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BASIC THEOREMS ON SLIDING MODE CONTROLLERS

DeSantis, R.M,,
Ecole Polytechnique de Montréal

Abstract.

Basic results are presented that play an essential role in
the analysis and design of sliding mode controllers. They include
necessary and sufficient conditions for a controller to be on a
sliding mode regime, characterization properties of the ensuing
feedback system dynamics, and sensitivity properties concerning the
influence of parameter and external perturbations over this
dynamics. Although perhaps excessively short and necessarily
incomplete, this presentation offers the advantage to be carried
out under a unified setting and should provide a suitable

introduction to this mathematically difficult subject.



1. Introduction

In these last few years sliding mode controllers have been
recognized as a useful addition to the already formidable arsenal
of techniques that are relevant to the control of both linear and
nonlinear plants(see, for example, Utkin 1992, DeCarlo Zak and
Matthews 1988, and Buhler 1986). By inducing a feedback behavior
that can potentially be made independent of plant parameter
variations and external perturbations, this usefulness appears to
be particularly promising in applications where the controlled
system is required to have a high tracking accuracy and a high
speed of response and where, at the same time, fast parameter

variations and high level nonstationary perturbations may be

present.

It follows that one of the most important reasons for the
adoption of sliding mode controllers 1s that they offer a
particularly robust performance with respect to certain classes of
perturbations and parameter variations (see, for example, El-
Ghezawi et al. 1883, DeCarlo et al. 1988, Utkin 1991, Slotine
1992) . A second important reason is that they play a significant
role in the performance improvement of existing controllers such as
adaptive and model following controllers (Balestrino et al. 1984).
A third reason is that they provide a natural wvehicle for the
analysis and design of discrete controllers (in particular
multivariable relay controllers as illustrated in Buhler 1986 and

DeSantis 1992) as well as for the improvement of gain tuning



procedures for more standard controllers (DeSantis 1988, 1989).
Finally, yet an additional important reason is that ideas and
techniques relevant to sliding mode controllers are also relevant
an provide analogous benefits in the realm of state estimation
and parameter identification problems (Edwards and Spurgeon 1994).
A sliding mode controller is a «variable structure controller»
operating in a «sliding mode regime». Intuitively, a variable
structure controller is a controller of which the structure
depends on the belonging of the state of the plant to certain
regions in the state space; operation in a sliding mode regime is
an operation where the state of the plant is constrained to evolve

(slide) on the surface defined by the intersections of these

regions (sliding surface). As suggested by these characterization,
the basic idea governing the analysis and design of these
controllers unfolds as follows. First, the desired behavior of the
system to be controlled is translated in terms of the convergence
of the state to an appropriately selected sliding surface. Second,
the control strategy 1is designed so as to guarantee that this
convergence takes place. Third, care is taken to ensure that the
behavior of the feedback system remains satisfactory in
correspondence to the (realistic) situation where plant parameter
variations external perturbations and non-modelled dynamics are
present, and where the envisioned control strategy is only
implemented within a certain approximation and the state

constraints are only satisfied within a certain tolerance.



In what follows we present the elements of the theory of
sliding mode controllers that are essential to carry out these
steps. These elements consist of a formal definition of sliding
mode controllers and five basic theorems. These theorems concern
the following aspects: necessary and sufficient conditions for a
controller to be of the sliding mode type, necessary and sufficient
conditions for the system dynamics to be invariant to the presence
of perturbations, characterization of state sensitivity to the
presence of unmodelled behavior, stability of the dynamics under a
sliding mode regime, and special sliding mode characterization
properties in the case of linear plants. Two additional theorems

illustrate the application of sliding mode controllers to the

design of discrete controllers. While for brevity of exposition we
will not discuss detailed applications attention 1is called to the
fact that examples of convincing engineering applications of these
theorems abound, and we encourage the reader to look for them in
the cited literature (some of the applications developed at the
Ecole Polytechnique may be found in Serfass 1987, DeSantis 1992,

Hammada and El1 Ferik 19983, Krau 1994).



