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l. INTRODUCTION

The Galerkin Finite Elément Method (GFEM) has proved very success-

full in the treatment of self adjoint boundary value problems. However,

in non-self-adjoint cases, difficulties are encountered. Noteworthy examples

occur in fluid mechanics with the Navier-Stokes équations and convective

transport phenomena. Spurious oscillations are exhibited at high Reynolds

number in the first case and high Peclét number in the second. Until recently

oscillations could only be removed by sévère mesh refinement, which under-

mines the practical usefulness of the finite élément method.

The oscillatory behaviour also results in finite différence

schemes when central différences are used to approximate the convections

terms. The use of upwind differencing has led ta stable solutions. Obser-

ving that in one-dimensional problems, the GFEM leads to central différences,

finite élément researchers have turned their attention to the development

of analogous schemes.

This paper présents an analysis of finite élément schemes for

advection-diffusion problems and a short review of upstreaming techniques

in FEM. A simple scheme is then introduced for developing éléments suitable

for fluid dynamics problems.

This is applied to Navier-Stokes équations cast in the vorticity-

stream function formulation using a linear triangular élément.

Numerical results for the driven cavity problems are presented

for Reynolds numbers ranging from 0 to 5000.

2. THE MODE L PROBLEM

Consider the two-dimensional flow of an incompressible fluid

described by the Navier-Stokes équations written in terms of the vorticity

Ç and the stream function ip:

VT(UÇ) = VT Re-l VÇ CD

VT\^ = -Ç (2)



where

u is the velocity vector,

V is the gradient operator,

Re is the Reynolds number.

The discussion will be limited to Eq. (l), which is non-symmetric; Eq. (2)

does not présent any difficulties. Equation (l) is subject to the following

set of boundary conditions:

ç = f on F

T^ ^ '„ (3)
n' Vç = g on F

2

f and g are known functions of the coordinates, n is the outward nor-

mal unit vector of T; a.nd T , T are two complementary subregions of
l 2

the boundary of the demain of interest.

A weak form of the problem is given by

W VuT ç + 'V WT Re"1 VÇ dV = / Re"1 Wg dS (4)
'V ^S

Approximate solutions of C4) may be constructed by the finite élément

method in which one assumes:

Ç = N, Ç,'l "i

where

N^ is the shape function associated with node i

ç^ is the approximation to ç at node i

In the GFEM the weight functions W. are set equal to the shape functions

N,.
l

3. THE NEED FOR UPSTREAMING

Consider the two limiting cases of Eq. (l)



and

V VÇ = 0 for Re = 0 (5)

V uç = 0 for Re = ~ (6)

Equation (5) is elliptic while Eq. (6) is hyperbolic. Equation

(5) is similar to Eq. (l) and does not présent any difficulties.

Although the Navier-Stokes Eq. (l) will not be truly hyperbolic

they can be expected to exhibit some characteristics of hyperbolic équations

This can be seen when written as follows.

VT uç = e VT vç (7)

_]^

where G = Re " can be arbitrary small; the operator may be thought of

as hyperbolic with an elliptic perturbation.

Mixed type équations are well known in transonic flow problems

for which the changes of type are very sudden Ci.e, through a shock wave).

Switching between two discrète operators is current practice to cope with

thèse changes of type. For the transport équation the change of type,

although rapid, is smooth, continuous, and incomplète (the équation is never

truly hyperbolic). We need a discrète approximatioh capable of reproducing

thèse smooth changes throughout the domain of solution.

The hyperbolic nature of the équations will be best represented

when the scheme uses information along the characteristic direction, which

in this case is the streamline. The need to take into account the direction

of the flow in numerical schemes for the présent problem has already been

recognised and discussed by Raithby [1,2]. In addition, it is proposed in

this study, to do this is a gradual and controlled manner.

