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0. Summary.

A tuning method based on a novel 2 degrees of freedom PID controller with a
dual loop form and which can be used in conjunction with and as a completion of
currently available tuning procedures is proposed. The idea is to modify the gains
provided by these procedures so as to improve process-disturbance response while
preserving process-setpoint response procured by the original gains. Application
modalities and ensuing benefits are illustrated by applying the method to a number of
plants with high order dynamics, significant dead times and non minimum phase

behaviour.

Keywords: PID, disturbance, industrial controller, dual loop, inner loop, tuning, 2

degrees of freedom, non minimum phase.
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1. Introduction

Structural simplicity and large adaptability of usage, intuitive and continuously
improved understanding of operation, and a generally adequate performance make a PID
(proportional+integral+derivative) the most popular among currently adopted industrial
process controllers (figures 1, 2). These properties, somehow intrinsic to the very
nature of the PID concept, are also in part tributary of relentless efforts directed at
transferring into PID technology novel ideas and techniques as soon as they have
become available. Considerable from the very first inception of the PID (e.g., Minorski
1937, Smith 1936, Ziegler Nichols 1943), a'number of recent events reveal these efforts
to remain as intense as ever at the present (:tfr‘ne‘ It suffices to consider the publication of -
the Computing and Control Engineering journal special edition on PID tuning methods
(Anon  1999), the well attended IFAC workshop on Past Present and Future of PID
Controllers (Quevedo and Escobet 2000), and the Control Engineering Practice journal
special issue on PID Controllers (Astrom Quevedo and Escobet 2001).

One of the main justifications for this continuing interest is that tuning a PID,
still involves costs and start up times that can be further reduced, it may still lead to a
process response  that can be considerably enhanced, and it may still leave uncertainties
about quality of tuning outcome that can be removed. Among a variety of avenues to
bring about these improvements, is the replacement of a standard PID with a two degrees
of freedom (2DOF) controller structure (figure 3a, Horowitz 1963, Tagushi&alias 1987,
Hirot 1992, Wu Yu Cheng 2001, Astrom and Hagglund 2001). The interest of this
structure is that it is made of the serial composition of two PIDs. As a consequence, the
tuning objective can be pursued in a de-coupled fashion with gains of a first PID being
tuned to optimize response to disturbance, and gains of the second to optimize setpoint
response. Recently, a somewhat different approach in this same direction has been
proposed in the context of speed drives and position servos (DeSantis 1994). According
to this approach, a standard PID is interpreted as‘ (rather than replaced by) a 2DOF
controller, and the 2DOF controller under consideration is given by the parallel (rather
than serial) composition of two PIDs (figure 3b). This interpretation has led to the
emergence of a dual loop PID form for speed drives and position servos that is

functionally equivalent to the standard PID and which at the same time enjoys a
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considerably higher degree of de-coupling between response to disturbance and setpoint
response (DeSantis  1996).

The objective of the present paper is to extend application of this alternative
2DOF approach from the context of speed drives and position servos to more general
plants characterized by a transport delay (as found, for example, in the temperature and
product concentration control of chemical reactors), unstable modes (as in magnetic
levitation systems), or by an inverse response (as found, for example, in angular speed
control of hydro-electric turbines). For a more specific explanation of intent, the reader is
invited to move forward to figures 5-9, where process responses to a stepoint change and
"to an external disturbance in correspondence to two sets of PID gains, Ko and Ky are
given. Observe that while the setpoint responses are very similar for the two sets of gains,
responses to disturbance obtained with K are considerably better than responses with
Ko. Be advised that gains Ko are obtained by applying PID tuning procedures that are
among the most popular and the most effective currently available procedures. The
objective of this paper is to propose a tuning procedure to systematically modify Kg so
as to obtain K.

