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l Introduction

Our study of the effect of carbon black used as a filler in polymers is based on:

• a simple mechanical model representing the elementary interactions be-

tween two agglomerates;

• a statistical description of the agglomerates that models the collective
behavior of a group of agglomerates.

Our goal is to explain and model the typical variation of the complex Coulomb
modulus as a function of amplitude of déformation (see figure l).
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Figure l: Typical relation between Coulomb modulus and amplitude of defor-
mation

We will first describe the général simplifications we made in our model before

exposing the mechanical model itself. Our statistical description of a collection
of elementary mechanical model will then yield a behavior which compares fa-
vorably with expérimental results.

2 Général Hypothèses of the Model

The Coulomb modulus is assumed to be the sum of two contributions:

• the perfectly linear viscoelastic behavior of the polymer;

• the effect of carbon black agglomerates.

We will focus on the second contribution, the first being well-known.
The way carbon black agglomerates are embedded in a polymer matrix can

be represented by figure 2 (a). The polymer strings being much smaller that the
agglomerates, the polymer matrix can be considered as a viscoelastic continuum.
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Figure 2: Polymer-agglomerate Interaction

This continuum tends to bring the agglomerates to their rest positions. Since
the polymer is a linear medium, the sum of all strain exerted on an agglomerate

can be représentée! by a linear spring-damper system (b) linking the agglomerate
to its rest position (représentée! by a cross). Considering only the position ofthe
center ofmass ofthe agglomerates with respect to its rest position, the System

reduces to (e).
The material is composed of many of thèse agglomerates, all of which can

be représentée! by the same simple mechanical model. But when numerous

agglomerates are brought nearby, another force acts on the agglomerates: the

Lon don-van der Waals interaction due to neighbouring agglomerates.

The efFect ofstretching the polymer is équivalent to moving the rest positions
farther from each other. To evaluate the position of thèse new rest positions, we

can interpolate linearly, as shown in figure 3 (a) and (b). Notice that because
there is a force acting between them, the agglomerates do not necessarily remains

in their rest positions when the polymer is streched.

3 Microscopic Interaction Between Aggregates

In this section we will dérive an expression that describes the forces which act on
the agglomerates. But first we need to make some more simplifying assumptions.

The London-van der Waals interaction binding the agglomerates is theoret-
ically of infinite range but since its magnitude decreases as the seventh power
of the distance, its effect rapidly vanishes. This enables us to focus only on the
interactions between almost touching agglomerates.

We also assume that the interaction between two agglomerates does not

influence the behavior of other agglomerates. The problem can thus be con-

sidered a sum of N two-body problems instead of a 2N-body problem. The
independence of each two-body problem eases their statistical analysis without
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Figure 3: Agglomerates (in gray) and equilibrium positions (crosses) under no
déformation (a) and when the polymer is stretched (b).

introducing too many artefacts, as we will see later on.

The microscopic mechanical model then reduces to figure 4 (a). Two spring-
damper Systems placed in série can be replacée! one équivalent spring-damper

System (b). Only remains a string of a spring-damper system (representing the
polymer-agglomerate interaction) and a non-linear elastic spring (representing

the London-van der Waals force).

(a)

(b)
(a-x)k

¥----F<< —{^}-X
r\Si(a-x}

dt

Figure 4: Microscopic mechanical model. k is the elastic constant, T] the viscous
constant and F the force between the two agglomerates.

To model the interaction between the two agglomerates, we can use the

expression of the London-van der Waals force which has both an attractive

term due to the van der Waals force, and a repulsive term accounting for the

repulsion between electrons. The exact expression F(x) oî this force is however
dépendent on the exact shape of the agglomerates. This shape greatly varies,
but in any cases, there is always a région where the force increases (for small
distances) and an région where the force decreases (for large distances), as shown
in figure 5. Thèse descriptive properties are sufBcient for our qualitative model.
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Figure 5: The typical shape ofthe force F between agglomerates as a function
of distance x.

By inspection of figure 4 (b) one can find the équations of movement for x,
the agglomerate position as a function of time. Since

dïx
•^elastic + -^viscous — ^London-van der Waals = m^2

where m is the agglomerate mass, then

d , _. . d2x

(a - x)k + rj^(a - x) - F(x) = m-^

where r/ is the viscous constant, k, the spring constant, and a, the distance

between the rest positions.