2. Formal Definition of a Sliding Mode Controller
Given a (time invariant, linear in the control) dynamic
systemn,
é = f(x) + B(x)u(x,t),

with ¥ and u n- and m-dimensional state and control vectors, a
sliding mode controller is a controller with the following three
properties:
1) it has a variable structure: the control is described by u(x,t)=
u(x,t)”, where

u; (X, )" = w'(x) for s;(x) > 0 i=1...m,

us (x,t)" = w(x) for s;j(x) < 0 i=1...m,

where: u;*, u;” and s; are pre-assigned continuous functions;

2) 1its structure is continuously switching: no trajectory, x(t)

te[0, =), entirely generated by one of these 2™ potential control
strategies is contained in the set

S:= {x(t)|x(t) such that s;(x(t)) = 0 for i=1,..m};
3) its action on the system may be viewed as the limit of a
sequence of control actions which, from a physical point of view,
are easier to implement thén the action provided by the controller

described by 1) and 2). More formally: there exists an open set Q
in R, QnS#0, such that: given any &>0, there exists A(g)>0, d(g)>0

such that: for any xeeQ, such that |s(xo) <8, the trajectory of

x = £(x) + B(x)ulx,t), x(t) = %o



with u(x,t) such that
w o= W if Isi(x,t)| > A
min(u’;,u’s) < w; < max(u';,u’;) otherwise,
has the property that
|s (%) |<e.
Note that vector function s(x):=[s1(x) ... sn(x)]’ is usually

referred to as the sliding mode function.

Remark 1. Properties 1) and 2) make a sliding mode controller
somewhat "ideal" and difficult to implement in practice. However,
property 3), stipulates that this ideal behavior must be attainable

within any desired degree of tolerance in terms of a more

realistic, physically implementable controller.

3. On Necessary and Sufficient Conditions for Existence

The following theorem states that, for controller to be in a
sliding mode , there must exist an equivalent controller that does
not necessarily have a variable structure and which must satisfy a
certain property with respect to the original variable structure

controller.



Theorem 1:(A Necessary Condition for the Existence of a Sliding Mode Controller).

Given a dynamic system,

x = £(x) + B(x)u({x,t),
a necessary condition for a variable structure controller defined
by

+

u (x,t)" = us*t(x) for s;(x) > 0 i=1...p,

W (%, t)" = ui” (%) for s;(x) < 0 i=1l...p,

to be a sliding mode controller is that an equivalent control Uequ,

solution of
G(x) [£(x) + B(X)Uequl]=0,
G (%) :=grady (s)

exists and satisfies the inequality

in{u';, Ui} < Uequ < max{u’y, u7}. n

The next theorem stipulates that to check whether a variable
structure controller is indeed a sliding mode controller, the task
of verifying the validity of property 3) required by its definition
may be replaced by the considerably simpler task of verifying that

a certain Lyapunov-type function exists.



Theorem 2:(A Sufficient Condition for a Controller to be of the Sliding Mode Type).

Given a dynamic system,

X = f(x) + B(x)u(x,t),
a sufficient condition for a variable structure controller
described by
W (x,t)" = u(x) for s;(x) > 0 i=1l...m,
u; (x,t)" = w (k) for s;(x) < 0 i=1l...m,
to be a sliding mode controller is that there exist a scalar

function v(s,x,t), continuously differentiable with respect to each

of its arguments, such that in a certain open set Q contained in

R", QMS#0, with S:= {x]x such that s;(x) = 0 for i=1,..m}, the

following properties hold:
i. v(s,x,t) is positive definite with respect to s; v(0,x,t)=0;
ii. for a sufficiently small R > 0 and for all x ¢  and any t:

inf v(s,X,t) = hy sup vi(s,x,t) = Hg
[s(x)|] =R [s(x)] = R

with hg < Hg only dependent on R;
iii. a total time derivative of v 1s negative everywhere this
function is defined and

X t) = -Ir.

sup v{s,x,
| =R

|s (%)

with mg > 0 only dependent on R. |



It should be noted that while theorems 1 and 2 imply that the
sliding mode vector function eventually converges to zero in spite
of the eventual presence of parameter or external perturbations
this property does not necessarily imply that the dynamics of the
system is unaffected by such a presence. However, as established by
the following theoremn, this implication holds if these
perturbations satisfy some appropriate "matching conditions".
Theorem 3 (Dynamics Invariance when the Matching Conditions are Satisfied).

A necessary and sufficient condition for the dynamics of a

system

x = f(x) + B(x)u(x,t) + D(xX)E,
under-sliding mode control to be invariant with respect to the

perturbation, £, is that the range of D(x) be contained in the

range of B(X). ]

In the same circle of ideas as above, the fact that the value

of the sliding mode vector function is close to zero, |s(x(t))|<e

for arbitrarily selected g, does not necessarily imply that the
trajectory of the system state is close to the state trajectory
obtained when the sliding function is equal to =zero (s(x(t)=0).
However, as established by the following theorem, this is the case

under appropriate hypotheses.



