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ABSTRACT

A calculation scheme to predict incompreséible turbulent flows
in arbitrary shapes is presented. fhe procedure is based on the
solution of the primitive-variable formulation of the time dependent
Reypnlds averaged Navier-Stokes equations in general curvilinear
coordinates. An ordinary computational cell is used for continuity
and transport balances; and all the physical properties are stored at
the center of this calculation element. The scheme, use an overlapping
mesh alnng. with forward and backwara differencing for maés and
pressure gradients respectfvely. This procedure prevents in a
different manner than the staggered grid approach, the oscillatory
behaviour of the pressure field. The employed methodology follows a
former practice used to the solution of laminar flows. The k-t model
is used to describe the turbﬁlent flow process. Particular attention
is given to the boundary condition for the turbulent properties. The
method used here is easily extended to three dimensions. Computed

results are compared with numerical and experimental data.
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NOMENCLATURE
c Chaord
Co presswre coefficient

C14C2,Ca constants in turbulence model

Euw constant for the law of the wall

E,F flux vectors in ¥ and 1 coordinate directions

gt metric tensor components

G rate of production of the turbulence kinetic energy

J Jacobian of transformation matrix

k turbulence kinetic energy

L spacing between plates

p pressure

p" estimated pressure

q vector of cnnéervation variables

r radial distance

ra inner radius of expanding duct

R.8 viscous flux terms in E and n coordinate directions

Rea Reynolds number

t time

T source term in the transport equations

Uyv time—averaged velocity components in x and y directions
tloe friction velocity

u,v time-averaged contravariant velocity components in £ and n

directions

sy tentative curvilinear velocity components
MaY Cartesian coordinates
Ye conventional normal distance to the wall

i, curvilinear coordinates



ap pressure correction

AL time step

&u, &V contravariant velocity corrections

o geometric index, «=0, two dimensions: a=1, axisymmetry
£ turbulence energy dissipation

X the an Karman constant

v kinematic viscosity

Ve effective viscosity

Ve turbulent viscosity

T yTa turbulent Prandtl numbers

Subscriets

c centerline

p refers to the grid node next to the Qall

ey T4 first partial differentiation
1,3 variable location

O reference value



INTRODUCTION:

Over the last two decades the simulation of numerous
incompressiﬁle fluid flow problems has been carried out by explicit
time-dependent algorithms which solve the primitive variable form of
the Navier—-Stokes equations. Many of these procedures use a
finite-volume method with a staggered gridl13] arrangemeﬁt; which by
its intrinsic nature, requires a different location for the pressure

and velocity components.

In order to alleviate the geometric complexities of such
classical discretization, an alternative approach has been emploved in
Ref.[2] for the solution of laminar flows. In this technique the
pressure and velocity components are locafed at a common pdint, and
the same basic element is used for both the continuity and momentum
balances. To avoid the delicate problem of unrealistic fields arising
with such discretization, an opposed difference scheme for pressure
and momentum fluxes in the main flow direction, coupled with an

pverlapping mesh in the secondary direction is applied

In the present study these ideas are applied to the solution of
turbulent flows in arbitrary geometries. The scheme is incorporated
into the solution of the time dependent Reynolds averaged
Mavier—Stokes equations closed with the two additional equations of
the k-& model. Al; the wvariables (velocity components, pressure,

turbulence kinetic enérgy, and turbulence energy dissipation) are
stored at the center of the same computational cell which is used for

all balances. The required domain discretization is carried out by the



use of a grid which is numerically generated by the body-fitted
techniquel3,4]. The governing transport equations are then formulated
for a general curvilinear coordinate system in which the Cartesian
velocity components appear as dependent variables, Ieading to the

canservation form.

A characteristic aspect of the computation of incompressible
flows, is presented by the extraction of a pressure field which drives
velocities that respect both mass and momentum equations
simultaneously. This p—-v coupling prob}em is solved by using a simple
but effective procedure, which is established by combining the
continuity and momentum eguations in a way similar to that proposed by

the SIMPLELS] method, and modified for a curvilinear mesh.

An alternative approach to the more standard “slip—velocit*" is
used for the treatment of the wall boundary condition. The present
method takes into account the variations of the velocity in the
next—-wall region, by using an" equivalent viscosity" together with the
real zero velocity condition. This procedure which ~does not réquire
the direction of the velocity at the first node near the wall, allows

a simple extrapolation to three—-dimensional problems.