We now seek to plot the curve of F versus a. Suppose that the variation

of a is sufficiently slow so that the system has always the time to reach a
stationnary state (i. e. the process is quasi-static). One must recall that the
viscoelastic properties we want to model persist at frequencies as low as l hertz.

During such slow movement, the composite must have plenty of time to reach
equilibrium.

Under the quasi-static assumption, both the r)-^(a—x) and the m^- terms
are negligibly small compared to (a-x)k-F(x). So the équation simply reduces
to the conditions of static equilibrium:

(a - x)k = F(x)

This équation can be solved graphically by finding the value F at which the

curves F(x) and (a — x)k intersect, for each value of a. Figure 6 shows différent
possible points of intersection.

(a) When no strain is applied on the polymer, a = Oo and the equilibrium
position x lies in the increasing région of F.

(b) When a is brought up to a critical value (4, a second stable equilibrium
point appears while the first one disappears. Since there is a rapid jump
from one point to another, the London-vaa der Waals link between the

agglomerates is said to "break" .



(e) For large values ofa, the equilibrium point lies in the decreasing région of
F.

(d) When a decreases down to a critical value ai, — Aa, another jump from one

equilibrium to a new one occurs. The London-van der Waals link between

the agglomerates "reforms".

(e) At low values of a, the equilibrium position again lies in the increasing
région of F.

Figure 7 shows the complète curve that can be obtained by this method. The
particular values of a used in figure 6 are marked by heavy dots.
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Figure 6: Graphical détermination of F versus a.

Notice the appearance of a hysteresis cycle whose surface gives the energy

loss. One may wonder where is the physical origin of the energy loss since the
viscous term has been neglected in our derivation. During the fast transition
between two equilibrium points, the quasi-static assumption does no longer

hold: the viscous force becomes significant and créâtes great energy lasses while



Figure 7: Hysteresis curve of F versus a.

the agglomerate converges toward the new equilibrium. Despite of that, the
quasi-static assumption is a good approximation because:

• the transition is fast and the quasi-static assumption is violated during an
infinitesimal amount of time;

• the main effect of the viscous force is to prevent the agglomerate from
oscillating around its new equilibrium position;

• since energy is conserved, the energy dissipation due to the viscous force

must equal the area of the hysteresis cycle.

The viscous term is implicitly taken into account by the appearance of a hys-
teresis cycle.

One might also be concerned by a third equilibrium point (see figure 6 (f))
that we neglected. This point is unstable, as it can be shown from the slope of
each curve at the point of intersection.

Let us notice that the exact expression of F(x) is not important. For the
qualitative behavior of our model to be correct, the only requirements are that
F(x) has:

• an increasing and a decreasing région;

• an inter val where - dF^ > —k.

Let us now consider qualitatively what happens at différent amplitudes of
sinusoïdal déformation (see figure 8).

• At low amplitudes, the déformation is insufficient for the System to reach
the critical point where hysteresis appears (a). Energy lasses are low and
so G" is small. G' is large since the slope of F is steep.



Figure 8: Explanation of the amplitude dependence of G' and G" '.

• At moderate amplitudes, the hysteresis appears, and increased energy

loss causes G to increase. Since the average slope of F decreases, G' also

decreases.

• At high amplitudes, the lasses do not increase much, because they are
mainly produced by the hysteresis cycle, which keeps the same area. But
since

(Energy lasses) oc G"(Amplitude)2

an increased amplitude at constant energy loss yields a decrease of G".

Until now, we have only considered the behavior of a pair of agglomerates
and qualitatively described how this behavior influences the values of G and
G" at différent amplitudes. It the next section, we will dérive an expression of
the contribution of a pair of agglomerates to the Coulomb modulus.

4 Idealized Response ofthe Microscopic Model

In order to make our statistical description more manageable mathematically,
we must first construct an idealized version of the mechanical model. Under
a small déformation, the distance a between rest positions is assumed to be

linearly related to the shear strain 7:

a = a,,(l + r-7)



which becomes, under a sinusoïdal déformation,

a = ao(l+ r-fosmwt)

where r is parameter depending on the spatial orientation of a given agglomerate
pair. The plot of F versus 7 is thus similar to figure 7. If we also linearize each
curved portion of the curve, we obtain figure 9. Here follows a derivation of

the complex viscoelastic constant g = g + ig of this idealized elementary
mechanical model.

