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ABSTRACT 

Merging Ecology and Earth System Modeling: 

Biotic and Abiotic Controls Drive Soil Carbon and Nitrogen Cycling in Microbial-Explicit Soil 

Biogeochemistry Models 

By 

Emily Kyker-Snowman 

University of New Hampshire 

 

Ecological processes drive terrestrial biogeochemistry, yet the incorporation of ecology 

into the Earth system models that we use to understand and project global change remains. My 

dissertation focuses on expediting the incorporation of ecology into Earth system models, first by 

laying out a roadmap from initial assessment of ecological insights to eventual ESM 

incorporation, and then by demonstrating this roadmap using the example of microbially-

controlled carbon and nitrogen cycling in soil. The paradigm around SOM formation and loss 

has shifted in recent decades away from a focus on the chemically recalcitrant leftovers of litter 

decomposition and towards a paradigm with microbial residues and mineral interactions at its 

heart. The MIcrobial-MIneral Carbon Stabilization model (MIMICS) was developed as a way of 

exploring this new paradigm and examining the relationships between environmental drivers, 

litter chemistry, microbial physiology, and physical and chemical stabilization mechanisms for 

SOM. In the first chapter of my dissertation, I document a systematic approach to improve 

ecological process representation in Earth system models, highlighting multiple points along the 

way where ecological observations and modeling iteratively strengthen one another. In the 

second chapter, I develop and validate a new version of MIMICS with coupled N cycling using a 



 xiii 

large litter decomposition dataset. In the final chapter, I examine MIMICS-CN’s representation 

of the drivers of SOM C:N ratios using a landscape-scale data synthesis and model-data 

comparison. Together, these chapters describe and demonstrate the process of improving 

biogeochemical models along the path to ESMs by introducing new process representations of 

ecological concepts.  

  



 1 

INTRODUCTION 

 
The Earth system is tremendously complex, and models ranging from simple process 

representations to full Earth system models (ESMs) are critical tools in aiding our understanding 

of global environmental change. Models allow scientists to explore interactions and scales that 

are impossible to study through direct measurement and to project insights into the workings of 

the Earth system into the future. Modern ESMs primarily originated in the atmospheric and 

physical science communities (Edwards, 2011), and the incorporation of ecological knowledge 

into ESMs by comparison has been relatively slow, despite the crucial role that ecology plays in 

controlling many ecosystem processes (Fer et al., 2021; Rogers et al., 2017). The empirical 

ecology and Earth system modeling communities have been slow to integrate due to a lack of a 

shared understanding of the steps involved in developing ecological theory and integrating it into 

large-scale models. In this dissertation, I strive to strengthen ecologist-modeler connections by 

developing and demonstrating a pathway for incorporating new ecological insights (in this case, 

insights into microbial control over soil carbon and nitrogen cycling) into large-scale models.   

 

Soils within the Earth system 

Soils are a vast global store of carbon (C) and nitrogen (N), holding roughly three times 

as much C as the atmosphere (Lal, 2004). Soils are also one of the most promising leverage 

points in the fight against climate change: policy efforts like the “4 per Mille Initiative” strive to 

combat climate change by altering agriculture and land management to sequester atmospheric C 

in soil and reduce environmental N pollution while maintaining high productivity (Minasny et 

al., 2017). However, meeting such lofty goals requires more reliable understanding and control 

over soil C and N cycling than currently exists. Soils remain one of the dominant sources of 
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uncertainty in the C cycle component of Earth System Models (ESMs; Ito et al., 2019; Todd-

Brown et al., 2013). The influence of climate and management drivers on soil C and N cycling 

has been studied in great depth and breadth around the world, yet measured soil C and N cycling 

often deviates from patterns predicted by established theory (Lehmann and Kleber, 2015). 

Further, agricultural management impacts on soil are highly site-dependent, and the advice given 

to farmers for building and maintaining healthy soils that promote C accumulation is constantly 

evolving (Dignac et al., 2017). Given the physical, chemical, and biological complexity of soil, 

one approach that may help scientists to guide policy efforts is the use of numerical models. 

 

Historical soil models 

Models are a means for scientists to organize their understanding of the natural world and 

ask if individual theories make sense when integrated into a larger whole. Models provide a 

useful testbed for questions related to scaling: mathematical relationships developed in the lab 

can be applied at much larger scales, and emergent model behavior can be compared against 

measured patterns. In the case of soils, models are also a necessity because pools of C and N in 

soil often change too slowly to observe in short-term experiments, and long-term experiments are 

too expensive to maintain at more than a handful of locations (Bailey et al., 2018). 

 The models that form the basis for the representation of soils in modern ESMs were 

developed in the 80s and 90s and will be referred to here as “conventional,” “traditional” or 

“historical” models of soil. Conventional soil models including CENTURY (Parton and 

Rasmussen, 1994) and RothC (Jenkinson and Rayner, 1977) assume first-order linear decay 

dynamics of litter and SOM, meaning that a fixed proportion of the model’s litter pool 

decomposes each time step, with some fraction entering soil organic matter (SOM) while the rest 
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is lost to respiration according to a model-defined microbial carbon use efficiency (CUE). These 

models also generally describe soils as a hierarchical cascade of successively more recalcitrant 

pools with longer turnover times. This representation is based on the long-held assumption that 

chemical recalcitrance protects organic matter from decomposition and determines the longevity 

of organic matter in soils (Todd-Brown et al., 2012). This mathematical representation is popular 

in ESMs because of its relative simplicity and ability to adequately reproduce patterns from long-

term experiments in soils (Blankinship et al., 2018). 

Early contributors to models like CENTURY and RothC realized that soil models would 

be used to make policy decisions that would impact large numbers of people and invested 

considerable effort into ensuring those models were trustworthy through validation exercises 

(Powlson et al., 1996; Smith et al., 1997). As a result of their efforts, there is a robust literature 

evaluating hierarchical linear models of soil organic matter against data from input manipulation 

and fractionation studies (Powlson et al., 1996), as well as robust theoretical and mathematical 

analysis of such models (Manzoni and Porporato, 2009). Although CENTURY and RothC were 

both originally developed for a single site, subsequent studies explored their application across 

many other systems, at global scales, in managed and natural systems, and for simulating both 

standing soil C stocks and dynamic responses of soil pools to perturbations. This widespread 

application and evaluation of linear models of soil has contributed to their popularity and the 

longevity of their use within ESMs (Blankinship et al., 2018). 

Despite the robust testing that models like CENTURY and RothC have undergone, they 

still frequently fail to accurately predict landscape-scale soil C stocks (Bradford et al., 2016). 

Research in the past few decades has revealed natural patterns like priming and C saturation that 

linear models cannot replicate, and new methods for characterizing the chemistry and 
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microbiology of soils have upended the foundational assumptions behind traditional linear 

models (Blankinship et al., 2018). New research suggests that the longevity of organic matter in 

soils results more often from physical protection than chemical recalcitrance (Grandy and Neff, 

2008; Heckman et al., 2013; Kallenbach et al., 2016; Rasmussen et al., 2018; Schimel and 

Schaeffer, 2012) and that the bulk of SOM is derived from microbial residues and necromass 

rather than plant matter (Gleixner, 2013; Kallenbach et al., 2016). Given this new understanding 

and the shortcomings of traditional models, a new generation of soil models has been developed 

that centers on microbial physiology and substrate accessibility as drivers of soil C and N 

cycling. 

 

Next generation microbial-explicit models 

 Microbial-explicit models of soil include a wide variety of purely theoretical models that 

have examined everything from temperature acclimation of community-scale CUE (Allison, 

2014) to the impact of microbial community structure on C cycling (Moorhead and Sinsabaugh, 

2006). (Kaiser et al., 2014) used an individual-based model that represented metabolic linkages 

between microbial functional types (plant degraders, necromass degraders, or opportunists) in a 

grid and evaluated the succession of microbial community dynamics over the course of litter 

decay. Kaiser et al. provided evidence that intra-community recycling of N in necromass can 

alleviate N constraints and decompose plant litter without the need to decrease CUE. (Sistla et 

al., 2014) developed the SCAMPS model to represent C and N cycling in an arctic tundra under 

warming, and used a single microbial pool with a flexible C:N to simulate the acclimation of the 

microbial community to different nutrient conditions. (Averill and Waring, 2017) introduced the 

Carbon, Acidity, and Mineral Protection model (CAMP) to examine coupled C-N cycling during 
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microbial processing of mineral-associated and particulate organic matter under an external 

constraint on microbial activity (acidity). Theoretical explorations of litter-microbe-soil 

interactions using models are diverse and abundant (Louis et al., 2016), athough large-scale 

application and evaluation of such models is rare. 

 A much smaller number of models has been tested against landscape-scale data gathered 

outside the lab. The Carbon, Organisms, Rhizosphere, and Protection in the Soil Environment 

model (CORPSE; (Sulman et al., 2014, 2017) couples belowground C and N through microbial 

biomass similar to MIMICS’ representation, and has recently been coupled to the Fixation and 

Uptake of Nitrogen model (FUN, Sulman et al., 2017) to incorporate the exchange of plant C for 

soil N via mycorrhizal partners. The Millennial (Abramoff et al., 2017), TRIPLEX-GHG (Wang 

et al., 2017b), and ORCHIMIC (Huang et al., 2018b) models have all been developed to 

integrate explicit microbial decomposition into existing models designed for large-scale 

applications. Model-data comparisons with ORCHIMIC, TRIPLEX-GHG, and a number of other 

unnamed landscape-scale models (Hararuk et al., 2015; Li et al., 2014) have demonstrated that 

microbial-explicit decomposition formulations can reproduce global SOC stocks with greater 

accuracy than linear models like CENTURY. 

 

The MIcrobial-MIneral Carbon Stabilization model 

 My dissertation focuses on the MIcrobial-MIneral Carbon Stabilization model (MIMICS; 

Wieder et al., 2014, 2015d, 2018), a relatively simple and computationally efficient microbial-

explicit model that incorporates both physical and chemical mechanisms for stabilizing SOM. 

MIMICS has been validated previously with several continent- and global-scale datasets. In 

(Wieder et al., 2015d), MIMICS simulated C losses from litterbags in the Long-Term Intersite 
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Decomposition Experiment Team dataset (LIDET, a 10-year long litterbag experiment across 28 

sites across North America; Parton et al., 2007) with a lower root mean square error (RMSE) 

than either DAYCENT or CLM-cn. MIMICS also simulated global distributions of total soil C in 

the Harmonized World Soil Database with higher spatial correlation and lower RMSE than CLM 

or any other model in the Coupled Model Intercomparison Project phase 5 archive (CMIP5) 

(Wieder et al., 2015d).  

MIMICS was initially only a model of soil C cycling, but the second chapter of my 

dissertation covers the development of a version with coupled N cycling (Figure 1). MIMICS is a 

microbially-explicit model that incorporates 8 pools: two litter pools with different C:N 

stoichiometry, two microbial pools with different resource use strategies, two SOM pools with 

different stabilization mechanisms, and pools for inorganic N and “available” SOM (SOM 

available for microbial uptake). MIMICS partitions litter inputs to soil into metabolic and 

structural pools, where metabolic litter has a lower C:N and higher rates of microbial uptake. The 

model includes a pool of copiotrophic “r strategist” microbes that use C and N quickly and 

inefficiently, and a pool of oligotrophic “K strategist” microbes that have higher CUE and C:N 

(Fierer et al., 2007). Microbes in MIMICS take up available substrates via biomass-based 

Michaelis-Menten kinetics (German et al., 2012). This nonlinear mechanism allows for the 

“priming effect” whereby fresh, labile inputs to soil stimulate microbial activity and can result in 

a net loss of C from the soil system rather than a net increase in C storage. The combination of 

the two litter pools and two microbial pools allows MIMICS to explore tradeoffs between litter 

input chemistry and microbial use of those substrates. One of my alterations to the model in 

Chapter 2 was to introduce density-dependent microbial turnover (Georgiou et al., 2017) to 

dampen unrealistic oscillations in microbial biomass in response to perturbations and strike a 
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balance between the input-insensitive equilibrium SOC of previous microbial models (Wang et 

al., 2014b) and the ability to replicate priming dynamics absent from linear models. Finally, 

MIMICS incorporates two mechanisms for organic matter stabilization in soil: chemical 

stabilization (i.e. recalcitrance) and physical stabilization (i.e. aggregation, sorption to mineral 

particles). Chemically stabilized SOM can be returned to the “available” pool via biomass-

controlled Michaelis-Menten oxidation. Physically protected organic matter becomes available to 

microbes at a rate governed by soil clay content but independent of microbial biomass.    

MIMICS and models like it may eventually replace traditional soil models in ESMs. 

However, just like traditional models, they must undergo rigorous testing to ensure that model 

projections are realistic and trustworthy. MIMICS integrates a number of new micro-scale 

theories that are difficult to verify at landscape scales, so validation exercises with MIMICS 

must explore both the underlying mechanisms and the emergent patterns in the model. Validating 

MIMICS against measured pools and fluxes will also help point to specific soil processes where 

the model is succeeding or failing. Whether or not MIMICS can reproduce measurements in soils 

with high fidelity, comparing modeled and measured results will guide future model 

development. My dissertation advances the development of MIMICS via rigorous testing of the 

model’s equilibrium and dynamic behavior across litter, microbial, and SOM pools. 

 

Dissertation overview 

Each of the chapters of my dissertation examines a different component aspect of the 

journey to incorporating a new ecological concept into an Earth system model (describing the 

process, initial development of a simple model of a new ecological process, and evaluation of the 

new model using large-scale data), and Chapters 2 and 3 each use a different source of validation 
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data to interrogate the model. In Chapter 1 (currently in review at Global Change Biology), I 

describe a complete workflow for incorporating a new ecological process into an ESM. The 

workflow has three stages: initial process evaluation to assess if a process is ready for modeling, 

simple model development and evaluation, and finally model development and testing within the 

context of an ESM. 

In Chapter 2 (which is published in Geoscientific Model Development), I incorporated N 

into the C-only version of the model developed in (Wieder et al., 2014) and evaluated the new 

model’s ability to replicate litter decomposition dynamics using the Long-term Inter-site 

Decomposition Experiment (LIDET; Parton et al., 2007). The model simulates C and N losses 

from litterbags in the LIDET study (6 litter types, 10 years of observations, 14 sites across North 

America) with reasonable accuracy (C: R2=0.63; N: R2=0.27). MIMICS-CN simulations of 

litterbag N dynamics are better than Community Land Model (CLM-cn) simulations of the same 

data and as good or better than DAYCENT simulations. Across the 14 simulated LIDET sites, 

MIMICS-CN produces reasonable equilibrium values for total soil C and N, microbial biomass C 

and N, respiration, inorganic N, and N mineralization rate. Chapter 2 serves as both the initial 

introduction of the coupled C-N version of the model and as a validation exercise for the 

representation of litter decomposition. 

Chapter 3 (currently in preparation for submission to Biogeochemistry) examines the 

drivers of soil C:N stoichiometry in models and real soils. Here, I compare a novel global 

database of soil measurements (the Soils Data Harmonization or SoDaH database) against global 

soil simulations using the MIMICS-CN and CASA-CNP models. In parallel with statistical 

analysis of the SoDaH database, I compare the drivers of soil C:N in MIMICS-CN and CASA-

CNP against the drivers discerned from the measured database. The comparison highlighted 
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differences between models in which drivers were most important due to differences in 

underlying model structure. In addition, data-model comparisons emphasized the importance of 

clay content in driving soil stoichiometry, and analysis of the SoDaH database alone pointed to 

pH and specific soil mineralogy as potentially important controls on soil stoichiometry that are 

missing from models.  
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CHAPTER I: INCREASING THE SPATIAL AND TEMPORAL IMPACT OF ECOLOGICAL 

RESEARCH: A ROADMAP FOR INTEGRATING A NOVEL TERRESTRIAL PROCESS 

INTO AN EARTH SYSTEM MODEL 

 
Under review at Global Change Biology 

 
Authored by Emily Kyker-Snowman, Danica L. Lombardozzi, Gordon B. Bonan, Susan J. 

Cheng, Jeffrey S. Dukes, Serita D. Frey, Elin M. Jacobs, Risa McNellis, Joshua M. Rady, 

Nicholas G. Smith, R. Quinn Thomas, William R. Wieder, and A. Stuart Grandy 
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Abstract 

Terrestrial ecosystems regulate Earth’s climate through water, energy, and 

biogeochemical transformations. Despite a key role in regulating the Earth system, terrestrial 

ecology has historically been underrepresented in the Earth system models (ESMs) that are used 

to understand and project global environmental change. Ecology and Earth system modeling 

must be integrated for scientists to fully comprehend the role of ecological systems in driving 

and responding to global change. Ecological insights can improve ESM realism and reduce 

process uncertainty, while ESMs offer ecologists an opportunity to broadly test ecological theory 

and increase the impact of their work by scaling concepts through time and space. Despite this 

mutualism, meaningfully integrating the two remains a persistent challenge, in part because of 

logistical obstacles in translating processes into mathematical formulas and identifying ways to 

integrate new theories and code into large, complex model structures. To help overcome this 

interdisciplinary challenge, we present a framework consisting of a series of interconnected 

stages for integrating a new ecological process or insight into an ESM. First, we highlight the 

multiple ways that ecological observations and modeling iteratively strengthen one another,  

dispelling the illusion that the ecologist’s role ends with initial provision of data. Second, we 

show that many valuable insights, products, and theoretical developments are produced through 

sustained interdisciplinary collaborations between empiricists and modelers, regardless of 

eventual inclusion of a process in an ESM. Finally, we provide concrete actions and resources to 

facilitate learning and collaboration at every stage of data-model integration. This framework 

will create synergies that will transform our understanding of ecology within the Earth system, 

ultimately improving our understanding of global environmental change and broadening the 

impact of ecological research.  
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1. The need to integrate ecology and Earth system models  

Terrestrial ecosystems are an integral component of the Earth system. They govern the 

exchange of energy, water, and greenhouse gases between Earth’s land surface and atmosphere 

and provide numerous services for society, including climate regulation and mitigation. For 

example, terrestrial ecosystems absorb approximately a third of anthropogenic carbon emissions 

(Friedlingstein et al., 2019), mitigating the impact of these emissions on climate change. They 

also play an essential role in regulating global water fluxes, from moderating soil water 

availability to influencing precipitation patterns and evaporative cooling. The physical properties 

of terrestrial ecosystems, including their surface reflectivity (i.e., albedo) and surface roughness, 

also help control the amount of energy absorbed and released by the land surface (Bonan, 2008, 

2016). Human management of terrestrial ecosystems can change these biosphere-atmosphere 

interactions, for example by reducing carbon storage through deforestation and increasing 

greenhouse gas emissions through agricultural fertilization (Lade et al., 2019; Law et al., 2018). 

Given the importance of terrestrial ecosystems within the Earth system, modern ecological 

research papers frequently recommend updating existing ESMs to reflect new evidence or ideas 

about ecology that may have large-scale impacts on climate. This integration, however, has been 

slow (Fisher and Koven, 2020).  

Historically, integration of ecological insights into ESMs has been hampered because of a 

disconnect between the scientists conducting empirical research and those engaging in modeling 

work (Fig. 1), a lack of cross-disciplinary training in modeling and empirical skills, and 

undervaluing of insights derived from modeling and data exercises completed along the way to 

incorporating an ecological process into an ESM. Although many scientists engage in both 

empirical and modeling work, the prevailing paradigm for integrating ecology into models tends 
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to separate the tasks involved into the subdisciplines of empirical data collection and model 

development (Figs. 1, 2). Even when ecologists engage with model development, the models 

used in ecology often fall short of the global scale of ESMs. While these models generate 

valuable insights regardless of their ultimate contribution to ESMs, large-scale integrative 

understanding of global change impacts requires the use of ESMs because of the many 

interactions within and among the components of the Earth system. For clarity in terminology, 

we define “Earth system models” as models which represent the interactions among land, 

atmosphere, ocean, and cryosphere processes and follow the principles of energy and matter 

conservation. While we focus specifically on including ecology in the terrestrial component of 

ESMs, our recommendations can apply to similar challenges in other disciplines (e.g., marine 

ecology and modeling ocean-atmosphere interactions). The land component of ESMs can and 

should continue to incorporate ecological processes to improve model realism and to better 

understand the role of ecological processes within the larger Earth system.  

Scientists in both empirical and modeling communities are aware of the need for and 

benefits of collaborating around ESMs. ESM developers understand that ecology plays an 

important role in controlling terrestrial ecosystems and that ecological insights can generate 

models that more faithfully represent real systems, both conceptually and in terms of model 

uncertainty. Empiricists, on the other hand, understand the potential large-scale impact of their 

work and that ESMs can help to realize this impact (Fig. 3). For example, ESMs are useful for 

expanding the temporal and spatial scale of ecological research beyond the constraints of a 

particular set of sites or experiments. Additionally, models can be used to explore interactions 

and feedbacks between ecological and climate factors that might be prohibitively complex to 

measure directly. Models are an important means for ecologists to explore new concepts and 
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generate insights about complex systems that can lead to testable hypotheses. Finally, models are 

a means to understand the impact of specific management and policy decisions and help 

stakeholders to make science-informed decisions. 

Despite the mutual benefits that empirical and modeling communities receive from 

collaborating, obstacles remain to better integrating these communities (Leuzinger and Thomas, 

2011; Reed et al., 2015). While most empiricists are adept at developing ecological theory for 

their specific species or system, translating that theory into a generalized mathematical formula 

can be challenging without decades of research gathering long-term data over broad scales. Next, 

empiricists face the formidable task of integrating this mathematical formulation into an ESM. 

ESMs can exceed millions of lines of code (Danabasoglu et al., 2020), and hunting for the right 

place to insert new code without breaking the rest of the model can be daunting. Working within 

the particular computing language or framework of an ESM can also be intimidating without 

extensive training in computational science and applied mathematics, which university ecology 

programs typically do not offer. Additionally, the overwhelming complexity and ambiguity of 

large models can make it difficult, without training, to assess the reliability of model results. 

Given these obstacles, an empirically-focused ecologist might question whether it is a good use 

of their time to put in the training and work involved with modeling ecological processes in the 

Earth system. 

Modelers working to integrate ecological processes into ESMs, many of whom have 

formal ecological training, also face challenges in this partnership. Ecological and biological 

processes are inherently more complex and challenging to quantitatively define than the physical 

and/or chemical processes that drive most atmospheric or ocean models. As an example, the 

physiology of stomata does not conform to the principles of fluid dynamics that underpin the 
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atmospheric and ocean components of ESMs. Quantitative ecology is a robust field, but the math 

of ecology is often defined in units of genes or whole organisms using statistical relationships, 

rather than the units of matter and energy and process representations that ESMs use, and 

translating between the two is persistently difficult.  

