 2.3: An ambiguity set constructed with distribution-free Hoeffding bound for 90%
confidence, projected onto a 3 state simplex.

ment T̂ πv̂π ≤ T πv̂ in 2.4.1 can be restated as:

min
p∈Ps,a

pTv̂π ≤ pTs,av̂
π , (2.5)

for each state s and action a = π(s). It can be readily seen that the inequality above is

satisfied when ps,a ∈ Ps,a.

2.4.2 Distribution-free Confidence Region

Distribution-free confidence regions are used widely in reinforcement learning to achieve

robustness [19] and to guide exploration [42, 43]. The confidence region is constructed

around the mean transition probability by combining the Hoeffding inequality with the

union bound [19, 34]. We refer to this set as a Hoeffding confidence region and define it as

follows for each s and a:

PHs,a =

{
p ∈ ∆S : ‖p− p̄s,a‖1 ≤

√
2

ns,a
log

SA2S

δ

}
,

where p̄s,a is the mean transition probability computed from D and ns,a is the number of

transitions in D originating from state s and an action a. Figure 2.3 shows an ambiguity

set PHs,a projected onto a 3-state simplex. For sake of clarity, the requirement that the
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probabilities sum to 1 is omitted. The + represents the ground truth and the · nearby is the

nominal point. The green shaded region represents the ambiguity set.

Theorem 2.4.2. The robust value function v̂PH for the ambiguity set PH satisfies:

PD [v̂πPH ≤ vπP ? , ∀π ∈ Π | P ?] ≥ 1− δ . (2.6)

In addition, suppose that π̂?PH is the optimal solution to the robust MDP. Then, pT0 v̂
?
PH is a

safe return estimate of π̂?PH .

Proof. The proof is a simple extension of prior results [19]. The first part of the statement

follows directly from Lemma A.2.1 and Lemma A.2.3. The second part of the statement

follows from the fact that the lower bound property holds uniformly across all policies.

2.5 Conclusion

In this chapter, we introduced some basic definitions and useful concepts related to the

research ideas presented in this dissertation. The latter chapters will build on these ideas

and relevant concepts will directly be referred to whenever necessary.
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CHAPTER 3

WEIGHTED L1-NORM BOUNDED AMBIGUITY SETS

3.1 Introduction

Some recent results show that RMDPs with weighted L1 norms can be solved very effi-

ciently [28]. Motivated by that, this chapter proposes a new approach to optimizing the

shape of L1−norm bounded ambiguity sets for robust-MDPs. We choose problem-specific

weights for weighted-L1 norm to construct ambiguity sets. We also derive new concentration

inequalities that extend previous results from the uniform L1 norm ambiguity sets [34] to

weighted L1 sets. We show that this can be used to provide better high-confidence guarantees

on the optimized return. Our proposed methods operate in a batch reinforcement learning

setting in which transition probabilities must be estimated from a fixed and limited set of

logged data. Our goal is broadly similar to [44] and [45], but we show that our methods

apply to both frequentist and Bayesian setting.

Several methods have been proposed in the literature to construct ambiguity sets and to

mitigate their sensitivity. One important factor in this regard is the underlying rectangularity

assumption [30]. A rectangular ambiguity set leads to a tractable but overly pessimistic

solution [36,46]. Most common methods for constructing rectangular ambiguity sets operate

in a classical frequentist setting where the ambiguity sets are defined as a plausible region of

deviation from the expectation [47, 48]. This deviation is constrained by an Lp-norm, KL-

divergence, φ-divergence, or Wasserstein metric [23, 49–51]. In contrast, we consider in this

chapter a weighted-Lp-norm where the weights adapt contextually based on the problem.

The remainder of the chapter is organized as follows. Section 3.2 describes the robust
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objective to optimize with an ambiguity set. Weight based optimization of ambiguity sets is

presented in Section 3.3. We derive the finite-sample guarantees in Section 3.4 and a com-

prehensive empirical evaluation is presented in Section 3.5. We finally draw the concluding

remarks in Section 3.6.

3.2 Research Objective

We want to construct ambiguity sets to maximize the guaranteed return (see Definition 2.3.1)

for a given confidence level 1 − δ. Optimizing for such an ambiguity set for every s and a

can be stated as the following conceptual optimization problem:

max
Ps,a

min
p∈Ps,a

(
rs,a + γ pTv̂?

)
s.t. P

[
p?s,a ∈ Ps,a,∀s ∈ S, a ∈ A

]
≥ 1− δ .

(3.1)

Because the Bellman operator is monotone, maximizing the value of each state individually

maximizes the return [45]. The distributionally-constrained optimization problem in (3.1) is

intractable [27] and depends on the optimal robust value function v̂? which is unknown and

depends on P . To mitigate these issues, we restrict our attention to optimizing the weights

of L1-norm based ambiguity sets and assume to readily have a rough estimate of v̂?. One

particular example of such an estimate of v̂? is the value function computed from the MDP

constructed with nominal transition probabilities.

3.3 Optimizing Ambiguity Set Weights

In this section, we outline the general approach to tackling the desired optimization in (3.1).

We relax the problem and use strong duality theory to get bounds that can be optimized

tractably.

As noted above, maximizing the guaranteed return can be achieved by maximizing the

Bellman update for every state. To this effect, assume some fixed s ∈ S and a ∈ A and let z
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denote an estimate of the optimal robust value function: z = rs,a + γ v̂. The robust Bellman

update in (2.4) for s and a then simplifies to:

q(z) = min
p∈∆S

{
pTz : ‖p− p̄s,a‖1 ≤ ψs,a

}
. (3.2)

In the remainder of the section, we drop the s, a subscripts when they are obvious from the

context.

The impact of the choice of the norm in (3.2) on the value of q(z) is not trivial, and we

are not aware of a technique that could be used to optimize it directly. We instead maximize

a lower bound on this value that the following theorem establishes.

Theorem 3.3.1. The estimate of expected next value can be bounded from below as:

q(z) ≥ p̄Tz −min
λ∈R

ψ‖z + λ111‖∞ , (3.3)

where ‖·‖∞ used in (3.3) is the dual norm to the norm ‖·‖1 in (3.2).

Recall from Definition (2.0.1) that the dual norm is defined as:

‖z‖? = sup {zᵀx : ‖x‖ ≤ 1} .

Proof. By relaxing the non-negativity constraints on p, we get the following optimization

problem:

q(z) ≥ min
p∈RS

{
pTz : ‖p− p̄‖ ≤ ψ, 1Tp = 1

}
.

Here, 1 is a vector of all ones of the appropriate size. Dualizing this optimization problem

and following algebraic manipulation, detailed in Appendix A.1.2, we get the desired lower

bound.

The lower bound in (3.3) is still hard to optimize. But, as we show next, it has a simpler

form for weighted L1 norm. Choosing any fixed λ also provides a lower bound which, we
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also show later, can be readily maximized.

We focus on ambiguity sets defined in terms of weighted L1 norm, which are defined for

positive weights w ∈ RS
>0 as:

‖z‖1,w =
S∑
i=1

wi|zi|

The dual norms for a weighted L1 norm is a weighted L∞ norm as Lemma A.1.1 shows.

Using this fact, Theorem 3.3.1 can be specialized to L1 weighted ambiguity sets as follows.

Corollary 3.3.2 (Weighted L1 Ambiguity Set). Suppose that q(z) is defined in terms of a

weighted L∞ norm for some w > 0. Then q(z) can be lower-bounded as follows:

q(z) = min
p∈∆S

{
pTz : ‖p− p̄‖1,w ≤ ψ

}
≥ p̄Tz − ψ‖z − λ111‖∞, 1

w

for any λ ∈ R. Moreover, when w = 1, the bound is tightest when λ = (maxi zi + mini zi)/2

and the bound turns to q(z) ≥ p̄Tz − ψ
2
‖z‖s with ‖·‖s representing the span semi-norm.

The optimal λ being a median follows because maximization over λ values is identical to

the formulation of the optimization problem for the quantile regression.

3.3.1 Optimizing Norm Weights

In this section, we introduce tractable methods that optimize weights w in the ambiguity

set in order to maximize q(z).

The objective is to choose weights w that will maximize the lower bound on q(z) estab-

lished in Corollary 3.3.2 as follows:

max
w∈RS++

{
p̄Tz − ψ‖z − λ̄111‖∞, 1

w
:

S∑
i=1

w2
i = 1

}
(3.4)

The value λ̄ in (3.4) is fixed ahead of time and does not change with w. The constraint
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∑S
i=1w

2
i = 1 serves to normalize w in order to preserve the desired robustness guarantees

with the same ψ. This is because scaling both w and ψ simultaneously by an identical

factor leaves the ambiguity set unchanged. This regularization constraint is motivated by

the finite-sample guarantees in Section 3.4 and our empirical results.

Next, omitting terms that are constant with respect to w simplifies the optimization to:

w? ∈ argmin
w∈RS++

{
‖z − λ̄111‖∞, 1

w
:

S∑
i=1

w2
i = 1

}
. (3.5)

The nonlinear optimization problem in (3.5) is convex and can be, surprisingly, solved

analytically. Let bi = |zi − λ̄| for i = 1, . . . , S. Introducing an auxiliary variable t further

simplifies the optimization problem:

min
t,w∈RS++

{
t : t ≥ bi/wi,

S∑
i=1

w2
i = 1

}
. (3.6)

The constraints w > 0 cannot be active (because of 1/wi) and may be safely ignored. Then,

the convex optimization problem in (3.6) has a linear objective, S + 1 variables (w’s and t),

and S + 1 constraints. All constraints are active, therefore, in the optimal solution w? [52]

which must satisfy:

w?i = bi/
√∑S

j=1 b
2
j . (3.7)

Since
∑

iw
2
i = 1 implies

∑
i b

2
i /t

2 = 1, we conclude that t =
√∑

i b
2
i .

Next, we establish new finite-sample bounds for these new types of ambiguity sets.

3.4 Complexity Analysis and Finite-Sample Guarantees

In this section, we first analyse the time complexity of our method and then we describe new

sampling bounds that can be used to construct ambiguity sets that provide desired sampling

guarantees. We describe both frequentist and Bayesian methods. The following example

demonstrates how different norm weights impact the shape of the ambiguity set.
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Figure 3.1: A visualization of ambiguity sets for an MDP in 3.4.1.

Example 3.4.1. Consider an MDP with 3 states s1, s2, s3 and a single action a1. True &

unknown transition probability is P ?(s1, a1, ·) = [0.3, 0.2, 0.5], and the value function is

v = [0, 0, 1]. The contours of posterior probability distribution and the ambiguity sets for

state s1 are shown projected onto a simplex in Figure 3.1. The green set is constructed

with unweighted L1 norm and the orange set is constructed with optimized weights for the

L1 norm. Although both sets have the same probability measure, the weighted set yields a

better return estimate for v?.

Complexity Analysis We have a closed form approach for computing weights to optimize

the shape of the ambiguity sets. It therefore does not add much extra computational cost.

Robustness can still be handled in O(S logS) in the weighted set, as presented in Ho et

al. [41]. The overall complexity remains tractable and belongs to P-complete.

3.4.1 Bayesian Credible Intervals (BCI)

In Bayesian statistics, credible intervals are comparable to classical confidence intervals [25].

An important advantage of using Bayesian techniques for robust optimization is that they

can effectively leverage prior domain knowledge [53].
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Russel and Petrik [45] suggest an approach to construct ambiguity regions from credible

intervals. The method starts with sampling from the posterior probability distribution of

P ? given data D to estimate the mean transition probability p̄s,a = EP ? [p?s,a|D]. Then

the smallest possible ambiguity set around the mean is obtained by solving the following

optimization problem for each state s and action a:

ψBs,a = min
ψ∈R+

{
ψ : P

[
‖p?s,a − p̄s,a‖ > ψ | D

]
<

δ

SA

}
.

Finally, the Bayesian ambiguity set can be obtained by:

PBs,a =
{
p ∈ ∆S : ‖p− p̄s,a‖ ≤ ψBs,a

}
.

This construction applies easily to any form of norm used in the construction of ambiguity

sets. That is, it is easy to generalize this method for weighted L1 ambiguity sets that we

study in this work. Algorithm 1 summarizes the steps to construct Bayesian ambiguity sets

in quasi-linear time.

Algorithm 1: Weighted Bayesian Credible Intervals (WBCI)

Input: Distribution θ over p?s,a, confidence level δ, sample count n, weights w
Output: Nominal point p̄s,a and ψs,a

1 Sample X1, . . . , Xn ∈ ∆S from θ: Xi ∼ θ;
2 Nominal point: p̄s,a ← (1/n)

∑n
i=1 Xi;

3 Compute distances di ← ‖p̄s,a −Xi‖p,w and sort in increasing order ;
4 ψs,a ← dd(1−δ)ne;
5 return p̄s,a and ψs,a;

3.4.2 Weighted Frequentist Confidence Intervals (WFCI)

We present a new finite-sample bound that can be used to construct frequentist ambiguity

sets with weighted L1 norm. This bound is necessary to guarantee high-confidence return

guarantees. These results significantly extend the existing bounds which have been limited

to the L1 deviation [34,35,45,54].

29



Theorem 3.4.1 (Weighted L1 Error Bound). Suppose that p̄s,a is the empirical estimate

of the transition probability obtained from ns,a samples for some s ∈ S and a ∈ A. If the

weights w ∈ RS
++ are sorted in a non-increasing order wi ≥ wi+1, then:

P [E ≥ ψs,a] ≤ 2
S−1∑
i=1

2S−i exp

(
−
ψ2
s,ans,a

2w2
i

)
,

where E = ‖p̄s,a − p?s,a‖1,w.

Importantly, replacing the sum in the theorem above by a uniform upper bound on wi

would be insufficient to improve ambiguity sets. Theorem A.1.2 further tightens the bound

of Theorem 3.4.1 by using Bernstein’s inequality in place of Hoeffding’s inequality.

The next theorem establishes a new finite-sample bound for weighted L∞ sets.

Theorem 3.4.2 (Weighted L∞ Error Bound). Suppose that p̄s,a is the empirical estimate of

the transition probability obtained from ns,a samples for some s ∈ S and a ∈ A. Then:

P [E ≥ ψs,a] ≤ 2
S∑
i=1

exp

(
−2

ψ2
s,ans,a

w2
i

)
,

where E = ‖p̄s,a − p?s,a‖∞,w.

The proofs of both theorems are deferred to Appendix A.1.3.

Theorem 3.4.1 establish the error bounds that can be used to construct ambiguity sets of

appropriate size. Unlike with the standard error bound, ψs,a cannot be determined readily

from the bounds analytically. However, since the confidence level function is monotonically

increasing, ψs,a can be easily determined numerically using a bisection method.

Recall that the weights in (3.4) are optimized under a constraint that
∑S

i=1w
2
i = 1 to

preserve the confidence guarantee regardless of the weight scales. The constraint is derived

from an approximation of the guarantee in Theorem 3.4.2 (similar for Theorem 3.4.1) by
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linearizing it from Jensen’s inequality:

S∑
i=1

exp

(
−2

ψ2
s,ans,a

w2
i

)
≈ S exp

(
−2

1

S

S∑
i=1

ψ2
s,ans,a

w2
i

)
. (3.8)

Where ’≈’ used in (3.8) explicitly denotes that the quantity on the right hand side is an

approximation. Then, bounding the right hand side with δ and taking the log and applying

Jensen’s inequality again gives us:

−1

2ψ2
s,ans,a

log

(
δ

S

)
≤ 1

1
S

∑S
i=1w

2
i

.

Therefore, a constant value of
∑S

i=1 w
2
i provides an upper bound on the confidence in the

equation above. We emphasize that this is not a bound but rather an approximation due to

the linearization step.

3.5 Empirical Evaluation

In this section, we empirically evaluate the advantage of using weighted ambiguity sets in

Bayesian and frequentist settings. We assess L1-bounded ambiguity sets, both with weights

and without weights. We include the results derived for L∞ norm for the completeness

of the evaluation. We compare Bayesian credible regions with frequentist’s Hoeffding and

Bernstein style sets. We start by assuming a true underlying model that produces the

simulated datasets containing 100 samples for each state and action. The frequentist methods

use these datasets to construct an ambiguity set. Bayesian methods combine the data

with a prior to compute a posterior distribution and then draw 10, 000 samples from the

posterior distribution to construct a Bayesian ambiguity set. We use an uninformative

uniform prior over the reachable next states for all the experiments unless otherwise specified.

This prior is somewhat informative in the sense that it contains the knowledge of non-zero

transitions implied by the datasets. The performance of the methods is evaluated by the
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Figure 3.2: Single Bellman Update: the
guaranteed return for a monotonic value
function v = [1, 2, 3, 4, 5].
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Figure 3.3: Single Bellman Update: the
guaranteed return for a sparse value func-
tion v = [0, 0, 0, 0,−5].

guaranteed robust returns computed for a range of different confidence levels. We strengthen

the weighted L1 error bound by a factor of two to match with the unweighted one.