I»AY

Figure 9: Idealized Response as a function of7

If F were linear, we would have

F=gj

but wejust saw that F is not linear so only an effective value of g can be found.
This effective value is defined as the first term of the Fourier séries of F as a

function of time, when f = joe . We will use an alternative approach giving
an estimate of g without relying to Fourier séries.

Let us first consider the imaginary part oîg. The energy loss E\ as a function
ofamplitude 70 gives a step function centered on the onset ofthe hysteresis cycle
at 70 = 7i (see figure 10 (a)). Recalling that

^^EL<x —
fï

we find, analogously:

9"(-Ïo,-7t)= <j fi. ^
if -ïo < 76

if To > 76

Figure 10 (b) shows g as a function of7o. The area enclosed by the hysteresis
cycle can be expressed as

E, w go 76 Aj
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Figure 10: Idealized microscopic viscoelastic constants

where go is the slope of the increasing région of F versus 7 and A^ is the width
of the hysteresis cycle.

An estimate of the effective g is obtained by computing a linear régression
of F versus 7 on the interval [0,7o]. (A more rigorous treatment would require

to consider the interval [—7o,7o] instead. But it would only adds a constant
amplitude-independant contribution to g'.) If we assume that the width of the

hysteresis cycle is small, the curve F versus 7 reduces ta the graph F(j) shown
in figure 10 (e). For f g <:fi, the régression yields a slope oî go while for 70 > ji,
the slope is given by:

, ^ Jo1'0 7^(7)^7 _ C ^(7)^7 _ Ç ffo72^ _ ffo7|
9'(.fo,tb)

Jor°r^ -la.

3
f?'0

In summary, the idealized description ofthe microscopic viscoelastic constant
as a function oîjo, is:

where

9(7o,'ïl>)=3os'(-ïo,7b)+igo

l iîfo <: %

AT

76
5"(7o,7»)

0 if -^ 76
s'(70'7t)=l^ if '^~>^\ and s/^o'^={^ if,:;,,

Figure 10 (b) et (d) show the real and imaginary part of 3(70,7;,).
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5 Statistical Description

It seems that the idealized response derived in the last section yields a behavior
too discontinuous to compare favorably with expérimental results. But one must

recall that the composite is made of many pairs of agglomerate, each of which
breaks and reforms at différent times in the cycle. The resulting macroscopic
response G(j) is then a smoothed version of g(f,~fb) as shown in figure 11.

G'

(a) (b)

Figure 11: The smoothing efFect of distributed values of 7;,

We identified two major causes of smoothing:

• During uniaxial or shear déformation, the relative displacement of the
pairs of agglomerates is dépendent on the orientation of the pair. So a
given macroscopic déformation produces a range of values of microscopic

déformation.

• The binding energy of the van der Waals links is not constant: for a given
microscopic déformation, some pairs break, other do not.

Thèse two effects give rise to two distributions that are convoluted together
to yield a single distribution function. Let N(fi,)dft be that function which
gives the number of links that break when the polymer is stretched from 7;, to
7t + d'ïb- The complex Coulomb modulus is then given by:

>00 />00

G(j)= l go(7b)s'(-Y,7b)N(ft)djt+i l go('ft)hs"(-y,fi,)N(^)d-yi,
'0 JO

where h is the average value of ^1. By taking the average value of the ratio ^1
we assume that h follows a distribution which is independent of 7». Under the
same assuption, we can factor h out ofthe intégral.

Note that the effect of go(ft) is undistiguishable from the one of N{'jt)
because the efFect of a great number of weak links is undistinguishable from the
one ofa small number ofstrong links. We then combine go(jb) and N(fi) into
one weighting function:

WW = goWNW

11



The System then reduces to:

•oo roo

G(7) = / ^(7,76)^(7i)d7i + ih \ s"(f, -r^W^)d^
'0 JO

This équation complety describes the system. The exact forms of s (f, 7;,)
and s (7,7») are known but

• the constant h and

• the function W(ji,)

have yet to be determined from expérimental data.
G (7) and G (7) are expressed as the convolution of the same weighting

function W(fb) with known functions s'(-)',7i) and s (7,7;,). This helps to
explain why there is a very similar relation between G and G for différent
carbon black composites. The functions s/(7,7t) and s" (7,7;,) remain the same
for any material having the kind of dissipation mecanism we described here. On
the other hand, W(ft} is dépendent on the précise type of composite.