2. TRANSFORT ERUATIONS

The unsteady, incompressible, turbulent flow is governed by



the Reynolds averaged Navier—stokes equations. Using the eddy
viscosity conceptlé]l along with the closure k—e¢ model, these
equations can be written in Cartesian and/or axisymmetric form as
follows.
Continuity:
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Twbulence dissibation rates:
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where the effective viscosity ve. appearing in the momentum transport

equations is given by:

Ve = Ve + 1/Ra (6)
in which 1/Re represents the dimensionless molecular viscosity, and

ve the dimensionless turbulent viscosity calculated by the relation:
Ve = Ca k®/¢ (7)

The source term G appearing in the k—-& equations is given by the

following expression:

ou - 2y = v= gu , 8v -
G Lo 350 +(ay’ e = ay+ax’ 8

M

The value of the five empirical constants appearing in the above

equations arel71]:

Ca= 1.44 Ce=1.922 Ty = 1. Ta

n
[y
A

Ca= 0.09



Finally the symbol « represents a geometric index to denote
axisymmetry (x=1) or two dimensicnal {x=0) configurations. In the

axisymetric case y is equivalent to the radius r.

Transformed Eguations

The set of conservation equations are formulated for a
curvilinear coordinate system with Cartesian velocity components taken
" as the dependEAt variables, in this manner the transformed governing
equations can be written in the strong conservative form [8]. In the
axisymmetric case, because the use of a cylindrical reference system,
the radial momemtum equation presents an inevitable source term, and

this can only be written in the semi-strong form.

Following this approach, Eqgs. (1) to (3) can be written in

generalized coordinates, E and 1, as:

9 , 8E | oF ok , @88
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and:

G = 2((E, ug +'11,‘u,,,)=z + (E;vg + NyVnl=2 + avE/r2)) +

(Esete + Tty + Buve + Nuvnl=

The curvilinear velocity components U,V and the Cartesian

velocity components u,v are related by:

U = ut,, + vi,
(10}

V = un. + vn,

The expressions for the metric terms T.,L,,Nx,7ys the Jjacobian
J and the contravariant metric tensor components g*?,g*=2,g%®,and g==

are given by:

Ex = yYm/d, Ly ==Xndd

The = —yYu/iJd, Ty = Xe/Jd



g**= E% + &g g'®= Tume + Rymy

g=*= g*= === n% + 0¥

3. NUMERICAL DISCRETIZATION

The governing equations are solved using a conservative
control-volume approach. The discrete form of such system is derived
by integrating these equations locally over these finite volumes. A
nonstaggered meshl2]1, previously derived for the solution of laminar

flows is employed here to predict the turbulent counterpart.

There are several ways of representing the temporal and
spatial derivatives of the source equatiohs in discrete form. The
temporal differencing adopted here is explicit, and in compact form

can be written as:

AQ + At(Ex + Fp)™ =At(Re + Sp + T)O (11)

where A denotes the forward time difference operator and n the time

level .

In the computational grid used in this study, the velocity
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components u,v, the pressure p, the turbulence kinetic energy k and
the turbulence dissiption rate ¢, are stored at the node (i+1/2,j) of

the computational element illustrated in Fig. 1.

The spatial discretization requires the knowledge of the mass
flow, pressure, convected properties, and diffusion term at the
element faces. First, attention is turned on the mass flow and

pressure evaluation.

As a result of the overlapping procedure in the j direction, the
working variables(with the exception of the pressure which‘ is
interpolated) are known at the i+1/2,j+1, and i+1/2,j-1 stations.
Consequently, the mass flow represented by the curvilinear velocity
components U and V can be directly obtained by appiying the discrete

equivalent of relations (10).

On the other hand, the inspection on the "streamwise" or logical
1 direction, reveals that -velocities and pressure are not available at
the 1,j and i+l1,j locations. This time, the opposed differencing
technique will be employed to calculate the required mass and pressure
gradients. In particular, mass differencing is obtained via upwinding,
while pressure differencing is computed through downwinding. That
means for example, that the flux across the i face is controlled by
the velocity at the station i-1/2,3; in the same manner, the pressure
acting on the i1 face can be considered as the one located at the

i+1/2,i node.
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The discrete form of the momentum and turbulence equations also
requires the computation of convected variables and diffussion terms
at the cell faces. These spatial variations are approximated by using

the weighted upstream scheme of Raithby and Torrance [93].

