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ABSTRACT 

 

Balancing fracture and fatigue performance in asphalt pavements:  

A hybrid mechanistic and statistical modelling approach 

The asphalt mix design and evaluation approaches are divided into two main categories as 

empirical and mechanistic-empirical (M-E) methods. The empirical methods are based on 

empirical observations of in-service pavement performance, and they do not take into account 

engineering properties or failure criteria. The M-E methods were introduced as a new generation 

for design and evaluation approaches that consider fundamental mixture properties such as 

material stiffness to determine the pavement's structural response. However, the need for 

expensive and time-consuming performance-based laboratory tests and local calibration makes the 

M-E methods unsuitable for routing design. In addition, during the last few years, the asphalt 

paving industry has been consistently tried to improve pavement performance by introducing new 

types of materials in asphalt mixtures. Regardless of all the positive effects of innovative materials 

on mix performance, the M-E design and evaluation methods might not be able to fully capture 

the benefits that may be achieved through using these materials. It likely stems from the fact that 

the M-E methods only utilize mix stiffness to evaluate the performance with respect to different 

distresses. Therefore, a methodology needs to be developed within the framework of current design 

and evaluation approaches to consider the mixture performance and the impact of innovative 

materials on pavement performance. 

This dissertation research aimed to assess the mixture properties indices that can be 

implemented in performance-based design methods. The proposed endeavor will yield a more 

precise evaluation of the innovative materials impact on asphalt mixture performance through 
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consideration of the viscoelastic nature of asphalt mixtures to determine mechanistic damage 

effect. 

Furthermore, several prediction models for a simplified viscoelastic continuum damage-

based fatigue index (as crack initiation phase) and mixture fracture energy (as crack propagation 

phase) were developed to investigate asphalt mixture performance with respect to cracking. The 

models include the simultaneous impact of various mix variables that are available during the mix 

design process. Thus, they can be used as a predesign tool to investigate mixtures' cracking 

properties without the need for any performance laboratory test data. 

Finally, a cracking balance design diagram (CBDD) was generated with a combination of 

prediction models for crack initiation and propagation. The CBDD helps toward better 

identification of cracking performance considering the simultaneous effects of both cracking 

phases in a single diagram. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Motivation and Background  

Asphalt concrete pavements (including both highways and airports) are a vital component 

of the global economy and social wellbeing. According to information from the World Bank, the 

number of vehicles on roads around the world are projected to double to 2 billion by 2050. 

Moreover, some one billion people in underdeveloped nations do not have reliable access to roads, 

drastically limiting their economic prospects as well as access to necessities such as education and 

medicine [1]. This is also true for airfield pavement systems as the total economic output of 

commercial airports in U.S. exceeded $1.4 trillion in 2017. This number includes more than 11.5 

million jobs with more than $428 billion of payrolls [2]. Considering these numbers along with 

the rapid global urbanization and industrialization in many parts of the world, necessitate the 

development of improved asphalt concrete pavements to accommodate the changing global 

situation.  

The proposed endeavor in this dissertation will have broad implications for the field of 

pavement engineering and, by extension, the nation. For instance, transportation of goods on U.S. 

roads is a major industry with a large impact on the national economy. According to a recent report 

from the American Trucking Associations, the trucking industry posted nearly $800 billion in 

revenues in 2018 alone. In that year, trucks moved more than 70% of all of the freight in the nation. 

Furthermore, the trucking industry as a whole employs nearly 8 million people, including some 

3.5 million drivers [3]. Moreover, based on the Air Carrier Activity Information System (ACAIS) 

data base, all-cargo landed wights in U.S. by average increased more than 14% from 2018 to 2019. 
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This number is more than 45% for average number of passenger (enplanement) at all commercial 

service airports in the U.S. between 2018 and 2019 [4]. These figures illustrate how crucial 

America's network of roads (highway and airfield) is to the nation's economic success. Poor quality 

asphalt concrete pavements reduce roads quality and serviceability time, which raise the price of 

transport and negatively affect economic growth.  

Cracking in asphalt pavements is one of the significant problems in cold regions, especially 

northern half of the United States. United States Departments of Transportation (USDOT) and 

State Transportation Agencies have been substantially investing in development of new procedures 

to predict cracking performance of asphalt mixtures and consequently of pavements. 

In general, cracking can be classified into load-associated and non-load-associated 

categories, and it is being generated when principal stresses exceed material strength. Microcracks 

first form in asphalt mixtures as the crack initiation phase. After crack initiation in the field, loads 

are still being applied on the pavements and then due to excessive tensile stress, microcracks will 

grow and incorporate to macro cracks (known as crack propagation phase), which can lead to 

structural failure in asphalt pavements [5]. The presence of microcracks would result in stress 

intensification and lower the pavement stiffness. Thus, using the magnitude of stress and strain as 

a classical mechanistic analysis approach may not be appropriate to analyze cracked materials. In 

such conditions, fracture mechanics can be used, which is concerned primarily with the distribution 

of stresses and displacements in the vicinity of a crack tip to model crack propagation in materials. 

Researchers and asphalt agencies have developed several properties and performance-

based laboratory tests to assess the cracking resistance of asphalt mixtures. None of them, however, 

can fully capture the asphalt mixture cracking resistance. The main problem with the current 

asphalt mixtures cracking laboratory tests is they either consider the initiation phase or propagation 
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phase to evaluate the cracking resistance of mixtures, but usually do not consider both. For 

example, direct tension cyclic fatigue testing (DTCF) is used as a performance-based test to 

determine the damage characteristics of asphalt mixtures based on the simplified viscoelastic 

continuum damage (S-VECD) approach [6]. In the DTCF test, failure is defined as the number of 

load cycles where a sudden drop can be observed in the phase angle during continued loading, 

which shows the presence of microcracks in the material. The test, however, is not going any 

further than crack initiation and the amount of total damage (S), which is related to the number 

and magnitude of micro-cracks (which then will be linked to make macrocracks), as well as 

macrocrack propagation in mixtures cannot be precisely taken into account by this method. As 

opposed to the DTCF test, fracture tests such as semi-circular bend (SCB) and disk-shaped 

compact tension (DCT) test consider macrocrack propagation (second phase of racking). However, 

these tests are being conducted on already notched specimens which means the micro-crack 

formation step (initial phase of cracking) is totally skipped in these methods. As a consequence, 

they may not be able to fully capture the behavior of the materials with respect to cracking.  

A reliable cracking prediction model should take into account both crack initiation and 

propagation to capture the full range of material behaviors. First, a viscoelastic continuum damage-

based model needs to be implemented to account for the effects of loading prior to cracking and 

at the crack initiation time; second, a fracture-based model to predict crack propagation over time. 

The results of cracking performance-based laboratory tests can then be plugged into pavement 

performance prediction models to capture the real potential for distress with respect to different 

pavement structures, loading types, environmental conditions, to name but a few. However, asphalt 

mixture performance tests need a considerable amount of time and effort in terms of materials 
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availability, test specimen preparation, and might be cost and time prohibitive for majority of 

pavement projects. 

Moreover, during the last few decades, significant improvements in production and 

construction technologies of asphalt mixtures (such as utilizing innovative materials) as well as 

properties and performance assessment methods have been made and implemented to reduce the 

potential of distresses in asphalt concrete pavements. Despite notable positive impacts and 

economic benefits, innovative mixtures face certain challenges due to the limitations of current 

pavement design and evaluation approaches and they need to be more researched and developed. 

Innovative materials may alter asphalt pavement perfromnace in a manner that would indicate 

detrimental changes to performance using current analysis methods but in practice have shown 

substantial performance enhancement. In many cases, current pavement design and evaluation 

methods might not be able to fully capture the benefits that may be achieved through the use of 

innovative materials in asphalt pavements specially in airfield pavements design. The airfield 

asphalt mixture design and performance evaluation have not been substantially improved (as 

compared to highway) to compensate for the high tire pressures and complicated gear 

configuration of the airplanes. Currently, the Federal Aviation Administration (FAA) 

acknowledges the absence of guidance on the use of innovative materials such as recycled 

materials or newer construction techniques such as warm mix asphalt (WMA) in airfield 

pavements. 

New performance-based pavement design and evaluation approaches are currently under 

development, but these are not mature enough to be widely accepted or implemented and are often 

not appropriate for routine design. Eventually, advanced performance-based approaches to 

pavement design will address the challenges related to precise performance evaluation of 
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pavements. However, there is an immediate need to develop a methodology framework by which 

performance of mixtures can be appropriately evaluated within the framework of existing design 

approaches which are currently implemented by asphalt agencies and DOTs.  

The research proposed herein will fill this gap by developing a methodology by which 

laboratory measured performance index parameters can be integrated with existing design 

approaches to reliably credit enhanced performance of innovative asphalt mixtures as well as better 

identification of cracking perfromnace with taking into account the whole cracking phases in a 

single prediction model. In this dissertation, performance properties indexes which can be 

accommodated in performance-based design and analysis methods were proposed which can help 

towards more precise monitoring of pavement distress appearance time (specially for airfield 

pavements) through combination of performance-based laboratory tests and analysis techniques 

that take into account the viscoelastic nature of asphalt mixtures to incorporate mechanistic 

damage effects on asphalt pavements. Moreover, distress prediction models were developed which 

can be implemented as a prediction tool to investigate the susceptibility of asphalt mixtures to 

cracking when a limited amount of data is available and testing is not feasible to capture mixture 

performance. The developed prediction models can be used either even prior to conventional 

volumetric mix design or can be accommodated as a performance-based specification (PBS) in 

performance-based mix design process. A comprehensive literature review of mix design methods 

history will be presented in chapter 2 of this dissertation. 

1.2 Objective 

 The principal objectives of this research are to: 
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• Propose suitable laboratory performance tests and performance indices that can be adopted 

in performance related mix design and evaluation approaches to address cracking performance of 

airfield pavement constructed using WMA and recycled materials. 

• Develop comprehensive machine learning based prediction models for asphalt mixture 

properties which are relevant to damage development to capture both crack initiation and 

propagation phases.  

• Develop a cracking balance diagram based on fracture mechanics and viscoelastic 

continuum damage theories that can be adopted as a predesign tool. 

• Conduct sensitivity analysis to investigate the effect of different variables on mixture 

cracking properties. 

1.3 Overall Research Approach 

 In In order to fulfill the dissertation objectives a number of research efforts are undertaken 

to evaluate the cracking performance of asphalt mixtures. The research approach used in this 

dissertation work generally includes: 

a) Conduction performance evaluation of airfield asphalt mixture using FAA conventional 

design program (FAARFIELD) and S-VECD based model (FlexPAVETM) and compare the 

results with test sections data to investigate the reliability of each method.  

b) Data gathering (the results of all performance-based laboratory tests will be collected and 

categorized into appropriate subsets that can be used as inputs for prediction models) 

c) Using linear regression models, artificial neural network, conventional machine learning 

in techniques such as boosted tress, ransom forest and support vector machine, as well as state of 

the art machine learning based mode (Fractionally weighted bootstrapping and auto validation 

technique) to predict cracking prediction models. 
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d) Development of cracking balance diagram as well as conducting sensitive analysis to 

assess the effect of different variables on test results.  

Figure 1-1 presents a simplified process diagram of the overall research approach. The detailed 

discussion of each facet will be presented next. 
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Figure 1-1 Overall research approach
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1.4 Organization of the dissertation 

Chapter 1 is dedicated to a general introduction as well as motivations and objective for 

this research.  

Chapter 2 is an extended literature review on topics such as asphalt mixture performance-

based mix design. Followed by a description of the different mechanistic and performance-based 

laboratory tests, as well as the advanced prediction programs that are employed to characterize the 

asphalt mixtures’ cracking performance within the structure, climate and traffic conditions.  

Chapter 3 Introduces suitable laboratory performance tests and performance indices that 

can be adopted in airfield performance-based specifications (PBSs) to address cracking 

performance of airfield pavement constructed using WMA and RAP mixtures. In addition, 

predicted fatigue performance of airfield pavement based on highway PBSs will be compared with 

test section data to validate the finding as well as to evaluate of the feasibility and benefits of using 

state of the art performance prediction models in airfield pavement design, as oppose to 

conventional airport design software like FAARFIELD.  

Chapter 4 Focuses on developing comprehensive models to predict the fracture properties 

of asphalt mixtures at low temperatures as the final phase of cracking (crack propagation). To this 

aim, machine learning methods were used to propose the prediction models to predict mixtures’ 

fracture energy as one of the Disk-shaped compact test outcomes. The machine learning algorithms 

will be calibrated using a set of DCT fracture energy data for asphalt mixtures. A key feature of 

the proposed models will be that they include simultaneous effects of various testing, binder and 

aggregate-related parameters, along with modern asphalt ingredients such as recycled materials. 

The derived model can be incorporated to a programmed spreadsheet for use in routine pre-design 

practice. 
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Chapter 5 is intended to propose machine learning-based prediction models for asphalt 

mixtures' fatigue properties to assess the initial cracking phase (crack initiation). In this chapter, 

direct tension cyclic fatigue (DTCF) test results were collected for 47 asphalt mixtures. The 

damage characteristics curve (DCC) was employed as the main outcome of simplified viscoelastic 

continuum damage (S-VECD) theory. Two coefficients (C11 and C12) were determined as 

determinant factors of DCC shape, and the models were formulated in terms of typical influencing 

mixture properties variables such as asphalt binder performance grade (PG), mixture type, 

aggregate size, aggregate gradation, asphalt content, total asphalt binder recycling content, and test 

parameters like temperature and number of cycles. The developed prediction models were then 

used in chapter 6 to develop a final prediction model for Sapp as fatigue properties index based on 

S-VECD theory. In addition to C11 and C12 coefficients, prediction models for DR value which is 

the amount of average drop in material integrity per load cycle and alpha which is the maximum 

slope of the relaxation modulus in log–log scale were developed in chapter 6. An established 

dynamic modulus prediction model was also selected based on literature to be incorporated in final 

fatigue properties prediction model in chapter 6.  

Moreover, the chapter 6 introduces a cracking balance design diagram that considers both 

crack initiation (fatigue) and propagation (fracture) phases for a more realistic response.  To this 

aim, the developed prediction models in chapters 4, 5, and 6 were combined and the final model 

includes simultaneous effects of various asphalt mixture ingredients, mixture physical and 

mechanical properties, and innovative materials in the asphalt industry such as polymer modifiers 

and recycled materials.  

In addition, this chapter focuses on the determination of effective factors on asphalt 

mixtures fatigue and fracture properties balance diagram, which will be developed in chapter 6. 
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As opposed to current asphalt mixtures specifications, which allow researchers to assess the effect 

of variables only on one type of distresses at a time, a sensitivity analysis were performed to 

distinguish the parameters with higher contributions in the final models along with the correlation 

direction of effective variables.  

Chapter 7 summarizes the findings of the research and the contribution of the study to the 

body of knowledge. In addition, the limitations of the study as well as recommended future work 

were discussed. 

Details of research efforts and corresponding results and discussion from Chapters 3 

through 6 of this dissertation will be in the form of peer-reviewed journal manuscripts. The status 

of these papers is indicated in Table 1-1. 
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Table 1-1 Status of the technical papers culminating from this doctorate research. 

Chapter Paper Journal Status 

3 

Exploration of Cracking-related 

Performance-based Specification 

(PBS) Indices for Airfield Asphalt 

Mixtures 

Journal of 

Transportation 

Engineering (ASCE) 

Submitted 

4 

Developing a prediction model for 

fracture energy of asphalt mixtures 

using machine learning approach 

International Journal 

of Pavement 

Engineering 

In preparation 

5 

Machine learning-based prediction 

models for damage characteristics 

curve of asphalt mixtures based on 

simplified viscoelastic continuum 

damage mechanics 

Road Materials and 

Pavement Design 

In preparation 

6 

Development of a balanced 

cracking diagram for asphalt 

mixtures cracking resistance based 

on fracture and viscoelastic 

continuum damage theories  

Road Materials and 

Pavement Design 

In preparation 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Performance Based Specifications and Balanced Mix Design Process 

 The main goal of asphalt mix design is to find an appropriate combination of asphalt binder 

and aggregates such that the final product provides sufficient stability to withstand traffic loading 

under different climatic conditions. The Marshall, Hveem, and Superpave methods are among the 

most commonly used techniques to design asphalt mixtures. Many research studies are being 

conducted to develop a performance-based mix design, and this approach is not entirely new, 

which stems from existing asphalt mix design methods. This is a current active area of research, 

and while some performance-based approaches have been introduced, they have not yet been 

widely accepted or implemented. Understanding the history of mix design is inevitable to realize 

performance-based design techniques. In the following sections, the history of asphalt mix design, 

as well as balance mix design, will be presented. 

2.2.1 History of Asphalt Mix Design 

The Hveem mix design technique was developed in the late 1920s to determine the 

optimum amount of asphalt content based on aggregate absorption and surface area. The Hveem 

method measures the stability of mixtures as a function of mix cohesion and friction between 

aggregate particles via Hveem stabolometer. A compressive load is being applied with a 

predefined increasing rate to a compacted asphalt mixture specimen, and mechanical properties 

are determined to measure the amount of optimum binder content [1]. Hveem design process did 

not consider mixtures air void level in mix design until the 1990s, and most of the asphalt mixtures 

that were designed with this method are found to be dry and prone to fatigue cracking [2]. 
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In the early 1940s, the Marshal method was developed to determine the optimum amount 

of asphalt binder in mixtures based on maximum stability, air void level, and maximum density. 

The U.S. Army Corps of Engineers subsequently implemented Marshal mix design during World 

War II to design mixtures for airports. This method has been validated with the determination of 

void in mineral aggregates (VMA) and mixture flow. It has been wildly observed that the Marshal 

mix design will lead to a higher amount of asphalt binder in mixtures as compared to the Hveem 

method [2]. Until the early 1900s, both Hveem and Marshal mix design procedures were 

commonly utilized before the introduction of the Superpave procedure. 

The Superpave method was developed as a performance-related mix design method in 

1993 as a part of the Strategic Highway Research Program (SHRP). While several performance-

based laboratory tests were accommodated in the design process, the entire design procedure was 

too complex, and none of the state departments of transportation (DOTs) accepted to use the 

Superpave method in their design procedures. 

The Superpave method has three levels of mix design, with level 1 being the least complex 

and level three being the most complex levels [3]. Level 2 and Level 3 mix designs were supposed 

to include performance-based specifications (PBS); however, PBSs were never implemented in 

the procedure. The level 1 design is currently being used as the Superpave mix design practice. 

This level includes proportioning of the asphalt binder and aggregates based on aggregate 

empirical properties and volumetric properties of a mixture such as air voids, densities, voids filled 

with asphalt (VFA), and VMA. Over the years, asphalt agencies realize that the measurement of 

these properties is widely variable, which may lead to the faulty calculation of the optimum amount 

of asphalt binder in the mixture. Asphalt mixtures designed with a high amount of binder are more 
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prone to permanent deformation (rutting), while mixtures with low binder content are more 

susceptible to cracking-related distresses [4]. 

Moreover, the asphalt paving industry has consistently been seeking to improve the 

performance of asphalt mixtures through the use of innovative materials (such as fibers, newer 

types of chemical modifiers, newer material processing techniques, reclaimed asphalt pavement 

(RAP)). Despite notable positive impacts and economic benefits, innovative mixtures face certain 

challenges due to the limitations in the current mix design approaches. The impact of these 

innovative materials on asphalt mixture performance has not been widely understood. Various 

types of modifiers and additives have been introduced and investigated by researchers and 

agencies; this research has shown that these may have different effects on mixture properties and 

performance both in the field and laboratory with respect to various distresses. Some innovative 

materials may alter the material stiffness, others may change the resistance to plastic deformation, 

fatigue, or fracture under higher loads/strains, while others may alter properties in both the linear 

viscoelastic (LVE) and damage range [5]. Rooholamini et al. (2019) demonstrated that a particular 

polymer increased mixture stiffness and fatigue properties at intermediate temperatures, but 

negatively impacted thermal cracking properties at low temperatures [6]. Ziari et al. (2019) showed 

that polyolefin-glass fibers improved rutting resistance of mixture but no consistent trend of 

enhancement for fatigue and fracture properties [7], and in a separate study showed that polyolefin-

aramid fibers at appropriate dosages improved both rutting resistance and cracking performance 

of the evaluated mixtures [8]. These and other examples clearly illustrate that in addition to 

volumetric properties measurements, the performance-based laboratory tests should be 

accommodated in mix design procedures to ensure anticipated field performance of asphalt 

pavements with respect to different distresses. 
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2.2.2 Balanced Mix Design Approach 

An expert task group was formed by the Federal Highway Administration (FHWA) to 

develop a Balanced Mix Design (BMD) procedure [9]. The BMD was defined as using 

performance-based laboratory tests in the asphalt mix design process to take into account several 

modes of distress while considering traffic, location within the pavement, climate, and mix aging. 

Figure 2-1-1 shows the difference between the conventional volumetric asphalt mix design process 

and the proposed BMD. 

In volumetric mix design, a predefined compaction effort is being applied to asphalt 

mixtures to determine the optimum amount of binder content while mix air void reaches to 4%, 

and this method does not take into account the performance-based properties of asphalt mixtures. 

The BMD, however, includes both volumetric properties and performance properties. Based on 

figure 2-1, the binder content determined by the balanced mix design is between 6.2% and 6.7%, 

which satisfies both rutting and cracking criteria. On the other hand, the volumetric mix design 

process yields 5.7% binder content. Comparing the measured binder content based on volumetric 

approach with BMD shows 5.7% binder content would meet the rutting criterion, while it does not 

satisfy the cracking threshold. 
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Figure 2-1 Volumetric vs Balanced mix design [10] 

Three potential approaches to utilize BMD were also proposed by the FHWA group [9]. 

These approaches are described as follows: 

The first Approach: Volumetric Design Method with Performance Verification. This 

approach is based on the Superpave mix design and is the most commonly researched and 

implemented mix design method by asphalt agencies. In this method, the asphalt mixture is first 

designed with the conventional volumetric mix design and then validated using performance-based 

tests. If the mixture does not satisfy volumetric and performance properties, the mix design process 

should be repeated. Mixtures can be adjusted through binder source and grade, aggregate source 

and gradation, and/or additives in the mixtures. Several state DOTs such as Texas, Wisconsin, 

New Jersey, Louisiana, and Illinois DOTs implement this approach in their mix design procedure. 

Figure 2-2 shows mix design process using the first approach. 
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Figure 2-2 The first approach, Volumetric design with performance verification [9] 

The second approach: Performance-Modified Volumetric Asphalt Mix Design. In the 

second approach, performance-based properties need to be satisfied, while volumetric 

measurement requires are not strictly enforced. The Superpave method is used to determine the 

initial blend of asphalt binder and aggregates. The properties of asphalt mixture are then adjusted 

to satisfy the performance-based tests requirements. This approach is currently being used in 

California. Figure 2-3 demonstrates the second approach procedure. 
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Figure 2-3 The second approach, Performance modified volumetric design [9] 

The third approach: Performance Design. In this approach, performance-based tests are 

conducted on several trial mixtures, and the volumetric measurements in the mix design procedure 

are entirely skipped or limited, as shown in Figure 2-4. The objective of this approach is to meet 

the performance-based test criteria using different mixture components. While a minimum amount 

of volumetric measurement criteria may be set for asphalt binder and aggregates properties, some 

volumetric criteria such as VFA, VMA, minimum asphalt binder content, and aggregate gradation 

might still be utilized as a mix design guideline (not design criteria). This method can be rewarding 

for state DOTs and asphalt agencies because of the provided flexibility in the asphalt mix design. 

This approach, however, is not currently being implemented by any state DOTs because there are 

no knowledge and/or pavement field data available for validation of this method. The presence of 

innovative materials in asphalt mixtures is expected to be encouraged by this approach. However, 
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a significant amount of research and test section data are necessary before using a high-risk method 

such as this approach in mix design procedures. 