Even when ecology can be quantified in a way that can be incorporated into an ESM, 

ecological data can be time- and resource-intensive to gather, and model development can be 

limited by the availability of all the necessary data to drive, tune, or test a new process. Including 

all ecological processes that impact water, energy, or biogeochemical cycles can lead to models 

that are overly complex and lack adequate foundations in measured data. Modelers are 

sometimes reluctant to add a new process without convincing evidence that its impact outweighs 

the uncertainty it adds to the model. Most ESMs strive to balance ecological realism with 

excessive complexity, which can lead empiricists to be frustrated with the disconnect between 

model parameters, processes, and reality. Meanwhile, modelers may grow frustrated and 

overwhelmed by the abundance of ecological data that “should” but cannot easily be 

incorporated into models. Resolving the realism-complexity dilemma requires modelers to 

understand the principles and constraints of researching ecological processes, while empiricists 

should be more involved in model development and aware of the unique data needed to translate 

ecological concepts for ESMs. 

We address these challenges by providing a clearly defined map of the stages involved in 

the incorporation of a new ecological idea into an ESM. We seek to pull back the curtain on the 

complex, multi-scale workflow of coupled model-data-theory development (Fig. 1, 2, 3) and 

lower the barriers to interdisciplinary collaboration by articulating various phases and 

considerations along the way (Fig. 4). Below, we discuss the history of incorporating ecology 
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into ESMs to provide context for the characteristics of modern ESMs. We then present our 

suggested workflow for integrating ecological processes into ESMs (Fig. 4). In this workflow, 

we describe the iterative procedure of data collection and model development for understanding 

ecological processes and models at different scales (Fig. 3). We highlight three stages through 

this workflow and the valuable outcomes at each stage, regardless of whether the endpoint of 

incorporating an ecological process into an ESM is reached. Finally, we include a list of 

resources to guide scientists through all the stages of this workflow. These guidelines and the 

suggested workflow will facilitate stronger connections between empirical and modeling 

communities, improving ESMs through realistic process representation and increasing the impact 

of ecological research. 



 17 

2. History and context for current decision-making in ESM development 

 For many ecologists, Earth system modeling may seem a distant discipline, but in fact, 

ecology is already an important part of ESMs. The origin of ESMs is nearly 100 years old. In the 

early 20th century, an early model of weather forecasting (Richardson, 1922) required 

knowledge of land surface temperature, surface-absorbed radiation, and exchanges of heat, 

moisture, and momentum with the atmosphere. As a result, the model acknowledged the role of 

energy and moisture fluxes from plant canopies, and included rough representations of stomatal 

conductance and leaf fluxes in its calculations. In the 1960s, modelers expanded their work to the 

global scale with different labs and centers developing atmospheric general circulation models, 

which would form the foundation of some of our present-day ESMs (Edwards, 2011). As model 

development continued, terrestrial vegetation and human modification of the land became 

recognized as necessary aspects of climate science (Schneider, S. H., & Dickinson, 1974), and 

prominent studies identified surface albedo, evapotranspiration, and deforestation as important 

climate regulators (Charney et al., 1975; Dickinson et al., 1986; Sagan et al., 1979; Shukla and 

Mintz, 1982). 

In the 1980s, attention turned to representing more than the atmosphere in global models. 

Models of the land surface, such as the Biosphere-Atmosphere Transfer Scheme (BATS; 

Dickinson et al., 1986) and Simple Biosphere model (SiB; Sellers et al., 1986), were developed 

for coupling with atmosphere models. These models initially focused on the biogeophysical 

processes of energy, moisture, and momentum fluxes and the associated hydrologic cycle. These 

models represented vegetation in more detail, including traits such as stomatal conductance, 

canopy height, leaf area index, and rooting depth. Photosynthesis was also recognized as an 

essential process to model, initially as a diagnostic (Dickinson et al., 1981) and later as a 
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predictor (Sellers et al., 1996) of carbon and water fluxes (Bonan, 1995; Denning et al., 1996). 

Building upon a history of ecosystem biogeochemical models first conceived during the 

International Biological Program (IBP) in the 1960s and 1970s, the carbon cycle was 

subsequently added to ESMs so that atmospheric CO2 concentration automatically changed over 

time rather than being manually specified (Cox et al., 2000; Fung et al., 2005). Bioclimatic rules 

and simplified equations for competition for space were also added to allow vegetation 

composition and biogeography to change in relation to the simulated climate (Bonan et al., 2003; 

Foley et al., 1996; Sitch et al., 2003).  

The current generation of ESMs now also includes models with nitrogen and phosphorus 

cycles, wildfires, biogenic volatile organic compound emissions, mineral dust emissions, 

methane, wetlands, agricultural management, and land use/land cover change (Bonan, 2016). 

That many ecological and biogeochemical processes are now included in ESMs is a defining 

feature in the evolution of climate models, which initially focused on the physical system, to 

today’s more comprehensive ESMs that emphasize the interdisciplinary aspects of climate 

science (Bonan and Doney, 2018). For example, representations of the nitrogen and phosphorus 

cycles were added to some ESMs because of their role in regulating the carbon cycle (Thornton 

et al., 2009; Wang et al., 2010; Yang et al., 2014; Zaehle and Friend, 2010). Similarly, more soil 

biogeochemical models are including direct representations of microbial populations because of 

their controls on nutrient and carbon cycling (Huang, Y. et al., 2021; Kyker-Snowman et al., 

2020; Wang et al., 2017b; Wieder et al., 2015d, 2018). However, many important processes are 

still absent from ESMs; for example, herbivores are recognized in ecology as important 

ecosystem drivers, but are not widely included in ESMs. 
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Conversations about including ecology in models have become increasingly common in 

the modeling community, particularly as modelers seek to better match model projections with 

observations. ESMs continue to be modified to include ecology that impacts model calculations 

of surface fluxes of energy, moisture, carbon, and momentum. What conditions need to be met 

for a process to be considered for integration into an ESM? The ecological properties and 

processes that have made their way into ESMs reflect choices by the modeling community about 

where to focus its efforts, as well as the practical limitations of the modeling work itself. In 

general, new ecological processes enter an ESM if: 

 

● The process can (or is hypothesized to) influence climate on large spatiotemporal 

scales. Given the effort needed to code and test the addition of an ecological process into 

an ESM, the impact of this addition needs to be visible on large spatial scales or on long 

time frames. For example, explicit representations of vegetation were added to ESMs 

because they had a clear impact on and improved the performance of climate models 

through regulating water fluxes on long (e.g., decadal) timescales (Dickinson, 1984; 

Dickinson and Henderson‐Sellers, 1988; Sato et al., 1989; Sellers et al., 1986). 

● The process can be reasonably incorporated into existing model infrastructure. 

New ESM developments build on earlier ones, which means there needs to be a clear 

plan for how to insert the code for the new process into the existing model code. In 

addition, this linking should be able to occur without major restructuring to the model’s 

existing structure. For example, in order to integrate nitrogen cycling into an ESM, code 

needed to be developed to link nitrogen fluxes to the physics of the land surface and 

calculations of carbon fluxes (Bonan and Levis, 2010; Thornton et al., 2007). 



 20 

● Process understanding and data are available to model the process globally. 

The equations representing the process need to be solvable on a three-dimensional global 

grid (latitude, longitude, height) as well as on short time scales representing the model’s 

timestep for calculations (e.g., 30 minutes). Ideally, any input data required by the new 

ecological process should be available globally as a gridded product or be connected to 

existing variables simulated by the ESM. For example, the TRY database provides data 

that has been used to create global maps of plant traits that are used as the foundation for 

plant functional types (Kattge et al., 2011). 

● The mathematics of the process are tractable within the limits of current computing 

resources. 

Computing resources have significantly expanded, allowing more ecological processes to 

enter models. However, there are still limits to numerical processing power. Processes 

must be reducible to a mathematical form that does not dramatically increase computing 

costs of the entire ESM, given that existing ESMs already push the capacity of the 

world’s most powerful supercomputers (Washington et al., 2009). 

● There is a community of researchers dedicated to developing, testing, and 

maintaining the process in the model. Writing the code for a new ecological process is 

only one part of the process for integrating a new component into an ESM. Once code is 

written, it needs to be tested with different components of the ESM and under different 

simulation conditions before the process can be considered as an official addition to the 

ESM. In addition, the continued longevity of the process in the model requires there to be 

one or more researchers continuing to maintain and update the modeled process as new 

data about the process and new changes to the ESM are made. As such, a community of 
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researchers with the resources to both advocate for the inclusion of the process and 

support its inclusion in the model long-term is needed.  

 

With the origin of ESMs in the atmospheric and physics communities, it is perhaps not 

surprising that the incorporation of ecology into ESMs started in these communities. The 

modeling community has initiated several grassroots efforts to bring more ecologists into ESM 

work. These efforts range from creating conference workshops and research coordination 

networks (e.g., Cheng, 2018; Leuzinger and Thomas, 2011; Rogers et al., 2014) to leading 

tutorials and short courses to provide training for empiricists and modelers to bridge these 

subdisciplines (e.g., the CTSM tutorial at NCAR; FluxCourse; Bracco et al., 2015). However, 

these efforts are limited in the number of people they can reach. Larger, systematic changes in 

education and training, funding structures, and engagement across communities are critical to 

shifting the current siloed paradigm. We propose a new practical roadmap for empiricist-modeler 

collaboration that breaks down traditional disciplinary boundaries and fosters iterative, shared 

conceptual development. 
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3. Introducing the practical roadmap for integrating ecology and ESMs  

New efforts to close the gap between ecological empiricists and Earth system modelers 

are growing, but the two communities could still be better integrated. To do so, each community 

needs to understand the approaches used by the other and work together both to develop the 

technical advancements needed to expedite data-model integration (e.g., Fer et al., 2021) and to 

address the social dimensions of collaboration. Focusing only on technical or mathematical 

aspects of data-model integration can perpetuate barriers through the use of discipline-specific 

language and dismissal of non-technical obstacles to participation (Bernard and Cooperdock, 

2018; Duffy et al., 2021; Morales et al., 2020), which can lead to members feeling excluded and 

keep disciplines siloed (Marín-Spiotta et al., 2020; Mattheis et al., 2019). In general, effective 

cross-disciplinary collaboration depends on several key principles that facilitate team dynamics 

(O’Rourke et al., 2014) and need to be built into the start of a collaboration; namely: respect and 

trust among all team members, clear communication, common goals, and effective project 

leadership (Nancarrow et al., 2013). Research shows that clear team communication is essential 

for optimizing project outcomes (Anderson-Cook et al., 2019; Kuziemsky et al., 2009), as it is 

the foundation for identifying shared objectives and building interpersonal relationships that are 

necessary for teams to remain cohesive during times of conflict (Cooley, 1994). Breaking down 

barriers to interdisciplinary collaboration requires researchers to adopt practices that not only 

improve their collaboration, but also dismantle the inequitable and exclusionary dimensions of 

their disciplines (Bala Chaudhary and Berhe, 2020; Duffy et al., 2021; Emery et al., 2021). 

Additionally, computing tools and frameworks evolve rapidly, and solutions that focus on 

facilitating collaboration will outlast any particular technological tool. To achieve better 

integration and collaboration among empirical and modeling communities, we outline a few 
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necessary foundational principles of collaboration and educational change (Fig. 2). We also 

propose a workflow that highlights one possible pathway to improve collaboration between 

fields to improve the work of each (Fig. 4).  

In addition to strengthening empiricist-modeler team dynamics, we emphasize the need to 

rethink ecological education to incorporate process modeling concepts and normalize regular 

collaboration between empirical and modeling subdisciplines. At many institutions, the ecology 

curriculum emphasizes field techniques and statistical analysis, but fewer options may exist for 

courses on ecological process-based modeling. While a given department may offer one or a few 

courses, often these are not required in ecological education, and programming skills 

development is limited to high-level statistics programs and languages like R and python that do 

not entirely prepare students for the computer science that powers modern ESMs. Conversely, 

educational requirements in other disciplines, such as atmospheric sciences, frequently include 

both field and modeling techniques and in-depth quantitative and programming skills in which 

computational science and applied mathematics are essential tools of the science. Ecologists 

wanting to learn modeling techniques often find themselves taking classes outside their 

discipline, attempting to separate content from technique and applying techniques to a different 

field, which is a challenging task. This can pose a large enough burden on the student that many 

do not follow through, finding it easier to continue with familiar skills. A detailed plan for 

modifying the way ecology programs teach quantitative skills is beyond the scope of this paper, 

but others have begun the difficult work of rethinking educational paradigms to address this 

problem (Hampton et al., 2017). 

ESM communities also need to identify opportunities for redesigning their training so 

they can learn more about ecological concepts and data collection frameworks. Ecological data is 
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complex and filled with caveats, and modelers often encounter data after it has been processed 

and organized and thus may be unfamiliar with the nuances of data collection and analysis. 

Modeler training in ecological concepts could take place at the student level, with classwork 

focused on the impacts of living organisms on biogeochemical, water and energy cycles, or at 

later career stages via field site visits, shared seminars, interdisciplinary conference sessions, etc. 

One powerful approach is for a modeler to take a day trip with an ecologist to engage in 

fieldwork. While we recognize that the outdoors are not a comfortable space for many people 

and this can be a barrier to participation (Giles et al., 2020; Morales et al., 2020), direct 

experience with how an ecologist gathers data can be an invaluable insight into the the 

limitations and interpretation of data in a modeled context. Virtual site visits using recorded 

video are another alternative for those unable to visit in person.  

 Beyond these foundational shifts, we propose a new workflow for modeler-empiricist 

collaboration with three specific stages (Fig. 4). This workflow is meant as one (but not the only) 

route for any empiricist or modeler to understand the stages involved in integrating a new 

process or idea into an ESM. We strive to break down traditional disciplinary barriers between 

modelers and empiricists and highlight the iterative collaboration and shared skill sets that are 

necessary at each stage. The first stage in this workflow (“Assess process & potential impact”) 

includes a list of questions that anyone (regardless of programming ability) can ask to assess the 

readiness of a process for incorporation into an ESM. The second stage (“Test process alone”) 

involves the quantification and scaling of the new ecological concept using simple models and 

large-scale parameter determination. Finally, the last stage of the flowchart (“Test process with 

ESM”) discusses the multiple steps involved in making modifications to an ESM, evaluating the 

impact of the new process on model-wide behavior, and projecting the large-scale impact of the 
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new process within the Earth system. Importantly, each stage of this workflow generates 

valuable scientific products (e.g. hypotheses, new or improved theory, regional or ecosystem-

scale models), regardless of whether the endpoint of “inclusion in an ESM” is reached. We 

recognize that tackling any part of this workflow is challenging for aspiring and seasoned 

modelers alike, and we encourage researchers to see it through. We include specific illustrative 

examples for each stage of the workflow (Boxes 1-3) and one that illustrates stepping through 

the entire workflow (Box 4), as well as resources for accomplishing each step (Table 1). 

 

Workflow part 1: Identifying and understanding a new process  

The first stage of the proposed workflow assesses the readiness of a new process for 

inclusion in an ESM based on how well the process can be quantified and understood in an 

ecosystem context. Many empiricists recognize the importance of their work for understanding 

global change and highlight the need to incorporate new processes into models. However, 

highlighting this need has minimal impact on ESMs unless coupled to an understanding of the 

stages of model development and the unique types of data necessary to progress through those 

stages. As such, the first part of the workflow provides three guiding questions empiricists 

should ask to assess whether a new process is ready for inclusion in an ESM, each of which will 

be discussed in more detail in the following paragraphs (Fig. 4, “Assess process & potential 

impact”). These questions can help identify data gaps and point to valuable targets for future 

experiments to facilitate downstream ESM integration. Importantly, these questions can be 

addressed by any empiricist without requiring formal modeling skills. While connecting with 

modelers is not required at this point, it can be helpful in co-designing future experiments to 

make process integration more streamlined (Fig. 2). 
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The first guiding question aims to evaluate the level of theoretical/empirical 

understanding of the targeted process: Do you expect your process to respond consistently to 

environmental drivers, enabling scaling across space and time? Consistent, quantified patterns 

are the heart of process modeling. Detailed understanding of a process or mechanism at a single 

location can help to identify whether the process is likely to scale. In order to develop a broad 

theoretical representation of a process, it can help to determine whether data are available across 

multiple sites and ecosystem types and at various timescales. For example, if a specific tropical 

soil owes its high carbon storage capacity to a unique volcanic mineral (Torn et al., 1997), it 

would be wise to evaluate the carbon storage capacity of soils without this mineral before 

generalizing observed patterns to a global scale. While it is not necessary at this stage to gather 

enough data to create a fully quantified global representation of a process, information gained in 

this step may help identify data gaps and guide the design of additional empirical experiments 

needed for large-scale modeling, such as repeating experiments across underexplored regions or 

a wider range of environmental conditions. This step also helps to identify conceptual areas 

where a large amount of data may be available but consistent relationships with environmental 

factors and process rates have not yet been identified. For instance, soil microbial biodiversity is 

being rapidly catalogued through metagenomics, but these data do not yet provide critical 

information for representing process rates at large scales (Fierer et al., 2021). 

The second question in this stage of the workflow requires ecologists to get familiarized 

with ESMs and the way processes are represented: Is your process already in or related to an 

existing process in an ESM? Investigating this question will help identify existing model 

frameworks that can be used as scaffolding for building simple models and ultimately 

incorporating the process into an ESM. ESMs represent similar environmental processes using a 
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variety of different approaches and equations, so it might help to start by identifying one or more 

ESMs that you may be interested in and reading model documentation to determine how related 

processes are represented and whether the model will fit your needs. For example, if you want to 

improve the representation of foliar nitrogen acquisition, it is vital that the model you choose 

already has a terrestrial nitrogen cycle. This is also an ideal time to discuss collaborations with 

ESM developers. We encourage ESM developers at this stage to welcome ecologists interested 

in working with ESMs by taking the time to explain modeling concepts in jargon-free language 

and providing resources to work through technical challenges. 

If the selected ESM already contains a model of the process, the empiricist can consider 

how it can be improved or revised using new data or theoretical understanding. Many times a 

process is represented implicitly (e.g. soil microbial activity is often represented using a 

cascading decomposition scheme (Wieder et al., 2015b, 2018)). Illustrating that explicit 

representation of the process will fundamentally change model behavior will help to determine 

whether an explicit representation is needed. In addition, if the current representation of the 

process connects multiple cycles (e.g. carbon and nitrogen, water and energy), exploring existing 

model structures can help empiricists understand all the connections between their process and 

various cycles that must be elucidated and quantified when updating the ESM. Like hooking up 

speakers to a television or finding the right dongle to plug in your phone, the new process will 

only work within the ESM if all the appropriate ins and outs are connected. If the process is not 

currently in a model, it is worth investigating why not (perhaps connecting with an ESM 

modeler) and whether it might be implicitly included through other model process 

representations. For example, plant hydraulic stress is not always explicitly included in ESMs 
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(Kennedy et al., 2019), but may be implicitly included by existing connections between soil 

moisture and stomatal conductance. 

The third and final question helps to identify ecological concepts that may be more 

appropriate to a different type of modeling because they are unlikely to alter climate simulations 

within an ESM: Is the process likely to influence climate on scales of time and space consistent 

with other ESM processes? Put another way, is the process likely to change the results of global 

climate simulations using ESMs? Generally, ecology in ESMs impacts climate prediction in two 

major ways: through biogeochemical (carbon and nutrient cycling) and biogeophysical 

(evapotranspiration and energy fluxes) processes. Coupling these processes provides a means for 

assessing feedbacks between ecosystems and climate that distinguish ESMs from stand-alone 

ecosystem models.  

Simple estimates can be made to assess whether a process, when applied to large regions 

or the entire globe, has the potential to meaningfully influence climate. For example, the general 

process of insect herbivory, which responds to temperature (e.g., Deutsch et al., 2018; Edburg et 

al., 2011) and could meaningfully affect carbon fluxes through changing plant biomass, might 

influence climate (Box 1). On the other hand, temperature affects the distribution and abundance 

of mosquito species (Hunt et al., 2017), but if mosquitoes are not known to have a meaningful 

impact on climate, inclusion of mosquito species distributions would not change the outcome of 

ESM simulations, and may be better suited to a different type of model. In addition, new, 

climate-influencing processes must occur or change at a rate that is meaningful at ESM 

timescales. For example, changes in environmental conditions may alter the rates of soil 

microbial metabolic processes over the course of minutes or even seconds, but these rapid 

fluctuations are too fast to capture in the timestep of a typical ESM. On the other end of the 
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spectrum, bedrock weathering is a process that releases nutrients for plants and may impact plant 

biomass (Morford et al., 2011), but it happens so slowly that it is unlikely to shift simulated plant 

productivity in an ESM over decade to century timescales.  

Apart from facilitating ESM incorporation, these questions produce valuable intellectual 

products on their own: greater understanding of how a process fits into the terrestrial system, 

identification of knowledge gaps and a clear path towards future empirical work, and 

determining whether an ESM is the appropriate modeling tool for the process of interest. 

Reflecting on these questions can help ecologists define “future directions” for their work with 

greater specificity than “inclusion in a model,” and also generate valuable insights into the scale 

of an ecological process and its connections to water, energy, or biogeochemical cycles. In a 

classroom setting, these questions can be an effective way to practice “thinking like a modeler” 

without requiring any involvement with programming. Regardless of whether the answer to all of 

these questions for a given ecological concept is “yes”, they are beneficial for ecologists to ask. 

 

Box 1:  

 Herbivores like insects and grazers have large impacts on plant biomass and 

productivity, yet they are still absent from ESMs. How do the conceptual questions in Part 1 of 

the workflow guide next steps in deciding whether to incorporate herbivores in ESMs? Although 

herbivores are broadly not yet included in ESMs (Question 2) and are known to have important 

impacts on plant biomass with feedbacks to climate (Question 3), ESMs also require that any 

new process behave consistently across space and time (Question 1) in a way that can be 

captured quantitatively. To move forward with incorporating herbivores into ESMs, the known 

impact of herbivores on plant biomass must be reduced down to quantifiable patterns that are 
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consistent across space and time. For example, do herbivores reduce plant biomass by a fixed 

proportion, or by a proportion that depends on climate factors already present in ESMs like 

temperature and precipitation? Does the impact of herbivores vary in a predictable way across 

continents and ecoregions? If the answer is yes, then perhaps a simple model can be developed 

(Workflow part 2) or existing simple models can be considered for ESM incorporation 

(Workflow part 3).  