Theorem 4 (State Trajectory Sensitivity to Sliding Mode Controller Approximation).
Suppose that:
i) Given any &,>0, there exists 0;(g;) >0 such that on an interval [0,

T] any solution of

x = £(x) + Bx)ulx,t) , x(ts) = x
with u(x,t) such that
w o= uw if |si(x)| > &
min(u'y,us) < w; < max(u';,u’;) otherwise,
has the property that |s{x) [<e;;

ii) partial derivatives of B(x)[G(x)B(x)]™ with respect to all

arguments exist and are bounded in any bounded domain;

iii) there exist positive quantities M and N such that for'any
solution, x(t), of the system in i) one has

[f(x) + B(x)u(x,t)|< M + Nix|;
iv) the function

* * * *

£(x") = B(x)[G(x)B(x")17'G(x") £ (x

v

)y

with x" solution of (the system under equivalent control)

*

x = f(x) - B(x)[G(X)B(x)]1T'G(x)f(x), x*(t;) = Xo

is Lipschitz continuous;

Then, given any &,>0, there exists a §,(g;) >0 such that
|x(0)=x"(0) <&,

implies

|x (t)-x"(t) | <ey, te(0,T]. u



The following theorem 5 specializes the ensemble of the above
results to the case where the plant is linear and time invariant.
In particular: the characterization of an equivalent model to
describe plant dynamics under sliding mode; a procedure to design
the sliding mode function so that the dynamics of the plant under
sliding mode has a certain behavior; the explicit characterization
of a family of control laws that allow the sliding mode to be

attained.

Theorem 5 (Special Properties in the Case of a Linear Plant).

Given a linear scalar-input system,

X ="AX "+ Bu(x,t) + D,

consider the sliding mode scalar function s(x)=Cx. Then:

i) under sliding mode, a necessary and sufficient condition for the
stability of the system dynamics 1s that the system obtained by

using the equivalent controller

x = [I - B(CB)7C]Ax
is asymptotically stable (its non zero eigenvalues have negative
real part);
ii) if the dynamics associated with the equivalent controller is

asymptotically stable, then the trajectory characterized by

|s(x) |<e is as close to that produced by the equivalent controller



as desired provided that € 1is small enough and the initial

conditions of the two controllers are sufficiently close;

iii) if A,B is a controllable pair then by appropriately choosing
C the eigenvalues of the system under sliding mode may be assigned

arbitrarily;

iv) a sufficient condition for a controller of the family
u = -XO0;x; -0SIGN (s (x))

with s(x) :=Cx, and
O;=a; if x3s(x) <0

(Dizﬁi if x;8(x) >0

-1

N -l Pook a8 A |
O~-7 1 IUB] CLO
to be a sliding mode controller is that

o; < min <C,a;>/<C,B>
t

max <C,a;>/<C,B> £ B
t

where: a; is the i-th column of A;

v) a necessary and sufficient condition for the system dynamics

under sliding mode to be invariant with respect to the
perturbation, &, is that the range of D be contained in the range

of B.. n



Remark 2. A detailed illustration of the application of theorem 5 to

the design of a sliding mode controller for a position servo with

an elastic link may be found in Serfass and DeSantis 1987.

4. Implementation of a Continuous Controller Via a Discrete Controller

Controllers are usually designed by assuming the control
action to be arbitrarily selectable within a certain continuous
range of values. However, on occasion, practical considerations may
make it convenient or necessary to implement the controller by
imposing that the control action be restricted to have one out of a

discrete set of values. We must then deal with the problem of

modifying an already designed (continuous) controller into a
controller which, while subject to the discrete set of wvalues
constraint, does nevertheless produce an effect equivalent to that
of the designed controller. The following theorems suggest that
adoption of an appropriate sliding mode controller may provide a
natural solution to this problem.

Theorem 6. (Discrete Implementation of a Continuous Nonlinear Controller)

Under the assumption that Bo(x,t) is of a full rank, Bo(x,t)Bo" (x,t)
is independent of x and t, and the inverse of By(x,t)'B(x,t)
exists;

then: the dynamics of the system



x(t) = £(x,t) + B(x,t)ult) + p(t), x(0) = Xo
where x(t) € R" represents the plant state, u(t) € R" is the
control, p(t) € R" a disturbance; f(x,t) and B(x,t), appropriately
dimensioned real valued vector and matrix functions, are given by
f(x,t):= folx,t) + O8f(x,t)
B(x,t):= Bo(x,t) + OB(x,t)
where fo(x,t) and By, characterize the "nominal" behavior of the
plant, and 0f(x,t) OB(x,t) describe the influence of parameter

variations;

submitted to a discrete control satisfying

*

u; (t) € {w1, .., Win}, i=1, .. , m
SGN{u;" (t)—ups (X, t)+pi (£) }:= = SGN{[Bo'G(t)]:}
mit) := Bo'{8f(x,t) + 8B(x,t)u(t)+p(t)}

o(t):= Bo(x,t)Bo" (x,t)S(t)