 

Figure 2-4 The third approach, Performance design [9] 

2.2.3 The Current Practice of Balanced Mix Design 

The feasibility of utilizing performance-based laboratory tests in asphalt mixture mix 

design procedure has been investigated by several state agencies. Figure 2-5 shows the states that 

implement the different approaches of BMD in their asphalt mix design procedures. 
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Figure 2-5 U.S. map of current use of BMD approaches [9] 

A survey conducted by National Center for Asphalt Technology (NCAT) showed that 63% 

of state DOTs think VFA requirements should either be relaxed in or entirely eliminated from the 

current volumetric asphalt mix design (table 2-1). Table 2-2 shows, this number increase to 69% 

based on asphalt contractor responses [9].  

As opposed to VFA, there is no consensus between DOTs and asphalt contractors on VMA. 

While 67% of DOTs think the VMA could be kept in the mix design process as a reflective 

parameter of pavement long-term performance, 64% of asphalt contractors believe VMA should 

be relaxed or eliminated as it does not have a critical effect on the mix design process. It worth 

mentioning that aggregate bulk specific gravity needs to be measured prior to VMA calculation, 

and high variability has been widely observed in aggregate bulk specific gravity calculation, which 

might lead to questionable VMA measurement [9]. About 54% of state DOTs think that dust to 

binder ratio should not be changed in the mix design process; this number drops to 46% when the 

responses of asphalt contractors are evaluated. The TSR parameter is considered as an effective 
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parameter in asphalt mix design by the majority of both state DOTs and asphalt contractors, and 

they think this parameter should be kept in the mix design procedure. 

Table 2-1 DOT responses on existing mix design criteria [9] 

Mix Design Criteria No Change Relaxed Eliminated 

%Gmm @ Ni 19% 36% 45% 

%Gmm @ Nm 22% 37% 41% 

VFA 37% 39% 24% 

Va 53% 42% 5% 

D/A Ratio 54% 34% 12% 

TSR 63% 15% 23% 

VMA 67% 24% 10% 

 

Table 2-2 Asphalt contractor responses on existing mix design criteria [9] 

Mix Design Criteria No Change Relaxed Eliminated 

%Gmm @ Ni 13% 28% 59% 

%Gmm @ Nm 19% 27% 54% 

VFA 31% 43% 26% 

Va 47% 53% 6% 

D/A Ratio 33% 49% 18% 

TSR 51% 23% 26% 

VMA 36% 53% 11% 

 

2.2 Laboratory Testing 

 The experimental campaign in this research includes complex modulus (E*), direct tension 

cyclic fatigue (DTCF), and disk-shaped compact tension (DCT). 
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2.2.1 Complex Modulus Testing (E*) 

Complex modulus testing was carried out on asphalt mixtures in accordance with 

AASHTO T 342, standard method of test for determining dynamic modulus of hot mix asphalt 

(HMA) [10]. Three cylindrical specimens with 150 mm height and 100 mm diameter were tested 

for each mixture at different temperatures (4°, 20°, and 35° C) and frequencies (25, 10, 5.0, 1.0, 

0.5, and 0.1 Hz) to capture the rheological behavior of asphalt mixtures in the linear range. The 

Asphalt Mixture Performance Tester (AMPT) equipment was used to conduct the test. Figure 2-6 

shows the AMPT equipment at the UNH lab and a complex modulus specimen in the test chamber. 

Dynamic modulus and phase angle can be calculated from measured stresses and strains as shown 

in equations 1 and 2, respectively. 

|𝐸∗| =  
𝜎𝑎𝑚𝑝

𝑎𝑚𝑝
                                                                                                                               (1) 

Where: 

|𝐸∗| = dynamic modulus (psi) 

𝜎𝑎𝑚𝑝 = amplitude of applied stress (psi) 

휀𝑎𝑚𝑝 = amplitude of strain response (in/in) 

𝛿 = 2𝜋𝑓∆𝑡                                                                                                                                (2) 

Where:  

δ = phase angle (degrees) 

 f  = load frequency (Hz) 

Δt = the time lag between peak stress and peak strain 

Dynamic modulus and phase angle were calculated as test outputs and RHEA® software 

was used to construct the master curves based on the time-temperature superposition principle. For 
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the completeness of the study, black space diagram was also plotted based on the results of 

dynamic modulus and phase angle. 

The Glover–Rowe mixture parameter (G-Rm) was determined to evaluate the cracking 

properties of asphalt mixtures in a linear range of material response at intermediate temperature. 

Results of the complex modulus test were utilized to determine the G-Rm using equation (3) [11]. 

The G-Rm parameter was calculated at 20°C and a frequency of 5 Hz following the NCHRP 09-

58 project [12,13].  

𝐺 − 𝑅𝑚 =
|𝐸∗|(𝑐𝑜𝑠𝛿)2

𝑠𝑖𝑛𝛿
                                                                                                               (3) 

 

 

Figure 2-6 AMPT and complex modulus testing configuration 
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2.2.2 Direct Tension Cyclic Fatigue testing (DTCF) 

To investigate the damage characteristics of asphalt mixtures, DTCF fatigue testing was 

performed on specimens in accordance with AASHTO TP 107, standard method of test for 

determining the damage characteristic curve and failure criterion using the AMPT [14]. At least 

three replicates with 130 mm height and 100 mm diameter were tested for each mixture. The 

tests were conducted at 20°C and 225 microstrain, 250 microstrain and 300 microstrain peak to 

peak on specimen strain levels to get a range of number of cycles to failure (Nf). The test was 

conducted by applying sinusoidal tensile loading at a frequency of 10 Hz in crosshead-controlled 

mode until failure. Failure is defined as the cycle where a sudden decrease can be observed in the 

phase angle during continued loading. Figure 2-7 shows a prepared DTCF test specimen and 

configuration of a specimen in the test chamber. 

 

 

Figure 2-7 Fatigue test specimen and configuration in AMPT 
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 Fatigue Parameters 

The S-VECD approach developed by Underwood and Kim (2010) was used to analyze the 

fatigue test results using data acquired during complex modulus and fatigue tests. Four parameters 

have been used to investigate the fatigue properties of asphalt mixtures:  

1: GR is the rate of the average reduction in material integrity and can be computed through 

equation (4). The number of load cycles at GR = 100 is usually used to rank mixtures with respect 

to expected fatigue performance. The higher the GR is, the better the fatigue resistance of mixture 

is expected to be. [15].  

2: DR is the amount of average drop in material integrity (1-C), per load cycle until failure. DR 

value can be measured using equation (5). Mixtures with a higher DR value would be expected to 

have better fatigue resistance [16].  

3: Sapp is defined as the amount of damage accumulation (S) when pseudo-stiffness equals 1-DR 

and can be calculated using equation (6). A higher value of Sapp indicates that mixture has better 

fatigue resistance [17]. 

4: CS
Nf is a recently developed fatigue parameter based on the rate of damage growth in asphalt 

mixtures and can be calculated using equation (7). A mixture with higher CS
Nf suggests better 

fatigue resistance. [18]. 

𝐺𝑅 =
∫ 𝑤𝑐

𝑅
𝑁𝑓
0

𝑁𝑓
2                                                                                                                   (4) 

𝐷𝑅 =
∫ (1−𝐶)
𝑁𝑓
0

𝑁𝑓
                                                                                                                (5) 

𝑆𝑎𝑝𝑝 = 1000
𝛼

2
−1 𝑎𝑇

1
(𝛼+1)⁄
(
𝐷𝑅

𝐶11
)
1
𝐶12

|𝐸∗|
𝛼
4

                                                                                    (6) 
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𝐶𝑁𝑓
𝑆 =
∫ (1−𝐶)𝑑𝑁
𝑁𝑓
0

𝑆𝑓
×𝑚                                                                                                 (7) 

Where:  

𝑤𝑐
𝑅 = Dissipated pseudo energy per load cycle 

Nf = Number of load cycles to failure 

𝐶 = Pseudo stiffness 

C11, C12 = model coefficients of the damage characteristic curve 

α = material constant that can be calculated from the maximum slope of the relaxation modulus in 

log–log scale  

aT = shift factor 

E* = dynamic modulus (kPa) at 10 Hz and the reference temperature.  

𝑆𝑓 = accumulated damage at failure  

m = Unit correction factor   

 

2.2.4 Semi-circular Bend (SCB) Testing 

In order to evaluate the fracture properties of the asphalt mixtures at intermediate temperatures, 

the Semi-Circular Bend test was conducted following the test procedure in AASHTO TP 124 

standard method of test for determining the fracture potential of asphalt mixtures using the Illinois 

flexibility index test (I-FIT) [19]. The test was performed using the line-load displacement method 

with monotonic loading with a rate of 50 mm/min at 25°C. The fracture energy (Gf) and the 

flexibility index (FI) were calculated from the SCB test. The fracture energy (Gf) indicates the 

material’s overall capacity to resist cracking (equation 8). The FI (equation 9) is calculated from 

the post-peak slope of the load-displacement curve in the fracture test and Gf. Generally, the FI 
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provides a means to rank cracking resistance. Higher the Gf and FI values indicate better expected 

cracking resistance of a mixture [20]. The current recommended threshold value for FI to 

distinguish asphalt mixtures with good performance from mixtures with bad performance is eight 

[21]. 

𝐺𝑓 =
𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑙𝑜𝑎𝐷−𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑐𝑢𝑟𝑣𝑒 (𝐹𝑎𝑟𝑐𝑡𝑢𝑟𝑒 𝑤𝑜𝑟𝑘)

𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒 𝐴𝑟𝑒𝑎
                                                                          (8) 

𝐹𝐼 =
𝐺𝑓

𝑆𝑙𝑜𝑝𝑒 𝑎𝑡 𝑝𝑜𝑠𝑡 𝑝𝑒𝑎𝑘 𝑖𝑛𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡
                                                                                              (9) 

2.2.3 Disk-shaped Compact Tension (DCT) Testing 

The disk-shaped compact tension (DCT) test was carried out in accordance with ASTM 

D7313 to investigate the fracture properties of asphalt mixtures at low temperatures [22]. Crack 

mouth opening displacement (CMOD) was utilized to measure displacements (with a rate of 1 

mm/min) on the sample under monotonic load. The DCT testing temperature was determined 

based on the in-service location (10°C+PGLT) using the MERRA climatic data source in InfoPave 

LTPP program. At least three replicates with 50 mm height and 150 mm diameter were tested for 

each asphalt mixture using the universal testing machine (UTM). Peak load and Gf were 

determined from the DCT test to evaluate the cracking resistance of asphalt mixtures at low 

temperatures [23]. Based on literature a proposed threshold value for Gf is 400 J/m2 [24]. Asphalt 

mixtures with fracture energy higher than 400 J/m2 are expected to have minimal thermal cracking 

compared to mixtures with fracture energies below the threshold. Figure 2-8 shows the DCT test 

specimen in a UTM chamber. 
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Figure 2-8 DCT test specimen and configuration in UTM 

2.3 Statistical Analysis and Prediction Models 

In fact, a challenge with prediction model development is to find the most suitable factors 

and simulation techniques that can predict future performance. Regression analysis is among the 

basic statistical techniques for this purpose. Box and Wilson (1951) conducted a study on process 

characterization and prediction that has been known as the pioneer of full quadratic models (FQM) 

[25]. The FQM contains the main effects, all two-way interactions, and quadratic effects as shown 

in equation 10, and this is yet the gold standard for building process models, especially for 

production, and the process is known today as the response surface model. 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽12𝑋1𝑋2 + 𝛽11𝑋1
2 + 𝛽22𝑋2

2                                               (10) 

Where: 

X1 and X2 = Experimental factors 

β = Model coefficient  
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FQMs are good second-order approximations to unknown response functions. However, 

Cornell and Montgomery (1996) showed they often are a poor approximation to the response 

surface over the entire design region, and then they raised the fact that the FQM often is inadequate 

to characterize a design space [26]. In other words, there is a great deal of nonlinearity that leads 

to response surfaces with pronounced compound curvature in different regions. Thus, the FQM 

simply cannot deal with it. Cornell and Montgomery proposed augmenting the FQM, and they 

added more terms in the model, such as quadratic by linear, linear by quadratic, and even quadratic 

by quadratic interactions. Equation 11 shows an augmented FQM with two variables. Based on 

the results, they claimed that these models approximate design regions better than FQMs. 

𝑌 = 𝐹𝑄𝑀 + 𝛽112𝑋1
2𝑋2 + 𝛽122𝑋1𝑋2

2 + 𝛽1122𝑋1
2𝑋2
2                                                       (11) 

While the augmented FQM does a better job compare to the FQM model, there is a 

drawback for using this approach to develop prediction models. The addition of new terms to FQM 

will lead to a very large model that even makes a big model such as central composite design 

(CCD) supersaturated. It means there are more unknowns (p) than observations to fit the models. 

For example, an FQM with 13 experimental factors will have 105 terms. While the number of 

terms for an augmented FQM with the same amount of experimental factors would be 339. 

With the improvement of the computational capacity of computers, researchers are 

utilizing some state-of-the-art statistical analysis techniques such as machine learning (ML) and 

deep learning (DL) to deal with saturated models with a limited amount of experimental 

observations [27]. Some of the useful ideas in these techniques stem from drawbacks in linear 

regression models. In 1996 Leo Brieman conducted a research study that was the start of a new 

era in prediction algorithms [28]. He pointed out that almost all model-building algorithms for 

prediction (such as forward selection, lasso, best subsets regression, etc.) are inherently unstable. 
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Being unstable means small perturbations in the data can result in wildly varying models. Although 

Brieman did not have a proper tool to conduct an extensive amount of statistical analysis, he 

showed fitting a large number of models on data set and then using the average of all models has 

some potentials to deal with supersaturated models. The idea that Brieman proposed is now 

commonly accepted in machine learning and deep learning techniques that is the idea of ensemble 

modeling and model averaging. Every predictive model needs a training set to fit the model, then 

it requires an additional or validation set of data to test the model to see how well it would predict. 

To demonstrate that ensemble modeling can improve prediction performance by reducing the 

effect of model instability on the model, Breiman conducted a simulation study. However, data 

sets with a limited amount of observations do not have additional trials available to be served as a 

validation set, and Brieman was stuck on this point. 

Lemkus et al. used the Brieman idea and proposed self-validated ensemble modeling based 

on fractionally weighted bootstrapping technique and model averaging to deal with super saturated 

models with a limited amount of data [29]. They claimed a prediction model could use the same 

data set as both training and validation sets. The model takes the original data, copies it as the auto 

validation set, and then assigns random weights to the observations. The model creates 

exponentially distributed weights by the probability integral transform such that it drives 

anticorrelation between the training set and the auto validation set. The first prediction formula 

will be developed based on initial weights. The model saves the first formula and then assigned 

other sets of randomly anticorrelated weights to data set and develops the second prediction 

formula. Note that for the second run, a different set of main effects and interactions were chosen, 

and their regression coefficients are different this time. It does the iteration hundreds or thousand 
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of times, and the final prediction model would be the average across all the prediction formulas. 

More details of this method can be found in chapter 4 of this dissertation. 

The ML is a subset of artificial intelligence (IL) and inspired by the process of biological 

learning. The ML uses algorithms to train computers to learn like a human brain from a data set 

without any prior knowledge about the relationship between data [30]. The ML contains different 

algorithms, such as support vector machines (SVM), random forest, ANN, etc. As one of the 

subsets of ML, ANN has gained much attention to predict materials properties, and several 

research studies have shown this technique is useful for applications in civil engineering [21-38]. 

Cooper et al. [39] utilized an ANN model to predict cracking properties of asphalt mixtures using 

semicircular bend (SCB) specimens, and they claimed that the ANN technique could predict the 

critical strain energy release rate with an acceptable level of accuracy. Zavrtanik et al. [40] 

incorporated both ANN and regression models to predict air void levels in asphalt mixtures. They 

considered different variables such as density of aggregates, binder content, aggerate gradation 

(sieve analysis), and air void content for 17,296 asphalt mixtures. The author concluded that the 

ANN model is more effective than the regression model to predict the air void level in asphalt 

mixtures. Venudharan et al. [41] investigated ANN models' liability to predict the rubberized 

binders rutting performance. Based on the results, they concluded that ANN models are 

appropriate techniques to predict the performance of asphalt rubber with respect to cracking. 

Although the ANN techniques have been proven to have reliable performance, they are black-box 

tools, which means they are unable to generate practical equations for models [42]. Moreover, 

ANN techniques are susceptible to stuck in local minimums while the model is trying to find the 

optimum solution path. To prevent ANN models from being stuck in local minima, the training 



 

34 

 

process can be integrated with a powerful optimization algorithm; however, using optimization 

tools makes the ANN models more computationally expensive and complicated [43-48]. 
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CHAPTER 3 

 

Exploration of Cracking-related Performance-based Specification 

(PBS) Indices for Airfield Asphalt Mixtures (Paper 1, Appendix A) 

 

3.1 Chapter Introduction 

 Airfield pavements are a critical component of airport infrastructure that accounts 

for significant proportion of the operational budget due to factors such as maintenance needs and 

construction timing and its impacts on operations. Asphalt concrete mixtures make up the top 

layer(s) of flexible airfield pavements. They are subjected to extreme loading and climatic 

conditions and, as a result, undergo different types of distresses [1]. These distresses not only lead 

to a significant need for maintenance and rehabilitation, they can also cause major safety problems. 

Problems associated with the surface roughness and friction as well as foreign object debris (FOD) 

can cause severe damage to aircraft leading to hazardous operating conditions. To address these 

issues, it is necessary to improve the overall functionality of the pavements through the 

specification of high-quality distress-resistant asphalt mixtures that can tolerate heavy aircraft 

loads under different climatic conditions. 

In the last few decades, significant improvements in production and construction 

technologies of asphalt mixtures have been made to lower costs and distresses potential of highway 

pavements. Fundamental and engineering properties of asphalt concrete mixtures (e.g., fatigue, 

modulus, creep properties) can be determined using performance-based lab tests. The main reason 

for conducting these tests is to address common distresses in pavements such as cracking and 

permanent deformation (rutting). These properties have been shown to better correlate with 
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pavement performance as opposed to traditional approaches of mixture compositions and 

volumetric measures. The use of performance properties in material specifications has led to the 

development of performance-based specifications (PBS) that are now being utilized in highway 

construction. The use of reclaimed asphalt pavement (RAP) and warm mix asphalt (WMA) 

technologies in highway construction have been shown to reduce overall construction cost while 

maintaining comparable and, in some cases, enhanced performance. However, the application of 

these technologies for airfield pavements has not been widely investigated. Since the type and 

magnitude of the loads, as well as a number of load repetitions, are quite different between 

highways and airfields, there is an urgent need to assess suitable performance-properties and their 

thresholds for developing PBS for airfields. Furthermore, the performance of airfield asphalt 

mixtures with the incorporation of RAP and WMA technologies needs further investigation. 

3.2 Methodology and Results 

 This research used three types of warm mix asphalt (WMA), along with a mix of WMA 

and reclaimed asphalt pavement (RAP), to assess the cracking performance of WMA and RAP 

mixtures for airfield pavements and to explore performance-based airfield asphalt mix 

specifications. Fundamental properties of these mixtures were investigated through advanced 

performance-based laboratory testing methods such as complex modulus, semi-circular bend 

(SCB), and direct tension cyclic fatigue (DTCF) tests. Laboratory measured properties were 

utilized as inputs in advance performance prediction software (i.e., FAARFIELD [2, 3] and 

FlexPAVETM) to evaluate mixture performance during the design period. In addition, percent 

discrepancy and Pearson's correlation coefficient were utilized to compare the cracking 

performance indices and predicted pavement cracking performance to investigate which laboratory 

test(s) and property threshold(s) would be viable to be implemented in PBSs. Based on the results 
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of complex modulus and SCB tests, it was found that organic additive and RAP tend to increase 

mixture susceptibility to fracture. In contrast, chemical and hybrid additives showed statistically 

similar fracture properties as compared to the control mixture. According to the results of the 

DTCF test, all fatigue indices ranked asphalt mixtures in different ways, which emphasizes the 

importance of using performance prediction programs to investigate mixture fatigue performance 

as opposed to the use of laboratory-measured index properties as a standalone parameter. The 

results of FAARFIELD software demonstrated that utilization of WMA and RAP would increase 

the fatigue damage in the pavement except for the chemical WMA additive. Moreover, based on 

the results of FlexPAVETM, it was concluded that chemical and organic additives improve 

mixture fatigue performance. While hybrid additive and RAP seemed to worsen the fatigue 

properties. Based on the results of statistical analysis, none of the performance-based laboratory 

test parameters show a promising correlation with the results of FAARFIELD. It was also found 

there is a moderate positive relationship between predicted damage in asphalt mixtures using 

FlexPAVETM and FAARFIELD software. The contradictory results of laboratory tests and 

pavement performance simulation show the Federal Aviation Administration (FAA) current 

asphalt pavement thickness design procedure lacks a usable model of fatigue cracking in its 

standard design program (FAARFIELD). 

It should be noted that the Federal Aviation Administration's National Airport Pavement and 

Materials Research Center (NAPMRC) constructed several test sections with study mixtures to 

evaluate the performance of the same mixtures that were utilized in this study using an airport 

heavy vehicle simulator (HVS-A). The availability of field performance data will enable 

researchers to validate their findings. As the future extension of this study, a comparison will be 

made between the mixture predicted performance and accelerated pavement test data (pavement 
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performance under APT) to determine the accuracy of the prediction. In addition, to evaluate the 

feasibility and benefits of using state-of-the-art performance prediction models in airfield 

pavement design, as opposed to conventional airport design software. 
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CHAPTER 4 

 

Developing a prediction model for fracture energy of asphalt 

mixtures using machine learning approach 

 

4.1 Chapter Introduction 

Thermal cracking is one of the most common distresses in asphalt pavements, which 

usually occurs due to higher tensile stresses in asphalt concrete due to high cooling rates and low 

temperatures [1,2]. Therefore, it is vital to evaluate the cracking resistance of asphalt mixtures 

using appropriate methods. Fracture mechanics concepts are useful to analyze fracture properties 

of asphalt mixtures. Disk-shaped compact tension (DCT) test is one of the most common fracture 

tests in pavement engineering [3-7].  

The DCT test uses a notched specimen that is loaded in tensile mode using a controlled 

crack-mouth opening displacement (CMOD) rate of 1 mm/minute. Using the data from the test, 

fracture work is calculated as the area under the load-CMOD curve. Fracture work is further 

converted to fracture energy (Gf) by normalizing it with respect to the fractured face area (equation 

1). The peak load and fracture energy are two primary material characteristics calculated from 

DCT test. The test procedure is standardized as ASTM D7313 [8]. In order to improve the 

repeatability of this test and refine the testing procedures, the Minnesota Department of 

Transportation (MnDOT) has supplemented the ASTM D7313 specifications with MnDOT-

modified test procedures that has added constraints on specimen dimension tolerances, machine 

calibration requirements, and specimen test temperature control and conditioning, more details are 

available elsewhere [9].  Furthermore, a detailed investigation has been conducted to improve the 
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precision and confidence level in the asphalt mixture low temperature fracture energy 

measurement using the DCT test in previous work [10]. 

𝐺𝑓 =
𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑙𝑜𝑎𝑑−𝐶𝑀𝑂𝐷𝑐𝑢𝑟𝑣𝑒 (𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒 𝑤𝑜𝑟𝑘)

𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒 𝐴𝑟𝑒𝑎
                                                (1) 

Several studies have shown that fracture energy has a reasonable correlation with field 

cracking performance [11-14]. Therefore, it has been utilized in performance-based specifications 

to capture asphalt mixture performance with respect to low temperature cracking [15]. Buttlar et 

al. determined the correlation between the amount of transverse cracking in field sections for 

Missouri, Minnesota, Illinois, and Wisconsin and calculated fracture energy based on DCT test for 

corresponding asphalt mixtures (figure 4-1) [11]. Based on the results, they claimed that there is a 

strong correlation between low temperature cracking and fracture energy.  

 

Figure 4-1 Fracture energy vs. low temperature cracking [11] 

Although performance-based tests showed a promising correlation with asphalt pavement 

field performance, these tests have some limitations, such as they might be cost/time prohibitive, 

and mixture components are not available before the mix design process. Asphalt producers and 
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departments of transportation (DOTs) that want to incorporate performance-based design need to 

come up with a trial mix design and prepare mixtures for performance tests, which requires in 

significant resources (money, time, and personnel).  