4. A SIMPLIFIED PROBLEM

The approach for developping such schemes is illustrated using

the one-dimensional, linear, constant coefficient transport équation:

pe ^ = d^ (8)
dx dx2



where Pe = ^- is the Péclét number

U is the velocity

L is a référence length

K is the diffusivity

sub ject to the following boundary conditions

Ç(0) = 0

ÇCD = l

The exact solution of Eq. (8) is

.Teî
1-e

IXJ = ~~Pe
1-e'

For small to moderate values of Pe, Ç(x) displays a solution which varies

rather smoothly over the entire domain. However, as Pe increases much

beyond unity (^i.e. Pe > 10) the solution becomes one of a boundary layer

type: ç(x) =0 except in the région near x = l Çfig. la).

A weak form of this problem is given by

^WPe^.^ dx=0dx ' dx dX-/

0

The usual technique of GFEM on a uniform mesh yields the following system

of algebraic équations:

(-^- - l) çi-1 + 2Ç1 + (^ - l) Çi+1 = 0 (9)

Uh h „ Pe
where Pg = ^ = 7- Pe = ^ is the grid Péclét number.

M is the number of éléments.

When applying the boundary conditions associated with Eq. (8), it is well

known that the solution of Eq. (9) will exliibit significant and spurious

oscillations for Pg > 2. This is readily seen from the analytical solution

of Eq. (9):



çi

l -

l -

-llï
^1T
~^

-^

l

-M i = 0,1,2,...,M (10)

The very form of this équation suggest some sort of problem for Pg s3° 2.

For Pg = 2, the limiting form of Eq. (10) gives:

Ç, = 0 for all i ^ M

Ç, = l for i = M

and for Pg > 2 it is obvious that node-to-node oscillations will occur.

Furthermore, for high Pg the oscillations will dépend strongly on the

parity of M (fig. Ib, le) [3, 7] . The same results would have been

obtained by applying central finite différences to Eq. (8).

One may legitimately wonder whether there exists a differential

équation whose analytical solution identicaly exhibits the wiggles of

the above discrète model. The answer is provided through a Hirt's analysis

[4]: Substituting the Taylor séries expansion of

çi±l = ci ±hç- +|^- ç" ± 1^- Ç"' + 0(h4)

in Eq. (9) and using Eq. (8) the third order derivative may be expressed as:

The discrète équation then becomes

-s-^

Pe ç"

PÊÎ, ^
3! ' dx2

0

The GFEM approximation actually introduces a négative artificial diffusi.

vity which tends to promote oscillations for high enough Pg, and one in

fact solves an équation of the form:

dÇ . .. d2Ç
Pe ^- + Y

d^ ' ' dx2
0



which admits an oscillatory solution with négative values of Ç. The

GFEM, for high Pe, produces the exact solution to the wrong problem!

This is avoided in finite différences by using one-sided

différences for the convection terms. This produces the following

System of équations.

C-Pg - l) q_^ + 2q + (-1) ç^ = 0 (il)

The exact solution is given by

<i • ^-^ïï t12'
-1 l - (1+pg)'

which admits no oscillations. For Pg » l we can use:

which is closely approximated by

ç, = 0 for i = 0,1,...,M-1

Ç, = l for i = M

The "upwind" solution looks quite good exept near the outflow where the

solution is independent of Pe. Hirt's analysis shows that the upwind

solution produces an exact solution to the following 0.D.E.:

p°ê-^ï)^a°

Hence whenever Pg is greater than 10 essentially all of the diffusion

in the upwind scheme is artificial and the results are almost independent

of the Péclét number. The effective Péclét number is given by

Pe
Peeff - 771g



The indépendance of the solution comes from the fact that the mesh is

too coarse ta résolve the very fine outlet boundary layer. (Its thick-

ness is of the order S ^ -?— [ 3] ) .

5. ONE-DIMENSIONAL UPWINDING ELEMENTS

A first attempt to overcome the oscillations was suggested by

Zienkiewicz et al. [5] and established firmly by Chriestie et al. [6] in

the context of one dimensional problems. They introduced the idea of

using weight functions of a différent order from that of the shape func-

tions. For higher order schemes of the same family the reader is refered

to [ 8] .