Single Bellman Update. In this experiment, we set up a very trivial problem to metic-

ulously examine our proposed method. We consider a transition from a single state s0 and

an action a0 leading to 5 terminal states s1, . . . , s5. The value functions are assumed to be

fixed and known. The prior is uniform Dirichlet over the next states. Figure 3.2 and Figure

3.3 show a comparison of average guaranteed returns for 100 independent trials for different

value functions. The weighted methods outperform unweighted methods in all instances.

Also, the weighted BCI methods are significantly better than other frequentist methods.

s0 s1 · · · s4 s5

(1, r = 5)

0.7 0.6

0.3

0.1

1

0.6

0.3
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1

0.6

0.3

0.1

1

(0.3, r = 10000)

0.3

0.7

1

Figure 3.4: RiverSwim problem with six states and two actions (left-dashed arrow, right-solid
arrow). The agent starts in either s1 or s2.
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Confidence = 0.5 Confidence = 0.95

Methods Uniform Weighted Uniform Weighted

Bayesian
L1 BCI 5290 23155 1152 15814
L∞ BCI 5290 20673 1152 13142

Frequentist

L1 Hoeffding 490 634 490 490
L1 Bernstein 490 490 490 490
L∞Hoeffding 490 7976 490 4183

Table 3.1: Guaranteed robust return for the RiverSwim experiment.

RiverSwim. We consider the standard RiverSwim [55] domain shown in Figure 3.4 for

evaluating our methods. The process follows by sampling synthetic datasets from the true

model and then computing the guaranteed robust returns for different methods. We use a

uniform Dirichlet distribution over the next states as prior. Table 3.1 summarizes the results.

All the weighted methods dominate unweighted methods, and the weighted L1 BCI method

provides the highest guaranteed return. The return of the optimal policy for the true model

is 56, 687. At the 50% confidence level, the gap between the optimal return and guaranteed

return is reduced by 34% and 13% for weighted L1 BCI and weighted L∞ Hoeffding sets

respectively over the standard uniform weight sets.

Population Growth Model. We also apply our method in an exponential population

growth model [6]. Our model constitutes a simple state-space with exponential dynamics.

At each time step, the land manager has to decide whether to apply a control measure to

Confidence=0.5 Confidence=0.95

Methods Uniform Weighted Uniform Weighted

Bayesian
L1 BCI -98659 -9356 -108009 -11307
L∞ BCI -132781 -35934 -137053 -51834

Frequentist

L1 Hoeffding -116167 -106078 -118684 -109301
L1 Bernstein -133712 -129420 -134680 -130826
L∞Hoeffding -132737 -31761 -133938 -46332

Table 3.2: Guaranteed robust return for the Population experiment.
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reduce the growth rate of the species. We refer to [5] for more details of the model. The

results are summarized in Table 3.2. Returns for all the methods are negative, which implies

a high management cost. Policies computed with frequentist and unweighted methods yield

a very high cost. Bayesian and weighted methods significantly outperform other methods.

The return of the optimal policy for the true model is 18, 448. At the 50% confidence level,

the gap between the optimal return and guaranteed return is reduced by over 75% for both

weighted L1 BCI and weighted L∞ Hoeffding over the standard uniform weight.

Confidence=0.5 Confidence=0.95

Methods Uniform Weighted Uniform Weighted

Bayesian
L1 BCI 310 428 291 414
L∞ BCI 177 278 153 258

Frequentist

L1 Hoeffding 192 245 180 238
L1 Bernstein 121 200 106 188
L∞Hoeffding 132 255 117 242

Table 3.3: Guaranteed robust return for the Inventory experiment.

Inventory Management Problem. Next, we take the classic inventory management

problem [4]. The inventory level is discrete and limited by the number of states S. The

purchase cost, sale price, and holding cost are 2.49, 3.99, and 0.03 respectively. The demand

is sampled from a normal distribution with a mean S/4 and a standard deviation of S/6. The

initial state is 0 (empty stock). Table 3.3 summarizes the computed guaranteed returns of

different methods at 0.5 and 0.95 confidence levels. The guaranteed returns computed with

Bayesian and weighted methods are significantly higher than other methods in this problem

domain. The return of the optimal policy for the true model is 550. At the 50% confidence

level, the gap between the optimal return and guaranteed return is reduced by 50% and 30%

for weighted L1 BCI and weighted L∞ Hoeffding sets respectively over the standard uniform

weight.
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Confidence=0.5 Confidence=0.95

Methods Uniform Weighted Uniform Weighted

Bayesian
L1 BCI 41.11 47.33 40.48 47.29
L∞ BCI 39.95 47.48 38.94 47.44

Frequentist

L1 Hoeffding 9.89 45.11 9.14 45.09
L1 Bernstein 1.01 44.26 1.00 44.38
L∞Hoeffding 37.52 47.35 36.94 47.31

Table 3.4: Guaranteed robust return for the Cart-Pole experiment.

Cart-Pole. We evaluate our method on Cart-Pole, a standard RL benchmark problem

[2, 56]. We collect samples of 100 episodes from the true dynamics. We fit a linear model

with that dataset to generate synthetic samples and aggregate nearby states on a resolution

of 200 using K-nearest neighbor strategy. The results are summarized in 3.4. Again, in this

case, all the Bayesian and weighted methods outperform other methods. The return of the

optimal policy for the true model is 51. At the 50% confidence level, the gap between the

optimal return and guaranteed return is reduced by 64% and 71% for weighted L∞ BCI and

weighted L∞ Hoeffding sets respectively over the standard uniform weight.

3.6 Contributions

In this chapter, I proposed a novel approach for optimizing the shape of the L1-norm bounded

ambiguity sets with weights, which goes beyond the conventional L1-constrained ambiguity

sets studied in the literature. This was a joint project with Bahram Behzadian, who proposed

a similar method for L∞-norm bounded ambiguity sets. We together show that the optimal

shape of an ambiguity set is problem dependent and is driven by the characteristics of

the value function. I derived new finite sample guarantees for the weighted L1-norm and

empirically validated the performance against other baseline methods. The whole work has

been done under close supervision of my advisor, and later with Chin Pang Ho. An earlier

version of this work was presented at NeurIPS 2019 Workshop on Safety and Robustness

in Decision Making. The full paper was published at The 24th International Conference on
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Artificial Intelligence and Statistics (AISTATS 2021).
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CHAPTER 4

DATA-DRIVEN BAYESIAN AMBIGUITY SETS FOR RMDPS

In this chapter, we argue that constructing ambiguity sets as confidence regions leads to

solutions that are unnecessarily conservative. Confidence regions inherently provide robust

guarantees for all policies and all value functions simultaneously. It is sufficient, instead,

to provide the guarantees for the optimal RMDP policy and value function. Our algorithm

(RSVF) provides a tighter lower bound on the return of the optimal policy by interleaving

RMDP computations with optimizing the size and the position of ambiguity sets. Using

(hierarchical) Bayesian models helps to further tighten the lower bounds by leveraging prior

domain knowledge. We also derive new L1 concentration inequalities of possible independent

interest.

Gupta [57] also constructs ambiguity sets that are not confidence regions. However,

their setting and objectives are markedly different from ours and do not readily apply to

RMDPs. In general, Bayesian methods for constructing ambiguity sets for RMDPs are not

yet understood well and have received only limited attention [58].

Confidence regions derived from concentration inequalities have been used previously to

compute bounds on the true return in off-policy policy evaluation [20, 59]. These methods,

unfortunately, do not readily generalize to the policy optimization setting, which we target.

Other work has focused reducing variance rather than on high-probability bounds [21,22,60].

Methods for exploration in reinforcement learning, such as MBIE or UCRL2, also construct

ambiguity sets using concentration inequalities [42, 54, 61, 61, 62] and compute optimistic

(upper) bounds to guide exploration.
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The following example will be used throughout this chapter to demonstrate the proposed

methods and visualize ambiguity sets.

Example 4.0.1. Consider an RMDP with 3 states: s1, s2, s3 and a single action a1. Assume

that the true transition probability is P ?(s1, a1, ·) = [0.3, 0.2, 0.5]. In D, there are 3 occur-

rences of transitions (s1, a1, s1), 2 of transitions (s1, a1, s2), and 5 of transitions (s1, a1, s3).

The prior distribution over p?s1,a1 is Dirichlet with concentration parameters α = (1, 1, 1).

4.1 depicts ambiguity sets for state s1 and action a1. The plus sign marks p?s1,a1 , while the

dot marks the nominal point of the ambiguity set; the contours indicate the density of the

posterior Dirichlet distribution.

The remainder of the chapter is organized as follows. Section 4.1 outlines the approach

of constructing ambiguity sets as Bayesian credible region. Section 4.2 describes the main

contribution of this chapter, RSVF, a new method for constructing tight ambiguity sets from

Bayesian models that are adapted to the optimal policy. RSVF provides tighter robustness

guarantees without using confidence regions, which is justified in Section 4.3. Finally, Section

4.4 presents empirical results on several problem domains.

4.1 Bayesian Credible Region (BCI)

We now describe how to construct ambiguity sets from Bayesian credible (or confidence)

regions. To the best of our knowledge, this approach has not been studied in depth previously.

The construction starts with a (hierarchical) Bayesian model that can be used to sample from

the posterior probability of P ? given data D. The implementation of the Bayesian model is

irrelevant as long as it generates posterior samples efficiently. For example, one may use a

Dirichlet posterior, or use MCMC sampling libraries like JAGS, Stan, or others [63].

The posterior distribution is used to optimize for the smallest ambiguity set around the

mean transition probability. Smaller sets, for a fixed nominal point, are likely to result in
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less conservative robust estimates. The BCI ambiguity set is defined as follows:

PBs,a =
{
p ∈ ∆S : ‖p− p̄s,a‖1 ≤ ψBs,a

}
,

where nominal point is p̄s,a = EP ? [p?s,a | D].

There is no closed-form expression for the Bayesian ambiguity set size. It must be

computed by solving the following optimization problem for each state s and action a:

ψBs,a = min
ψ∈R+

{
ψ : P

[
‖p?s,a − p̄s,a‖1 > ψ | D

]
<

δ

SA

}
.

The nominal point p̄s,a is fixed (not optimized) to preserve tractability. This optimization

problem can be solved by the Sample Average Approximation (SAA) algorithm [64]. The

main idea is to sample from the posterior distribution and then choose the minimal size ψs,a

that satisfies the constraint. Algorithm 2, summarizes the sort-based method.

We assume that it is possible to draw enough samples from P ? that the sampling error

becomes negligible. Because the finite-sample analysis of SAA is simple but tedious, we omit

it in the interest of clarity.

The Bayesian ambiguity sets guarantee safe estimates.

Theorem 4.1.1. The robust value function v̂PB for the ambiguity set PB satisfies:

PP ? [v̂πPB ≤ vπP ? , ∀π ∈ Π | D] ≥ 1− δ .

Algorithm 2: Bayesian Credible Interval (BCI)

Input: Distribution θ over p?s,a, confidence level δ, sample count m
Output: Nominal point p̄s,a and L1 norm size ψs,a

1 Sample X1, . . . , Xm ∈ ∆S from θ: Xi ∼ θ;
2 Nominal point: p̄s,a ← (1/m)

∑m
i=1 Xi;

3 Compute distances di ← ‖p̄s,a −Xi‖1 and sort increasingly ;
4 Norm size: ψs,a ← d(1−δ)m;
5 return p̄s,a and ψs,a;
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In addition, suppose that π̂?PB is the optimal solution to the robust MDP. Then, pT0 v̂
?
PB is a

safe return estimate of π̂?PB .

Proof. The first part of the statement follows directly from Lemma A.2.2 and the definition

of ψBs,a. The second part of the statement follows from the fact that the lower bound property

holds uniformly across all policies.

This theorem only proves that the constructed lower bound on the return is safe. It does

not address the tightness of the bound.

BCI ambiguity sets PB can be much less conservative than Hoeffding set PH , given in-

formative priors, but also involve greater computation complexity. Next, we further improve

on BCI.

4.2 Optimized Bayesian Ambiguity Sets

In this section, we describe the new algorithm for constructing Bayesian ambiguity sets that

can compute less-conservative lower bounds on the return. RSVF (robustification with sen-

sible value functions) is a Bayesian method that uses samples from the posterior distribution

over P ? to construct tight ambiguity sets.

Before describing the algorithm, we use the setting of Example 4.0.1 to motivate our

approach. To minimize distractions by technicalities, assume that the goal is to compute

the return for a single time step starting from state s1. Assume also that the value function

v = (1, 0, 0) is known, all rewards from s1 are 0, and γ = 1. Recall that our goal is

to construct a safe return estimate ρ̃(π) of V@R0.1
P ? [ρ(π, P ?)] at the 90% level. When the

value function is known, it is possible to construct the optimal ambiguity set P? such that

ρ̂(π) = minp∈P? p
Tv = V@R0.1

P ? [ρ(π, P ?)] as:

P? =
{
p ∈ ∆3 : pTv ≥ V@R0.1

P ? [ρ(π, P ?)]
}
.

It can be shown readily that this ambiguity set is optimal in the sense that any set for which
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Figure 4.1: Contours of the
posterior distribution and
the 90%-confidence region.
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Figure 4.2: Optimal
Bayesian ambiguity set
(red) for a value function
v = (0, 0, 1).
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Figure 4.3: Sets Ks1,a1(vi)
(dashed red) for i = 1, 2
and Ls1,a1({v1, v2}) (black).

ρ̃(π) is exact must be a subset of P? [57]. Figure 4.2 depicts the optimal ambiguity set along

with the arrow that indicates the direction along which v increases.

The optimal ambiguity set described above cannot be used directly, unfortunately, be-

cause the value function is unknown. It would be tempting to construct the ambiguity set as

the intersection of optimal sets for all possible value functions; a polyhedral approximation

of this set is shown in Figure 4.2 using a blue color. Unfortunately, this approach is not

(usually) correct and will not lead to a safe return estimate. This can be shown from the

fact that support functions to convex sets are convex and V@R is not a convex (concave)

function [65,66]; see [57] for a more detailed discussion.

Since it is not possible, in general, to simply consider the intersection of optimal ambi-

guity sets for all possible value functions, we approximate the optimal ambiguity set for a

few reasonable value functions. For this purpose, we use a set Ks,a(v), which is almost a

complement to the optimal ambiguity set, and is defined as follows:

Ks,a(v) =
{
p ∈ ∆S | pTv ≤ gs,a(v)

}
gs,a(v) = max

{
g | PP ? [g ≤ (p?s,a)

Tv | D] ≥ ζ
}
,

(4.1)

where ζ = 1− δ/(SA). The lower dashed set in Figure 4.3 depicts this set K for v = (0, 0, 1)

in Example 4.0.1.

The next lemma formalizes the safety-sufficiency of K. Note that the rewards rs,a are not
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a factor in this lemma because they are certain and cancel out.

Lemma 4.2.1. Consider any ambiguity set Ps,a and a value function v. Then minp∈Ps,a p
Tv ≤

(p?s,a)
Tv with probability 1− δ/(SA) if and only if Ps,a ∩ Ks,a(v) 6= ∅.

Proof. To show the “if” direction, let p̂ ∈ Ps,a∩Ks,a(v). Such p̂ exists because the intersection

is nonempty. Then, minp∈Ps,a p
Tv ≤ p̂Tv ≤ gs,a(v). By definition, gs,a(v) ≤ (p?s,a)

Tv with

probability 1− δ/(SA).

To show the “only if” direction, suppose that p̂ is a minimizer in minp∈Ps,a p
Tv. The

premise translates to PP ? [p̂Tv ≤ (p?s,a)
Tv | D] ≥ 1 − δ/(SA). Therefore, gs,a(v) ≥ p̂Tv and

p̂ ∈ Ps,a ∩ Ks,a and the intersection is non-empty.

If any ambiguity set Ps,a intersects Ks,a(v̂πP) for each state s, a then the value function

v̂πP is safe. This is sufficient, when the value function is known, but we need to generalize

the approach to a setting in which the value function is one of many possible ones. The set

Ls,a(V) provides such a guarantee for a set of possible value functions (POV) V . Its center

is chosen to minimize its size while intersecting Ks,a(v) for each v in V and is constructed as

follows.

Ls,a(V) =
{
p ∈ ∆S | ‖p− θs,a(V)‖1 ≤ ψs,a(V)

}
ψs,a(V) = min

p∈∆S
f(p), θs,a(V) ∈ arg min

p∈∆S
f(p), f(p) = max

v∈V
min

q∈Ks,a(v)
‖q − p‖1

(4.2)

The optimization in (4.2) can be represented and solved as a linear program and accelerated

using coordinate minimization techniques. Figure 4.3 shows the set L in black solid color.