Bo' (x,t) := pseudo-inverse of Bo(X,t),

(t

S(t) :=  (x(t) = folx,t) - Bo(x,t)us(x,t)}dt

Jo

has the following properties:
i) the state trajectory of the system is described by

x(t) = fo(x,t) + Bo(x,t)up(x,t)
+ [I- B[Bo'B] 'Bo']l{- Boup(x,t) + 8f(x,t) + p(t)}

ii) if the columns of 8f(x,t), OB(x,t) and p(t) are a linear



combination of the columns of By(x,t), then

X(t) = fo(x,t) + Bous(x,t),

iii) if the columns of 6f(x,t), OB(x,t) and p(t) are orthogonal to

the columns of Bo(x,t), then

x(t) = £(x,t) + B(x,t)up(x,t) + p(t),
iv) if only the columns of 8B(x,t) are a linear combination of the

columns of Bo(x,t), then

X(£) = fo(x,t) + Boup(x,t) + v(t),

where
v(t) = [I- [BoBo']11{0f(x,t) + p(t)}. . L

In the case of a 1linear plant, the above result may be

simplified as follows.

Theorem 7: (Discrete Implementation of a Continuous Linear Controller).
Under the assumption that matrix By is of a full rank, and
that the inverse of By'B exists;

then: the dynamics of the system described by

x(t) = Bx(t) + Bu(t) + p(t),  x(0) = xo



where x(t) & R” represents the plant state, u(t) € R" is the
control, p(t) € R" a disturbance; A and B, appropriately
dimensioned real matrices, are given by

A:= Ay + OA

B:= By + OB
where A, and B, characterize the "nominal" behavior of the plant,
and 8A, OB describe the influence of parameter variations;

submitted to a discrete control satisfving

+*

w (t) & {wa, ..., wwmt, i=1, .. , m
SGN{u;" (t) —ups (X, t)+ps (£) b= = SGN{[Bo'o (t) 11}
L(t) := Bo' {6Ax(t) + 8Bu(t)+ p(t)}
o(t):= Bo(x,t)Bs" (x,t)S(t)
Bo' (X, t) := pseudo-inverse of By (x,t),

(t .
S(t) := {x(t) - Apx(t) - Boup(x,t)}dt

Jo

has the following properties:
i) the state trajectory of the system is described by

% (t) = Box(t) + Boup(x,t)
+ [I- B[Bo'BI™'Bo']l{- Boup(x,t) + 8Ax(t) + p(t)}

ii) if Rank([0A|8B|p(t) |By]=Rank(B;) then

>.<(t) = RAox(t) + Boup(x,t),



[I- [BoBo']18 = & for 8eSPAN{SA|SB|p(t)}

x(t) = Ax(t) + Bup(x,t) + pl(t),
iv) if Rank([08B|Bo]) = Rank(Bg)

then

>.<(t) = Ao (t) + Boup(x,t) + v(t),

v(t) := [I- [BoBo']1]{8Ax(t) + p(t)}. . u
Remark 3. An application of theorem 6 to the design of a bang bang
controller for an overhead Eucledian crane may be found in DeSantis

and Krau 1994. DeSantis and DeSantis 1993 apply theorem 7 to design

a bang bang controller for a flexible beam.

Conclusions

Using the concept of an equivalent control together with the
nominal model of the plant, we can use theorems 1, 2, 5, 6 and 7
to design a controller so as to attain a prescribed sliding mode
regime and a desired state trajectory behavior. However,
unaccounted for non-idealities, in both the physical plant and in
the components of the controller, often prevent the sliding mode

conditions to be satisfied exactly and the state trajectory to



conditions to be satisfied exactly and the state trajectory to
correspond to that predicted by the theory. We must then be careful
to verify that, in spite of the influence of these non-idealities,
the value of the sliding mode function remain small and that the
trajectory produced by the real controller remain close to that
produced by the ideal controller under nominal operating
conditions.

In the case of special non-idealities (memoryless
approximations of an ideal switching function, perturbations
satisfying the matching or mis-matching conditions, and similar),
theorem 3 helps us establish the extent within which this is indeed

the case. However, this theorem is not of a great help in

predicting what happens in the case of other more general non-
idealities such as time delays, hysteresis and neglected actuator
dynamics. It becomes then useful, in such cases, to explore the
influence of these elements over the actual behavior of the system
by means of a direct experimentation, or of extended simulations

or by mean of both approaches.
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