This objective will be pursued by first characterizing similarities and differences
between standard and dual loop PID forms (section 2). Then, by unveiling the special de-
coupling properties of the dual loop form (section 3) and by developing a technique by
which these properties can be advantageously applied in concert with most of the
available tuning procedures (section 4). Application of this technique is subsequently
demonstrated in conjunction with a number of examples involving from both classical
and recent tuning procedures (section 5). Finally, practical issues concerning real time

implementation in an industrial environment are discussed (section 6).
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2. Standard and dual-loop PID forms

An important role in  the present development is played by the PID configuration
in figure 4. This configuration is called a Dual-loop PID form (PID_DL) because given
by the parallel composition of two PIDs. A first PID, referred to as the “inner loop PID”,
is identical to a standard PID; a second PID, referred to as the “outer loop PID”, is
reminiscent of PIDs considered in sliding mode developments (Slotine 1984, DeSantis
1988, 1989, Yeung and alias  1993). In spite of the apparent greater complexity relative
to a standard PID, and in contrast to classical 2DOF PID proposed by other authors
(including Horowitz 1963, Hiroi 1986, 1992), any standard PID can be given a PID-
DL form, and conversely. In particular, any PID-DL form with inner loop gains k; 5,
ka, k3, and k4, and outer loop gains ks, a;, a; and ag, is functionally equivalent to a
standard PID form of which the gains are given by: k; = k;+ ajks, k, = kotasks, k3 =
k3+ks, ke = ka+(a-ar)ks.

The motivation for representing a standard PID with a PID-DL controller is that
the double-loop structure of the PID-DL suggests a different way of tuning a PID
that is somewhat complementary to what is currently done (De Santis 1994, 1996). To
see this difference, observe that the control provided by a standard PID is the sum of
contributions proportional to the error and its derivative and integral. By contrast, the
coﬁtrol provided by a PID-DL is the sum of a component that is the output of the inner
loop PID plus a component that is the output of the outer loop PID. The first component
is identical to the control provided by a standard PID; the second component is made to
be proportional to the “error residue” and (as it will be demonstrated in the following
sections) enjoys the remarkable property not to influence the setpoint response provided
by the first component. Because of this property, tuning a PID-DL can be carried out by
following a de-coupled two step approach. In a first step inner loop PID gains are tuned
for best setpoint response. In a second step, the outer loop PID is introduced and its gains
are tuned for best response to disturbance. As it turns out, this latter tuning boils down to
simply tuning gain ks and can be considerably simplified by exploiting the special

monotonic properties that characterize influence of ks over response to disturbance.
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3. Properties of the PID-DL form

Consider a plant equipped with a dual loop PID of which outer loop PID gains
are zero. Assume the inner loop PID to have been tuned so as to procure a satisfactory
setpoint response and assume this response to be described by the transfer function

— P(s) . (] +a0s)
0 P(s) (]+a,s+azsz)

3.1)

where the symbols P, and P; denote, respectively, process variable and setpoint. With
reference to figures 1 and 4, it follows from this assumption that the influence of a
control-input equivalent disturbance (denoted with the symbol P,) over the process
" variable P, can be described by | . )

_BG) s(1+ays)

7RGy (ks + kIS)(] +a,s+ azsz)' (32)

To improve process response to disturbance, we select the outer loop PID gains
so as to complement the inner loop PID action with a supplementary action, Au,

proportional to the integral of the error residue. The error residue is defined as the
difference between actual value of P, and the value that P, would have in the absence of

the disturbance. More precisely,

'_H+%P“%R“R

residue error .= P, (3.3)
aZ
and therefore
. o+ |(P—P)dt—a,P.
integral of residue error ;= P, + ! '[ ( ' )d Ly 34
a,
Taking into account That (from figure 4)
A=k, {-a,P,-a,P, +a,P,+ [(B,-P, )dt} (3.5)

it follows that for Au to be proportional to the integral of the error residue it is sufficient
to select

a,=0a,, a,=0,, a,=0,, and k, 20 (3.6
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which gives

tu = ~Laplace{ky(a, B, +a,F, + [(F, P, )t - P}
3.7)
_k {(a,s’ +a,s+1)P,—(a,s+1)P}
S

; : . P P
Let us now analyze the modifications to transfer functions —~and — that have

s 4
been produced by the introduction of outer loop PID gains as in (3.6). For the transfer

function between Py and Ps  observe that the second order hypothesis described by (3.1)

implies
B _ s (@s+1) A
Au(s)  (ky+(k, +k,)s) (a8 +a,s+1) e

It follows

B= (5;0“‘1) P+ s (czxos+]) (3.9)

(o8 +as+1) (ks +(k, +k,)s)(as” +a,s+1)
hence
P =- il (?OHU {ﬁ(azsz+a1s+])Pv-—(a'Os+])Ps}+ (?O“HJ) >
(k;+(k,+k,)s)(a,s" +a,s+1) s (a,s" +a,s+1)
(3.10) .