New performance-related evaluation approaches are currently under development, but 

these are not mature enough to be widely accepted or implemented and are often not appropriate 

for the routine design. Thus, it is necessary to develop a relationship between estimated and/or 

known asphalt mixture components and performance-based test outcomes that can be used as a 

predesign tool, leading to considerable savings in time and cost of mixture fabrication. In addition, 

asphalt mixtures variables are often not the same during the mix design process and actual 

production process. Therefore, an efficient and helpful prediction model needs to be capable of 

predicting performance-based test outcomes based on mix design parameters and have the 

capability to be able to accommodate asphalt mixture production variabilities. 

With the improvement of the computational capacity of computers during the last few 

decades, researchers have been utilizing different statistical analysis techniques such as regression-

based models, machine learning (ML), and deep learning (DL) techniques to develop properties 

and performance prediction models based on experimental observations [16]. Cooper et al. [17] 

utilized an ANN model to predict cracking properties of asphalt mixtures using semicircular bend 

(SCB) specimens, and they claimed that the ANN technique could predict the critical strain energy 

release rate with an acceptable level of accuracy. Zavrtanik et al. [18] incorporated both ANN and 

regression models to predict air void levels in asphalt mixtures. They considered different variables 

such as density of aggregates, binder content, aggerate gradation (sieve analysis), and air void 

content. The authors concluded that the ANN model is more effective than the regression model 

to predict the air void level in asphalt mixtures. Venudharan et al. [19] investigated ANN model 
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liability to predict a rubberized binder's rutting performance. Based on the results, they concluded 

that ANN models are appropriate techniques to predict the performance of asphalt rubber with 

respect to cracking. Majidifard et al. [20] utilized an innovative ML method called gene expression 

programming (GEP) and a hybrid ANN model to predict the fracture energy of asphalt mixtures. 

They concluded that the GEP model seems to be more practical as compared to the hybrid ANN 

model. 

In fact, a challenge with prediction model development is to find the most suitable factors 

and simulation techniques that can predict future performance. Asphalt mixture performance 

depends upon several factors such as aggregate type, binder type, air void content, and production 

techniques. However, most of the developed prediction models to date either do not include all 

important variables, or may be computationally expensive and are therefore not suitable to be 

implemented in predesign procedures [15, 21]. According to the nature of experimental 

observation (lab test results), each variable might have an influence on the test results and 

removing even a few observations or variables can cause the main effects and interactions to 

collapse and creates an "ill-fitted" model. In these cases, prediction models only work within the 

circumstances they are developed under and using a different data set will cause a significant error 

in those models. Table 4-1 shows a summary of effective variables on fracture energy based on 

the literature review. 
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Table 4-1 Effective asphalt mix variables for fracture energy 

Authors Variables Investigated 

Blankenship and Zeinali [22]  
Binder PG grade 

Polymer and rubber modification 

Li et al. [23] 
Test temperature 

Aggregate source 

Behnia et al. [24]  Recycled materials (RAP) 

Dave et al. [25] 

Type of binder modification 

RAP 

Low temperature binder grade 

Buttlar et al. [26]  

Aggregate type 

Aggregate gradation 

Binder PG grade 

Zegeye et al. [27]  Type of binder modification 

Mogawer et al. [28] Type of binder modification 

Oshone et al. [29] 

RAP 

Effective binder content 

Air void 

Asphalt film thickness (AFT) 

Void in mineral aggregates 

Binder PG grade 

 

Based on this motivation, the objectives of this study are as follows: 

(a) To develop a precise yet computationally low-cost low-temperature property prediction 

model using different statistical methods.  

(b) To determine how prediction capabilities can be impacted when mix design data is used as 

opposed to actual production data. 

(c) To determine which mixture attributes are most important to low temperature fracture 

property 

4.2 Test Data 

Asphalt mixtures were designed at MnDOT based on the Superpave mix design procedure. 

The mix design includes selection of asphalt binder and aggregate types and recycle material 

content, and then proportioning of the asphalt binder and aggregates based on design traffic data, 

aggregate empirical properties, and volumetric properties of a mixture such as air voids, densities, 

voids filled with asphalt (VFA), and VMA. After mix design process, asphalt mixtures were 
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constructed as field pavements and job mix formula including stockpile blending, recycle material 

content, virgin binder content was measures to be compared with the proportioning data at the mix 

design phase. Loose mix samples were taken at construction stage and compacted at laboratory to 

measure mix volumetric properties as well as to conduct performance related lab test on asphalt 

mixtures. Figure 4-2 shows a schematic of mix design and actual production phases data and how 

they were used in analysis for this study. 

DCT test (ASTM D7313/MnDOT modified) was conducted on 71 plant-produced lab-

compacted (actual production) asphalt mixtures with the short-term aging condition at MnDOT, 

and fracture energy was calculated as the primary outcome of the test. The fracture energy of each 

mixture represents the average value of 12 replicate specimens. In addition to the actual 

production, mix design data were also collected to be utilized as a validation data set for prediction 

model as well as to investigate how different a low temperature cracking performance property 

would be if mix design info were used as opposed to actual production data for prediction.  

In this study, all mix information at the mix design and production stage were categorized into 

three groups to determine the minimum amount of mix information that one needs to utilize to be 

able to predict asphalt mixture fracture properties into a certain level of reliability. Different groups 

were selected based on the availability of data during the mix design procedure. Group A is 

represents variables that are typically known during the planning stage and contains information 

that the designer would know at the first step of mix design. All design variables in group B are 

available at the early stages of mix design and can be determined without the need for any specific 

lab mixing or compaction of asphalt mixture. Group C includes information that is available at the 

final stage of mix design. Some of the variables such as asphalt film thickness (AFT), equivalent 
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single axle load (ESAL), and maximum aggregate size might not be very well-known outside of 

the U.S. Therefore, these variables are elaborated upon hereunder. 

AFT is the ratio of effective volume of asphalt binder to the aggregate surface area and can be 

calculated using equation 2. 

𝑇𝑓 =
𝑉𝑎𝑠𝑝

𝑆𝐴×𝑊
× 1000                                                                                                (2) 

Where: 

𝑇𝑓 = Average film thickness (𝜇𝑚) 

𝑉𝑎𝑠𝑝 = Volume of effective asphalt binder (L) 

SA = Aggregate surface area (m2/kg) 

W = aggregate weight (kg) 

The ESAL concept was developed at early 1960 by American association of state highway 

officials (AASHO) to convert induced damage by wheel loads with different repetition and 

magnitudes to damage from an standard wheel load. The most commonly implemented equivalent 

load in the U.S. is 80 kN which comes from single axle dual tire configuration. Equation 3 shows 

ESAL calculation. More details on ESAL calculation can be found here [30, 31]. 

𝐸𝑆𝐴𝐿 = (𝐴𝐷𝑇)(𝑇)(𝑇𝑓)(𝐺)(𝐷)(𝐿)(365)(𝑌)                                                        (3) 

Where: 

ADT = Average daily traffic 

T = Truck percent 

Tf = Truck factor  

G = Growth factor  
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D = Directional distribution factor  

L = Lane distribution factor 

Y = Number of design years. 

Based on the Superpave definition, maximum aggregate size is one sieve size larger than nominal 

maximum aggregate size (NMAS). The NMAS is the one sieve size larger than the first sieve on 

which more than 10% of aggregates would retain. More information can be found in hot mix 

asphalt materials, mixture design and construction book [32]. 

Tables 4.2 and 4.3 show different groups and available information within each group and 

descriptive statistics of each variable, respectively. 



 

52 

 

 

 

Figure 4-2 Mix design and production phases and experimental data for statistical analysis 
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Table 4-2 Different variables in each group for statistical analysis 

Variables Group 

High temperature binder grade (PGHT) 

A 

Low temperature binder grade PGLT 

Maximum Aggregate Size (mm) 

Design traffic load (ESALs) 

Total binder content (AC %) 

RAP (%) 

Percent passing 3/8 in. for combined gradation (%) 

B Percent passing #4 sieve for combined gradation (%) 

Percent passing #200 sieve for combined gradation (%) 

Void in mineral aggregates (VMA) 

C 

Asphalt film thickness (AFT) 

Maximum specific gravity (Gmm) 

Bulk specific gravity (Gmb) 

Aggregate specific gravity (Gsb) 
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Table 4-3 Descriptive statistics of variables on this study 

Variable N Mean Std Dev Sum Minimum Maximum 

PGHT 71 58.4 1.5 4148 58 64 

PGLT 71 -28.4 1.5 -2018 -34 -28 

Maximum 

Aggregate 

Size (mm) 

71 17.1 2.3 1212 12.5 19 

Design 

ESALs 

(million) 

71 6.3 4.5 450 3 30 

Binder 

Content, Pb 

(%) 

71 5.2 0.3 373 4.1 6 

RAP% 71 22.6 2.9 1605 15 30 

Particle Size 

3/8 in. (%) 
71 86.4 6.1 6135 73 98 

Particle Size 

#4 (%) 
71 65.8 4.2 4670 51 77 

Particle Size 

#200 (%) 
71 4.6 0.5 324 2.8 5.5 

VMA (%) 71 14.9 0.7 1056 13 16.3 

AFT 

(micron) 
71 8.6 0.5 613 7.5 10.4 

Gmm 71 2.488 0.017 177 2.441 2.523 

Gmb 71 2.389 0.020 170 2.335 2.434 

Gsb 71 2.658 0.021 189 2.605 2.700 

 

4.3 Data Analysis Method 

 AFQM, ANN, and an innovative machine learning technique called SVEM were utilized 

to develop prediction models based on different variables. Mix information at the production stage 

was used to train and validate the prediction models. Moreover, the mix design data of the 

corresponding mixtures were used to test the model and assess how prediction capabilities can be 

impacted when mix design data is used as opposed to actual production data (as shown in figure 

4-3). In this study, the efficiency of trained models was evaluated using correlation of 
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determination (R2) (equation 4), root average square error (RASE) (equation 5), and the absolute 

average error (AAE) (equation 6). 

 

Figure 4-3 Schematic of data at each stage for model development and evaluation 

𝑅2 =
(∑ (𝑀𝑖−�̅�𝑖)(𝑇𝑖−�̅�𝑖)
𝑁
𝑖=1 )2

∑ (𝑀𝑖−�̅�𝑖)
2𝑁

𝑖=1 ∑ (𝑇𝑖−�̅�𝑖)
2𝑁

𝑖=1

                                                                                              (4) 

𝑅𝐴𝑆𝐸 = √
∑ (𝑀𝑖−𝑇𝑖)

2𝑁
𝑖=1

𝑛
                                                                                                        (5) 

𝐴𝐴𝐸 =
∑ |𝑀𝑖−𝑇𝑖|
𝑛
𝑖=1

𝑛
                                                                                                               (6) 

Where: 

𝑀𝑖 = Measured output 

𝑇𝑖 = Predicted output 

�̅�𝑖 = Average of measured outputs 

�̅�𝑖 = Average of predicted outputs 

n= Number of samples  

4.3.1 Full Quadratic Model (FQM) 

The FQM is a subset of regression models which contains the main effects, all two-way 

interactions, and quadratic effects of variables to predict the outcome, as shown in equation (7) 

[33].  

 Production stage data was used for:

 Model training

 Model validation 

Mix Design Stage
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 As a true validation set to

test the predictability of 

models
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Production Stage
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𝐹𝑄𝑀 (𝑌) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽12𝑋1𝑋2 + 𝛽11𝑋1
2 + 𝛽22𝑋2

2            (7) 

Where: 

X1, … , n = Variables 

Β = Model coefficient 

 

The FQM, however, might not be able to capture all the interaction between variables 

because it is limited to second-order approximations to the unknown response function. To deal 

with this issue, the FQM can be augmented with more interactions such as quadratic by linear, 

linear by quadratic, and even quadratic by quadratic interactions, as shown in equation (8) [34].  

𝐴𝐹𝑄𝑀(𝑌) = 𝐹𝑄𝑀 + 𝛽112𝑋1
2𝑋2 + 𝛽122𝑋1𝑋2

2 + 𝛽1122𝑋1
2𝑋2
2             (8) 

Where: 

FQM = Full quadratic model 

An augmented FQM was utilized in this study to assess the impact of various parameters 

on the fracture energy of asphalt mixtures. A response surface model (RSM) was adopted in JMP® 

Pro software, and the model was then augmented by adding 3rd degree polynomial terms to the 

model. 80% of data was selected randomly for training the model, and 20% was used for validation 

purposes. Once prediction models were developed, mix design data were used for corresponding 

mixtures as a true validation set (test set) to examine the model's reliability. All analyses were 

conducted on variables in group A, the combination of variables in groups A and B, and the 

combination of all variables in groups A, B, and C to determine the minimum amount of 

experimental observations needed for specified reliability in the prediction model. 
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4.3.2 Artificial Neural Network (ANN) Method 

ANN is a subfield of machine learning where the algorithms are inspired by the structure 

of the human brain. Neural networks take in data, train themselves to recognize the patterns in the 

data, and then predict the outputs for a new set of similar data [35]. ANN models are powerful 

tools to solve complex nonlinear problems and analyze complicated data sets [36]. Neural 

networks are made up of layers of neurons. The first layer is called the input layer, which receives 

the input. The output layer predicts the final output, and in between exist the hidden layers which 

perform most of the required computations. 

In this study, a multilayer feed-forward back-propagation neural network model was 

created in JMP® Pro software. Data normalization was done by mapping the data set to the range 

of (0,1). K-fold cross-validation was used to prevent overfitting of the model, and the dataset is 

divided into k subsamples with equal sizes [37]. K-1 subsamples were used to train the prediction 

model, and a remaining subsample was used to validate the model. The process was then repeated 

K times for cross-validation with using each subsample exactly once as the experimental data. 

Considering the amount of experimental observations (71) in this work, 5 folds were used for 

model validation. The mix design info was then utilized to test the final model.   

The accuracy of ANN models depends on the network's architecture; however, there is no 

general rule to select the numbers of hidden layers as well as the number of neurons in each hidden 

layer. Besides, the initial weights of variables were randomly chosen during the training process. 

Consequently, there is a possibility that the algorithm falls into local minimum points [38]. In this 

study, to prevent the model from being stuck in local minimums, the first ANN structure was used 

with one hidden layer and different numbers of neurons (1 to 100). Then, the networks were tested 

through 5 iterations, and average results were recorded. The models were then compared with 



 

58 

 

respect to the maximum coefficient of determination and minimum error. The same steps were 

then repeated for a network with two hidden layers, and the optimum structure was selected by 

comparing the statistical results of different models [39]. 

4.3.3 Self-validated Ensemble Modelling (SVEM) 

 This study utilized a new model-fitting method called fractionally weighted bootstrapping 

and auto validation (FWB+AV) method. This method keeps the design structure intact while 

simultaneously incorporating a weight re-sampling scheme [40]. In order to use this model, a new 

JMP® pro software add-in called self-validated ensemble modelling (SVEM) was used [41]. The 

SVEM is a new method to extract more insights with fewer experimental observations and build 

more accurate predictive models from small data sets [41]. As a result, SVEM validates prediction 

models without reduction or removal of any runs in the model. In this method, generalized 

bootstrapping implements random exponential weights with a mean of 1.0 [42]. Such that, a set of 

random uniform weight (0,1) is being generated with the same size as the data set, then the 

weighting scheme utilizes exponentially distributed inverse probability transform for a fractional 

wight generation. Equation 9 [41] represents the computation of the weights. Figure 4-4 shows the 

inverse correlation between training and validation weights based on the auto-validation approach. 

     𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 ∶  𝑢𝑖  ~ 𝑈 [0.1]𝑖 = 1…𝑁  

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐹𝑊′𝑠 ∶  𝑤𝑇,𝑖 =  𝐹
−1 (𝑢𝑖)𝑖 = 1…𝑁                                                                   (9) 

𝐴𝑢𝑡𝑜 − 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝐹𝑊′𝑠 ∶  𝑤𝑉,𝑖 = 𝐹
−1 (1 − 𝑢𝑖)𝑖 = 1…𝑁  

Where: 

U [ 0, 1]i = uniform distribution on the interval (0, 1) 

wT = Training Weight 

FW = Fractional Weight 
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F = the cumulative distribution function for an exponential distribution with mean 1 

 

 

Figure 4-4 Auto-validation weigh vs Training Weight 

 Once both the training and auto-validation sets have been assigned random weights, a 

selected prediction algorithm will be applied to the training set. The prediction algorithms then 

choose the best model based on the minimum mean squared error (MMSE) for the auto-validation 

set. The selected model will be stored for final model inclusion. The procedure will then be 

repeated for a number of iterations that is specified by the user. Algorithm 1 shows the SVEM 

analysis steps where Mi represents the ith row in the matrix. 

 

Algorithm 1: SVEM [41] 

𝑹𝒆𝒔𝒖𝒍𝒕𝒔: �̂�𝑆𝑉𝐸𝑀   

𝒇𝒐𝒓 𝑖 = 1 ∶  𝑛�̂� 𝑑𝑜  

     𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒   �̃�𝑇 , �̃�𝑉 ;  
      𝐹𝑖𝑡 𝑚𝑜𝑑𝑒𝑙  𝑓(𝑋, �̃�𝑇 , �̃�𝑉 𝑌);  

     𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑆𝑆𝐸𝑉(𝛽) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ �̃�𝑉 ,𝑖(𝑦 𝑖 −𝑖  𝑓(𝑋, 𝛽))2;  

     𝑆𝑒𝑙𝑒𝑐𝑡 �̂� = 𝑎𝑟𝑔𝑚𝑖𝑛 [𝑆𝑆𝐸𝑉(𝛽)];  

     𝑀𝑖  ← 𝛽;̂  
𝑬𝒏𝒅  

𝐵𝑎𝑔 (𝑀) → �̂�𝑆𝑉𝐸𝑀   
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Where: 

β = Model outcome 

wT = Training weight 

wv = Validation weight 

SSE = Sum of squared estimate of errors 

argmin () = The function that returns indices of the min element of the array in a particular axis 

Bag = Bagging function 

For M iterations, the Mfinal matrix contains all fitted models along with the coefficient 

estimates that were created for the final model. The model takes into account all possible terms 

with zeroing the associated coefficient value of variables that did not get selected for each FWB 

iteration. Figure 4-5 demonstrates a succinct diagram that illustrates the SVEM algorithm 

 

Figure 4-5 SVEM workflow diagram [41] 
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4.4 Results and Discussion 

4.4.1 Full Quadratic Model (FQM) 

 An augmented FQM was used to predict the fracture energy based on variables in group 

A, the combination of variables in groups A and B, and the combination of variables in groups A, 

B, and C, and the results are presented in figures 4-6 i, ii, and iii, respectively. The results show 

that the accuracy of the model increases as group B variables are combined with variables in group 

A. while the accuracy of the model based on mix design data decreases (test set). The prediction 

model based on the combination of all groups together showed lower accuracy for all training, 

validation, and test sets as compared to the prediction model based on the combination of groups 

A and B. It could be related to the higher amount of data points for combination of all groups 

together which makes the model supersaturated and unstable and decreases the reliability of 

regression models to predict the test outcome. It can be concluded that having additional variables 

for the FQM, may not necessarily improve the predictability of the model. 
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Figure 4-6 Actual vs Predicted fracture energy based on augmented FQM i) Group A, ii) 

Groups A and B, iii) Groups A, B, and C 
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4.4.2 Artificial Neural Network (ANN) Model 

Several model structures with different neurons in the hidden layer were utilized to 

determine the optimum ANN architectures to predict fracture energy. The best models were then 

validated using K-fold cross-validation techniques. In addition, mix design data was used as a test 

set to investigate the reliability of the model. Table 4-4 shows R-squared values and model error 

for different models for the combination of groups A, B, and C. Based on the results, the best 

model structure for the combination of all groups was found to be 14-100-1. Figure 4-7 

demonstrates a model architecture diagram with 14 inputs, 1 hidden layer with 100 neurons, and 

1 outcome. ANN models are complex and computationally expensive and level of complexity can 

be visualized by the number of neurons and number of required calculations between layers in 

figure 4-6. Figures 4-7 i, ii, and iii show predicted vs. actual fracture energies based on ANN for 

group A, the combination of group A and B, and the combination of groups A, B, and C, 

respectively. In general, it can be concluded that ANN can predict fracture energy of asphalt 

mixtures with high accuracy. The model accuracy increases (especially for the training set and test 

set) as more input variables are added to the model. 
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Table 4-4 Statistical values of ANN model for groups A, B, and C 

ANN architectures 
Train  Validation 

R
2
 RASE R

2
 RASE 

14-1-1 0.88 29.92 0.64 74.20 

14-2-1 0.93 22.62 0.72 65.57 

14-3-1 0.97 15.99 0.93 21.62 

14-4-1 0.88 36.36 0.99 6.04 

14-5-1 0.95 21.28 0.92 23.24 

14-6-1 0.97 15.33 0.97 12.23 

14-7-1 0.95 18.53 0.81 54.33 

14-8-1 0.85 38.81 0.99 4.03 

14-9-1 0.98 10.57 0.67 73.78 

14-10-1 0.97 15.85 0.95 26.22 

14-15-1 0.98 11.26 0.76 59.88 

14-20-1 0.73 51.72 0.96 15.77 

14-25-1 0.96 15.84 0.91 36.95 

14-30-1 0.96 16.21 0.35 99.84 

14-35-1 0.82 42.80 0.99 2.52 

14-40-1 0.77 47.52 0.99 7.38 

14-45-1 0.45 73.79 0.99 3.20 

14-50-1 0.80 44.60 0.99 1.90 

14-60-1 0.97 14.37 0.52 85.21 

14-70-1 0.97 13.58 0.62 76.41 

14-80-1 0.98 13.06 0.98 11.44 

14-90-1 0.97 15.28 0.61 76.71 

14-100-1 0.99 10.49 0.98 11.42 
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Figure 4-7 ANN architecture diagram for groups A, B, and C 
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Figure 4-8 Actual vs Predicted fracture energy based on ANN i) Group A, ii) Groups A and 

B, iii) Groups A, B, and C 
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4.4.3 Self-validated Ensemble Modelling (SVEM) 

 The same augmented FQM as regression analysis was used for the SVEM. Each model 

was run for a different number of iterations, and it was found that 250 iterations would lead to the 

most optimum results, and the final models are presented as the average of 250 model runs. Figures 

4-8 i, ii, and iii show the actual vs. predicted fracture energy for group A, the combination of 

groups A and B, and the combination of groups A, B, and C, respectively. According to the results, 

the SVEM technique is able to develop reliable prediction models even only with variables in 

group A. Combination of variables in groups A and B increases the accuracy of training and 

validation sets, while it lowers the accuracy of the test set. Although the accuracy of prediction 

models based on variables for the combination of groups A and B and the combination of all groups 

is comparable, using all variables increases the test set accuracy. This means utilizing more 

variables results in a more stable model and increases prediction capability even if mix design data 

is used as opposed to production data. 
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Figure 4-9 Actual vs Predicted fracture energy based on SVEM technique i) Group A, ii) 

Groups A and B, iii) Groups A, B, and C 
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4.4.4 Model Comparison 

 All prediction models in this study were compared in terms of variation between actual test 

data and predicted fracture energy and amount of error in the models (table 5). Color coding has 

been utilized in table 5 to better visualize the differences between model performance with green 

indicating better performance and red indicating worse performance. As expected, the augmented 

FQM shows the highest amount of error and lowest accuracy among all prediction models. Using 

SVEM technique substantially improves the model accuracy and lowers the error, which 

demonstrates this technique's efficiency even with a limited amount of data. Both SVEM and ANN 

models show promising and comparable results in terms of fracture energy prediction model 

accuracy and error with the ANN model having slightly better results for the combination of all 

groups together. The ANN implemented 100 neurons in the hidden layer and considering that it 

uses non-linear techniques to predict the test outcome, the model would be time-consuming and 

computationally expensive (for example, a 1000 neuron model with 1 hidden layer  in this study 

required approximately 45 minutes of time to complete analysis on a standard windows mid-range 

laptop computer). Moreover, since the ANN does not provide a final prediction equation, it would 

not be very suitable to be used as a predesign prediction tool, and it requires more familiarity with 

data analysis. On the other hand, the SVEM technique utilizes a linear approach, which shows 

comparable precision to the ANN model but is less computationally expensive and does not require 

data analysis knowledge prior to implementing the final prediction model. The SVEM models 

based on the group A and B variables and combination of all variables have comparable 

predictability. This shows a reliable and precise prediction of fracture energy can be obtained only 

with variables available at the early stage of mix design when conducting laboratory tests to 

measure physical and volumetric properties of asphalt mixtures may not be feasible. 
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Table 4-5 Model comparison in terms of prediction accuracy and errors 

Group 

Statistical Parameter 

R-Squared RASE AAE 

Train Validation Test Train Validation Test Train Validation Test 

FQM 

A 0.67 0.51 0.58 58.88 56.22 70.42 46.60 51.68 52.97 

A+B 0.78 0.77 0.45 40.28 42.86 58.69 30.96 38.21 44.79 

A+B+C 0.75 0.66 0.38 43.32 51.97 64.20 33.32 39.30 47.66 

 ANN 

A 0.95 0.82 0.67 18.41 37.17 43.63 13.66 27.46 32.27 

A+B 0.94 0.85 0.77 23.99 32.88 36.95 17.61 24.67 29.90 

A+B+C 0.99 0.98 0.80 10.49 11.42 41.86 6.15 8.10 31.04 

 FWB+AV 

A 0.90 0.73 0.78 30.69 24.74 50.77 23.37 19.59 37.93 

A+B 0.93 0.86 0.56 23.23 24.17 52.34 16.58 19.50 39.22 

A+B+C 0.93 0.81 0.87 26.33 25.12 28.94 19.32 19.62 21.09 

 

4.4.5 Sensitivity Analysis 

Sensitivity analysis was conducted using JMP® Pro software to assess the effect of each 

variable on the final prediction model. It is worth noting that the evaluation was conducted withing 

the range of values for the variables assessed in this study as shown in table 3. Figure 4-10 shows 

the results of sensitivity analysis. Based on the results, design traffic level has the highest impact 

on fracture energy. The results make sense because higher traffic volume requires mixtures to be 

designed with higher amount of crushed aggregate in the mix design as well as higher compaction 

levels which increases fracture energy of asphalt mixtures.  Three levels of design traffic (levels 
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3, 4, and 5 based on MnDOT definition) were used in this study. Between levels 3 and 4, the 

required amount of crushing in coarse aggregates would change (55% coarse aggregate by weight 

need at least one crushed face for level 3 whereas 85% require two crushed faces and 80% require 

at least one crushed face). There are no sand equivalency requirements for fine aggregate for level 

3 and also required amount of fine aggregate angularity is lower for level 3 (42% for wear courses) 

as opposed to level 4 (44% for wear course). Lastly, level 4 mixtures are designed with 90 

gyrations as opposed to level 3 mixtures which are designed with 60 gyrations. This means that 

level 3 mixes often have significantly larger amount of rounded aggregate particles (such as, 

natural sand and gravels), and lower amount of compactive effort that impacts the aggregate 

interlocking, both these aspects are expected to impact the fracture energy of mix. 