It is the smallest set that intersects the two K sets for value functions v1 = (0, 0, 1) and

v2 = (2, 1, 0) in 4.0.1. The following lemma formalizes the properties of Ls,a.

Lemma 4.2.2. For any finite set V of value functions, the following inequality holds for all

v ∈ V simultaneously:

PP ?
[

min
p∈Ls,a(V)

pTv ≤ (p?s,a)
Tv

∣∣∣∣ D] ≥ 1− δ

SA
.
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Proof. Assume an arbitrary v ∈ V and let q?v ∈ arg minq∈Ks,a(v)‖q − θs,a(V)‖1 using the

notation of (4.2). From the definition of θs,a(V) in (4.2), the value qv is in the ambiguity set

Ls,a(V). Given that also qv ∈ Ks,a(v), Lemma 4.2.1 shows that:

PP ?
[

min
p∈Ls,a(V)

pTv ≤ (p?s,a)
Tv

∣∣∣∣ D] ≥ 1− δ

SA
,

because qv ∈ Ls,a(v) ∪ Ks,a(v) 6= ∅. This completes the proof since v is any from V .

We are now ready to describe RSVF, which is outlined in Algorithm 3. RSVF takes an

optimistic approach to approximating the optimal ambiguity set. It starts with a small set

of potential optimal value functions (POV) and constructs an ambiguity set that is safe for

these value functions. It keeps increasing the POV set until v̂? is in the set and the policy is

safe.

Algorithm 3: RSVF: Adapted Ambiguity Sets

Input: Confidence 1− δ and posterior PP ? [· | D]
Output: Policy π and lower bound ρ̃(π)

1 k ← 0;
2 Pick some initial value function v̂0;
3 Initialize POV: V0 ← ∅ ;
4 repeat
5 Augment POV: Vk+1 ← Vk ∪ {vk} ;
6 For all s, a update Pk+1

s,a ← Ls,a(Vk+1) ;

7 Solve v̂k+1 ← v̂?Pk+1
and π̂k+1 ← π̂?Pk+1

;

8 k ← k + 1 ;

9 until safe for all s, a: Ks,a(v̂k) ∩ Pks,a 6= ∅;
10 return (π̂k, p

T
0 v̂k) ;

The following theorem states that 3 produces a safe estimate of the true return.

Theorem 4.2.3. Suppose that 3 terminates with a policy π̂k and a value function v̂k in the

iteration k. Then, the return estimate pT0 v̂k is safe:

PP ?
[
pT0 v̂k ≤ pT0 v

π̂k
P ?

∣∣∣ D] ≥ 1− δ .
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Proof. Recall that Algorithm 3 terminates only if Ks,a(v̂k) ∩ Pks,a 6= ∅ for each state s and

action a. Then, according to Lemma 4.2.1, we get with probability 1− δ/(SA):

min
p∈Pks,a

pTv̂k ≤ (p?s,a)
Tv̂k

for any fixed state s and action a. By the union bound, the inequality holds simultaneously

for all states and actions with probability 1− δ. That means that with probability 1− δ we

can derive the following using basic algebra:

min
p∈Pks,a

pTv̂k ≤ (p?s,a)
Tv̂k ∀s ∈ S, a ∈ A

rs,a + min
p∈Pks,a

pTv̂k ≤ rs,a + (p?s,a)
Tv̂k ∀s ∈ S, a ∈ A

T̂ π̂kPk v̂k ≤ T π̂kP ? v̂k

Note that v̂k is the robust value function for the policy π̂k since v̂k = v̂?Pk and π̂k = π̂?Pk .

Proposition 2.4.1 finally implies that v̂k ≤ vπ̂kP ? with probability 1− δ.

The proof above is technical but conceptually simple. It is based on two main properties.

The first one is the construction of optimal ambiguity sets for the known value function

as outlined above. The second is the fact that the ambiguity set needs to be robust with

respect to the robust value function v̂ and not the optimal value function v?. This is subtle,

but crucial since v̂ is a constant while v? is a random variable in the Bayesian setting.

The RSVF approach, therefore, does not work when frequentist guarantees are required.

Confidence regions, described in Section 2.4.1, are designed for situations when robustness

is required with respect to a random variable, and are therefore overly conservative in our

setting. See Section 4.3 for more in-depth discussion.

It is however important to mention its limitations. This result shows only that the return

estimate ρ̂ is safe; it does not show that it is good. There are, of course, naive safe estimates

such as ρ̃(π) = (1−γ)−1 mins,a rs,a. Since RSVF tightly approximates the optimal ambiguity
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sets, we expect it to perform significantly better and we present empirical evidence of it in

Section 4.4. RSVF, as described in 3, is not guaranteed to terminate. To terminate after a

specific number of iterations, the algorithm can simply fall back to the BCI sets for states

and actions for which the termination condition is not satisfied. Line 6 of Algorithm 3 is

formulated and solved as a linear program and therefore is polynomial time. Line 7 computes

robust value function and robust policy and is known to be polynomial time operation [30,41].

Algorithm 3 therefore belongs to P-complete class.

4.3 Why Not Confidence Regions

Constructing ambiguity sets from confidence regions seems intuitive and natural. It may

be surprising that RSVF abandons this intuitive approach. In this section, we describe two

reasons why confidence regions are unnecessarily conservative compared to RSVF sets.

The first reason why confidence regions are too conservative is because they assume that

the value function depends on the true model P ?. To see this, consider the setting of Example

4.0.1 with rs1,a1 = 0. When an ambiguity set Ps1,a1 is built as a confidence region such that

P[p?s1,a1 ∈ Ps1,a1 ] ≥ 1− δ, it satisfies:

PP ?
[

min
p∈Ps,a

pTv ≤ (p?s,a)
Tv, ∀v ∈ RS

∣∣∣∣ D] ≥ 1− δ.

Notice the value function inside of the probability operator. Proposition 2.4.1 shows that this

guarantee is needlessly strong. It is, instead, sufficient that the inequality (2.5) holds just

for v̂π which is independent of P ? in the Bayesian setting. The following weaker condition

is sufficient to guarantee safety:

PP ?
[

min
p∈Ps,a

pTv ≤ (p?s,a)
Tv

∣∣∣∣ D] ≥ 1− δ, ∀v ∈ RS (4.3)

Notice that v is outside of the probability operator. This set is smaller and provides the

same guarantees, but may be more difficult to construct [57].
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The second reason why confidence regions are too conservative is because they construct

a uniform lower bound for all policies π as is apparent in Theorem 4.1.1. This is unnecessary,

again, as 2.4.1 shows. The robust Bellman update only needs to lower bound the Bellman

update for the computed value function v̂π, not for all value functions. As a result, (4.3),

can be further relaxed to:

PP ?
[

min
p∈Ps,a

pTv̂πR ≤ (p?s,a)
Tv̂πR

∣∣∣∣ D] ≥ 1− δ, (4.4)

where πR is the optimal solution to the robust MDP. RSVF is less conservative because it

constructs ambiguity sets that satisfy the weaker requirement of (4.4) rather than confidence

regions.

4.4 Empirical Evaluation

In this section, we empirically evaluate the safe estimates computed using Hoeffding, BCI,

and RSVF ambiguity sets. We start by assuming a true model and generate simulated

datasets from it. Each dataset is then used to construct an ambiguity set and a safe estimate

of policy return. The performance of the methods is measured using the average of the

absolute errors of the estimates compared with the true returns of the optimal policies. All

of our experiments use a 95% confidence for the safety of the estimates.

We compare ambiguity sets constructed using BCI, RSVF, with the Hoeffding sets. To

reduce the conservativeness of Hoeffding sets when transition probabilities are sparse, we use

a modification inspired by the Good-Turing bounds [42]. The modification is to assume that

any transitions from s, a to s′ are impossible if they are missing in the dataset D. We also

compare with the “Hoeffding Monotone” formulation PT even when there is no guarantee

that the value function is really monotone. This helps us to quantify the limitations of using

concentration inequalities. Finally, we compare the results with the “Mean Transition” which

solves the expected model p̄s,a and provides no safety guarantees.
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Figure 4.4: Expected regret of safe es-
timates with 95% confidence regions for
the Bellman update with an uninforma-
tive Dirichlet prior.
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Figure 4.5: Rate of violations of the safety
requirement with 95% confidence regions
for the Bellman update with an uninfor-
mative Dirichlet prior.

We do not evaluate the computational complexity of the methods since they target prob-

lems constrained by data and not computation. The Bayesian methods are generally more

computationally demanding but the scale depends significantly on the type of the prior

model used. All Bayesian methods draw 1, 000 samples from the posterior for each state and

action.

4.4.1 Bellman Update

In this section, we consider a transition from a single state s0 and action a0 to 5 states

s1, . . . , s5. The value function for the states s1, . . . , s5 is fixed to be [1, 2, 3, 4, 5]. RSVF is

run for a single iteration with the given value function. The single iteration of RSVF in

this simplistic setting helps to quantify the possible benefit of using RSVF-style methods

over BCI. The ground truth is generated from the corresponding prior for each one of the

problems.

Uninformative Dirichlet Priors This setting considers a uniform Dirichlet distribution

with α = [1, 1, 1, 1, 1] as the prior. This prior provides little information. Figure 4.4 compares

the computed robust return errors. The value ξ represents the regret of predicted returns,

which is the absolute difference between the true optimal value and the robust estimate:

ξ = |ρ(π?P ? , P
?) − ρ̃(π̂?)|. Here, ρ̃ is the robust estimate and π̂? is the optimal robust
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solution. The smaller the value, the tighter and less conservative the safe estimate is. Figure

4.5 shows the rate of safety violations: PD[ρ̃(π̂?) > ρ(π̂?, P ?) | P ?]. The number of samples

is the size of dataset D. All results are computed by averaging over 200 simulated datasets

of the given size generated from the ground-truth P ?.

The results show that BCI improves on both types Hoeffding bounds and RSVF further

improves on BCI. The mean estimate provides the tightest bounds, but Figure 4.5 demon-

strates that it does not provide any meaningful safety guarantees. It also provides insights

into how RSVF improves on the other methods. Because the goal is to guarantee estimates

are computed with 95% confidence, one would expect the safety guarantees to be violated

about 5% of the time. BCI and Hoeffding solutions violate the safety requirements 0% of

the time. RSVF is optimal in this setting and meets the allowed 5% violation.

Informative Gaussian Priors To evaluate the effect of using an informative prior, we

use a problem inspired by inventory optimization. The states s1, . . . , s5 represent inventory

levels. The inventory level corresponds to the state index (1 in the state s1) except that the

inventory in the current state s0 is 5. The demand is assumed to be Normally distributed

with an unknown mean µ and a known standard deviation σ = 1. The prior over µ is Normal

with the mean µ0 = 3 and, therefore, the posterior over µ is also Normal. The current action

assumes that no product is ordered and, therefore, only the demand is subtracted from s0.

Figure 4.6 compares the regret of safe estimates which were generated identically to the

uninformative example. It shows that with an informative prior, BCI performs significantly

better than Hoeffding bounds. RSVF provides still tighter bounds than BCI. The violations

plot (not shown) is almost identical to 4.5.

4.4.2 Full MDP

In this section, we evaluate the methods using MDPs with relatively small state-spaces. They

can be used with certain types of value function approximation, like aggregation [67], but
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Figure 4.7: Expected regret of safe esti-
mates with 95% confidence regions for the
RiverSwim: an MDP with an uninforma-
tive prior.

we evaluate them only on tabular problems to prevent approximation errors from skewing

the results. To prevent the sampling policy from influencing the results, each dataset D has

the same number of samples from each state.

Uninformative Prior We first use the standard RiverSwim domain for the evaluation [43].

The methods are evaluated identically to the Bellman update above. That is, we generate

synthetic datasets from the ground truth and then compare expected regret of the robust

estimate with respect to the true return of the optimal policy for the ground truth. As the

prior, we use the uniform Dirichlet distribution over all states. Figure 4.7 shows the expected

robust regret over 100 repetitions. The x-axis represents the number of samples in D for each

state. It is apparent that BCI improves only slightly on the Hoeffding sets since the prior

is not informative. RSVF, on the other hand, shows a significant improvement over BCI.

All robust methods have safety violations of 0% indicating that even RSVF is unnecessarily

conservative here.

Informative Prior Next, we evaluate RSVF on the MDP model of a simple exponential

population model [32]. Robustness plays an important role in ecological models because they

are often complex, stochastic, and data collection is expensive. Yet, it is important that the

decisions are robust due to their long term impacts.
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Figure 4.8: Expected regret of safe estimates with 90% confidence regions for the ExpPop-
ulation: an MDP with an informative prior.

We only outline the population model here and refer the interested reader to [?] for

more details. The population Nt of a species at time t evolves according to the expo-

nential dynamics Nt+1 = min (λtNt, K). Here, λ is the growth rate and K is the car-

rying capacity of the environment. A manager must decide, at each time t, whether to

apply a treatment that reduces the growth rate λ. The growth rate λt is defined as:

λt = λ̄ − ztNtβ1 − zt max (0, Nt − N̄)2β2 + N (0, σ2
y), where β1 and β2 are the coefficients

of treatment effectiveness and zt is the indicator of treatment. A noisy estimate yt of the

population Nt is observed: yt ∼ Nt +N (0, σ2
y). The state in the MDP is the population yt

discretized to 20 values. There are two actions whether to apply the treatment. The rewards

capture the costs of high population and the treatment application. The exponential growth

model is used as the prior and all priors and posteriors are Normally distributed.

Figure 4.8 shows the average regret of the safe predictions. BCI can leverage the prior

information to compute tighter bounds, but RSVF further improves on BCI. The rate of

safety violations is again 0% for all robust methods.

4.5 Contributions

In this chapter, I proposed a new Bayesian algorithm for constructing ambiguity sets in

RMDPs, improving over standard distribution-free methods. This algorithm is able to in-
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corporate prior knowledge and can significantly improve over other existing methods. Most

of the theoretical analysis presented in this chapter was done by my advisor. I empirically

validated the performance of the proposed RSVF algorithm and compared it to other base-

line methods. An earlier version of this chapter was presented at NeurIPS 2018 Workshop on

Probabilistic Reinforcement Learning and Structured Control. The full paper was published

at the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). I also

investigate the utility of this RSVF method in online setting for safe exploration purpose and

that study was presented at The Multi-disciplinary Conference on Reinforcement Learning

and Decision Making (RLDM 2019).
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CHAPTER 5

ROBUST CONSTRAINED POLICY OPTIMIZATION

Constrained Markov decision processes (CMDPs) are a super class of general MDPs that

incorporate an expected cumulative cost constraints [68] in addition to the regular reward-

based objective. The safety constraints imposed in CMDPs are important in real-life appli-

cations, where one cannot afford to risk violating some given constraints, e.g., in autonomous

cars, there are hard safety constraints on the car velocities and steering angles [69]. The

general formulation of CMDPs is specific to the case of known models, and we refer to

these CMDPs as non-robust. Several solution methods are available for solving non-robust

CMDPs: linear programming-based solutions [68], surrogate-based methods [70, 71], La-

grangian methods [68,72].

In addition to the constrained MDP setup, training for real-world applications often oc-

curs in simulated environments. The result is then transferred to the real world, typically

followed by fine-tuning, a process referred to as Sim2Real [73]. The simulator is, by defini-

tion, inaccurate with respect to the real-world, due to approximations and lack of system

identification [67]. Furthermore, for safety critical applications, a trained policy in simula-

tion should offer certain guarantees about safety when transferred to the real world. Robust

MDPs (RMDPs), as described in previous chapters, provide a framework to learn policies

that can deal with model inaccuracies and also can provide robustness guarantees. But

one noticeable characteristic of RMDPs is the fact that they do not consider any safety

constraints as imposed in the CMDP setting.

In light of these practical motivations, we propose in this chapter to unite the two concepts
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of CMDPs and RMDPs, to ensure both safety and robustness. In this RCMDP concept, we

propose to simultaneously consider the worst-case scenario for both the performance cost, as

well as the safety constraints. Such RCMDPs then can certify that the safety constraints are

satisfied in the worst-case situation while the performance is also optimized and guaranteed.

That is, if deployed, the worst-case objective is optimized while making sure that the worst-

case constraint cost will not exceed a pre-determined safety budget with high probability.

The rest of this chapter is organized as follows: Section 5.1 describes the formulation of

our Robust-CMDP problem and the objective we seek to optimize. We derive a Bellman-

style equation for RCMDPs and propose a gradient based optimization scheme in Section

5.2. We then propose and evaluate a policy-gradient and an actor-critic algorithm in Section

5.3 and draw concluding remarks in Section 5.4.