This last equation implies

(1+ ks(ags+1) )Pv=[1+ k(s +1) ) (23+1) _p G3.11)
(ky+(k +k,)s) (ks +(k,+k,)s) ) (a,s* +as+1)

and therefore

_P(s) _ (as+])

= = . 3.12
e P(s) (a2s2+a,s+]) ( )

Fic being identical to F1p means that the introduction of the non-zero gains in the outer

loop PID has produced the same setpoint response as when these same gains are equal

to zero.

To obtain the transfer function between process variable P, and disturbance P; the

equation to be considered is
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P s (ags+1) N L (a,s+1)
Uk (kv E)s) (a8t +ays+ 1) (kg (k vk )s) (a8t vas+1)

(3,13}
where,
k5 2 .
Mu=——(a,s" +a,s+1)P,. , (3.14)
s
It follows
I+ ki(ay,s+1) P s (?Os+]) P (3.15)
(ks +(k,+k,)s) (ks +(k,+k,)s)(as" +a,s+1)
hence ,

k;+(k,+k,)s s (a,s+1)

= 3.16
Y (ks + ks +(k, +k, +oks )s) (ks +(k, +k,)s) (a8 +as+1) " 3.16)

One can therefore conclude that

L,
Fyc ) =1(5)Fy
(3.17)

where 77(s), (in classical studies referred to as the sensitivity reduction operator,

Horowitz 1963, Cruz 1973), is given by

k;+(k +k,)s

= ) (3.18)
(ks +ks+(k +k,+ak;)s)

I(s)

4. Tuning a standard PID using a Dual Loop form

The implications of the above development over tuning can be formalized in
terms of the following statements.
Statement 1: For the feedback system to remain stable after the introduction of the non-

zero outer loop gains it is necessary and sufficient that

k,+k,+a,k;>0. 4.1)
This condition is always satisfied for minimum phase plants (0>0). It is - conditionaily
; o . . k, +k,
satisfied for non minimum phase plants (0p<0), in which case one needs k, < - .
a,
0

Statement 2: Provided that (3.6) is satisfied and that stability condition (4.1) holds:
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i introduction of the outer loop PID does not influence the response to setpoint
obtained in its absence;

ii. introduction of the outer loop PID modifies response to disturbance obtained
in its absence. This modification is a function of the spectral components of the
disturbance;

il response to disturbance improves for those disturbance components of which the

frequency satisfies the condition

| Ktk tE)jo ]<]; 42)
|k + ks + (k, + K, + ok ) jo)
it deteriorates otherwise.
Statement 3: For minimum phase plants:
i condition (4.2) is satisfied for all spectral components of the disturbance;
ii. feedback system response to disturbance improves monotonically with increasing
ks ;
1i1. for an assigned value of ks, disturbance attenuation as a function of disturbance

ks

spectral components varies monotonically from ——32——
(ks +ks)

for low frequency to
(k, +k,)

for high frequency.
(k +k, +ak,) gh freduency

Statement 4: For non minimum phase plants:
i. condition (4.2) is no longer satisfied for all spectral components of the
disturbance;

ii. response to disturbance low frequency spectral components improves
monotonically with increasing ks ;

iil. for an assigned value of ks  response to disturbance improves in
correspondence to disturbance spectral components such that

2 ks + 2k, :
—ay( ks +2(k, +k,))

(4.3)

it deteriorates otherwise.

The above statements make it clear that tuning a PID with the sole objective of

optimizing setpoint response presents a level of difficulty that is independent from
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whether a standard PID or a PID-DL form is considered. At the same time, tuning a

PID with the objective of optimizing response to disturbance while preserving established

setpoint response, is a considerably simpler task if a dual loop PID rather than a

standard PID form is used.

A typical tuning approach commensurate with these observations would evolve

along the following three steps.

A. Tuning the inner loop PID

With outer loop gains equal to zero, k; k; ks and k4 are determined with the intent
of optimizing setpoint response. This step would be carried out by adopting
whatever tuning procedure may be the most appropriaté on the basis of personal
choice, current state of the art, or more simply pragmatic conveniencé, for the

specific plant under consideration;

B. Tuning the outer loop PID

I

i

iii.

C.