As mentionned earlier, the central idea in the present solution
algorithm is an extension to turbulent flows of the methodology used
in Réf[ZJ; it follows standard practice, so only a general description

will be given here.

The iteration sequence is as follows:

- Pressure, Cartesian and corresponding curvilinear velocity
components, k, and & fields are guessed.

- The x-momemtum, y-momentum ,turbulent kinetic energy and
dissipation rate transport equations are solved.

— Pressure and curvilinear velocity corrections 8p and &U, 8V
respectively, are calculated and introduced to ensure that
the continuity equation is respected These paramaters are

added to the existing fields as:

U=+ a0
V=Wt gy (12)
p=p™+dp
where the superscript star is used here to denote
intermediate estimates which do not satisfy mass

conservation. £
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- The modification described by Eq.12 is done point-by-point
in the inlet-outlet direction. This procedure is repeated
until the mass source level fall below a predeterm;ned
limit of accuracy.

- - The Cartesian velocity components are decoded from
curvilinear components and the boundary conditions applied
ér calculated for the turbulence kinetic energy and
dissipation rate, k and & respectively.

- The effective viscosities are evaluated using the new mean
velocity, turbulent kinetic energy, and dissipation rate
fields.

— The time level is advanced and the cycle repeated until

the steady state is reached.
4. BOUNDARY CONDITIONS

The two—equation {—&¢ model is only valid for fully turbulent
regions, and aoes not include the viscous sublayer effects. To take
account of -these phenomena, and without using a large number of grid
points near thé wall, the alternative technique known as the "wall
function” method is adopted. Following this approach the boundary
conditions are derived from the velocity profile at the Ffirst node

away from the wall .

Usually, to get a better approximation for the shear stresses

acting on the wall-adjacent elements, an imaginary wall slip velocity

is used instead of the no slip velocity condition. However, this

proven methodology becomes complicated Ffor the calculation of
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three~dimensional flows(see for example Reff101), because it requires
the direction of the velocity at the first node near the wall. In the
present effort, an alternative approachl113 which only needs the value

and not the direction of the velocity at such stétinn, is employed.

The basic idea under this treatment lies in using an
hypothetical or "equivalent viscosity” to replace the actual

viscosity, so as to account for the non-linearity of the velocity,

consequently to evaluate the shear force in the discrete
represéntation of the momentum balances of the wall-—adjacents
elements. This ‘"equivalent viscosity" idea, which is applied
Jointly with the pﬁysical no-slip condition, allows a rather

straight—-forward extension to the computation of three dimensional

flows

Attention is now focussed on the calculation and implementation
of the required properties next to the wall. For this, two different

situations are distinguished.

First, 1f the node next to the wall is outside the laminar

sublayer, i.e when the value of the dimensionless distance defined as

¥o = Y Ue/v is greater than 30; the following wall functionli2] is
used:

e 1 IN(En ¥p Uea/v) (13

U X ®

where u, represents the velocity component parallel to boundary at the
first node next to the wallj; X and E«. are constant from the law wall,

and vp is the distance normal to the wall.



17

From the above equation and by a Newton—Raphson method, the
friction velocity ue is iteratively calculated. The values of the k—¢
turbulence properties at the first node away from the wall indicated
by the subscript p, are then specified through the following

relationships:

= uE/NCp ‘ (14)

k3
1
L

]

vE/RY e (15)

These values are used as the boundary condition for the next
time level n+l1, together with an updated "equivalent—-viscosity" -

calculated via:

K ¥Yp_ Uw
IN(Ew Yo Le/v)

(16)

U-N

In the second case, when the node next to the wall is inside the

laminar sublayer; the friction velocity u. is calculated from:

_He - Yp_Um= (17>
[ W g v

which represents the velocity variation in this region. This time
relations (14) and (15) are also used to update k and & at the first
nodes.However the shear force is evaluated by using the laminar

viscosity, instead of the "eguivalent-viscosity".
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At the inlet the distribution of the turbulence kinetic energy
and the dissipation of the turbulence energy is estimated; these
values are based on acquiréd experience; except at the nodes near the
wall, where they are calculated from the inlet velocity prnfilé and

the wall function. (Eqns. 13, 14, and 15)

At the exit all the properties are extrapolated by assuming a

fully developed flow .
COMPUTED RESULTS
Parallel-walled channel.

