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BASIC THEOREMS ON SLIDING MODE CONTROLLERS

DeSantis, R.M.,
Ecole Polytechnique de Montréal

Abstract.

Basic results are présentée! that play an essential rôle in

the analysis and design of sliding mode controllers. They include

necessary and sufficient conditions for a controller to be on a

sliding mode régime, characterization properties of the ensuing

feedback System dynamics, and sensitivity properties concerning the

influence of parameter and external perturbations over this

dynamics. Although perhaps excessively short and necessarily

incomplète, this présentation offers the advantage to be carried

out under a unified setting and should provide a suitable

introduction to this mathematically difficult subject.



1. Introduction

In thèse last few years sliding mode controllers have been

recognized as a useful addition to the already formidable arsenal

of techniques that are relevant to the control of both linear and

nonlinear plants(see, for example, Utkin 1992, DeCarlo Zak and

Matthews 1988, and Buhler 1986). By inducing a feedback behavior

that can potentially be made independent of plant parameter

variations and external perturbations, this usefulness appears to

be particularly promising in applications where the controlled

System is required to have a high tracking accuracy and a high

speed of response and where, at the same time, fast parameter

variations and high level nonstationary perturbations may be

présent.

It follows that one of the most important reasons for the

adoption of sliding mode controllers is that they offer a

particularly robust performance with respect to certain classes of

perturbations and parameter variations (see, for example, El-

Ghezawi et al. 1883, DeCarlo et al. 1988, Utkin 1991, Slotine

1992). A second important reason is that they play a significant

rôle in the performance improvement of existing controllers such as

adaptive and model following controllers (Balestrino et al. 1984).

A third reason is that they provide a natural vehicle for the

analysis and design of discrète controllers (in particular

multivariable relay controllers as illustrated in Buhler 1986 and

DeSantis 1992) as well as for the improvement of gain tuning



procédures for more standard controllers (DeSantis 1988, 1989).

Finally, yet an additional important reason is that ideas and

techniques relevant to sliding mode controllers are also relevant

an provide analogous benefits in the realm of state estimation

and parameter identification problems (Edwards and Spurgeon 1994).

A sliding mode controller is a «variable structure controller»

operating in a «sliding mode régime». Intuitively, a variable

structure controller is a controller of which the structure

dépends on the belonging of the state of the plant to certain

régions in the state space; opération in a sliding mode régime is

an opération where the state of the plant is constrained to evolve

(slide) on the surface defined by the intersections of thèse

régions (sliding surface). As suggested by thèse characterization,

the basic idea governing the analysis and design of thèse

controllers unfolds as follows. First, the desired behavior of the

System to be controlled is translated in terms of the convergence

of the state to an appropriately selected sliding surface. Second,

the central strategy is designed so as to guarantee that this

convergence takes place. Third, care is taken to ensure that the

behavior of the feedback system remains satisfactory in

correspondence to the (realistic) situation where plant parameter

variations external perturbations and non-modelled dynamics are

présent/ and where the envisioned control strategy is only

implemented within a certain approximation and the state

constraints are only satisfied within a certain tolérance.



In what follows we présent the éléments of the theory of

sliding mode controllers that are essential to carry out thèse

steps. Thèse éléments consist of a formai définition of sliding

mode controllers and five basic theorems. Thèse theorems concern

the following aspects: necessary and sufficient conditions for a

controller to be of the sliding mode type, necessary and sufficient

conditions for the System dynamics to be invariant to the présence

of perturbations, characterization of state sensitivity to the

présence of unmodelled behavior, stability of the dynanucs under a

sliding mode régime, and spécial sliding mode characterization

properties in the case of linear plants. Two additional theorems

illustrate the application of sliding mode controllers to the

design of discrète controllers. While for brevity of exposition we

will not discuss detailed applications attention is called to the

fact that examples of convincing engineering applications of thèse

theorems abound, and we encourage the reader to look for them in

the cited literature (some of the applications developed at the

Ecole Polytechnique may be found in Serfass 1987, DeSantis 1992,

Haromada and El Ferik 1993, Krau 1994).