With inner loop gains k; k; k3 and k4 as determined in step A, submit the
feedback system to setpoint step change and determine parameters oy, o, and

o, that make the transfer function

R(s)__ (ast]) -
P(s) (azsz +a,s+]) *4)

best describe the feedback system setpoint response. Determination of this 2"
order best approximant can be carried out by adopting standard parameter
identification techniques (Ljung 1999) ;

With outer loop gains ap=0p, a;=0y, a;= oy, submit the feedback system to
a sequence of setpoint step changes; after each test, gradually increase ks up to the
point where setpoint response starts to no longer be satisfactory;

Submit the feedback system to a disturbance test. Verify that introduction of the
outer loop PID has indeed improved response to disturbance; in the negative,

reduce ks down until this is indeed the case;

Computation of the standard PID gains

The final gains of the standard PID are computed as follows

ki =kt arks, ky = kotasks, k3 =kstks, ke= kaH(ap-a)ks - (4.5)
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An alternative and basically equivalent tuning approach is obtained by replacing steps
B.ii and B.iii with the following
ii’, With outer loop gains ap=ap, aj=01, a, = 0, submit the feedback system to a
sequence of disturbance-step tests; after each test, gradually increase ks up to the
point where deterioration rather than improvement in response to disturbance is
obtained;
iii’.  Verify that presence of the outer loop PID has not unduly affected setpoint

response; in the negative, reduce ks until setpoint response is acceptable.

Remark 4.1. In currently available 2DOF prdcedures, one first tunes the internal PIIi to
optimize response to disturbance. Subsequently, the external PID is tuned to optimize
setpoint response while preserving established response to disturbance (Hiroi 1986,
1992). By contrast, in the proposed procedure, the two tuning objectives can be carried
out in an inverse order. One first tunes the inner loop PID to optimize setpoint response,

then the outer loop PID to optimize response to disturbance.

S. Simulation Examples

The results in sections 3 and 4, have been obtained under the explicit assumption
that closed loop process-setpoint and process-disturbance responses are described by
second order transfer functions (equations (3.1) and (3.2)). In what follows it will be
investigated the extent within which these results remain meaningful in the context of
more general plants where closed loop responses can be only approximately described in
terms of second order transfer functions. Such an investigation will be carried out by
considering examples of plants that  have already been used as test bench in
authoritative previous studies on the subject, and which therefore appear particularly

suitable to put the present development into perspective relative to the state of the art.
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Example 1: Use of the PID-DL form in conjunction with the classical tuning
procedures

In Ogunnaike and Ray 1994, methods proposed by ~ Ziegler-Nichols (ZN), Cohen
Coon (CC) and the Internal Model Controller (IMC) method are applied to tune a PID in

correspondence to a plant described by the transfer function

G(s) = £ (s) _ 6
S UGs) (I+2s)I+4s)I+6s)

(5.1) |

In what follows we use the results reported in this reference to illustrate how our novel PID
tuning procedure would be carried out in conjunction with these classical methods. '
A. Tuning the inner loop PID : By barryiné out this step with the Zi'eéler-Nichols ‘
method, as done in Ogunnaike and Ray 1994, p.354, gives the following inner loop
PID gains
k,=1; k,=1.5; k,=.5; k,=.166; (5.2)
B. Tuning the outer loop PID
1. submitting the feedback system with above inner loop PID gains to a setpoint step
gives the result in figure 5; using standard least square parameter optimisation, we
find that the best 2" order approximant IO transfer function ié described by

P(s) . (as+1)

= with oy =2, 0,=10.7, and o= 0 (figure 5);
P(s) (a2s2+a,s+1) : ’ ° (figure )

1. introducing outer loop PID gains ap= oy , aj=01, a, = oip, and ks= 1 and submitting
the feedback system to a setpoint step, no deterioration in process variable
response is observed; repeating the sequence of increasing ks and implementing a
setpoint response test until process response is no longer satisfactory, leads to ks
=100 (figure 5);

1il. by submitting the feedback system to a disturbance test, one finds that the

introduction of the outer loop has produced a response to disturbance that is of
(figure 5).