VTD evaluate the present scheme the developing flow between
parallel plates was attempted. Calculations were made on a channel
with a length-to-width ratio of 60, and for a Reynolds number of
192,000. The discretization was carried out by using a 17x180 grid. At
the inlet uniform velocity, and constant turbulence kinetic energy and

dissipation rate are prescribed.

The computed values for the center-line velocity, together with
the experimental and numerical results of Refs.[13]1 and [14]
represented by dots and dashed line respectively, are displayed in
Fig.2Za. Although the wvelocity peak in the calculated solution
appearing at an early stage of the development, around x=25d, slighty

underestimates the value of the velocity shown by the other data, the

overall agreement seems to be reasonable, if one considers that the

large velocity scale exaggerates the differences.
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The predicted developed velocity profile ,normalized in terms
of the centerline velocity is plotted along the experimental data of
Refl[15] in Fig.Z2b. Inspection of this figure shows that the present

predictions are in good agreement with the measurements.
Axisymmetric Diffuser.

The next problem studied was that of the turbulent flow in a
diffuser. The geometrical configuration for this case was chosen after
a test case investigated by Habibl[161l, which consists on a diffuser
with a 20° half angle. Calculations were made for a node distibution

of S31x31 and for Re= 20,000.

Fig. 3a depicts the calculated velocity field and axial meén
velocity contours. The general trend of this latter are in good
agreement with the results presented by Ref.[161. Fig.3b illustrates
the calculated streamlines, where the recirculétion zone is clearly
evident; the magnitude and location of this: region confirm the

numerical predictions of Habibll&3].

Calculations of the mean flow velocity at three axial stationsg
namely at x/r=3.2, »/r=4.4 , and x/r=12.2, are compared with the
measuremets of ReflLi6]. Observation on the calculated mean
velocities, as shown in Fig. 3c, reveals that these are in concordance

with the experiment apart from small discrepancies, barticulary near

'the right boundary of the recirculation zone (x/r=6.4). As indicated

by the above reference, which found a similar situation when comparing
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his numerical and experimental results, this can be attributed, at
least in part, to rectification of the hot-wire signal in regions of
low mean velocity. Fuwther downstream, the discrepancy between the

measurements and calculations decrease.
NACA G012 Cascade.

As a preliminary effort to turbomachinery flow analysis, a
NACAOO12 cascade at zero dedree angle of attack (i.e. without
separation) was considered. The chord—-to—-pitch ratio was of 2 and the
front and rear boundaries were located at one chord lengths away form
the leading and trailing edges. The Reynolds number employed in the
calculation was of 20,000. The whole domaiﬁ covering periodic and

solid wall zones, was discretized with a 21x53 grid

The surface pressure distribution is plotted in Fig 4 and
compared with the experimental data of Gregory and O'Reilly[173. In
gener-al the pfessure distribution shows good agreement with the
measurements. The minimun value of the pressure is well predicted;
however its position is sligthy downstream compared to the
experimemtal data. Small discrepancies are shown after the cascade
throat towards the trailing edge as presented by an estimated 1lower
pressure near such region. These differences can be attributed to a
unsufficiently fine grid spacing in the trailing edge vicinity to

resolve the important gradients in that zone.
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CONCLUSIONS

A calculation algorithm for turbulent flows, which employs an
explicit temporal differencing, a nonstaggered mesh along with
weighted upwind/central and opposed spatial discretization, has ?een
implemented. The method is based on the finite-volume solution of the
governing equations in curvilinear coordinates. These are generéted
numerically by the use of the body—fitted technique. A conservative
form of the Reynolds averaged HNavier-Stokes equations has been
developed and applied;- and a particular treatement of the wall
boundary conditions through the "equivalent-viscosity"” idea has been
employed. The resulting procedure was applied to the computation of
plane, recirculatiné axisymmetric, and cascade flows. Comparisons on
the obtained results and available numerical and experimental data
show that the flow behaviouwr can reasonably well predicted for the
nonsepareted and recirculating cases. It remains to be seen in a
further development, what additional difficulties may arrive on the

calculation of three—dimensional flows
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