2. Formai Définition of a Sliding Mode Controller

Given a (time invariant, linear in the control) dynamic

System,

x = f(x) + B(x)u(x,t) ,

with x and u n- and m-dimensional state and control vectors, a

sliding mode controller is a controller with the following three

properties:

l) it has a variable structure: the control is described by u(x,t)=

u(x,t)~, where

Ui(x,t) = Ui+(x) for Si (x) > 0 i=l...m,

Ui(x,t) = Ui-(x) for Si (x) < 0 i=l...m,

where: Ui , Ui" and Si are pre-assigned continuous functions;

2) its structure is continuously switching: no trajectory, x(t)

te [0, °°) , entirely generated by one of thèse 2m potential control

stratégies is contained in the set

S:= {x(t)|x(t) such that Si(x(t)) == 0 for i=l,..m};

3) its action on the System may be viewed as the limit of a

séquence of control actions which, from a physical point of view,

are easier to implement than the action provided by the controller

described by l) and 2) . More formally: there exists an open set 0.

in R", HnS^O, such that: given any e>0, there exists A(s)>0, ô(8)>0

such that: for any Xoeîîy such that |s(Xo) |<ô, the trajectory of

•

x = f(x) + B(x)u(x,t), x(to) = Xo



with u(x,t) such that

Ui = ui' if | si (x, t) | > A

min(Ui,u~i) < Ui < max(Ui,u~i) otherwise,

has the property that

l S(X)|<8.

Note that vector function s(x):=[si(x) ... Sm(x)]r is usually

referred to as the sliding mode function.

Remark 1. Properties l) and 2) make a sliding mode controller

somewhat "idéal" and difficult to implement in practice. However,

property 3), stipulâtes that this idéal behavior must be attainable

within any desired degree of tolérance in terms of a more

realistic, physically implementable controller.

3. On Necessary and Sufficient Conditions for Existence

The following theorem states that, for controller to be in a

sliding mode , there must exist an équivalent controller that does

not necessarily have a variable structure and which must satisfy a

certain property with respect to the original variable structure

controller.



Theorem 1:(A Necessary Condition for the Existence of a Sliding Mode Controller).

Given a dynamic system,

x = f(x) + B(x)u(x,t) ,

a necessary condition for a variable structure controller defined

by

Ui(x,t) = Ui (x) for Si (x) > 0 i=l...p,

Ui(x,t)~ = Ui~(x) for Si (x) < 0 i=l...p,

to be a sliding mode controller is that an équivalent control Uequ^

solution of

G(X) [f(x) + B(x)Uequ]=0,

G(x):=gradx(s)

exists and satisfies the inequality

in{u+i, u~i} < Uequi < max{u+i, u~i}. •

The next theorem stipulâtes that to check whether a variable

structure controller is indeed a sliding mode controller, the task

of verifying the validity of property 3) required by its définition

may be replaced by the considerably simpler task of verifying that

a certain Lyapunov-type function exists.



Theorem 2:(A Sufficient Condition for a Controller to be of the Sliding Mode Type).

Given a dynamic system,

x = f(x) + B(x)u(x,t) ,

a sufficient condition for a variable structure controller

described by

Ui(x,t) = Ui (x) for Si (x) > 0 i=l...m,

Ui(x,t)' = Ui~(x) for Si (x) < 0 i=l...m,

to be a sliding mode controller is that there exist a scalar

function v(s,x,t), continuously differentiable with respect to each

of its arguments, such that in a certain open set Q contained in

R", QnS^O, with S:= {x|x such that Si (x) = 0 for i=l,..m}, the

following properties hold:

i. v(s,x,t) is positive definite with respect to s; v(0,x,t)=0;

ii. for a sufficiently small R > 0 and for all x s £î and any t:

inf v(s,x,t) = hp sup v(s,x,t) = Hp
|s(x) l = R |s(x) | = R

with hp < Hp only dépendent on R;

iii. a total time derivative of v is négative everywhere this

function is defined and

sup v(s,x, t) = -TÛR.

l s(x) l = R

with mp > 0 only dépendent on R.



It should be noted that while theorems l and 2 imply that the

sliding mode vector function eventually converges to zéro in spite

of the eventual présence of parameter or external perturbations

this property does not necessarily imply that the dynamics of the

system is unaffected by such a présence. However, as established by

the following theorem, this implication holds if thèse

perturbations satisfy some appropriate "matching conditions".

Theorem 3 (Dynamics Invariance when the Matching Conditions are Satisfied).

A necessary and sufficient condition for the dynamics of a

System

•

x = f(x) + B(x)u(x,t) + D(x)^,

under sliding mode control to be invariant with respect to the

perturbation, t,, is that the range of D(x) be contained in the

range of B(x). •

In the same circle of ideas as above, the fact that the value

of the sliding mode vector function is close to zéro, |s(x(t))|<8

for arbitrarily selected e, does not necessarily imply that the

trajectory of the system state is close to the state trajectory

obtained when the sliding function is equal to zéro (s(x(t)=0).

However, as established by the following theorem, this is the case

under appropriate hypothèses.



Theorem 4 (State Trajectory Sensitivity to Sliding Mode Controller Approximation).