-C. Computation of the PID final gains
The modified Ziegler-Nichols gains for the standard PID are
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ki =187, ky = 10%, k3 =100.5, ks= -55 (5.3)

Remark 5.1. Application of the proposed procedure reveals that the original Ziegler-
Nichols gains can be considerably increased with no deterioration of response to setpoint
and with a remarkable improvement in response to disturbance. In particular, the integral
square (ISE) produced by a disturbance step is reduced from a value of 4.8 to 2.5*107. In
practice, considerations other than optimization of setpoint and disturbance responses (e.g.:
robustness to parameter variation), may suggest to settle for some smaller gain values. For
example, a two order of magnitude improvement in response to disturbance, without any
reduction in robustness to paraineter {/ariafion,’ can be obtained b}; simj;ly s:etting. ks =3,
(which leadstok; =7, ks - 33, k3 =3.5, ks=-5.8).

Remark 5.2. Table 1 summarize results that one obtains by tuning the inner loop PID
gains with the Cohen Coon or the Internal Model Control method instead of the Ziegler-
Nichols’. Similar results have been obtained by applying the procedire to all the other PID
examples considered in Ogunnaike and Ray 1994,

6
(+2s){ +4s)(I +65)
Gains ZN Mod ZN CC Mod CC m™MC Mod IMC
k; 1 187 1.15 168 55 400.5
k; 1.5 10° 1.2 10° 7 2.14%10°
ks . 5 100.5 17 90.17 .03 200
kq 166 -55 166 -50.2 166 -400
Overshoot, % 75 36 80 45 40 36
Settling time, sec | 49 48 80 55 63 48
ISE due to a 4.8 2.5%10° | 4.82 3.3*10” 27.6 2.5%107
disturbance step

Table 1: PID gains via classical and modified-classical methods for plant in example 1.
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Example 2: Use of the PID-DL form in conjunction with the tuning procedure
proposed by Qing-Guo Wang &alias 1999

In what follows we show how the properties of the dual loop PID form would be
used in conjunction with the tuning method recently proposed by Qing-Guo Wang &alias
1999. We start by considering a plant described by the transfer function (example 1 in the
cited reference)

P(s) _ e

U(s) (s +3) G4

G(s) =

A. Tuning the inner loop PID : Adopting as inner loop PID gains the values proposed
by Qing-Guo Wang&ahas 1999 gives
k,=58.6; k,=22; k,=49.7, k,=0 . (5.5)

s ¢

B. Tuning the outer loop PID

1. submitting the ensuing feedback system to a setpoint step gives the result in figure
6, using second order parameter optimisation, w e describe this response with
B(s)_ (as+)
P(s) (a_,sz +a,s+1)

where o) = 3.37, 0= 5.75, and op=-1.55;

1. introducing outer loop PID gains ay= 0 , a;=0t1, a = 0y, and a small positive ks,
and submitting the feedback system to a setpoint step, no deterioration in the
process response is observed; répeating the sequence of increasing ks and
implementing setpoint step test until the response begins to deteriorate, leads to
ks =12.5 (figure 6);

1il. submitting the feedback system to a disturbance step, reveals that the
introduction of the outer loop has led to a response to disturbance that is
considerably better than the one procured by the original Qing-Guo Wang &alias
1999 method (figure 6); response to setpoint is practically the same as before.

C. Computation of the PID final gains

The final gains for the conventional PID are
k; =100.72, k, =93.87, k3 62.25, ks=-61.5. (5.6)
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R J _ o
(s+D(s+35) (°+25+3)(s+3) | (P +s+D)’(s+2)

Gains QGW Mod QGW [QGW  [Mod QGW [QGW | Mod QGW

K4 2.7 52.5 3.88 11.5 1.5 5.36

K, 6.4 22.9 2.15 5.9 1.7 5.6

K3 21 51 5.34 11.3 1.366 3.066

K4 0 -35.7 0 -10.3 0 -4.3
Overshoot, % 12 11 3 3 3 4

Settling time, sec 5 56 | 53 5.8 9 10
SEductoa | 18*107 | 7#10° 11 4 26 | 84

disturbance step |

Table 2: PID gains via Qing-Guo Wang and modified-Qing-Guo Wang methods (example
2)

Remark 5.3. Results better than or basically equivalent to the above are obtained in the
context of all the other examples considered in Qing-Guo Wang &alias  1999. In
particular, Figure 7 illustrates results obtained in conjunction with the plant described by

P(s)  Se
UGs) (sZ+s+D)(Ss+1)

the transfer function G(s):= Table 2 resumes results

obtained in correspondence to all the other plants considered in the cited reference.
Identical conclusions would have been obtained had we worked out all these examples
using the tuning procedure proposed by Ho Hang and Cao 1994 (which is considered as

second term of comparison in Qing-Guo Wang &alias 1999).