Recently, Hughes [9] introduced the concept of an optimal one

point intégration procédure for the convection terms. It produces the

following System of équations for the one-dimensional case:

[ i + -^ ci+ç)] T^ - 2 [ i + ^ a T^ + [i - -^ Cl-Q] T^^ = 0

The exact solution to this discrète system is given by:

l + P&(1+Ç)
T, = A + B

^ "" "l l - ^(i-ç) l

The constant A and B are determined from the boundary conditions.

Hirt's analysis yield the following differential équation

pe^-[i.piç-p^] <^o
dx •- ' 2 " 3 ! J dx2

The artificial diffusion is given by

= pg? _ pg2-
'art ~ T ^ ~ ~ÏÏ

We now have the free parameter Ç which can be used to control

^^^. The original differential équation is recovered if we set



l = pj-^ o(h2)

with an 0(h ) accuracy. When using the entire Taylor séries expansion,

the original differential équation is identically recovered if

l - coth ^ - ^ .

It must be pointed that exact nodal results are obtained on any

mesh only for the one-dimensional, linear, constant coefficient differen-

tial équation.

Although the solution is nodaly exact, a very fine mesh must

be used to accurately represent the outflow boundary layer. If the mesh

is too coarse the boundary layer will lie entirely within the last élément

and the solution will not give any due on its true thickness.

6. TWO-DIMENSIONAL UPWINDING ELEMENTS

Before discussing and describing any multi-dimensional schemes

for convection dominated flows, it is very instructive to display the

often quoted "central-difference nature" of the GFEM in modeling nonlinear

advection in one of the simplest cases possible: the 4-noded bilinear

élément on a square mesh. Consider the following 4 éléments patch:

_NW ,..N

The GFEM approximation to U ^— at 0 is given by:

" d̂x

+h ^+h

N u -^-7 dxdy
r-h J-h "o" 3x

•+hf+h
N.dxdy

"-h "-h



Where

u = N, IL
'J 'J

T = N, T,

N = Shape function at 0
0

The result is

dT
u

dx

i 6YU"+ui ^^ . l Vu" ^E:V , l uo+US ^TSE-TSW).
^ . g • 2h9" 22ÏÎ+ i • 2 2F

l 6UE+UNE+USE TE-To , l UE+UNE ^TNE-TN^ , l UE+USE ^TSE-TS)
9 ' 8 " h ' 36 2 - ~h--- ' 36 • - -2" h~

6U...+LL...+U,.... T -T... . U...+U..... fZ.-T.....') . U...+LL... fT--T-l U"W'UNW'USW 'o-lW . l "W'UNW ^N-1NWJ . l UWTUSW 11S~1SW';

9 ' 8 • h ' 36 -2- "~ï^~ ' ~56 2h~

Inspection of this expression reveals the following:

l. GFEM approximation of advection involves very intense coupling

and is much more complex than its finite différence counter

part.

2. Although centered différence terms clearly dominate the appro-

ximation (2/3 of the total), the remaining 1/3 is equaly

divided between ypwind-^nd^downwind-type différences. Hence,

the issue of the central différence nature of GFEM is more

complex than one might expect from the previous one-dimensional

analysis.

Heinrich et al. [10] generalised the scheme of [5,6] to the two-

dimensional transport équation. A few month later Heinrich and Zienkiewicz

[11] published a quadratic scheme. In thèse formulations the weight func-

tions are set equal to the shape functions modified by higher-order terms.

In both cases [10,11] various problems for the heat transport équation were

solved successfully.



It is only with the work of Moult et al. [12] that an upstreaming

technique is used to solve the full Navier-Stokes équations at high Reynolds

numbers. The vorticity équation is approximated via a local potential

approach. An iterative scheme is thus easily set up with the convection

terms acting as a forcing function. The diagonal dominance of the iteration

matrix expessed on a regular, triangular mesh is preserved by expressing

the convection terms in a manner very similar to first order finite diffe-

renée upstreaming techniques. The results presented for the driven cavity

clearly show the well known cross-diffusion effects associated with thèse

schemes. The authors achieved better results with higher order finite

différence schemes.

