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ABSTRACT

A calculation scheme ta predict incompressible turbulent flows

in arbitrary shapes is présentée!. The procédure is based on the

solution of the primitive-variable formulation of the time dépendent

Reynolds averaged Navier-Stokes équations in général curvilinear

coordinates. An ordinary. computational cell is used for continuity

and transport balances; and al l the physical properties are stored at.

the center at this calculation élément. The scheme, use an oyerlapping

mesh along with forward and backward differencing for mass and

pressure gradients respectively. This procédure prevents in a

différent manner than the staggered grid approach, the oscillatory

behaviour of the pressure fi el d. The employed methodology -fol l ows a

former practice used to the solution of laminar flows. The k-î. model

is used to describe the turbulent flow process. Particular attention

is given to the baundary condition for the turbulent properties. The

method used here is easily extended to three dimensions. Computed

results are comparée) with numerical and experimental data.



NOMENCLATURE

C Chord

Cp pressure coefficient

Ci,Cz,Cci constants in turbulence model

E* constant for the law of the wall

E,F flux vectors in t; and T] coordinate directions

g*J metric tensor components

G rate of production of the turbulence kinetic energy

J Jacobian of transformation matrix

k turbulence kinetic energy

L spacing between plates

p pressure

p* estimated pressure

q vector of conservation variables

r radiai distance

r* inner radius of expanding duct

R,S viscous flux terms in î and f] coordinate directions

R«> Reynolds number

t t i me

T source term in the transport équations

u,v time—averaged velocity components in K and y directions

u» friction velocity

U,V time-averaged contravariant velocity camponents in î. and T)

directions

U*,V* tentative curvilinear velocity camponents

îî,y Cartesian coordinates

Yp, conventional normal distance ta the wall

î.,ri curvilinear coordinates
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âp pressure correction

At time step

i5U,<SV contravariant velocity corrections

oc géométrie index, oc=0, two dimensions: oc=l, axisymmetry

E turbulence energy dissipation

X the von Karman constant

u kinematic viscosity

u» effective viscosity

Ufc turbulent viscosity

<TK»<T«. turbulent Prandtl numbers

Subscripts

e centerline

p re+ers to the grid node next •ta the wall

K,y î,-n first partial differentiatian

i,j variable location

0 re-ferenae value



INTRODUCTION:

Over the last two decades the simulation of numerous

incompressible -fluid flow problems has been carried out by explicit

time-dependent algorithms which solve the primitive variable -form of

the Navier-Stokes équations. Many of thèse procédures use a

finite-volume method with a staggered grid Cl 3 arrangement, which by

its intrinsic nature, requires a différent location for the pressure

and velocity components.

In order ta alleviate the géométrie complexities of such

classical discretization, an alternative approach has been employed in

Re-F.C23 for the solution o-f laminar flows. In this technique the

pressure and velocity components are located at a common point, and

the same basic élément is used for both the continuity and momentum

balances. To avoid the délicate problem o+ unrealistic -fields arising

with such discretization, an opposed différence scheme for pressure

and momentum flu>;es in the main flow direction, coupled with an

overlapping mesh in the secondary direction is applied

In the présent^study thèse ideas are applied ta the solution of

turbulent flows in arbitrary geometries. The scheme is incorporated

into the solution of the time dépendent Reynolds averaged

Navier—Stokes équations closed with the two additional équations o-f

the k-e. model. AU the variables (velocity components, pressure,

turbulence kinetic energy, and turbulence energy dissipation) are

stored at the center of the same computational cell which is used for

al l balances. The required domain discretization is carried out by the



use of a grid which is numerically generated by the body-fitted

techniqueC3,43. The governing transport équations are then fonnulated

-for a général curvilinear coordinate system in which the Cartesian

velocity components appear as dépendent variables, leading to the

conservation forrn.

A characteristic aspect o-f the computation at incompressible

flows, is présentée! by the extraction of a pressure field which drives

velocities that respect both mass and momentum équations

simultaneously. This p-v coupling problem is solved by using a simple

but e-f-fective procédure, which is established by combining the

continuity and momentum équations in a way si mi lar ta that proposed by

the SIMPLEC53 method, and modified for a curvilinear mesh.