5.1 Problem Formulation

As described in Chapter 2.4, we consider Robust Markov Decision Processes (RMDPs) with

a finite number of states S = {1, . . . , S} and finite number of actions A = {1, . . . , A}. Every

action a ∈ A is available for the decision maker to take in every state s ∈ S. After taking an

action a ∈ A in state s ∈ S, the decision maker transitions to a next state s′ ∈ S according

to the true, but unknown, transition probability p?s,a ∈ ∆S and receives a reward rs,a,s′ ∈ R.

We use ps,a to denote transition probabilities from s ∈ S and a ∈ A, and condense it to refer

to transition function as p =
(
ps,a
)
s∈S,a∈A ∈

(
∆S
)S×A

. We condense the rewards to vectors

rs,a =
(
rs,a,s′

)
s′∈S ∈ RS and r =

(
rs,a
)
s∈S,a∈A.

Our RMDP setting assumes that the transition ps,a is chosen adversarially from an am-

biguity set Ps,a ∈
(
∆S
)S×A

for each s ∈ S and a ∈ A. An ambiguity set Ps,a, defined for

each state s ∈ S and action a ∈ A, is a set of feasible transitions quantifying the uncer-

tainty in transition probabilities. We restrict our attention to s, a−rectangular ambiguity

sets which simply assumes independence between transition probabilities of different state-

action pairs [29, 30]. We define the L1−norm bounded ambiguity sets around the nominal
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transition probability p̄s,a = E[p?s,a|D], for some dataset D as:

Ps,a =
{
p ∈ ∆S | ‖p− p̄s,a‖1 ≤ ψs,a

}
,

where ψs,a ≥ 0 is the budget of allowed deviations. As discussed in Section 2.4.2, this

budget ψs,a can be computed for each s ∈ S, a ∈ A using Hoeffding bound [45]: ψs,a =√
2

ns,a
log SA2S

δ
, where ns,a is the number of transitions in dataset D originating from state

s and an action a, and δ is the confidence level. This ψs,a, if used to compute a policy in

RMDPs, then guarantees that the computed return is a lower bound with probability δ. Note

that this is just one specific choice for the ambiguity set, our method can be extended to any

other type of ambiguity sets (e.g. L∞−norm, Bayesian, weighted, sampling based etc.). We

use P to generally refer to Pτ =
⊗

st∈S,at∈APs,a, where τ denotes the total number of time

steps starting from T − τ , T is the length of the horizon, and t ∈ {T − τ, T − τ + 1, . . . , T}.

For example, with τ = T we have PT =
⊗

st∈S,at∈APs,a starting from time step 0. This

collectively represents the ambiguity set along with the notion of independence between

state-action pairs in a tabular setting with discrete states and actions. Sampling based sets

under approximate methods (e.g. neural network) for large and continuous problems also

extend on this similar notion of ambiguity sets [74,75].

A stationary randomized policy π(·|s) for state s ∈ S defines a probability distribution

over actions a ∈ A. Note that, we use a slightly different notation π(·|s) to represent ran-

domized policies instead of π(s) used in previous chapters to represent deterministic policies.

The set of all randomized stationary policies is denoted by Π ∈
(
∆A
)S

. We parameterize

the randomized policy for state s ∈ S as πθ(·|s) where θ ⊆ Rk is a k−dimensional parameter

vector. Let ξ = {s0, a0, c0, d0, . . . , sT−1, aT−1, cT−1, dT−1, sT} be a sampled trajectory gener-

ated by executing a policy πθ from a starting state s0 ∼ p0 under transition probabilities

p ∈ P , where p0 is the distribution of initial states. Then the probability of sampling a

trajectory ξ is: pπθ(ξ) = p0(s0)
∏T−1

t=0 πθ(at|st)p(st+1|st, at) and the total reward along the
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trajectory ξ is: g(ξ, r) =
∑T−1

t=0 γ
trst,at,st+1 [2,3]. The value function vπθp : S → R for a policy

πθ and transition probability p is: vπθp = Eξ∼p
[
g(ξ, r)

]
and the total return is:

ρ(πθ, p, r) = pT0 v
πθ
p

Because the RMDP setting considers different possible transition probabilities within the

ambiguity set P , we use a subscript p (e.g. vπθp ) to indicate which one is used, in case it is

not clear from the context.

We define a robust value function v̂πθP for an ambiguity set P as: v̂πθP = minp∈P v
πθ
p .

Similar to ordinary MDPs, the robust value function can be computed using robust Bellman

operator as [36,37]:

(T̂Pv)(s) = max
a∈A

min
p∈Ps,a

(rs,a + γ · pTv)

The optimal robust value function v̂?, and the robust value function v̂πθP for a policy πθ are

unique and satisfy v̂? = T̂P v̂
? and v̂πθP = T̂ πθP v̂

πθ [36]. The robust return ρ̂(πθ,P , r) for a

policy πθ and ambiguity set P is defined as [37,76]:

ρ̂(πθ,P , r) = min
p∈P

ρ(πθ, p, r) = pT0 v̂
πθ
P

where p0 is the initial state distribution.

Constrained RMDP (RCMDP) In addition to rewards rs,a for RMDPs described

above, we incorporate a constraint cost d′s,a,s′ ∈ R, where s, s′ ∈ S and a ∈ A, repre-

senting some kind of constraint on behavior’s safety. Consider for example an autonomous

car that makes money (reward r) for each complete trip but incurs a big fine (constraint

cost d) for traffic violations or a collision. We define the constraint cost d′s,a,s′ to be a neg-

ative reward ds,a,s′ = −d′s,a,s′ , which brings consistency in representing the worst-case with

a minimum over the ambiguity set P for both the objective and the constraint. An asso-

ciated constraint budget β ∈ R+ describes the total budget for constraint violations. This
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arrangement resembles the constrained-MDP setting as described in [68], but with additional

robustness.

Similar to reward based estimates described above, the total constraint cost along a

trajectory ξ is: g(ξ, d) =
∑∞

t=0 γ
tdst,at,st+1 , robust value function for policy πθ and ambiguity

set P is: ûπθ = minp∈P Eξ∼p
[
g(ξ, d)

]
and the robust return:

ρ̂(πθ,P , d) = min
p∈P

ρ(πθ, p, d) = pT0 û
πθ

Similar to v̂?, the optimal constraint value function û? is also unique and independently

satisfies the Bellman optimality equation [68]. We now formally define the objective of

Robust Constrained MDP (RCMDP) as below:

maximize
πθ ∈ Π

ρ̂(πθ,P , r) (5.1a)

subject to ρ̂(πθ,P , d) ≥ β (5.1b)

This objective resembles the objective of a CMDP [68], but with additional robustness

integrated by the quantification of the uncertainty about the model. The interpretation of

the objective is to find a policy πθ that maximizes the worst-case return estimates, while

satisfying the constraints in all possible situations.

5.2 Robust Constrained Optimization

A standard approach for solving the optimization problem (5.1) is to apply the Lagrange

relaxation procedure (Chapter 3 of [52]), which turns it into an unconstrained optimization

problem:

L(πθ, λ) = ρ̂(πθ,P , r)− λ
(
β − ρ̂(πθ,P , d)

)
(5.2)

where λ is known as the Lagrange multiplier. Note that, the objective in (5.2) is non-convex

and therefore is not tractable. The dual function of L(πθ, λ) involves a point-wise maximum
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with respect to πθ and is written as [77]:

d(λ) = max
πθ∈Π

L(πθ, λ)

The dual function d(λ) provides an upper bound on (5.2) and therefore needs to be minimized

to contract the gap from optimality.

D? = min
λ∈R+

d(λ) (5.3)

The dual problem in (5.3) is convex and tractable, but the question remains about how large

the duality gap is. Or in other words, how sub-optimal the solution D? of the dual problem

(5.3) is with respect to the solution of the original problem stated in (5.1). To answer that

question, Paternain et. al. [77] show that strong duality holds in this case under some mild

conditions and the duality gap is arbitrarily small even with the parameterization (πθ) of

policies. We therefore tempt to optimize the dual version of this problem using gradients.

We rewrite the objective (5.2) and perform some algebraic manipulation as below:

L(πθ, λ) = ρ̂(πθ,P , r)− λ
(
β − ρ̂(πθ,P , d)

)
(a)
= min

p∈P
Eξ1∼p

[
g(ξ1, r)

]
− λ
(
β −min

q∈P
Eξ2∼q

[
g(ξ2, d)

])
(b)
= Eξ1∼p̃

[
g(ξ1, r)

]
+ λEξ2∼q̃

[
g(ξ2, d)

]
− λβ

=
∑
ξ1∈Ξp̃

pπθ(ξ1)g(ξ1, r) + λ
∑
ξ2∈Ξq̃

pπθ(ξ2)g(ξ2, d)− λβ

Where Ξp̃ is the set of all possible trajectories induced by policy πθ under transition func-

tion p̃. Similarly, Ξq̃ is the set of all possible trajectories induced by policy πθ under

transition function q̃. Step (a) above follows by assuming that the initial state distri-

bution p0 concentrates all of its mass to one single state s0. And (b) follows with p̃ =

arg minp∈P Eξ1∼p
[
g(ξ1, r)

]
and q̃ = arg minq∈P Eξ2∼q

[
g(ξ2, d)

]
. Note that, p̃ and q̃ are dis-

tinct, independent and depend on rewards r and constraint costs d respectively. However,
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the rewards and constraint costs are coupled together in reality, meaning that the set of two

trajectories Ξp̃ and Ξq̃ would not be different. So we select one set of trajectories Ξ being

either Ξp̃ or Ξq̃. This selection of Ξ may happen based on our priorities toward robustness

of reward r (with corresponding trajectory Ξp̃) or constraint cost d (with corresponding tra-

jectory Ξq̃). Or, it can also be the best (e.g. yielding higher objective value) set among Ξp̃

and Ξq̃ satisfying the constraint. We then have a simplified formulation for L as below:

L(πθ, λ) =
∑
ξ∈Ξ

pπθ(ξ)
(
g(ξ, r) + λg(ξ, d)

)
− λβ (5.4)

The goal is then to find a saddle point (πθ
∗, λ∗) of L that satisfies L(πθ, λ

∗) ≤ L(πθ
∗, λ∗) ≤

L(πθ
∗, λ), ∀θ ∈ Rk and ∀λ ∈ R+. This is achieved by ascending in θ and descending in λ

using the gradients of objective L with respect to θ and λ respectively [78].

Theorem 5.2.1. The gradient of L with respect to θ and λ can be computed as:

∇θL(πθ, λ) =
∑
ξ

p̂πθ(ξ)
(
g(ξ, r) + λg(ξ, d)

) T−1∑
t=0

∇θπθ(at|st)
πθ(at|st)

∇λL(πθ, λ) =
∑
ξ

p̂πθ(ξ)g(ξ, d)− β

Proof. See A.3.1 for the detailed derivation.

With a fixed Lagrange multiplier λ, the constraint budget β in (5.4) offsets the sum by a

constant amount. We can therefore omit this constant and define the Bellman operator for

RCMDPs. We then show that this operator is a contraction.

Proposition 5.2.2. The Bellman equation for RCMDPs can be defined as:

ŵπθ(s) = min
p∈Ps,π(s)

Es′∼p
[
r′s,π(s),s′ + γŵπθ(s′)

]
(5.5)

Where r′s,π(s),s′ = rs,π(s),s′ + λds,π(s),s′.
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Proof.

ŵπθ(s) = min
p∈PT

Eξ∼p
[
g(ξ, r) + λg(ξ, d)

]
(a)
= min

p∈PT
Eξ∼p

[
rs,πθ(s),s′ + γrs′,πθ(s′),s′′ + γ2rs′′,πθ(s′′),s′′′ . . .

+ λ
(
ds,πθ(s),s′ + γds′,πθ(s′),s′′ + γ2ds′′,πθ(s′′),s′′′ + . . .

)
|ξ
]

= min
p∈PT

Eξ∼p
[(
rs,πθ(s),s′ + λds,πθ(s),s′

)
+ γ
(
rs′,πθ(s′),s′′ + λds′,πθ(s′),s′′

)
+ γ2

(
rs′′,πθ(s′′),s′′′ + λds′′,πθ(s′′),s′′′

)
+ . . . |ξ

]
= min

p∈PT
Eξ∼p

[
r′s,πθ(s),s′ + γr′s′,πθ(s′),s′′ + γ2r′s′′,πθ(s′′),s′′′ + . . . |ξ

]
(b)
= min

p∈Ps,πθ(s)
Es′∼p

[
r′s,πθ(s),s′ + γ min

p∈PT−1

Eξ′∼p
[
r′s′,πθ(s′),s′′ + γr′s′′,πθ(s′′),s′′′ + . . . |ξ′

]]
= min

p∈Ps,πθ(s)
Es′∼p

[
r′s,πθ(s),s′ + γŵπθ(s′)

]

Here (a) follows by expanding total return given a trajectory ξ and (b) follows by evalu-

ating the one-step immediate transition apart. We define the Bellman optimality equation

for RCMDPs as:

(T̂ rc
P w)(s) := max

a∈A
min
p∈Ps,a

(r′s,a + γ · pTw) (5.6)

Proposition 5.2.3. The Bellman operator T̂ rc
P defined in (5.5) for RCMDPs is a contraction.

Proof. The proof follows directly from Theorem 3.2 of [36].

The RCMDP Bellman operator T̂ rc
P therefore satisfies the Bellman optimality equation

and converges to a fixed point.

5.2.1 Policy Gradient Algorithm

Algorithm 4 presents a robust constrained policy gradient algorithm based on the gradient

update rules derived above in Theorem 5.2.1. The algorithm proceeds in an episodic way
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based on trajectories and updates parameters based on the Monte-Carlo estimates. The

algorithm requires an ambiguity set P as its input, which can be constructed with empirical

estimates for smaller problems, as shown in chapter 3 and chapter 4. Or it can also be a

parameterized estimate for larger problems [79].

Algorithm 4: Robust-Constrained Policy Gradient (RC-PG) Algorithm

Input: A differentiable policy parameterization πθ, ambiguity set P , confidence
level α, step size schedules ζ2 and ζ1.

Output: Policy parameters θ
1 Initialize policy parameter: θ ← θ0

2 for k ← 0, 1, 2, . . . do
3 Sample initial state: s0 ∼ p0

4 Trajectory: ξ ← ∅
/* Simulate trajectory */

5 for t← 0, 1, 2, . . . , T do
6 Sample action: at ∼ πθ(·|st)
7 Worst-case transitions with confidence α: p̂πθ ← arg minp∈Ps,a p

T v̂πθ

8 Sample next state: st+1 ∼ p̂πθ ;
9 Observe reward rst,at,st+1 and constraint cost dst,at,st+1

10 Append to trajectory: ξ ←
{
st, at, st+1, rst,at,st+1 , dst,at,st+1 ,

∇θπθ(at|st)
πθ(at|st)

}
/* Loop backward and update parameters with ξ */

11 θ update: θ ← θ + ζ2(k)∇θL(πθ, λ)
12 λ update: λ← λ− ζ1(k)∇λL(πθ, λ)

13 return θ;

The step size schedules used in Algorithm 4 satisfy the standard conditions for stochastic

approximation algorithms [80]. That is, θ update is on the fastest time-scale ζ2(k) and

the λ update is on a slower time-scale ζ1(k). This results in a two time-scale stochastic

approximation algorithm, we derive its convergence to a saddle point as below.

Theorem 5.2.4. Under assumptions (A1) - (A7) as stated in Appendix A.3.2, the sequence

of parameter updates of Algorithm 4 converges almost surely to a locally optimal policy πθ
?

as the number of trajectories k →∞.

Proof. We report the proof in Appendix A.3.4.
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5.2.2 Actor Critic Algorithm

Algorithm 5: Robust Constrained Actor Critic (RC-AC) Algorithm

Input: A differentiable policy parameterization πθ, a differentiable state-value
function wπθ(s, f), confidence level α, step size schedule ζ1 and ζ2.

Output: Policy parameters θ
1 Initialize policy parameter θ ∈ Rk and state-value weights f ∈ Rk′ ;
2 for j ← 0, 1, 2, . . . do
3 Sample initial state: s0 ∼ p0;
4 t← 0;

/* Loop for each step along a trajectory */

5 while st not terminal do
6 Sample action: at ∼ πθ(·|st)
7 Worst-case transitions with confidence α: p̂πθ ← arg minp∈Ps,a p

Twπθ

8 Sample next state st+1 ∼ p̂πθ and observe rst,at,st+1 and dst,at,st+1 ;
9 TD error: δt ← r′st,at,st+1

+ γwπθ(st+1, f)− wπθ(st, f);

/* Update parameters with gradient estimates */

10 θ update: θ ← θ + ζ2(k)δt∇θL(πθ, λ);
11 f update: f ← f + ζ1(k)δt∇fw

πθ(st, f);
12 t← t+ 1;

13 return θ ;

The general issue of having high variance in the Monte Carlo based policy gradient

algorithm can be handled by introducing state values to use as baselines [2]. As the optimal

value function for RCMDPs can be computed using Bellman style recursive updates as

shown in (5.5), an extension of the above PG algorithm to the actor-critic framework is

straightforward. Algorithm (5) presents an actor critic (AC) algorithm for RCMDPs. The

state-value parameterization with f brings a new dimension in algorithm (5) and results in a

three time-scale stochastic algorithm. The convergence properties for this AC algorithm can

be derived in a way similar to Theorem 5.2.4. We therefore omit the detailed derivations.