At the same time Ikegawa [13] presented another scheme for the

Navier-Stokes équations. The numerical approximation to the vorticity

équation is obtained by the following simple intégral:

VT UÇ dv - / VT Re"1 VÇ dv = 0 (13)
'V •/V

which yields, upon application of Gauss's divergence theorem:

Re-1

f) UT nç ds -^ |^ ds = 0 (14)

Equation (9) may be regarded as a conservation form of vorticity. It is

a spécial case of Eq. (4) in which the weight functions are chosen equal

to one. It is also the basis: of the well known finite volume technique.

The first term of Eq. (14) is formulated in two différent ways according

to the sign of the normal velocity component V^, as follows (fig. 2):

^s UT nç ds =^s v" ç ds = À v"c^' çki) di

where

^' V -\ if vn > °

cçk- V - çki if vn ' °



cL is the length of the segment i and ç,^ is taken as the average
l

value in the triangle. The vorticity and the stream-function équations

are solved alternatively until convergence is reached. Results were

reported for cavity flows with Reynolds numbers ranging from 500 to 1000.

7. A SIMPLE SCHEME

From the arguments of the previous sections, it is clear that

the direction of the flow must be taken into account for the évaluation

of the convection terms. It can be shown that the scheme introduced

by Hughes [9] suffers from sévère cross-wind diffusion [21] . Following

the same line of thought we présent a linear triangular élément which

overcomes thèse difficulties. The idea underlying the présent scheme is

a one dimensional analysis aligned on the streamlines passing through

the élément.

Equation (4) leads to the following system of nonlinear algebraic

équation:

[B + B ] {ç} = {G} (15a)

where

B (ij) = 1^ VWT Re" VN.dv = a diffusion matrix (15b)

.T
B (ij) = l y ^-: ^ u N.. dv = a convection matrix ClSc)

G Ci) =<t) Re " W^ g ds = Neumann boundary conditions (15d)
's 1

The elemental convection matrix is evaluated with a spécial one point

Gauss intégration formula:

B^(ij) = W^(T) VT u(0) N^CT) J(0) V (16)

where

u is the velocity vector; it is known from the previous

iteration.

T is a point located on the streamline passing through the

isoparametric center 0 of the élément. Its location

controls the artificial viscosity, hence the degree of upwinding.



J is the Jacobian déterminant of the coordinate transfor-

mation.

V is the volume of the élément in that local system of

coordinates. (J*V is the true volume of the élément).

W^ are the weight functions and they are set equal to

the shape function îi. .

Referring to fig. 3, the point T is chosen as follows:

l. Détermine the location of B and the arc length h of

BO.

2. Calculate the élément Reynolds number a = l|ull*h*Re where

u and h are non-dimensional velocity and length.

3. Compute the relative position T from a one-dimensional

analysis:

T = coth a - =-
a

4. The local coordinates of T are given by:

Ç, = ^ + T(ÇR-ÇJ
'T 'o ''t5 'o

n^ = n. + TCn^-nj
'T o ' 'B 0

and they are used to evaluate the convection matrix in Eq. (16)

8. APPLICATION

The scheme présentée! above was successfully applied to the driven

cavity problem for Reynolds numbers varying from 0 to 5000. The results

for moderate Reynolds numbers (Re ^ 400) compare very well with available

numerical and expérimental data.



Figures 4-15 illustrate the results obtained with the présent

method for various values of Reynolds numbers ranging from 0 to 5000.

The unsteady state solution is shown as the évolution of vorticity and

stream function at the center of the cavity. The steady state solution

is shown as the map of isovorticity and streamlines. The computations

were carried out for a 15 x 15 mesh.

It is noted that the présent finite élément solution is con-

sistent with the physical characteristics of high Reynolds number flows;

the présence of a nearly perfect circular core on the stream function

contour map is typical of irrotational Cinviscid) flow. This irrota-

tionality is also found in a zone of zéro vorticity on the vorticity con-

tour plot. It should be noted that several published solutions do not

respect this behaviour.

9. CONCLUSION

Several techniques to obtain finite éléments suitable for solving

the Navier-Stokes and transport équations at high Reynolds and Péclêt

numbers have been presented.

A général formulation is certainly that of Zienkiewicz et al.