According to the results, gradation of fine aggregates (smaller than sieve #4) and total 

binder content have a very small (insignificant) impact on the fracture energy (less than 1%). The 

results are not entirely unexpected since volumetric measures such as, VMA and AFT represent 

actual binder availability or need within the mixtures and these depend significantly on the type 

and gradation of aggregates. Although total binder content has a negligible effect on the fracture 

energy, binder PGLT was found to be the second most effective variable on mixture fracture 

energy. At low temperatures, the fracture energy significantly depresses when temperatures 

approach the glass transition temperature of the binder. Asphalt binders with lower PGLT have 

lower glass transition temperature and thus the observed trend is expected. In addition, a lower 

PGLT provides higher flexibility and ductility at low temperatures and as a result a softer binder 

has higher fracture energy as compared to a stiff binder. 

It can also be concluded that almost 89% of the predicted model can be represented with 

variables from groups A and B, meaning that these variables and interactions between them define 
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about 90% of the predictability of model. This emphasizes the finding in previous sections that 

even before conducting any laboratory tests to measure physical and volumetrics properties of 

asphalt mixtures, the low temperature fracture energy can be predicted with a high reliability. 

 

 

Figure 4-10 Effect of each variable on fracture energy 

4.4.6 Web-based Fracture Energy Prediction Model 

 Based on the model error, the accuracy of prediction, and computational time and cost, 

prediction models based on SVEM techniques were selected as the final fracture energy prediction 

models. A web-based prediction tool was developed based on the final prediction equations for all 

three levels (group A, combination of groups A and B, and combination of groups A, B, and C) as 

a predesign prediction tool (figure 4-11). Researchers and asphalt agencies can choose the most 

suitable model based on their preference and availability of data. When testing is not feasible, these 

models ensure prediction of fracture energy with certain levels of accuracy even with a limited 

54.6

17.2
12.1 9.1

5.2 2 1.6 1.3 0.8 0.3 0.3 0.1 0.05 0.04
0

10

20

30

40

50

60

70

80

90

100

D
esig

n
 E

S
A

L
s

P
G

L
T

 3
/8

" %

V
M

A

R
A

P
%

P
G

H
T

G
m

b

M
ax

 ag
g
.

G
m

m

#
2
0
0
 %

P
b

A
F

T

G
sb

#
4
 %

A A B C A A C A C B A C C B

V
ar

ia
b

le
 E

ff
ec

t 
(%

)



 

73 

 

amount of data. The final model has been converted into a web-based tool that can be found on 

https://mdscrackpredictor.com/. It should be mentioned that the proposed prediction models are 

not based on mechanistic evaluation of mixture behavior, and they are mostly suitable for the 

considered range of predictor variables in this study. The author would not recommend 

extrapolation of the models at this time.  While the particular developed models are only applicable 

for range of variables in the data set, this paper provides framework on how to develop accurate 

prediction models using SVEM technique. 
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Figure 4-11 Fracture energy prediction tool 
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4.4.7 Model Evaluation 

The performance of the developed prediction model in this dissertation was compared with a 

published fracture energy prediction model by Majidfar et al. [34] to evaluate the predictability of 

the model. Majidfar et al. used gene expression programming (GEP) as a machine learning method 

and recommended the model for predesign purposes when testing is not feasible. Mix design data 

that was not involved in any step of model development in this work (test set) was used to compare 

the performance of two models. The GEP model utilizes fewer mix variables and is accurate for a 

narrower range of variables as compared to the SVEM model in this work. Therefore, only 

mixtures for which mix variables meet the GEP model requirements were selected. Figure 4-12 

shows actual fracture energy vs. predicted fracture energy based on SVEM and GEP models. 

Based on the results, SVEM has better accuracy than GEP. While the accuracy of the GEP model 

is not low, the model is extremely biased that emphasized coefficient of determination cannot be 

used solely to compare model performance. In addition to the coefficient of determination, RASE 

and AAE were used for the models comparison, and table 4-6 shows the results. The SVEM model 

has a significantly lower error with respect to both RASE and AAE. The high amount of error in 

the GEP model could be related to the fact that this model only considers a few mix variables with 

a narrow range which means the model would result the same amount of fracture energy for most 

of the mixture in this work without considering all influential variables. 
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Figure 4-12 Actual vs Predicted fracture energy based on SVEM and GEP models 

Table 4-6 Model comparison in terms of prediction accuracy and errors 

Model Statistical Parameter 

R-Squared RASE AAE 

SVEM 0.90 31.53 22.45 

GEP 0.67 157.28 129.77 

 

4.5 Summary and Conclusion 

In this study, FQM, ANN, SVEM statistical analysis methods were utilized to predict the 

low temperature fracture energy of asphalt mixtures corresponding to temperature equal to asphalt 

binder PGLT+10°C. Prediction models were developed using an experimental database including 

71 different asphalt mixtures with 12 replicate specimens for each mixture. The models include 

the simultaneous impact of various predictor variables such as asphalt binder and aggregate types, 

recycled material content, proportioning of the asphalt binder and aggregates based on design 

traffic data, mixture volumetric properties such as air voids, densities, AFT, VFA, and VMA. 
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Values determined from plant produced materials were used for training and validation of 

prediction models. In addition to actual production data, mix design data was also collected to test 

the predictability of the proposed models. The dataset was then divided into three subgroups based 

on the availability of the data during the mix design process to determine the minimum amount of 

data that needs to be collected for a reliable performance prediction. Sensitivity analysis was 

conducted to determine the effect of each variable on the model outcome. Based on the obtained 

results, the following conclusions can be drawn: 

• While, adding more variables increases prediction models accuracy, the 

predictability of the AFQM decreased using all variables in groups A, B, and C. This is likely 

related to saturation of the regression model and shows that model accuracy may not necessarily 

be improved with more variables. 

• Both ANN and SVEM showed comparable predictability in the models. However, 

ANN models were found to be time-consuming and computationally more expensive than the 

models developed using the SVEM technique. Also, SVEM does not require a predefined 

functional structure of the model to predict the outcome, which leads to a simpler functional 

structure and increased practicality. 

• The sensitivity analysis results showed that design traffic level (aggregate 

angularity, aggregate plastic fines amount and mix compaction levels), PGLT, percent passing 9.5 

mm sieve, and VMA the most effective factors as compared to other variables in this study. In 

addition, predictor variables in groups A and B can explain almost 91% of the variation in 

predicted fracture energy, which means that based on the SVEM models, fracture energy can be 

predicted with high reliability even before measuring mixture properties and conducting laboratory 

tests. 
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• Three web-based prediction models were developed based on the SVEM technique 

that can be utilized as asphalt mixture predesign tool. The models enable users to predict asphalt 

mixture susceptibility to low temperature cracking with high reliability when testing is not feasible 

and/or a limited amount of data is available during the mix design process. 

Overall, designing a mix with acceptable performance with respect to thermal cracking 

may be cost prohibitive. Using the developed empirical prediction models in this study will result 

in monetary and time saving for such a design process. 
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CHAPTER 5 

 

Machine learning-based prediction models for asphalt mixtures 

fatigue cracking resistance 

 

5.1 Chapter Introduction 

The asphalt paving industry has consistently been seeking to improve the performance of 

asphalt mixtures through the use of different techniques (such as using newer types of chemical 

modifiers and newer material processing techniques). Despite notable positive impacts and 

economic benefits, these mixtures face certain challenges due to the limitations of current 

pavement design and evaluation approaches. Both empirical and mechanistic-empirical (M-E) 

design methods typically consider material stiffness in differentiating mixture performance with 

respect to different distresses. However, some innovative materials may minimally change 

stiffness but substantially improve resistance to rutting and/or cracking. Others may change 

stiffness in a manner that would indicate detrimental changes to performance using current analysis 

methods but, in practice, have shown substantial performance enhancement. In many cases, current 

pavement design and evaluation methods cannot adequately quantify the benefits that may be 

achieved through the use of innovative mix production techniques in asphalt pavements. 

Therefore, pavement design and evaluation approaches should incorporate performance-based 

properties to accurately represent the true performance differences to be expected under realistic 

loading and environmental conditions [1,2].  

The AASHTO 1993 empirical pavement design methodology is currently used by many 

agencies to design and evaluate flexible pavements. This methodology uses a single-layer 

coefficient value to represent the ability of each layer to provide structural capacity for the 
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pavement [1]. Layer coefficients are determined based on the stiffness of the material and the layer 

within the pavement structure where the material will be used [3, 4]; however, this relationship is 

currently based solely on empirical observations of in-service pavement performance, and it is not 

related to engineering properties or failure criteria. Consequently, traditionally determined layer 

coefficients may not be able to appropriately quantify the structural and performance contribution 

of a material to arrive at optimized pavement design [1,5-8]. To address these challenges, a recent 

study by the New Hampshire Department of Transportation (NHDOT), has applied performance 

index parameters to develop performance incorporated layer coefficients. The lab-measured index 

parameters have been utilized to modify structural coefficients of the asphalt mixtures through 

different mechanistic and performance-based measurements. New layer coefficients can be 

determined based on specific distresses or a standardized distress index parameter such as the 

International Roughness Index (IRI) to account for a range of field variables. Modified layer 

coefficients that incorporate performance-based properties allow for more efficient and optimized 

pavement design and evaluation for reliable use of innovative asphalt mixtures [9]. 

M-E methods have been introduced as the next generation of design procedures and 

directly use rate and temperature-dependent modulus values along with traffic data and climatic 

conditions as inputs in mechanistic, structural models (layered elastic analysis) to calculate stresses 

and strains within a pavement structure. Empirically based transfer functions are then employed 

to convert stresses and strains to expected values of distress (e.g., rutting and cracking). Failure in 

the pavement is defined when pavement distress reaches the predefined threshold [1, 10, 11]. 

Common advanced simulation and design software such as AASHTOWareTM Pavement ME 

Design and MnPAVE, which are built upon M-E methods, employ modulus values measured in 

the linear viscoelastic (LVE) range [12-15]. Consequently, M-E procedures are not able to 
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distinguish between materials with the same stiffness/modulus but different properties with respect 

to different distresses [2,16]. Construction of multiple field test sections and performance 

monitoring over time could be used to calibrate new transfer functions specifically for individual 

innovative materials but requires substantial time and effort. In addition, since M-E methods are 

not able to capture mixture properties outside of the LVE range, even locally calibrated transfer 

functions within the current system would not be able to represent the effects of newer innovative 

approaches.  

To overcome these limitations, the simplified viscoelastic continuum damage (S-VECD) 

approach was developed by Underwood and Kim (2010) and showed promising results as an 

asphalt mixture fatigue cracking characterization tool [17, 18]. In addition to LVE properties, the 

S-VECD theory utilizes the damage evolution law to capture the fatigue properties of material 

outside of the linear range with respect to the amount of accumulated damage in a mixture. The 

main outcome of S-VECD theory is the damage characteristic curve (DCC) which is fundamental 

mix property and independent of loading mode and test temperature. The DCC represents the 

relationship between the asphalt mixture’s material integrity (called the Pseudo stiffness, C) and 

the level of damage over time, S due to the loading cycle (N) [19]. Important information such as 

the rate and amount of accumulated damage and the mixture terminal integrity before the crack 

localization can be provided with the DCC cure that can be used as inputs in structural models to 

assess asphalt mixtures performance with respect to cracking. 

The objectives of this chapter of dissertation are as follows: 

• Find the best fit for DCC based on S-VECD analysis approach 

• To develop a precise prediction models for DCC curve model coefficients using different 

statistical methods. 
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5.2 Methodology 

5.2.1 Laboratory Testing 

The experimental campaign in this chapter includes complex modulus (E*) and direct 

tension cyclic fatigue (DTCF) tests. 

Complex modulus testing was carried out on asphalt mixtures in accordance with 

AASHTO T 342, the standard method of test for determining dynamic modulus of hot mix asphalt 

(HMA) [20]. Three cylindrical specimens with 150 mm height and 100 mm diameter were tested 

for each mixture at different temperatures and frequencies to capture the rheological behavior of 

asphalt mixtures in the linear range. The asphalt mixture performance tester (AMPT) equipment 

was used to conduct the test. Dynamic modulus and phase angle were calculated as test outputs, 

and RHEA® software was used to construct the master curves based on the time-temperature 

superposition principle. 

To investigate the fatigue damage characteristics of asphalt mixtures, DTCF fatigue testing 

was performed on specimens in accordance with AASHTO TP 107, the standard method of test 

for determining the damage characteristic curve and failure criterion using the AMPT [21]. At 

least three replicates with 130 mm height and 100 mm diameter were tested for each mixture. The 

tests were conducted at, at least three different peak to peak on specimen strain levels to get a range 

of number of cycles to failure (Nf). The test was conducted by applying sinusoidal tensile loading 

at a frequency of 10 Hz in crosshead-controlled mode until failure. Test temperature was determine 

based on asphalt binder PG using equation (1). 

𝐷𝑇𝐶𝐹 𝑡𝑒𝑠𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = (
𝑃𝐺𝐻𝑇−𝑃𝐺𝐿𝑇

2
) − 3                                                              (1) 
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The S-VECD approach developed by Underwood and Kim (2010) was used to analyze the 

fatigue test results using data acquired during complex modulus and fatigue tests. The C-S curve 

was plotted as a S-VECD based fatigue properties using FlexMATTM software. Figure 5-1 shows 

a schematic of testing and data analysis procedures and how the results were used in statistical 

analysis for this study. 

 

Figure 5-1 schematic of testing and data analysis procedures 

5.2.2 Test Data 

 A set of 47 mixtures were used to assess their fatigue cracking properties based on S-VECD 

theory. Asphalt mixtures were designed based on the Superpave mix design procedure. The mix 

design variables include a selection of asphalt binder and aggregate types and recycle material 

content, and then proportioning of the asphalt binder and aggregates, aggregate empirical 

 Plot (1-C) S curves

 Fit a line on (1-C) vs S curve in Log 

scale

 Calculate slope and intercept

 Prediction model development:

 SVEM:

• Adoptive LASSO

• Forward selection

• Elastic net

 Machine Learning

• Boosted Tree

• Random forest

• Support vector machine

Test and data analysis

 Testing: 

 Complex modulus test

 DTCF test

 Data analysis

 RHEA

• Dynamic modulus master curve

• Phase angle master curve

 FlexMATTM

• C and S values

Analysis Process

Statistical analysis



  

88 

 

properties, and volumetric properties of a mixture such as air voids, densities, voids filled with 

asphalt (VFA), and VMA. The mix design variables were then used as inputs of the prediction 

model to determine their relationship with the C-S curve as an S-VECD based fatigue properties. 

Tables 5.1 shows descriptive statistics of each variable. 

Table 5-1 Descriptive statistics of variables on this study 

Variable N Mean Std Dev Sum Minimum Maximum 

PGHT 47 63.91 7.77 2428.40 52 81 

PGLT 47 -27.07 4.19 -1028.50 -34 -22 

NMAS (mm) 47 13.39 3.98 508.75 4.8 19.0 

Binder Content % 47 5.41 0.59 205.76 4.5 7.0 

RAP% 47 11.14 10.89 423.50 0 31.3 

Particle Size 3/8 in. (%) 47 85.06 9.71 3232.20 66 100 

Particle Size #4 (%) 47 60.71 10.95 2306.90 43 94 

Particle Size #200 (%) 47 4.15 1.71 157.68 0.9 8.5 

VMA 47 16.14 1.29 613.44 14.1 20.2 

AFT 47 9.83 1.73 373.55 6.7 13.7 

Gmm 47 2.541 0.101 96.572 2.357 2.710 

Gmb 47 2.397 0.106 91.080 2.180 2.580 

GSB 47 2.757 0.112 104.746 2.650 2.961 
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5.3 Data Analysis Method 

 The pseudo stiffness (C) and corresponding damage (S) values were determined based on 

S-VECD theory and (1-C) vs S curves were plotted for each mixture using polynomial function. 

The slope and intercept of each curve were calculated in Log scale as determinant factors of the 

curve shape. Two parameters where then defined as follows: 

C11= 10(intercept) 

C12= slope 

The C11 and C12 parameters were used for statistical analysis to develop prediction models 

based on mix variables that introduced in the previous section. Equation 2 shows fitted curve 

equation based on C and S values. 

𝐶 = 1 − 𝐶11 × 𝑆
𝐶12                                                                                         (2) 

Several statistical analysis methods such as fractionally weighted bootstrapping + auto 

validation, boosted tree, random forest, and support vector machine were utilized to develop 

prediction models based on different variables. Thirty-seven (37) mixtures were selected randomly 

to be used as training and calibration of the models. Distribution of randomly selected mixtures 

were checked in order to make sure the training set is balance and true representative of the whole 

dataset.  Ten mixtures that were not involved in any steps of model development where used as 

true validation set to assess the predictability of the models. In this study, the efficiency of trained 

models was evaluated using correlation of determination (R2) (equation 3), root average square 

error (RASE) (equation 4), and the absolute average error (AAE) (equation 5). 

𝑅2 =
(∑ (𝑀𝑖−�̅�𝑖)(𝑇𝑖−�̅�𝑖)
𝑁
𝑖=1 )2

∑ (𝑀𝑖−�̅�𝑖)
2𝑁

𝑖=1 ∑ (𝑇𝑖−�̅�𝑖)
2𝑁

𝑖=1

                                                                               (3) 

𝑅𝐴𝑆𝐸 = √
∑ (𝑀𝑖−𝑇𝑖)

2𝑁
𝑖=1

𝑛
                                                                                         (4) 

𝐴𝐴𝐸 =
∑ |𝑀𝑖−𝑇𝑖|
𝑛
𝑖=1

𝑛
                                                                                                 (5) 

Where: 



  

90 

 

𝑀𝑖 = Measured output 

𝑇𝑖 = Predicted output 

�̅�𝑖 = Average of measured outputs 

�̅�𝑖 = Average of predicted outputs 

n= Number of samples 

5.3.1 Self-validated Ensemble Modelling (SVEM) 

 Fractionally weighted bootstrapping and auto validation (FWB+AV) method (as described 

in chapter 4 of this dissertation) was used to predict C11 and C12 parameters based on mix variables. 

Adaptive LASSO, forward selection, and elastic net models were utilized as linear regression 

models using SVEM add-in in JMP® pro software. 

5.3.2 Boosted Tree 

 Boosted trees is a machine learning technique for both regression and classification 

problems. The Boosted trees model combines weak learning models (each tree) to a strong single 

prediction model by optimization of differentiable loss function [22,23]. The boosting process 

modifies a model Sn by adding an estimator k such that the new model predicts the mean of the 

response variable (y) at each step of boosting process (n). The model then calculates the square 

error loss function (Lb) by fitting the k parameter to the residual y-Sn(x). At the end, the prediction 

model (Sn(x)) will be modified by performing gradient descent at each boosting step for a data set 

[24]. Equation 6 shows model refining process. The model then utilizes the ensemble technique 

by averaging all prediction outcomes from each tree. Generally, tree based models could be 

inherently unstable based on the data set and the reason of ensumbling is to make accurate and 

stable model out of several weak models. In this study, different number of layers (20, 50, 100, 
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200, 500, 1000) were utilized in boosted tress to select the best model with respect to their 

predictability performances. Three splits per tree were selected with a learning rate of 0.1. 

 𝑆𝑛+1(𝑥) = 𝑆𝑛(𝑥) + 𝑘(𝑥) = 𝑦  

𝐿𝑏 =
1

2
[𝑦 − 𝑆(𝑥)]2                                                                                                       (6) 

𝑆𝑛(𝑥) ← 𝑆𝑛(𝑥) − 𝛿
𝐿𝑏

𝑆𝑛(𝑥)
  

 

Where: 

y = Response variable mean 

𝐿𝑏 = Square error loss function 

𝛿 = learning rate 

5.3.3 Random Forest 

 The random forest, also known as the bootstrap forest, is an ensemble learning prediction 

technique in machine learning [24]. The model can address both regression and classification tasks 

by creating several trees, and then the mean of the regression or mode of classification for each 

individual tree can be employed in prediction after learning. Each tree in the model grows on a 

bagging sample or bootstrap aggregation that is obtained by sampling the data with replacement. 

During the growth of a tree, the best split variable at each node is selected from a randomly drawn 

smaller number of variables from a data set. The random forest analysis then combines decision 

trees to develop a powerful “forest”. 

Considering a training set with input variables X=x1,x2,…,xn and output variables Y= y1, y2,…, yn, 

the bootstrap aggregation procedure repeats N times. Each time the model fits trees to random 

sample replacing the training set. For a particular bag n, where n=1, 2, …, N, the samples with 
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replacement are from set N (X, Y) with a training sample as (Xn,Yn).  The model will train the 

regression tree (fn) based on the training sample for each bag (Xn,Yn). After training, the model 

calculates the average of the predictions for all individual prediction models from each bag as a 

final prediction model, as shown in equation 7 [24]. In this work, different number of trees in forest 

(20, 50, 100, 200, 500, 1000) were utilized to select the best model with respect to their 

performances. Bootstrap sample rate was selected to be one, and ten terms samples were selected 

per split in trees. 