Robustness introduced in PG and AC algorithms can be handled in polynomial time. Like

general AC and PG algorithms, the time complexity for each iteration of algorithm 4 and 5

therefore remains to be O(|θ|), where |θ| is the number of policy parameters.
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5.3 Empirical Study

In this section, we empirically evaluate the performance of our robust-constrained policy

gradient algorithm on an inventory management [3,4,81] problem. We also report results for

a robust-constrained version of actor-critic (AC) algorithm in cart-pole [2,82] domain. Note

that, the prefix R will denote Robust and the prefix C will denote constrained versions of

the algorithms.

5.3.1 Inventory Management Problem

The state space of the inventory management problem is discrete and is represented by the

level of inventory. The purchase cost of each product is 2.49, sale price is 3.99 and holding

cost is 0.03. The demand for a product is random and comes from a normal distribution

with unknown parameters. The reward is represented by the profit = revenue - costs. The

goal is to order products from a supplier in order to meet customer demands. This stan-

dard inventory setting further incorporates a constraint associated to stock-out event, which

triggers when the demand exceeds the current stock of an item. A stock-out event usually

results in lost revenues and customer dissatisfaction, therefore incorporating an additional

cost for a company.

This experiment on inventory management problem is run with a confidence level δ = 0.9,

which translates to a lower bound on the return estimates with 90% confidence level as

discussed in previous chapters. We use a discount factor γ = 0.9, and ns,a = 100 number of

samples drawn for each state-action from the underlying true transition distribution p?s,a. We

compare our robust-constrained method RC-PG as described in algorithm 4 with general

policy gradient algorithm [2]. We also evaluate a variant of PG method that is robust, but

does not involve any constraint.

We analyze the robustness of policies in a perturbed version of the inventory problem,

where the perturbation is introduced by varying the standard deviation of the demand
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Figure 5.2: Stock-out frequency for different
methods.

distribution. Figure 5.1 shows the estimated returns for different policies in the Y-axis and

the standard deviation of demand on the X-axis. Policy computed by the PG method offers

the highest return estimates throughout the whole range of perturbed environments. But

this policy neither provides any worst-case guarantee for performance, nor does it care about

constraint satisfaction. The violin plot in figure 5.2 confirms that behavior. On the other

hand, the policy computed with RC-PG method has the lowest return estimates. But this

policy provides a worst-case performance guarantee along with best constraint satisfaction

as displayed in figure 5.2. The robust PG method does not explicitly consider the constraint.

It therefore trade-offs some constraint satisfaction performance with higher return estimates

as shown in figure 5.1.

5.3.2 Cart-pole

We next evaluate our algorithm on cart-pole, a standard RL benchmark problem [2,82]. The

task here is to balance a pole atop a cart by pushing the cart left or right. We implement

an actor-critic (AC) algorithm [2, 83] using a simple neural network of 1 fully connected

hidden layer with 128 weights and ReLu activations. We explicitly introduce a noise in the

environment by altering the mass of the pole from a finite set of preset values. We train

the agent on this perturbed version of the environment and then evaluate the policy on an

environment perturbed with a different set of values for the pole mass. A comparison is
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Methods Return Mean Return V@R (90%) Constraint Violation

AC 175.45± 2.99 153.3 2.3%
C-AC 171.88± 6.96 147.6 0.0%
R-AC 118.22± 6.07 84.5 1.1%

RC-AC 123.26± 8.64 89.5 0.05%

Table 5.1: Evaluating learned policy in test environments for cart-pole problem.

provided in Table 6.3. The non-robust versions of the actor-critic method (AC and C-AC)

have higher expected return along with a higher performing tail performance computed as

90% value-at-risk. But they do not provide robustness guarantees and can perform poorly

in the worst-case situations. The robust methods (R-AC and RC-AC) provide a lower

estimate for the expected return and tail performance, but is expected to provide consistent

performance throughout a range of different parameter values of the environment. Also,

it can be seen in the table that the constrained methods are able to reduce the constraint

violation rates to almost zero.

5.4 Contributions

This is a joint work with Mitsubishi Electric Research Lab (MERL), thanks to my collab-

orators Mouhacine Benosman and Jeroen van Baar. Mouhacine envisioned the utility of

uniting the ideas of constrained MDPs and robust MDPs, leading to Robust Constrained

MDPs (RCMDPs). I derived the RCMDP framework and developed theoretical founda-

tions. I proposed policy gradient class of algorithms for optimizing the RCMDP objective

and empirically validated its usefulness. All of these have been done under close supervision

of Mouhacine and Jeroen. An earlier version of this work was presented at NeurIPS 2020

workshop on The Challenges of Real World Reinforcement Learning.
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CHAPTER 6

RISK-AVERSE SOFT-ROBUST REINFORCEMENT LEARNING

The most common goal when solving Markov Decision Processes (MDP) is to maximize the

expected sum of discounted rewards [2]. As discussed in previous chapters, good policies will

achieve good rewards only in expectations, and may fail catastrophically due to stochastic

transitions and uncertain models. When the stakes are high, it is, therefore, better to com-

pute risk-averse policies that give up some of the expected rewards in return of minimizing

the probability of a catastrophic failure [67, 76].

In this chapter, we propose a new method to compute policies that mitigates the risk of

failure that could arise from either stochastic transition probabilities or uncertain models. In

effect, this chapter combines risk-averse and robust reinforcement learning, two streams of

work that address similar concerns but have been treated mostly independently thus far. We

argue that the combined Risk-Averse Soft-Robust (RASR) objective is more appropriate in

domains that involve high stakes and uncertain models. Surprisingly, solving the combined

RASR objective can be easier than solving objectives that target robust RL and risk-averse

RL objectives individually.

Many framework for measuring risk have been studied. Risk measures have gained pop-

ularity in machine learning in recent years. This is perhaps because they combine attractive

computational properties with good interpretability and realistic assumptions. Value-at-Risk

(VaR) and Conditional Value-at-Risk (CVaR) [74,78,84,85] are popular risk measures used

in RL because of their simplicity and interpretability. Their use in sequential optimization

is complicated because they are not dynamically-consistent, which means that the optimal
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policy may need to be history-dependent and the Bellman optimality equations cannot be

readily used to compute the optimal value function [29,86]. One can define an iterated ver-

sion of VaR and CVaR, but these are difficult to interpret, can be overly conservative, and

violate an important property of law invariance.

Risk-averse reinforcement learning optimizes a risk-sensitive objective that penalizes the

variability in returns caused by stochastic transitions. This uncertainty is referred to also as

aleatory uncertainty. For example, policy gradient and actor-critic algorithms to optimize

risk-averse objective for MDPs have been developed recently [78,87,88] for several common

risk-measures. These methods do not consider model uncertainty which leads to methods

that differ from our work in several crucial aspects.

Robust reinforcement learning targets problems in which the model of the domain is not

known precisely [30, 36]. The agent is instead uncertain about several models that might

best represent the reality. This uncertainty, which is subjective to the agent, is usually

known as epistemic uncertainty. Limited data, inaccurate measurement of model parame-

ters, overlooked factors etc. are some common reasons for epistemic uncertainties. Robust

optimization is a popular approach to handle this uncertainty. Instead of estimating a single

model of the environment, such as transition probabilities, robust optimization techniques

estimate a range of plausible models. They compute the best policy for the worst-case plau-

sible model from the estimated range. This approach is simple and can be computationally

effective [28]. Unfortunately, robust policies are reliable but too conservative [76].

Soft-robust optimization methods connect risk aversion with robust optimization to

achieve robustness while computing policies that are less conservative [9, 10, 75, 89, 90]. The

methods also estimate the range of possible models, or transition probabilities, that are con-

sistent with the observed data. But then optimize a policy with respect to a risk metric

of its performance across different models. In one early example of this approach, the per-

centile criterion optimizes the value-at-risk (VaR) of the policy’s performance with respect

to uncertain model [91]. This allows to trade off the performance between the average and
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worst-case models more effectively.

Table 6.1: Comparison of previous risk-sensitive methods.

References
Uncertainty Types Risk Measures

Aleatory Epistemic Variance CVaR Entropic

RASR
(this work)

3 3 7 7 3

Lobo et al. [89] 7 3 7 3 7

Nass et al. [92] 3 7 7 7 3

Fei et al. [93] 3 7 7 7 3

Eriksson and Dimitrakakis [94] 7 3 7 3 3

Hiraoka et al. [90] 7 3 7 3 7

Prashanth and Ghavamzadeh [87] 3 7 3 7 7

Chow and Ghavamzadeh [78] 3 7 7 3 7

Tamar et al. [88] 3 7 7 3 7

Tamar et al. [95] 3 7 3 7 7

Table 6 provides a comparative overview of prior works related to applying risk mea-

sures in RL. Some methods proposed previously only handle aleatory uncertainty. All these

methods assume that the model is precisely known and risk-measures are only required to

deal with the inherent stochasticity. On the other hand, another set of methods only handle

epistemic uncertainty. These methods only care about model uncertainty and overlook the

fact that simultaneous treatment of inherent transition uncertainty is important. RASR

framework proposed in this paper is the only method that simultaneously handles both of

these uncertainties and provides rigorous theoretical analysis with empirical evidences.

As the main contribution of this chapter, we study the basic computational properties

of Markov decision processes that are both robust and risk averse. We show that when the

same entropic risk measure is used, then the finite horizon problem can be solved optimally,

while the infinite horizon discounted objective can be approximated closely. This is in stark

contrast with prior work on risk-averse and robust reinforcement learning, which typically

involves solving NP hard problems. Our contributions are five-fold: i) propose a unified risk-

averse soft-robust (RASR) framework to deal with both epistemic and aleatory uncertainties,

ii) derive Bellman equation for RASR framework and propose a value iteration algorithm,
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iii) formulate gradient update rule to optimize RASR objective and propose an actor-critic

algorithm for larger problems, iv) derive a finite sample convergence analysis for entropic

risk measure, and v) empirically validate the utility of our RASR framework on a set of

problem domains.

The remainder of the chapter is organized as follows: Section 6.1 formally describes the

problem setting and establishes several useful properties for entropic risk measure. The

RASR framework is presented in Section 6.2 along with corresponding theoretical analysis

and algorithms. Section 6.3 presents the empirical evaluation on several problem domains.

Section 6.4 finally draws the concluding remarks.

6.1 Problem Formulation

We use the standard Markov Decision Process (MDP) model with a finite number of states

S = {1, . . . , S} and finite number of actions A = {1, . . . , A}. Every action a ∈ A is available

for the decision maker to take in every state s ∈ S. After taking an action a ∈ A in state

s ∈ S, the decision maker transitions to a next state s′ and receives a reward |rs,a,s′| ≤ rmax ∈.

A transition probability function P : S × A → ∆S describes this state transition given the

current s ∈ S and action a ∈ A. An initial state distribution is p0 ∈ ∆S and γ ∈ [0, 1] is a

discount factor.

A solution to an MDP is a policy π : S → ∆A, which defines an action a ∈ A given

a state s ∈ S. The set of all randomized policies is defined as Π = (∆A)S and ΠD = AS

denotes the set of all deterministic policies. Our objective is to maximize the infinite horizon

γ−discounted return [2, 3]:

vπP = EP
[ ∞∑
t=0

γtrst,π(st),st+1

]
where s0 ∼ p0 and st+1 ∼ P (st, at).

We operate in a batch RL setting [18] where a logged set of data D =
{
si, ai, s

′
i

}M
i=1

is

provided. We do not have any assumption about the policy that is used to generate the
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dataset D, it can be any arbitrary baseline policy πB. The only assumption is that, the

next state s′i ∈ S given a current state si ∈ S and action ai ∈ A is distributed according to

the true transition probability p?si,ai . Note that, the true transition model P ? is a random

variable in the Bayesian setting. Given the data D, we derive a posterior distribution P̂ over

the true transition model P ? conditional on D: P̂ = P ?|D. As discussed in Chapter 4, the

posterior can be derived analytically by using conjugate priors like Dirichlet distribution, or

can also be obtained with MCMC sampling libraries like JAGS, or Stan [63]. We denote by

P̂ ω a sample from the posterior distribution P̂ with weight fω, where f is the probability

measure function of P̂ : Ω→
(
∆S
)S×A

. We consider a dynamic model of uncertainty where

the uncertain parameters can vary at every time step. This setting is common [51, 75, 96],

but can be more pessimistic because exploitation of current state feature information may

not be possible [89].

A trajectory τ of state transitions with policy π and starting state s0 ∼ p0 can be defined

in the dynamic setting as:

τ =
(
st

)
t=0
,
(
P ω
t ∼ P̂ , st ∼ P ω

t (·|st−1, π(st−1))
)
t=1
, . . . ,

. . . ,
(
P ω
t ∼ P̂ , st ∼ P ω

t (·|st−1, π(st−1))
)
t=T−1

,
(
P ω
t ∼ P̂ , st ∼ P ω

t (·|st−1, π(st−1))
)
t=T

The probability of sampling such a trajectory τ is: pθ(τ) = p0(s0)
∏T

t=1 πθ(at|st)P̂ ω
t (st+1|st, at)fωt .

The total γ− discounted return for a trajectory τ is R(τ) =
∑T

t=0 γ
trst,π(st),st+1 . The expected

γ−discounted return is:

vE
π,P̂

(s0) = Eτ∼pθ(τ)

[
R(τ)

]
where s0 ∼ p0. This quantity represents the value function in dynamic setting, which satisfies

Bellman optimality equation for each s ∈ S and converges to a fixed point [51].
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6.1.1 Entropic Risk Measure

Entropic risk measure ρα : X → R for a random variable X is a popular risk measure

based on exponential utility function and for a risk-aversion parameter α > 0, it takes the

form [97,98]:

ραX(X) = − 1

α
log
(
EX [exp (−αX)]

)
(6.1)

The entropic risk measure satisfies the properties of monotonicity, translation invariance and

convexity [99]:

Definition 6.1.1. For all X, Y : Ω→ R and a scalar m ∈ R

� Monotonicity: If X ≤ Y , then ραX(X) ≥ ραY (Y ).

� Translation invariance: ραX(X +m) = ραX(X)−m.

� Convexity: ραX,Y
(
λX + (1− λ)Y

)
≤ λραX(X) + (1− λ)ραY (Y ), for 0 ≤ λ ≤ 1.

But ρα is not a coherent risk measure because it does not satisfy the positive homogeneity

property [97]. The dual representation of the entropic risk measure takes the following

form [99]:

ραX(X) = sup
Q∈∆

{
EQ[−X]− 1

α
DKL (Q||P )

}
Where ∆ denotes the class of all probability measures on X and DKL (Q||P ) is the relative

entropy of Q � P . This dual representation is convex, monotone and translation invariant

and simply follows from the conjugate and bi-conjugate representation of (6.1) [97].

With an abuse of notation, we denote the joint entropic risk measure of two independent

random variables X and Y as:

ραX,Y (X + Y ) = − 1

α
log
(
EX,Y

[
exp (−α(X + Y ))

])

We now derive some useful properties of the entropic risk measure that we will need later in

this chapter.
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Lemma 6.1.1. (Comonotonic Additive) For two independent random variables X and Y ,

ραX(X) + ραY (Y ) = ραX,Y (X + Y ) .

Proof.

ραX(X) + ραY (Y ) = − 1

α
log
(
EX
[

exp (−αX)
])
− 1

α
log
(
EY
[

exp (−αY )
])

= − 1

α
log
(
EX
[

exp (−αX)
]
· EY

[
exp (−αY )

])
= − 1

α
log
(
EX,Y

[
exp (−αX) · exp (−αY )

])
= − 1

α
log
(
EX,Y

[
exp (−α(X + Y ))

])
= ραX,Y (X + Y )

Lemma 6.1.2. (Recursive) For two independent random variables X and Y , ραX

(
X +

ραY (Y )
)

= ραX,Y (X + Y ) .

Proof.

ραX

(
X + ραY (Y )

)
= − 1

α
log

(
EX
[

exp
(
− α

(
X + ραY (Y )

))])
(a)
= − 1

α
log

(
EX
[

exp
(
− αραY (X + Y )

)])

= − 1

α
log

(
EX
[

exp
(
− α−1

α
logEY

[
exp

(
− α(X + Y )

)]]])

= − 1

α
log

(
EX,Y

[
exp

(
− α(X + Y )

)])

= ραX,Y (X + Y )

Here (a) follows because entropic risk measure ρα is cash-invariant [100].