 

Workflow part 2: Beginning to work with simple models  

After assessing the theoretical understanding of a process and its likely importance for 

terrestrial ecosystems and climate, the next workflow steps involve the iterative development, 

implementation, and evaluation of simple models outside of the ESM, in addition to the 

collection and/or assembly of data necessary to apply the simple model at large scales (Fig. 4, 

“Test process alone”). The aim of these activities is to generate knowledge, highlight 

uncertainties, and refine understanding of the process(es) in question. At its core, this stage 

involves identifying formulas to represent our theoretical understanding of ecological systems. 

This stage is a key precursor to working with ESMs because once a process is integrated into an 

ESM, it becomes harder to discern the cause of disagreement with observations, and uncertainty 

increases. For example, photosynthesis can be evaluated with leaf gas exchange data in highly 

controlled chambers. Gross primary productivity, on the other hand, is evaluated using eddy 

covariance flux towers. Errors can arise in the model’s scaling from leaf to canopy, soil moisture, 

nitrogen availability, leaf area index, and aspects of the model other than the photosynthesis 

parameterization (Rogers et al., 2017). The "test process alone" stage is essential to identify the 

adequacy of a process model before compensating errors occur within the ESM. Although not a 



 31 

strict requirement, this phase of the workflow is best accomplished with equal, collaborative 

contributions from both empiricists and modelers (Fig. 2) including someone familiar with ESMs 

who can craft a bridge for future process incorporation.  

Simple models are created at this stage by translating knowledge from conceptual models 

of organisms and ecosystems to mathematical representations of matter and energy. The 

development of simple models can start by creating a simple statistical model or using a pre-

existing model. For example, R has a photosynthesis package (Duursma, 2015) that can be used 

as a starting point for modifications to photosynthesis like temperature acclimation (e.g., Smith 

et al., 2016) or ozone damage (e.g., Lombardozzi et al., 2012). Simple models can also be 

developed using any coding language (both R and Python are free and open source), or even start 

by using a spreadsheet program like Excel, and can range in complexity from a single equation 

to a complex web of variables and parameters. Unlike the first phase of the workflow, testing 

theory with data at this phase requires some comfort with programming and data management 

(for resources, see Table 1). These activities can be easily integrated into ecological coursework, 

and a variety of resources have been developed to facilitate this (e.g., Carey et al., 2020). 

Additionally, cross-disciplinary collaboration is beneficial at this stage, as it helps to formalize 

conceptual models, clarify assumptions, evaluate ideas within the scientific community about a 

process, connect various components of ecosystems and the Earth system, and test the broader 

applicability of theories over space and time.  

In addition to simple model development, this phase of the workflow involves 

assembling the data necessary to estimate parameters and drive simple models at large scales. 

(Note: In a model, a “parameter” is the value of a variable in an equation. The word 

“parameterization” may seem like a derivative of “parameter”, but is in fact a separate concept 
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referring to representing a complex microscale process as an approximate bulk process. For 

example, photosynthesis is a parameterization of subcellular-level processes, and may use 

parameter values within the calculation (Bonan, 2019)). Necessary data fall into several distinct 

categories: data for parameter estimation during model development, driver data to feed into the 

model (e.g., climate or soil characteristics), and data for benchmarking the model following 

simulations (i.e., observational data to compare against model output).  

At this stage, it is worth making a “shopping list” of the data necessary for a given 

modeling exercise and evaluating the availability of values at the relevant scale (Fig. 3). These 

data may come initially from a single site or lab experiments, but to eventually scale model 

results globally, data gathered across multiple regions and experiments become useful. ESMs use 

a variety of large-scale datasets for parameter estimation and evaluation, and it can be helpful to 

seek out datasets already in use before attempting to assemble a new dataset from scratch. Large-

scale data can come from meta-analytical techniques and syntheses (e.g., Ainsworth and Long, 

2005; Field and Gillett, 2010; Lombardozzi et al., 2013), pre-existing large synthesized datasets 

(e.g., SoDaH (Wieder et al., 2021), TRY (Kattge et al., 2011)), satellite data (e.g., Li and Xiao, 

2019), or model-derived products (e.g., Fluxnet-MTE (Jung et al., 2020)). Direct measurements 

are generally preferable for parameter estimation and model evaluation but are not always 

feasible to collect. As a result, parameter estimation and model evaluation often use data 

products (i.e., data that have been modified by models) to achieve the spatial and temporal scales 

required by the ESM. Data products can be closely connected to the original data (i.e., data 

averages) or less closely connected (i.e., output of another mechanistic model that uses data as an 

input).  Understanding the uncertainty of a data product is critical for determining the value of its 

use in parameter estimation and model evaluation (Dagon et al., 2020; Dietze, 2017). Simple 
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models often get stuck here on the way to ESM incorporation because of gaps in data 

requirements to run models at global scales (e.g., lack of maps of soil edaphic properties or other 

input data that may be critical for further model development). 

The creation and improvement of simplified mathematical models and large-scale 

synthesized datasets makes several valuable contributions to understanding and refining 

ecological theories, regardless of the eventual implementation in ESMs. Simple models help 

formalize, and make explicit, the underlying assumptions in the theories they represent and can 

illustrate weaknesses in existing theory. As such, they can be used to generate testable 

hypotheses that can be interrogated with existing data or new experiments. Estimating 

parameters for simple models with available observations helps identify data and knowledge 

gaps that can be addressed with further study. Compared to larger ESMs, simple models have 

greater traceability, allowing scientists to explore and understand model complexity, their 

associated uncertainties, and emergent properties that can be evaluated with independent 

observations. These simpler models also have the advantage of being easier to use, with greater 

flexibility and lower computation costs than running a full ESM, and can potentially be 

implemented in ESMs in a modularized manner that allows for testing multiple ecological 

theories (e.g., Fisher and Koven, 2020). Finally, these models help to clarify theory and develop 

concepts through independent community efforts to use them and improve their process 

representation.  

 

Box 2:  

After establishing that a new process is appropriate to consider including in an ESM 

(Part 1), what comes next? Current models of soil microbial activity highlight Part 2 of the 
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workflow: simple quantified models evaluated at a variety of scales but not yet incorporated into 

ESMs. As an example, the MIcrobial-MIneral Carbon Stabilization (MIMICS) model was 

motivated by theories highlighting interactions among soil microbes and minerals that are 

responsible for soil organic matter decomposition and persistence. A simple process model was 

initially developed in R using measurements from laboratory experiments and rates of leaf litter 

mass loss. This model was tested first at a single site (Wieder et al., 2014), and subsequent 

evaluation across continental and global scale gradients illustrated reasonable agreement with 

litter decay rates and soil carbon stocks (Wieder et al., 2015d) and a higher vulnerability of 

Arctic soil C stocks, compared to models that implicitly represent microbial activity (Wieder et 

al., 2019). MIMICS continues to undergo further development (e.g. to include coupled C-N 

biogeochemistry (Kyker-Snowman et al., 2020) and vertical resolution (Wang et al., 2021)), 

refinement (Zhang et al., 2020), and evaluation (Basile et al., 2020; Koven et al., 2017; Shi et 

al., 2018; Sulman et al., 2018). All of these activities rely on conducting simulations across 

multiple study sites and at global scales, which is a valuable precursor to considering 

incorporating MIMICS into an ESM. 

 

Workflow part 3: Integrating processes into ESMs  

 Developing and evaluating a simple model ultimately paves the way for integrating a 

process into an ESM, as illustrated in the final stage of the workflow (Fig. 4, “Test process with 

ESM”). The first step is deciding which ESM to use. Many ESMs exist and vary substantially in 

their ecological process representations (Fisher and Koven, 2020), and adding a new process 

requires an understanding of how processes of interest are currently represented in a given ESM 

(as in Stage 1) and a simple model that can be integrated within the framework of that ESM 
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(developed in Stage 2). Additionally, some ESMs have proprietary or restricted access (e.g., 

GFDL-ESM, IPSL-CM5 (Dufresne et al., 2013; Dunne et al., 2020)) and require collaboration 

and/or approval by model developers, while others are open-source and community driven (e.g., 

CESM, E3SM (Danabasoglu et al., 2020; Golaz et al., 2019)). While not always required, 

incorporating new processes will be most efficient when building relationships with model 

developers who can help with technical aspects of code development. For example, developers 

with experience in running and testing the model can provide code structure guidance and 

highlight possible interactions or feedbacks among processes that might not be obvious to a 

novice model developer. ESM communities can be insular and siloed at times, and ESM 

developers at this stage can help build more integrated empirical-modeling collaborations by 

seeking out and remaining open to working with ecologists (see Table 1 for several 

opportunities). 

 Once access to model code is available, integrating the new process representation can 

begin. The first step is finding the location to integrate the new process. While this will vary 

depending on the ESM, code modules will often have descriptive names and the location of 

variables within the code can be searched using linux- and editor-based search tools (e.g., grep). 

It is also helpful to find a similar variable or process in the code (with similar inputs and outputs) 

that can be used as an example for how to structure the new process code. Having an example to 

mirror can be particularly useful in identifying other modules where the variables may be 

required (e.g., sometimes setting the initial value for variables happens in a different module). 

Additionally, it can be helpful to outline or diagram a work plan in advance, noting the modules 

and variables that will need to be added, modified, and connected.  
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Modifications should build on each other, starting with a simple change: for example, add 

a single variable, and then test that the code will compile and run for a short period of time. 

Sequentially add more complexity, connecting the new variable or process to existing model 

structure. Using this layered approach will help to identify any structural bugs early in the 

development process. Although the ultimate goal is to have a sophisticated representation that 

includes spatially-varying processes, simpler versions of the model can -- and should -- be tested 

to determine the sensitivity of the system to the new process. These simpler model iterations are 

excellent training tools for graduate students and postdoctoral trainees as they become more 

familiar with the model. Once the basic framework for the new process is in place, it can be 

tested to identify the magnitude of change in relevant processes, as well as any interactions with 

other ecosystem processes. Often, these proof-of-concept simulations can turn into publications 

that highlight the potential importance of the process at site or global scales and identify gaps in 

data that can help to improve the process representation. 

 Throughout the development, testing, and evaluation process, the simplest relevant 

version or component of the ESM available should be used. For example, if the new process does 

not rely on carbon cycling, it may be possible to leave out this portion of the model in your 

testing, allowing the model to run faster and reducing the complexity of model interactions. 

Often with ecological processes, the development process uses only the terrestrial component of 

an ESM driven by a gridded atmospheric data product (e.g., reanalysis), since fully coupled ESM 

runs are far more computationally expensive than smaller terrestrial-only runs. Additionally, 

running in the coarsest available resolution and for the smallest spatial domain possible (e.g., a 

single site) will expedite model testing. Once code is tested, running it globally (and eventually 
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coupled to an atmospheric model) is necessary to ensure the simulation operates appropriately 

over the global domain.  

An approach called “modular development” can also be useful for testing and evaluating 

different ecological theories, and can be employed when implementing new processes in ESMs 

(Fisher and Koven (2020); see also Clark et al. (2015)). This involves adding an alternate 

representation of a process that is already simulated in a model (not removing the process) and 

letting the user specify which theory the model will use in a given simulation. For example, 

testing multiple representations of stomatal conductance (Franks et al., 2018), soil carbon and 

nitrogen cycling (Wieder et al., 2015a, 2018), and hydrology (Clark et al., 2008, 2011) have been 

helpful in testing different theories and highlighting when and where certain process 

representations perform best. This allows for refinement of existing theory and process 

representation, advancing the state of current knowledge.  

 Once the new process is incorporated, the model must be tested and evaluated. A first 

step is to determine whether the new process fundamentally changes model behavior relative to a 

simulation without this process. Does it affect other simulated processes, and by how much? 

Many processes do not exist in isolation within a model and thus cannot be modified for only 

one purpose. Better models of photosynthesis, for example, may be desired to improve the 

carbon cycle, but also impact energy and water fluxes to the atmosphere through stomatal 

conductance (Bonan et al., 2011). A second step is to evaluate model behavior against 

observations. Model evaluation is most effective if multiple processes are assessed, and is most 

useful when compared to evaluation of a baseline model simulation where the new process is not 

simulated. This step is similar to simple model evaluation in the second stage of this workflow, 

but this evaluation process should be repeated once the simple model is embedded within an 
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ESM. One simple form of evaluation is to run a simulation at a single location where relevant 

observational or experimental manipulation data have been collected, such as a field site or a flux 

tower (Cheng et al., 2019; Medlyn et al., 2015). These data can be used to assess whether the 

new model behavior fundamentally changes model performance (De Kauwe et al., 2013, 2014; 

Smith et al., 2015; Thomas et al., 2013; Zaehle et al., 2014). It is also important to evaluate 

global responses. While global data can be more challenging to access, several resources are 

currently available. Perhaps the most useful is the International Land Model Benchmarking 

(ILAMB; Collier et al., 2018) project, which has developed internationally accepted 

benchmarking standards for ESM performance. This project has compiled global datasets for a 

range of variables and can help to identify where model performance is enhanced or degraded. 

Remotely sensed data products can also help with model evaluation at regional to global scales. 

 One of the greatest challenges in ESM development is ensuring parsimony while 

capturing the full range of biological complexity. This is particularly challenging for community 

models with contributors from multiple fields and institutions, which commonly suffer from 

“feature fatigue”. Human instinct is to continue to add features to a solution, even when 

removing features may be more beneficial or efficient (Adams et al., 2021). While adding 

processes can improve model realism, care must be taken to avoid sacrificing model reliability, 

which can be degraded with the addition of uncertain parameters (Prentice et al., 2015). Eco-

evolutionary optimality theory is one recent tool that can be used to improve model realism 

while limiting the number of new parameters (Box 3; Scott and Smith, 2021; Wang et al., 

2017a). Unlike statistical approaches where environmental responses are hard-coded with 

parameters, a theoretical approach allows process responses to emerge with fewer parameters 
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(Prentice et al., 2015). These responses can then be tested with data that might, in a more 

statistical approach, be needed to estimate parameters. 

The workflow so far has presented guidelines for incorporating a new process into an 

ESM, which requires substantial work in developing and incorporating new code into a model 

and then evaluating the responses of terrestrial processes. Often, the ecological workflow ends 

here with the assessment of the global-scale impact of a process and how it may change 

ecological functioning through time. Beyond this, an exciting next step is to understand whether 

this new process has climate feedbacks by comparing land-only and coupled model simulations. 

Land models can be coupled to other ESM components (atmosphere, ocean, ice, etc.) to 

investigate global feedbacks in water, energy or biogeochemical cycles. Connecting land and 

atmosphere components allows investigation of unexpected feedbacks with the atmosphere that 

may be different from land-only simulations.  

 

Box 3:  

One example of how models have maintained parsimony (Part 3 of the workflow) is 

photosynthetic acclimation (Smith and Dukes, 2013). Initially, empirical models were developed 

to simulate temperature acclimation of photosynthetic biochemical capacity in ESMs based on 

observed responses (e.g., Kattge et al., 2009; Kattge and Knorr, 2007) and then incorporated in 

ESMs (Friend, 2010; Lombardozzi et al., 2015b; Mercado et al., 2018; Smith and Dukes, 2013; 

Ziehn et al., 2011). However, more recently, eco-evolutionary optimality theory has been 

invoked to simulate photosynthetic biochemical capacity in a way that incorporates the 

processes without added parameters (configuration variables internal to a model that rely on 

observational data), thus increasing model realism without altering model reliability (Scott and 
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Smith, 2021; Smith and Keenan, 2020; Wang et al., 2017a). Eco-evolutionary optimality theory 

approaches rely on the assumption that natural selection will remove non-competitive traits from 

an environment, thus providing testable, theoretical trait responses to the environment over short 

and long time scales, and offer potential promising avenues for adding biological processes to 

ESMs with little to no added parameters (Franklin et al., 2020). Eco-evolutionary optimality 

approaches are available to simulate processes at the leaf (Jiang et al., 2020; Prentice et al., 

2014; Smith et al., 2019; Smith and Keenan, 2020; Wang et al., 2017a, 2020), plant (Dybzinski 

et al., 2015; Farrior et al., 2013; Weng et al., 2015) and ecosystem (Baskaran et al., 2017; 

Franklin et al., 2020) scales.  

  

Box 4:   

The following example illustrates the entire workflow, from initial conceptual 

development to simple modeling to working with ESMs. As part of her research, co-author 

Lombardozzi measured how leaf-level gas exchange changed in response to ground-level ozone. 

Upon analyzing her data, she found that leaf-level carbon (photosynthesis) and water 

(transpiration) fluxes decreased at different rates. Since these are both important greenhouse 

gases and affect fundamental plant processes (photosynthesis and stomatal conductance, which 

scale through time and space regardless of biome), she thought that ozone damage could have a 

global impact and therefore should be included in large-scale models. Although Lombardozzi 

had no modeling or coding experience, she emailed several people working on the Community 

Land Model (CLM) to see if they might want to collaborate. She did some research about the 

photosynthesis and stomatal conductance models used in CLM and talked with modeling 

colleagues to decide how to best include this type of damage. After completing online Linux and 
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Fortran tutorials, Lombardozzi started using a simple photosynthesis-stomatal conductance 

model provided by her colleagues. She applied linear regressions calculated from her 

experiment to the rates of maximum carboxylation (Vcmax) to simulate ozone damage to 

photosynthetic enzymes. She was able to show that including ozone damage improved simulated 

photosynthesis and stomatal conductance at the leaf scale (Lombardozzi et al., 2012).  

Did these changes matter globally? Lombardozzi worked with model developers to find 

out, using the simple model to update code in the CLM to account for ozone damage. Using data 

from her experiment and a constant ozone concentration, she showed that ozone did have large 

consequences for carbon and water cycling globally (Lombardozzi et al., 2013). While this 

experiment highlighted the sensitivity of global processes to ozone damage, it did not provide a 

realistic assessment of how ozone changes carbon and water cycling. Lombardozzi therefore 

synthesized existing published literature to determine how photosynthesis and stomatal 

conductance change in relation to ozone exposure, and identified a complete lack of data for 

tropical forests (Lombardozzi et al., 2013). Despite missing data for large biomes, these data 

were then used to update the CLM code to capture responses across different plant functional 

categories (e.g., broadleaf trees, needleleaf trees, herbaceous vegetation), and when combined 

with realistic ozone data, simulated that ozone decreases global photosynthesis by 10.8% and 

transpiration by 2.2%, with larger impacts in Eastern US, Europe, and Southeast Asia 

(Lombardozzi et al., 2015a).  
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4. Creating community change across scales  

 Empirical and modeling communities already work together and influence one another in 

many ways, yet integrating ecological processes into ESMs remains a persistently slow process 

with myriad challenges limiting efficient collaboration. Historically, ESMs have been developed 

by atmospheric and physical science communities while ecology has only been integrated 

relatively recently, and the disciplinary requirements in trainee education have not provided 

enough of a shared foundation to build strong conceptual bridges between ESMs and empirical 

ecologists. These communities must collectively address persistent obstacles including confusing 

technical language, lack of resources for skills development, and the need for better connections 

and integration across scientific communities. We provide resources to help expand terrestrial 

ecological process representation in ESMs (Table 1). With the advent of these and other tools, 

empiricists will be better poised to take advantage of technical workflows that can help 

streamline data-model integration (e.g., Fer et al., 2021).  

The interdisciplinary work of developing an Earth system model is not only technical, but 

also social. As such, in addition to the workflow presented above, we offer specific suggestions 

for restructuring ecological education and interactions within collaborations (see Section III), 

both of which are key to ensuring that the workflow does not break down. For bridge-building 

between communities to be inclusive, the modeling and empirical communities need to examine 

their community practices, values, and norms. This work includes understanding the 

demographics of who is (and is not) represented in the research communities (Bernard and 

Cooperdock, 2018), what processes our communities are willing to consider (or dismiss) as 

valuable contributions to ESMs (e.g., microbes, moths, management), where data are collected 

and why some regions or ecosystems are over/under sampled (Martin et al., 2012; Metcalfe et 
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al., 2018), when we overlook potential collaborators or fail to provide them with platforms for 

sharing their work, such as at conferences (Ford et al., 2019), and why we make the decisions 

that we do about where to focus efforts. 

 Improved collaboration between empirical and modeling communities will positively 

benefit each community. Adding modeling to empirical work can increase its impact while 

simultaneously advancing ecological theory, modeling capabilities, and model realism. To get 

started or go further with this work, we have assembled a list of resources for skills development 

at each stage of the workflow (Table 1). To maintain contemporary resources, please visit the 

regularly updated website (https://ecoesm.github.io/). Despite the many complex challenges 

involved in integrating terrestrial ecology and Earth system modeling, there has never been a 

better time to attempt such difficult work. Finding and communicating with scientists across the 

globe is getting easier every year, computing resources are rapidly evolving, and the internet 

provides an ever-growing assortment of free tools for developing new quantitative and 

programming skills. In addition, funding sources are increasingly recognizing the value of data-

model integration (e.g. the NASA Modeling, Analysis, and Prediction program 

(https://map.nasa.gov/) or the USDA NIFA Data Science for Food and Agricultural Systems 

program (https://nifa.usda.gov/program/dsfas)) and grassroots efforts are creating a framework 

for these collaborations using workshops and tutorials. Our insights into the history of ecology in 

ESMs, workflow for developing and incorporating ecological processes into ESMs, and specific 

resource suggestions will advance this exciting progress and provide a scaffold for building 

fruitful bridges between empirical and modeling communities. 
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Table 1. Table of textbooks and free resources for developing cross-disciplinary skill sets in empirical and modeling 

work and learning to traverse the stages of integrating new processes into an Earth System model. For a regularly 

updated list of resources, visit https://ecoesm.github.io/. 