    𝑓 =
1

𝑁
∑ 𝑓𝑛(𝑥)
𝑁
𝑛 1                                                                                                           (7) 

5.3.4 Support Vector Machine 

 Support vector machine (SVM) is a machine learning tool that solves a problem using the 

minimization of structural risk concept to minimize the upper bound of predicted risk. The model 

was initially developed for classification solutions and, afterward, has been advanced to solve 

regression problems [25]. The SVM separates the positive and negative values using a functionally 

produced hyperplane. Considering a training set (x1,y1), (x2,y2),...,(xn,yn), the SVM performs a 

nonlinear function to convert  an initial space in a dataset to a multi-dimensional space using the 

function of Ø(x) = (Ø1(x), Ø2(x),…, Øn(x)). Equation 8 shows the nonlinear function F calculation 

[26]. 

  𝑓(𝑥) = 𝑤𝑇∅(𝑋) + 𝑏   

{
min
1

2
(‖𝑤‖2 + 𝐶𝑅𝑒)

𝑅𝑒 =
1

𝑛
∑ 𝐿(𝑦𝑛, 𝑓(𝑥𝑛))
𝑛
𝑖 1

                                                                                           (8) 

Where:  

C = Regularization constant  
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‖𝜔‖2 = Regularization term that shows the confidence interval 

R = Loss function empirical error  

Equation (8) which is the optimization concept, can be supplementary converted to and essential 

objective function using equation 9. 

 

{
 
 

 
 min

1

2
(‖𝑤‖2 + 𝐶 ∑ (𝜑𝑖 − 𝜑

∗
𝑛
 𝑛

𝑖 1 ))

{

𝑦𝑛𝜔
𝑇∅(𝑥𝑛) − 𝑏 ≤ 휀 + 𝜑

∗
𝑛

𝜔𝑇∅(𝑥𝑛) + 𝑏 − 𝑦𝑛 ≤ 휀 + 𝜑
∗
𝑛

𝜑𝑛, 𝜑
∗
𝑛
> 0

                                                                         (9) 

Where: 

𝜑𝑛, 𝜑
∗
𝑛

= positive slack variables 

휀 = tube size 

The constant C determines the trade-off between the extent up value and the flatness that can 

tolerate deviations larger than ε. For dual optimization problems, Lagrangian multipliers can be 

introduced. Equation 10 shows dual optimization process with Lagrangian multipliers and 

maximizing equation (9). 

 

{

1

2
∑  (𝑎𝑖 − 𝑎

∗
𝑖)(𝑎𝑗 − 𝑎

∗
𝑗) × 𝐾(𝑥𝑖 , 𝑥𝑗) − 휀 ∑ (𝑎𝑖 − 𝑎

∗
𝑖 

𝑛
𝑖 1 ) + ∑ 𝑦𝑖(𝑎𝑖 − 𝑎

∗
𝑖 

𝑛
𝑗 1 )𝑙

𝑖,𝑗 1

𝑠. 𝑡 {
∑ (𝑎𝑖 − 𝑎

∗
𝑖 

𝑛
𝑖 1 )
𝑎 ≤ 𝑎𝑖, 𝑎𝑖 ≤ 𝐶

            (10) 

 

Where: 

𝑘(𝑥𝑖, 𝑥𝑗) = ∅𝑇(𝑥𝑖) ∅(𝑥𝑗) is called the kernel function. 

𝐾(𝑥, 𝑥𝑖) = exp (−𝛾‖𝑥 − 𝑥𝑖‖
2) 
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Where: 

𝛾 , 𝑑 = kernel parameters 

An explicit formation of the nonlinear mapping can be avoided by developing kernel based SVM 

models. Kernels based models enable the operation in low-dimensional feature space to 

significantly reduce the computational load instead of operating in high dimensional input space. 

In this study radial basis function (RBF) kernel was used to develop prediction model.  

5.3.5 Model Calibration 

K-fold cross-validation was utilized to calibrate the regression models. The dataset is 

divided into k subsamples with equal sizes. K-1 subsamples were used to train the prediction 

model, and a remaining subsample was used to validate the model. The process was then repeated 

K times for cross-validation with using each subsample exactly once as the experimental data. In 

this study, five folds were used for model calibration. 

5.3.6 Hyperparameter tuning 

The hyperparameters of the three ML models (boosted trees, random forest, and SVM) are 

tuned using an auto-tunning model in JMP® pro software. Hyperparameters were tuned in a 

specific predefined range such that RMSE was determined for each set of hyperparameters, and 

the combination of hyperparameters with the lowest RMSE was selected as the final model. It 

should be noted that the mixtures that were used as true validation set were not involved in any 

step of model training and hyperparameter tuning. Table 5-2 shows the hyperparameter for each 

model. 
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Table 5-2 Hyper parameters for machine learning techniques 

ML Models Hyperparameters Definition 

Boosted Trees 

Layer_num Number of layers 

Split Number of splits per tree 

Random Forest 

Tree_num Number of trees in the forest 

Terms_split Number of terms samples per split 

SVM 

C Penalty term coefficient 

gamma Gamma in gaussian kernel 

 

5.4 Results and Discussion 

5.4.1 Self-validated Ensemble Modelling (SVEM) 

Different regression analysis methods such as adaptive Lasso (AL), forward selection (FS), 

and elastic net (EN) were used for the SVEM to predict C11 and C12 coefficients. The response 

surface method was used to capture all interactions between variables and their effect on the 

outcome. Each model was run for a different number of iterations (20, 50, 100, 200, 500, and 

1000), and the model with the best performance with respect to the true validation set for each 

method is presented in these sections. It should be noted that models with overfitting and/or a high 

amount of bias were excluded from the final results.  

Figures 5-2 a and b show the actual vs. predicted C11 coefficient based on AL (100 

iterations) and FS (50 iterations) techniques, respectively. According to the results, the FS model 
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has higher predictability for both the training set and true validation set as compared to AL. In 

addition, the fitted model based on FS is less biased than AL.  

Figures 5-3 a-c show the actual vs. predicted C12 coefficient based on AL (20 iterations), 

FS (100 iterations), and EN (50 iterations) techniques, respectively. The results show FS has the 

highest accuracy among other models for both training and true validation sets. AL and EN showed 

comparable performance, with EN having a lower biased result as compared to the AL model. 

 

 

Figure 5-2 Actual vs Predicted C11 coefficient based on SVEM technique a) Adaptive Lasso, 

b) Forward selection 
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Figure 5-3 Actual vs Predicted C12 coefficient based on SVEM technique a) Adaptive 

Lasso, b) Forward selection, c) Elastic net 
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5.4.2 Machine Learning Algorithms 

Different machine learning algorithms such as boosted trees (BT), random forest (RF), and 

support vector machine (SVM) were used to predict C11 and C12 coefficients. 

Each model was run for a different number of layers or trees or iterations (20, 50, 100, 200, 

500, and 1000), and the model with the best performance with respect to the true validation set for 

each method is presented in these sections. It should be noted that models with overfitting and/or 

a high amount of bias were excluded from the final results.  

Figures 5-4 a-c show the actual vs. predicted C11 coefficient based on BT (100 layers), RF 

(500 trees), and SVM (20 iterations) techniques, respectively. According to the results, both BT 

and RF models have very high prediction accuracy and low bias. The BT model has more precise 

predictability with respect to the true validation set than the RF. The SVM model showed relatively 

high accuracy for training set prediction, while the true validation fit was highly biased. The results 

are expected based on the definition of the SVM model, which was developed for classification 

problems and then mathematically modified to be utilized in regression problems. The other reason 

could be related to the true validation set that was completely isolated during the model 

development process. Considering the amount of data points for the true validation set (10), a 

highly biased fit based on SVM was not surprising.   

Figures 5-5 a and b show the actual vs. predicted C12 coefficient based on BT (200 layers) 

and RF (500 trees), respectively. The results demonstrate that both BR and RF fit a very accurate 

model on the training set with R-squared higher than 0.99. The BT technique showed more reliable 

prediction with respect to the true validation set as compared to RF. 
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Figure 5-4 Actual vs Predicted C11 coefficient based on machine learning technique a) 

Boosted Trees, b) Random Forest, c) Support Vector Machine 

0

0.01

0.02

0 0.005 0.01 0.015 0.02

P
re

d
ic

te
d

 C
1
1

Actual C11

Train

Validation

a BT

0

0.01

0.02

0 0.01 0.02

P
re

d
ic

te
d
 C

1
1

Actual C11

Train

Validation
b RF

0

0.01

0.02

0 0.01 0.02

P
re

d
ic

te
d
 C

1
1

Actual C11

Train

Validation
c SVM

R2 = 0.39 

R2 = 0.89 

R2 = 0.91 

R2 = 0.91 

R2 = 0.96 

R2 = 0.98 



  

100 

 

 

 

 

Figure 5-5 Actual vs Predicted C12 coefficient based on machine learning technique a) 

Boosted Trees, b) Random Forest 

5.4.3 Model Comparison 

All prediction models in this study were compared in terms of variation between actual test 

data and predicted C11 and C12 coefficients and amount of error in the models. Table 5-3 shows 

the models' predictability for the C11 coefficient. Among SVEM models, FS showed higher 
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that increasing the number of iterations in SVEM does not necessarily improve model 

predictability as the model accuracy decrease and error increase after a certain number of 

iterations. The BT has the best performance among all models in this study following by the RF 

technique. Considering the isolation of true validation set during the model development, both BT 

and RF are able to fit very accurate models with different layers and a number of trees on the 

training set with high R-squared and low error. As expected, the SVM does not show a good 

performance with respect to true validation set predictability, and the models with a different 

number of iterations have comparable accuracy and error that shows increasing the number of 

iterations only changes the hyperparameters of the model and does not have any considerable effect 

on model performance. The results for all iterations are presented here for the sake of 

completeness. The SVM model was run up to 500 iterations instead of 1000 iterations because the 

model's predictability is almost constant with a significantly higher run time for the model with 

1000 iterations. The prediction model based on the BT technique with 100 layers was selected as 

the final prediction model for the C11 coefficient.  

Table 5-4 shows the models' predictability for the C12 coefficient. Almost all techniques 

have accurate models for training set with BT and RF having the most accurate with lowest error 

models. However, the performance of a prediction model should be judged based on the validation 

set. The FS with 100 iterations showed the most accurate fit with the lowest error for the true 

validation set. While increasing the number of iterations for FS, improved the predictability of the 

model for training set, increasing the number of iterations for FS from 100 to 200 decreases the 

model accuracy by almost 36% and increases the average of the errors in the model by 33% which 

emphasizes that number of iteration can play a significant role in SVEM technique. Based on 
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models' performances, forward selection with 100 iterations was selected as the C12 final prediction 

model. 
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Table 5-3 C11 prediction model comparison in terms of prediction accuracy and errors 

 

Number 

of Layers 

Statistical Parameter  

R-Squared RASE AAE 

Train  True Validation  Train  True Validation  Train  True Validation  

Adaptive Lasso 

20 0.56 0.34 2.20E-03 2.80E-03 1.50E-03 2.00E-03 

50 0.59 0.17 2.10E-03 3.10E-03 1.40E-03 2.10E-03 

100 0.68 0.41 2.10E-03 2.65E-03 1.40E-03 2.00E-03 

200 0.58 0.4 2.20E-03 2.60E-03 1.40E-03 1.90E-03 

500 0.6 0.31 2.10E-03 2.80E-03 1.40E-03 2.00E-03 

1000 0.61 0.31 2.10E-03 2.80E-03 1.40E-03 2.00E-03 

Forward Selection 

20 0.84 0.81 1.30E-03 2.30E-03 1.00E-03 2.00E-03 

50 0.86 0.86 1.20E-03 2.30E-03 1.00E-03 2.10E-03 

100 0.85 0.7 1.30E-03 2.30E-03 1.00E-03 2.00E-03 

200 0.84 0.72 1.30E-03 2.30E-03 1.00E-03 2.00E-03 

500 0.84 0.71 1.30E-03 2.20E-03 1.00E-03 2.00E-03 

1000 0.85 0.73 1.30E-03 2.20E-03 1.00E-03 2.00E-03 

Boosted Trees 

20 0.77 0.8 1.67E-03 1.70E-03 1.20E-03 1.30E-03 

50 0.88 0.89 1.20E-03 1.20E-03 8.00E-04 1.00E-03 

100 0.98 0.96 5.22E-04 8.00E-04 4.00E-04 6.00E-04 

200 0.99 0.95 2.69E-04 9.00E-04 2.00E-04 7.00E-04 

500 1 0.94 8.83E-05 9.00E-04 0.00E+00 7.00E-04 

1000 0.99 0.94 3.44E-04 9.00E-04 3.00E-04 7.00E-04 

Random Forest 

20 0.93 0.63 1.80E-03 2.10E-03 1.10E-03 1.50E-03 

50 0.92 0.88 3.00E-04 1.20E-03 4.00E-04 1.00E-03 

100 0.93 0.88 1.00E-04 1.20E-03 5.00E-04 1.00E-03 

200 0.91 0.9 3.00E-04 1.10E-03 2.00E-04 9.00E-04 

500 0.91 0.91 3.00E-04 1.00E-03 2.00E-04 9.00E-04 

1000 0.93 0.9 1.00E-04 1.10E-03 3.00E-04 9.00E-04 

SVM 

20 0.88 0.39 1.65E-03 6.80E-03 8.00E-04 3.70E-03 

50 0.89 0.39 1.57E-03 7.70E-03 8.00E-04 4.20E-03 

100 0.89 0.39 1.50E-03 7.70E-03 8.00E-04 4.20E-03 

200 0.89 0.39 1.58E-03 7.70E-03 8.00E-04 4.20E-03 

500 0.89 0.39 1.58E-03 7.70E-03 8.00E-04 4.20E-03 
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Table 5-4 C12 prediction model comparison in terms of prediction accuracy and errors 

Number 

of Layers 

Statistical Parameter  

R-Squared RASE AAE 

Train  True Validation  Train  True Validation  Train  True Validation  

Adaptive Lasso 

20 0.80 0.60 6.38E-02 1.32E-01 4.80E-02 9.37E-02 

50 0.76 0.49 6.98E-02 1.27E-01 5.17E-02 8.63E-02 

100 0.83 0.40 5.86E-02 2.10E-01 4.62E-02 1.30E-01 

200 0.83 0.25 5.89E-02 3.01E-01 4.64E-02 1.56E-01 

500 0.82 0.32 5.96E-02 2.51E-01 4.69E-02 1.41E-01 

1000 0.82 0.39 5.98E-02 2.08E-01 4.69E-02 1.26E-01 

Forward Selection 

20 0.92 0.65 3.93E-02 8.00E-02 3.17E-02 5.83E-02 

50 0.91 0.70 4.14E-02 7.60E-02 3.22E-02 5.84E-02 

100 0.91 0.74 4.33E-02 7.05E-02 3.34E-02 5.85E-02 

200 0.98 0.47 2.06E-02 1.06E-01 1.51E-02 8.66E-02 

500 0.98 0.46 1.89E-02 1.06E-01 1.41E-02 8.70E-02 

1000 0.99 0.47 1.72E-02 1.06E-01 1.27E-02 8.67E-02 

Elastic Net 

20 0.80 0.51 6.38E-02 8.85E-02 4.88E-02 7.66E-02 

50 0.78 0.61 6.66E-02 7.91E-02 5.02E-02 6.90E-02 

100 0.86 0.49 5.23E-02 8.97E-02 4.19E-02 7.76E-02 

200 0.82 0.51 5.95E-02 8.84E-02 4.67E-02 7.64E-02 

500 0.82 0.53 5.92E-02 8.60E-02 4.67E-02 7.44E-02 

1000 0.82 0.55 5.94E-02 8.41E-02 4.66E-02 7.22E-02 

Boosted Trees 

20 0.79 0.31 6.54E-02 1.00E-01 4.57E-02 9.64E-02 

50 0.92 0.59 3.91E-02 8.00E-02 3.03E-02 7.23E-02 

100 0.97 0.63 2.51E-02 8.00E-02 2.04E-02 5.82E-02 

200 0.99 0.70 1.42E-02 8.00E-02 1.09E-02 5.85E-02 

500 1.00 0.68 1.68E-02 9.00E-02 3.40E-03 6.20E-02 

1000 0.98 0.66 1.79E-02 8.00E-02 1.41E-02 5.83E-02 

Random Forest 

20 0.90 0.44 4.47E-02 1.06E-01 3.37E-02 9.15E-02 

50 0.95 0.55 3.15E-02 9.46E-02 2.19E-02 7.85E-02 

100 0.95 0.55 3.19E-02 9.41E-02 2.33E-02 8.09E-02 

200 0.99 0.59 1.38E-02 9.12E-02 9.50E-03 7.47E-02 

500 0.99 0.61 1.39E-02 9.03E-02 9.70E-03 7.35E-02 

1000 0.95 0.54 3.05E-02 9.36E-02 2.27E-02 7.98E-02 
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5.4.4 Web-based Prediction Model 

 Based on the models’ error, the accuracy of prediction, and computational cost prediction 

models based on BT with 100 layers and FS based on SVEM technique with 100 iterations were 

selected as final prediction models for C11 and C12 coefficients, respectively. A web-based 

prediction tool was developed based on the final prediction equations for both C11 and C12. Users 

can directly input the variables and these models ensure to DCC curve coefficients with certain 

levels of accuracy even with a limited amount of data. Figure 4-10 shows the prediction tool for 

C11 and C12. 
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Figure 5-6 Example of core location selection. 
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5.5 Summary and Conclusion 

To overcome the limitation of current mix design and evaluation methods, S-VECD 

approach was utilized in this chapter to assess the fatigue properties of asphalt mixtures outside of 

the linear range. The DCC was selected as the main outcome of S-VECD theory that shows the 

materials integrity with corresponding level of damage in the material. C11 and C12 were chosen as 

DCC curve coefficient and a set of 47 mixtures including at least 3 replicate specimens for each 

mixture was utilized to develop prediction models for C11 and C12 coefficients. Several regression-

based models such as AL, FS, and EN were selected to be used with SVEM technique in JMP® 

Pro software. Furthermore, BT, RF, and SVM were employed as machine learning based model 

to develop prediction models.  The prediction models were formulated based on available mix 

variables during mix design process. 

Based on the obtained results, the following conclusions can be drawn: 

• In general, increasing the number of iterations for the SVEM technique does not 

necessarily increase model accuracy and can yield highly biased prediction models. 

• The FS technique showed more promising results among other SVEM models in 

this study that show FS's ability to deal with small datasets using the self-validation technique. 

• Machine learning techniques have different performances based on the number of 

data points in the dataset. Using a small dataset might yield an overfitted model, which necessitates 

the need for true validation set to evaluate the model's accuracy. 

• Web-based prediction models were developed for C11 and C12. These models can 

be utilized to determine the DCC curve coefficients based on asphalt binder and mix variables 

available during the mix design process. 
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CHAPTER 6 

 

Development of a balanced cracking diagram for asphalt mixtures 

cracking resistance based on fracture and viscoelastic continuum 

damage theories 

 

6.1 Chapter Introduction 

 As discussed in chapter five of this dissertation, the S-VECD analysis method has gained 

widespread attention among researchers as a reliable method to investigate mixture susceptibility 

to cracking. In the previous chapter, prediction models were developed for two parameters (C11 

and C12) as the damage characteristic curve (DCC) coefficients. While this curve shows the amount 

of internal damage in materials to get to a certain loss of integrity, it cannot rank mixtures with 

respect to cracking resistance. The damage characteristic curve should be plugged into pavement 

analysis models to capture the fatigue cracking performance of asphalt mixture in the context of 

pavement structure under traffic and environmental loads. In the last few years, researchers have 

consistently endeavored to develop performance properties indices based on the S-VECD theory 

to rank asphalt mixtures in terms of their fatigue cracking properties. Currently, four fatigue 

properties parameters have been developed such as GR, DR, Sapp, and CS
Nf that were defined in 

chapter 2 of this dissertation.  

Based on the simplified viscoelastic continuum damage (S-VECD) theory, the magnitude of 

microcracks in the asphalt mixture is quantified using the amount of damage (S). Neither GR nor 

DR indices take the amount of damage into account. As opposed to GR and DR, Sapp incorporates 

damage growth magnitude at the average integrity of mixture to investigate fatigue resistance of 
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asphalt mixtures. In addition, the CS
Nf is based on damage growth rate in which accumulated 

damage at failure as well as an accumulated decrease in material integrity are taken into 

consideration [1]. Therefore, both Sapp and CS
Nf are expected to have a good correlation with 

mixture fatigue properties. The CS
Nf parameter has been recently proposed and adopted in few 

research projects. The Sapp, on the other hand, is currently being implemented in a performance-

based framework by some states' DOTs and asphalt agencies [2]. Therefore, the Sapp was selected 

to be used as a fatigue performance index in this chapter. A prediction model was developed for 

Sapp, and a cracking balance design diagram was generated based on fracture energy (Gf) prediction 

model in chapter 4 of this dissertation and Sapp prediction model in this chapter to assess the 

cracking properties of asphalt mixtures at low and intermediate temperatures based on different 

mix variables. Finally, a sensitivity analysis was conducted to determine the effective factors on 

both fracture and fatigue cracking resistance of asphalt mixtures. 

The objectives of this chapter of dissertation are as follows: 

(a) To develop a precise prediction models for Sapp as a mixture fatigue property based on S-

VECD theory 

(b) Develop a cracking balance design diagram based on the prediction model at chapter 4 and 

chapter 6 of this dissertation 

(c) Sensitivity analysis to determine the effect of variable on fatigue cracking properties as 

well as to determine effective variables on both fracture and fatigue susceptibility of asphalt 

mixtures 
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6.2 Test Data 

 A set of 47 mixtures as discussed in chapter 5 of this dissertation were used in this study. 

Complex modulus (E*) and direct tension cyclic fatigue (DTCF) tests were conducted, and test 

results were utilized to determine Sapp as mixture fatigue properties index based on S-VECD 

theory. 

6.3 Methodology 

A Fatigue cracking susceptibility of materials is a complex phenomenon. It depends on 

several factors, such as material stiffness (modulus) and the ability of a material to absorb energy 

without failure (toughness). Under the same load amplitude, a material with a lower modulus will 

have a higher induced strain level as compared to a material with a higher modulus. Considering 

the same toughness for these two materials, the higher strain level in the material with a lower 

modulus will yield shorter fatigue life. If the induced strain levels in the materials are same, but 

they have different toughness values, the material with higher toughness would yield to longer 

fatigue life [3]. Many materials with high susceptibility to cracking either have a low modulus 

value with high toughness or a high modulus value with a low toughness level. Thus, an 

appropriate fatigue cracking parameter should be used to take into account the effect of both 

modulus and toughness on mixture susceptibility to fatigue cracking.  

Recently, the Sapp was developed by Wang. et al. [3] to account for the modulus and the 

toughness of asphalt mixtures as two main effective factors on cracking susceptibility of asphalt 

mixture. Equation 1 shows Sapp calculation with respect to material stiffness and induced damage 

in the material under loading based on S-VECD theory. 
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                                                                                 (1) 

In this equation α is a material constant that can be calculated from the maximum slope of 

the relaxation modulus in log–log scale based on complex modulus test results.  

aT is the shift factor based on time-temperature superposition concept and it should be 

computed at the reference temperature of direct tension cyclic fatigue (DTCF) test that is the 

average of the asphalt binder PG minus 3°C. 

DR is S-VECD based parameter that is the amount of average drop in material integrity (1-

C), per load cycle until failure of material. DR can be used to determine the number of load cycles 

when a macrocrack forms in the mixture and indicates material toughness. Equation 2 shows DR 

value calculation. 

𝐷𝑅 =
∫ (1−𝐶)
𝑁𝑓
0

𝑁𝑓
                                                                                                            (2) 

Where: 

C = Material integrity (1 is being intact and 0 everything is fallen apart) 

Nf = Number of load cycle 

C11 and C12 are model coefficients of damage characteristic curve (DCC) to take into 

account the modulus effect using the position of curve (as discussed in chapter 5). The DCC curve 

can predict the damage evolution in the material under fatigue loading.  