Lemma 6.1.3. (Translation Invariant) For two independent random variables X, Y , ραX

(
X+

ραY (Y )
)

= ραX(X) + ραY (Y ) .
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Proof. From Lemma 6.1.1 and Lemma 6.1.2, we have:

ραX

(
X + ραY (Y )

)
= ραX,Y (X + Y ) = ραX(X) + ραY (Y )

Next, we analyze the finite-sample convergence properties of entropic risk measure for a

random variable X ⊆ [0, U ]. One important concept in this regard is Optimized Certainty

Equivalent (OCE), which is defined as follows:

Definition 6.1.2. (OCE) Let φ: R → R ∪ +∞ be a closed, concave function with dom

φ ⊆ R+ and have a minimum value of 0 attained at 1. Then the OCE of a random variable

X ∈ X can be defined following Definition 2.2 of [101] as:

Sφ(X) = sup
η∈R

{
η + E

[
φ(X − η)

]}
(6.2)

We can compute an estimate Ŝφ(X) of (6.2) from i.i.d samples X1, . . . , XN as:

Ŝφ(X1, . . . , XN) = sup
η∈R

{
η +

1

N

N∑
i=1

φ(Xi − η)
}

Theorem 6.1.4. An OCE estimate Ŝφ for random variable X can be upper bounded by an

amount ε as:

P (|Ŝφ(X1, . . . , XN)− Sφ(X)| ≥ ε) ≤ 2 exp
(
−2(ε/φ(U))2 ·N

)
Proof. The proof follows directly from Theorem 3.2 of [102].

Theorem 6.1.4 leads us to derive the finite-sample deviation bound for entropic risk

measure.
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Corollary 6.1.5. When Sφ(X) = ραent(X) for some α ∈ (0, 1], then we have:

P (|ρ̂α(X1, . . . , XN)− ρα(X)| ≥ ε) ≤ 2 exp
(
−2α2ε2N

)
Proof. The proof follows by substituting the utility function φ(t) = 1

α

(
1 − exp (−αt)

)
of

the entropic risk measure into the deviation bound of OCE derived in Theorem 6.1.4. See

Appendix A.4.1 for the full derivation.

6.2 Risk-Averse Soft-Robust (RASR) Framework

We formally define the RASR framework in this section. At each time step t, both the

model parameters P ω
t and the transition to a next state st+1 are uncertain under dynamic

model of uncertainty. The RASR framework therefore simultaneously takes both of these

uncertainties into consideration. We define the RASR value function v̂π
P̂

for a policy π and

posterior distribution P̂ as the entropic risk measure over γ−discounted return under the

dynamic model of uncertainty.

v̂π
P̂

(s) = ρα
P̂ ,S,A

[ T∑
t=0

γtrst,π(st),st+1|S0 ∼ p0, St+1 ∼ P̂t(st, at), At ∼ π(St), P̂t ∼ f
]

(6.3)

Where s ∼ s0. For γ = 1, The RASR value function v̂π
P̂

satisfies a Bellman style equation as

stated below.

Theorem 6.2.1. (Bellman Equation) For a fixed policy π and horizon length T < ∞, the

RASR value function v̂π
P̂

satisfies a Bellman equation for each s ∈ S:

v̂π
P̂

(s) = ρα
Pω∼P̂ ,s′∼Pω(·|s,π(s))

[
rs,a,s′ + v̂π

P̂
(s′)

]
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Proof.

v̂π
P̂

(s) =
T∑
k=0

ρα
Pωt+k∼P̂ ,st+k+1∼Pωt+k(·|st+k,π(st+k))

[
rst+k,π(st+k),st+k+1

]∣∣∣st = s

(a)
= ρα

Pωt ∼P̂ ,st+1∼Pωt (·|st,π(st))

[
rst,π(st),st+1

+
T∑
k=1

ρα
Pωt+k∼P̂ ,st+k+1∼Pωt+k(·|st+k,π(st+k))

[
rst+k,π(st+k),st+k+1

]]∣∣∣st = s

(b)
= ρα

Pωt ∼P̂ ,s′∼Pωt (·|st,π(st))

[
rst,π(st),s′ + v̂π

P̂
(s′)
]∣∣∣st+1 = s′

Here (a) follows from Lemma 6.1.3 and (b) follows by replacing the definition of the value

function for a next state st+1.

We now approximate the infinite horizon discounted objective under this RASR frame-

work. We use V to denote the set of all bounded real-valued functions on S. Let ‖v‖∞

denote the L∞ norm on V . Then (V , ‖·‖∞) is a Banach space. We define the RASR Bellman

operator T : V → V for a state s and transition posterior P̂ as the best action with respect

to the entropic risk measure over model and state transition distributions.

(TP̂ v̂)(s) = max
a∈A

ρα
Pωt ∼P̂ ,s′∼Pωt (·|st,at)

[
rst,at,s′ + γv̂(s′)

]
, ∀s ∈ S,∀v̂ ∈ V . (6.4)

We now show that, the RASR Bellman operator T as defined in (6.4) is a contraction

mapping and therefore converges to a fixed point.

Theorem 6.2.2. (Contraction) For any two bounded functions uP̂ : S → R, and vP̂ : S → R

under a posterior transition P̂ , and γ ∈ [0, 1), the RASR Bellman operator T is a contraction

mapping. In particular, it holds for all uP̂ , vP̂ ∈ V that:

‖TuP̂ − TvP̂‖∞ ≤ γ‖uP̂ − vP̂‖∞ (6.5)

Proof. We report the proof in Appendix A.4.2.
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Algorithm 6: RASR Value Iteration (RASR-VI)

Input: States S, Actions A, Transition posterior P̂ , Rewards r, discount factor γ
and admissible maximum error ε.

Output: RASR value function v̂
1 Initialize v̂(s) arbitrarily for all s ∈ S;
2 repeat
3 v′ ← v̂,∆← 0;
4 for each s ∈ S do

5 v̂(s)← maxa∈A ρ
α
Pω∼P̂ ,s′∼Pω(·|s,a)

[
rs,a,s′ + γv̂(s′)

]
;

6 ∆← max
(
∆, |v̂(s)− v′(s)|

)
7 until ∆ < ε;
8 return v̂ ;

Algorithm 6 shows a value iteration algorithm based on the RASR Bellman operator T.

The contraction property of T shown in Theorem 6.2.2 ensures that Algorithm 6 converges

to a fixed point of the optimal RASR value function v̂?. Similar to regular value iteration,

Algorithm 6 is P-complete as it does not require any additional computational step.

6.2.1 RASR Policy Parameterization

The value iteration algorithm proposed in previous section is good for tabular setting with

discrete state and action spaces. But many real-world problems have large and continuous

state spaces, which do not fit into the tabular setting. We therefore in this section extend

the RASR framework beyond the tabular context by considering a class of parameterized

stationary randomized policy πθ : S → ∆A, where θ ⊆ Rk is a k−dimensional parameter

vector. We rewrite the trajectory based RASR objective as below:

J(πθ) = ρατ∼pθ(τ)

[
R(τ)

]
= − 1

α
log

(
Eτ∼pθ(τ)

[
exp

(
− αR(τ)

)]) (6.6)

We derive the gradient update formula of the RASR objective J(πθ) defined in (6.6) with

respect to the policy parameter θ.
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Theorem 6.2.3. (RASR Policy-Gradient) The gradient of RASR objective J(πθ) with re-

spect to the parameter θ is:

∇θJ(πθ) =
−
∑

τ pθ(τ)
∑T

t=0
∇θπθ(at|st)
πθ(at|st) · exp

(
− α

∑T
t=0 rst,at

)
α
∑

τ pθ(τ) exp
(
− αR(τ)

)
Proof. The proof is deferred to Appendix A.4.3.

The gradient derived in Theorem (6.2.3) then can be used to update the policy in the

direction of the estimated gradient ∇θJ(πθ). Algorithm (7) shows an actor-critic (AC)

algorithm for updating the parameterized policy optimizing the RASR objective.

Algorithm 7: RASR Actor Critic (RASR-AC) Algorithm with Entropic Risk

Input: A differentiable policy parameterization πθ, a differentiable state-value
function v̂πθ

P̂
(s, w), confidence level α, step size schedule ζ1 and ζ2.

Output: Parameterized policy πθ
1 Initialize policy parameter θ ∈ Rk and state-value weights w ∈ Rk′ ;
2 for k ← 0, 1, 2, . . . do
3 Sample initial state: s0 ∼ p0, set time-step t← 0;
4 while st is not terminal do
5 Sample action at ∼ πθ(·|st), then take action at and observe next state st+1;

6 TD error: δt ← ρα
Pωt ∼P̂ ,st+1∼Pωt (·|st,at)

[
rst,at,st+1 + γv̂πθ

P̂
(st+1, w)

]
− v̂πθ

P̂
(st, w);

7 θ update: θ ← θ + ζ2(k)δt∇θJ(πθ);
8 w update: w ← w + ζ1(k)δt∇wv̂

πθ
P̂

(st, w);

9 t← t+ 1;

10 return πθ ;

The step size schedule of Algorithm (7) satisfy the standard conditions for stochastic

approximation algorithms ensuring that θ update is on the fastest time-scale ζ2(k) and

the w update is on a slower time-scale ζ1(k). This results in a two time-scale stochastic

approximation algorithm and the convergence of it to a saddle point can be shown following

standard proof techniques presented in [80].
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6.3 Empirical Evaluation

In this section, we empirically evaluate the RASR framework on a set of different problem

domains. All the experiments are run with risk parameter α = 0.9 unless otherwise specified.

We start with logged data D collected by running arbitrary baseline policies πb from the

underlying true distribution P ?. We then use D to compute the Bayesian posterior from the

prior. One can use conjugate distributions (e.g. Dirichlet) or MCMC sampling libraries like

JAGS or Stan [63] to obtain this posterior.

6.3.1 Tabular Setting

We first evaluate the RASR framework in tabular MDP setting, for problems like river-swim,

machine replacement and inventory management. We compare: i) Nominal method which

only uses the expected model, ii) Bayesian Confidence Region (BCR) [76], iii) Robustifica-

tion with Sensible Value Functions (RSVF) [76], iv) RASR-VI with VaR and v) RASR-VI

with CVaR and vi) RASR-VI with Entropic. Note that RASR-VI algorithm presented in

Algorithm 6 is specific to entropic risk measure and corresponds to our proposed RASR

framework. The VaR and CVaR based RASR-VI methods are extensions to that algorithm,

where the risk measure in line 5 of Algorithm 6 gets replaced with VaR or CVaR. These

extensions are not theoretically sound, as they are difficult to interpret and violate the prop-

erty of law invariance. We introduce them here for the sole purpose of comparison. We

evaluate the learned policies on a test data-set and report the mean and RASR entropic

return evaluated under the RASR framework.

RiverSwim We first take a modified version of the classic RiverSwim problem [103]. The

states in this problem are arranged as a chain and labeled with an index increasing from left

to right. The reward is assumed to be known and depends on the current state, action and

the next state. There are two actions: going left or going right. The transition following

action left is deterministic and leads to a next state that is on the left. Action right can lead
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Table 6.2: Policy evaluation results for methods trained in RASR framework.

Methods Riverswim
Machine

Replacement
Inventory

Management

Nominal
Mean 221.90 −12.46 226.47

RASR 16.54 −128.17 60.12

BCR
Mean 107.77 −15.68 208.73

RASR 46.15 −127.53 74.40

RSVF
Mean 220.81 −14.14 216.54

RASR 1.59 −129.03 65.44

RASR-VI
with VaR

Mean 220.81 −14.14 222.19

RASR 1.59 −129.03 62.45

RASR-VI
with CVaR

Mean 132.92 −14.08 216.52

RASR 43.56 −127.83 69.09

RASR-VI
(Algorithm 6)

Mean 49.99 −24.11 118.54

RASR 49.99 −120.89 83.50

to three possible next states (left, current, right) with uniform probabilities. We assume a

Dirichlet prior for the transition distributions. Given some samples generated from the true

distribution, we fit a JAGS [63] model to draw transition samples from Bayesian posterior.

Machine Replacement Next, we use an instance of the Machine Replacement prob-

lem (see e.g. Figure 3 of [104]) that consists of 10 states and 2 actions. States 0 to 7

describe the normal aging of the machine. States R1(index=9) and R2(index=8) represent

two possible stages of repairs. R1 indicates for a normal repair with cost 2 and R2 indicates

a harder repair with cost 10. Actions are labeled as 0 and 1, representing do nothing and

repair respectively. An additional cost of 20 is incurred if the age of the machine reaches 8.

Inventory Management We then evaluate our RASR-entropic method on an instance of

inventory management problem [3,4]. This problem is formulated as an MDP with discrete

state and action spaces. The state represents the inventory level and the action determines

how much product to order to meet customer demands. The demand is stochastic and de-

termines the transitions to next inventory levels. There is inherent stochasticity in transition
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dynamics because of this randomness in demand realization and we model this as a Poisson

distribution with a rate parameter λ. This demand distribution is moreover uncertain and

is modeled with a Gamma distribution as prior with parameters: shape k = 4 and scale

θ = 6. We draw n = 200 samples from the true demand distribution and then compute

the posterior Gamma distribution from the prior. The purchase cost and sale price for the

problem are set to be 2.49 and 4.99 respectively. Ordering products to restock the inventory

helps to meet demands, but unsold products incur a holding cost of 0.05.

Table 6.2 provides a comparison of different methods on all three tabular domains. The

Nominal method provides the highest expected return estimates. But it does not take the

variability of the model or transition into consideration and therefore performs poorly in

the RASR entropic metric. The BCR and RSVF methods can provide certain robustness

guarantees as discussed in [76], but they are only able to offer a very pessimistic estimate

for the returns. Among methods involving risk measures, RASR VaR and RASR CVaR

methods provide a slightly higher expected return estimates. But they are not time con-

sistent and therefore cannot provide any performance guarantee. Their performance under

RASR evaluation is also conservative. The RASR entropic method provides the best RASR

performance in all problem domains.

6.3.2 Scaled-up Continuous Setting

We now extend our empirical study beyond tabular setting and evaluate our RASR-AC

with Entropic Risk Measure algorithm on the classic cart-pole benchmark domain. We com-

pare our algorithm with several baseline methods like: i) General AC [2, 83] ii) Soft-Robust

AC [75], iii) RASR-AC with VaR, and iv) RASR-AC with CVaR.

Cart-Pole In this experiment, we evaluate our algorithm on cart-pole, a standard RL

benchmark problem [2,82]. The domain consists of a four dimensional and continuous state

space. The task here is to balance a pole upright atop a cart by pushing the cart left or right
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on a friction less track. We implement RASR-AC algorithm as described in Algorithm 7

with five different risk measures. We use a simple neural network of 1 fully connected hidden

layer with 128 weights and ReLu activations. We use ADAM optimizer to minimize all the

corresponding loss functions. We explicitly introduce a noise in the environment by altering

the mass of the pole from a finite set of preset values. We train the agent on this perturbed

version of the environment and then evaluate the policy on an environment perturbed with

a different set of values for the pole mass.

Table 6.3: Evaluating AC policies for the cart-pole problem.

General
AC

Soft-Robust
AC

RASR-AC
VaR

RASR-AC
CVaR

RASR-AC
Entropic

RASR Return
Estimates

112.11 102.49 105.18 127.82 143.6

A comparison is provided in Table 6.3. We run each algorithm for 10 different random

seeds and then report the average return estimated for different policies. The General AC

method [2, 83] optimizes for the expected value and therefore does not perform well in the

RASR entropic metric that we care. The other three variants: Soft-Robust, VaR and CVaR

based AC methods also perform reasonably well. But our entropic risk measure based

AC method, which specifically optimizes a RASR entropic objective, outperforms all other

variants in the evaluation by a good margin.

One important point to make here is that, the statistics presented in Table 6.3 for eval-

uating AC methods may depend on the random seed used in the experiment. This is a

common reproducibility issue for many deep RL class of algorithms [105]. Also note that,

the theoretical analysis presented in previous sections do not necessarily extend into this

neural-network based AC setting. The main message of this experiment is that, our pro-

posed RASR framework can be scaled up for larger problems with continuous state spaces

to learn reasonable policies.
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6.4 Contributions

In this chapter, I presented a unified Risk-Averse Soft-Robust (RASR) framework to si-

multaneously quantify and mitigate both model and transition uncertainties. I derived

Bellman-style optimality equation for the RASR framework and presented a correspond-

ing value iteration algorithm. To allow for scalability, I also derived gradient update formula

to optimize the RASR objective and presented an actor-critic algorithm. I independently

derived a finite sample convergence analysis for entropic risk measure and also empirically

validated the usefulness of the RASR framework on several problem domains. The whole

work has been done under close supervision of my advisor and thanks to Jia Lin Hau for

joining this project recently.
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CHAPTER 7

CONCLUSION

This thesis proposed several new approaches toward constructing tighter and more realistic

robust solutions for problems involving sequential decision making. We proposed and ex-

amined the idea of incorporating weights into norm-bounded ambiguity sets to customize

them for specific problems. We also have designed techniques to approximate near-optimal

ambiguity sets and have validated their utilities. Though they operate in a restrictive s, a-

rectangular setup and the empirical evidence indicate that they are still conservative, they

still show significant improvement over prior methods while keeping the theoretical guaran-

tees intact.