An alternative approach to the more standard "slip-velocity" is

used far the treatment o-f the wall boundary condition. The présent

method takes into account the variations o-f the velocity in the

next-wall région, by using an" équivalent viscosity" together with the

real zéro velocity condition. This procédure which does not require

the direction of the velocity at the first node near the wall, allows

a simple extrapolation to three-dimensional problems.

2. TRANSPORT EQUATIONS

The unsteady, incompressible, turbulent flow is governed by



the Reynolds averaged Navier-stokes équations. Using the eddy

viscosity conceptC63 along with the closure k-E model, thèse

équations can be written in Cartesian and/ar axisymmetric +orm as

follows.

Continuity:

?-(r«-u) + ?-(rntv) =0 (l)
3x " ~" 3y

>; —momemtum:

ly + Ll-(''ot"=> + lJ-.<'"x"v> =
ôt r'x-3ît " ~ ' r~-ôy

je + 1J^2^. jy, + 1J- (r-u.(|y +1^)) (2)
ôx rnt-9>î'~' "" 3x" rutôy " ~~'ôy ôîi''

y—momemtum:

IY + LI-O—uv) + lJ-,C—v=) =
3t raLBx " ~" ' r°Lay

je ,. IJ^O^(|Y + ^ » + 1J^ (2^. JT) - ^ ^ <3)
ôy r"-ô>; '" ~~'3x ôy" " rlx-ôy "-" ~~ ôy' ~-— r=

Turbulence kinetic energy:

1£ + Li-<'—"k) + Lt-.<i—v^) =
ôt r"-9>; " """ raL9y

l ô , - Ufc ôlï. . lô , _Ut Sk ^ .
.^-<r"°t -^ ^^) + -_^- (r«—^ ^-) + UtG - E

rac-3>î " o-K 3î{' r*^ôy " o-h
(4)

Turbulence dissipation rate:
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li + LI-O—UE) + 1J-,<^-U^^ =
ôt ruLôx " ""' r"-ôy

l ô ,__ Ut 3e.. . l 3 /__Ute ÔE^ ... r^ E. ^ „ E=.^-<rnt —:= ^> + -_^- (rnL=-;= ^•=) + UfcCa f B - Ça - (5)
raLôx " <r«. 9x' ruLôy " o-a.ôy' -"-*k- -'~k

where the effective viscosity u— appearing in the momentum transport

équations is given by:

u. = Ut + 1/R. (6)

in which 1/R» représente the dimensionless molecular viscosity, and

Ut the dimensionless turbulent viscosity calculated by the relation:

Ut = Cd k=/E (7)

The source term G appearing in the k-E. équations is given by the

following eîîpression:

6=2 c< |y )-+ < j^ )=+oc^3+ ( |y +1^ )= (8)
ôî< ' ' ôy ' " rz- ' 3y ôx

The value of the five empirical constants appearing in the above

équations areC73:

C^= 1.44 C==1.92 <TK = l. <T. =1.3 Cc,= 0.09



Final l y the symbol oc représente a géométrie index ta denote

aîîisymmetry (o(=l) or twa dimensional (oc=0) configurations. In the

axisymetric case y is équivalent to the radius r.

Transformée! Equations

The set o-f conservation équations are formulated for a

curvilinear coordinate System with Cartesian velocity components taken

as the dépendent variables, in this manner the transformed goveming

équations can be written in the strong conservative form C83. In the

axisymiT.etric. case, because the use of a cylindrical référence system,

the radiai momemtum équation présents an inévitable source term, and

this can only be written in the semi-strpng form.