Skill/ Category Item Description Link 

Programming 
NCAR Python 
tutorials 

Basic introduction to the Python 
language from the National Center for 
Atmospheric Research https://ncar.github.io/python-tutorial/ 

Programming 
PEcAn project 
tutorials 

Introduction to working with the 
Predictive Ecosystem Analyzer https://pecanproject.github.io/tutorials.html 

Programming The Unix Shell The basics of file systems and the shell http://swcarpentry.github.io/shell-novice/ 

Programming Udacity 

Free courses on basic programming 
competency with github, linux, R, 
python, and many others https://www.udacity.com/ 

Programming 
Software 
Carpentry 

Free courses on basic programming 
competency with github, linux, R, 
python, and many others https://software-carpentry.org/lessons/index.html 

Programming R tutorial Basic introduction to working with R https://education.rstudio.com/learn/beginner/ 

Simple modeling InsightMaker 
Tools for developing quantitative stock-
and-flow diagrams of processes https://insightmaker.com/ 

Simple modeling 
Teaching 
Resources 

Lessons and other resources developed 
for teaching basic principles of 
ecological modeling 

https://matthesecolab.com/teaching/ 
http://www.maryheskel.com/teaching.html 
https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.6757 

Simple modeling 
Modeling the 
Environment 

Textbook on environmental modeling 
by Andrew Ford  

Simple modeling EDDIE  
Modeling/forecasting teaching modules 
developed for NEON sites https://serc.carleton.edu/eddie/macrosystems/index.html 

Simple modeling 
Excel modeling 
tutorial 

Tutorial on building simple models in 
Excel 

http://www.mbaexcel.com/excel/how-to-build-an-excel-model-step-
by-step/ 

Earth system 
modeling 

Climate Change 
and Terrestrial 
Ecosystem 
Modeling 

Textbook on global-scale ecosystem 
modeling by Gordon Bonan 

https://www.cgd.ucar.edu/staff/bonan/ecomod/index.html 
https://www.cgd.ucar.edu/staff/bonan/ecoclim/index.html 

Earth system 
modeling CESM tutorial 

Workshop on working with the 
Community Earth System Model https://www.cesm.ucar.edu/events/tutorials/ 

Earth system 
modeling 

Earth System 
Modeling 
Framework 

Introduction to working with Earth 
System Models https://earthsystemmodeling.org/tutorials/ 

Earth system 
modeling CESM-Lab Cloud version of CLM  https://github.com/NCAR/CESM-Lab-Tutorial 
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Figure 1. Historically, the process of integrating ecology in Earth System models (ESMs) has often separated tasks 

along disciplinary lines, with empirical ecologists feeding data into a mysterious “modeling” process and modelers 

modifying and using data without a thorough understanding of data collection procedures and caveats. The newest 

generation of scientists has the opportunity to pull back the curtain by developing cross-disciplinary skill sets and 

building stronger, more collaborative bridges between empirical and modeling communities, with the goal of 

accelerating the integration of ecological concepts into ESMs. 
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Figure 2. The prevalent existing paradigm in ecology-Earth System model (ESM) integration separates tasks along 

disciplinary lines, with empirical scientists giving data and generalized patterns to modelers who then develop 

quantitative models and work with ESMs. We recommend a shift away from this historical paradigm towards a 

more collaborative one in which empiricists and modelers are involved in co-producing knowledge (with differing 

degrees of contribution) at every stage of data collection, theory development, and model integration. We also 

emphasize the two-way exchange of ideas, insights, and data between empirical and modeling driven activities.  
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Figure 3. In the hierarchy of model development, simple models of individual processes, classes of organisms, and 

inorganic components (site/local scale) are often pieced together to form larger models of ecosystems and regions 

(ecosystem scale) and ultimately combined to form Earth system models (ESMs; global scale). Data gathered at 

each of these scales can be used to inform model development at the same scale.                                   
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CHAPTER II: STOICHIOMETRICALLY COUPLED CARBON AND NITROGEN CYCLING 

IN THE MICROBIAL-MINERAL CARBON STABILIZATION MODEL VERSION 1.0 

(MIMICS-CN V1.0). 

 

Published in Geoscientific Model Development 13, no. 9 (2020): 4413-4434. 

Authored by Emily Kyker-Snowman, William R. Wieder, Serita D. Frey, and A. Stuart Grandy.  
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Abstract  

Explicit consideration of microbial physiology in soil biogeochemical models that 

represent coupled carbon-nitrogen dynamics presents opportunities to deepen understanding of 

ecosystem responses to environmental change. The MIcrobial-MIneral Carbon Stabilization 

(MIMICS) model explicitly represents microbial physiology and physicochemical stabilization 

of soil carbon (C) on regional and global scales. Here we present a new version of MIMICS with 

coupled C and nitrogen (N) cycling through litter, microbial, and soil organic matter (SOM) 

pools. The model was parameterized and validated against C and N data from the Long-Term 

Inter-site Decomposition Experiment Team (LIDET; 6 litter types, 10 years of observations, 13 

sites across North America). The model simulates C and N losses from litterbags in the LIDET 

study with reasonable accuracy (C: R2=0.63, N: R2=0.29), which is comparable with simulations 

from the DAYCENT model that implicitly represents microbial activity (C: R2=0.67, N: 

R2=0.30). Subsequently, we evaluated equilibrium values of stocks (total soil C and N, microbial 

biomass C and N, inorganic N) and microbial process rates (soil heterotrophic respiration, N 

mineralization) simulated by MIMICS-CN across the 13 simulated LIDET sites against 

published observations from other continent-wide datasets. We found that MIMICS-CN 

produces equilibrium values in line with measured values, showing that the model generates 

plausible estimates of ecosystem soil biogeochemical dynamics across continental-scale 

gradients. MIMICS-CN provides a platform for coupling C and N projections in a microbial-

explicit model but experiments still need to identify the physiological and stoichiometric 

characteristics of soil microbes, especially under environmental change scenarios. 
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1 Introduction 

Soils contain the largest actively cycling terrestrial carbon (C) stocks on earth and also 

serve as the dominant source of nutrients, like nitrogen (N), that are critical for maintaining 

ecosystem productivity (Gruber and Galloway, 2008; Jobbágy and Jackson, 2000). Soil C cycle 

projections and their response to global change factors remain highly uncertain (Bradford et al., 

2016; Todd-Brown et al., 2013), but recent empirical insights into microbial processing of soil C 

provide opportunities to update models and reduce this uncertainty (Cotrufo et al., 2013; 

Kallenbach et al., 2016; Lehmann and Kleber, 2015; Schmidt et al., 2011; Six et al., 2006). 

Several models have been developed recently with explicit representation of nonlinear microbial 

C processing dynamics, including the MIcrobial-MIneral Carbon Stabilization (MIMICS) model 

(Sulman et al., 2018; Wieder et al., 2014, 2015d) and others (Abramoff et al., 2017; Allison, 

2014; Fatichi et al., 2019; Hararuk et al., 2015; Robertson et al., 2018; Sulman et al., 2014; 

Wang et al., 2013a, 2014a, 2017b). While these models serve different purposes, some can be as 

good as or better than models without explicit microbial pools at simulating global soil C stocks 

and the response of soil C to environmental perturbations (Wieder et al., 2013, 2015d), and they 

also predict very different long-term responses of soil C to global change (Wieder et al., 2013, 

2018). Microbial-explicit models have thus furthered our understanding of C cycling in the 

terrestrial system, but they also provide new opportunities to explore couplings between C and 

nutrient cycles, especially N.  

 Terrestrial models that couple C and N cycles reveal important ecosystem feedbacks that 

are absent from C-only models. For example, across ecosystems, experimental manipulations 

consistently indicate that N availability limits plant productivity (LeBauer and Treseder, 2008).  

C-only model configurations in models typically predict that CO2 fertilization will result in a 
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large increase in both plant productivity and the land C sink in coming decades, but nutrient 

limitation may constrain the magnitude of this terrestrial ecosystem C uptake (Wieder et al., 

2015c; Zaehle et al., 2015; Zaehle and Dalmonech, 2011). As terrestrial models increasingly 

represent coupled C-N biogeochemistry, accurate model estimates of N release from soil organic 

matter (SOM) will become important to reducing uncertainty in the CO2 fertilization response of 

the terrestrial C cycle.  

Currently, most biogeochemical models that couple C and N cycles have an implicit 

representation of microbial activity. These conventional models represent SOM decomposition 

with the assumption that chemical recalcitrance of organic matter dictates the turnover of litter 

and SOM pools (Luo et al., 2016). Carbon and N fluxes represented in these models are directly 

proportional to donor pool sizes, without any explicit representation of the microbes that mediate 

these fluxes (Schimel, 2001, 2013). Linear decay constants and transfer coefficients determine 

the flow of C and N through a decomposition cascade, and rates of N immobilization and 

mineralization emerge from the interaction of fixed respiration fractions and the stoichiometry of 

donor and receiver SOM pools. The lack of plant-microbe-soil feedbacks in these models may 

limit their predictive capacity, especially in the face of environmental change. For example, in 

these models increased plant inputs to soil only build soil C and N stocks, and plants have no 

way to stimulate the microbial community to mine existing SOM for N without model 

modifications (Guenet et al., 2016; Wutzler and Reichstein, 2013). This “N mining” or 

“priming” effect, where increased plant inputs result in increased microbial activity and 

decomposition rates, has been demonstrated in experimental studies (Cheng and Kuzyakov, 

2005; Dijkstra et al., 2013; Phillips et al., 2012) and may be a critical pathway for plants to 
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obtain more N and support increased plant productivity under elevated CO2 (Thomas et al., 2015; 

Zaehle et al., 2014).  

Microbes are critical mediators of soil C-N couplings and the release of plant-available 

N. As such, models that explicitly consider microbial activity provide an opportunity to explore 

potential microbial control over soil C-N biogeochemical cycling and improve simulations of 

patterns in ecosystem C and N. Towards this end, multiple models have been introduced that 

explicitly consider the role of microbial activity in ecosystem C-N interactions  (Averill and 

Waring, 2017; Fatichi et al., 2019; Huang et al., 2018a; Schimel and Weintraub, 2003; Sistla et 

al., 2014; Sulman et al., 2014, 2017, 2018, 2019; Wang et al., 2017b, 2014b, 2013b). To date, the 

majority of these microbial-explicit C-N models have been developed to explore soil 

biogeochemical interactions and microbial community dynamics, while only one has been 

validated for N dynamics across a continental-scale gradient (Fatichi et al., 2019).  

Although there is great value in exploring diverse approaches to explicitly representing 

microbes in purely theoretical or site-specific applications, implementing these conceptual 

developments within larger-scale models requires convincing evidence that adding them 

improves model performance against large-scale data. Recent soil model comparisons report 

divergent responses to simulated global change experiments among microbial-explicit model 

formulations, highlighting the large uncertainty in their underlying process-level representation 

and parameterization (Sulman et al., 2018; Wieder et al., 2018). The addition of explicit 

microbial pools may improve the predictive ability of landscape-scale models in the long run, but 

microbial models must be validated against landscape-scale datasets of a variety of pools and 

process rates before they can reasonably be expected to improve model performance and reduce 

uncertainty. 
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We developed a coupled C-N version of MIMICS (MIMICS-CN) to fill the need at the 

intersection of microbial-explicit models, coupled C-N models, models that work well enough to 

be considered for use in ESMs, and models that can be validated against currently available 

large-scale data. The C-only iteration of MIMICS considers trade-offs involved with microbial 

functional traits as well as both physicochemical (i.e. mineral associations) and chemical (i.e. 

recalcitrance) mechanisms of C stabilization in soil. (Wieder et al., 2014, 2015d) and (Sulman et 

al., 2018) evaluated this C only version of MIMICS across site, continental, and global scales. 

Here we expand on this work, introducing MIMICS-CN, which incorporates stoichiometrically 

coupled C and N cycling of all microbial, litter and SOM pools and stoichiometric constraints on 

microbial growth. Our core objectives were to: 1) Formulate a framework and parameterization 

for coupled C and N cycling in MIMICS; 2) Validate MIMICS-CN against a continental-scale 

litter decomposition dataset (LIDET) and compare MIMICS-CN to a microbially-implicit, linear 

model (DAYCENT); and 3) Evaluate equilibrium soil and microbial stocks and fluxes (and their 

parameter sensitivities) that are simulated by MIMICS-CN with data synthesized across 

published landscape-scale data. Our overarching goal was to create a microbial-explicit coupled 

C-N model of soil that balances ecological realism with the practical considerations of large-

scale simulation, and to demonstrate the abilities of this model through parameterization, 

validation and evaluation exercises using both dynamic and equilibrium data. 
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2 Methods 

2.1 Model formulation 

MIMICS-CN builds upon the previous C-only version of MIMICS, described in (Wieder 

et al., 2014, 2015d), using the same pool structure for N as for C plus an additional pool for 

dissolved inorganic nitrogen (DIN; Fig. 1). In-depth discussion of the reasoning behind the 

development of the C-only version of the model is available in these previous publications, but 

the general intent behind the development of MIMICS was to incorporate a simplified 

representation of the important aspects of microbial communities (biomass-dependent control of 

process rates, diversity in life history strategies and physiological parameters) into a soil model 

that stabilizes organic matter through both physical (mineral-associated, protected from 

microbial decomposition) and chemical (recalcitrance-based, vulnerable to microbial 

decomposition) means.  The C-only version of the model represents C flows through seven pools 

(Fig. 1): two litter pools, two microbial pools, and three SOM pools. Litter inputs to the model 

are partitioned into structural litter (LITs) and metabolic litter (LITm) pools based on estimates of 

litter quality for different biomes (Brovkin et al., 2012). 

Temperature-sensitive forward Michaelis-Menten kinetics determine the flux of litter and 

SOM through microbial biomass pools that determine rates of organic matter decomposition, 

SOM formation, soil respiration and nitrogen mineralization fluxes. The microbial functional 

groups are intended to broadly capture tradeoffs in microbial growth rates and growth efficiency, 

with rapidly-growing microbial decomposers (low efficiency, r-strategist (MICr)) and slower-

growing microbial decomposers (higher efficiency K-strategist (MICK; Wieder et al., 2015d)). In 

MIMICS-CN we extend these microbial physiological traits to include microbial stoichiometry 

and assume that the higher metabolic capacity of MICr also require more nitrogen and, thus a 
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lower microbial biomass C:N ratio. Fluxes of C into microbial pools result in respiration losses 

according to a defined carbon use efficiency (CUE) that varies by microbial functional group and 

substrate quality (e.g. structural or metabolic litter). Microbial pool sizes are moderated by 

inputs, CUE, and biomass-specific turnover rates. We implemented density-dependent microbial 

turnover (sensu Georgiou et al., 2017; see Appendix A) for this iteration of the model to make 

microbial pools behave realistically in response to small changes in C inputs (Wang et al., 2014b, 

2016). The density-dependent turnover of microbial biomass dampens the oscillatory response of 

microbial biomass to perturbations. 

Microbial biomass turns over into physicochemically-stabilized (SOMp), chemically-

stabilized (SOMc), and a pool that is ‘available’ for microbial decomposition (SOMa). We 

consider the SOMp pool to mostly consist of low C:N organic matter that is primarily composed 

of microbial products that are adsorbed onto mineral surfaces (e.g. mineral-associated organic 

matter, MAOM; Grandy and Neff, 2008). By contrast, the low-quality SOMc pool consists of 

decomposed or partially decomposed litter that has more structural C compounds, such as lignin, 

and a higher C:N ratio (e.g. particulate organic matter, POM). Finally, the SOMa is the only 

SOM pool that is available for microbial decomposition; it contains a mixture of fresh microbial 

residues, products that are desorbed from the SOMp pool (e.g. Jilling et al., 2018), as well as 

depolymerized organic matter from the SOMc pool. We do not specifically consider soil 

aggregates, but we recognize that in some soils they are an important component of accruing and 

maintaining persistent organic matter.   

The current representation of N cycling in MIMICS-CN is based on the threshold 

element ratio idea described in (Sinsabaugh et al., 2009) and (Mooshammer et al., 2014) 

whereby organisms maintain biomass stoichiometry by spilling excess C or N on either side of a 
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threshold ratio. We modified the C-only iteration of MIMICS to include N by adding a parallel 

set of pools and fluxes for N, as well as a pool for inorganic N (Fig. 1). The C cycle drives 

decomposition with fluxes from litter and SOM pools to microbes based on biomass-C-based 

forward Michaelis-Menten kinetics. Parallel N fluxes are determined by the C:N ratio of the 

donor pools, which is a fixed parameter for the metabolic litter pool, varies with litter input 

chemistry for the structural litter pool, and depends on inputs for SOM pools. We use a fixed 

C:N of 15 for metabolic litter inputs, while the C:N of structural litter was allowed to vary to 

ensure conservation of total N inputs from litterfall (Table 1).  

The coupling between C and N cycles in MIMICS-CN occurs in the microbial biomass: 

at each hourly time step, the total C and N in incoming fluxes available to microbes is summed 

and adjusted based on the C use efficiency (CUE; varies with microbial functional group and 

substrate) and N use efficiency (NUE; set to 0.85 for all fluxes entering microbial biomass pools 

in this model iteration). If the C:N of substrates being assimilated by microbial functional groups 

is greater or less than the C:N of the microbial biomass (defined as 6 and 10 for r- and K-

strategists, respectively; Table 1), the microbes will spill excess C or N to maintain their biomass 

stoichiometry through overflow respiration or excess N mineralization. In MIMICS-CN the C:N 

ratio of SOM pools is flexible and determined by the inputs from microbial residues and direct 

inputs from litterfall fluxes (fi; Fig. 1). All N fluxes into microbial pools leak a small quantity of 

N into a dissolved inorganic N pool (DIN) based on the model-defined NUE.  At each time step, 

each microbial functional group can access a fraction of the inorganic N pool proportional to 

their fraction of total microbial biomass. Plant N uptake and ecosystem losses (both hydraulic 

and gaseous) of inorganic N are handled implicitly at this stage, with a fixed fraction (20%) of 

DIN leaving the soil component model every time step.  
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2.2 Model parameterization and validation: Cross-site litter decomposition 

We parameterized and validated MIMICS-CN using C and N dynamics observed across 

multiple sites participating in the 10-year Long-Term Intersite Decomposition Experiment Team 

(LIDET) experiment (Adair et al., 2008; Harmon et al., 2009; Parton et al., 2007). The LIDET 

study selected standardized plant litter types with a range of litter quality (lignin and N 

concentration), placed litterbags containing 100 g of each litter type at sites across a continental 

scale gradient of climatic conditions, and measured changes in the C and N in litterbags on an 

approximately annual basis for 10 years. Although the original dataset included 27 sites across 

North America, we utilized data from 14 sites ranging from Alaska to Puerto Rico based on the 

data available at those sites to drive MIMICS (see (Wieder et al., 2015d) for site information). 

We focus our analysis on six leaf litters that were simulated across all sites that have been used 

previously to evaluate litter decomposition dynamics in terrestrial models (Bonan et al., 2013; 

Parton et al., 2007; Wieder et al., 2015d). Root litter types included in the original LIDET 

experiment were not included. The LIDET dataset is a robust appraisal of the impacts of climate 

and litter chemistry on litter decomposition and has been used as a dataset for comparing models 

of soil and litter decomposition in the past (Bonan et al., 2013). MIMICS has been used 

previously to simulate C losses in the LIDET study (Wieder et al., 2014, 2015d).  

We parameterized MIMICS-CN using observations from Harvard Forest in Petersham, 

MA, USA. Observations included both litterbag C loss and N data from the LIDET study as well 

as measurements of soil C and N stocks and microbial C and N from other studies at Harvard 

Forest (Colman and Schimel, 2013). Multiple combinations of parameters produced equally 

good fits to litter decomposition data; thus ancillary data on soil and microbial C stocks were 

used to inform the parameter values presented here (Table 1). These ancillary data were not 
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reported in LIDET and were not measured on identical plots to those used for the LIDET study 

(Harvard Forest encompasses multiple experiments and ecotypes), but these general targets were 

useful in distinguishing among model parameterizations. Our general targets for stocks at 

Harvard Forest included soil C and N (0-5 cm mineral soils, coniferous stand): 61 mg C cm-3 and 

2.9 mg N cm-3; soil C:N: 21; and microbial biomass: 0.61 mg C cm-3 (estimated as 1% of soil C 

based on (Xu et al., 2013)).  

After parameterizing the model to match observations at Harvard Forest, the model was 

validated using data from the remaining LIDET sites. To represent litterbags in MIMICS-CN, we 

first spun up the underlying model to simulate steady-state soil C and N pools and fluxes across 

sites in the LIDET study using site-level measurements of mean annual temperature, clay 

content, and litter input quantity, and litter chemistry (Wieder et al., 2015d). Then, we added a 

pulse of metabolic and structural litter based on the type of litter in the simulated litterbag. We 

tracked the C and N across all model pools for 10 years and calculated the C and N in litterbags 

as the difference between total model C and N in the simulations and total model C and N at 

steady state. In both the simulated and real litterbags, microbes immobilized N from the soil DIN 

pool, resulting in litterbag N contents for some time points in excess of the initial values. For 

each site, the model was sampled at time points equivalent to the real data collection dates in 

LIDET (approximately annually). Observed and modeled values of C and N in litterbags were 

compared by calculating R2, root mean square error (RMSE) and bias. 

To contextualize our results and better understand how our model functions compared to 

a widely used microbial-implicit model, we compared MIMICS-CN simulations of LIDET data 

against DAYCENT (Bonan et al., 2013) simulations of the same data. (Bonan et al., 2013) used 

the full complement of 27 LIDET sites in their analysis, but here we subset those results for the 
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13 sites used in the MIMICS-CN validation. We calculated R2, RMSE and bias in the same way 

for each model and compared results across models, grouping results by biome.  

 

2.3 Model evaluation: Equilibrium C and N cycling 

Building on the LIDET simulations, we independently synthesized observations to 

evaluate the patterns of C and N pools and fluxes across a variety of sites. Although direct, site-

specific comparisons of modeled and observed values like microbial biomass would have been 

ideal, MIMICS-CN represents many variables that were not measured in the LIDET study and 

have not been synthesized across these Long-Term Ecological Research sites. Instead, we 

compared the range and distribution of pools (soil organic C and N, microbial biomass C and N, 

and total inorganic N) and fluxes (heterotrophic respiration and N mineralization) using the 

modeled LIDET simulations and published syntheses of observations from other sites (Cleveland 

and Liptzin, 2007; Colman and Schimel, 2013; Xu et al., 2013; Zak et al., 1994). To more 

directly compare measurements with model results, stock measurements were converted to units 

of % of soil mass and fluxes (heterotrophic respiration and net N mineralization rates) were 

converted to units of µg cm-3 hr-1. MIMICS reports pool values in units of g cm-2 (0-30 cm); to 

compare MIMICS against observations we converted MIMICS values to % by mass assuming a 

bulk density of 1.5 g cm-2. Soil depth simulated by MIMICS (30 cm) is deeper than most of the 

observations in the compiled dataset, but the purpose of this exercise was to evaluate whether 

MIMICS produces realistic values for soil biogeochemical stocks and fluxes across continental-

scale ecoclimatological and edaphic gradients, rather than making a direct site-specific 

comparison. The distribution of values produced by MIMICS across the LIDET sites was 
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superimposed on the distributions of observed values to illustrate data-model agreement and to 

visualize the median and range of measurements across studies. 