Incorporating robustness into CMDPs provide significant practical advantages in com-

puting policies that are robust toward both objective and constraints. This thesis takes a

step toward computing reasonable solutions for RCMDPs and contributed in theoretical and

empirical developments.

In high-stakes practical problems, it is important to quantify and manage risk that arises

from inherently stochastic transition probabilities or from uncertain models. Unlike other

prior works that address each one of these sources of uncertainty independently, this thesis

proposed a unified Risk-Averse Soft-Robust (RASR) framework that quantifies both model

and transition uncertainties. Detailed theoretical and empirical analysis of RASR are also

reported in this thesis.

We have evaluated all our methods on various problem domains that mimic the utilities

and challenges of practical problems that we target. Our evaluation draws an encouraging
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picture in all the benchmark domains and makes us pretty optimistic about what they are

able to offer us. However, the full potentials of the methods remain yet to be discovered.

Applying and deploying these methods into actual real-world applications can only lead to a

true practical evaluation of these methods. With parallel progresses in many different tech-

nologies involving artificial intelligence, we are optimistic that such evaluation will become

feasible soon enough.

This journey toward computing robust and practical solutions for reinforcement learning

problems is by no means complete. More research needed about constructing even better

ambiguity sets and also taking them beyond the rectangularity assumption while keeping

them tractable and theoretically sound. The idea of robust-CMDPs is promising and it

remains an interesting open direction to further advance our understanding about it. The

RASR framework can deal with both epistemic and aleatory uncertainties together. Incor-

poration of risk measures other than entropic risk measure used in this thesis remains to be

explored.
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[106] Luc Devroye, László Györfi, and Gábor Lugosi. A probabilistic theory of pattern recog-
nition. Springer Science & Business Media, 2013.

91



APPENDIX A

APPENDICES

A.1 Supplementary Materials for Chapter 3

A.1.1 Dual Norm of Weighted L1-norm

Lemma A.1.1. Let ‖·‖1,w be the weighted L1 norm on Rn. The associated dual norm ‖·‖∞, 1
w

is defined as:

‖z‖∞, 1
w

= sup{zTx|‖x‖1,w ≤ 1, w ∈ Rn
++}.

Proof. Assume we are given a set of positive weights w ∈ Rn
++ for the following weighted L1

optimization problem:

max
x

zTx

s.t. ‖x‖1,w ≤ 1 .

(A.1)

we have:

xTz =
n∑
i=1

xizi ≤
n∑
i=1

|xizi|

(a)

≤
n∑
i=1

|xi||zi| =
n∑
i=1

wi|xi|
1

wi
|zi|

≤ max
i=1,...,n

{
1

wi
|zi|
}
·

n∑
i=1

wi|xi| = max
i=1,...,n

{
1

wi
|zi|
}
· ‖x‖1,w

(b)

≤ max
i=1,...,n

{
1

wi
|zi|
}

= ‖z‖∞, 1
w
.

Here, (a) follows from the Cauchy-Schwarz inequality and (b) follows from the constraint
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‖x‖1,w ≤ 1 of (A.1).

A.1.2 Proof of Theorem 3.3.1

Proof. The inner optimization objective function for RMDPs for Lp-constrained ambiguity

sets are defined as follows:

q(z) = min
p∈∆S

{
pTz : ‖p− p̄‖ ≤ ψ

}
.

Let q = p− p̄. We can reformulate the optimization problem using the new variable q:

min
q

(q + p̄)Tz

s.t. ‖q‖ ≤ ψ

111T(q + p̄) = 1 =⇒ 111Tq = 0

q ≥ −p̄ .

If ψ is sufficiently small and p̄ is sufficiently large, we can relax the problem by dropping the

q ≥ −p̄ constraint. Since p̄Tz is a fixed number, we continue with:

p̄Tz + min
q

qTz

s.t. ‖q‖ ≤ ψ

111Tq = 0

We then change the minimization form to maximization:

p̄Tz −max
q

− qTz

s.t. ‖q‖ ≤ ψ

111Tq = 0

By applying the method of Lagrange multipliers, we obtain:
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min
λ

max
q

− qTz − λ(qT111) = qT(−z − λ111)

s.t. ‖q‖ ≤ ψ

Letting x = q
ψ

, we get:

min
λ

max
x

ψ · xT(−z − λ111)

s.t. ‖x‖ ≤ 1

Given the definition of the dual norm, ‖z‖? = sup{zᵀx | ‖x‖ ≤ 1} , we have:

q(z) ≥ p̄Tz −min
λ

ψ‖z + λ111‖? .

A.1.3 Proof of Theorem 3.4.1 (Weighted L1 Error Bound)

In this section, we describe a proof of a bound on the L1,w distance between the estimated

transition probabilities p̄ and the true one p? over each state s ∈ S = {1, . . . , S} and action

a ∈ A = {1, . . . , A}. The proof is an extension to Lemma C.1 (L1 error bound) in [45].

Proof. Let qs,a = p̄s,a− p?s,a. To shorten notation in the proof, we omit the s, a indexes when

there is no ambiguity. We assume that all weights are non-negative. First, we will express

the L1,w norm of q in terms of an optimization problem. It is worth noting that 111Tq = 0.

Let 111Q1 ,111Q2 ∈ RS be the indicator vectors for some subsets Q1,Q2 ⊂ S where Q2 = S \Q1.

According to Lemma A.1.1 we have:

‖q‖1,w = max
z

{
zTq : ‖z‖∞, 1

w
≤ 1
}

= max
Q1,Q2∈2S

{
111T
Q1
Wq + 111T

Q2
W (−q) : Q2 = S \ Q1

}
.

Here weights are on the diagonal entries of W . Using the expression above, we can bound
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the probability as follows:

P
[

max
Q1,Q2∈2S

{
111T
Q1
Wq + 111T

Q2
W (−q)

}
≥ ψ

]
(a)

≤ P
[

max
Q1∈2S

{
111T
Q1
Wq
}
≥ ψ

2

]
+ P

[
max
Q2∈2S

{
111T
Q2
W (−q)

}
≥ ψ

2

]
≤
∑
Q1∈2S

P
[
111T
Q1
Wq ≥ ψ

2

]
+
∑
Q2∈2S

P
[
111T
Q2
W (−qqq) ≥ ψ

2

]
=
∑
Q1∈2S

P
[
111T
Q1
W (p̄− p?) ≥ ψ

2

]
+
∑
Q2∈2S

P
[
111T
Q2
W (−p̄+ p?) ≥ ψ

2

]
(b)

≤
∑
Q1∈2S

exp

(
− ψ2n

2‖111T
Q1
W‖2

∞

)
+
∑
Q2∈2S

exp

(
− ψ2n

2‖111T
Q2
W‖2

∞

)
(c)
= 2

S−1∑
i=1

2S−i exp

(
−ψ

2n

2w2
i

)
.

(a) follows from union bound, and (b) follows from Hoeffding’s inequality. (c) follows by

Qc1 = Q2 and sorting weights w = {w1, . . . , wn} in non-increasing order.

Theorem A.1.2 (weighted L1 error bound using Bernstein’s inequality). Suppose that p̄s,a

is the empirical estimate of the transition probability obtained from ns,a samples for some

s ∈ S and a ∈ A. If the weights w ∈ RS
++ are sorted in non-increasing order wi ≥ wi+1,

then the following holds when using Bernstein’s inequality:

P
[
‖p̄s,a − p?s,a‖1,w ≥ ψs,a

]
≤ 2

S−1∑
i=1

2S−i exp

(
− 3ψ2n

6w2
i + 4ψwi

)

where w ∈ RS
++ is the vector of weights. The weights are sorted in non-increasing order.

Proof. The proof is similar to the proof of 3.4.1 until section b. The proof continues from

section (b) as follows:

(b)

≤
∑
Q1∈2S

exp

(
− 3ψ2n

24σ2 + 4cψ

)
+
∑
Q2∈2S

exp

(
− 3ψ2n

24σ2 + 4cψ

)
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(c)

≤
∑
Q1∈2S

exp

(
− 3ψ2n

6‖111T
Q1
W‖2

∞ + 4ψ‖111T
Q1
W‖∞

)
+
∑
Q2∈2S

exp

(
− 3ψ2n

6‖111T
Q2
W‖2

∞ + 4ψ‖111T
Q2
W‖∞

)
(d)
= 2

S−1∑
i=1

2S−i exp

(
− 3ψ2n

6w2
i + 4ψwi

)
.

Here (b) follows from Bernstein’s inequality where σ2 is the mean of variance of random

variables, and c is their upper bound [106]. In the weighted case, with conservative estimate

of variance σ2 = ‖111T
Q1
W‖2

∞/4, and c = ‖111T
Q1
W‖∞, because the random variables are drawn

from Bernoulli distribution with the maximum possible variance of 1/4. (d) follows by

sorting weights w in non-increasing order.

A.2 Supplementary Materials for Chapter 4

The following proposition shows that the guarantee of a safe estimate on the return is

achieved when the true transition model is contained in the ambiguity set.

Lemma A.2.1. Suppose that an ambiguity set P satisfies PD
[
p?s,a ∈ Ps,a | P ?

]
≥ 1−δ/(SA)

for each state s and action a. Then:

PD [v̂πP ≤ vπP ? , ∀π ∈ Π | P ?] ≥ 1− δ .

Proof. We omit P and P ? from the notation in the proof since they are fixed. From Propo-

sition (2.4.1), we have that v̂π ≤ vπ if

T̂ πv̂π ≤ T πv̂π .

That is, for each state s and action a:

min
p∈Ps,a

pTv̂π ≤ (p?s,a)
Tv̂π.
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Using the identity above, the probability that the robust value function is a lower bound can

be bounded as follows:

PD [v̂πP ≤ vπP , ∀π ∈ Π | P ?] = PD
[

min
p∈Ps,a

pTv̂π ≤ (p?s,a)
Tv̂π, ∀π ∈ Π, s ∈ S, a ∈ A | P ?

]
≥

≥ PD
[
(p?s,a)

Tv̂π ≤ (p?s,a)
Tv̂π, ∀π ∈ Π, s ∈ S, a ∈ A | P ? ∈ P , P ?

]
PD [P ? ∈ P | P ?] +

+PD [P ? /∈ P | P ?] ≥ 1PD [P ? ∈ P | P ?] + 0PD [P ? /∈ P | P ?] ≥

≥ PD [P ? ∈ P | P ?] .

Now, from the union bound over all states and actions, we get:

PD [v̂π > vπ|P ?] ≤ PD [P ? /∈ P | P ?] ≤
∑
s∈S

∑
a∈A

PD
[
p?s,a /∈ Ps,a | P ?

]
≤ δ ,

which completes the proof.

The next proposition is the Bayesian equivalent of Lemma (A.2.1).

Lemma A.2.2. Suppose that an ambiguity set P satisfies PP ?
[
p?s,a ∈ Ps,a | D

]
≥ 1−δ/(SA)

for each state s and action a. Then:

PP ? [v̂πP ≤ vπP ? , ∀π ∈ Π | D] ≥ 1− δ .

Proof. We omit P and P ? from the notation in the proof since they are fixed. From (2.4.1),

we have that v̂π ≤ vπ if

T̂ πv̂π ≤ T πv̂π .

That is, for each state s and action a:

min
p∈Ps,a

pTv̂π ≤ (p?s,a)
Tv̂π.

Using the identity above, the probability that the robust value function is a lower bound can

97



be bounded as follows:

PP ? [v̂πP ≤ vπP , ∀π ∈ Π | D] = PP ?
[

min
p∈Ps,a

pTv̂π ≤ (p?s,a)
Tv̂π, ∀π ∈ Π, s ∈ S, a ∈ A | D

]
≥

≥ PP ?
[
(p?s,a)

Tv̂π ≤ (p?s,a)
Tv̂π, ∀π ∈ Π, s ∈ S, a ∈ A | P ? ∈ P ,D

]
PP ? [P ? ∈ P | D] +

+PP ? [P ? /∈ P | D] ≥ 1PP ? [P ? ∈ P | D] + 0PP ? [P ? /∈ P | D] ≥

≥ PP ? [P ? ∈ P | D] .

Now, from the union bound over all states and actions, we get:

PP ? [v̂π > vπ|D] ≤ PP ? [P ? /∈ P | D] ≤
∑
s∈S

∑
a∈A

PP ?
[
p?s,a /∈ Ps,a | D

]
≤ δ ,

which completes the proof.

A.2.1 L1 Concentration Inequality Bounds

In this section, we describe a new elementary proof of a bound on the L1 distance between

the estimated transition probability distribution and the true one. It simplifies the proofs

of [34] but also leads to coarser bounds. Note that in the frequentist setting the ambiguity

set P is a random variable that is a function of the dataset D.

Recall that our ambiguity sets are defined as L1 balls around the expected transition

probabilities p̄s,a:

Ps,a = {p ∈ ∆S : ‖p− p̄s,a‖1 ≤ ψs,a} . (A.2)

Lemma A.2.1 implies that the size of the L1 balls must be chosen as follows:

P [‖p̄(s, a)− p?(s, a)‖1 ≤ ψs,a ] ≥ 1− δ/(SA) . (A.3)

We can now express the necessary size ψs,a of the ambiguity sets in terms of ns,a, which

denotes the number of samples in D that originate with a state s and an action a.
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Lemma A.2.3 (L1 Error bound). Suppose that p̄s,a is the empirical estimate of the transition

probability obtained from ns,a samples for each s ∈ S and a ∈ A. Then:

P
[
‖p̄s,a − p?s,a‖1 ≥ ψs,a

]
≤ (2S − 2) exp

(
−
ψ2
s,ans,a

2

)
.

Therefore, for any δ ∈ [0, 1]:

P

[
‖p̄s,a − p?s,a‖1 ≤

√
2

ns,a
log

SA(2S − 2)

δ

]
≤ 1− δ/(SA) .

Proof. To shorten the notation, we omit the indexes s, a throughout the proof; for example

p̄ is used instead of the full p̄s,a. First, express the L1 distance between two distributions p̄

and p? in terms of an optimization problem. Let 1Q ∈ RS be the indicator vector for some

subset Q ⊂ S. Then:

‖p̄− p?‖1 = max
z

{
zT(p̄− p?) : ‖z‖∞ ≤ 1

}
=

= max
Q∈2S

{
1T
Q(p̄− p?)− (1− 1Q)T(p̄− p?) : 0 < |Q| < m

}
(a)
= 2 max

Q∈2S

{
1T
Q(p̄− p?) : 0 < |Q| < m

}
.

Here, (a) holds because 1T(p̄ − p?) = 0. Using the expression above, the target probability

can be bounded as follows:

P [‖p̄− p?‖1 > ψ] = P
[
2 max
Q∈2S

{
1T
Q(p̄− p?) : 0 < |Q| < m

}
> ψ

]
(a)

≤ (|Q| − 2) max
Q∈2S

{
P
[
1T
Q(p̄− p?) > ψ

2

]
: 0 < |Q| < m

}
(b)

≤ (|Q| − 2) exp

(
−ψ

2n

2

)
= (2S − 2) exp

(
−ψ

2n

2

)
.