Following this approach, Eqs. (l) ta (5) can be written in

général ized coordinates, î and T|, as:

|3 + 3| + ÔF = 9|+ 9S + T (9)
ôt' 31. ' ÔT} ~ 3Ï. ' Sri

where:
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q = Jr

0

u

E = Jr*

D

uU + pîx|

vU + pîy|

kU

EU

F = Jr«

uV + p-qx|

vV + pr|^

kV

EV

g*»u^ + glzUT, + ïxUï + ^xTlMUT, + ^M^yV^ + ^yT|^Vr,

R =Jr'K-u. | gllv^ + gl=VT, + îyVç + ^yïiyVr, + ïx^yU^ + Ï>.T}V.UT|

(gllkï + glak^)/o-k

(gll£x + gl:2E^)/<r>

0

g2:tu^ + g=î=iur, + TixïxU^ + TI^UT,

S =Jrocu. | g21Vï + g==Vn + TK^VT; + TI^VT,

(gl:zkï + g=z=k^)/O-K

<gl=E.x + gz:2En)/o-.

Tjy^xVi; + T^T],«V,

TlxîyUï + T]yT|xU,

0

0

T =Jr«»u« | (p-u»2v/R)<x.

U«B» - E

u.CiG-E/k - CzEa/k
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and:

B» = 2((^^ux + TI^UT,)= + <^yVï + TiyVTi>a + ocvz/r=) ) +

<îxU^ + TI^UT, + ïxV^ + TtxV^)2

The curvilinear velocity components U,V and the Cartesian

velocity components u,v are related bys

U = uî.» + vî.y

(10)

V = UTlx + VTIy

The expressions for the metric terms ïx , Çy.,T(^ ,r)y, the jacobian

J and the contravariant metric tensor components g11,glz,g21,and gz:z

are given by:

Ïx = YTI/JÏ ^y =-XT,/J

-Hx = -yx/J, T^y = x^/J

J=î<ïYTi- XïiYx
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glX= ^ + çÇ gt== ^-^ + ^^^

g=t= gl= g22= ^ + ^

3. NUMERICAL DISCRETIZATION

The goveming équations are solved using a conservative

control—volume approach. The discrète -form of such system is derived

by integrating thèse équations locally over thèse finite volumes. A

nonstaggered meshE23, previously derived for the solution of laminar

-flows is emplayed here ta predict the turbulent counterpart.

There are several ways of representing the temporal and

spatial derivatives of the source équations in discrète farm. The

temporal differencing adopted here is e>îplicit, and in compact form

can be written as:

Aq + At (Ex + F^)" =At(R^ + S^, + T)" (11)

where A denotes the forward time dif-ference operator and n the time

level •

In the computational grid used in thi;s study, the velocity
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components u,v, the pressure p, the turbulence kinetic energy k and

the turbulence dissiption rate E, are stored at the node (i+l/2,j) o-f

the computational élément illustrated in Fig. l.

The spatial discretization requires the knowledge of the mass

flow, pressure, convected properties, and diffusion term at the

élément faces. First, attention is turned on the mass flow and

pressure évaluation.

As a result of the overlapping procédure in the j direction, the

working variables(with the eMception of the pressure which is

interpolated) are known at the i+l/2,j+l, and i+l/2,j-l stations.

Consequently, the mass flow represented by the curvilinear velocity

components U and V can be directly obtained by applying the discrète

équivalent of relations (10).

On the other hand, the inspection on the "streamwise" or logical

i direction, reveals that velocities and pressure are not available at

the i,j and i+l,j locations. This time, the opposed differencing

technique will be employée! to calculate the required mass and pressure

gradients. In particular, mass differencing is obtained via upwinding,

while pressure di-f-ferencing is computed through downwinding. That

means -for example, that the flux across the i -face is controlled by

the velocity at the station i-1/2,j; in the same manner, the pressure

acting on the i face can be considérée! as the one located at the

i+l/2,j nade.
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The discrète form of the momentum and turbulence. équations also

requires the computation of convected variables and diffussion terms

at the cell faces. Thèse spa-tial variations are approximated by using

the weighted upstream scheme o-f Raithby and Torrance C93.

As mentionned earlier, the central idea in the présent solution

algorithm is an extension to turbulent -flows of the methodology used

in RefC23; it fol lows standard practice, sa only a général description

will be given here.

The iteration séquence is as fol lows:

- Pressure, Cartesian and corresponding curvilinear velocity

components, k, and E. -fields are guessed.

The îi-momemtum, y—momentum ,turbulent kinetic energy and

dissipât!on rate transport équations are solved.