E* is asphalt mixtures dynamic modulus (kPa) at 10 Hz and the reference temperature. The 

term   has been recently added to the Sapp equation as a semi-empirical modification to take into 

account the effect of long-term aging on mixture damage behavior. 



  

115 

     

 

The development of the Sapp prediction model was done in several steps. Two prediction 

models for C11 and C12 coefficients were developed in chapter 5 of this dissertation. The same 

statistical analysis methods as discussed in chapter 5 were used in this chapter to develop 

prediction models for DR and α. To determine the dynamic modulus of mixtures, a developed E* 

prediction model by Nemati. et al. [4] was utilized in this work and the modulus of each mixture 

was determined at 10 Hz and the temperature that DTCF test was conducted (using the DTCF test 

temperature would eliminate the effect of aT on Sapp calculation. The proposed model, predicts 

asphalt mixture dynamic modulus based on a generalized regression model using asphalt mix 

properties available during the mix design process, making it a good candidate to be employed in 

Sapp prediction model development in this chapter. Table 6-1 shows the E* prediction model 

employed in this study. Equation 3 shows the final equation to predict Sapp. 
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Table 6-1 E* prediction model [4] 

 (|E*|) Predictive Model 

Active Factors (ai) 

Coefficient 

(bi) 

Std Error 

Prob > 

ChiSquare 

1 Intercept 6.7176428 0.0976212 <0.0001 

2 Log (Temperature) -1.390417 0.007481 <0.0001 

3 Log(Frequency) 0.2716079 0.0021966 <0.0001 

4 (Log (Temperature)-1.20037)*(Log (Temperature)-1.20037) -1.395977 0.0207529 <0.0001 

5 (Log (Temperature)-1.20037)*(Log (Frequency)-0.26115) 0.1726025 0.0054005 <0.0001 

6 Va% -0.034862 0.0011471 <0.0001 

7 PGLT 0.0308918 0.0013407 <0.0001 

8 RAP% 0.0029715 0.0001347 <0.0001 

9 AC% -0.067239 0.0047671 <0.0001 

10 (Log (Temperature)-1.20037)*(PGHT-60.3887) -0.012624 0.001892 <0.0001 

11 (Log (Temperature)-1.20037)*(PGLT+28.9976) 0.0222484 0.0034946 <0.0001 

12 (Log (Temperature)-1.20037)*(RAS%-0.88064) 0.0081275 0.001892 <0.0001 

13 NMAS -0.004575 0.001164 <0.0001 

14 RAS% 0.0025448 0.0007382 0.0006 

15 PGHT -0.000955 0.0008396 0.2555 

                                                where:      ai= Coefficient    and   di = values of active factors    (3) 

 

𝑆𝑎𝑝𝑝 = 1000
𝛼

2
−1 (
𝐷𝑅

𝐶11
)
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                                                                                            (3) 
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The final prediction model for Sapp consists of 5 prediction models based on asphalt binder 

and aggregate types, recycle material content, proportioning of the asphalt binder and aggregates, 

aggregate empirical properties, and volumetric properties of a mixture. Figure 6-1 shows a 

schematic of data analysis procedures and cracking balance design diagram development for this 

study. 

 

 

Figure 6-1 schematic of testing and data analysis procedures 

6.4 Data Analysis Method 

 The same statistical analysis method as discussed in chapter 5 was used in this chapter. The 

predictability of models was evaluated using correlation of determination (R2), root average square 

error (RASE), and the absolute average error (AAE) and the models with the best performance 

with respect to true validation set for each method were presented in these sections. It should be 

noted that models with overfitting and/or high amount of bias were excluded from the final results.  
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6.5 Results and Discussion 

6.5.1 Self-validated Ensemble Modelling (SVEM) 

As discussed in chapter 5 of this dissertation, adaptive Lasso (AL), forward selection (FS), 

and elastic net (EN) were used for the SVEM with different numbers of iterations to predict alpha 

and DR values. The response surface method was used to capture all interactions between variables 

and their effect on the outcome. The model with the best performance with respect to the true 

validation set for each method is presented in these sections. 

Figures 6-2 a and b show the actual vs. predicted alpha, based FS (200 iterations) and EN 

(100 iterations) techniques, respectively. Based on the results, the FS model has higher 

predictability for both the training set and true validation set as compared to EN. In addition, the 

fitted model based on FS is less biased than AL.  

Figures 6-3 a-c show the actual vs. predicted DR values based on AL (200 iterations) and 

EN (100 iterations) techniques, respectively. The results show EN has a higher accuracy for both 

training and true validation sets as compared to AL. The Lasso would eliminate features to reduced 

overfitting in the model. The EN combines Lasso and Ridge regression models for feature 

elimination ad reduction of feature coefficient in the model (based on Ridge mode) to improve the 

predictability of the model. Considering the small data set with high number of variables and using 

response surface to capture all interactions between variables it was expected that EN would yield 

a more accurate prediction model as compared to AL. 
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Figure 6-2 Actual vs Predicted alpha based on SVEM technique a) Forward selection, b) 

Elastic net 
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Figure 6-3 Figure 6-3 Actual vs Predicted DR values based on SVEM technique a) Adaptive 

Lasso, b) Elastic net 

6.5.2 Machine Learning Algorithms 

 Figures 6-4 a and b show the actual vs. predicted alpha based on BT (200 layers), RF (500 

trees) techniques, respectively. According to the results, both BT and RF models have high 
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lower error. On the other hand, the BT model has better predictability in terms of true validation 

set as compared to the RF model.    

Figure 6-5 presents the actual vs. predicted DR values based on RF with 1000 trees. The results 

show that RF could predict DR values for the training set with high accuracy and low error in the 

model. For the true validation set, however, as expected, the model is less accurate. Neither BT 

nor SVM model could predict DR values based on the data set in this study. The size of the data 

set would yield overfitted or highly biased models. 
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Figure 6-4 Actual vs Predicted alpha based on machine learning technique a) Boosted 

Trees, b) Random Forest 
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Figure 6-5 Actual vs Predicted DR values based on Random Forest machine learning 

technique 

6.5.3 Model Comparison 

All prediction models in this study were compared in terms of variation between actual test 

data and predicted alpha and DR values and amount of error in the models. Table 6-2 shows the 
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with low error after 200 layers and 200 trees in the forest, respectively. The BT with 200 or more 

layers can predict alpha values based on true validation set with a relatively accurate model and 

low error in the model. In contrast, the accuracy of a prediction model for a true validation set 

drops significantly. In terms of true validation set predictability, FS has the best performance 

among all models, which shows based on the dataset in this study, the self-validation technique 

might be the best way to deal with small data points. It should be noted that selecting the best 
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of variables in the model, and variation in data point is critical to develop prediction model using 

SVEM technique as the elastic net has low accuracy and AL was highly biased and overfitted.  

Table 6-3 shows the models' predictability for DR values. The RF showed the most accurate 

prediction model with the least error for the training set among all models in this study. None of 

the models showed a reliable prediction model with respect to model performance. Both EN (100 

iterations) and RF (1000 trees) have the same prediction model accuracy based on the true 

validation set. The RF with 1000 trees in the forest was selected as the final prediction model for 

DR because of a slightly lower error in the model as compared to EN. It should be emphasized that 

developing a prediction model for DR based on the small dataset was a challenging task in this 

work. Because DR is the amount of average drop in material integrity at each load cycle and could 

be a unique feature for each material and might have more determinant variables than the variables 

that used in this study. The DR model needs to be adjusted based on more data points for a more 

reliable prediction model.  
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Table 6-2 Alpha prediction model comparison in terms of prediction accuracy and errors 

Number 

of Layers 

Statistical Parameter  

R-Squared RASE AAE 

Train  True Validation  Train  True Validation  Train  True Validation  

Forward Selection 

20 0.86 0.60 1.59E-01 2.04E-01 1.37E-01 1.70E-01 

50 0.89 0.73 1.54E-01 1.76E-01 1.32E-01 1.47E-01 

100 0.87 0.81 1.56E-01 1.53E-01 1.34E-01 1.39E-01 

200 0.88 0.82 1.54E-01 1.47E-01 1.32E-01 1.32E-01 

500 0.89 0.80 1.46E-01 1.49E-01 1.27E-01 1.36E-01 

1000 0.85 0.60 1.57E-01 2.04E-01 1.38E-01 1.71E-01 

Elastic Net 

20 0.51 0.55 2.39E-01 2.08E-01 2.06E-01 1.71E-01 

50 0.52 0.50 2.37E-01 2.19E-01 2.00E-01 1.78E-01 

100 0.64 0.51 2.01E-01 2.16E-01 1.80E-01 1.77E-01 

200 0.52 0.48 2.37E-01 2.23E-01 2.00E-01 1.81E-01 

500 0.50 0.49 2.43E-01 2.21E-01 2.05E-01 1.78E-01 

1000 0.50 0.46 2.43E-01 2.29E-01 2.11E-01 1.89E-01 

Boosted Tree 

20 0.34 0.52 2.77E-01 2.13E-01 2.14E-01 1.76E-01 

50 0.56 0.63 2.28E-01 1.88E-01 1.79E-01 1.58E-01 

100 0.75 0.62 1.71E-01 1.90E-01 1.41E-01 1.64E-01 

200 0.87 0.79 1.34E-01 1.41E-01 1.08E-01 1.12E-01 

500 0.93 0.78 9.34E-02 1.46E-01 7.52E-02 1.19E-01 

1000 0.78 0.79 1.51E-01 1.43E-01 3.90E-02 1.48E-01 

Random Forest 

20 0.68 0.35 1.94E-01 2.49E-01 1.57E-01 2.02E-01 

50 0.67 0.49 1.96E-01 2.22E-01 1.63E-01 1.78E-01 

100 0.67 0.49 1.95E-01 2.22E-01 1.64E-01 1.77E-01 

200 0.90 0.56 1.11E-01 2.05E-01 9.03E-02 1.66E-01 

500 0.92 0.64 1.13E-01 1.86E-01 9.20E-02 1.62E-01 

1000 0.89 0.64 1.13E-01 1.87E-01 9.33E-02 1.53E-01 
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Table 6-3 DR prediction model comparison in terms of prediction accuracy and errors 

Number 

of Layers 

Statistical Parameter  

R-Squared RASE AAE 

Train  True Validation  Train  True Validation  Train  True Validation  

Adaptive Lasso 

20 0.45 0.24 6.93E-02 3.67E-02 4.92E-02 3.08E-02 

50 0.48 0.20 6.75E-02 3.75E-02 4.90E-02 3.16E-02 

100 0.44 0.33 7.02E-02 3.47E-02 5.01E-02 2.83E-02 

200 0.73 0.48 5.29E-02 3.10E-02 3.39E-02 2.61E-02 

500 0.60 0.45 5.95E-02 3.20E-02 4.35E-02 2.71E-02 

1000 0.60 0.45 5.93E-02 3.20E-02 4.33E-02 2.73E-02 

Elastic Net 

20 0.51 0.39 6.56E-02 3.01E-02 4.71E-02 4.31E-02 

50 0.61 0.48 5.81E-02 6.01E-02 4.23E-02 3.93E-02 

100 0.81 0.66 3.28E-02 2.65E-02 3.04E-02 2.23E-02 

200 0.77 0.53 4.58E-02 5.00E-02 3.78E-02 3.12E-02 

500 0.71 0.55 5.05E-02 4.94E-02 3.81E-02 3.47E-02 

1000 0.71 0.55 5.07E-02 5.01E-02 3.82E-02 3.54E-02 

Random Forest 

20 0.88 0.28 3.25E-02 3.73E-02 2.37E-02 3.93E-02 

50 0.95 0.34 1.49E-02 3.45E-02 1.01E-02 2.97E-02 

100 0.98 0.63 1.37E-02 2.89E-02 9.40E-03 2.27E-02 

200 0.98 0.53 1.37E-02 3.12E-02 9.70E-03 2.67E-02 

500 0.98 0.55 1.39E-02 3.06E-02 9.70E-03 2.55E-02 

1000 0.93 0.66 2.69E-02 2.57E-02 1.91E-02 2.16E-02 

 

6.5.4 Sensitivity Analysis 

 Sensitivity analysis was conducted using JMP® Pro software to assess the effect of each 

variable on the final prediction model. Figure 6-6 shows the results of sensitivity analysis. Based 

on the results, percent of aggregate smaller than 4.75 mm and aggregate percent smaller than 0.75 

mm, aggregate bulk specific gravity, asphalt binder content, and asphalt film thickness have a 
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higher impact on fatigue properties as compared to other variables. The effects of these factors 

cannot be decoupled from each other. A higher amount of aggregates smaller than 4.75 would 

yield a more dense mixture with higher binder content which would be expected to have better 

fatigue life. Higher filler or material smaller than 0.75 mm would increase the stiffness of the 

mixture and decrease air void in the mixture that would increase the fatigue cracking susceptibility. 

The same finding of the air void levels effect on the S-VECD fatigue test was reported by Zeiada 

et al [5]. It is worth noting that the finding is counterintuitive to what is actually happening in the 

field, as higher air void levels lead to higher rates of pavement deterioration [6, 7]. More binder 

content in the mixture would increase the ability of a mixture to absorb energy without failure by 

higher viscosity and lower elasticity. Therefore, it increases the fatigue life of mixtures. Inadequate 

asphalt film thickness around aggregates due to insufficient asphalt binder decreases the mixture 

tensile properties, therefore, yield to higher fatigue cracking susceptibility. Among the other 

parameters with lower effects than the four factors as mentioned earlier, NMAS and RAP% can 

be pointed out as it has been proven that they affect mix fatigue properties. For example, higher 

NMAS and higher RAP % mean a stiffer mixture with less amount of binder content for higher 

NMAS with probably higher fatigue cracking susceptibility. 
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Figure 6-6 Effect of each variable on fatigue properties of asphalt mixtures 

6.5.5 Web-based Prediction Model 

The best prediction models in terms of model performance were selected in chapter 5 and 

chapter 6 of this dissertation and combined to develop a final prediction model for Sapp as an 

indicator of fatigue cracking susceptibility of asphalt mixtures. The C11 and C12 prediction models 

were developed in chapter 5. In this chapter, alpha and DR prediction models were developed. To 

predict E* at 10 Hz frequency and the same temperature as DTCF test temperature, a published 

prediction model by Nemati. et al. [4] was employed in this work. All models were combined 

based on the Sapp equation that yields a complex final prediction model with five layers of 

prediction. A web-based prediction tool was developed based on the final prediction equations as 

a predesign prediction tool. Researchers and asphalt agencies can use the model to predict the 

susceptibility of a mixture to fatigue cracking even during the mix design process.  Figure 6-7 
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shows the prediction tool that users can simply change the input variables, and the software will 

predict the Sapp.  

The proposed prediction model for fracture energy in chapter 4 of this dissertation was run 

on the data set that used to develop prediction models for chapters 5 and 6, and variables profiler 

was plotted to determine how different variables affect mixture cracking properties (direction of 

correlation). Figure 6-8 shows the variable profiler for Gf and Sapp. Based on the results, higher 

Gmb, lower percent passing of sieve 3/8 in, lower RAP%, lower NMAS, and higher VMA up to 

17% would decrease mixture susceptibility with respect to both fatigue and fracture cracking. 

There are some parameters that have opposite effects on fracture and fatigue cracking. Warmer 

PGLT (less negative), higher Gmm, warmer PGHT, and lower percent passing of sieve #200 

increase mixture susceptibility to low temperature cracking and, at the same time, decrease 

susceptibility to fatigue cracking. Therefore, these parameters should be selected with caution in a 

range that keeps the balance between low temperature and fatigue cracking. The useful range 

depends on the data set distribution and content. Using different data sets might change the useful 

range for balance cracking properties. That is why no specific limits have been recommended in 

this dissertation. 

Based on the profiler, the effect of some variables on fatigue and/or fracture properties of 

the mixture runs contrary to the widely accepted proposition based on literature. It stems from the 

fact that the response surface shows the effect of each variable as well as the interaction between 

variables' effects, and they cannot be decoupled from each other. For example, colder PGLT means 

a less stiff binder that would absorb more energy that yield less fatigue susceptibility compared to 

a stiffer binder. This is true when all other variables are constant. The distribution plot of variables 
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was plotted for deeper interpretation of observed behavior, and samples with the coldest PGLT 

were highlighted, as shown in figure 6-9. 

It can be clearly observed that mixtures with the coldest PGLT have relatively high NMAS, 

low binder content, high amount of RAP which in combination deteriorates the fatigue properties 

of mixtures. This example shows the response surfaces should not be interpreted considering only 

one variable at a time, and using another data set with a different variable range might change the 

shape of the response surface.  The E* was selected as inputs in the final prediction models; 

however, it was formulated based on mix variables for the sensitivity analysis. Thus, the profiler 

does not show the effect of E* on fatigue and fracture properties. Moreover, the profiler shows 

jumps in response surface of some variables such as VMA, RAP, and particle size #4 sieve. The 

observed pattern has nothing to do with the model predictability. It is related to the existing gap in 

variable ranges used in this study and the type of developed prediction models. In general, tree-

based models such as boosted trees and random forests are more prone to show jumps in response 

surface if a gap exists in the data set. Using more data points within the available range of variables 

in this study helps toward a more smooth response surface. 

It should be noted that all the prediction models were developed based on a limited range 

of variables, and they are only applicable for a specific range of variables in the data set that used 

in this work, and model extrapolation would not be recommended at this time. A recommended 

range of variables in which the models are valid is set as the web-based model's minimum and 

maximum thresholds, and users should follow these thresholds while using the models. Table 6-4 

also shows the recommended range for each variable.  
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Figure 6-7 Sapp prediction tool 

 

 

 

Figure 6-8 Figure 6-8 Variables profiler for Gf prediction model developed in chapter 4 
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Table 6-4 variables recommended range for prediction models  

Variable Minimum Maximum 

Gmb 2.18 2.58 

Particle Size 3/8 in. (%) 56 100 

RAP% 0 31 

Maximum Aggregate Size (mm) 4.75 25 

VMA (%) 14.1 20.2 

PGLT -22 -34 

Particle Size #200 (%) 0.9 8.5 

Gmm 2.36 2.71 

PGHT 52 82 

Particle Size #4 (%) 36 94 

Binder Content, Pb (%) 4.5 7 

AFT (micron) 6.73 13.8 

Gsb 2.65 2.96 

E* 2000 12000 
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Figure 6-9 Distribution of four variables for mixtures with the lowest PGLT 

6.6 Cracking Balance Design Diagram 

The Gf prediction model based on the results of chapter 4 of this dissertation and the Sapp 

prediction model based on the results of this chapter were combined as a 2-D scatter plot to form 

a cracking balance design diagram (CBDD). Figure 6-9 demonstrates a plot known as the 

“performance-space diagram” [8], specifically in this case, a “Fracture-Fatigue properties” plot.  

The CBDD plot allows the simultaneous evaluation of the cracking properties of asphalt mixtures 

at low and intermediate temperatures. Threshold values (as shown with horizontal and vertical 

lines in figures 6-9) were utilized to differentiate asphalt mixtures in terms of their cracking 

susceptibility. The threshold values in the diagram were selected based on published literature [3, 

9]. Table 6-4 shows threshold values for Sapp and Gf. 

The best overall performing asphalt mixture will be shown in the top-right corner of the 

performance space diagram (high Gf and high Sapp). On the other hand, the lower-left section of 

the diagram represents mixtures with high cracking susceptibility. The developed model can be 

implemented as a predesign tool in conventional volumetric mix design procedure to capture 
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cracking resistance of mixture before the actual construction phase, as well as performance-based 

mix design approaches when conducting performance-based tests is not feasible. 

Table 6-5 Recommended threshold values for Sapp and Gf 

Traffic (million ESALs) Limits 

Less than 10 Sapp > 8 

Between 10 and 30 Sapp > 24 

Greater than 30 Sapp > 30 

Greater than 30 and slow traffic Sapp > 36 

N.A. Gf ≥ 400 J/m2 

 

 

 

Figure 6-10 Cracking balance design diagram 

 

Four mixtures were selected with different fatigue and fracture properties intentionally to 

show how CBDD differentiates mixtures based on their properties, as shown in figure 6-11. In this 

figure, mix A shows good properties with respect to both fatigue and fracture. Mix B has good 
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fracture properties, but it failed to meet the fatigue threshold. Mix C, on the other hand, has good 

fatigue properties but is susceptible to fracture cracking. Mix D was unable to meet both fatigue 

and fracture thresholds that shows this mix is susceptible to both types of cracking. Different 

variables were selected randomly and changed based on sensitivity analysis to demonstrate how 

mix cracking properties can be improved using developed prediction models in this dissertation, 

as shown in table 6-6. For the presentation proposes in this section, only eight variables are 

presented in table 6-6. However, for actual design, all variables should be considered to capture 

the effects of all variables on mix properties. 

For mix B, percent passing of sieve 3/8” was selected and decreased from 100% to 95% 

that moved mix B to the new position in the CBDD (Bʹ), with improving both Sapp and Gf values. 

For mix C, percent passing of sieve 3/8” and RAP% were selected and decreased to 75% AND 

15%, respectively, to evaluate the simultaneous effects of two variables on mix cracking 

properties. The result showed improvement in fracture and fatigue properties with a more 

pronounced increase in Sapp value (point Cʹ). To improve mix D cracking properties, Gmb was 

increased to 2.33, and the percent passing of sieves 3/8” and #200 were decreased to 90% and 3%, 

respectively. Based on the results, mix D passed both fatigue and fracture thresholds with new 

variables (point Dʹ). This example showed CBDD can be used at the mix design level to ensure 

the mix design will yield a mixture with good cracking properties. 
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Table 6-6 Selected mixtures and mix variables to be used in CBDD  

Mix Gmb 

Particle 

Size 3/8 

in. (%) 

RAP

% 

NMAS 

(mm) 

VMA PGLT Gmm 

Particle 

Size #200 

(%) 

Gf Sapp 

A 2.58 74.4 0 19 16.8 -22 2.71 4.2 469.75 21.13 

B 2.18 100 0 4.75 20.2 -28 2.36 8.5 839.2 5.65 

B' 2.18 95 0 4.75 20.2 -28 2.36 8.5 903.01 15.02 

C 2.5 84 18.5 12.5 15.6 -28 2.70 4 328.72 16.67 

C' 2.5 75 17 12.5 15.6 -28 2.70 4 418.14 39.07 

D 2.31 97 25 9.5 14.9 -28 2.48 4 375.93 2.53 

D' 2.33 90 25 9.5 14.9 -28 2.48 3 415.28 19.5 
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Figure 6-11 Demonstration of the CBDD usefulness in mix design level 

6.5 Summary and Conclusion 

In this chapter of the dissertation, prediction models were developed for Sapp as S-VECD 

based fatigue index that can differentiate asphalt mixture with respect to their fatigue properties. 

The same set of mixtures as mixtures in chapter 5 of this dissertation was used. Several prediction 

models were developed for DR (the amount of average drop in material integrity per load cycle) 

and alpha (maximum slope of the relaxation modulus) using the same statistical analysis that 

explained in chapter 5. In addition, the prediction models for C11 and C12 (based on chapter 5 of 

this dissertation), and a stablished E* prediction model based on literature were employed in this 

chapter for the final prediction model of Sapp parameter. The prediction models for Sapp and 

Fracture energy (Gf) were combined to create CBDD. Moreover, a sensitivity analysis was 
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conducted to investigate the effective variables toward the cracking balance mix design. Based on 

the obtained results, the following conclusions can be drawn: 

 The SVEM technique does not necessarily yield accurate prediction models, and different 

regression models and different numbers of iterations need to be used to find out the best 

model with respect to the dataset. 

 Since SVM was generated to deal with classification problems, it might not be a good 

candidate to be used in regression problems with a small dataset. The SVM yield highly 

biased models with respect to the true validation set. 

 While the developed prediction model for DR is the most accurate model based on the 

dataset in this word, the model needs to be further adjusted using more data points. 