The inequality (a) follows from union bound and the inequality (b) follows from the Hoeffd-

ing’s inequality since 1T
Qp̄ ∈ [0, 1] for any Q with the mean of 1T

Qp̄
?.
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A.3 Supplementary Materials for Chapter 5

A.3.1 Proof of Theorem 5.2.1

Proof. The objective as specified in (5.4):

L(πθ, λ) =
∑
ξ∈Ξ

pπθ(ξ)
(
g(ξ, r) + λg(ξ, d)

)
− λβ

We first derive the gradient update rule of L(πθ, λ) with respect to θ as below:

∇θL(πθ, λ) =
∑
ξ∈Ξ

∇θp
πθ(ξ)

(
g(ξ, r) + λg(ξ, d)

)
=
∑
ξ∈Ξ

pπθ(ξ)
(
g(ξ, r) + λg(ξ, d)

)
∇θ log pπθ(ξ)

=
∑
ξ∈Ξ

pπθ(ξ)
(
g(ξ, r) + λg(ξ, d)

)
∇θ log

(
p0(s0)

T−1∏
t=0

p(st+1|st, at)πθ(at|st)
)

=
∑
ξ∈Ξ

pπθ(ξ)
(
g(ξ, r) + λg(ξ, d)

)
∇θ

(
log p0(s0) +

T−1∑
t=0

log p(st+1|st, at) + log πθ(at|st)
)

=
∑
ξ∈Ξ

pπθ(ξ)
(
g(ξ, r) + λg(ξ, d)

) T−1∑
t=0

∇θ log πθ(at|st)

=
∑
ξ∈Ξ

pπθ(ξ)
(
g(ξ, r) + λg(ξ, d)

) T−1∑
t=0

∇θπθ(at|st)
πθ(at|st)

Next, we derive the gradient update rule for L(πθ, λ) with respect to λ:

∇λL(πθ, λ) = ∇λ

(∑
ξ∈Ξ

pπθ(ξ)
(
g(ξ, r) + λg(ξ, d)

)
− λβ

)

=
∑
ξ∈Ξ

pπθ(ξ)g(ξ, d)− β
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A.3.2 Convergence Analysis of Algorithm

A.3.3 Assumptions

(A1) For any state s, policy πθ(.|s) is continuously differentiable with respect to parameter

θ and ∇θπθ(.|s) is a Lipschitz function in θ for every s ∈ S and a ∈ A.

(A2) The step size schedules {ζ2(t), ζ1(t)} satisfy:

∑
t

ζ1(t) =
∑
t

ζ2(t) =
∑
t

ζ3(t) =∞ (A.4)

∑
t

ζ1(t)2,
∑
t

ζ2(t)2 ≤ ∞ (A.5)

ζ1(t) = o
(
ζ2(t)

)
(A.6)

These assumptions are basically standard step-size conditions for stochastic approxima-

tion algorithms [80]. Equation (A.4) ensures that the discretization covers the entire time

axis. (A.5) ensures that the errors resulting from the discretization of the Ordinary Differen-

tial Equation (ODE) and errors due to the noise both becomes negligible asymptotically with

probability one [80]. Equations (A.4) and (A.5) together ensures that the iterates asymp-

totically captures the behavior of the ODE. (A.6) mandates that, updates corresponding to

ζ1(t) is on a slower time scale than ζ2(t).

A.3.4 Policy Gradient Algorithm

The general stochastic approximation scheme used by [80] is of the form:

xt+1 = tn + a(t)[h(xt) + ∆t+1] (A.7)

where {∆t} are a sequence of integrable random variables representing the noise sequence
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and {at} are step sizes (e.g. ζ(t)). The expression h(xt) + ∆t+1 inside the square bracket is

the noisy measurement where h(xt) and ∆t+1 are not separately available, only their sum is

available. The terms of (A.7) need to satisfy below additional assumptions:

(A3) The function h : Rd → Rd is Lipschitz. That is ‖h(x)− h(y)‖ ≤ L‖x− y‖ for some

0 ≤ L ≤ ∞.

(A4) {∆t} are martingale difference sequence:

E[∆t+1|xn,∆n, n ≤ t] = 0

In addition to that, {∆t} are square-integrable:

E[‖∆t+1‖2|xn,∆n, n ≤ t] ≤ K(1 + ‖xt‖2) a.s. for t ≥ 0,

and for some constant K > 0.

Our proposed policy gradient algorithm is a two time-scale stochastic approximation

algorithm. The parameter update iterations of the policy gradient algorithm are defined as

below:

θt+1 = θt + ζ2(t)∇θL(πθ, λ) (A.8)

λt+1 = λt + ζ1(t)∇λL(πθ, λ) (A.9)

These gradient update rules defined in (A.8) and (A.9) are in a special form as:

xt+1 = xt + a(t)f(xt, εt), t ≥ 0 (A.10)

Where {ε} is a zero mean i.i.d. random variable representing noise. To apply general
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convergence analysis techniques derived for (A.7) in [80], we take the special form in (A.10)

and transform it to the general format of (A.7) as below:

h(x) = E
[
f(x, ε1)

]
and ∆n+1 = f(xn, εn+1)− h(xn) (A.11)

With these transformation techniques, we obtain the general update for θ from (A.8):

θ update:

θt+1 = θt + ζ2(t)
[
h(θt, λt) + ∆

(1)
t+1

]
(A.12)

where, f (1)(θt, λt) = ∇θL(πθ, λ) is the gradient w.r.t θ, h(θt, λt) = E[f (1)(θt, λt)], and

∆
(1)
t+1 = f (1)(θt, λt) − h(θt, λt). Note that, the noise term ε is omitted because the noise is

inherent in our sample based iterations.

Proposition A.3.1. h(θt, λt) is Lipschitz in θ.

Proof. Recall that the gradient of L(πθ, λ) with respect to θ is:

∇θL(πθ, λ) =
∑
ξ∈Ξ

pπθ(ξ)
(
g(ξ, r) + λg(ξ, d)

) T−1∑
t=0

∇θπθ(at|st)
πθ(at|st)

(A.13)

Assumption (A1) implies that, ∇θπθ(at|st) in the equation (A.13) is a Lipschitz function

in θ for any s ∈ S and a ∈ A. As the expectation of sum of |T | number of Lipschitz functions

is also Lipschitz, we conclude that h(θt, λt) is Lipschitz in θ.

Proposition A.3.2. ∆
(1)
t+1 of (A.12) satisfies assumption (A4).

We transform our update rule of (A.9) as:

λ update:

λt+1 = λt + ζ1(t)
[
g(θt, λt) + ∆

(2)
t+1

]
(A.14)
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where, f (2)(θt, λt) = ∇λL(πθ, λ) is the gradient w.r.t λ, g(θt, λt) = EM [f (2)(θt, λt)], and

∆
(2)
t+1 = f (2)(θt, λt)− h(θt, λt).

Notice that ∇λL(πθ, λ) =
∑

ξ p̂
θ(ξ)g(ξ, d)− β is a constant function of λ. And therefore,

g(θt, λt) is a constant function of λ.

Proposition A.3.3. ∆
(2)
t+1 of (A.14) satisfies assumption (A4).

We now focus on the singularly perturbed ODE obtained from (A.12) and (A.14).

θ̇ = ζ2(t)h(θt, λt) (A.15)

λ̇ = ζ1(t)g(θt, λt) (A.16)

With assumption (A2), λ(·) is quasi-static from the perspective of θ(·) turning (A.15)

into an ODE. where λ is held fixed:

θ̇ = ζ2(t)h(θt, λ) (A.17)

We additionally assume that:

(A5) (A.17) has a globally asymptotically stable equilibrium x(λ) such that x is a Lipschitz

map.

Assumption (A5) turns (A.16) into:

λ̇(t) = g(x(λt), λt) (A.18)

Let’s further assume that:

(A6) The ODE (A.18) has a globally asymptotically stable equilibrium λ?.

(A7) supt(‖θt‖+ ‖λt‖) <∞ almost surely.
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Proof of Theorem 5.2.4

Proof. Above are the necessary conditions to apply Theorem 2 from chapter 6 of [80], which

shows that (θt, λt) → (x(λ?), λ?). Now the saddle point theorem assures that θ? = x(λ?)

maximizes the Lagrange optimization problem stated in (5.4).
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A.4 Supplementary Materials for Chapter 6

A.4.1 Finite-Sample Convergence of Entropic Risk Measure

In this section, we first derive some auxiliary results that will be helpful in obtaining the

finite sample guarantee for entropic risk measure. In this regard, we first formulate the

Optimized Certainty Equivalent (OCE) for entropic risk measure and then show that the

finite sample convergence properties of OCE can be used to derive the convergence bound

for entropic risk measure.

With φ in Definition 6.1.2 being continuously differentiable and strictly concave, [101]

shows that the supremum in (6.2) is uniquely obtained at ηs ∈ R as solution of:

E
[
φ′(X − ηs)

]
= 1 (A.19)

Where φ′ is the first derivative of φ w.r.t ηs. Therefore the optimal value of Sφ(X) is:

Sφ(X) = ηs + E
[
φ(X − ηs)

]
(A.20)

Proposition A.4.1. The Optimal Certainty Equivalent (OCE) for utility function φ(t) =

1
α

(
1− exp (−αt)

)
, ∀t ∈ R and α ∈ (0, 1] is Sφ(X) = − 1

α
logE

[
exp (−αX)

]
. Moreover, the

negative of Sαφ (X) defines the entropic risk measure with confidence level α.

Proof.

φ(X − ηs) =
1

α

(
1− exp (αηs − αX)

)
⇒ φ′(X − ηs) =

1

α
· exp (αηs − αX) · α

⇒ φ′(X − ηs) = exp (αηs − αX)

106



From (A.19), we have:

E
[
φ′(X − ηs)

]
= 1

⇒ E
[

exp (αηs − αX)
]

= 1

⇒ E
[

exp (αηs) . exp (−αX)
]

= 1

⇒ exp (αηs)E
[

exp (−αX)
]

= 1

⇒ E
[

exp (−αX)
]

= exp (−αηs)

⇒ logE
[

exp (−αX)
]

= log exp (−αηs)

⇒ ηs = − 1

α
logE

[
exp (−αX)

]
Now, from (A.20), the optimal OCE Sφ(X) for utility function φ is:

Sφ(X) = − 1

α
logE[exp (−αX)] + E

[ 1

α
(1− exp (αηs − αX))

]
= − 1

α
logE

[
exp (−αX)

]
+ E

[ 1

α

]
− 1

α
E
[

exp (αηs) exp (−αX)
]

= − 1

α
logE

[
exp (−αX)

]
+

1

α
− 1

α
exp (αηs)E

[
exp (−αX)

]
= − 1

α
logE

[
exp (−αX)

]
+

1

α
− 1

α
exp

(
−α 1

α
logE

[
exp (−αX)

])
E
[

exp (−αX)
]

= − 1

α
logE

[
exp (−αX)

]
+

1

α
− 1

α

1

exp
(

logE
[

exp (−αX)
]) E

[
exp (−αX)

]
= − 1

α
logE

[
exp (−αX)

]
+

1

α
− 1

α

1

E
[

exp (−αX)
] E [ exp (−αX)

]
= − 1

α
logE

[
exp (−αX)

]
+

1

α
− 1

α

= − 1

α
logE

[
exp (−αX)

]
Ben-Tal et al. [101] shows that, the negative of the OCE is a convex risk measure. The

particular utility function φ(t) that we used here yields the convex entropic risk measure:

ραent =
1

α
logE

[
exp (−αX)

]
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Proof of Corollary 6.1.5

Proof. Proposition A.4.1 shows that entropic risk measure is an OCE with utility function

φ(t) = 1
α

(
1− exp (−αt)

)
. The deviation bound for any OCE follows from Theorem 6.1.4.

P (|̂ρ
α

ent(X1, . . . , XN)− ραent(X)| ≥ ε) ≤ 2 exp
(
− 2
(
ε/φ(U)

)2
N
)

= 2 exp

(
−2
(
ε/

1

α

(
1− exp (−αU)

))2

N

)
= 2 exp

(
− 2α2ε2

(
exp (αU) / exp (αU)− 1

)2

N

)
(a)

≤ 2 exp
(
−2α2ε2N

)
Here (a) follows because exp(αU)

exp(αU)−1
≥ 1 when U ≥ 0.

A.4.2 RASR Bellman Update

In this section, we first derive some auxiliary results needed to prove the contraction property

of RASR Bellman operator.

Definition A.4.1. (Translation subvariance) For any function v : S →, a scalar c ∈ R

and γ ∈ (0, 1), an operator T satisfies the translation subvariance property if

(
T (v + c)

)
(s) = (T (s) + γc

≤ (Tv)(s) + c

Proposition A.4.2. Operator T = log(·) is translation subvariant for c ≥ 1 and γ ∈ [0, 1).

Proof.

log(X + c) ≤ log(X) + log(c) (A.21)
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Here (A.21) follows from Jensen’s inequality. From definition A.4.1, for translation subvari-

ance to hold we need:

log(c) = γc

and therefore, we have:

γ =
log(c)

c

which satisfies 0 ≤ γ < 1 and this completes the proof.

Lemma A.4.3. For any two bounded functions u : S →, v : S →, and γ ∈ [0, 1), an

operator T is a non-expansive mapping if it satisfies monotonicity and translation invariance

properties. In particular, it holds for all u, v ∈ V that:

‖Tu− Tv‖∞ ≤ ‖u− v‖∞ .

Proof. Denote

c = max
s∈S
|u(s)− v(s)| .

We therefore have, for all s ∈ S,

u(s)− c ≤ v(s) ≤ u(s) + c . (A.22)

Applying T on (A.22) and using the monotonicity and translation invariance properties, we

obtain for all s ∈ S,

(Tu)(s)− c ≤ (Tv)(s) ≤ (Tu)(s) + c .

It therefore follows that for all s ∈ S,

|(Tv)(s))− (Tu)(s)| ≤ c ,
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and as a result, we have:

‖Tu− Tv‖∞ ≤ c

.

Lemma A.4.4. For any two bounded functions u : S →, v : S →, and γ ∈ [0, 1), an

operator T is a contraction mapping if it satisfies monotonicity and translation subvariance

properties. In particular, it holds for all u, v ∈ V that:

‖Tu− Tv‖∞ ≤ γ‖u− v‖∞ . (A.23)

Proof. We first denote a scalar c as:

c = max
s∈S
|u(s)− v(s)| .

We therefore have, for all s ∈ S:

u(s)− c ≤ v(s) ≤ u(s) + c . (A.24)

Applying T on (A.24) and using the monotonicity and translation subvariance properties,

we obtain for all s ∈ S,

(Tu)(s)− γc ≤ (Tv)(s) ≤ (Tu)(s) + γc .

It therefore follows that for all s ∈ S,

|(Tv)(s))− (Tu)(s)| ≤ γc ,

And as a result, we have:

‖Tu− Tv‖∞ ≤ γc
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.

Proof of Theorem 6.2.2

Proof. The RASR Bellman operator from (6.4) is:

(TvP̂ )(s) = max
a∈A

ρα
Pωt ∼P̂ ,s′∼Pωt (·|st,at)

[
rst,at,s′ + γvπ

P̂
(s′)
]

= max
a∈A

(
− 1

α
log

(
EPωt ∼P̂ ,s′∼Pωt (·|st,at)

[
exp

(
− α(rst,at,s′ + γvπ

P̂
(s′))

)]
︸ ︷︷ ︸

T1

)
︸ ︷︷ ︸

T2

)

︸ ︷︷ ︸
T3

The Bellman operator TP̂ is composed of three operators: T1 = E[·], T2 = log(·) and

T3 = max(·). All these operators independently satisfy the monotonicity property [3, 17].

Operator T1 is known to be translation subvariant [3]. Lemma A.4.2 shows that operator

T2 is translation subvariant. And operator T3 is known to be translation invariant [17]. We

then have:

‖TuP̂ − TvP̂‖∞ = ‖T3T2T1uP̂ − T3T2T1vP̂‖∞
(a)

≤ ‖T2T1uP̂ − T2T1vP̂‖∞
(b)

≤ γ‖T1uP̂ − T1vP̂‖∞
(c)

≤ γ2‖uP̂ − vP̂‖∞

≤ γ‖uP̂ − vP̂‖∞ .

Here (a) follows from Lemma A.4.3, (b) and (c) follows from Lemma A.4.4.

A.4.3 Proof of Theorem 6.2.3

Proof. We compute the gradient ∇θJ(πθ) of (6.6) with respect to θ as:
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∇θJ(πθ)

= − 1

α
∇θ log

(∑
τ

pθ(τ) exp
(
− αR(τ)

))

=
−
∑

τ pθ(τ)∇θ log pθ(τ) exp
(
− αR(τ)

)
α
∑

τ pθ(τ) exp
(
− αR(τ)

)
=
−
∑

τ pθ(τ)∇θ log
(
p0(s0)

∏T
t=0 πθ(at|st)P̂ ω

t (st+1|st, at)fωt
)

exp
(
− αR(τ)

)
α
∑

τ pθ(τ) exp
(
− αR(τ)

)
=

−
∑

τ pθ(τ)∇θ

(
log p0(s0) +

∑T
t=0

(
log πθ(at|st) + log P̂ ω

t (st+1|st, at) + log fωt

))
exp

(
− αR(τ)

)
α
∑

τ pθ(τ) exp
(
− αR(τ)

)
=
−
∑

τ pθ(τ)
∑T

t=0∇θ log πθ(at|st) · exp
(
− α

∑T
t=0 rst,at

)
α
∑

τ pθ(τ) exp
(
− αR(τ)

)
=
−
∑

τ pθ(τ)
∑T

t=0
∇θπθ(at|st)
πθ(at|st) · exp

(
− α

∑T
t=0 rst,at

)
α
∑

τ pθ(τ) exp
(
− αR(τ)

)
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