Example 3: Use of the PID-DL form to enhance Ya-Gang Wang and Wen-Jian Cai
2001 tuning procedure

In what follows we show how our PID tuning procedure would be used in

1 1 3 mathad
conjunction with the method

P
start by considering a plant described by the transfer function (the main example in the

cited reference)
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B PV(S) B e—o.z:
B U(s) - s(s+1)

G(s): (5.7)

B. Tuning the inner loop PID : Adopting as inner loop PID gains the values proposed
by Ya-Gang Wang and Wen-Jian Cai 2001 gives
k,=3.03; k,=2.6; k,=2.53; k,=1 (5.9)
B. Tuning the outer loop PID
1v. submitting the feedback system with these inner loop PID gains to a setpoint step
gives the result in figure 7; we find that the bfast 2™ order approximant /O transfer

P(s)_ (as+1)
P(s) (azsz +a,s+1)

-

function is described by with a; = .56, o, = 1.3, and oy

=1.1;

V. introducing outer loop PID gains ap= oy, ay=ci;, a = 0iy, and a small ks>0 and
submitting the feedback system to a setpoint step test, no deterioration in the
process variable response is observed; repeating the sequence of increasing ks
and implementing setpoint step test until process response is no longer
satisfactory, leads to ks = 5 (figure 8); A

Vi. submitting the feedback system to a disturbance step, it is found that the response
is now considerably better than the one procured by the original Ya-Gang Wang
and Wen-Jian Cai 2001 gains (figure 8); once again, response to setpoint is
practically the same.

D. Computation of the PID final gains

The final gains for the conventional PID are
ki=58k=9,ks=75;ks=3.7. (5.9
Remark 5.4. Results basically equivalent to the above are obtained in the context of the

~25

plant which is also considered in Ya-Gang Wang and Wen-Jian Cai 2001. An

s(s+1
identical conclusion would hold if we had developed our example by considering the
Poulin and Pomerlau 1996 or the Tan and Tam 1998 method instead of the method by
Ya-Gang Wang and Wen-Jian Cai 2001 (application of these three methods to the plant

described by eqn (5.7) are compared in the latter reference).
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Remark 5.5. It is illustrated in Ya-Gang Wang and Wen-Jian Cai 2001 that gains (5.8)

computed in correspondence to plant (5.7) also work satisfactorily for a parameter-

-0.2s

perturbed plant described by G, (s) = ¢ . Figure 9 shows this robustness
# s(Is+1)(s+1.2)

property to also hold for PID gains (5.9).

Concluding Considerations

In analogy to traditional 2 degrees of freedom (2DOF) PID forms, the dual loop
PID. (figure 3, PID-DL) provides a 2DOF PID of which the gains canbe tuned in a de-
) couplt:d manner. More speciﬁcaHy, the inner loop. PID is tuned to establish a desired
response to setpoint, the outer loop PID to optimize response to disturbance. Contrary to
traditional 2DOF PIDs, any industrial controller capable of fulfilling a function equal or
equivalent to a standard PID can benefit ‘as is’ from this PID-DL property. Besides
theoretical justification and simulation results reported in the previous sections,
experimental validation of the effectiveness of this technique is supported by results
obtained in conjunction with temperature and level control of an industrial water
reservoir and which are fully documented elsewhere (Cornieles&alias 1997a, 1997b,
1997¢). While further work in a real time industrial process environment is needed
before full potential of the proposed approach may be more decisively assessed, it is
expected that industrial implementation of the method can be carried out along identical
lines as illustrated in our simulated examples. This implementation can be carried out
without = physically modifying the industrial controller, by taking advantage of whatever
tuning capabilities it may already come equipped with,»and by requiring no additional
provision in relation to such aspects as  anti-windup, bump-less transfer or
commissioning protocol. Application of the method can Be envisioned as taking place in
a manual cut-and-try mode, an operator implemented-computer assisted mode or in a
completely automated mode. Under most circumstances the benefit is attainment of
refined gain settings that considerably improve feedback fesponse to  external
disturbance without deteriorating the response to setpoint otherwise obtainable by

~ means of the original gain setting.
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