Suppose that:

i) Given any 8i>0, there exists ôi(8i)>0 such that on an interval [0,

T] any solution of

x = f(x) + B(x)u(x,t) , x(to) = Xo

with u(x,t) such that

Ui = Ui" if | si (x) | > ôi

min(Ui,u~i) < Ui < max(Ui,u~i) otherwise,

has the property that l s(x) |<8i;

ii) partial derivatives of B (x) [G(x)B(x)] with respect to all

arguments exist and are bounded in any bounded demain;

iii) there exist positive quantifies M and N such that for any

solution, x(t), of the system in i) one has

|f(x) + B(x)u(x,t) |< M + N|x|;

iv) the function

f(x*) - B(x*) [G(x*)B(x*)]-lG(x*)f(x*),

with x' solution of (the System under équivalent control)

x = f(x) - B(x) [G(x)B(x)]-lG(x)f(x), x* (to) = Xo*

is Lipschitz continuous;

Then, given any S2>0, there exists a 62 (82) >0 such that

|x(0)-x*(0) |<Ô2

implies

|x(t)-x*(t) |<82, t8[0,T]. •



The following theorem 5 specializes the ensemble of the above

results to the case where the plant is linear and time invariant.

In particular: the characterization of an équivalent model to

describe plant dynamics under sliding mode; a procédure to design

the sliding mode function so that the dynamics of the plant under

sliding mode has a certain behavior; the explicit characterization

of a family of control laws that allow the sliding mode to be

attained.

Theorem 5 (Spécial Properties in the Case of a Linear Plant).

Given a linear scalar-input system,

•

x = Ax + Bu (x, t) + D^,

consider the sliding mode scalar function s(x)=Cx. Then:

i) under sliding mode, a necessary and suffiaient condition for the

stability of the system dynamics is that the System obtained by

using the équivalent controller

x = [I - B(CB)-lC]Ax

is asymptotically stable (its non zéro eigenvalues have négative

real part);

ii) if the dynamics associated with the équivalent controller is

asymptotically stable, then the trajectory characterized by

|s(x)|<e is as close to that produced by the équivalent controller



as desired provided that 8 is small enough and the initial

conditions of the two controllers are sufficiently close;

iii) if A,B is a controllable pair then by appropriately choosing

C the eigenvalues of the System under sliding mode may be assigned

arbitrarily/

iv) a sufficient condition for a controller of the family

u = -SOiXi -ôSIGN(s(x) )

with s(x):=Cx, and

Qi=ai if xis (x) <0

<I>i=Bi if XiS(x) >0

ô> l [CB]-1CD^|

to be a sliding mode controller is that

ai ^ min <C,ai>/<C,B>
t

max <C,ai>/<C,B> ^ 61
t

where: ai is the i-th column of A;

v) a necessary and sufficient condition for the System dynamics

under sliding mode to be invariant with respect to the

perturbation, Ç, is that the range of D be contained in the range

Of B. . •



Remark 2. A detailed illustration of the application of theorem 5 to

the design of a sliding mode controller for a position serve with

an elastic link may be found in Serfass and DeSantis 1987.

4. Implementation of a Continuous Controller Via a Discrète Controller

Controllers are usually désignée! by assuming the control

action to be arbitrarily selectable within a certain continuous

range of values. However, on occasion, practical considérations may

make it convenient or necessary to implement the controller by

imposing that the control action be restricted to have one out of a

discrète set of values. We must then deal with the problem of

modifying an already designed (continuous) controller into a

controller which, while subject to the discrète set of values

constraint, does nevertheless produce an effect équivalent to that

of the designed controller. The following theorems suggest that

adoption of an appropriate sliding mode controller may provide a

natural solution to this problem.

Theorem 6. (Discrète Implementation of a Continuous Nonlinear Controller)

Under the assumption that Bo(x,t) is of a full rank, Bo(x,t)Bo+(x, t)

is independent of x and t, and the inverse of Bo(x, t)'B (x, t)

exists;

then: the dynamics of the System



x(t) = f(x,t) + B(x,t)u(t) + p(t), x(0) = xo

where x(t) s R" represents the plant state, u(t) s Rm is the

control, p(t) s R" a disturbance; f (x, t) and B(x,t), appropriately

dimensioned real valued vector and matrix functions, are given by

f (x,t) := fo(x,t) + ôf(x,t)

B(x,t) := Bo(x,t) + ôB(x,t)

where fo(x,t) and Bo characterize the "nominal" behavior of the

plant, and ôf(x,t) ôB(x,t) describe the influence of parameter

variations;

submitted to a discrète control satisfying

Ui'(t) 8 {Un, ..., UiNi}, i= l, .. , m

SGN{Ui*(t)-UDi(x,t)+Ui(t) }:= - SGN{[Bo'o(t)]i}

U(t) := Bo+{ôf(x,t) + ÔB(x,t)u(t)+p(t)}

CT(t) := Bo(x,t)Bo+(x,t)S(t)