Finally, we documented relationships between model input variables (mean annual 

temperature, productivity, clay content, and litter quality) and the distribution of SOM pools that 

were simulated at the LIDET sites. Our aim with these analyses was to illustrate the underlying 

assumptions in the model and how they influence the size and distribution of C across SOM 

pools. Specifically, we wanted to explore how assumptions made in the model structure and 

parameterization of MIMICS determine the quantity and distribution of SOM pools, and how 

they change among sites with variation in climatic, biological, and edaphic properties. To do this 

we looked at the absolute and relative contributions of each SOM pool simulated by MIMICS 

across the LIDET sites and conducted linear regressions to determine how environmental factors 

control their distributions. We also conducted linear regressions between soil C:N and both litter 

chemistry and environmental factors to assess the drivers of soil C:N in the model.  
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3 Results 

3.1 Model parameterization and validation: Cross-site litter decomposition 

We parameterized MIMICS-CN to replicate litter C decay rates and N dynamics of six 

litter types observed in the LIDET study at the Harvard Forest LTER site (Fig. 2). In its current 

parameterization, MIMICS slightly overestimates litter C loss at later stages of decay, but most 

time points are within uncertainty estimates of the observations (Fig. 2a). Similarly, for N, 

MIMICS-CN overestimates N accumulation in early stages of decay and underestimates N 

remaining at later stages, but most time points follow a reasonable trajectory given observations. 

MIMICS-CN also captures the effects of litter quality on both rates of litter decay (Fig. 2a) and 

litterbag N accumulation (Fig. 2b). The parameters we used to fit MIMICS-CN to Harvard Forest 

data also produce reasonable estimates of soil N stocks (2.0 vs. 2.9 mg N cm-3 for model and 

observations, respectively) and microbial biomass (0.65 vs 0.61 mg C cm-3), although estimates 

of soil C (21 vs 61 mg C cm-3) and soil C:N (11 vs. 21) are both lower than observations.  

Parameter values used for this and subsequent simulations across all LIDET sites are 

shown in Table 1. Relative to the previous C-only version of the model (Wieder et al., 2014, 

2015d), kinetic parameters and microbial turnover values were adjusted to account for density-

dependent turnover (Georgiou et al., 2017). In addition, the fraction of structural litter that 

bypasses microbial biomass to enter the chemically-protected pool (fi) was increased from 5% to 

30% as a means to produce reasonable values for total soil C:N. Finally, we adjusted the 

partitioning of microbial turnover to stable soil pools in order to more closely match distributions 

at Harvard Forest.  

Applying this parameterization across all six litter types at 13 LIDET sites, MIMICS-CN 

simulates C losses and N dynamics from litterbags with an R2 of 0.63 and 0.29, respectively (Fig. 
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3). MIMICS-CN captures effects of litter quality on decay rates, with faster rates of C loss and 

more rapid N mineralization simulated with more N rich Drypetes glauca litter, and slower rates 

of C loss and greater N immobilization simulated by low quality Triticum aestivum litter (Fig 3a, 

c). MIMICS-CN is best at capturing C loss rates in high- and intermediate-quality litters 

(Drypetes glauca, Pinus elliottii, Thuja plicata, and Acer saccharinum) but tends to 

underestimate litter C loss rates from the lowest-quality litter (T. aestivum). For N 

immobilization and loss, the model performs well especially for high-quality litters but 

underestimates N accumulation slightly in the lowest-quality litter. The model also captures 

broad climate effects on litter C loss, with slower decay rates in tundra and boreal forests sites 

and faster decay in tropical and deciduous forests (Fig 3b).  

MIMICS-CN and DAYCENT simulations of LIDET decomposition data are compared in 

Table 2. Across a broad range of biomes, MIMICS-CN and DAYCENT both show good 

agreement with LIDET observations. Across sites MIMICS-CN has similar R2 and RMSE values 

but lower bias compared to DAYCENT for mass loss (MIMICS-CN: R2=0.63, RMSE=16.0, 

bias=-0.12; DAYCENT: R2 = 0.67, RMSE=14.4, bias=4.73), and percent N remaining 

(MIMICS-CN: R2=0.29, RMSE=0.34, bias=0.03; DAYCENT: R2=0.30, RMSE=0.40, 

bias=0.08). Broadly, MIMICS-CN outperformed DAYCENT in the warmest biomes while 

DAYCENT excelled for colder sites for both C and N (Table 2), but the differences in model fit 

to data were slight and would be difficult to attribute to any particular differences in model 

structure. DAYCENT simulates decomposition based on initial litter chemistry and showed no 

site-specific effects on the maximum N immobilized or the relationship between C and N during 

decomposition for a given litter type (Fig. S1 and S2). By contrast, the amount of N that can be 

immobilized by a litterbag in MIMICS-CN is driven by the availability of N and the stocks and 



 64 

flows of N in the simulated steady-state soil, and MIMICS-CN showed site-specific variability in 

the shape of N immobilization and loss curves (Fig. 3 and 4). 

Litter quality determines the timing of N immobilization vs. mineralization in 

observations. This produces a functional relationship between initial litter chemistry, C loss, and 

N immobilization / mineralization that is fairly consistent across sites (colored dots; Fig. 4). 

MIMICS-CN broadly captured litter quality effects on the timing and magnitude of N 

immobilization and mineralization dynamics across all biomes (red triangles; Fig 4).  For 

example, litter with high initial chemical quality consistently mineralize N throughout all stages 

of litter decay, and MIMIC-CN adequately captures this functional C-N relationship (Fig 4a,b). 

By contrast, litters with lower initial chemical quality immobilize N during early stages of litter 

decay, but subsequently mineralize N as decomposition proceeds. MIMICS-CN broadly captures 

these patterns, but without as much variation as the observations (Fig 4c-f). The lowest-quality 

litter (Triticum aestivum) immobilizes N until only 40% of C remains in litterbags. Although 

MIMICS-CN potentially underestimates total N immobilization Triticum aestivum litter, it does 

capture the point at which net N mineralization begins (Fig. 4f).   

 

3.2 Model evaluation: Equilibrium C and N cycling 

Across all sites and litter types in the LIDET simulations, the ranges of underlying pool 

sizes and process rates in MIMICS-CN were compared against published ranges from similarly 

diverse sets of sites (Cleveland and Liptzin, 2007; Colman and Schimel, 2013; Xu et al., 2013; 

Zak et al., 1994). MIMICS-CN simulations produced reasonable equilibrium values for most 

pools and fluxes (Table 3 and Fig. 5). In general, the range of values across the 13 sites 

simulated by MIMICS was smaller than the ranges across the thousands of sites included in the 
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compiled dataset of observations. For example, total soil C ranged from 7.0-50 mg C cm-3 in 

MIMICS simulations but ranged from 2.7-610 mg C cm-3 in observations. Despite this 

discrepancy, the median values of the simulations and observations were generally within reason 

(Fig. 5). The distributions of measured and modeled values for microbial biomass C and N as a 

percent of total soil C and N overlapped, providing evidence that the model reasonably 

represents microbial stoichiometry, microbial activity as a function of biomass, and microbial 

biomass as a function of SOM. For soil C:N, the model tended to produce low values with a 

relatively narrow range, relative observed values. 

 Finally, we explored the environmental controls on the distribution of SOM across 

physicochemically-protected, chemically-protected, and available pools in MIMICS-CN by 

examining the correlations between pool sizes and salient input variables (mean annual 

temperature, productivity, clay content, and litter lignin content). The results are shown in Fig. 6. 

The absolute concentration of SOM simulated across the LIDET sites was most strongly 

correlated with ANPP (R2=0.52), but also tended to increase with MAT, albeit inconsistently 

(Fig. 6a; R2=0.15). The distribution of SOM across stabilized pools strongly favored chemically-

protected SOM at sites with lower temperatures, while the relative proportion of 

physicochemically-protected SOM increased with increasing temperature (Fig. 6b). The relative 

proportion of SOM in the available pool remained fairly consistent across simulated sites. 

Physicochemically-protected SOM was tightly positively correlated with the product of ANPP 

and clay content (R2=0.96, Fig. 6c), while chemically-protected and available SOM were 

negatively correlated with MAT (Fig. 6d, R2=0.40 and 0.47, respectively) and positively 

correlated with litter lignin content (Fig. 6e; R2=0.68 and 0.32, respectively). The C:N of 

individual pools was fairly consistent across sites and tended to be higher for chemically-
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protected SOM (~15) than available (~8) or physicochemically-protected SOM (~10). As a 

result, soil C:N was largely driven across sites by the distribution of SOM across pools, 

especially the absolute size of the SOMp pool (Fig. 6f, R2=0.79). Given that clay content was an 

important driver of physicochemically-protected SOM in the model, clay content was tightly 

correlated with soil C:N (R2=0.88). Other litter characteristics and environmental factors were 

not strong drivers of soil C:N (R2 for MAT: 0.42; litter lignin: 0.03; litter C:N: 0.005). 
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4 Discussion 

Terrestrial models are increasingly representing coupled C-N biogeochemistry, and 

MIMICS-CN is among the first attempts to do so with a microbial explicit soil biogeochemical 

model that can be used to project C and N dynamics across continental-scale gradients. Our 

formulation and parameterization of MIMICS-CN captures site level observations of litter C loss 

and N immobilization at the Harvard Forest LTER site (Fig. 2). Cross-site validation of the 

model demonstrates that it broadly captures climate and litter quality effects on rates of C and N 

transformations from the LIDET observations (Figs. 3-4).  Notably, the results simulated by 

MIMICS-CN represent N dynamics during litter decomposition about as well as a first-order 

model that implicitly represents microbial activity (Table 2). It also generates steady state pools 

and fluxes of C and N that seem reasonable compared to published syntheses (Table 3; Fig. 5). 

Below we discuss these dynamic and equilibrium model simulations in greater detail, as well as 

some of the limitations of MIMICS-CN that will be addressed in future work. 

 

4.1 Model parameterization and validation: Cross-site litter decomposition 

We first parameterized and validated MIMICS-CN using the cross-site litter 

decomposition study, LIDET. Previous LIDET simulations using MIMICS have successfully 

replicated observed C loss patterns, and adding coupled N cycling to MIMICS neither improved 

nor degraded simulations of LIDET litter C losses relative to the C-only model (Figs. 2-3; 

(Wieder et al., 2015d) report global RMSE for the C-only model = 14.6 vs. 16.0 in this study). 

Our results show higher than observed rates of litter C mass loss in deciduous and coniferous 

forest (Figs 2a, 3b; Table 2). This suggests that the partitioning of plant detrital inputs into litter 

pools that are chemically defined works well for initial stages of litter decay, but may not 
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consider the changes in substrate chemistry or microbial community succession that occur in 

later stages of decomposition that slow rates of mass loss (Berg, 2000; Melillo et al., 1989). 

Models that implicitly represent microbial activity capture this phenomena by using a three pool 

structure (Adair et al., 2008), and future studies can consider how to more mechanistically 

understand interactions between initial litter quality, decomposer communities, climate, nutrient 

availability and late-stage litter decay rates (e.g. Craine et al., 2007; Hobbie et al., 2012; 

Wickings et al., 2012) in models like MIMICS-CN. In MIMICS-CN, carbon and nitrogen move 

together through model pools, but model dynamics are primarily driven by C, with N dynamics 

following suit based on pool stoichiometry. The N dynamics do, however, constrain C cycling in 

the model if microbes are N-limited, in which case microbes lose excess C through overflow 

respiration. At equilibrium, microbes in our MIMICS-CN simulations primarily obtained N 

through recycling of SOM pools with favorably low C:N ratios, with the result that modeled 

microbes were almost always C-limited at equilibrium and rarely exhibited overflow respiration. 

Large pulses of low-quality litter can perturb this equilibrium and induce N limitation, but in the 

absence of losses of or plant competition for inorganic and dissolved organic N, C cycling in 

MIMICS proceeds in essentially the same way with or without accounting for N. 

MIMICS-CN accurately captured the stoichiometric relationships between C and N 

during litter decomposition (Fig. 4). This stoichiometric relationship has been well-defined in the 

past using theoretical microbial stoichiometry and CUE (Parton et al., 2007), but comparable soil 

models without explicit microbial physiology have tended to over-predict N accumulation in 

litterbags (Bonan et al., 2013). Moreover, models without microbial explicit physiology also 

show N immobilization mineralization dynamics that are completely determined by initial litter 

quality, whereas MIMICS simulations show greater site-level variation (Figs. 4, S2). In 
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MIMICS-CN, stoichiometric relationships drive litterbags to accumulate soil N until they reach a 

threshold C:N, after which litterbags become net sources of N. This threshold, representing the 

balance between microbial N requirements and availability, is a function of changes in litter 

stoichiometry during decomposition, as well as of the stoichiometry of microbes and their 

nutrient use efficiencies. By explicitly considering these dynamics MIMICS-CN has a similar or 

lower RMSE for N remaining in litter bags than a model that implicitly represents microbes, 

DAYCENT (Table 2). 

MIMICS-CN and DAYCENT capture N dynamics during decomposition with similar 

overall degrees of fit, but for different reasons. In DAYCENT, N immobilization and loss 

dynamics are driven by initial litter chemistry, and good model fit to data is achieved by 

capturing the average N immobilized for a given litter type regardless of biome and climate 

conditions (see Fig. S1 and S2). By contrast, litterbag N immobilization in MIMICS-CN is 

driven by the availability of N in the underlying modeled soil and by site-specific effects (e.g. 

climate, clay content) on the simulated stocks and fluxes of N. As a result, MIMICS-CN 

generates greater variation in the amount N immobilized for a given litter type across sites (Figs. 

3 and 4). Site-specific variability in N immobilization patterns is also clearly visible in LIDET 

observations (colored dots, Fig. 4), but the introduction of site-specific variability in MIMICS-

CN does not substantially improve model fit to data relative to DAYCENT. Spatial variability in 

ecosystem processes, like N mineralization rates, may be linked to factors like local-scale 

microbial community composition, soil moisture, or mineralogy (Doetterl et al., 2015; Graham et 

al., 2016; Smithwick et al., 2005; Soranno et al., 2019). While more work needs to be done to 

understand the factors controlling within and among site variation in soil C-N dynamics 

(Bradford et al., 2017), these results highlight that the explicit representation of microbial 
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activity in MIMICS-CN may present opportunities to explore factors responsible for 

biogeochemical heterogeneity across scales. 

Although MIMCS-CN broadly captures appropriate climate and litter quality effects on 

leaf litter decomposition patterns, the model underestimates N accumulation in the highest C:N 

ratio litter (Triticum aestivum; Fig. 4f). Microbes in MIMICS-CN recycle nitrogen from 

necromass and necromass-derived SOM, which might allow microbes to scavenge the N 

required to decompose high C:N litter without having to accumulate it from the inorganic soil 

pool. In a real litterbag, necromass might be lost through leaching and microbial access to 

recycled biomass might be limited, and some microbial-derived compounds may require 

extensive depolymerization and proteolysis before the N is available for recycling (Schulten and 

Schnitzer, 1997), thus favoring N uptake from the soil pool. Alternatively, N inputs to real 

litterbags in the LIDET study may have come from atmospheric deposition or other unintended 

sources that MIMICS-CN does not address. Nonetheless, the high C:N ratio of Triticum aestivum 

is not typical of the majority of litter inputs across diverse biomes (Brovkin et al., 2012) which 

are well within the range that MIMICS-CN can simulate. 

 

4.2 Model evaluation: Equilibrium C and N cycling 

We conducted additional model evaluation by comparing model pools and fluxes at 

equilibrium to published observations. The parameter values used in the LIDET simulations 

produced reasonable estimates of equilibrium pools (soil organic C and N, microbial biomass C 

and N, and total inorganic N) and fluxes (heterotrophic respiration and N mineralization) (Table 

3; Fig. 5). In combination with the LIDET results, these results indicate that MIMICS-CN can 

produce realistic simulations of both the short-term dynamic processes involved in litter 
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decomposition and the soil-forming processes that produce equilibrium pools and fluxes over 

much longer time scales. In addition, MIMICS-CN simulates microbial stoichiometry, microbial 

growth and turnover, and microbially-mediated decomposition, rather than using prescribed 

values as in models that lack explicit representation of microbes. This increases the power of 

MIMICS-CN to explore the microbial and biogeochemical processes underpinning model 

predictions.  

Continent-wide observation of soil pools and fluxes range over several orders of 

magnitude (Table 3), but MIMICS simulations agreed well with the median of those ranges. 

Observations tended to be spread over a much larger range of values than the MIMICS-CN 

simulations, but these simulations only included information from 13 sites while the observations 

included thousands of locations. The median values of observed and simulated values were 

within a factor of 2.5 for all pools (Fig 5). Differences in measurement depth or error in 

estimated bulk density values could account for some of the differences between measurements 

and simulations and for the spread across observed values. This is less of a concern for three of 

the variables used here (soil C:N, microbial biomass C as a percent of total soil C and microbial 

biomass N as a percent of total soil N), which are ratios that are comparable across sites. 

Microbial biomass C as a percent of total soil C and microbial biomass N as a percent of total 

soil N were highly conserved across sites, relative to soil stocks or microbial C or N, and may be 

particularly useful metrics for evaluating microbial explicit soil biogeochemical models since the 

size of the microbial biomass pool directly controls rates of SOM turnover and formation in 

models like MIMICS-CN. For these ratios, MIMICS-CN reproduced distributions and median 

values that overlapped well with observations. In future work, direct comparisons of modeled 

and measured values for these ratios at specific sites may shed light on the limitations of the 
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model and the origins of data-model disagreement. However, even the simple range comparisons 

included here provide evidence that the mechanistic representation of soil biogeochemistry in 

MIMICS-CN is ecologically realistic. Examinations of model realism like this are a crucial step 

in transitioning from theory and small-scale model tests to applications in ESMs or at larger 

scales where evaluation data are more sparse. 

Besides representing appropriate soil biogeochemical stocks, fluxes simulated by the 

models also agree well with observations. Specifically, MIMICS-CN simulations of 

heterotrophic respiration and net N mineralization rates fell within observed bounds, although 

the variation in observations was much greater than the variation in simulated values. Our 

simulations calculated rates at equilibrium assuming constant temperature and other factors, 

while real rates of these processes are driven by seasonally- and diurnally-variable temperature, 

soil moisture, and other factors, so predictably, our simulations produced smaller-than-observed 

variability in rates. MIMICS-CN produced total soil C:N values that fall within observed ranges, 

although observations again show greater variation of soil C:N ratios and have maximum values 

that are much higher than the maximum C:N ratios simulated by MIMICS-CN. SOM pools in 

MIMICS-CN are mostly comprised of microbial necromass, in addition to a small proportion of 

litter that enters SOM pools directly without first passing through microbial biomass. Increasing 

this proportion in the model is one way to increase the C:N of SOM pools and the overall system 

at equilibrium. At some sites, litter may contribute more directly to SOM pools than microbial 

necromass (Jilling et al., 2018). For example, forests often have a higher proportion of total soil 

C in the light fraction, which is almost entirely made up of plant residues, compared to 

agroecosystems and many grasslands (Grandy and Robertson, 2007).  For those sites with large, 
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direct contributions of plant matter to SOM, increasing the fraction of litter that passes directly 

into SOM in MIMICS may be appropriate.  

 

4.3 Exploring emergent SOM dynamics  

The distribution of SOM across simulated pools in MIMICS-CN (Fig. 6) illustrates how 

model-defined assumptions about pool stabilization mechanisms drive potential responses to 

environmental variables. The wide variation in SOM pool distributions among contrasting 

environments in our simulations provides support for experimental efforts aimed at 

distinguishing between SOM pools to understand SOM responses to environmental changes and 

potential ecosystem feedbacks. For example, global change factors like warming can cause a 

range of different responses among SOM pools (Conant et al., 2008; Li et al., 2013; von Lützow 

and Kögel-Knabner, 2009; Plante et al., 2010). Experimental studies also show that increases in 

SOM resulting from increased inputs are not typically evenly distributed across different SOM 

pools (Lajtha et al., 2017; Stewart et al., 2009), which can influence feedbacks to productivity as 

well as the persistence of soil C gains in response to shifts in climate. Thus, while our broad-

scale projections of how and why SOM differs among pools needs to be evaluated with 

experiments and data synthesis across environments, they can provide a starting point for 

understanding SOM responses to global change factors across environments.    

In MIMICS, the turnover of chemically-protected and available SOM pools is based on 

temperature-sensitive Michaelis-Menten kinetics and litter chemistry (the latter controlling 

allocation of litter pools to the different microbial functional groups). This results in SOMC pools 

(analogous to light fraction or POM pools) that are negatively correlated with MAT and 

positively correlated with litter lignin content (Fig. 6d, 6e). Turnover of the physicochemically-
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protected SOM pool, on the other hand, occurs via first-order kinetics with a rate constant 

modified by clay content, and the equilibrium values of this pool are determined by inputs that 

largely come from microbial biomass and biomass turnover rates (Fig. 1). Therefore, the 

equilibrium values of SOMp (analogous to heavy fraction or MAOM pools) were strongly 

positively correlated with the product of ANPP and clay content (Fig. 6c). This relationship 

broadly reflects the expected importance of total soil C inputs and their potential to be preserved 

after microbial processing by association with clays (Kleber et al., 2015). However, these two 

variables are also likely to covary with others, especially MAT, highlighting the difficulty of 

isolating individual mechanisms that regulate SOM. 

Across the sites included in these simulations, chemically-protected SOM formed a 

higher proportion of total SOM at lower MAT, while physicochemically-protected SOM was 

favored at warmer sites (Fig. 6b). In global simulations with the carbon-only version of 

MIMICS, these assumptions result in MIMICS projecting longer soil C turnover soil C times and 

larger soil C pools in the tropics than other models (Koven et al., 2017; Wieder et al., 2018) and 

a higher vulnerability of high latitude soil C stocks (Wieder et al., 2015d, 2019). Evaluating the 

accuracy of our model assumptions and the resulting patterns in soil C and N cycling requires 

coupling process-level studies of the fate of decomposing litter (e.g. using isotope tracers) to 

broad-scale evaluation of SOM pool distributions across environmental gradients. 

Soil C:N ratios simulated by MIMICS-CN across sites were highly correlated with soil 

clay content (R2=0.88), suggesting that, in the model, soil stoichiometry emerges from the 

relative contributions of SOM across physicochemically- and chemically-protected pools (Fig. 

6). Although the spread of C:N values across the sites simulated by MIMICS-CN was small (Fig. 

6f), C:N tended to decrease with increasing temperature, and simulated soil C:N was more 
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correlated with site temperature (R2=0.42) than any of the litter characteristics used to drive the 

model, such as litter lignin (R2=0.03) or litter C:N (R2=0.005). This result directly contradicts a 

recent study using a first-order linear model which presumed that litter quality and soil quality at 

equilibrium were directly proportional (Menichetti et al., 2019). Although many soil 

biogeochemical models prescribe soil C:N ratios for individual pools, the stoichiometry of SOM 

in MIMICS-CN is an emergent property of the model.  