 A Web-based prediction model was developed for Sapp. The model can be used as predesign 

tool to assess mixtures fatigue properties based on available mix data during the mix design 

process.  

 Sensitivity analysis results showed that percent passing of #4 and #200 sieves, aggregate 

bulk specific gravity, and asphalt binder content have the highest impact on asphalt mixture 

fatigue properties, among other variables in this study. 

 The developed CBDD can be used for a more precise evaluation of mixture cracking 

properties by considering both initiation and propagation phases of cracking. 

 The particular developed models are only applicable for a range of variables in the data set, 

and model extrapolation would not be recommended at this time. 

 The sensitivity analysis of CBDD showed higher Gmb, lower percent passing of sieve 3/8 

in, lower RAP%, lower NMAS, and higher VMA up to 17% improve asphalt mixture 
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cracking properties with respect to both fatigue (initiation) and fracture (propagation) 

cracking. At the same time, less negative PGLT, higher Gmm, higher PGHT, and lower 

percent passing of sieve #200 improve mixture fatigue properties and deteriorate mixture 

fracture properties. These parameters should be kept in a range that makes a balance 

between fatigue and fracture cracking. 
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CHAPTER 7 

 

SUMMARY, CONCLUSIONS, RECOMMENDATIONS AND 

FUTURE EXTENSIONS 

 

7.1 Summary 

Cracking is one of the most significant deterioration modes in asphalt pavement, 

particularly in colder areas that affect roads' ride quality and longevity. Cracking can occur in 

different forms, such as fatigue cracking under cyclic traffic loading in any climatic conditions, 

block cracking with cyclic environmental conditions, especially after long-term aging has 

occurred, and reflective cracking under traffic and environmental loading.  

Generally, asphalt mix design procedures should take into account the performance of 

asphalt mixture with respect to different distresses under traffic and environmental loading.   

However, most current pavement design methods are not structured to easily accommodate the 

analysis of material performance in design procedure as the majority of existing design systems 

only use a measure of stiffness to distinguish properties or performance of asphalt mixtures. This 

was suitable to differentiate conventional asphalt mixtures used primarily during the development 

of these design approaches; however, the actual field performance for mixtures is not always 

adequately captured by stiffness measurements alone. Mixtures with similar stiffness can have 

significantly different capacities to resist cracking or permanent deformation. Therefore, pavement 

design and evaluation approaches should incorporate performance-based properties to accurately 

represent the true performance differences to be expected under realistic loading and 

environmental conditions [2,3]. This is currently an active area of research. While various 
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performance-based approaches have been introduced (e.g., FHWA Performance Engineered 

Mixture Design (PEMD) and Performance Related Specifications (PRS)), they have not yet been 

widely accepted or implemented. They would not be used for routine design because they need 

performance-based laboratory test results that can be accommodated in the design process. 

Conduction performance-based laboratory tests would be time-consuming and expensive and 

might not be a viable option for all cases due to existing limitations for each specific project. 

Furthermore, performance-based mix design methods need to be locally calibrated for each project 

based on the available material and environmental and traffic conditions.  

In addition to performance-based mix design procedures, the asphalt pavement industry 

has consistently endeavored to extend pavement life by introducing innovative materials to 

improve the performance, sustainability, and cost-effectiveness of asphalt concrete materials [1]. 

Extensive evaluation and characterization of innovative materials have been conducted in the 

laboratory using various testing and analysis approaches. However, many agencies are reluctant 

to implement widespread use of innovative materials until they have a proven track record of 

performance in the field. Part of the reason is the lack of a well-established framework for 

quantifying the benefits of innovative materials within existing pavement design and analysis 

approaches. For instance, the current airfield pavement design and performance evaluation 

software (FAARFIELD) acknowledges the absence of guidance on the use of new types of 

materials in asphalt pavement such as recycled materials or modifiers and innovative construction 

techniques such as utilizing warm mix asphalt (WMA) in airfield pavement. Moreover, the current 

cracking model in FAARFIELD software for flexible pavements might not be able to capture the 
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actual mixture performance with respect to top-down and thermal cracking as it only considers the 

tensile strain at the bottom of the asphalt layer.  

Finally, performance-based design and evaluation approaches will be tailored to consider 

the materials performance with respect to different distresses. However, there is immediate need 

to adjust the existing design frameworks to accommodate the performance of asphalt mixtures as 

well as to evaluate the effect of the innovative material on pavement performance. This will give 

agencies and designers a tool by which to select the most efficient mixture for a specific situation 

and appropriately design the pavement structure to perform satisfactorily under the given design 

and environmental loads. 

In order to fulfill this aim, six asphalt mixtures, including hot mix asphalt (HMA), three 

types of warm mix asphalt (WMA), along with a combination of WMA and reclaimed asphalt 

pavement (RAP), were obtained from ongoing research at the Federal Aviation Administration's 

National Airport Pavement and Materials Research Center (NAPMRC). Laboratory performance-

based tests were conducted to evaluate mixtures cracking properties, and the test results were then 

utilized as pavement performance prediction software (FlexPAVETM and FAARFIELD) inputs to 

assess mixture fatigue cracking properties in the context of pavement. The predicted fatigue 

cracking performance based on two software and fatigue properties indices based on laboratory 

tests were compared with each other to investigate which laboratory test(s) and property 

threshold(s) would be viable to be implemented in airfield pavement performance-based 

specifications. 

In addition, several statistical analysis methods were utilized to develop prediction models 

for low-temperature fracture energy (Gf) as an indicator of low temperature cracking susceptibility 
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of asphalt mixtures as well as Sapp parameter based on simplified viscoelastic continuum damage 

(S-VECD) theory as representative of mixtures fatigue cracking susceptibility.   

The Gf prediction models were developed using a set of 71 mixtures with 12 replicate 

specimens for each mixture. An experimental database including 47 different asphalt mixtures 

with at least three replicate specimens for each mixture was used to assess their fatigue cracking 

properties based on S-VECD theory. 

 The models include the simultaneous impact of various predictor variables such as asphalt 

binder and aggregate types, recycled material content, proportioning of the asphalt binder and 

aggregates based on design traffic data (for Gf model), mixture empirical and volumetric properties 

such as air voids, densities, VFA, and VMA.  

Several prediction models were developed and combined with an already established 

dynamic modulus prediction modulus to form the final Sapp prediction model. The developed 

prediction models are as follow: 

• Two prediction models based on damage characteristic curve (DCC) coefficients (C11 and 

C12) as the main outcome of S-VECD theory 

• DR value prediction model (amount of average drop in material integrity per load cycle) 

• Alpha prediction model (the maximum slope of the relaxation modulus) 

Furthermore, a cracking balance design diagram was developed based on Gf and Sapp 

prediction models to be used as a predesign tool to evaluate mixture cracking susceptibility only 

with the information available during the mix design process. The cracking balance design diagram 

considers both phases of cracking (crack initiation and propagation) using S-VECD and fracture 

mechanics theories. 
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Finally, sensitivity analysis was conducted to determine the most effective variables on 

both low temperature and fatigue cracking properties of asphalt mixtures. 

7.2 Conclusions 

Throughout this doctorate research, a number of significant findings were inferred. A 

summary of key conclusions from the research efforts are as following: 

7.2.1 Exploration of cracking-related performance-based specification (PBS) indices for 

airfield asphalt mixtures 

•        The addition of an organic WMA additive and RAP increased asphalt mixture stiffness 

and decreased relaxation capability. In addition, they seemed to worsen fracture properties of 

asphalt mixtures at both intermediate and low temperatures. 

•        Based on the direct tension cyclic fatigue (DTCF) test results, a poor correlation was 

found between all four fatigue parameters, which can be attributed to the fact that performance of 

mixtures with respect to fatigue cracking cannot be assessed solely based on laboratory 

measurements and combination of the mixtures lab measured properties with the pavement 

structure, environmental condition, and traffic data is crucial to investigate the fatigue 

performance. 

•        The contradictory results of performance-based laboratory tests and pavement 

performance simulation show the Federal Aviation Administration (FAA) current asphalt 

pavement thickness design procedure lacks a usable model of fatigue cracking in its standard 

design program (FAARFIELD). The major flaw in fatigue modeling of FAARFIELD is that it 

does not take into account many significant factors (such as mix properties) in the design process, 
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and it might lead to unrealistic pavement structural design. Therefore, a performance-based 

specification needs to be developed based on the nonlinear viscoelastic properties of asphalt 

mixtures along with other effective factors such as aging to capture the proper fatigue performance 

limit in the airfield pavement design model. 

•        The results of the simulation with the FlexPAVETM showed that fatigue failure in 

pavements could happen due to both top-down and bottom-up cracking. A reasonable correlation 

was found between total damage in the pavement and top-down cracking damage. While the results 

of bottom-up cracking are relatively comparable. 

•        Based on the statistical analysis results, CS
Nf and flexibility index (FI) cracking 

performance indices have the most similar ranking sequence and a moderate negative relationship 

with the predicted damage of FlexPAVETM and FAARFIELD, respectively. On the other hand, 

Sapp was found to have the highest percent discrepancy and a strong negative relationship with FI 

values.  

7.2.2 Fracture Properties Prediction Models 

•        In general, adding more variables increases prediction models' accuracy. However, 

the predictability of the full quadratic model (FQM) decreased using all variables in groups A, B, 

and C. This is likely related to saturation of the regression model and shows that model accuracy 

may not necessarily be improved with more variables. 

•        Both ANN and SVEM showed comparable predictability in the models. However, 

ANN models were found to be time-consuming and computationally more expensive than the 

models developed using the SVEM technique. Also, SVEM does not require a predefined 
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functional structure of the model to predict the outcome, which leads to a simpler functional 

structure and increased practicality. 

•        The sensitivity analysis results showed that design traffic data, PGLT, percent passing 

3/8 in sieve, and VMA the most effective factors as compared to other variables in this study. In 

addition, predictor variables in groups A and B can explain almost 91% of the variation in 

predicted fracture energy, which means that based on the SVEM models, fracture energy can be 

predicted with high reliability even before measuring mixture properties and conducting laboratory 

tests. 

•        Three web-based prediction models were developed based on the SVEM technique 

that can be utilized as a predesign tool. The models enable users to predict asphalt mixture 

susceptibility to low temperature cracking with high reliability when testing is not feasible and/or 

a limited amount of data is available during the mix design process. 

7.2.3 Fatigue Properties Prediction Models 

•        Not all regression models would yield a promising result based on SVEM techniques. 

In addition, increasing the number of iterations does not necessarily improve the performance of 

the model. Several models with different numbers of iterations need to be implemented to find out 

a model with the best performance. 

•        Forward selection showed the most promising results based on SVEM techniques 

that show, although this technique is based on linear regression models. It can deal with small 

datasets using the self-validation technique. 
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•        Support vector machine might not be a good candidate to be used in regression 

problems with a small amount of data 

•        Based on sensitivity analysis results, percent of aggregate smaller than 4.75 mm and 

aggregate percent smaller than 0.75 mm, aggregate bulk specific gravity, and asphalt binder 

content have the highest impact on fatigue properties, among other variables. 

•        Sensitivity analysis of cracking balance diagram showed that higher Gmb, lower 

percent passing of sieve 3/8 in, lower RAP%, lower NMAS,  and higher VMA up to 17%  decrease 

mixture cracking susceptibility at both intermediate and low temperatures. In contrast, higher 

PGLT (less negative), higher Gmm, higher PGHT, and lower percent passing of sieve #200 increase 

mixture susceptibility to low temperature cracking and, at the same time, decrease susceptibility 

to fatigue cracking.  Thus, these parameters should be selected in a range that keeps the balance 

between low temperature and fatigue cracking. 

•        The developed cracking balance design diagram in this dissertation can be used as a 

predesign tool to investigate mixture cracking properties. Users can input variables based on their 

available data and/or desired variables. The predicted cracking properties will then be calculated 

and shown on the diagram. It should be mentioned that the proposed prediction models are not 

based on mechanistic evaluation of mixture behavior, and they are mostly suitable for the 

considered range of predictor variables in this study. The extrapolation of the models is not 

recommended at this time.  

7.3 Future Extensions 

The study conducted in this doctoral thesis will be further extended. Some examples of the 

future works that can be conducted as a future extension of this research are as follow: 
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7.3.1 Exploration of cracking-related performance-based specification (PBS) indices for 

airfield asphalt mixtures 

• The current NAPMRC experiment consists of three different test sections for each 

lane. All test sections were instrumented with asphalt strain gages (ASG), earth pressure cells 

(EPC), thermocouples (TC), and Moisture Gages (MG) to record asphalt mixture critical responses 

and evaluate pavement behavior. Field distress data will be obtained for rutting and cracking for 

all test sections. The lab performance testing data will then be compared with field performance 

results to establish which performance test would be appropriate to determine airfield pavement 

behavior. All asphalt mixtures will be ranked based on their rutting, fatigue, and cracking 

performances for plant-produced lab compacted mixtures and test section performance. Moreover, 

the correlation between performance indices from lab test results and field distress data will be 

investigated.  

7.3.2 Cracking prediction model 

• All the conclusions were made based on the laboratory test results of unaged asphalt 

mixtures. Aging level, however, plays a significant role in mixtures properties. Some properties 

might get improved, while some may get worse as aging increases in asphalt mixtures. As a 

consequence, there is a potential that performance prediction models under-predict the amount of 

cracking without the inclusion of age-related property evolution. Therefore, asphalt mixtures need 

to be evaluated at the aged condition to assess the mixture properties in the long-term aging 

condition. 
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• More laboratory test results need to be utilized to future validate the prediction 

models and to improve model accuracy. Any necessary adjustment on the developed model should 

be made by retuning the hyperparameters. The predictive models can be improved even by more 

varying types of aggregate, asphalt binders, and innovative materials. With expanding datasets, 

the prediction models can be categorized into different groups with more normally distributed data 

point to increase predictability of the models. 

• By utilizing more datapoints, more complex models such as artificial neural 

network can be employed to better predict the nonlinear algorithm withing dataset.  

• Test sections are constructed for some of study mixtures in this dissertation. The 

test sections will continue to be monitored and field distress data will be collected to calibrate the 

prediction models. 

• Wider range of mix characteristics can be utilized to further expand the range in 

which prediction model are valid. 
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Abstract 

 

The purpose of this study is to assess cracking performance of warm-mix asphalt (WMA) and 

reclaimed asphalt pavement (RAP) mixtures for airfield pavements and to explore performance-

based airfield asphalt mix specifications. Fundamental properties of these mixtures were 

investigated through performance-based laboratory tests such as complex modulus, semi-circular 

bend (SCB), and direct tension cyclic fatigue (DTCF) tests. Moreover, performance prediction 

software (i.e., FAARFIELD and FlexPAVETM) were utilized to evaluate mixture performance 

during the design period. Based on the complex modulus and SCB tests results, organic additive 

and RAP tend to increase mixture susceptibility to fracture. Results of the DTCF test showed that 

fatigue indices ranked mixtures in different ways, which emphasizes the importance of using 

performance prediction programs to investigate mixture fatigue performance. The results of 

performance prediction indicated that utilization of hybrid WMA additive and RAP would increase 

airfield pavements fatigue damage. The contradictory results of laboratory tests and pavement 

performance simulation show the airfield current asphalt pavement thickness design procedure 

lacks a usable model of fatigue cracking in its standard design program (FAARFIELD). 

 

Keywords: Airfield Pavement, Warm Mix Asphalt (WMA), Reclaimed Asphalt Pavement (RAP), 

Fatigue Cracking, FAARFIELD, FlexPAVETM, Performance Prediction. 
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Introduction 

Airfield pavements are subjected to significantly heavier loading as compared to highway 

pavements as a function of the weight of the aircrafts and aircraft braking as well as operation of 

aircrafts with different gear configurations and very high tire pressures. As a result, they undergo 

different types of distresses. These distresses may require a significant amount of time and cost for 

maintenance and rehabilitation, and can also cause major safety problems. Problems associated 

with surface roughness and friction, as well as foreign object debris (FOD), can cause severe 

damage to aircraft leading to hazardous operating conditions. In order to address these issues, it is 

necessary to improve the overall functionality of airfield pavements through designing high-

quality distress resistant asphalt mixtures that can tolerate heavy aircraft loads under different 

climatic conditions [1, 2]. 

During the last few decades, significant improvements in technologies and understanding 

of asphalt mixtures performance have been made to lower costs and the potential of distress in 

highway pavements. Fundamental and engineering properties of asphalt concrete mixtures (e.g., 

fatigue resistance, modulus, rheological properties) can be determined using performance-based 

lab tests. The main reason for conducting these tests is to address the different distresses in 

pavements, such as cracking and permanent deformation (rutting). These mixture properties have 

been shown to better correlate to asphalt pavement performance than traditional approaches of 

relying on mixture compositions and volumetric measures [3]. The use of performance properties 

in material specifications has led to the development of performance-based specifications (PBSs) 

that are now being utilized in highway construction.  

The use of reclaimed asphalt pavement (RAP) and warm mix asphalt (WMA) technologies 

in highway construction have been shown to reduce overall construction cost while maintaining 

comparable and, in some cases, enhanced performance [4]. However, the application of these 

technologies in airfield pavements in the context of performance-based specifications has not been 

widely investigated. Since the type and magnitude of the loads, as well as the number of load 

repetitions, are quite different between highways and airfields, there is an urgent need to evaluate 

performance properties for airfield asphalt pavements with the incorporation of RAP and WMA 

technologies. Furthermore, there is a need to investigate a suitable threshold for performance 

properties that can be used in PBSs for airfields. 

A number of research studies have been conducted to assess the possibility of using WMA 

in airfield pavements. The results showed that WMA mixtures are more prone to moisture damage, 

and they also have higher rutting potential than hot mix asphalt (HMA) mixtures in airfield 

pavement [5]. The test temperature has more effect on the rutting performance of asphalt mixtures 

than other factors such as environmental aging and tire pressure [6]. Su et al. claimed that based 

on laboratory test results, WMA could not be a good alternative for HMA to use in airfield 

pavement rehabilitation [7]. It has also been reported that WMA has moderately lower resilient 

modulus and marshal stability than HMA. On the other hand, the relative density of field cores is 

modestly higher in WMA compared to HMA [8]. These previous studies did not extensively focus 

on cracking performance evaluation.  

In a study conducted by Shoenberger et al., the performance of recycled asphalt pavements 

for different airports was investigated. The results showed that the recycled asphalt mixtures are 

susceptible to rutting and most of the distress found in recycled asphalt pavements was climatic 

and environmental-related, not load associated [9]. Asphalt mixtures containing RAP have slightly 

higher stiffness, higher dynamic modulus and lower surface friction than asphalt mixtures without 
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RAP; however, the maximum amount of RAP in airfield pavements should not exceed 30% in 

HMA in order to meet all specified requirements for virgin asphalt mixtures [10,11].  

Since both WMA and RAP are relatively new concepts in airfield pavements, a few studies 

have investigated the performance of WMA mixtures containing RAP. Guercio et al. compared 

the performance of WMA-RAP and HMA mixtures with respect to fatigue cracking and rutting 

for airfield pavements. Results showed that HMA has better performance against fatigue and 

rutting than WMA-RAP asphalt mixtures [12]. Mejías-Santiago et al. investigated the moisture 

susceptibility of different types of WMA containing RAP. Results showed that using WMA with 

a high amount of RAP can improve mixture’s moisture damage resistance. In addition, moisture 

susceptibility of WMA-RAP mixtures is related to mixing and compaction temperatures [13].  

Incorporation of new materials such as warm mix additives and RAP in asphalt mixture 

design required specific PBSs, which considers all possible aspects to achieve a balance of asphalt 

mixtures performance with respect to various distress mechanisms. Among different asphalt 

mixtures performance properties, moisture resistance, stiffness, deformation resistance (ie. 

shoving and rutting resistance), thermal cracking, and fatigue cracking have been the focus of 

research studies. In some cases, several laboratory performance-based tests such as flexural beam 

fatigue, Hamburg Wheel Tracking Device (HWTD), Asphalt Pavement Analyzer (APA), bending 

beam rheometer have been commonly utilized to support asphalt mixtures’ PBSs. [14]. Jamieson 

and White proposed a PBS to use stone mastic asphalt as an airfield ungrooved runway surface. 

They used volumetric and constituent material properties, and requirements for fatigue resistance, 

resistance to deformation, surface texture, and durability as required performances in PBSs [15]. 

Motivation and Objective 

Based on previous research studies, it has been shown that some modifiers may have 

different impacts on airfield pavements performance with respect to different distresses. Results 

of a study conducted by Bennert showed rutting performance of airfield asphalt mixtures was 

improved with modification. On the other hand, modification deteriorated the fatigue performance 

of asphalt mixtures [16]. Although the current airfield pavement design procedure includes fatigue 

in the asphalt layer and rutting in the subgrade, most airfield pavements are designed based on 

subgrade rutting criteria. Which shows, in many cases, current pavement design methods cannot 

adequately quantify the performance change that may be achieved through the use of modification 

in airfield asphalt pavements. Therefore, there is an immediate need to develop a performance-

based specification by which modified mixtures can be appropriately evaluated within existing 

airfield pavement design methodologies. It is worth mentioning that several research studies have 

been conducted because of the concerns of fatigue in airfield pavements and its considerations and 

focused on necessary parameters for airfield pavement structural design [17,18]. In this study, 

however, the main focus is identifying performance measures indices that can be used for material 

specification purposes to address limitations in the current airfield pavement design procedure.   

The objective of this research is to propose suitable laboratory performance tests and 

performance indices that can be adopted in PBSs to address cracking performance of airfield 

pavement constructed using WMA and RAP mixtures. To accomplish this objective, cracking 

properties of WMA, RAP mixtures, and traditional P401 hot-mixed asphalt are evaluated using 

performance based laboratory tests and long-term pavement cracking performance is predicted 

using advanced mechanistic based simulation software. Finally, comparisons are made between 

mixture performance indices and predicted pavement performance to propose suitable tests and 
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performance properties that can be adopted in PBSs. Three types of WMA, along with a 

combination of WMA and RAP mixtures, as well as P401 hot-mixed asphalt were utilized in this 

study. This research effort will pave the road for designers and agencies to better understand actual 

behaviour of airfield pavements under given traffic and environmental loads based on laboratory 

tests. 
 

Materials and Methods 

Materials 

This study includes six asphalt mixtures which were obtained from ongoing research at the Federal 

Aviation Administration's National Airport Pavement and Materials Research Center (NAPMRC). 

These represent six different airfield pavement test lanes that were constructed during spring 2019, 

including one lane with hot mix asphalt (HMA), three lanes with WMA, and two lanes with 

WMA+RAP. The RAP content used was 20% by total mixture weight. Two Superpave 

performance-graded asphalt binders, a PG 76-22 and a PG 64-22 (with latex), were used in this 

study. HMA and WMA sections (four outdoor lanes) were constructed using the PG 76-22 asphalt 

binder, and the PG 64-22 and latex was used to build WMA+RAP lanes (two indoor lanes). 

Chemical, organic, and hybrid additives were utilized to represent different available technologies 

to produce WMA. All test lanes consisted of 8 inches P-209 crushed stone base layer, 12 inches 

P-154 subbase layer, and sandy subgrade with CBR of 20 [19]. Performance data from the test 

lanes is not currently available due to unavoidable delays in testing. Table 1 shows the mixture 

type for each test lane. 
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Table 0-1 Test Lane Asphalt Mixtures and Pavement Structure 

Lane 

Number 
Mixture Type (Lift thickness) Base Layer Subbase Layer Subgrade 

Lane 1 Mix A: PG 76-22, Control, HMA (P-401) (9 inch) 

P-209 

Crushed 

Aggregate 

Base Course 

(8 inch) 

P-154 Subbase 

Course (12 inch) 

Sandy Subgrade 

(CBR 20) 

Lane 2 Mix B: PG 76-22, WMA, Chemical additive (9 inch) 

Lane 3 Mix C: PG 76-22, WMA, Organic additive (9 inch) 

Lane 4 Mix D: PG 76-22, WMA, Hybrid additive (9 inch) 

Lane 5 

Mix E: PG 64-22, WMA, Organic additive, with 

Latex modifier (3 inch) 

Mix F: PG 64-22, WMA, Organic additive, with 

Latex modifier, RAP (6 inch) 

Lane 6 
Mix F: PG 64-22, WMA, Organic additive, Latex, 

RAP (9 inch) 

 

Specimen Fabrication 

Loose plant-produced asphalt mixtures provided by NAPMRC were compacted to a target air void 

content of 5%±0.5% as measured on final laboratory test specimens, which is a common in-place 

air void content in airport pavements. In order to achieve consistency among mixtures a reasonable 

reheating protocol was used as follow: 

(1) Buckets were placed in preheated oven set at mixing temperature minus 10°C for two hours 

(2) Mixtures were transferred to pans 

(3) Mixtures were placed at compaction temperatures for two hours  

 

Testing and Analysis Methods 

The experimental campaign in this research includes complex modulus test, semi-circular bend 

(SCB) test, and direct tension cyclic fatigue (DTCF) test. 