Bo (x,t):= pseudo-inverse of Bo(x,t),

ft .
S(t) := (x(t) - fo(x,t) - Bo(x,t)UD(x,t) }dt

Jo

has the following properties:

i) the state trajectory of the system is described by

•

x(t) = fo(x,t) + Bo(x,t)UD(x,t)

+ [I- B[Bo+B]-lBo+] {- BoUD(x,t) + ôf(x,t) + p(t)}

ii) if the columns of ôf(x,t), ôB(x,t) and p(t) are a linear



combination of the columns of Bo(x,t), then

•

x(t) = fo(x,t) + BoUD(x,t),

iii) if the columns of ôf(x,t), ôB(x,t) and p(t) are orthogonal to

the columns of Bo(x,t), then

X(t) = f(X,t) + B(X,t)UD(X,t) + p(t),

iv) if only the columns of §B(x,t) are a linear combination of the

columns of Bo(x,t), then
»

x(t) = fo(x,t) + BoUD(x,t) + v(t),

where

v(t) := [I- [BoBo+]]{ôf(x,t) +p(t)}. . •

In the case of a linear plant, the above result may be

simplified as follows.

Theorem 7: (Discrète Implementation of a Continuous Linear Controller).

Under the assumption that matrix Bo is of a full rank, and

that the inverse of Bo'B exists;

then: the dynamics of the system described by

x(t) = Ax(t) + Bu(t) + p(t), x(0) = xo



where x(t) e R" represents the plant state, u(t) e Rm is the

control, p(t) s R" a disturbance; A and B, appropriately

dimensioned real matrices, are given by

A:= Ao + ÔA

B:= Bo + ÔB

where Ao and Bo characterize the "nominal" behavior of the plant,

and ÔA, ÔB describe the influence of parameter variations;

submitted to a discrète control satisfying

Ui~(t) 8 {Un, ..., UiNi}, i= l, .. , m

SGN{Ui*(t)-UDi(x,t)+Hi(t) }:= - SGN{[Bo'o(t)]i}

U(t) := Bo+{ôAx(t) + ÔBu(t)+p(t) }

O(t) := Bo(x,t)Bo+(x,t)S(t)

Bo (x,t):= pseudo-inverse of Bo(x,t),

ft .
S(t) := (x(t) - AoX(t) - BoUo(x,t) }dt

Jo

has the following properties;

i) the state trajectory of the System is described by
•

x(t) = AoX(t) + BoUo(x,t)

+ [I- B[Bo+B]-lBo+] {- BoUD(x,t) + ôAx(t) + p(t)}

ii) if Rank( [5A|ôB|p(t) |Bo]=Rank(Bo) then

•

x(t) = Aox(t) + BoUD(x,t),

iii) if



[I- [BoBo+]]ô=ô for Ô8SPAN{ôA|ÔB|p(t) }

then

x(t) = Ax(t) + BuD(x,t) + p(t),

iv) if Rank( [ÔB|Bo] ) = Rank(Bo)

then

x(t) = AoX(t) + BoUD(x,t) + v(t),

where

v(t) := [I- [BoBo+]] {ôAx(t) +p(t)}. . •

Remark 3. An application of theorem 6 to the design of a bang bang

controller for an overhead Eucledian crane may be found in DeSantis

and Krau 1994. DeSantis and DeSantis 1993 apply theorem 7 to design

a bang bang controller for a flexible beam.

Conclusions

Using the concept of an équivalent control together with the

nominal model of the plant, we can use theorems l, 2, 5, 6 and 7

to design a controller so as to attain a prescribed sliding mode

régime and a desired state trajectory behavior. However,

unaccounted for non-idealities, in both the physical plant and in

the components of the controller, often prevent the sliding mode

conditions to be satisfied exactly and the state trajectory to



conditions to be satisfied exactly and the state trajectory to

correspond to that predicted by the theory. We must then be careful

to verify that, in spite of the influence of thèse non-idealities,

the value of the sliding mode function remain small and that the

trajectory produced by the real controller remain close to that

produced by the idéal controller under nominal operating

conditions.

In the case of spécial non-idealities (memoryless

approximations of an idéal switching function, perturbations

satisfying the matching or mis-matching conditions, and similar),

theorem 3 helps us establish the extent within which this is indeed

the case. However, this theorem is not of a great help in

predicting what happens in the case of other more général non-

idealities such as time delays, hysteresis and neglected actuator

dynamics. It becomes then useful, in such cases, to explore the

influence of thèse éléments over the actual behavior of the System

by means of a direct expérimentation, or of extended simulations

or by mean of both approaches.
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