The lack of correlation between simulated soil C:N and litter C:N in MIMICS-CN 

simulations suggests an intriguing follow-up question: in the field, is SOM stoichiometry 

correlated with litter quality, or is it better explained by climate, edaphic, and mineralogical 

gradients that impact soil microbial community composition, microbial activity, and mineral-

mediated mechanisms of SOM persistence? Various regional studies provide limited support for 

the relationships generated by MIMICS-CN between soil C:N and MAT (Miller et al., 2004) or 

clay content (Hassink et al., 1993; Homann et al., 2007; Jenny, 1941), though a large-scale 

synthesis of measurements across all of these variables is still needed. Presently, MIMICS-CN 

assumes that microbial biomass stoichiometry largely controls the C:N ratios of stable SOM, 

with relatively minor contributions from litter quality. However, a small proportion of litter 

inputs become stabilized in MIMICS-CN without first passing through the stoichiometric filter 

of microbial biomass, and increasing this fraction in the model is a means to increase the C:N of 

simulated stable SOM. The strength of the mineral sink for microbial necromass in the model 

also impacts the relative balance of microbe- or plant-derived stable SOM, which in turn impacts 

modeled soil C:N. This result implies that in the field, C:N stoichiometry might be used as a 

means to differentiate the degree to which a given soil fraction is derived from direct plant inputs 

or microbial biomass, and mineralogical variables might be useful for explaining differences in 
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fraction distributions across soils that impact C:N. Studies like (Mikutta et al., 2019) illustrate 

the way that C:N can be used to assess the relative contributions of plant matter or microbial 

residues to stable SOM. Future work will use measured C:N of soils and soil fractions and 

isotopic insights into the plant or microbial origins of stable SOM to improve the 

parameterization of this aspect of the model and better understand the relationship between 

mechanisms of SOM stabilization and soil stoichiometry.  

 

4.4 Limitations and future work 

MIMICS-CN combines reasonable biogeochemical simulations with the option to 

explore underlying microbial processes, but limitations remain. For example, MIMICS only 

represents two microbial groups with different stoichiometric and physiological parameters, but 

real soils contain a much more diverse array of microbial functional groups with different 

responses to environmental conditions and different couplings between C and N cycles. CUE and 

NUE are critical microbial parameters in MIMICS-CN, but the relationships between CUE and 

microbial community composition (Maynard et al., 2017), microbial growth rate (Molenaar et 

al., 2009; Pfeiffer et al., 2001), temperature (Allison, 2014; Dijkstra et al., 2011; Frey et al., 

2013; Steinweg et al., 2008), substrate quality (Blagodatskaya et al., 2014; Frey et al., 2013; 

Sinsabaugh et al., 2013), or any number of other aspects of microbial metabolism are complex, 

difficult to quantify, and challenging to represent at the scale of a whole soil community (Geyer 

et al., 2016). In its current configuration, MIMICS-CN also simplifies a number of ecosystem 

biogeochemical processes, and there are several important pathways of N cycling currently 

absent from the model. For example, MIMICS-CN does not currently represent free living 

biological N fixation, direct mycorrhizal exchanges for plant C for microbial N, dissolved 
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organic C or N losses, denitrification/nitrification/other inorganic N transformation and loss 

pathways, plant uptake of N, or inorganic N leaching beyond a simple linear decay rate. Some of 

these shortcomings may be remedied by integrating MIMICS with a full ecosystem 

biogeochemical model that represents the greater complexity of the plant-soil continuum.  

MIMICS-CN provides a pathway to reconcile mechanistic explanations for phenomena 

like priming and plant-soil feedbacks with emergent patterns in terrestrial biogeochemistry 

across landscapes. MIMICS-CN and microbial models like it are a good first step towards 

representing the complex ecological factors that drive the coupling of soil C and N 

biogeochemistry, including the distribution of SOM among functionally relevant pools and SOM 

C:N ratios. Future work could compare model formulations that take different approaches to 

microbial community and stoichiometric parameters (e.g. flexible microbial parameters like C:N 

or CUE, additional microbial groups, partitioning microbial metabolism into a greater number of 

pathways) and refinement of mechanisms that confer SOM persistence. These efforts should also 

assess the ramifications of different choices for simulating existing data and predicting the long-

term response of soil C and N cycles to global change. Our work demonstrates that MIMICS-CN 

can reproduce site and litter quality effects on litter decomposition C and N dynamics at a 

landscape scale, while also pointing to the importance of underlying, interacting microbial and 

biogeochemical factors in regulating SOM dynamics. Future work coupling MIMICS-CN to 

experiments and syntheses relating the distribution of SOM across pools to their underlying 

controls across gradients will improve our confidence in our ability to understand and project 

SOM dynamics. 



 78 

Code and data availability 

MIMICS-CN (v1.0) is written in R using packages rootSolve (Soetaert and Herman, 

2009) and hydroGOF (Zambrano-Bigiarini, 2017). Figures were generated using packages  

ggplot2 (Wickham, 2016), reshape2 (Wickham, 2007), scales (Wickham, 2018), gridextra 

(Auguie, 2017), and cowplot (Wilke, 2016). The R scripts and datasets used to generate model 

results are available at https://zenodo.org/record/3534562. See Appendix A for equations. 
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Appendix A: Model equations 

The structure and assumptions in the C-only version of MIMICS have been described 

previously (Wieder et al., 2014, 2015d), and the structure and assumptions in MIMIC-CN are 

described in section 2.1 (“Model formulation”) of the methods section of this paper. The C 

fluxes (mg C cm-3 h-1) from donor to receiver pools in MIMICS-CN, numbered on Fig. 1, are 

defined by the following: 

 

LITm,C_MICr,C = MICr,C × Vmax[r1] × LITm,C / (Km[r1] + LITm,C),  (A1) 

LITs,C_MICr,C = MICr,C × Vmax[r2] × LITs,C / (Km[r2] + LITs,C),  (A2) 

SOMa,C_MICr,C = MICr,C × Vmax[r3] × SOMa,C / (Km[r3] + SOMa,C),  (A3) 

MICr,C_SOMC = MICr,C β × τ[r],   (A4) 

LITm,C_MICK,C = MICK,C × Vmax[K1] × LITm,C / (Km[K1] + LITm,C),   (A5) 

LITs,C_MICK,C = MICK,C × Vmax[K2] × LITs,C /  (Km[K2] + LITs,C),   (A6) 

SOMa,C_MICK,C = MICK,C × Vmax[K3] × SOMa,C / (Km[K3] + SOMa,C),   (A7) 

MICK,C_SOMC = MICK,C β × τ[K],   (A8) 

SOMp,C_SOMa,C = SOMp,C × D,    (A9) 

SOMc,C_SOMa,C = (MICr,C × Vmax[r2] × SOMc,C / (KO[r] × Km[r2] + SOMc,C))  + 

           (MICK,C × Vmax[K2] × SOMc,C / (KO[K] × Km[K2] + SOMc,C)).  (A10) 

 

where pools and parameters are described in section 2.1 and Table 1, respectively. The N fluxes 

(mg N cm-3 h-1) from donor to receiver pools in MIMICS-CN are calculated based on the C 

fluxes between pools and the C:N ratio of donor pools. These fluxes are numbered on Fig. 1 and 

defined by the following: 
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LITm,N_MICr,N = A1 × LITm,N / LITm,C,  (A11) 

LITs,N_MICr,N = A2 × LITs,N / LITs,C,  (A12) 

SOMa,N_MICr,N = A3 × SOMa,N / SOMa,C,  (A13) 

MICr,N_SOM,N = A4 × MICr,N / MICr,C,   (A14) 

LITm,N_MICK,N = A5 × LITm,N / LITm,C,  (A15) 

LITs,N_MICK,N = A6 × LITs,N / LITs,C,   (A16) 

SOMa,N_MICK,N = A7 × SOMa,N / SOMa,C,   (A17) 

MICK,N_SOM,N = A8 × MICK,N / MICK,C,  (A18) 

SOMp,N_SOMa,N = A9 × SOMp,N / SOMp,C,  (A19) 

SOMc,N_SOMa,N = A10 × SOMc,N / SOMc,C.  (A20) 

 

Each time step, the microbial pools in MIMICS-CN take up inorganic N from the DIN pool 

proportional to the biomass in each pool. Subsequently, the C:N ratio of all the inputs to each 

microbial pool is calculated, and the microbial pools spill either excess C or excess N to maintain 

a model-defined C:N ratio of microbial biomass. The algorithm that determines the release of 

excess C or N is determined using the following equations: 

 

DINupr = (1 - Nleak) × DIN × MICr,C / (MICr,C + MICK,C),  (A21) 

DINupK = (1 - Nleak) × DIN × MICK,C / (MICr,C + MICK,C),   (A22) 

upMICr,C = CUE[1] × (A1 + A3) + CUE[2] × (A2),  (A23) 

upMICr,N  = NUE × (A11 + A13 + A12) + A21,  (A24) 

CNupr = A23 / A24,      (A25) 
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Overflowr = A23 - (A24 × min(CNr, A25)),   (A26) 

Nspillr = A24 - (A23 / max(CNr, A25)),   (A27) 

upMICK,C = CUE[3] × (A5 + A7) + CUE[4] × (A6),   (A28) 

upMICK,N = NUE × (A15 + A17 + A16) + A22,   (A29) 

CNupK = A28 / A29,     (A30) 

OverflowK = A28 - (A29 × min(CNK, A30)),   (A31) 

NspillK = A29 - (A28 / max(CNK, A30)).  (A32) 

 

Inorganic N leaches slowly from the model according to a model-defined rate: 

 

LeachingLoss = Nleak × DIN.  (A33) 

 

Given the fluxes defined above, the changes in C and N pools in each hourly timestep (mg C or 

N cm-3) are described by the following:  

 

dLITm,C
dt

 = ILITm,C	× !1-fi,met" - A1 - A5,       (A34)  

dLITs,C
dt

 = ILITs,C × !1-fi,struc" - A2 - A6,       (A35)  

dMICr,C
dt

 = CUE[1] × (A1 + A3) + CUE[2] × (A2) - A4 - Overflowr,    (A36)  

dMICK,C
dt

 = CUE[3] × (A5 + A7) + CUE[4] × (A6) - A8 - OverflowK,    (A37)  

dSOMp,C

dt
 = ILITm,C × fi,met + (fp,r × A4) + (fp,K × A8) - A9,     (A38)  

dSOMc,C

dt
 = ILITs,C × fi,struc + (fc,r × A4) + (fc,K × A8) - A10,     (A39)  

dSOMa,C

dt
 = (fa,r × A4) + (fa,K × A8) + A9 + A10 - A3 - A7,     (A40) 
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dLITm,N
dt

 = 
ILITm,C	× "1-fi,met#

CNm
	- A11 - A15,        (A41)  

dLITs,N
dt

 = 
ILITs,C  × "1-fi,struc#

CNs
 - A12 - A16,        (A42)  

dMICr,N
dt

 = NUE × (A11 + A13 + A12) - A14 + DINupr - Nspillr,    (A43)  

dMICK,N	
dt

= NUE × (A15 + A17 + A16) - A18 + DINupK - NspillK,    (A44)  

dSOMp,N

dt
 = 

ILITm,C  × "fi,met#

CNm
 + (fp,r × A14) + (fp,K × A18) - A19,     (A45)  

dSOMc,N

dt
 = 

ILITs,C  × "fi,struc#

CNs
 + (fc,r × A14) + (fc,K × A18) - A20,     (A46)  

dSOMa,N

dt
 = (fa,r × A14) + (fa,K × A18) + A19 + A20 - A13 - A17,    (A47) 

dDIN
dt  = (1 - NUE) × (A11 + A12 + A13 + A15 + A16 + A17) +  

Nspillr+ NspillK- DINupr- DINupK- LeachingLoss.     (A48) 
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Table 1. Parameters used in MIMICS-CN for both LIDET and equilibrium simulations.  

Parameter Description Value Units 

fmet Partitioning of inputs to metabolic litter 
pool 0.85 - 0.013 (lignin/N) - 

fi Fraction of litter inputs transferred to 
SOM 0.05, 0.3 - 

Vslope (Met-r, Met-K, 
Struc-r) Regression coefficient  0.063 ln(mg C (mg MIC)-1 h-

1)°C-1 
Vslope (Struc-K, Avail-r, 
Avail-K) Regression coefficient 0.043 ln(mg C (mg MIC)-1 h-

1)°C-1 

Vint Regression intercept 5.47 ln(mg C (mg MIC)-1 h-1) 

aV Tuning coefficient 4.8 ´ 10-7 -  

Vmod Modifies Vmax   10, 1.5, 10, 3, 2.25, 2 -  

Vmax  
Temperature-sensitive maximum reaction 
velocity (T is mean annual soil 
temperature) 

e(Vslope×T+Vint) ×av ×Vmod mg C (mg MIC)−1 

Kslope (Met-r, Met-K, 
Avail-r, Avail-K)  Regression coefficient    0.017 ln(mg C cm-3)°C-1 

Kslope (Struc-r, Struc-K) Regression coefficient    0.027 ln(mg C cm-3)°C-1 

Kint      Regression intercept  3.19 ln(mg C cm-3) 

aK Tuning coefficient  0.5 - 

Pscalar Physical protection scalar used in Kmod  (2 ´ e-2 ´ Ö(fclay))-1   -  

Kmod Modifies Km  0.125, 0.5, 0.25 ´ Pscalar,  
0.5, 0.25, 0.167 ´ Pscalar 

- 

KO Further modifies Km for oxidation of 
SOMc  6, 6 -  

Km Half saturation constant (T is mean annual 
soil temperature) e(Kslope×T+Vint) ×ak ×Kmod mg C cm−3 

t Microbial biomass turnover rate 2.4 ´ 10-4 ´ e0.3 ( fmet ) ´ tmod1 ´ tmod2,  
1.1 ´ 10-4 ´ e0.1 ( fmet ) ´ tmod1 ´ tmod2 

h-1 

tmod1 Modifies microbial turnover rate 0.6 < Ö(NPP/100) < 1.3 - 

tmod2 Modifies microbial turnover rate t ´ 0.55 / (.45 ´ Inputs) - 

b Exponent that modifies turnover rate  2 - 

CUE Microbial carbon use efficiency 0.55, 0.25, 0.75, 0.35 mg mg-1 

NUE Proportion of mineralized N captured by 
microbes 0.85 mg mg-1 

CNs C:N of structural litter (Measured CN – CNm ´ fmet) / (1- 
fmet) 

mg mg-1 

CNm C:N of metabolic litter 15 mg mg-1 

CNr C:N of copiotrophic microbial pool 6 mg mg-1 

CNk C:N of oligotrophic microbial pool 10 mg mg-1 

fp      Fraction of t partitioned to SOMp  0.015 ´ e1.3 ( fclay ), 0.01 ´ e0.8 ( fclay )  - 

fc Fraction of t partitioned to SOMc 0.3 ´ e-3 ( fmet ), 0.9 ´ e-3 ( fmet )  - 

fa   Fraction of t partitioned to SOMa  1 - ( fp + fc )  - 

D Desorption rate from SOMp to SOMa  10-6 ´ e-4.5 ( fclay ) h-1  

Nleak Rate of loss of inorganic N pool 0.2 h-1 
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Table 2. Goodness-of-fit statistics comparing MIMICS-CN and DAYCENT simulations to observations of C and N 

in decomposing litterbags in the LIDET study, aggregated by biome. DAYCENT results are subset from simulations 

in Bonan et al. (2013) to match the sites included in MIMICS-CN simulations. The values shown are the number of 

observations (n), Pearson’s correlation coefficient squared (R2), root mean square error (RMSE), and bias calculated 

between observed and simulated percent C and N remaining. For more details on the sites grouped into each biome, 

see Wieder et al. (2015). 
 

  MIMICS-CN Carbon DAYCENT Carbon MIMICS-CN 
Nitrogen 

DAYCENT 
Nitrogen 

Biome n R2 RMSE bias R2 RMSE bias R2 RMSE bias R2 RMSE bias 
Tundra 114 0.74 12.56 9.49 0.78 8.32 3.21 0.33 0.32 0.09 0.41 0.31 0.00 

Boreal 60 0.61 14.30 9.32 0.73 9.06 -0.55 0.64 0.28 0.07 0.72 0.27 -
0.14 

Conifer 60 0.79 18.61 -16.42 0.89 9.09 5.93 0.73 0.20 0.05 0.79 0.26 0.13 

Deciduous 94 0.59 16.40 -8.92 0.80 12.36 9.20 0.51 0.31 -
0.13 0.63 0.33 0.18 

Humid 151 0.50 17.24 -3.23 0.61 15.18 -4.22 0.14 0.44 -
0.13 0.24 0.45 -

0.04 
Arid 113 0.61 16.67 2.09 0.68 19.90 11.63 0.32 0.29 0.16 0.01 0.49 0.20 

Tropical 46 0.57 15.29 7.75 0.64 20.81 17.04 0.46 0.45 0.36 0.20 0.55 0.35 
All 638 0.63 16.00 -0.12 0.67 14.36 4.73 0.29 0.34 0.03 0.30 0.40 0.08 
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Table 3. Ranges of MIMICS-CN estimates of steady-state values for a variety of soil pools and fluxes, compared 

against observed ranges from several continent-wide data synthesis studies. The ranges of values included for 

MIMICS-CN are derived from simulations of sites included in the LIDET study. 
 

  MIMICS-CN range Published range Reference 

Total C (mg cm-3)* 7.0-50 
3.9-89 Zak et al. 1994 
2.7-360 Xu, Thornton and Post 2013 
5.2-610 Cleveland and Liptzin 2007 

Total N (mg cm-3)* 0.60-5.1 
0.38-5.1 Zak et al. 1994 
0.66-22 Xu, Thornton and Post 2013 
0.39-24 Cleveland and Liptzin 2007 

Soil C:N 9.6-12 

4.0-40 Colman and Schimel 2013 
10-28 Zak et al. 1994 
11-31 Xu, Thornton and Post 2013 
2.0-82 Cleveland and Liptzin 2007 

Inorganic nitrogen (µg cm-3) 0.01-0.06 0.12-8.1 Zak et al. 1994 

Respiration (µg C cm-3 hr-1) 0.02-0.28 
0.01-0.70 Colman and Schimel 2013 
0.21-0.91 Zak et al. 1994 

Net N mineralization (µg N cm-3 hr-1) 0-0.01 
0-0.10 Colman and Schimel 2013 

0.004-0.058 Zak et al. 1994 

Microbial biomass C (mg cm-3) 0.15-1.3 
0.03-1.3 Zak et al. 1994 
0.01-5.3 Xu, Thornton and Post 2013 
0.08-39 Cleveland and Liptzin 2007 

Microbial biomass N (mg cm-3) 0.02-0.16 
0.006-0.33 Zak et al. 1994 
0.042-0.64 Xu, Thornton and Post 2013 
0.018-4.9 Cleveland and Liptzin 2007 

Microbial biomass C as % of soil C 0.95-4.8 
0.18-3.3 Zak et al. 1994 
0.99-5.0 Xu, Thornton and Post 2013 
0.27-93 Cleveland and Liptzin 2007 

Microbial biomass N as % of soil N 1.2-5.9 

1.1-15 Zak et al. 1994 
2.3-5.7 Xu, Thornton and Post 2013 

0.48-64 Cleveland and Liptzin 2007 
    

*Depths simulated by MIMICS-CN are for the top 30 cm of soil, whereas published ranges represent measurements ranging 
from the top 5 to top 30 cm. 



 86 

Figure 1. Overview of the pools and fluxes of C and N in MIMICS-CN. Black outlines indicate pools that contain 

C; green outlines indicate pools that contain N. Litter inputs (I) are determined based on site-specific net primary 

productivity and partitioned between metabolic and structural litter pools (LITm and LITs) using a site-specific litter 

quality metric (fmet) calculated using litter lignin and N content. Temperature-sensitive forward Michaelis-Menten 

kinetics (Vmax and Km, red lines) determine the flux of litter pool C and N and available SOM C and N (SOMa) 

into microbial biomass (MICr and MICK). Fluxes of C into microbial pools result in respiration losses according to 

a defined carbon use efficiency (CUE). Microbes maintain biomass stoichiometry by spilling excess C as overflow 

respiration or excess N into the dissolved inorganic nitrogen pool (DIN) based on a prescribed biomass C:N. 

Microbial biomass turnover (τ, blue) varies by functional type (MICr and MICK) and is proportional to the square of 

microbial biomass. Microbial biomass turns over into available (SOMa), physicochemically-stabilized (SOMp) and 

chemically-stabilized (SOMc) soil organic matter pools. Inorganic N (DIN) leaks from the model at a first-order 

rate. Numbers in parentheses indicate the equations in Appendix A that correspond to each depicted flux. Parameter 

values, units and descriptions are given in Table 1. 
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Figure 2. Litter decomposition timeseries simulated by MIMICS-CN (lines with shaded area) compared to 

observations (points and error bars) of (a) percent mass remaining and (b) percent of initial N remaining over ten 

years for six different litter types at the Harvard Forest LTER. Litter decomposition data came from the LIDET 

study (Parton et al., 2007; Bonan et al., 2013; mean ±1 SD). Spread in the observations and model are largely 

generated by the effects of initial litter quality on decomposition rates and N dynamics. Model parameters were 

calibrated to fit MIMICS-CN to observations from Harvard Forest (Table 1).  
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Figure 3. MIMICS-CN simulations of percent C remaining (top) and N remaining (bottom) in litterbags in the 

LIDET study versus observed values, colored by litter type (left) or biome (right). Dashed line shows the 1:1 line. 
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Figure 4. MIMICS-CN simulations of immobilization-mineralization thresholds across litters of different quality. 