We can now see why the two-body assumption introduced in section 3 does

not alters the validity of our model. It is true that the breakage of one van der
Waals link may change the force acting between other pairs of agglomerates.
However, this will only change the value 7;, at which other pairs will break:
functions s'(f,ji,) and s"(f, fd) remain unaffected while the distribution W(fi,)
can be adjusted to take this possibility into account.

What can be done now to test this model? After all, the unknown function
W(fb) gives us an infinite number of degrees of freedom. It is indeed easy to
find a W(jb) such that G"(j) fits expérimental data. But then, for the same
W(ji,), G'(j) has to fit also. The crifcerion that G'{f) and G"(f) must both fit
gives us the ultimate test of our model. Preliminary results indicate that this
is actually the case (see figures 12 through 15).

To obtain thèse figures, we use the graph ofG (7) to find the function W(7i).
If we express our intégrais as a finite sums, the process reduces ta the simple

problem of solving a finite system of linear équations. We then compute G (7)
from W (f t), again using discrète intégrais. The value of h is finally ajusted to
give the best fit.

For that procédure to work, one must first substract the constant contribu-

tion of the polymer (noted Gp = Gp + iG'y) from the values of G' and G". The
horizontal lines on the graphs of G and G show the values used in the com-
putations. Why is the value of G^ so low and the value of Gp so high? Because
the insertion of inert and rigid particles (having a high G and a negligible G
produces an increase of G' and a decrease of G". So far, we modeled the efFect

of the interaction between carbon black agglomerates, but carbon black also
behaves as a rigid and inert filler. This explains why carbon black also modifies

the constant contribution to C? usualy attributed to the polymer only. Carbon
black is quite rigid (yielding an increase of G ' ), and purely elastic (yielding an

decrease of G^).

12



6 Conclusion

Here are the most important steps of the derivation of our model:

• Two phenomena contribute to the Coulomb modulus: the linear viscoelas-

tic behavior of the polymer matrix, and the non-linear elastic behavior of
carbon black.

• Upon déformation, the polymer pulls the agglomerate appart while the
London-van der Waals force pushes them together.

• Because of the particular shape of the London-van der Waals force, two

stable equilibrium points are possible for a pair of agglomerate: they can
be "bound" or "unbound".

• The transition from the bound to unbound state is the cause of G' decrease

when 7 increases.

• The high speed at which the transistion from bounded to unbouded state
occurs produces increased energy loss. This is the cause of the peak in the

plot of G versus 7.

• An expression of the viscoelastic constant of the idealized model of a pair
of agglomerates can be found. Its real and imaginary parts, respectively,

are proportionnal to:

l if 7 <: 7b

^ if7>7t

0 if 7 < 76

^ if 7 > 76

where

— 7 is the ampitude of sinusoïdal shear déformation;

- 7i is the amount of déformation causing the pair to unbind.

The composite is made of a collection of those elementary models, each
having a différent 7;,. We then express the Coulomb modulus of the ma-
terial as:

C?(7) = / s/(7,7,)^(76)^ + ih / ."(7,7i)W(7i)^
'0 JO

where

- W(jt) is a weighting function giving the contribution of agglomerate
pairs which break at 7 = ji, and

13



— h is a constant proportionnal to the average width Â7 of the hys-

teresis cycle.

• With this expression, one can see why plots of G" versus G' for différent
polymers are so similar. The expression of s' and s" are universal, while

W(tt) is material-dependent, There is a link between G and G" because
they are derived from the convolution of the same function W(ft). The
link remains accross différent materials because s (7,74) and s"(f,jii) are
material-independent.

• This model can be easily tested by showing that there exists a function
W(ft) such that G'(f) and G (7) can be both made to fit expérimental
data.

What still remains to be donc is to:

• test the validity of the model over a wider range of expérimental results;

• develop a précise expressions for W{^).

14
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Figure 12: From top to bottom: expérimental values of G (f) for SBR/N110
composite; Computed values o{W(fi,) for SBR/N110 composite; Computed and
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