- Pressure and curvilinear velocity corrections <5p and 5U,<5V

respecti vely, ar-e calculated and introduced ta ensure that

the continuity équation is respected Thèse paramaters are

added ta the existing fields as:

U=U*+<5U

V=V*+3V (12)

p=p»+5p

where the superscript star is used here ta denote

intermediate estimâtes which do not satisfy mass

conservation. :
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- The modification described by Eq.12 is donc point—by-point

in the inlet-outlet direction. This procédure is repeated

until the mass source level f al l below a predetermined

limit of accuracy.

The Cartesian velocity components are decoded from

curvilinear components and the boundary conditions applied

or calculated for the turbulence kinetic energy and

dissipation rate, k and E respectively.

- The effective viscosities are evaluated using the new mean

velocity, turbulent kinetic energy, and dissipation rate

fields.

- The time level is advanced and the cycle repeated until

the steady state is reached.

4. BOUNDARY CONDITIONS

The two—équation k-E model is only valid for full y turbulent

régions, and does not include the viscous sublayer effects. To take

account of -thèse phenomena, and without using a large number of grid

points near the wall, the alternative technique known as the "wall

-function" method is adopted. Following this approach the boundary

conditions are derived from the velocity profile at the first node

away from the wall •

Usually, to get a better approximation for the shear stresses

acting on the wal1-adjacent éléments, an imaginary wall slip velocity

is used instead o-f the no slip velocity condition. However, this

proven methodology becomes complicated for the calculation of
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three-dimensional flows<see for example RefClOJ), because it requires

the direction of the velocity at the -first node near the wall. In the

présent effort, an alternative approachC113 which only needs the value

and not the direction of the velocity at such station, is employed.

The basic idea under this treatment lies in using an

hypothetical or "équivalent viscosity" to replace the actual

viscosity, so as ta account for the non-1inearity of the velocity,

consequently ta evaluate the shear force in the discrète

représentation of the momentum balances of the wal1—adjacents

éléments. This "équivalent viscosity" idea, which is applied

t.

jointly with the physical no-slip condition, allows a rather

straight-forward extension ta the computation o-f three dimensional

flows

Attention is now focussed on the calcul at:, on and implementation

o-f the required properties next to the wall. For this, two différent

situations are distinguished.

First, if the node next ta the wall is outside the laminar

sublayer, i.e when the value of the dimensionless distance défined as

yjS = yp u»/u is greater than 30; the -following wall functionC123 is

used:

-ye- = -e— ln<E» Yp u»/u) (13)
u»

where Up, représente the velocity cqmponent parai l el to boundary at the

first node next ta the wall; X and E» are constant -from the law wall,

and Yp> is the distance normal ta the wall.



17

From the above équation and by a Newton-Raphson method, the

friction velocity u» is iteratively calculated. The values o+ the k-£

turbulence properties at the.first node away -from the wall indicated

by the subscript p, are then specified through the following

relationshipss

kp = Ltg/vlCo (14)

î.p = uS/Xyp (15)

Thèse values are used as the boundary condition for the nexfc

time level n+1, together with an updated "équivalent—viscosity"

calculated via;

^_ïe_"=_.^ d6)
""M l n (E» Yp u»/u)

In the second case, when the node next ta the wall is inside the

laminar sublayer; the friction velocity u» is calculated from:

_"e_ = ye_y* d7)
u» u

which représente the velocity variation in this région. This time

relations (14) and (15) are al sa used ta update k and E at the first

nodes.Hawever the shear force is evaluated by using the l aminar

viscosity, instead of the "equivalent-viscosity".
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At the inlet the distribution of the turbulence kinetic energy

and the dissipât! on o-f the turbulence energy is estimated; thèse

values are based on acquired expérience; except at the nodes near the

wall, where they are calculated from the inlet velocity profile and

the wall function.(Eqns. 13, 14, and 15)

At the exit al l the properties are extrapolated by assuming a

fully developed flow •

COMPUTED RESULTS

<.

Parallel-walled channel.