Litter quality (in terms of C:N and lignin content) decreases from upper left panel to lower right panel. Red triangles 

show model simulations of C losses vs N losses from litterbags in the LIDET study. Colored dots show observed C 

vs N losses across biomes (Parton et al. 2007). 
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Figure 5. Distributions of MIMICS-CN estimates of steady-state values for a variety of soil pools and fluxes, 

compared against observed ranges from several continent-wide data synthesis studies. Black lines show the median 

value across all observations; red lines show median value of MIMICS-CN simulations. 
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Figure 6. Variation in steady state SOM pools and environmental factors controlling their distribution in MIMICS-

CN simulations across LIDET sites. Top panels show the (a) total C stocks in physicochemically-protected, 

chemically-protected, and available SOM pools (SOMp, SOMc, SOMa pools, respectively) arranged by the site 

mean annual temperature (MAT), or the (b) relative fraction of each SOM pool arranged in the same way. Upper 

right and bottom panels show the correlations between C in each SOM pool and environmental drivers including: (c) 

SOMp vs. the product of annual net primary productivity (ANPP) and clay content, (d) SOMc and SOMa vs. MAT, 

and (e) SOMc and SOMa vs. lignin content of litter inputs at each site. Finally, (f) soil stoichiometry is largely 

determined by the fraction of total SOM pools that are considered physicochemically protected. 
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CHAPTER III: SOIL CARBON AND NITROGEN COUPLINGS IN OBSERVATIONS AND 

MODELS 

 

In preparation for review at Biogeochemistry 



 93 

Abstract 

Soils couple carbon (C) and nitrogen (N) cycles through ecological stoichiometry, and 

the ratio of soil C and N (i.e. soil C:N ratio) serves as an easily-measured, widely available proxy 

for more advanced measures of soil chemistry that can be used to evaluate soil models. Previous 

syntheses have explored the aboveground controls on soil stoichiometry (e.g. plant cover, 

climate), but relatively less focus has been placed on the belowground controls on soil 

stoichiometry (e.g., edaphic factors, mineralogy) and the relative importance of these different 

drivers. Here, we strive to understand the relative importance of drivers of soil stoichiometry 

across a global-scale synthesis of measurements and soil models that couple C and N cycling. 

We evaluated patterns in the Soil Data Harmonization (SoDaH) dataset against patterns 

generated by two soil models using multiple linear regressions. We used one model that 

explicitly represents microbial biomass, coupled C and N cycles, and multiple pools of stabilized 

organic matter (MIMICS-CN) and another model that uses a cascade of linearly decomposing 

pools (CASA-CNP) to simulate a global range of sites and assess relationships between soil C:N 

and edaphic and climate variables. Both the SoDaH database and our model simulations 

indicated strong negative relationships between soil clay content and bulk soil C:N. However, 

mean annual temperature and plant litter C:N had stronger impacts on soil C:N in one of our 

model simulations (MIMICS-CN) than in the database. In addition, pH was an important driver 

of soil C:N relationships in the database that was not represented in the models. Our results 

highlight the importance of more widespread measurements of plant litter chemistry in 

conjunction with soil variables. In addition, our results point to the importance of bottom-up 

controls (i.e. mineralogy) in determining soil C:N in observational data, and we discuss future 
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work for specifying and quantifying these bottom-up controls and altering models to match the 

observed importance of such controls. 
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1. Introduction 

Soils are a massive global store of carbon (C) and nitrogen (N) (Batjes, 1996; Jackson et 

al., 2017) with an unclear but potentially high vulnerability to global change that could 

exacerbate climate change through increasing greenhouse gas fluxes (Bowles et al., 2018; 

Conant et al., 2008; Davidson and Janssens, 2006; Dungait et al., 2012; Wagai et al., 2013). 

Projecting future changes in C and N cycling is key to forecasting global change. However, C 

and N cycles cannot be fully understood or accurately modeled in isolation because of their 

many interactions and feedbacks (Bonan and Levis, 2010; Sokolov et al., 2008; Zaehle and 

Dalmonech, 2011). For example, N availability in soil can limit the ability of plants to respond to 

elevated CO2 with increased productivity (Norby et al., 2010). Concurrently, C availability can 

limit the ability of decomposer microbes to generate enzymes to release N from soil organic 

matter (SOM) (Soong et al., 2020). Representing these dynamics in numerical models is 

challenging, but there is a strong need for models that can accurately simulate C and N fluxes 

and states in diverse soils across biomes as they respond to global change. Models, however, can 

only advance as quickly as scientific understanding does, and fundamental theoretical questions 

still exist about the nature, origin, and vulnerability of soil organic matter.  

For a long time, soil scientists assumed the longevity of SOM was due to its chemical 

recalcitrance and that the oldest SOM was made up of the recalcitrant leftovers from plant 

residue decomposition (Schmidt et al., 2011; Weil and Brady, 2016). Recent developments in 

soil science highlight the role of microbial necromass in forming SOM (Bradford et al., 2013; 

Cotrufo et al., 2013; Kallenbach et al., 2015; Liang et al., 2019; Ludwig et al., 2015), and the 

most modern theories posit that SOM is made up of a combination of substances derived from 

both plant and microbial origins (Lavallee et al., 2020; Lehmann and Kleber, 2015). New 
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research is also beginning to unpack the role of edaphic factors in driving the distribution of 

SOM across primarily plant-derived or microbial-derived forms (Haddix et al., 2020) and the 

susceptibility of different forms to global change (Rocci et al., 2021). For example, soil minerals 

differ in their capacity to stabilize SOM and preferentially bond to different organic moieties 

(Jilling et al., 2018). Moreover, environmental factors like pH, N availability and precipitation 

can drive the composition and activity of microbial communities that break down plant matter 

and SOM (Evans and Wallenstein, 2012; Fierer and Jackson, 2006; Moore et al., 2021), 

ultimately driving rates of decomposition. Unpacking this web of factors remains a sticky 

problem in part because soil measurements struggle to distinguish between SOM stabilized by 

chemical recalcitrance, mineral association, or other means (Lavallee et al., 2020; Poeplau et al., 

2018). 

Nutrient stoichiometry provides a window into the chemical makeup of SOM that can 

help resolve the challenge of unravelling the controls on plant- or microbially-derived SOM. The 

ratio of C and N in particular serves as a useful, easily-measured proxy for more complex 

analyses of SOM chemistry (Bailey et al., 2018). The C:N ratio of plant inputs to soils is 

generally much higher (i.e. less enriched in N) than decomposer organisms (Sterner and Elser 

2000), and the C:N ratio of SOM emerges in part from the biochemistry of soil organisms as they 

process plant matter. Both microbial and soil C:N are tightly conserved across sites compared to 

other indicators of SOM chemistry. Previous large-scale syntheses have found well-constrained 

stoichiometric ratios for soil and soil microbes (Xu et al. (2013): 16.9 and 7 respectively; 

Cleveland and Liptzin (2007): 14.3 and 8.6 respectively) with variation across climate and 

vegetation gradients. Given the relative ease with which soil C and N can be measured, soil C:N 

values are available across a large number of sites and ecosystems, making C:N a particularly 
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valuable quantity for testing model assumptions about the balance of factors in driving soil 

processes. Proxy variables like this are an important and necessary tool for assessing broad-scale 

patterns in soil chemistry (Bailey et al., 2018) when more specific measurements of soil chemical 

classes are not available at the same scale. 

Previous syntheses have gathered stoichiometric data from across a global range of sites 

and explored the effects of climate and vegetation on observed soil C:N distributions (Cleveland 

and Liptzin, 2007; Homann et al., 2007; Tian et al., 2010; Tipping et al., 2016; Xu et al., 2013), 

but less emphasis has been placed on exploring the belowground, bottom-up controls on soil 

stoichiometry. While aboveground drivers matter, soil C:N can also be influenced by a variety of 

other factors (Fig. 1). In general, microbial residues are enriched in N relative to plant residues 

(Melillo et al., 1989). Once embedded in the soil matrix, many factors can influence the stability 

and relative proportion of plant or microbial residues across soil profiles and landscapes. For 

example, surface charges on clays form stable associations with charged moieties like amino 

groups (Jilling et al., 2018), and clay fractions in soils tend to be enriched in N relative to sand 

fractions (Haddix et al., 2016). Minerals with variable surface properties can modify the sorptive 

fractionation of N-rich molecules in clay fractions (Kramer et al., 2017; Mikutta et al., 2019). 

The inherent C:N stoichiometry of plants and microbes themselves also influences soil C:N, 

since soil C:N emerges in part from microbial decomposition and transformation of plant litter 

inputs. Additionally, climate (temperature, precipitation) and edaphic (pH, mineralogy) factors 

can further influence the composition and activity of soil microbes (Delgado-Baquerizo et al., 

2018; Fierer and Jackson, 2006), with downstream impacts on soil C:N.   

A large number of factors contributes to the emergence of soil C:N values, but for the 

sake of understanding broad trends and evaluating models, it is useful to simplify this diversity 
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of drivers down to broad categories that correspond to widely-available measured variables. We 

base our theoretical framework of soil C:N ratio on understanding that soil contains a mix of 

organic matter along the continuum from unprocessed plant matter to stabilized microbial 

residues (Lehmann and Kleber, 2015), whereby three categories of factors might influence the 

C:N ratio of SOM (Fig. 1). First, the stoichiometry of plant inputs to soil should clearly play a 

role as the source of the vast majority of C and N in soil. Second, climate factors and microbial 

traits (e.g. growth rate, growth efficiency, nutrient efficiency, biomass C:N) should drive the rate 

of transformation of plant litter into nitrogen-enriched microbial biomass and therefore influence 

soil C:N. Finally, edaphic factors like clay content should drive the long-term stabilization of 

microbial residues and influence the proportion of organic matter made up of those N-enriched 

residues. Within these three broad categories that we might expect to drive soil stoichiometry, we 

can select specific variables that soil models take as inputs, namely plant litter C:N, mean annual 

temperature, and clay content. Although not collected in previous syntheses (Cleveland and 

Liptzin, 2007; Xu et al., 2013), these variables are a good starting place to compare patterns in 

models and data because models take these variables as inputs and a large number of measured 

records are available for these three variables from other sources.  

Soil models that include both C and N cycling vary in their assumption about the controls 

on various forms of stabilized SOM. These assumptions can be mapped onto the framework 

presented above. For this work, we chose to compare two global-scale models of soil that couple 

C and N cycles and vary in their simulated controls on SOM cycling: the Carnegie-Ames-

Stanford Approach model of Carbon, Nitrogen and Phosphorus (CASA-CNP) model and the 

MIcrobial-MIneral Carbon Stabilization model with coupled nitrogen cycling (MIMICS-CN). 

CASA-CNP represents soil as a cascade of linearly decomposing pools in which plant litter 
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inputs are transferred sequentially into SOM pools of increasing stability and N enrichment 

(Randerson et al., 1996; Wang et al., 2010). On the other hand, MIMICS-CN focuses on 

microbial controls over the transformation and stabilization of SOM (Kyker-Snowman et al., 

2020; Wieder et al., 2014, 2015d). Thus, CASA-CNP emphasizes climate and the stoichiometry 

of plant litter inputs in determining the C:N ratio of SOM, whereas MIMICS-CN potentially puts 

greater emphasis on physicochemical stabilization of microbial necromass. The differences in the 

theoretical assumptions and structure of these two models should generate soil C:N patterns that 

emphasize different drivers of SOM stoichiometry. For example, the focus on microbial 

necromass in forming SOM in MIMICS-CN should result in an emphasis on bottom-up controls 

on soil C:N: (e.g. clay) relative to CASA-CNP, which should emphasize top-down controls (e.g. 

plant litter chemistry). These model-generated hypotheses are testable against data but doing so 

requires careful alignment of measured and modeled variables. 

Novel data products provide opportunities to test the processes that drive emergent 

patterns in soil stoichiometry as well as their application in models. In this paper, we conduct a 

series of data-model comparisons to explore real-world drivers and test model assumptions of 

soil stoichiometric patterns. Specifically, our questions are: 

 

1) How important are plant litter chemistry, climate, and soil abiotic controls over soil C:N  

stoichiometry across real soils and model simulations?  

 

2) Are there important observed drivers of soil C:N that models miss and that modelers should 

work to include in the near term? 
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We investigated these questions with a combination of model simulations and large-scale 

data exploration. First, we used a recent synthesis of soil data from the Soils Data Harmonization  

(SoDaH) database (Wieder et al., 2021) to quantify the influence of environmental drivers of soil 

C:N. Second, we compared these findings with results simulated by two global scale models that 

represent coupled C:N stoichiometry, CASA-CNP (Wang et al., 2009) and MIMICS-CN 

(Wieder et al., 2018). Finally, we used simple regressions to explore variables from the SoDaH 

database that emerged as important drivers of soil C:N but were absent from models.    
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2. Methods 

We addressed our questions first by exploring patterns in a large-scale synthesis dataset, 

then by simulating large-scale patterns in models of soil C and N cycling, and finally by 

comparing patterns across models and data. Although direct comparisons of models and data at 

the same sites would have been ideal, the number of sites in the measured database with the 

necessary measured data to run the models was extremely limited, and direct site comparisons 

would have produced a very limited sample set. Instead, we compared broad patterns in 

relationships between variables across models and data. In doing so, we took advantage of the 

wide breadth of measurements in the SoDaH database while deriving unique insights into the 

controls on soil C:N stoichiometry across these observations and models. Our main interest here 

was to quantify the broader patterns present in the SoDaH database and evaluate the extent to 

which the selected soil models show qualitatively similar results. 

With this approach, selecting the right variables to explore was an important 

consideration. Given our expectation that litter input stoichiometry, climate factors, and edaphic 

factors should all play a role in controlling soil C:N (Fig. 1), we selected litter C:N, mean annual 

temperature (MAT), and clay content as representative variables that could be compared between 

models and data. In addition, to explore drivers of soil C:N not represented in models but 

available at a substantial number of sites in the SoDaH database, we explored measured patterns 

in soil C:N versus mean annual precipitation (MAP), soil pH, depth, and extractable soil metals 

indicative of soil mineralogy (i.e. dithionite- or oxalate-extractable iron, aluminum and silica).  



 102 

 

2.1 Models 

For our model simulations, we chose two global-scale models that represented C and N 

cycling through soil pools. For comparison’s sake, we chose one model that employs a cascade 

of linearly decomposing soil pools (CASA-CNP), similar to what most Earth system models use, 

as well as a newer model that controls decomposition and soil formation using simulated 

microbial growth and biomass (MIMICS-CN). With both models, we simulated steady-state pool 

values at a global range of sites using a biogeochemical model testbed (Wieder et al., 2018). 

 

2.1.1 Model descriptions 

The Carnegie Ames Stanford Approach - Carbon Nitrogen Phosphorus model (CASA-CNP) 

The CASA-CNP model follows the basic structure that most Earth system models use to 

represent surface mineral soils currently, i.e. a cascade of linearly decomposing pools (Wang et 

al., 2010). The CASA-CNP parameterization determines turnover times and a range for litter and 

soil C:N ratios for each vegetation type simulated by the model. The soil C:N ratio emerges in 

CASA-CNP from the distribution of SOM across these pools, which vary in their prescribed 

stoichiometry. 

 

The MIcrobial-MIneral Carbon Stabilization model with coupled nitrogen cycling (MIMICS-CN) 

The MIMICS-CN model simulates both C and N cycles in surface mineral soils using the 

biomass of two microbial groups with distinct traits (one fast-growing, low-C:N and one slow-

growing, higher C:N) to drive rates of decomposition and the transformation of plant litter into 

stabilized organic matter. MIMICS-CN explicitly represents microbial biomass and metabolism 
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and represents 2 pools of plant litter (considered metabolic and structural) and 3 pools of 

stabilized organic matter that differ in their persistence: the physically-protected pool is not 

susceptible to microbial enzymatic degradation and decomposes according to first-order kinetics 

modified by clay content, the chemically-protected pool is susceptible to microbial degradation 

and decomposes according to biomass-driven reverse Michaelis-Menten kinetics, and both of 

these pools feed into an available pool that microbes access and decompose according to 

biomass-driven reverse Michaelis-Menten kinetics (Kyker-Snowman et al., 2020; Wieder et al., 

2014, 2015d). The C:N stoichiometry of the metabolic litter pool is fixed, while the C:N of the 

structural pool is allowed to vary so that the C and N inputs to these pools are equal to the C and 

N in unpartitioned total litter inputs. In MIMICS-CN, overall soil C:N is driven by the 

stoichiometry and activity of the microbes that process plant litter inputs into stable organic 

matter, the stoichiometry of plant litter inputs to soil, and the distribution of SOM across 

stabilized pools with different emergent C:N values. 

 

2.1.2 Model simulations 

We conducted model simulations to explore the relationship between stoichiometry and other 

soil variables using the soil biogeochemical model testbed developed in Wieder et al. (2018, 

2019). The biogeochemical testbed was developed to allow streamlined testing of multiple 

models of soil using the same set of globally-gridded daily forcing data, here derived from the 

Community Land Model version 5 (CLM5; Lawrence et al., 2019) that uses historical climate 

data from the Global Soil Wetness Project reanalysis (GSWP3; Dirmeyer et al., 2006). Forcing 

data required to run the testbed included daily estimates of gross primary productivity, air and 

soil temperature, and soil moisture. Litter input quantity, timing, quality, and C:N stoichiometry 
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was calculated using the vegetation component of CASA-CNP (Wang et al., 2010). Other data 

inputs required by the soil models included soil clay content, derived from the CLM surface 

dataset (Lawrence et al., 2019), and plant functional type,  derived from the 1-km International 

Geosphere-Biosphere Program Data and Information System (IGBP DISCover) dataset 

(Loveland et al., 2000). For more details on the functioning of the testbed, see Wieder et al. 

(2018, 2019). The testbed and inputs were used to spin up each soil model to steady state for soil 

organic matter pools in the top meter of soil. The steady-state values of C and N across soil pools 

were output from each model, summed across pools, and divided to determine whole-soil C:N 

values for each model and each globally-gridded point. We plotted simple regressions across all 

locations to illustrate the emergent relationships between the three variables and soil C:N (Figure 

2). 

 

2.2 The Soil Data Harmonization database (SoDaH) 

The SoDaH database was synthesized from observations taken across a variety of 

research networks that included the Long-Term Ecological Research (LTER) network, the 

Nutrient Network (NutNet), the National Ecological Observation Network (NEON), the Critical 

Zone Observatory (CZO) network, and the Detrital Input and Removal Treatment (DIRT) 

experiments, with the aim to understand the controls on the distribution, stability, and potential 

vulnerability of SOM pools (Wieder et al., 2021). The SoDaH database was born from the desire 

to integrate the deep knowledge about soil properties across multiple research networks into a 

meaningful data product that could be used to understand soil functioning across broad swaths of 

time and space. The database includes measurements of over 150 soil variables from 215 sites 

across the world, and the database is unique in its inclusion of time series data and environmental 
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manipulation experiments across many of those sites. The specific measurements available for a 

given location vary widely, but the harmonization process used to generate the database makes it 

possible to parse the data for the variables of interest and look at broad patterns. 

 

2.2.1 Statistical analyses of C:N and edaphic variables in SoDaH 

To assess our model-generated relationships against measurements in the SoDaH 

database, we filtered the database to exclude values that fell outside the assumptions of our 

model simulations. The version of MIMICS-CN we used was designed to simulate surface 

mineral soils, so we removed organic horizons from the database and filtered the database to 

exclude measurements from experimentally treated samples, leaving only control samples. We 

also restricted our analyses to the top 20 cm of soil to limit the impact of depth on our results, 

leaving 1204 observations. Our models simulated soil down to 1 m but only as a single layer 

averaging across the entire depth profile; therefore, we expected to see some differences between 

model results and observations resulting from the difference in represented depths (i.e. bias in 

model results toward lower C:N values), but we still felt this was a fair comparison. Plant litter 

C:N values were somewhat sparse in the database, but we generated values for many of the 

NEON sites by averaging the C:N of aboveground leaf and needle inputs. We generated the same 

simple regressions as for our model results of soil C:N against plant litter C:N, mean annual 

temperature, and percent clay (Figure 2). We then explored additional correlations within the 

database and identified several variables other than the three already selected that were worth 

including in further analyses with the database, namely depth, mean annual precipitation (MAP), 

pH, and extractable metals. 
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2.3 Data-model comparison with linear mixed models 

To obtain a deeper quantitative understanding of how different variables ranked in their 

importance in driving soil C:N, we developed a suite of multiple linear regressions (MLR) that 

we used with different subsets of the data and different sets of our variables. Importantly, the 

results of these models are only comparable within a given data subset because MLR are only 

comparable for the same set of response variables, but our goal was not to compare values 

directly but rather to compare the relative importance of variables in driving soil C:N across 

these different statistical models. Additionally, measurements of litter C:N were only available 

for a smaller subset of our data (primarily sites from the National Ecological Observation 

Network or NEON), so we chose to evaluate the importance of two other variables (clay, MAT) 

across the larger dataset while exploring litter C:N patterns within the smaller subset of data 

from NEON sites. For each MLR, we scaled variables to have a mean of 0 and a standard 

deviation of 1 so the regression coefficients would be comparable, and we checked that the 

residuals followed a normal distribution. 

On the entire SoDaH dataset, we ran two MLRs: one which contained our two variables 

of interest related to the testbed models (clay, MAT), and one which additionally included three 

other variables that showed up as potentially important in our initial explorations of the data (pH, 

MAP, depth down to 20 cm). For the smaller subset of NEON data (for which we had fewer 

measurements of a larger number of variables), we ran four MLRs: two with the same variables 

as the models used with the entire dataset, one with the variables available within our models 

(clay, MAT, litter C:N), and one with a wider array of variables available only within this 

smaller subset of data (clay, MAT, litter C:N, pH, MAP, depth, and also extractable metals). 
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For our testbed model results, we generated two MLRs each: one with the two variables 

shared with the larger dataset (clay, MAT) and one with the three variables shared with the 

smaller dataset (clay, MAT, litter C:N).  

For all of our statistical models, we generated relative importance values using the 

relaimpo package in R (Grömping, 2006) to understand how different variables controlled soil 

C:N values for a given subset of the data and variables. We reported the relative importance for 

each independent variable, which is the percentage of the total explained variance that a given 

individual variable explains. We compared model and data results as appropriate.  

Finally, based on the statistical model results, we generated additional simple regressions 

of variables that emerged as important drivers of soil C:N to understand patterns in the SoDaH 

data that models miss. 
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3. Results 

We explored important drivers of soil C:N across models and data. Our results emphasize 

the role of clay content in driving soil C:N in both data and the MIMICS model, while litter C:N 

and MAT were less important in data but more important in model results. In our in-depth 

analysis of the SoDaH database, the explained variance and the relative importance of each 

variable differed across subsets of the data and variables, but other factors that emerged as 

important included depth, pH, and extractable soil metals. 

 

3.1 Broad patterns in soil stoichiometry across data and models 

3.1.1. Simple regressions 

We used simple regressions to give a sense of how models and measured data compared 

(Figure 3). Results diverged among measured values and the two soil models we included. 