[5,6,8,10,11,18,22,23]. The latter two références présent a very state

of the art techniques.

The other effective methods by Moult et al. [12] and Ikegawa [13]

are much more simple but are restricted to triangular éléments. The

former technique is an application of finite différence technique to a

triangular mesh, while the later is very similar to the fluid-in-cell and

finite-volume method [4]. It could be extended to quadrilateral éléments.

The authors' method is very simple to implement into existing

codes employing GFEM for convective transport phenomena. The nonsymmetric

location of the intégration point controls the degree of upwinding thus

maximizing the accuracy of the solution. The formulation is valid for

any type of élément; higher-order éléments are amenable to an analogue

treatment. The method is similar to the scheme recently introduced by

Hughes et al. [21] in which a controlled artificial diffusion is explicitely

introduced in the équations which are then solved by the usual GFEM.



While of no physical nor practical use, laminar solutions at

so high a Reynolds number open the way to the treatment of turbulent

flows [24,25,26,27,28,29] which are of prime importance to practicing

engineers, meteorologists and oceonographers.

A velocity-pressure [14,15,16,18,19,20,21,30] would allow the

solution of a wider class of problems and boundary conditions (free

surfaces, three-dimensional flows, pressure § stress boundary conditions
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pe = oo

l a Analytical solution (Roache [ 4] )

l b GFEM with add number of éléments

l e GFEM with even number of éléments



Fig. 2 The triangular élément of

of Ikegawa [ 13]

I''lg. 3 Proposed up-winding élément
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FIG. 6 HISTORIQUE DU POINT CENTRAL, SOLUTION PAR ELEMENTS FINIS

POUR UN NOMBRE DE REYNOLDS DE 100 ET UN MAILLAGE DE 15X15



Lignes de courant
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FIG. 7 LIGNES DE COURANT ET D ISO-VORTICITE A L ETAT

STATIONNAIRE, SOLUTION PAR ELEMENTS FINIS POUR UN

NOMBRE DE REYNOLDS DE 100 ET UN MAILLAGE DE 15X15
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FIG. 8 HISTORIQUE DU POINT CENTRAL, SOLUTION PAR ELEMENTS FINIS

POUR UN NOMBRE DE REYNOLDS DE "200 ET UN MAILLAGE DE 15X15
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FIG. 9 LIGNES DE COURANT ET DE VORTICITE A L ETAT

STATIONNAIRE, SOLUTION PAR ELEMENTS FINIS POUR UN

NOMBRE DE REYNOLDS DE 200 ET UN MAILLAGE DE 15X15
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FIG. 10 HISTORIQUE DU POINT CENTRAL, SOLUTION PAR ELEMENTS FINIS

POUR UN NOMBRE DE REYNOLDS DE 500 ET UN MAILLAGE DE 15X15
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FIG. 11 LIGNES DE COURANT ET D ISO-VORTICITE A L ETAT

STATIONNAIRE, SOLUTION PAR ELEMENTS FINIS POUR UN

NOMBRE DE REYNOLDS DE 1000 ET UN MAILLAGE DE 15X15
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FIG. 12 HISTORIQUE DU POINT CENTRAL, SOLUTION PAR ELEMENTS FINIS

POUR UN NOMBRE DE REYNOLDS DE 1000 et un MAILLAGE DE 15X15
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FIG. 13 LIGNES DE; COURANT ET D ISO-VORTICITE A L ETAT

STATIONNAIRE, SOLUTION PAR ELEMENTS FINIS POUR UN

NOMBRE DE REYNOLDS DE 1000 et un MAILLAGE DE 15X15
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FIG. 14 HISTORIQUE DU POINT CENTRAL , SOLUTION PAR ELEMENTS FINIS

POUR UN NOMBRE DE REYNOLDS DE 5000 ET UN MAILLAGE DE 15X15
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FIG.15 LIGNES DE COURANT ET DE VORTICITE A L ETAT

STATIONNAIRE, SOLUTION PAR ELEMENTS FINIS POUR UN

NOMBRE DE REYNOLDS DE 5000 et un MAILLAGE DE 15X15



Re = 100

At = 0.001
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