To evaluate the présent scheme the developing flow between

parai l el plates was attempted. Calculations were made on a channel

with a length-to-width ratio of 60, and for a Reynolds number of

192,000. The discretization was carried out by using a 17>;180 grid. At

the inlet uniform velocity, and constant turbulence kinetic energy and

dissipation rate are prescribed.

The computed values for the center-line velocity, together with

the expérimental and numerical results of Refs.C133 and C143

représentée! by dois and dashed line respectively, are displayed in

Fig.2a. Although the velocity peak in the calculated solution

appearing at an early stage o-f the development, around x=25d, slighty

underestimates the value of the velocity shown by the other data, the

avérai l agreement seems to be reasonable, if one considère that the

large velocity scale eîîaggerates the différences.
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The predicted developed velocity profile ,normalized in terms

of the centerline velocity is plotted along the expérimental data of

RefC153 in Fig.2b. Inspection of this figure shows that the présent

predictions are in good agreement with the measurements.

Aîîisymmetric Diffuser.

The next prablem studied was that of the turbulent flaw in a

diffuser. The geometrical configuration for this case was chosen after

a test case investigated by HabibC163, which consists on a diffuser

with a 20° hal-f angle. Calculations were made for a node distibution

of 51x31 and for R.= 20,000.

Fi g. 3a depicts the calculated velocity f ici d and aKial mean

velocity contours. The général trend of this latter are in good

agreement with the results presented by Re-f.LléiJ. Fig.3b illustrâtes

the calculated streamlines, where the recirculation zone is clearly

évident; the magnitude and location o-f this- région confinn the

numerical predictions of HabibE163.

Calcul at ions of the mean flow velocity at three axial stations;

namely at >{/r=3.2, ?</r=6.4 , and î</r=12.2, are comparée! with the

measuremets of Re-fC163. Observation on the calculated mean

velocities, as shown in Fig. 3c, reveals that thèse are in concordance

with the experiment apart fr-om small discrepancies, particulary near

the right boundary of the recirculation zone (x/r=6.4). As indicated

by the above référence, which faund a si mi lar situation when comparing
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his numerical and expérimental results, this can be attributed, at

least in part, to rectification of the hot-wire signal in régions of

low mean velocity. Further downstream, the discrepancy between the

measurements and calculations decrease.

NACA 0012 Caseade.

As a preliminary effort ta turbomachinery -flow analysis, a

NACA0012 cascade at zéro degrés angle of attack (i.e. without

séparation) was considered. The chord-to-pitch ratio was of 2 and the

front and rear boundaries were located at one chord lengths away form

the leading ànd trailing edges. The Reynolds number employèd in the

calculation was of 20,000. The whole domain covering periodic and

salid wall zones, was discretized with a 21x53 grid

The surface pressure distribution is plotted in Fi g 4 and

compared with the expérimental data of Gregory and 0'ReillyC173. In

général the pressure distribution shows good agreement with the

measurements. The minimun value of the pressure is well predicted;

however its position is sligthy dawnstream compared ta the

eïîperimemtal data. Small di screpancies are shown after the cascade

throat towards the trailing edge as presented by an estimated lower

pressure near such région. Thèse différences can be attributed ta a

unsu-ffi cientl y fine grid spacing in the tr-ailing edge vicinity to

résolve the important gradients in that zone.
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CONCLUSIONS

A calculation algorithm -for turbulent flows, which employs an

explicit temporal differencing, a nonstaggered mesh along with

weighted upwind/central and opposed spatial discretization, bas been

implemented. The method is based on the finite-volume solution o-f the

goveming équations in curvilinear coordinates. Thèse are generated

numerically by the use of the body—fitted technique. A conservative

form of the Reyholds averaged Navier-Stokes équations bas been

developed and applied; and a particular treatement of the wall

baundary conditions through the "equivalent—viscosity" idea has been

employed. The resulting procédure was applied ta the computatian of

plane, recirculating axisymmetric, and cascade flows. Comparisons on

the obtained results and available numerical and expérimental data

show that the flow behaviour can reasonably well predicted for the

nansepareted and recirculating cases. It remains to be seen in a

further development, what additional difficulties may arrive on the

calcul at ion o-f three-dimensional flows
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