Across the simple regressions in Figure 3, the three representative variables we chose (litter C:N, 

MAT, clay) explained considerably more variation in the MIMICS-CN than the data or the 

CASA-CNP model, and the measured correlations were not strong overall across such a large 

number of observations. Measured soil C:N was weakly positively correlated with plant litter 

C:N (R2 = 0.19) and weakly negatively correlated with percent clay (R2 = 0.15), but mean annual 

temperature did not seem to show any specific relationship with soil C:N (R2 = 0.005). Relative 

to data, values of soil C:N simulated by MIMICS-CN were more strongly correlated with all 

three variables, and correlation coefficients were comparable across variables. By comparison, 

values of soil C:N simulated by CASA-CNP were weakly correlated with all three variables. 

In general, observations captured greater natural variability in our simple regressions than 

the MIMICS-CN model, which is unsurprising given that models are necessarily simplified 
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representations of the natural world. The range of values for C:N generated by MIMICS-CN was 

very small and biased towards lower, more nitrogen-enriched values, generally falling between 9 

and 13. While many real soils do fall in this range, the natural measured range in soil C:N and 

the range captured by CASA-CNP was much greater. In addition, our observations were limited 

to the top 20 cm of soil while our models both simulated soils down to 1 m, so it would be 

reasonable to models to be biased towards lower soil C:N values and a different range than 

observations. 

 

3.1.2 MLR and relative importance results 

Our MLR and relative importance analyses allowed us to clarify relationships between 

variables in our model outputs and data results. Similar to our simple regressions, results 

diverged across models and data. Within measured results, no MLR generated an R2 greater than 

0.52, indicating that other unmeasured variables likely contribute to the patterns explored here 

(Table 1). The lowest R2 was 0.15 for the MLR model that used only clay and MAT to explain 

variance across the entire SoDaH database. MLR models that included more explanatory 

variables or that were applied only to the NEON subset of the SoDaH database generally 

explained more of the overall variance in the data (Table 1). 

Despite generally low R2 values, across every MLR model using observations, clay 

emerged as a variable with high relative importance in driving soil C:N (Table 1; 33.4% of the 

total variance explained in the most parsimonious model using the larger dataset). As a reminder, 

we focused on relative importance values as indications of the contributions of individual 

variables in driving soil C:N, where “relative importance” is the percentage of the total explained 

variance that a given individual variable explains. In the entire SoDaH dataset (SoDaH-5), MAP 
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and pH also emerged as important drivers (33.6% and 31.4% respectively), while depth and 

MAT were of lesser importance (0.3% and 1.3% respectively). Within the NEON subset of the 

SoDaH data, the same variables still emerged as important drivers of soil C:N, but MAT also 

showed moderate importance. Dithionite-extractable iron and aluminum also emerged as 

moderately important drivers in the statistical model that included them, while other variables 

did not have much relative importance.  

The two soil models we evaluated showed MLR and relative importance results that 

differed both from measured results and from each other. In MIMICS-CN, MAT, clay and litter 

C:N held roughly equal relative importance in driving soil C:N (31.1%, 31.4%, and 37.5%, 

respectively), and these three variables explained a large overall proportion of the variance in 

model results (R2=0.80). In CASA-CNP, on the other hand, these three variables explained a 

very small proportion of the overall variance in model results (R2=0.06), and the results indicated 

that litter C:N was the most important driver of soil C:N (64.6%), while MAT was roughly half 

as important (32.7%) and clay was hardly important at all (2.8%), though caution should be 

taken in interpreting the relative importance of variables that explained so little variance.  

 

3.2 Key drivers of C:N absent from models  

Based on the MLR results, we delved deeper into the relationships between soil C:N, 

MAP, pH, and extractable metals to assess whether there are important drivers of soil C:N that 

models miss. We plotted the relationship between soil C:N and both MAP and MAT to discern 

any obvious climate-driven patterns; however, no clear pattern emerged (Fig. 4). On the other 

hand, we plotted the relationship between soil C:N and both pH and clay (Fig. 5) and observed a 

response surface with high soil C:N values for acidic, low-clay soils and declining soil C:N with 
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both increasing clay content and increasing pH. pH and clay content impacted soil C:N 

independently, such that there were an abundance of both high-clay, low-pH and low-clay, high-

pH sites with low soil C:N (i.e. clay and pH did non covary).  

Finally, we plotted simple regressions of soil C:N against extractable metals (Fig. 6) to 

better understand the relationships between soil C:N and both dithionite-extractable iron and 

aluminum, which both emerged as important variables in our MLR analysis. Soil C:N showed a 

weakly positive correlation with dithionite-extractable aluminum and a weakly negative 

relationship with dithionite-extractable iron, though both correlations were too weak to draw 

strong conclusions. 
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4. Discussion 

Soil C:N stoichiometry is an easily-measured quantity that provides a window into the 

chemical nature of SOM and allows us to evaluate the performance of soil models that couple C 

and N cycles in a unique way relative to soil C or N stocks alone. Our analyses allowed us to 

quantify the relative importance of top-down and bottom-up controls on soil C:N (Fig. 1) in 

modern models of soil C and N and in data, and to explore important variables missing from 

models. We evaluated modeled and measured drivers of soil C:N using global simulations of two 

distinct models and a new global database of soil variables. We discerned that clay content was 

an important control on soil C:N in both data and one of our models, and that litter and climate 

variables were differently important in data compared to our models. We also discovered a 

number of other drivers of soil C:N in the database, notably pH and several extractable metals. 

 

4.1 Broad patterns in soil stoichiometry across data and models 

The relative strength of different variables driving soil C:N across model results and data 

points out both strengths and flaws in the design of models. In SoDaH-CN, all of the statistical 

models we evaluated explained only some of the variance in the data, with R2 values that 

consistently fell higher than CASA-CNP but lower than MIMICS-CN. Therefore, neither CASA-

CNP nor MIMICS-CN simulations fell precisely in line with measured data: CASA-CNP 

underemphasized the importance of the included drivers of soil C:N, while MIMICS-CN 

overemphasized them. Within the limited variance explained in the measured data by our 

included variables, clay content consistently generated the highest relative importance, with 

climate and litter C:N variables appearing with relative importance values that were roughly half 

of clay content. pH and some extractable metals also showed relative importance values that fell 
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between clay and climate variables, further emphasizing the role of edaphic variables in 

controlling soil stoichiometry. Although unmeasured variables explain a considerable portion of 

the variance in soil C:N in SoDaH, our results overall highlight the primary importance of 

bottom-up controls on soil C:N (Fig. 1), with top-down litter and climate controls appearing 

secondarily important.  

For MIMICS-CN, clay content, MAT and litter C:N were roughly equal in their relative 

importance, meaning that MIMICS-CN overemphasized the role of both MAT and plant litter 

chemistry in driving soil C:N relative to data. This makes sense given that MIMICS-CN strongly 

emphasizes the role of microbial processing in transforming high-CN plant litter into low-CN 

stable organic matter. MAT controls the rate of microbial processing of litter in MIMICS-CN, 

which in turn pushes the distribution of C and N at high-temperature sites away from high-CN 

plant litter pools and towards low-CN stable organic matter pools. Coupled with the fact that 

MIMICS-CN generated soil C:N values in a range that was considerably lower than the 

measured range, MIMICS-CN may be too heavily weighted towards the microbial end of the soil 

spectrum and may need to be adjusted to stabilize more unprocessed plant residues, perhaps 

through some kind of soil aggregation mechanism. Real-world variability in soil C:N was much 

greater than MIMICS-CN would suggest, though this is often a hazard of models.  

Results simulated with CASA-CNP diverged from both MIMICS-CN and measured data, 

indicating fundamental differences in the theory underlying the design of CASA-CNP. In 

CASA-CNP, the C:N stoichiometry of various soil pools is prescribed as internal parameters to 

the model, and total soil stoichiometry for a given site is dictated by the balance of SOM across 

these pools. As a result, the three variables included here as hypothesized drivers of soil 

stoichiometry (MAT, litter C:N, clay) explained hardly any of the variance in soil C:N in CASA-
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CNP simulations (R2 = 0.06). This points to a flaw in the cascading pool design of CASA-CNP 

and models like it: soil stoichiometry is disconnected from many environmental variables and is 

not allowed to vary with variables that are known to be important drivers of soil C:N. This may 

limit the ability of models with this design to accurately capture the feedbacks between soil C 

and N cycles and may cause compensating errors in the simulation of each elemental cycle 

individually (for example, errors in the estimation of plant-available N released from decaying 

SOM).  

Although our initial data-model comparisons point to some potential strengths and areas 

for improvement in existing models, confirmation of the widespread controls on soil C:N is 

limited by the availability of soil measurements aligned at the same sites. In particular, despite 

the breadth of sites, measurements, and research networks included in SoDaH, very limited 

measurements were available for plant litter chemistry at sites where soil C:N was also 

measured. This is an inexpensive and straightforward problem to correct if more empirical 

studies would measure both soil C:N and plant litter C:N (finding the true C:N of total plant litter 

inputs is complicated by roots, root exudates, and various other pathways for plant inputs to soil, 

but even a rough estimate of aboveground plant input C:N would be a useful proxy for 

evaluating models). In addition, our study pointed to the importance of edaphic variables in 

driving soil C:N. More widespread measurements of specific soil mineralogy coupled to detailed 

mechanistic studies exploring the affinities of different minerals for N-enriched organic moieties 

(e.g. amino acids) may provide clarity about the role of edaphic factors in filtering SOM and 

enriching soil C:N.  
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4.2 Key drivers of C:N absent from models  

Our results also pointed to pH and extractable metals as important measured variables 

controlling soil C:N that are absent from the models we used. pH is a master variable in soil that 

controls many processes, from mineral and dissolved elemental reactivity (Neina, 2019; 

Rasmussen et al., 2018; Weil and Brady, 2016) to the makeup of microbial communities in soil 

(Fierer and Jackson, 2006). One interesting interpretation of our results relates to modern 

research highlighting the important role of soil mineralogy in determining how much and which 

SOM compounds become stabilized (Mikutta et al., 2019). Coupled with the result that clay 

content was an important driver of soil C:N across both MIMICS-CN and data, the correlation of 

soil C:N and pH might suggest that specific mineralogy (and not simply clay-sized minerals) 

may be important in stabilizing high-N residues from dissolved organic matter and microbial 

necromass. Mineral reactivity and importance in stabilizing SOM has been shown to depend on 

pH (Rasmussen et al., 2018), which may help to explain our results. Previous research has also 

shown that soil minerals show preferential affinity and bonding strengths for specific organic 

moieties, especially N-rich moieties like amino groups, and act as a bottom-up filter on the 

chemical makeup of stabilized SOM (Mikutta et al., 2019). Changes in organo-mineral 

associations with depth have been used to explain observed depth patterns in soil C:N and 15N 

isotopic enrichment, in contrast to the historical view that soil C:N decreases with depth are due 

to increasing degree of residue processing (Kramer et al., 2017). This concept of a “mineral 

filter” (Mikutta et al., 2019) acting as a bottom-up control on SOM composition is supported 

overall by our analyses (i.e. the high relative importance of clay, pH and specific extractable 

metals) and could be explored further in models with minor modifications. 
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The hypothesis that specific mineral interactions control soil C:N through sorptive 

fractionation could be explored in models like MIMICS-CN with some additional data 

collection. Further field experiments could be used to develop a mechanistic relationship 

between pH and the minerals that are important in stabilizing certain forms of organic matter. 

Using such a relationship, pH is an easily measured quantity that could be used to improve 

models, for example by making the model coefficient of clay stabilization dependent on pH. The 

importance of dithionite-extractable iron in driving soil C:N in our results also supports the idea 

that specific minerals may play a role in filtering the chemistry of SOM during stabilization. 

Chemical extractions are more expensive and somewhat rarer in measured data, but such 

relationships may be useful in identifying the specific minerals (e.g. iron oxides) that play a key 

role in stabilizing low-C:N microbial residues. Specific mineral representation is currently 

beyond the scope of models like MIMICS-CN and CASA-CNP, but understanding the role of 

different minerals in stabilizing SOM on a large scale could improve the theory of SOM 

stabilization in a way that could eventually be simplified for use in models. 

 

4.3 Summary and future directions 

Soil C and N cycles interact and modulate one another, and we cannot accurately 

understand or model either in isolation. As models increasingly connect C and N cycles, it is 

crucial that we evaluate the mechanistic connections in models and data and ensure that they are 

in accord. In our study, we evaluated one traditionally-structured model and one contemporary 

microbially-explicit model against a large scale data synthesis. We found that neither model 

perfectly captured the mechanistic controls on soil C:N in the data: the traditionally-structured 

model failed to capture the influence of climate, litter or edaphic control over C:N, while the 
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contemporary model overemphasized all three. Moving forward, broader measurements of the 

variables that control soil C:N and deeper experiments into the mineral-mediated mechanistic 

controls on SOM stoichiometry will help to connect data and models and reduce uncertainties in 

large-scale coupled biogeochemical simulations.  
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Table 1. Results from multiple linear regression analyses of SoDaH data, NEON sites included within SoDaH, 

MIMICS-CN and CASA-CNP. For each MLR, we scaled variables to have a mean of 0 and a standard deviation of 

1 so the regression coefficients would be comparable. Relative importance percentages show the percentage of the 

total variance explained by each statistical model that a given individual variable explains. “NA” indicates a variable 

that was not included in a given analysis (or statistical model). Statistical models with the same “Grouping” letter 

included the same subset of variables.  

            Relative importance percentage 

MLR name Type n R2 AIC Grouping MAT Clay 
Litter 
C:N MAP Depth pH Fe_ox Al_ox Ai_ox Fe_dith Si_dith Al_dith 

SoDaH-2 Observation 1204 0.15 3195 a 2.0% 98.0% NA NA NA NA NA NA NA NA NA NA 

SoDaH-5 Observation 1204 0.27 2669 c 1.3% 33.4% NA 33.6% 0.3% 31.4% NA NA NA NA NA NA 

NEON-2 Observation 239 0.25 616 a 31.7% 68.3% NA NA NA NA NA NA NA NA NA NA 

NEON-3 Observation 239 0.28 607 b 20.9% 46.5% 32.6% NA NA NA NA NA NA NA NA NA 

NEON-5 Observation 239 0.32 600 c 20.0% 37.3% NA 15.8% 2.4% 24.5% NA NA NA NA NA NA 

NEON-7 Observation 239 0.52 386 d 9.7% 15.5% 9.4% 8.7% 1.9% 10.5% 4.5% 9.3% 4.9% 11.1% 1.8% 12.5% 

MIMICS-CN-2 Model 2697 0.54 5554 a 51.6% 48.4% NA NA NA NA NA NA NA NA NA NA 

MIMICS-CN-3 Model 2697 0.80 3318 b 31.1% 31.4% 37.5% NA NA NA NA NA NA NA NA NA 

CASA-CNP-2 Model 2697 0.03 7588 a 92.8% 7.2% NA NA NA NA NA NA NA NA NA NA 

CASA-CNP-3 Model 2697 0.06 7500 b 32.7% 2.8% 64.6% NA NA NA NA NA NA NA NA NA 
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Figure 1. Current state of knowledge about how plant, microbial, climate, and mineralogical factors combine to 

influence the coupling of soil C and N biogeochemical cycles. 
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Figure 2. Overlapping measured variables between data subsets and model inputs. 
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Figure 3. Drivers of soil C:N across the SoDaH database (top row) and the MIMICS-CN and CASA-CNP models 

(bottom row). Lines and correlation coefficients show linear regressions of the data. Mean annual temperature 

(MAT) is given in units of degrees Celsius.  
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Figure 4. Soil C vs. N as a function of mean annual precipitation (MAP, mm) and mean annual temperature (MAT, 

degrees Celsius) in the SoDaH database. 
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Figure 6. Soil C vs. N as a function of extractable metals in the SoDaH database. Lines show linear regressions of 

the data. All extractable metals shown are in units of mg/g soil.  
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SYNTHESIS 

Ecology matters in the Earth system. Plants, fauna, and microorganisms on the land 

surface control terrestrial flows of water, elements like C and N, and energy, with extensive 

feedbacks to climate processes. For example, plant communities determine the rates of terrestrial 

exchanges of CO2 and water through photosynthesis (Bonan, 2016), and plant-soil feedbacks 

determine the rates that plants can take up soil N and facilitate photosynthesis (Terrer et al., 

2018; Zaehle et al., 2014). Soil microbial communities determine rates of decomposition and 

release of C and nutrients from plant litter (Gan et al., 2013; Kaiser et al., 2014; Nottingham et 

al., 2013; Rinkes et al., 2013), and microbial community composition dictates the impact of 

climate factors on rates of decomposition (Averill et al., 2015; Blagodatskaya et al., 2010; 

Edwards and Zak, 2011; Kaiser et al., 2015). Ecological communities even control rates of 

energy transfer with the land surface – for example, plant community composition and 

phenology determine absorption of radiative energy through the albedo effect and land surface 

modification of atmospheric currents through surface roughness (Bonan, 2008, 2016). We can 

therefore improve the realism of ESMs by adding more ecological process representations, but 

we must be careful not to add them blindly. 

Adding new ecological processes to ESMs without careful consideration can damage the 

performance of models in a variety of ways. Overly complex calculations can increase the 

computational costs of ESMs to an unreasonable degree. New processes that have not been 

adequately validated can introduce new errors to models that propagate throughout other 

connected processes, leading ultimately to decreasing accuracy in the projection of future 

behavior in terrestrial ecosystems. Even if a process has performed well against data, models 

sometimes suffer from the principle of “equifinality” whereby many model formulations can 
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reproduce the same data, and models sometimes reproduce data well using an inaccurate 

underlying process representation. This principle highlights the need to constantly evaluate and 

improve the underlying process representations in existing ESMs to reflect emerging empirical 

and theoretical understanding of terrestrial ecosystems. 

Given the inherent hazards of adding new process representations to ESMs, it is critical 

to mitigate these risks via thoughtful procedures for evaluating new process models along the 

way to ESM incorporation. Chapter 1 of this dissertation describes such a pathway made up of 

three stages: initial process assessment, simple model development, and model testing within an 

ESM. As described in Chapter 1, the path to ESM incorporation is nonlinear, often requiring 

revisiting intermediate steps before proceeding to the next stage. Following a procedure like that 

described in Chapter 1 allows large-scale models to grow and develop in a responsible way.   

 Specific examples help to illustrate model development pathways like that described on 

Chapter 1. Models of soil biogeochemistry provide a particularly good example of the iterative 

nature of model development, both within and outside ESMs. Historical process models of soil 

(and most of the soil models used within ESMs today) follow a decomposition scheme whereby 

plant matter decays linearly along a cascade of increasingly stable pools. This scheme is based 

on the outmoded idea that chemical recalcitrance is primarily responsible for the long-term 

stability of SOM, and the models that are built off this method are slowly falling out of favor to 

make way for models that more faithfully represent microbial controls over the transformation 

and stabilization of SOM. As soil models evolve, it’s critical to interrogate new process 

representations with a variety of data and from a range of perspectives to ensure that one flawed 

process representation is not being replaced with something equally flawed. 
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 Chapters 2 and 3 of this dissertation illustrate responsible evaluation of a novel soil 

process representation. In Chapter 2, I described the initial development of a coupled C and N 

version of the MIMICS model, followed by evaluation of the model’s performance against a 

continent-wide database of litter decomposition experiments. This evaluation provided a baseline 

for understanding the new model’s ability to dynamically replicate patterns in both C and N 

decomposition across a range of climate and soil conditions. Although this was only a first step 

in examining of the performance of the new model, it served as compelling evidence that the 

model fundamentally functions and reasonably captures real decomposition dynamics, and 

furthermore suggests that the model is worthy of additional development and examination using 

diverse, large-scale datasets.  

 In Chapter 3 of this dissertation, I continued the evaluation of the MIMICS-CN model by 

comparing its performance against a more traditional model structure (CASA-CNP) and a large-

scale database (SoDaH). In this chapter, I focused on the ratio of soil C and N in models and data 

and used statistical analysis of model results and data to discern the most important drivers of 

soil C:N. I learned that MIMICS-CN balances temperature, plant litter chemistry, and soil clay 

content roughly equally as controls over soil C:N, while CASA-CNP showed little control of any 

of these three variables over soil C:N, and measured values showed an intermediate level of 

control of these three values over soil C:N with an emphasis on clay content over the other two. 

On the whole, this suggests that MIMICS-CN captures controls over soil C:N that a more 

traditional model (CASA-CNP) fundamentally misses, but that MIMICS-CN fails to capture all 

of the variability and drivers of soil C:N present in measured data.  

 Development and testing with the MIMICS model extends considerably beyond the work 

in this dissertation. Recent work has added soil moisture controls on microbial growth (Wieder et 
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al., 2018) and depth resolution (Wang et al., 2021) to MIMICS. Furthermore, the parameter 

estimates used in MIMICS have been refined (Zhang et al., 2020) and the model’s overall 

performance has been extensively tested from several angles against global soils data and other 

soil models (Basile et al., 2020; Koven et al., 2017; Shi et al., 2018; Sulman et al., 2018). As the 

complexity of MIMICS and the variables it includes expands, it is crucial that the model is both 

developed and then tested using data that represent our most modern understanding of the 

functioning of soil systems.  

In addition to the included variables discussed above, MIMICS is uncommon amongst 

soil models in its capacity to represent aspects of microbial community and physiology. Given 

the rapid expansion of the field of soil microbiology (Fierer et al., 2021), future work could use 

MIMICS to explore the large-scale ramifications of global-change-driven shifts in microbial 

communities. For example, the r and K strategists represented in MIMICS may respond 

differently to shifting patterns in precipitation and soil moisture, and MIMICS enables us to 

connect such responses to overall responses of soil C and N cycles. Beyond the simplified 

representation of r and K strategists in MIMICS, other logical divisions of microbes into 

functional groups may emerge from soil microbiological research that could be incorporated into 

MIMICS. In addition, various aspects of microbial physiology and metabolism (such as CUE or 

growth rate) may have different sensitivities to global change factors like rising temperatures. 

MIMICS provides a unique testbed for exploring the large-scale ramifications of microbial 

responses to global change for soil C and N cycling around the world. 

Many forms of ecology, from soil metagenomics to plant-soil nutrient interactions and 

beyond, have the potential to improve the realism of ESMs and ultimately increase our ability to 

project and understand the future of our changing planet. As we do so, it is critical that all new 
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model developments undergo rigorous testing at every stage to ensure that process 

representations ranging in scale from micro- to macroscopic align with our empirical 

understanding of Earth system mechanics. This dissertation has outlined a roadmap for the 

careful progress of models along the path to ESMs and demonstrated this roadmap with the 

development and multi-faceted evaluation of a microbial-explicit model of soil C and N cycling. 

With the paired forward progress of empirical understanding and modeled process representation 

in the future, ESMs and ecological research in soils and beyond will strengthen one another and 

jointly improve our understanding of the functioning of natural systems. 
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