Linear viscoelastic properties of asphalt mixtures were investigated through complex 

modulus test following AASHTO T 342 test specification. Testing was conducted using an asphalt 

mixture performance tester (AMPT) at 4.4, 21.1, 37.8°C temperature with loading frequencies of 

0.1, 0.5, 1, 5, 10, 25 Hz at each temperature. Measured stresses and strains for each mixture were 

utilized to construct the dynamic modulus and phase angle mastercurves using RHEA® software 

based on the time-temperature superposition principle. In addition, the (G-Rm) parameter was 

determined  to assess the asphalt mixture’s cracking performance. The mixture’s Glover–Rowe 

parameter (G-Rm) is also determined from complex modulus test results using equation 1 [20]. In 

this study, the G-Rm parameter was calculated at the frequency of 5 Hz at 20°C in accordance with 

the NCHRP 09-58 project [21, 22].  

 

                                                                                                                                                  (1) 
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Where: 

E* is dynamic modulus (MPa) and  is phase angle (degrees). 

SCB test was conducted to evaluate fracture characteristics of asphalt mixtures at 

intermediate temperatures. The SCB test was performed using the load line displacement method 

in accordance with AASHTO TP 124 with the universal testing machine (UTM) at 25ºC. Fracture 

energy and flexibility index (FI) were calculated based on the SCB test data using IFIT software 

developed by Illinois Center of Transportation (ICT). Currently, an FI value of eight (8) has been 

recommended by the Illinois Department of Transportation as a threshold value to distinguish 

asphalt mixtures with acceptable cracking performance from mixtures with inferior cracking 

performance [23]. 

To assess the fatigue properties of asphalt mixtures, DTCF test was conducted in 

accordance with AASHTO TP 107 using an AMPT. Asphalt mixture specimens were tested at 

200, 225, and 250 microstrain. Test data were analyzed using FHWA’s FlexMATTM software, the 

analysis is based on the simplified viscoelastic continuum damage (S-VECD) approach [24]. Four 

performance-based fatigue indices (GR, DR, Sapp, and ) were calculated to determine mixture 

properties with respect to fatigue cracking [25-27]. 

 

Pavement Performance Prediction: FAARFIELD and FlexPAVE TM  

In this study, the expected field performance of the mixtures during and at the end of pavement 

service life was investigated using FAARFIELD (version 1.42) and FlexPAVETM software. 

FAARFIELD is a mechanistic-empirical (M-E) airport pavement thickness design program 

developed by the Federal Aviation Administration (FAA). It incorporates layered elastic analysis 

for flexible pavements to determine critical pavement responses. FAARFIELD determines the 

structural fatigue life of pavement through cumulative damage factor (CDF). It computes a 

separate CDF for each failure mode – subgrade failure and HMA failure. HMA failure model 

included in the design procedure is based on the ratio of dissipated energy change (RDEC) concept 

using flexural stiffness [28]. In this research, a frequency of 3.2 Hz was selected to convert 

dynamic modulus data to flexural stiffness based on the speed of Heavy vehicle simulator for 

airports (HVS-A) on test sections. In addition, FAARFIELD utilizes resilient modulus to 

investigate asphalt layer properties. Equation 2 was implemented to convert dynamic modulus to 

resilient modulus with respect to tire radius and loading speed (3 mph), which resulted in dynamic 

modulus selection at a frequency of 0.5 Hz at 21.1°C. Note that FAARFIELD utilizes the 

horizontal strain at the bottom of the asphalt layer to investigate accumulated fatigue damage in 

the pavement. Thus, it would be able to capture only bottom-up fatigue cracking performance. 

In addition to FAARFIELD, the amount of fatigue cracking damage was also determined 

using the FlexPAVETM program. The FlexPAVETM incorporates a three-dimensional layered 

system in conjunction with the simplified viscoelastic continuum damage (S-VECD) model to 

assess mechanistic properties of mixtures such as strains and stresses, under assigned traffic load 

and various climatic conditions. A cumulative damage model has been incorporated in the 

FlexPAVETM to investigate accumulated damage in the pavement cross-section [29]. Due to 

adoption of finite element model and use of continuum damage approach, FlexPAVETM is able to 

determine fatigue damage throughout the asphalt layer, thus is able to distinguish between top-

down and bottom-up fatigue cracking potential. 
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To analyze pavement performance, test lane structures were replicated in the software and 

the measured material properties based on complex modulus and DTCF tests have been input to 

predict the fatigue performance of asphalt pavements. All layers beneath the asphalt layer were 

considered to be linear elastic and precomputed modulus values based on FAARFIELD were 

assigned to these layers. The elastic moduli of layers the beneath asphalt layer were 75 ksi for base 

and 40 ksi for subbase, and 30 ksi for subgrade layer. These moduli value are selected by 

FAARFIELD as default values for the materials types (P-209, P-154 and Subgrade with CBR of 

20). HVS-A was used for traffic loading with total departures of 200,000 at the end of design life 

as shown in table 2. Moreover, 20°C has been used in the simulation to predict performance of 

asphalt pavements with respect to fatigue cracking. This pavement temperature was chosen since 

the HVS testing at NAPMRC is being conducted in temperature-controlled manner at 20°C. Also, 

for the sake of comparison between asphalt mixtures performance using statistical analysis, the 

fatigue performance of lane five has been also predicted using only one mixture (i.e., 64-22, WMA, 

Organic (L)) in addition to analysis of as-built structure for this lane.   

 

Where: 

S is loading speed (m/s) and a is average tire radius (m). 

 

Table 0-2 Traffic Data Information 

Load  Gross Wt. 

(lbs.) 

Annual 

Departures 

Total 

Departures 

Tire 

Pressure 

(psi) 

Test Speed 

mph 

HVS-A 61,300 10,000 200,000 254 3 

 

Results and Discussion 

Linear Viscoelastic (LVE) Properties 

Figures 1a and 1b show dynamic modulus and phase angle master curves for asphalt mixtures in 

this study. The results are shown as an average value of three replicates. According to the results, 

WMA with an organic additive (PG 76-22), and WMA with an organic additive, latex-modified 

binder and RAP (PG 64-22) have higher stiffness and lower phase angle (relaxation capability) 

compared with other mixtures; this indicates that these mixture may be more susceptible to 

cracking. The behavior of WMA with organic additive was expected, and it likely stems from 

the chemical interaction of organic additive with asphalt binder (polymer effect), especially during 

laboratory reheating process. WMA with an organic additive and latex (PG 64-22) has the lowest 

stiffness and highest relaxation capability among all mixtures, shows the positive effect of latex 

with respect to decreasing asphalt mixture susceptibility to cracking. The area under the curve was 

determined for each mixture, and Kruskal-Wallis test was used as a non-parametric statistical test 

to investigate if there is a statistically significant difference between the area under the curve for 

mixtures. WMA mixtures with chemical and hybrid additives, and control mixture showed 

statistically similar values of dynamic modulus and phase angle, meaning that neither of these 

additives has a significant effect on asphalt mixture LVE properties. 
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Figure 2 depicts the G-Rm parameter for asphalt mixtures. According to the results, an 

organic WMA additive increased the G-Rm value of the control mixture by 29%, which indicates 

higher cracking susceptibility of the mixture with an organic additive. At the same time, there is 

no statistically significant difference in G-Rm values between both chemical and hybrid additives 

and control mixture. Although WMA with an organic additive and latex (PG 64-22) was found to 

be the best mixture in terms of cracking susceptibility among all the mixtures, addition of RAP 

increased its G-Rm value by 27%, which shows that RAP deteriorates mixture cracking 

susceptibility.  

 

 

 

Figure 0-1 a) Dynamic modulus mastercurve at 21.1°C reference temperature, b) Phase angle 

mastercurve at 21.1C reference temperature 
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Figure 0-2 Glover-Rowe Parameter at the frequency of 5 Hz at 20°C 

Fracture Properties 

Figures 3a and 3b show the average fracture energy and the FI parameter for asphalt mixtures. At 

least three replicates were tested for each mixture, and the results are shown as an average value 

of replicates. The error bars in the results represent one standard deviation interval.  

The fracture energy and FI values showed similar trends, except WMA with an organic 

additive (PG 64-22) and latex. Based on the results of both criteria, WMA with an organic additive 

(PG 76-22) has the worst cracking resistance at intermediate temperatures, which was also shown 

with the G-Rm parameter. According to the fracture energy, WMA with a chemical additive (PG 

76-22) showed the best cracking resistance. According to the FI results, all mixtures failed to meet 

the threshold except the WMA with an organic additive and latex (PG 62-22). It is worth 

mentioning that the threshold value was developed for highway pavement based on different 

loading and temperature conditions for various types of asphalt mixtures in Illinois, and there is a 

potential that the same threshold may not be appropriate for other types of asphalt mixtures at other 

locations and it was used to compare airfield asphalt mixtures in this study. Based on the FI, WMA 

with an organic additive and latex (PG 64-22) has the best fracture properties, which may be 

attributed to the improvement of relaxation capability of the mixture due to the presence of latex. 

On the other hand, the addition of RAP deteriorates mixture fracture properties as it increases 

mixture stiffness and decreases relaxation capability.  Since the utilization of an organic additive 

leads to fracture properties deterioration, it can be concluded that latex plays the most important 

role in passing the FI threshold.   
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Figure 0-3 a) Fracture energy for asphalt mixtures measured from SCB test; b) Flexibility index 

for asphalt mixtures measured from SCB test (dashed line represent the threshold value) 

Fatigue Properties 

Four fatigue performance indices were utilized to evaluate mixture properties with respect to 

fatigue cracking. At least three replicates have been used for each mixture and Figures 4a-4d 

present the average results of 𝑁f @ 𝐺𝑅 = 100, 𝐷𝑅, Sapp, and Nf @ CS
Nf=100, respectively. Based on 

the results it can be concluded that all four indices ranked asphalt mixtures in quite different ways. 

Such that, WMA with a chemical additive (PG 76-22) is shown to have the best fatigue properties 

with respect to GR and DR parameters, whereas it has been ranked the 3rd and the 2nd best mixture 

based on Sapp, and CS
Nf, respectively. The same observation can also be made for other asphalt 

mixtures in this study.  

The main reason for the discrepancy between these indices could be related to their 

definitions. Based on the S-VECD theory, the magnitude of microcracks in asphalt mixture is 

quantified using the amount of damage (S); neither GR nor DR indices take the amount of damage 

into account. On the other hand, Sapp incorporates damage growth magnitude at average integrity 

of mixture to investigate fatigue resistance of asphalt mixtures. Damage accumulation, however, 

is not a linear phenomenon, and utilization of an average value might lead to an unrealistic fatigue 

resistance indicator. As opposed to other indices, the CS
Nf criterion is based on damage growth rate 

in which accumulated damage at failure as well as accumulated decrease in material integrity are 

taken into consideration [30]. Therefore, the CS
Nf is expected to have good correlation with the 

results of performance prediction software. Based on the discussion mentioned above, it can be 

deduced that current fatigue parameters might be insufficient to evaluate and rank asphalt mixture 

fatigue performance as a standalone parameter. Therefore, laboratory measured properties need to 
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be incorporated in performance prediction software to better evaluate the expected performance 

with respect to fatigue cracking. 

 

 

 

 

Figure 0-4 a) Number of load cycles at GR=100 for asphalt mixtures; b) Amount of average drop 

in material integrity per load cycle until failure; c) Sapp values; d) Number of load cycles at 
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Fatigue Performance based on FAARFIELD 

The amount of accumulated damage with respect to bottom-up fatigue cracking has been 

calculated for each lane based on the ratio of dissipated energy change (RDEC) concept and is 

plotted in figure 5a. Based on the results, lane two has the lowest fatigue damage among all lanes, 

which indicates that the utilization of chemical additive improves pavement fatigue performance. 

Incorporating hybrid and organic additives appear to deteriorate mixture fatigue performance as 

compared to the control mixture. Lane six is shown to have the highest amount of damage, 

followed by lane five. The high amount of damage in both lanes five and six can be attributed to 

the presence of RAP in the asphalt pavement.  

In addition, the allowable number of departures was calculated for each lane based on the 

CDF in the asphalt layer. Figure 5b shows number of allowable departures with respect to fatigue 

cracking. Lane two holds the highest number of departures among all test lanes. However, the 

improvement is only 2.63% compared to lane one, meaning that WMA with a chemical additive 

is not substantially better than the control mixture. As expected, based on the fatigue damage 

results, the control mixture has outperformed asphalt pavements with hybrid and organic WMA 

additives, as well as the combination of WMA and RAP. Lane six is shown to have a lower number 

of departures compare to lane one by more than 21%. The results suggest that the incorporation of 

RAP along with WMA with an organic additive, could substantially worsen the pavement fatigue 

performance. 

It should be noted that the CDF values are all below 0.5, meaning that no matter how good or bad 

the asphalt mixture fatigue performance is, the subgrade will fail due to rutting first, and the 

subgrade governs the design.  The FAARFIELD will predict lower fatigue life for asphalt mixtures 

with a higher modulus.  This does not take into account the type of binder, and consequently, any 

such analysis is fundamentally limited by the assumption that more stiffness means lower fatigue 

resistance [31].  That might not be true because a polymer can add stiffness and, at the same time, 

improve fatigue and fracture resistance of asphalt mixtures.  

 

 

 

 

 

 

 



  

165 

 

 

 

Figure 0-5 a) FAARFIELD predicted damage in the asphalt layer; b) Allowable number of 

departures at the end of design period. 

Fatigue Performance Prediction from FlexPAVETM 

Predicted fatigue performance of the test lanes using FlexPAVETM are presented in this section. 

Figure 6 demonstrates damage contours in lane one as an example to illustrate the predicted 

damage growth within the pavement. Based on the figure 6, it can be observed that fatigue damage 

occurs in the pavement due to both bottom-up and top-down cracking. Therefore, the results of the 

FlexPAVETM software are representative of what may be happening in the field and therefore the 

overall level of distress or relative performance. 

The reference cross sectional area in FlexPAVETM is defined as two overlapping triangles 

which form two trapezoids within the asphalt layer thickness. The top inverted trapezoid has a 170 

cm wide based (surface of asphalt layer) and the bottom trapezoid has a 120 cm wide base (bottom 

of asphalt layer). The percent damage is measured as the accumulated damage factors within the 

reference area (two trapezoid) divided by the whole area of reference cross section [29]. Figure 7 

indicates the total accumulated damage in the test lanes at the end of design life. The results suggest 

that the utilization of WMA with a chemical and an organic additive could improve pavement 

fatigue performance. However, WMA with a hybrid additive and combination of WMA with an 

organic additive and RAP deteriorate the fatigue performance. It is commonly known that asphalt 

mixtures containing RAP will be more susceptible to fatigue cracking. Therefore, the exhibition 

of the highest amount of fatigue cracking in lane six is expected due to the inherent brittle pre-

aged mixture in this test lane. 
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To compare the amount of fatigue damage at the top and the bottom of the asphalt layer, 

percent damage was calculated for the top and bottom trapezoids separately and is shown in Figure 

7 with different colors. The results indicate that all test lanes will experience significantly more 

bottom-up cracking compared to top-down cracking at the end of the design period. The same 

trend as the total damage can be observed for the top-down cracking. On the other hand, lane one, 

lane two, lane three, and lane five are shown to have comparable results with the lowest amount 

of damage due to the bottom-up cracking, and lane six has the highest damage percent followed 

by lane four.  

Although top-down cracking is evident from the FlexPAVETM simulations, the amount of 

top-down cracking is low. However, it is known that a considerable amount of top-down cracking 

will occur in actual field pavements due to much higher aging levels in the top portion of 

pavements as well as significant redistribution of stress on top of the pavements. The current 

version of FlexPAVE™ neither considers aging in the fatigue simulation, nor does it update the 

asphalt mixture stiffness with an accumulation of damage in the pavement [32]. Therefore, without 

inclusion of age-related property evolution the FlexPAVETM is expected to under-predict the 

amount of top-down fatigue damage. With regards to the aforementioned concerns, as the next 

step of this research study, different levels of aged asphalt mixtures will be utilized for a more 

reliable performance prediction with respect to cracking. The severity of predicted damage from 

top-down cracking is expected to increase after the aging model is included in the simulation 

process. 

 

 

Figure 0-6 Damage contours within the pavement cross section 
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Figure 0-7 Predicted fatigue damage within the pavement (total damage is separated using two 

colors to show the bottom-up and top-down damage) 

Correlation between asphalt mixtures fatigue properties performance 

The correlation between performance indices and predicted pavement cracking performance was 

investigated to determine which performance parameter(s) would be viable for predicting relative 

pavement fatigue performance. Asphalt mixtures were first ranked based on different performance 

indices and predicted performance, as shown in table 3. Next, to determine how different asphalt 

mixtures have been ranked based on their properties and performance, percent discrepancy was 

introduced [3]. Each mixture's ranking was compared with other mixtures to determine the 

absolute difference value of the ranking and then normalized with respect to the maximum possible 

ranking difference. For example, based on GR, WMA with an organic additive (PG 76-22) is 

ranked 6th, while it has been ranked as the 3rd best asphalt mixture with respect to DR values  The 

percent discrepancy between these two indices can be defined as the absolute ranking difference 

(i.e., |6-3|=3) divided by the maximum possible difference in the ranking (i.e., 6-1=5). The lower 

percent discrepancy means parameters rank asphalt mixtures similarly. The average percent 

discrepancy of all asphalt mixtures was determined, and the value for each pair is presented in 

table 4. 

The results suggest that the least discrepancy exists between predicted damage based on 

FlexPAVETM and Cs
Nf parameter (13.33%) among all parameters. The results of FAARFIELD 

have the best correlation with FI values based on the SCB test, with a percent discrepancy of 20%. 

In addition, the percent discrepancy between asphalt mixtures ranking based on the results of two 

performance prediction software is as low as 20%. On the other hand, the percent discrepancy 

between Sapp and all other parameters and results are quite high. So much so that Sapp has the 

highest percent discrepancy with GR parameter as well as FI (53.33%). 
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Table 0-3 Asphalt mixtures ranking based on performance indices and simulation results 

Mixture GR 𝐷𝑅 𝑆𝑎𝑝𝑝 CS
Nf FI FAARFIELD FlexPAVETM 

76-22, Control, HMA 2 2 4 3 4 3 3 

76-22, WMA, Chemical 1 1 3 2 2 2 2 

76-22, WMA, Organic 6 3 1 1 6 4 1 

76-22, WMA, Hybrid 4 6 6 4 3 5 5 

64-22, WMA, Organic (L) 3 4 5 6 1 1 4 

64-22, WMA, Organic (L), RAP 5 5 2 5 5 6 6 

 

Table 0-4 Average percent discrepancy 

 GR DR 𝑆𝑎𝑝𝑝 CS
Nf FI FAARFIELD FlexPAVETM 

GR N/A 20.00 53.33 33.33 20.00 26.67 33.33 

DR  N/A 33.33 26.67 40.00 26.67 20.00 

𝑆𝑎𝑝𝑝   N/A 26.67 53.33 46.67 26.67 

CS
Nf    N/A 40.00 33.33 13.33 

FI     N/A 20.00 40.00 

FAARFIELD      N/A 20.00 

FlexPAVETM       N/A 

 

Pearson's correlation coefficient was utilized to investigate direction and strength of any 

possible correlation between pairs with the highest and lowest percent discrepancy values. 

According to figure 8, Cs
Nf and FI performance indices have a moderate negative relationship with 

mixture cracking performance based on FlexPAVETM and FAARFIELD software, respectively. It 

was also found there is a moderate positive relationship between predicted damage in asphalt 

mixtures using FlexPAVETM and FAARFIELD software. Sapp is shown to have a strong and 

moderate negative relationship with FI and GR performance indices, respectively. The correlation 

between Sapp and FI parameters is quite interesting, and it was not expected. Based on continuum 

damage mechanics, macro cracks form with localization and evolution of micro-cracks. Sapp is the 

only fatigue performance parameter that incorporates damage (S) to quantify the magnitude of 

micro-cracks in asphalt mixtures. The strong correlation between Sapp and FI supports the 

hypothesis that accumulation of damage needs to be taken into account in order to investigate the 

performance of asphalt mixtures with respect to cracking. 
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Figure 0-8 Pearson’s correlation coefficients 
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Summary and Conclusion 

The objective of this research study was to evaluate the cracking properties of WMA, combination 

of WMA and RAP, and P401 HMA at airfield pavements via complex modulus, SCB, and DTCF 

tests to predict the performance of these mixtures with respect to fatigue cracking using advanced 

performance simulation and prediction software such as FAARFIELD and FlexPAVETM. In 

addition, percent discrepancy and Pearson's correlation coefficient were utilized to compare the 

cracking performance indices and predicted pavement cracking performance to investigate which 

laboratory test(s) and property threshold(s) would be viable to be implemented in PBSs. Based on 

the obtained results, the following conclusions can be drawn: 

 

 The addition of an organic WMA additive and RAP increased asphalt mixture stiffness and 

decreased relaxation capability. In addition, they seemed to worsen fracture properties of 

asphalt mixtures at both intermediate and low temperatures.  

 Based on the DTCF test results, a poor correlation was found between all four fatigue 

parameters which can be attributed to the fact that performance of mixtures with respect to 

fatigue cracking cannot be assessed solely based on laboratory measurements and 

combination of the mixtures lab measured properties with the pavement structure, 

environmental condition, and traffic data is crucial to investigate the fatigue performance. 

 The contradictory results of performance-based laboratory tests and pavement performance 

simulation show the FAA current asphalt pavement thickness design procedure lacks a 

usable model of fatigue cracking in its standard design program (FAARFIELD). The major 

flaw in fatigue modeling of FAARFIELD is that it does not take into account many 

significant factors (such as mix properties) in the design process, and it might lead to 

unrealistic pavement structural design. Therefore, a performance-based specification needs 

to be developed based on the nonlinear viscoelastic properties of asphalt mixtures along 

with other effective factors such as aging to capture the proper fatigue performance limit 

in the airfield pavement design model. 

 The results of the simulation with the FlexPAVETM showed that fatigue failure in 

pavements could happen due to both top-down and bottom-up cracking. A reasonable 

correlation was found between total damage in the pavement and top-down cracking 

damage. While the results of bottom-up cracking are relatively comparable. 

 Based on the results of statistical analysis Cs
Nf and FI cracking performance indices showed 

the most similar ranking sequence and a moderate negative relationship with the predicted 

damage of FlexPAVETM and FAARFIELD, respectively. On the other hand, Sapp was found 

to have the highest percent discrepancy and a strong negative relationship with FI values.  

 

It should be emphasized again; all the conclusions presented here were made based on the 

simulation and prediction of unaged asphalt mixtures.The availability of field performance data 

will enable researchers to validate their findings. Future work will focus on investigating asphalt 

mixtures performance with respect to fatigue cracking at several aging levels. Performance-based 

laboratory tests, along with advance performance simulation programs such as FlexPAVETM, will 

be utilized to predict mixture performance with consideration of aging. A comparison will be made 

between the mixture predicted performance and accelerated pavement test data (pavement 

performance under APT) to determine the accuracy of the prediction. 
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